]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
md: fix deadlock between mddev_suspend() and md_write_start()
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 struct md_cluster_operations *md_cluster_ops;
88 EXPORT_SYMBOL(md_cluster_ops);
89 struct module *md_cluster_mod;
90 EXPORT_SYMBOL(md_cluster_mod);
91
92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
93 static struct workqueue_struct *md_wq;
94 static struct workqueue_struct *md_misc_wq;
95
96 static int remove_and_add_spares(struct mddev *mddev,
97 struct md_rdev *this);
98 static void mddev_detach(struct mddev *mddev);
99
100 /*
101 * Default number of read corrections we'll attempt on an rdev
102 * before ejecting it from the array. We divide the read error
103 * count by 2 for every hour elapsed between read errors.
104 */
105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
106 /*
107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108 * is 1000 KB/sec, so the extra system load does not show up that much.
109 * Increase it if you want to have more _guaranteed_ speed. Note that
110 * the RAID driver will use the maximum available bandwidth if the IO
111 * subsystem is idle. There is also an 'absolute maximum' reconstruction
112 * speed limit - in case reconstruction slows down your system despite
113 * idle IO detection.
114 *
115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116 * or /sys/block/mdX/md/sync_speed_{min,max}
117 */
118
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 return mddev->sync_speed_min ?
124 mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126
127 static inline int speed_max(struct mddev *mddev)
128 {
129 return mddev->sync_speed_max ?
130 mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132
133 static struct ctl_table_header *raid_table_header;
134
135 static struct ctl_table raid_table[] = {
136 {
137 .procname = "speed_limit_min",
138 .data = &sysctl_speed_limit_min,
139 .maxlen = sizeof(int),
140 .mode = S_IRUGO|S_IWUSR,
141 .proc_handler = proc_dointvec,
142 },
143 {
144 .procname = "speed_limit_max",
145 .data = &sysctl_speed_limit_max,
146 .maxlen = sizeof(int),
147 .mode = S_IRUGO|S_IWUSR,
148 .proc_handler = proc_dointvec,
149 },
150 { }
151 };
152
153 static struct ctl_table raid_dir_table[] = {
154 {
155 .procname = "raid",
156 .maxlen = 0,
157 .mode = S_IRUGO|S_IXUGO,
158 .child = raid_table,
159 },
160 { }
161 };
162
163 static struct ctl_table raid_root_table[] = {
164 {
165 .procname = "dev",
166 .maxlen = 0,
167 .mode = 0555,
168 .child = raid_dir_table,
169 },
170 { }
171 };
172
173 static const struct block_device_operations md_fops;
174
175 static int start_readonly;
176
177 /*
178 * The original mechanism for creating an md device is to create
179 * a device node in /dev and to open it. This causes races with device-close.
180 * The preferred method is to write to the "new_array" module parameter.
181 * This can avoid races.
182 * Setting create_on_open to false disables the original mechanism
183 * so all the races disappear.
184 */
185 static bool create_on_open = true;
186
187 /* bio_clone_mddev
188 * like bio_clone, but with a local bio set
189 */
190
191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
192 struct mddev *mddev)
193 {
194 struct bio *b;
195
196 if (!mddev || !mddev->bio_set)
197 return bio_alloc(gfp_mask, nr_iovecs);
198
199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
200 if (!b)
201 return NULL;
202 return b;
203 }
204 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
205
206 /*
207 * We have a system wide 'event count' that is incremented
208 * on any 'interesting' event, and readers of /proc/mdstat
209 * can use 'poll' or 'select' to find out when the event
210 * count increases.
211 *
212 * Events are:
213 * start array, stop array, error, add device, remove device,
214 * start build, activate spare
215 */
216 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
217 static atomic_t md_event_count;
218 void md_new_event(struct mddev *mddev)
219 {
220 atomic_inc(&md_event_count);
221 wake_up(&md_event_waiters);
222 }
223 EXPORT_SYMBOL_GPL(md_new_event);
224
225 /*
226 * Enables to iterate over all existing md arrays
227 * all_mddevs_lock protects this list.
228 */
229 static LIST_HEAD(all_mddevs);
230 static DEFINE_SPINLOCK(all_mddevs_lock);
231
232 /*
233 * iterates through all used mddevs in the system.
234 * We take care to grab the all_mddevs_lock whenever navigating
235 * the list, and to always hold a refcount when unlocked.
236 * Any code which breaks out of this loop while own
237 * a reference to the current mddev and must mddev_put it.
238 */
239 #define for_each_mddev(_mddev,_tmp) \
240 \
241 for (({ spin_lock(&all_mddevs_lock); \
242 _tmp = all_mddevs.next; \
243 _mddev = NULL;}); \
244 ({ if (_tmp != &all_mddevs) \
245 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
246 spin_unlock(&all_mddevs_lock); \
247 if (_mddev) mddev_put(_mddev); \
248 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
249 _tmp != &all_mddevs;}); \
250 ({ spin_lock(&all_mddevs_lock); \
251 _tmp = _tmp->next;}) \
252 )
253
254 /* Rather than calling directly into the personality make_request function,
255 * IO requests come here first so that we can check if the device is
256 * being suspended pending a reconfiguration.
257 * We hold a refcount over the call to ->make_request. By the time that
258 * call has finished, the bio has been linked into some internal structure
259 * and so is visible to ->quiesce(), so we don't need the refcount any more.
260 */
261 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
262 {
263 const int rw = bio_data_dir(bio);
264 struct mddev *mddev = q->queuedata;
265 unsigned int sectors;
266 int cpu;
267
268 blk_queue_split(q, &bio, q->bio_split);
269
270 if (mddev == NULL || mddev->pers == NULL) {
271 bio_io_error(bio);
272 return BLK_QC_T_NONE;
273 }
274 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
275 if (bio_sectors(bio) != 0)
276 bio->bi_error = -EROFS;
277 bio_endio(bio);
278 return BLK_QC_T_NONE;
279 }
280 check_suspended:
281 rcu_read_lock();
282 if (mddev->suspended) {
283 DEFINE_WAIT(__wait);
284 for (;;) {
285 prepare_to_wait(&mddev->sb_wait, &__wait,
286 TASK_UNINTERRUPTIBLE);
287 if (!mddev->suspended)
288 break;
289 rcu_read_unlock();
290 schedule();
291 rcu_read_lock();
292 }
293 finish_wait(&mddev->sb_wait, &__wait);
294 }
295 atomic_inc(&mddev->active_io);
296 rcu_read_unlock();
297
298 /*
299 * save the sectors now since our bio can
300 * go away inside make_request
301 */
302 sectors = bio_sectors(bio);
303 /* bio could be mergeable after passing to underlayer */
304 bio->bi_opf &= ~REQ_NOMERGE;
305 if (!mddev->pers->make_request(mddev, bio)) {
306 atomic_dec(&mddev->active_io);
307 wake_up(&mddev->sb_wait);
308 goto check_suspended;
309 }
310
311 cpu = part_stat_lock();
312 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
313 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
314 part_stat_unlock();
315
316 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
317 wake_up(&mddev->sb_wait);
318
319 return BLK_QC_T_NONE;
320 }
321
322 /* mddev_suspend makes sure no new requests are submitted
323 * to the device, and that any requests that have been submitted
324 * are completely handled.
325 * Once mddev_detach() is called and completes, the module will be
326 * completely unused.
327 */
328 void mddev_suspend(struct mddev *mddev)
329 {
330 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
331 if (mddev->suspended++)
332 return;
333 synchronize_rcu();
334 wake_up(&mddev->sb_wait);
335 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
336 mddev->pers->quiesce(mddev, 1);
337
338 del_timer_sync(&mddev->safemode_timer);
339 }
340 EXPORT_SYMBOL_GPL(mddev_suspend);
341
342 void mddev_resume(struct mddev *mddev)
343 {
344 if (--mddev->suspended)
345 return;
346 wake_up(&mddev->sb_wait);
347 mddev->pers->quiesce(mddev, 0);
348
349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
350 md_wakeup_thread(mddev->thread);
351 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
352 }
353 EXPORT_SYMBOL_GPL(mddev_resume);
354
355 int mddev_congested(struct mddev *mddev, int bits)
356 {
357 struct md_personality *pers = mddev->pers;
358 int ret = 0;
359
360 rcu_read_lock();
361 if (mddev->suspended)
362 ret = 1;
363 else if (pers && pers->congested)
364 ret = pers->congested(mddev, bits);
365 rcu_read_unlock();
366 return ret;
367 }
368 EXPORT_SYMBOL_GPL(mddev_congested);
369 static int md_congested(void *data, int bits)
370 {
371 struct mddev *mddev = data;
372 return mddev_congested(mddev, bits);
373 }
374
375 /*
376 * Generic flush handling for md
377 */
378
379 static void md_end_flush(struct bio *bio)
380 {
381 struct md_rdev *rdev = bio->bi_private;
382 struct mddev *mddev = rdev->mddev;
383
384 rdev_dec_pending(rdev, mddev);
385
386 if (atomic_dec_and_test(&mddev->flush_pending)) {
387 /* The pre-request flush has finished */
388 queue_work(md_wq, &mddev->flush_work);
389 }
390 bio_put(bio);
391 }
392
393 static void md_submit_flush_data(struct work_struct *ws);
394
395 static void submit_flushes(struct work_struct *ws)
396 {
397 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
398 struct md_rdev *rdev;
399
400 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
401 atomic_set(&mddev->flush_pending, 1);
402 rcu_read_lock();
403 rdev_for_each_rcu(rdev, mddev)
404 if (rdev->raid_disk >= 0 &&
405 !test_bit(Faulty, &rdev->flags)) {
406 /* Take two references, one is dropped
407 * when request finishes, one after
408 * we reclaim rcu_read_lock
409 */
410 struct bio *bi;
411 atomic_inc(&rdev->nr_pending);
412 atomic_inc(&rdev->nr_pending);
413 rcu_read_unlock();
414 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
415 bi->bi_end_io = md_end_flush;
416 bi->bi_private = rdev;
417 bi->bi_bdev = rdev->bdev;
418 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
419 atomic_inc(&mddev->flush_pending);
420 submit_bio(bi);
421 rcu_read_lock();
422 rdev_dec_pending(rdev, mddev);
423 }
424 rcu_read_unlock();
425 if (atomic_dec_and_test(&mddev->flush_pending))
426 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 struct bio *bio = mddev->flush_bio;
433
434 if (bio->bi_iter.bi_size == 0)
435 /* an empty barrier - all done */
436 bio_endio(bio);
437 else {
438 bio->bi_opf &= ~REQ_PREFLUSH;
439 mddev->pers->make_request(mddev, bio);
440 }
441
442 mddev->flush_bio = NULL;
443 wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 spin_lock_irq(&mddev->lock);
449 wait_event_lock_irq(mddev->sb_wait,
450 !mddev->flush_bio,
451 mddev->lock);
452 mddev->flush_bio = bio;
453 spin_unlock_irq(&mddev->lock);
454
455 INIT_WORK(&mddev->flush_work, submit_flushes);
456 queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 static inline struct mddev *mddev_get(struct mddev *mddev)
461 {
462 atomic_inc(&mddev->active);
463 return mddev;
464 }
465
466 static void mddev_delayed_delete(struct work_struct *ws);
467
468 static void mddev_put(struct mddev *mddev)
469 {
470 struct bio_set *bs = NULL;
471
472 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
473 return;
474 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
475 mddev->ctime == 0 && !mddev->hold_active) {
476 /* Array is not configured at all, and not held active,
477 * so destroy it */
478 list_del_init(&mddev->all_mddevs);
479 bs = mddev->bio_set;
480 mddev->bio_set = NULL;
481 if (mddev->gendisk) {
482 /* We did a probe so need to clean up. Call
483 * queue_work inside the spinlock so that
484 * flush_workqueue() after mddev_find will
485 * succeed in waiting for the work to be done.
486 */
487 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
488 queue_work(md_misc_wq, &mddev->del_work);
489 } else
490 kfree(mddev);
491 }
492 spin_unlock(&all_mddevs_lock);
493 if (bs)
494 bioset_free(bs);
495 }
496
497 static void md_safemode_timeout(unsigned long data);
498
499 void mddev_init(struct mddev *mddev)
500 {
501 mutex_init(&mddev->open_mutex);
502 mutex_init(&mddev->reconfig_mutex);
503 mutex_init(&mddev->bitmap_info.mutex);
504 INIT_LIST_HEAD(&mddev->disks);
505 INIT_LIST_HEAD(&mddev->all_mddevs);
506 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
507 (unsigned long) mddev);
508 atomic_set(&mddev->active, 1);
509 atomic_set(&mddev->openers, 0);
510 atomic_set(&mddev->active_io, 0);
511 spin_lock_init(&mddev->lock);
512 atomic_set(&mddev->flush_pending, 0);
513 init_waitqueue_head(&mddev->sb_wait);
514 init_waitqueue_head(&mddev->recovery_wait);
515 mddev->reshape_position = MaxSector;
516 mddev->reshape_backwards = 0;
517 mddev->last_sync_action = "none";
518 mddev->resync_min = 0;
519 mddev->resync_max = MaxSector;
520 mddev->level = LEVEL_NONE;
521 }
522 EXPORT_SYMBOL_GPL(mddev_init);
523
524 static struct mddev *mddev_find(dev_t unit)
525 {
526 struct mddev *mddev, *new = NULL;
527
528 if (unit && MAJOR(unit) != MD_MAJOR)
529 unit &= ~((1<<MdpMinorShift)-1);
530
531 retry:
532 spin_lock(&all_mddevs_lock);
533
534 if (unit) {
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == unit) {
537 mddev_get(mddev);
538 spin_unlock(&all_mddevs_lock);
539 kfree(new);
540 return mddev;
541 }
542
543 if (new) {
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 new->hold_active = UNTIL_IOCTL;
547 return new;
548 }
549 } else if (new) {
550 /* find an unused unit number */
551 static int next_minor = 512;
552 int start = next_minor;
553 int is_free = 0;
554 int dev = 0;
555 while (!is_free) {
556 dev = MKDEV(MD_MAJOR, next_minor);
557 next_minor++;
558 if (next_minor > MINORMASK)
559 next_minor = 0;
560 if (next_minor == start) {
561 /* Oh dear, all in use. */
562 spin_unlock(&all_mddevs_lock);
563 kfree(new);
564 return NULL;
565 }
566
567 is_free = 1;
568 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
569 if (mddev->unit == dev) {
570 is_free = 0;
571 break;
572 }
573 }
574 new->unit = dev;
575 new->md_minor = MINOR(dev);
576 new->hold_active = UNTIL_STOP;
577 list_add(&new->all_mddevs, &all_mddevs);
578 spin_unlock(&all_mddevs_lock);
579 return new;
580 }
581 spin_unlock(&all_mddevs_lock);
582
583 new = kzalloc(sizeof(*new), GFP_KERNEL);
584 if (!new)
585 return NULL;
586
587 new->unit = unit;
588 if (MAJOR(unit) == MD_MAJOR)
589 new->md_minor = MINOR(unit);
590 else
591 new->md_minor = MINOR(unit) >> MdpMinorShift;
592
593 mddev_init(new);
594
595 goto retry;
596 }
597
598 static struct attribute_group md_redundancy_group;
599
600 void mddev_unlock(struct mddev *mddev)
601 {
602 if (mddev->to_remove) {
603 /* These cannot be removed under reconfig_mutex as
604 * an access to the files will try to take reconfig_mutex
605 * while holding the file unremovable, which leads to
606 * a deadlock.
607 * So hold set sysfs_active while the remove in happeing,
608 * and anything else which might set ->to_remove or my
609 * otherwise change the sysfs namespace will fail with
610 * -EBUSY if sysfs_active is still set.
611 * We set sysfs_active under reconfig_mutex and elsewhere
612 * test it under the same mutex to ensure its correct value
613 * is seen.
614 */
615 struct attribute_group *to_remove = mddev->to_remove;
616 mddev->to_remove = NULL;
617 mddev->sysfs_active = 1;
618 mutex_unlock(&mddev->reconfig_mutex);
619
620 if (mddev->kobj.sd) {
621 if (to_remove != &md_redundancy_group)
622 sysfs_remove_group(&mddev->kobj, to_remove);
623 if (mddev->pers == NULL ||
624 mddev->pers->sync_request == NULL) {
625 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
626 if (mddev->sysfs_action)
627 sysfs_put(mddev->sysfs_action);
628 mddev->sysfs_action = NULL;
629 }
630 }
631 mddev->sysfs_active = 0;
632 } else
633 mutex_unlock(&mddev->reconfig_mutex);
634
635 /* As we've dropped the mutex we need a spinlock to
636 * make sure the thread doesn't disappear
637 */
638 spin_lock(&pers_lock);
639 md_wakeup_thread(mddev->thread);
640 spin_unlock(&pers_lock);
641 }
642 EXPORT_SYMBOL_GPL(mddev_unlock);
643
644 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
655
656 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665 }
666
667 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668 {
669 struct md_rdev *rdev;
670
671 rdev_for_each_rcu(rdev, mddev)
672 if (rdev->bdev->bd_dev == dev)
673 return rdev;
674
675 return NULL;
676 }
677
678 static struct md_personality *find_pers(int level, char *clevel)
679 {
680 struct md_personality *pers;
681 list_for_each_entry(pers, &pers_list, list) {
682 if (level != LEVEL_NONE && pers->level == level)
683 return pers;
684 if (strcmp(pers->name, clevel)==0)
685 return pers;
686 }
687 return NULL;
688 }
689
690 /* return the offset of the super block in 512byte sectors */
691 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692 {
693 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
694 return MD_NEW_SIZE_SECTORS(num_sectors);
695 }
696
697 static int alloc_disk_sb(struct md_rdev *rdev)
698 {
699 rdev->sb_page = alloc_page(GFP_KERNEL);
700 if (!rdev->sb_page)
701 return -ENOMEM;
702 return 0;
703 }
704
705 void md_rdev_clear(struct md_rdev *rdev)
706 {
707 if (rdev->sb_page) {
708 put_page(rdev->sb_page);
709 rdev->sb_loaded = 0;
710 rdev->sb_page = NULL;
711 rdev->sb_start = 0;
712 rdev->sectors = 0;
713 }
714 if (rdev->bb_page) {
715 put_page(rdev->bb_page);
716 rdev->bb_page = NULL;
717 }
718 badblocks_exit(&rdev->badblocks);
719 }
720 EXPORT_SYMBOL_GPL(md_rdev_clear);
721
722 static void super_written(struct bio *bio)
723 {
724 struct md_rdev *rdev = bio->bi_private;
725 struct mddev *mddev = rdev->mddev;
726
727 if (bio->bi_error) {
728 pr_err("md: super_written gets error=%d\n", bio->bi_error);
729 md_error(mddev, rdev);
730 if (!test_bit(Faulty, &rdev->flags)
731 && (bio->bi_opf & MD_FAILFAST)) {
732 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
733 set_bit(LastDev, &rdev->flags);
734 }
735 } else
736 clear_bit(LastDev, &rdev->flags);
737
738 if (atomic_dec_and_test(&mddev->pending_writes))
739 wake_up(&mddev->sb_wait);
740 rdev_dec_pending(rdev, mddev);
741 bio_put(bio);
742 }
743
744 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
745 sector_t sector, int size, struct page *page)
746 {
747 /* write first size bytes of page to sector of rdev
748 * Increment mddev->pending_writes before returning
749 * and decrement it on completion, waking up sb_wait
750 * if zero is reached.
751 * If an error occurred, call md_error
752 */
753 struct bio *bio;
754 int ff = 0;
755
756 if (test_bit(Faulty, &rdev->flags))
757 return;
758
759 bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
760
761 atomic_inc(&rdev->nr_pending);
762
763 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
764 bio->bi_iter.bi_sector = sector;
765 bio_add_page(bio, page, size, 0);
766 bio->bi_private = rdev;
767 bio->bi_end_io = super_written;
768
769 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
770 test_bit(FailFast, &rdev->flags) &&
771 !test_bit(LastDev, &rdev->flags))
772 ff = MD_FAILFAST;
773 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
774
775 atomic_inc(&mddev->pending_writes);
776 submit_bio(bio);
777 }
778
779 int md_super_wait(struct mddev *mddev)
780 {
781 /* wait for all superblock writes that were scheduled to complete */
782 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
783 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
784 return -EAGAIN;
785 return 0;
786 }
787
788 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
789 struct page *page, int op, int op_flags, bool metadata_op)
790 {
791 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
792 int ret;
793
794 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
795 rdev->meta_bdev : rdev->bdev;
796 bio_set_op_attrs(bio, op, op_flags);
797 if (metadata_op)
798 bio->bi_iter.bi_sector = sector + rdev->sb_start;
799 else if (rdev->mddev->reshape_position != MaxSector &&
800 (rdev->mddev->reshape_backwards ==
801 (sector >= rdev->mddev->reshape_position)))
802 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
803 else
804 bio->bi_iter.bi_sector = sector + rdev->data_offset;
805 bio_add_page(bio, page, size, 0);
806
807 submit_bio_wait(bio);
808
809 ret = !bio->bi_error;
810 bio_put(bio);
811 return ret;
812 }
813 EXPORT_SYMBOL_GPL(sync_page_io);
814
815 static int read_disk_sb(struct md_rdev *rdev, int size)
816 {
817 char b[BDEVNAME_SIZE];
818
819 if (rdev->sb_loaded)
820 return 0;
821
822 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
823 goto fail;
824 rdev->sb_loaded = 1;
825 return 0;
826
827 fail:
828 pr_err("md: disabled device %s, could not read superblock.\n",
829 bdevname(rdev->bdev,b));
830 return -EINVAL;
831 }
832
833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834 {
835 return sb1->set_uuid0 == sb2->set_uuid0 &&
836 sb1->set_uuid1 == sb2->set_uuid1 &&
837 sb1->set_uuid2 == sb2->set_uuid2 &&
838 sb1->set_uuid3 == sb2->set_uuid3;
839 }
840
841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 int ret;
844 mdp_super_t *tmp1, *tmp2;
845
846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848
849 if (!tmp1 || !tmp2) {
850 ret = 0;
851 goto abort;
852 }
853
854 *tmp1 = *sb1;
855 *tmp2 = *sb2;
856
857 /*
858 * nr_disks is not constant
859 */
860 tmp1->nr_disks = 0;
861 tmp2->nr_disks = 0;
862
863 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
864 abort:
865 kfree(tmp1);
866 kfree(tmp2);
867 return ret;
868 }
869
870 static u32 md_csum_fold(u32 csum)
871 {
872 csum = (csum & 0xffff) + (csum >> 16);
873 return (csum & 0xffff) + (csum >> 16);
874 }
875
876 static unsigned int calc_sb_csum(mdp_super_t *sb)
877 {
878 u64 newcsum = 0;
879 u32 *sb32 = (u32*)sb;
880 int i;
881 unsigned int disk_csum, csum;
882
883 disk_csum = sb->sb_csum;
884 sb->sb_csum = 0;
885
886 for (i = 0; i < MD_SB_BYTES/4 ; i++)
887 newcsum += sb32[i];
888 csum = (newcsum & 0xffffffff) + (newcsum>>32);
889
890 #ifdef CONFIG_ALPHA
891 /* This used to use csum_partial, which was wrong for several
892 * reasons including that different results are returned on
893 * different architectures. It isn't critical that we get exactly
894 * the same return value as before (we always csum_fold before
895 * testing, and that removes any differences). However as we
896 * know that csum_partial always returned a 16bit value on
897 * alphas, do a fold to maximise conformity to previous behaviour.
898 */
899 sb->sb_csum = md_csum_fold(disk_csum);
900 #else
901 sb->sb_csum = disk_csum;
902 #endif
903 return csum;
904 }
905
906 /*
907 * Handle superblock details.
908 * We want to be able to handle multiple superblock formats
909 * so we have a common interface to them all, and an array of
910 * different handlers.
911 * We rely on user-space to write the initial superblock, and support
912 * reading and updating of superblocks.
913 * Interface methods are:
914 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
915 * loads and validates a superblock on dev.
916 * if refdev != NULL, compare superblocks on both devices
917 * Return:
918 * 0 - dev has a superblock that is compatible with refdev
919 * 1 - dev has a superblock that is compatible and newer than refdev
920 * so dev should be used as the refdev in future
921 * -EINVAL superblock incompatible or invalid
922 * -othererror e.g. -EIO
923 *
924 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
925 * Verify that dev is acceptable into mddev.
926 * The first time, mddev->raid_disks will be 0, and data from
927 * dev should be merged in. Subsequent calls check that dev
928 * is new enough. Return 0 or -EINVAL
929 *
930 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
931 * Update the superblock for rdev with data in mddev
932 * This does not write to disc.
933 *
934 */
935
936 struct super_type {
937 char *name;
938 struct module *owner;
939 int (*load_super)(struct md_rdev *rdev,
940 struct md_rdev *refdev,
941 int minor_version);
942 int (*validate_super)(struct mddev *mddev,
943 struct md_rdev *rdev);
944 void (*sync_super)(struct mddev *mddev,
945 struct md_rdev *rdev);
946 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
947 sector_t num_sectors);
948 int (*allow_new_offset)(struct md_rdev *rdev,
949 unsigned long long new_offset);
950 };
951
952 /*
953 * Check that the given mddev has no bitmap.
954 *
955 * This function is called from the run method of all personalities that do not
956 * support bitmaps. It prints an error message and returns non-zero if mddev
957 * has a bitmap. Otherwise, it returns 0.
958 *
959 */
960 int md_check_no_bitmap(struct mddev *mddev)
961 {
962 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
963 return 0;
964 pr_warn("%s: bitmaps are not supported for %s\n",
965 mdname(mddev), mddev->pers->name);
966 return 1;
967 }
968 EXPORT_SYMBOL(md_check_no_bitmap);
969
970 /*
971 * load_super for 0.90.0
972 */
973 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
974 {
975 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
976 mdp_super_t *sb;
977 int ret;
978
979 /*
980 * Calculate the position of the superblock (512byte sectors),
981 * it's at the end of the disk.
982 *
983 * It also happens to be a multiple of 4Kb.
984 */
985 rdev->sb_start = calc_dev_sboffset(rdev);
986
987 ret = read_disk_sb(rdev, MD_SB_BYTES);
988 if (ret)
989 return ret;
990
991 ret = -EINVAL;
992
993 bdevname(rdev->bdev, b);
994 sb = page_address(rdev->sb_page);
995
996 if (sb->md_magic != MD_SB_MAGIC) {
997 pr_warn("md: invalid raid superblock magic on %s\n", b);
998 goto abort;
999 }
1000
1001 if (sb->major_version != 0 ||
1002 sb->minor_version < 90 ||
1003 sb->minor_version > 91) {
1004 pr_warn("Bad version number %d.%d on %s\n",
1005 sb->major_version, sb->minor_version, b);
1006 goto abort;
1007 }
1008
1009 if (sb->raid_disks <= 0)
1010 goto abort;
1011
1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 pr_warn("md: invalid superblock checksum on %s\n", b);
1014 goto abort;
1015 }
1016
1017 rdev->preferred_minor = sb->md_minor;
1018 rdev->data_offset = 0;
1019 rdev->new_data_offset = 0;
1020 rdev->sb_size = MD_SB_BYTES;
1021 rdev->badblocks.shift = -1;
1022
1023 if (sb->level == LEVEL_MULTIPATH)
1024 rdev->desc_nr = -1;
1025 else
1026 rdev->desc_nr = sb->this_disk.number;
1027
1028 if (!refdev) {
1029 ret = 1;
1030 } else {
1031 __u64 ev1, ev2;
1032 mdp_super_t *refsb = page_address(refdev->sb_page);
1033 if (!uuid_equal(refsb, sb)) {
1034 pr_warn("md: %s has different UUID to %s\n",
1035 b, bdevname(refdev->bdev,b2));
1036 goto abort;
1037 }
1038 if (!sb_equal(refsb, sb)) {
1039 pr_warn("md: %s has same UUID but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051 /* Limit to 4TB as metadata cannot record more than that.
1052 * (not needed for Linear and RAID0 as metadata doesn't
1053 * record this size)
1054 */
1055 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1056 sb->level >= 1)
1057 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1058
1059 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1060 /* "this cannot possibly happen" ... */
1061 ret = -EINVAL;
1062
1063 abort:
1064 return ret;
1065 }
1066
1067 /*
1068 * validate_super for 0.90.0
1069 */
1070 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1071 {
1072 mdp_disk_t *desc;
1073 mdp_super_t *sb = page_address(rdev->sb_page);
1074 __u64 ev1 = md_event(sb);
1075
1076 rdev->raid_disk = -1;
1077 clear_bit(Faulty, &rdev->flags);
1078 clear_bit(In_sync, &rdev->flags);
1079 clear_bit(Bitmap_sync, &rdev->flags);
1080 clear_bit(WriteMostly, &rdev->flags);
1081
1082 if (mddev->raid_disks == 0) {
1083 mddev->major_version = 0;
1084 mddev->minor_version = sb->minor_version;
1085 mddev->patch_version = sb->patch_version;
1086 mddev->external = 0;
1087 mddev->chunk_sectors = sb->chunk_size >> 9;
1088 mddev->ctime = sb->ctime;
1089 mddev->utime = sb->utime;
1090 mddev->level = sb->level;
1091 mddev->clevel[0] = 0;
1092 mddev->layout = sb->layout;
1093 mddev->raid_disks = sb->raid_disks;
1094 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1095 mddev->events = ev1;
1096 mddev->bitmap_info.offset = 0;
1097 mddev->bitmap_info.space = 0;
1098 /* bitmap can use 60 K after the 4K superblocks */
1099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1100 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1101 mddev->reshape_backwards = 0;
1102
1103 if (mddev->minor_version >= 91) {
1104 mddev->reshape_position = sb->reshape_position;
1105 mddev->delta_disks = sb->delta_disks;
1106 mddev->new_level = sb->new_level;
1107 mddev->new_layout = sb->new_layout;
1108 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1109 if (mddev->delta_disks < 0)
1110 mddev->reshape_backwards = 1;
1111 } else {
1112 mddev->reshape_position = MaxSector;
1113 mddev->delta_disks = 0;
1114 mddev->new_level = mddev->level;
1115 mddev->new_layout = mddev->layout;
1116 mddev->new_chunk_sectors = mddev->chunk_sectors;
1117 }
1118
1119 if (sb->state & (1<<MD_SB_CLEAN))
1120 mddev->recovery_cp = MaxSector;
1121 else {
1122 if (sb->events_hi == sb->cp_events_hi &&
1123 sb->events_lo == sb->cp_events_lo) {
1124 mddev->recovery_cp = sb->recovery_cp;
1125 } else
1126 mddev->recovery_cp = 0;
1127 }
1128
1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1133
1134 mddev->max_disks = MD_SB_DISKS;
1135
1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1137 mddev->bitmap_info.file == NULL) {
1138 mddev->bitmap_info.offset =
1139 mddev->bitmap_info.default_offset;
1140 mddev->bitmap_info.space =
1141 mddev->bitmap_info.default_space;
1142 }
1143
1144 } else if (mddev->pers == NULL) {
1145 /* Insist on good event counter while assembling, except
1146 * for spares (which don't need an event count) */
1147 ++ev1;
1148 if (sb->disks[rdev->desc_nr].state & (
1149 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1150 if (ev1 < mddev->events)
1151 return -EINVAL;
1152 } else if (mddev->bitmap) {
1153 /* if adding to array with a bitmap, then we can accept an
1154 * older device ... but not too old.
1155 */
1156 if (ev1 < mddev->bitmap->events_cleared)
1157 return 0;
1158 if (ev1 < mddev->events)
1159 set_bit(Bitmap_sync, &rdev->flags);
1160 } else {
1161 if (ev1 < mddev->events)
1162 /* just a hot-add of a new device, leave raid_disk at -1 */
1163 return 0;
1164 }
1165
1166 if (mddev->level != LEVEL_MULTIPATH) {
1167 desc = sb->disks + rdev->desc_nr;
1168
1169 if (desc->state & (1<<MD_DISK_FAULTY))
1170 set_bit(Faulty, &rdev->flags);
1171 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1172 desc->raid_disk < mddev->raid_disks */) {
1173 set_bit(In_sync, &rdev->flags);
1174 rdev->raid_disk = desc->raid_disk;
1175 rdev->saved_raid_disk = desc->raid_disk;
1176 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1177 /* active but not in sync implies recovery up to
1178 * reshape position. We don't know exactly where
1179 * that is, so set to zero for now */
1180 if (mddev->minor_version >= 91) {
1181 rdev->recovery_offset = 0;
1182 rdev->raid_disk = desc->raid_disk;
1183 }
1184 }
1185 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1186 set_bit(WriteMostly, &rdev->flags);
1187 if (desc->state & (1<<MD_DISK_FAILFAST))
1188 set_bit(FailFast, &rdev->flags);
1189 } else /* MULTIPATH are always insync */
1190 set_bit(In_sync, &rdev->flags);
1191 return 0;
1192 }
1193
1194 /*
1195 * sync_super for 0.90.0
1196 */
1197 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1198 {
1199 mdp_super_t *sb;
1200 struct md_rdev *rdev2;
1201 int next_spare = mddev->raid_disks;
1202
1203 /* make rdev->sb match mddev data..
1204 *
1205 * 1/ zero out disks
1206 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1207 * 3/ any empty disks < next_spare become removed
1208 *
1209 * disks[0] gets initialised to REMOVED because
1210 * we cannot be sure from other fields if it has
1211 * been initialised or not.
1212 */
1213 int i;
1214 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1215
1216 rdev->sb_size = MD_SB_BYTES;
1217
1218 sb = page_address(rdev->sb_page);
1219
1220 memset(sb, 0, sizeof(*sb));
1221
1222 sb->md_magic = MD_SB_MAGIC;
1223 sb->major_version = mddev->major_version;
1224 sb->patch_version = mddev->patch_version;
1225 sb->gvalid_words = 0; /* ignored */
1226 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1227 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1228 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1229 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1230
1231 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1232 sb->level = mddev->level;
1233 sb->size = mddev->dev_sectors / 2;
1234 sb->raid_disks = mddev->raid_disks;
1235 sb->md_minor = mddev->md_minor;
1236 sb->not_persistent = 0;
1237 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1238 sb->state = 0;
1239 sb->events_hi = (mddev->events>>32);
1240 sb->events_lo = (u32)mddev->events;
1241
1242 if (mddev->reshape_position == MaxSector)
1243 sb->minor_version = 90;
1244 else {
1245 sb->minor_version = 91;
1246 sb->reshape_position = mddev->reshape_position;
1247 sb->new_level = mddev->new_level;
1248 sb->delta_disks = mddev->delta_disks;
1249 sb->new_layout = mddev->new_layout;
1250 sb->new_chunk = mddev->new_chunk_sectors << 9;
1251 }
1252 mddev->minor_version = sb->minor_version;
1253 if (mddev->in_sync)
1254 {
1255 sb->recovery_cp = mddev->recovery_cp;
1256 sb->cp_events_hi = (mddev->events>>32);
1257 sb->cp_events_lo = (u32)mddev->events;
1258 if (mddev->recovery_cp == MaxSector)
1259 sb->state = (1<< MD_SB_CLEAN);
1260 } else
1261 sb->recovery_cp = 0;
1262
1263 sb->layout = mddev->layout;
1264 sb->chunk_size = mddev->chunk_sectors << 9;
1265
1266 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1267 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1268
1269 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1270 rdev_for_each(rdev2, mddev) {
1271 mdp_disk_t *d;
1272 int desc_nr;
1273 int is_active = test_bit(In_sync, &rdev2->flags);
1274
1275 if (rdev2->raid_disk >= 0 &&
1276 sb->minor_version >= 91)
1277 /* we have nowhere to store the recovery_offset,
1278 * but if it is not below the reshape_position,
1279 * we can piggy-back on that.
1280 */
1281 is_active = 1;
1282 if (rdev2->raid_disk < 0 ||
1283 test_bit(Faulty, &rdev2->flags))
1284 is_active = 0;
1285 if (is_active)
1286 desc_nr = rdev2->raid_disk;
1287 else
1288 desc_nr = next_spare++;
1289 rdev2->desc_nr = desc_nr;
1290 d = &sb->disks[rdev2->desc_nr];
1291 nr_disks++;
1292 d->number = rdev2->desc_nr;
1293 d->major = MAJOR(rdev2->bdev->bd_dev);
1294 d->minor = MINOR(rdev2->bdev->bd_dev);
1295 if (is_active)
1296 d->raid_disk = rdev2->raid_disk;
1297 else
1298 d->raid_disk = rdev2->desc_nr; /* compatibility */
1299 if (test_bit(Faulty, &rdev2->flags))
1300 d->state = (1<<MD_DISK_FAULTY);
1301 else if (is_active) {
1302 d->state = (1<<MD_DISK_ACTIVE);
1303 if (test_bit(In_sync, &rdev2->flags))
1304 d->state |= (1<<MD_DISK_SYNC);
1305 active++;
1306 working++;
1307 } else {
1308 d->state = 0;
1309 spare++;
1310 working++;
1311 }
1312 if (test_bit(WriteMostly, &rdev2->flags))
1313 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1314 if (test_bit(FailFast, &rdev2->flags))
1315 d->state |= (1<<MD_DISK_FAILFAST);
1316 }
1317 /* now set the "removed" and "faulty" bits on any missing devices */
1318 for (i=0 ; i < mddev->raid_disks ; i++) {
1319 mdp_disk_t *d = &sb->disks[i];
1320 if (d->state == 0 && d->number == 0) {
1321 d->number = i;
1322 d->raid_disk = i;
1323 d->state = (1<<MD_DISK_REMOVED);
1324 d->state |= (1<<MD_DISK_FAULTY);
1325 failed++;
1326 }
1327 }
1328 sb->nr_disks = nr_disks;
1329 sb->active_disks = active;
1330 sb->working_disks = working;
1331 sb->failed_disks = failed;
1332 sb->spare_disks = spare;
1333
1334 sb->this_disk = sb->disks[rdev->desc_nr];
1335 sb->sb_csum = calc_sb_csum(sb);
1336 }
1337
1338 /*
1339 * rdev_size_change for 0.90.0
1340 */
1341 static unsigned long long
1342 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1343 {
1344 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1345 return 0; /* component must fit device */
1346 if (rdev->mddev->bitmap_info.offset)
1347 return 0; /* can't move bitmap */
1348 rdev->sb_start = calc_dev_sboffset(rdev);
1349 if (!num_sectors || num_sectors > rdev->sb_start)
1350 num_sectors = rdev->sb_start;
1351 /* Limit to 4TB as metadata cannot record more than that.
1352 * 4TB == 2^32 KB, or 2*2^32 sectors.
1353 */
1354 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1355 rdev->mddev->level >= 1)
1356 num_sectors = (sector_t)(2ULL << 32) - 2;
1357 do {
1358 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1359 rdev->sb_page);
1360 } while (md_super_wait(rdev->mddev) < 0);
1361 return num_sectors;
1362 }
1363
1364 static int
1365 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1366 {
1367 /* non-zero offset changes not possible with v0.90 */
1368 return new_offset == 0;
1369 }
1370
1371 /*
1372 * version 1 superblock
1373 */
1374
1375 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1376 {
1377 __le32 disk_csum;
1378 u32 csum;
1379 unsigned long long newcsum;
1380 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1381 __le32 *isuper = (__le32*)sb;
1382
1383 disk_csum = sb->sb_csum;
1384 sb->sb_csum = 0;
1385 newcsum = 0;
1386 for (; size >= 4; size -= 4)
1387 newcsum += le32_to_cpu(*isuper++);
1388
1389 if (size == 2)
1390 newcsum += le16_to_cpu(*(__le16*) isuper);
1391
1392 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1393 sb->sb_csum = disk_csum;
1394 return cpu_to_le32(csum);
1395 }
1396
1397 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1398 {
1399 struct mdp_superblock_1 *sb;
1400 int ret;
1401 sector_t sb_start;
1402 sector_t sectors;
1403 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1404 int bmask;
1405
1406 /*
1407 * Calculate the position of the superblock in 512byte sectors.
1408 * It is always aligned to a 4K boundary and
1409 * depeding on minor_version, it can be:
1410 * 0: At least 8K, but less than 12K, from end of device
1411 * 1: At start of device
1412 * 2: 4K from start of device.
1413 */
1414 switch(minor_version) {
1415 case 0:
1416 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1417 sb_start -= 8*2;
1418 sb_start &= ~(sector_t)(4*2-1);
1419 break;
1420 case 1:
1421 sb_start = 0;
1422 break;
1423 case 2:
1424 sb_start = 8;
1425 break;
1426 default:
1427 return -EINVAL;
1428 }
1429 rdev->sb_start = sb_start;
1430
1431 /* superblock is rarely larger than 1K, but it can be larger,
1432 * and it is safe to read 4k, so we do that
1433 */
1434 ret = read_disk_sb(rdev, 4096);
1435 if (ret) return ret;
1436
1437 sb = page_address(rdev->sb_page);
1438
1439 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1440 sb->major_version != cpu_to_le32(1) ||
1441 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1442 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1443 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1444 return -EINVAL;
1445
1446 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1447 pr_warn("md: invalid superblock checksum on %s\n",
1448 bdevname(rdev->bdev,b));
1449 return -EINVAL;
1450 }
1451 if (le64_to_cpu(sb->data_size) < 10) {
1452 pr_warn("md: data_size too small on %s\n",
1453 bdevname(rdev->bdev,b));
1454 return -EINVAL;
1455 }
1456 if (sb->pad0 ||
1457 sb->pad3[0] ||
1458 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1459 /* Some padding is non-zero, might be a new feature */
1460 return -EINVAL;
1461
1462 rdev->preferred_minor = 0xffff;
1463 rdev->data_offset = le64_to_cpu(sb->data_offset);
1464 rdev->new_data_offset = rdev->data_offset;
1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1466 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1467 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1468 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1469
1470 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1471 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1472 if (rdev->sb_size & bmask)
1473 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1474
1475 if (minor_version
1476 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1477 return -EINVAL;
1478 if (minor_version
1479 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1480 return -EINVAL;
1481
1482 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1483 rdev->desc_nr = -1;
1484 else
1485 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1486
1487 if (!rdev->bb_page) {
1488 rdev->bb_page = alloc_page(GFP_KERNEL);
1489 if (!rdev->bb_page)
1490 return -ENOMEM;
1491 }
1492 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1493 rdev->badblocks.count == 0) {
1494 /* need to load the bad block list.
1495 * Currently we limit it to one page.
1496 */
1497 s32 offset;
1498 sector_t bb_sector;
1499 u64 *bbp;
1500 int i;
1501 int sectors = le16_to_cpu(sb->bblog_size);
1502 if (sectors > (PAGE_SIZE / 512))
1503 return -EINVAL;
1504 offset = le32_to_cpu(sb->bblog_offset);
1505 if (offset == 0)
1506 return -EINVAL;
1507 bb_sector = (long long)offset;
1508 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1509 rdev->bb_page, REQ_OP_READ, 0, true))
1510 return -EIO;
1511 bbp = (u64 *)page_address(rdev->bb_page);
1512 rdev->badblocks.shift = sb->bblog_shift;
1513 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1514 u64 bb = le64_to_cpu(*bbp);
1515 int count = bb & (0x3ff);
1516 u64 sector = bb >> 10;
1517 sector <<= sb->bblog_shift;
1518 count <<= sb->bblog_shift;
1519 if (bb + 1 == 0)
1520 break;
1521 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1522 return -EINVAL;
1523 }
1524 } else if (sb->bblog_offset != 0)
1525 rdev->badblocks.shift = 0;
1526
1527 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1528 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1529 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1530 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1531 }
1532
1533 if (!refdev) {
1534 ret = 1;
1535 } else {
1536 __u64 ev1, ev2;
1537 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1538
1539 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1540 sb->level != refsb->level ||
1541 sb->layout != refsb->layout ||
1542 sb->chunksize != refsb->chunksize) {
1543 pr_warn("md: %s has strangely different superblock to %s\n",
1544 bdevname(rdev->bdev,b),
1545 bdevname(refdev->bdev,b2));
1546 return -EINVAL;
1547 }
1548 ev1 = le64_to_cpu(sb->events);
1549 ev2 = le64_to_cpu(refsb->events);
1550
1551 if (ev1 > ev2)
1552 ret = 1;
1553 else
1554 ret = 0;
1555 }
1556 if (minor_version) {
1557 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1558 sectors -= rdev->data_offset;
1559 } else
1560 sectors = rdev->sb_start;
1561 if (sectors < le64_to_cpu(sb->data_size))
1562 return -EINVAL;
1563 rdev->sectors = le64_to_cpu(sb->data_size);
1564 return ret;
1565 }
1566
1567 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1568 {
1569 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1570 __u64 ev1 = le64_to_cpu(sb->events);
1571
1572 rdev->raid_disk = -1;
1573 clear_bit(Faulty, &rdev->flags);
1574 clear_bit(In_sync, &rdev->flags);
1575 clear_bit(Bitmap_sync, &rdev->flags);
1576 clear_bit(WriteMostly, &rdev->flags);
1577
1578 if (mddev->raid_disks == 0) {
1579 mddev->major_version = 1;
1580 mddev->patch_version = 0;
1581 mddev->external = 0;
1582 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1583 mddev->ctime = le64_to_cpu(sb->ctime);
1584 mddev->utime = le64_to_cpu(sb->utime);
1585 mddev->level = le32_to_cpu(sb->level);
1586 mddev->clevel[0] = 0;
1587 mddev->layout = le32_to_cpu(sb->layout);
1588 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1589 mddev->dev_sectors = le64_to_cpu(sb->size);
1590 mddev->events = ev1;
1591 mddev->bitmap_info.offset = 0;
1592 mddev->bitmap_info.space = 0;
1593 /* Default location for bitmap is 1K after superblock
1594 * using 3K - total of 4K
1595 */
1596 mddev->bitmap_info.default_offset = 1024 >> 9;
1597 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1598 mddev->reshape_backwards = 0;
1599
1600 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1601 memcpy(mddev->uuid, sb->set_uuid, 16);
1602
1603 mddev->max_disks = (4096-256)/2;
1604
1605 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1606 mddev->bitmap_info.file == NULL) {
1607 mddev->bitmap_info.offset =
1608 (__s32)le32_to_cpu(sb->bitmap_offset);
1609 /* Metadata doesn't record how much space is available.
1610 * For 1.0, we assume we can use up to the superblock
1611 * if before, else to 4K beyond superblock.
1612 * For others, assume no change is possible.
1613 */
1614 if (mddev->minor_version > 0)
1615 mddev->bitmap_info.space = 0;
1616 else if (mddev->bitmap_info.offset > 0)
1617 mddev->bitmap_info.space =
1618 8 - mddev->bitmap_info.offset;
1619 else
1620 mddev->bitmap_info.space =
1621 -mddev->bitmap_info.offset;
1622 }
1623
1624 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1625 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1626 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1627 mddev->new_level = le32_to_cpu(sb->new_level);
1628 mddev->new_layout = le32_to_cpu(sb->new_layout);
1629 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1630 if (mddev->delta_disks < 0 ||
1631 (mddev->delta_disks == 0 &&
1632 (le32_to_cpu(sb->feature_map)
1633 & MD_FEATURE_RESHAPE_BACKWARDS)))
1634 mddev->reshape_backwards = 1;
1635 } else {
1636 mddev->reshape_position = MaxSector;
1637 mddev->delta_disks = 0;
1638 mddev->new_level = mddev->level;
1639 mddev->new_layout = mddev->layout;
1640 mddev->new_chunk_sectors = mddev->chunk_sectors;
1641 }
1642
1643 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1644 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1645
1646 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) {
1647 if (le32_to_cpu(sb->feature_map) &
1648 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1649 return -EINVAL;
1650 set_bit(MD_HAS_PPL, &mddev->flags);
1651 }
1652 } else if (mddev->pers == NULL) {
1653 /* Insist of good event counter while assembling, except for
1654 * spares (which don't need an event count) */
1655 ++ev1;
1656 if (rdev->desc_nr >= 0 &&
1657 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1658 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1659 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1660 if (ev1 < mddev->events)
1661 return -EINVAL;
1662 } else if (mddev->bitmap) {
1663 /* If adding to array with a bitmap, then we can accept an
1664 * older device, but not too old.
1665 */
1666 if (ev1 < mddev->bitmap->events_cleared)
1667 return 0;
1668 if (ev1 < mddev->events)
1669 set_bit(Bitmap_sync, &rdev->flags);
1670 } else {
1671 if (ev1 < mddev->events)
1672 /* just a hot-add of a new device, leave raid_disk at -1 */
1673 return 0;
1674 }
1675 if (mddev->level != LEVEL_MULTIPATH) {
1676 int role;
1677 if (rdev->desc_nr < 0 ||
1678 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1679 role = MD_DISK_ROLE_SPARE;
1680 rdev->desc_nr = -1;
1681 } else
1682 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1683 switch(role) {
1684 case MD_DISK_ROLE_SPARE: /* spare */
1685 break;
1686 case MD_DISK_ROLE_FAULTY: /* faulty */
1687 set_bit(Faulty, &rdev->flags);
1688 break;
1689 case MD_DISK_ROLE_JOURNAL: /* journal device */
1690 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1691 /* journal device without journal feature */
1692 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1693 return -EINVAL;
1694 }
1695 set_bit(Journal, &rdev->flags);
1696 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1697 rdev->raid_disk = 0;
1698 break;
1699 default:
1700 rdev->saved_raid_disk = role;
1701 if ((le32_to_cpu(sb->feature_map) &
1702 MD_FEATURE_RECOVERY_OFFSET)) {
1703 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1704 if (!(le32_to_cpu(sb->feature_map) &
1705 MD_FEATURE_RECOVERY_BITMAP))
1706 rdev->saved_raid_disk = -1;
1707 } else
1708 set_bit(In_sync, &rdev->flags);
1709 rdev->raid_disk = role;
1710 break;
1711 }
1712 if (sb->devflags & WriteMostly1)
1713 set_bit(WriteMostly, &rdev->flags);
1714 if (sb->devflags & FailFast1)
1715 set_bit(FailFast, &rdev->flags);
1716 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 set_bit(Replacement, &rdev->flags);
1718 } else /* MULTIPATH are always insync */
1719 set_bit(In_sync, &rdev->flags);
1720
1721 return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 struct mdp_superblock_1 *sb;
1727 struct md_rdev *rdev2;
1728 int max_dev, i;
1729 /* make rdev->sb match mddev and rdev data. */
1730
1731 sb = page_address(rdev->sb_page);
1732
1733 sb->feature_map = 0;
1734 sb->pad0 = 0;
1735 sb->recovery_offset = cpu_to_le64(0);
1736 memset(sb->pad3, 0, sizeof(sb->pad3));
1737
1738 sb->utime = cpu_to_le64((__u64)mddev->utime);
1739 sb->events = cpu_to_le64(mddev->events);
1740 if (mddev->in_sync)
1741 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1743 sb->resync_offset = cpu_to_le64(MaxSector);
1744 else
1745 sb->resync_offset = cpu_to_le64(0);
1746
1747 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748
1749 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1750 sb->size = cpu_to_le64(mddev->dev_sectors);
1751 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1752 sb->level = cpu_to_le32(mddev->level);
1753 sb->layout = cpu_to_le32(mddev->layout);
1754 if (test_bit(FailFast, &rdev->flags))
1755 sb->devflags |= FailFast1;
1756 else
1757 sb->devflags &= ~FailFast1;
1758
1759 if (test_bit(WriteMostly, &rdev->flags))
1760 sb->devflags |= WriteMostly1;
1761 else
1762 sb->devflags &= ~WriteMostly1;
1763 sb->data_offset = cpu_to_le64(rdev->data_offset);
1764 sb->data_size = cpu_to_le64(rdev->sectors);
1765
1766 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769 }
1770
1771 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1772 !test_bit(In_sync, &rdev->flags)) {
1773 sb->feature_map |=
1774 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775 sb->recovery_offset =
1776 cpu_to_le64(rdev->recovery_offset);
1777 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1778 sb->feature_map |=
1779 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1780 }
1781 /* Note: recovery_offset and journal_tail share space */
1782 if (test_bit(Journal, &rdev->flags))
1783 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1784 if (test_bit(Replacement, &rdev->flags))
1785 sb->feature_map |=
1786 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1787
1788 if (mddev->reshape_position != MaxSector) {
1789 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1790 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1791 sb->new_layout = cpu_to_le32(mddev->new_layout);
1792 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1793 sb->new_level = cpu_to_le32(mddev->new_level);
1794 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1795 if (mddev->delta_disks == 0 &&
1796 mddev->reshape_backwards)
1797 sb->feature_map
1798 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1799 if (rdev->new_data_offset != rdev->data_offset) {
1800 sb->feature_map
1801 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1802 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1803 - rdev->data_offset));
1804 }
1805 }
1806
1807 if (mddev_is_clustered(mddev))
1808 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1809
1810 if (rdev->badblocks.count == 0)
1811 /* Nothing to do for bad blocks*/ ;
1812 else if (sb->bblog_offset == 0)
1813 /* Cannot record bad blocks on this device */
1814 md_error(mddev, rdev);
1815 else {
1816 struct badblocks *bb = &rdev->badblocks;
1817 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1818 u64 *p = bb->page;
1819 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1820 if (bb->changed) {
1821 unsigned seq;
1822
1823 retry:
1824 seq = read_seqbegin(&bb->lock);
1825
1826 memset(bbp, 0xff, PAGE_SIZE);
1827
1828 for (i = 0 ; i < bb->count ; i++) {
1829 u64 internal_bb = p[i];
1830 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1831 | BB_LEN(internal_bb));
1832 bbp[i] = cpu_to_le64(store_bb);
1833 }
1834 bb->changed = 0;
1835 if (read_seqretry(&bb->lock, seq))
1836 goto retry;
1837
1838 bb->sector = (rdev->sb_start +
1839 (int)le32_to_cpu(sb->bblog_offset));
1840 bb->size = le16_to_cpu(sb->bblog_size);
1841 }
1842 }
1843
1844 max_dev = 0;
1845 rdev_for_each(rdev2, mddev)
1846 if (rdev2->desc_nr+1 > max_dev)
1847 max_dev = rdev2->desc_nr+1;
1848
1849 if (max_dev > le32_to_cpu(sb->max_dev)) {
1850 int bmask;
1851 sb->max_dev = cpu_to_le32(max_dev);
1852 rdev->sb_size = max_dev * 2 + 256;
1853 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1854 if (rdev->sb_size & bmask)
1855 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1856 } else
1857 max_dev = le32_to_cpu(sb->max_dev);
1858
1859 for (i=0; i<max_dev;i++)
1860 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1861
1862 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1863 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1864
1865 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1866 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1867 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1868 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1869 }
1870
1871 rdev_for_each(rdev2, mddev) {
1872 i = rdev2->desc_nr;
1873 if (test_bit(Faulty, &rdev2->flags))
1874 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1875 else if (test_bit(In_sync, &rdev2->flags))
1876 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1877 else if (test_bit(Journal, &rdev2->flags))
1878 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1879 else if (rdev2->raid_disk >= 0)
1880 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1881 else
1882 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1883 }
1884
1885 sb->sb_csum = calc_sb_1_csum(sb);
1886 }
1887
1888 static unsigned long long
1889 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1890 {
1891 struct mdp_superblock_1 *sb;
1892 sector_t max_sectors;
1893 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1894 return 0; /* component must fit device */
1895 if (rdev->data_offset != rdev->new_data_offset)
1896 return 0; /* too confusing */
1897 if (rdev->sb_start < rdev->data_offset) {
1898 /* minor versions 1 and 2; superblock before data */
1899 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1900 max_sectors -= rdev->data_offset;
1901 if (!num_sectors || num_sectors > max_sectors)
1902 num_sectors = max_sectors;
1903 } else if (rdev->mddev->bitmap_info.offset) {
1904 /* minor version 0 with bitmap we can't move */
1905 return 0;
1906 } else {
1907 /* minor version 0; superblock after data */
1908 sector_t sb_start;
1909 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1910 sb_start &= ~(sector_t)(4*2 - 1);
1911 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1912 if (!num_sectors || num_sectors > max_sectors)
1913 num_sectors = max_sectors;
1914 rdev->sb_start = sb_start;
1915 }
1916 sb = page_address(rdev->sb_page);
1917 sb->data_size = cpu_to_le64(num_sectors);
1918 sb->super_offset = cpu_to_le64(rdev->sb_start);
1919 sb->sb_csum = calc_sb_1_csum(sb);
1920 do {
1921 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1922 rdev->sb_page);
1923 } while (md_super_wait(rdev->mddev) < 0);
1924 return num_sectors;
1925
1926 }
1927
1928 static int
1929 super_1_allow_new_offset(struct md_rdev *rdev,
1930 unsigned long long new_offset)
1931 {
1932 /* All necessary checks on new >= old have been done */
1933 struct bitmap *bitmap;
1934 if (new_offset >= rdev->data_offset)
1935 return 1;
1936
1937 /* with 1.0 metadata, there is no metadata to tread on
1938 * so we can always move back */
1939 if (rdev->mddev->minor_version == 0)
1940 return 1;
1941
1942 /* otherwise we must be sure not to step on
1943 * any metadata, so stay:
1944 * 36K beyond start of superblock
1945 * beyond end of badblocks
1946 * beyond write-intent bitmap
1947 */
1948 if (rdev->sb_start + (32+4)*2 > new_offset)
1949 return 0;
1950 bitmap = rdev->mddev->bitmap;
1951 if (bitmap && !rdev->mddev->bitmap_info.file &&
1952 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1953 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1954 return 0;
1955 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1956 return 0;
1957
1958 return 1;
1959 }
1960
1961 static struct super_type super_types[] = {
1962 [0] = {
1963 .name = "0.90.0",
1964 .owner = THIS_MODULE,
1965 .load_super = super_90_load,
1966 .validate_super = super_90_validate,
1967 .sync_super = super_90_sync,
1968 .rdev_size_change = super_90_rdev_size_change,
1969 .allow_new_offset = super_90_allow_new_offset,
1970 },
1971 [1] = {
1972 .name = "md-1",
1973 .owner = THIS_MODULE,
1974 .load_super = super_1_load,
1975 .validate_super = super_1_validate,
1976 .sync_super = super_1_sync,
1977 .rdev_size_change = super_1_rdev_size_change,
1978 .allow_new_offset = super_1_allow_new_offset,
1979 },
1980 };
1981
1982 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1983 {
1984 if (mddev->sync_super) {
1985 mddev->sync_super(mddev, rdev);
1986 return;
1987 }
1988
1989 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1990
1991 super_types[mddev->major_version].sync_super(mddev, rdev);
1992 }
1993
1994 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1995 {
1996 struct md_rdev *rdev, *rdev2;
1997
1998 rcu_read_lock();
1999 rdev_for_each_rcu(rdev, mddev1) {
2000 if (test_bit(Faulty, &rdev->flags) ||
2001 test_bit(Journal, &rdev->flags) ||
2002 rdev->raid_disk == -1)
2003 continue;
2004 rdev_for_each_rcu(rdev2, mddev2) {
2005 if (test_bit(Faulty, &rdev2->flags) ||
2006 test_bit(Journal, &rdev2->flags) ||
2007 rdev2->raid_disk == -1)
2008 continue;
2009 if (rdev->bdev->bd_contains ==
2010 rdev2->bdev->bd_contains) {
2011 rcu_read_unlock();
2012 return 1;
2013 }
2014 }
2015 }
2016 rcu_read_unlock();
2017 return 0;
2018 }
2019
2020 static LIST_HEAD(pending_raid_disks);
2021
2022 /*
2023 * Try to register data integrity profile for an mddev
2024 *
2025 * This is called when an array is started and after a disk has been kicked
2026 * from the array. It only succeeds if all working and active component devices
2027 * are integrity capable with matching profiles.
2028 */
2029 int md_integrity_register(struct mddev *mddev)
2030 {
2031 struct md_rdev *rdev, *reference = NULL;
2032
2033 if (list_empty(&mddev->disks))
2034 return 0; /* nothing to do */
2035 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2036 return 0; /* shouldn't register, or already is */
2037 rdev_for_each(rdev, mddev) {
2038 /* skip spares and non-functional disks */
2039 if (test_bit(Faulty, &rdev->flags))
2040 continue;
2041 if (rdev->raid_disk < 0)
2042 continue;
2043 if (!reference) {
2044 /* Use the first rdev as the reference */
2045 reference = rdev;
2046 continue;
2047 }
2048 /* does this rdev's profile match the reference profile? */
2049 if (blk_integrity_compare(reference->bdev->bd_disk,
2050 rdev->bdev->bd_disk) < 0)
2051 return -EINVAL;
2052 }
2053 if (!reference || !bdev_get_integrity(reference->bdev))
2054 return 0;
2055 /*
2056 * All component devices are integrity capable and have matching
2057 * profiles, register the common profile for the md device.
2058 */
2059 blk_integrity_register(mddev->gendisk,
2060 bdev_get_integrity(reference->bdev));
2061
2062 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2063 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2064 pr_err("md: failed to create integrity pool for %s\n",
2065 mdname(mddev));
2066 return -EINVAL;
2067 }
2068 return 0;
2069 }
2070 EXPORT_SYMBOL(md_integrity_register);
2071
2072 /*
2073 * Attempt to add an rdev, but only if it is consistent with the current
2074 * integrity profile
2075 */
2076 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2077 {
2078 struct blk_integrity *bi_rdev;
2079 struct blk_integrity *bi_mddev;
2080 char name[BDEVNAME_SIZE];
2081
2082 if (!mddev->gendisk)
2083 return 0;
2084
2085 bi_rdev = bdev_get_integrity(rdev->bdev);
2086 bi_mddev = blk_get_integrity(mddev->gendisk);
2087
2088 if (!bi_mddev) /* nothing to do */
2089 return 0;
2090
2091 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2092 pr_err("%s: incompatible integrity profile for %s\n",
2093 mdname(mddev), bdevname(rdev->bdev, name));
2094 return -ENXIO;
2095 }
2096
2097 return 0;
2098 }
2099 EXPORT_SYMBOL(md_integrity_add_rdev);
2100
2101 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2102 {
2103 char b[BDEVNAME_SIZE];
2104 struct kobject *ko;
2105 int err;
2106
2107 /* prevent duplicates */
2108 if (find_rdev(mddev, rdev->bdev->bd_dev))
2109 return -EEXIST;
2110
2111 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2112 mddev->pers)
2113 return -EROFS;
2114
2115 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2116 if (!test_bit(Journal, &rdev->flags) &&
2117 rdev->sectors &&
2118 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2119 if (mddev->pers) {
2120 /* Cannot change size, so fail
2121 * If mddev->level <= 0, then we don't care
2122 * about aligning sizes (e.g. linear)
2123 */
2124 if (mddev->level > 0)
2125 return -ENOSPC;
2126 } else
2127 mddev->dev_sectors = rdev->sectors;
2128 }
2129
2130 /* Verify rdev->desc_nr is unique.
2131 * If it is -1, assign a free number, else
2132 * check number is not in use
2133 */
2134 rcu_read_lock();
2135 if (rdev->desc_nr < 0) {
2136 int choice = 0;
2137 if (mddev->pers)
2138 choice = mddev->raid_disks;
2139 while (md_find_rdev_nr_rcu(mddev, choice))
2140 choice++;
2141 rdev->desc_nr = choice;
2142 } else {
2143 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2144 rcu_read_unlock();
2145 return -EBUSY;
2146 }
2147 }
2148 rcu_read_unlock();
2149 if (!test_bit(Journal, &rdev->flags) &&
2150 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2151 pr_warn("md: %s: array is limited to %d devices\n",
2152 mdname(mddev), mddev->max_disks);
2153 return -EBUSY;
2154 }
2155 bdevname(rdev->bdev,b);
2156 strreplace(b, '/', '!');
2157
2158 rdev->mddev = mddev;
2159 pr_debug("md: bind<%s>\n", b);
2160
2161 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2162 goto fail;
2163
2164 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2165 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2166 /* failure here is OK */;
2167 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2168
2169 list_add_rcu(&rdev->same_set, &mddev->disks);
2170 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2171
2172 /* May as well allow recovery to be retried once */
2173 mddev->recovery_disabled++;
2174
2175 return 0;
2176
2177 fail:
2178 pr_warn("md: failed to register dev-%s for %s\n",
2179 b, mdname(mddev));
2180 return err;
2181 }
2182
2183 static void md_delayed_delete(struct work_struct *ws)
2184 {
2185 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2186 kobject_del(&rdev->kobj);
2187 kobject_put(&rdev->kobj);
2188 }
2189
2190 static void unbind_rdev_from_array(struct md_rdev *rdev)
2191 {
2192 char b[BDEVNAME_SIZE];
2193
2194 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2195 list_del_rcu(&rdev->same_set);
2196 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2197 rdev->mddev = NULL;
2198 sysfs_remove_link(&rdev->kobj, "block");
2199 sysfs_put(rdev->sysfs_state);
2200 rdev->sysfs_state = NULL;
2201 rdev->badblocks.count = 0;
2202 /* We need to delay this, otherwise we can deadlock when
2203 * writing to 'remove' to "dev/state". We also need
2204 * to delay it due to rcu usage.
2205 */
2206 synchronize_rcu();
2207 INIT_WORK(&rdev->del_work, md_delayed_delete);
2208 kobject_get(&rdev->kobj);
2209 queue_work(md_misc_wq, &rdev->del_work);
2210 }
2211
2212 /*
2213 * prevent the device from being mounted, repartitioned or
2214 * otherwise reused by a RAID array (or any other kernel
2215 * subsystem), by bd_claiming the device.
2216 */
2217 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2218 {
2219 int err = 0;
2220 struct block_device *bdev;
2221 char b[BDEVNAME_SIZE];
2222
2223 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2224 shared ? (struct md_rdev *)lock_rdev : rdev);
2225 if (IS_ERR(bdev)) {
2226 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2227 return PTR_ERR(bdev);
2228 }
2229 rdev->bdev = bdev;
2230 return err;
2231 }
2232
2233 static void unlock_rdev(struct md_rdev *rdev)
2234 {
2235 struct block_device *bdev = rdev->bdev;
2236 rdev->bdev = NULL;
2237 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2238 }
2239
2240 void md_autodetect_dev(dev_t dev);
2241
2242 static void export_rdev(struct md_rdev *rdev)
2243 {
2244 char b[BDEVNAME_SIZE];
2245
2246 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2247 md_rdev_clear(rdev);
2248 #ifndef MODULE
2249 if (test_bit(AutoDetected, &rdev->flags))
2250 md_autodetect_dev(rdev->bdev->bd_dev);
2251 #endif
2252 unlock_rdev(rdev);
2253 kobject_put(&rdev->kobj);
2254 }
2255
2256 void md_kick_rdev_from_array(struct md_rdev *rdev)
2257 {
2258 unbind_rdev_from_array(rdev);
2259 export_rdev(rdev);
2260 }
2261 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2262
2263 static void export_array(struct mddev *mddev)
2264 {
2265 struct md_rdev *rdev;
2266
2267 while (!list_empty(&mddev->disks)) {
2268 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2269 same_set);
2270 md_kick_rdev_from_array(rdev);
2271 }
2272 mddev->raid_disks = 0;
2273 mddev->major_version = 0;
2274 }
2275
2276 static bool set_in_sync(struct mddev *mddev)
2277 {
2278 WARN_ON_ONCE(!spin_is_locked(&mddev->lock));
2279 if (!mddev->in_sync) {
2280 mddev->sync_checkers++;
2281 spin_unlock(&mddev->lock);
2282 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2283 spin_lock(&mddev->lock);
2284 if (!mddev->in_sync &&
2285 percpu_ref_is_zero(&mddev->writes_pending)) {
2286 mddev->in_sync = 1;
2287 /*
2288 * Ensure ->in_sync is visible before we clear
2289 * ->sync_checkers.
2290 */
2291 smp_mb();
2292 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2293 sysfs_notify_dirent_safe(mddev->sysfs_state);
2294 }
2295 if (--mddev->sync_checkers == 0)
2296 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2297 }
2298 if (mddev->safemode == 1)
2299 mddev->safemode = 0;
2300 return mddev->in_sync;
2301 }
2302
2303 static void sync_sbs(struct mddev *mddev, int nospares)
2304 {
2305 /* Update each superblock (in-memory image), but
2306 * if we are allowed to, skip spares which already
2307 * have the right event counter, or have one earlier
2308 * (which would mean they aren't being marked as dirty
2309 * with the rest of the array)
2310 */
2311 struct md_rdev *rdev;
2312 rdev_for_each(rdev, mddev) {
2313 if (rdev->sb_events == mddev->events ||
2314 (nospares &&
2315 rdev->raid_disk < 0 &&
2316 rdev->sb_events+1 == mddev->events)) {
2317 /* Don't update this superblock */
2318 rdev->sb_loaded = 2;
2319 } else {
2320 sync_super(mddev, rdev);
2321 rdev->sb_loaded = 1;
2322 }
2323 }
2324 }
2325
2326 static bool does_sb_need_changing(struct mddev *mddev)
2327 {
2328 struct md_rdev *rdev;
2329 struct mdp_superblock_1 *sb;
2330 int role;
2331
2332 /* Find a good rdev */
2333 rdev_for_each(rdev, mddev)
2334 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2335 break;
2336
2337 /* No good device found. */
2338 if (!rdev)
2339 return false;
2340
2341 sb = page_address(rdev->sb_page);
2342 /* Check if a device has become faulty or a spare become active */
2343 rdev_for_each(rdev, mddev) {
2344 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2345 /* Device activated? */
2346 if (role == 0xffff && rdev->raid_disk >=0 &&
2347 !test_bit(Faulty, &rdev->flags))
2348 return true;
2349 /* Device turned faulty? */
2350 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2351 return true;
2352 }
2353
2354 /* Check if any mddev parameters have changed */
2355 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2356 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2357 (mddev->layout != le32_to_cpu(sb->layout)) ||
2358 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2359 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2360 return true;
2361
2362 return false;
2363 }
2364
2365 void md_update_sb(struct mddev *mddev, int force_change)
2366 {
2367 struct md_rdev *rdev;
2368 int sync_req;
2369 int nospares = 0;
2370 int any_badblocks_changed = 0;
2371 int ret = -1;
2372
2373 if (mddev->ro) {
2374 if (force_change)
2375 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2376 return;
2377 }
2378
2379 repeat:
2380 if (mddev_is_clustered(mddev)) {
2381 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2382 force_change = 1;
2383 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2384 nospares = 1;
2385 ret = md_cluster_ops->metadata_update_start(mddev);
2386 /* Has someone else has updated the sb */
2387 if (!does_sb_need_changing(mddev)) {
2388 if (ret == 0)
2389 md_cluster_ops->metadata_update_cancel(mddev);
2390 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2391 BIT(MD_SB_CHANGE_DEVS) |
2392 BIT(MD_SB_CHANGE_CLEAN));
2393 return;
2394 }
2395 }
2396
2397 /* First make sure individual recovery_offsets are correct */
2398 rdev_for_each(rdev, mddev) {
2399 if (rdev->raid_disk >= 0 &&
2400 mddev->delta_disks >= 0 &&
2401 !test_bit(Journal, &rdev->flags) &&
2402 !test_bit(In_sync, &rdev->flags) &&
2403 mddev->curr_resync_completed > rdev->recovery_offset)
2404 rdev->recovery_offset = mddev->curr_resync_completed;
2405
2406 }
2407 if (!mddev->persistent) {
2408 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2409 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2410 if (!mddev->external) {
2411 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2412 rdev_for_each(rdev, mddev) {
2413 if (rdev->badblocks.changed) {
2414 rdev->badblocks.changed = 0;
2415 ack_all_badblocks(&rdev->badblocks);
2416 md_error(mddev, rdev);
2417 }
2418 clear_bit(Blocked, &rdev->flags);
2419 clear_bit(BlockedBadBlocks, &rdev->flags);
2420 wake_up(&rdev->blocked_wait);
2421 }
2422 }
2423 wake_up(&mddev->sb_wait);
2424 return;
2425 }
2426
2427 spin_lock(&mddev->lock);
2428
2429 mddev->utime = ktime_get_real_seconds();
2430
2431 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2432 force_change = 1;
2433 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2434 /* just a clean<-> dirty transition, possibly leave spares alone,
2435 * though if events isn't the right even/odd, we will have to do
2436 * spares after all
2437 */
2438 nospares = 1;
2439 if (force_change)
2440 nospares = 0;
2441 if (mddev->degraded)
2442 /* If the array is degraded, then skipping spares is both
2443 * dangerous and fairly pointless.
2444 * Dangerous because a device that was removed from the array
2445 * might have a event_count that still looks up-to-date,
2446 * so it can be re-added without a resync.
2447 * Pointless because if there are any spares to skip,
2448 * then a recovery will happen and soon that array won't
2449 * be degraded any more and the spare can go back to sleep then.
2450 */
2451 nospares = 0;
2452
2453 sync_req = mddev->in_sync;
2454
2455 /* If this is just a dirty<->clean transition, and the array is clean
2456 * and 'events' is odd, we can roll back to the previous clean state */
2457 if (nospares
2458 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2459 && mddev->can_decrease_events
2460 && mddev->events != 1) {
2461 mddev->events--;
2462 mddev->can_decrease_events = 0;
2463 } else {
2464 /* otherwise we have to go forward and ... */
2465 mddev->events ++;
2466 mddev->can_decrease_events = nospares;
2467 }
2468
2469 /*
2470 * This 64-bit counter should never wrap.
2471 * Either we are in around ~1 trillion A.C., assuming
2472 * 1 reboot per second, or we have a bug...
2473 */
2474 WARN_ON(mddev->events == 0);
2475
2476 rdev_for_each(rdev, mddev) {
2477 if (rdev->badblocks.changed)
2478 any_badblocks_changed++;
2479 if (test_bit(Faulty, &rdev->flags))
2480 set_bit(FaultRecorded, &rdev->flags);
2481 }
2482
2483 sync_sbs(mddev, nospares);
2484 spin_unlock(&mddev->lock);
2485
2486 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2487 mdname(mddev), mddev->in_sync);
2488
2489 if (mddev->queue)
2490 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2491 rewrite:
2492 bitmap_update_sb(mddev->bitmap);
2493 rdev_for_each(rdev, mddev) {
2494 char b[BDEVNAME_SIZE];
2495
2496 if (rdev->sb_loaded != 1)
2497 continue; /* no noise on spare devices */
2498
2499 if (!test_bit(Faulty, &rdev->flags)) {
2500 md_super_write(mddev,rdev,
2501 rdev->sb_start, rdev->sb_size,
2502 rdev->sb_page);
2503 pr_debug("md: (write) %s's sb offset: %llu\n",
2504 bdevname(rdev->bdev, b),
2505 (unsigned long long)rdev->sb_start);
2506 rdev->sb_events = mddev->events;
2507 if (rdev->badblocks.size) {
2508 md_super_write(mddev, rdev,
2509 rdev->badblocks.sector,
2510 rdev->badblocks.size << 9,
2511 rdev->bb_page);
2512 rdev->badblocks.size = 0;
2513 }
2514
2515 } else
2516 pr_debug("md: %s (skipping faulty)\n",
2517 bdevname(rdev->bdev, b));
2518
2519 if (mddev->level == LEVEL_MULTIPATH)
2520 /* only need to write one superblock... */
2521 break;
2522 }
2523 if (md_super_wait(mddev) < 0)
2524 goto rewrite;
2525 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2526
2527 if (mddev_is_clustered(mddev) && ret == 0)
2528 md_cluster_ops->metadata_update_finish(mddev);
2529
2530 if (mddev->in_sync != sync_req ||
2531 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2532 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2533 /* have to write it out again */
2534 goto repeat;
2535 wake_up(&mddev->sb_wait);
2536 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2537 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2538
2539 rdev_for_each(rdev, mddev) {
2540 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2541 clear_bit(Blocked, &rdev->flags);
2542
2543 if (any_badblocks_changed)
2544 ack_all_badblocks(&rdev->badblocks);
2545 clear_bit(BlockedBadBlocks, &rdev->flags);
2546 wake_up(&rdev->blocked_wait);
2547 }
2548 }
2549 EXPORT_SYMBOL(md_update_sb);
2550
2551 static int add_bound_rdev(struct md_rdev *rdev)
2552 {
2553 struct mddev *mddev = rdev->mddev;
2554 int err = 0;
2555 bool add_journal = test_bit(Journal, &rdev->flags);
2556
2557 if (!mddev->pers->hot_remove_disk || add_journal) {
2558 /* If there is hot_add_disk but no hot_remove_disk
2559 * then added disks for geometry changes,
2560 * and should be added immediately.
2561 */
2562 super_types[mddev->major_version].
2563 validate_super(mddev, rdev);
2564 if (add_journal)
2565 mddev_suspend(mddev);
2566 err = mddev->pers->hot_add_disk(mddev, rdev);
2567 if (add_journal)
2568 mddev_resume(mddev);
2569 if (err) {
2570 md_kick_rdev_from_array(rdev);
2571 return err;
2572 }
2573 }
2574 sysfs_notify_dirent_safe(rdev->sysfs_state);
2575
2576 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2577 if (mddev->degraded)
2578 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2579 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2580 md_new_event(mddev);
2581 md_wakeup_thread(mddev->thread);
2582 return 0;
2583 }
2584
2585 /* words written to sysfs files may, or may not, be \n terminated.
2586 * We want to accept with case. For this we use cmd_match.
2587 */
2588 static int cmd_match(const char *cmd, const char *str)
2589 {
2590 /* See if cmd, written into a sysfs file, matches
2591 * str. They must either be the same, or cmd can
2592 * have a trailing newline
2593 */
2594 while (*cmd && *str && *cmd == *str) {
2595 cmd++;
2596 str++;
2597 }
2598 if (*cmd == '\n')
2599 cmd++;
2600 if (*str || *cmd)
2601 return 0;
2602 return 1;
2603 }
2604
2605 struct rdev_sysfs_entry {
2606 struct attribute attr;
2607 ssize_t (*show)(struct md_rdev *, char *);
2608 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2609 };
2610
2611 static ssize_t
2612 state_show(struct md_rdev *rdev, char *page)
2613 {
2614 char *sep = ",";
2615 size_t len = 0;
2616 unsigned long flags = ACCESS_ONCE(rdev->flags);
2617
2618 if (test_bit(Faulty, &flags) ||
2619 (!test_bit(ExternalBbl, &flags) &&
2620 rdev->badblocks.unacked_exist))
2621 len += sprintf(page+len, "faulty%s", sep);
2622 if (test_bit(In_sync, &flags))
2623 len += sprintf(page+len, "in_sync%s", sep);
2624 if (test_bit(Journal, &flags))
2625 len += sprintf(page+len, "journal%s", sep);
2626 if (test_bit(WriteMostly, &flags))
2627 len += sprintf(page+len, "write_mostly%s", sep);
2628 if (test_bit(Blocked, &flags) ||
2629 (rdev->badblocks.unacked_exist
2630 && !test_bit(Faulty, &flags)))
2631 len += sprintf(page+len, "blocked%s", sep);
2632 if (!test_bit(Faulty, &flags) &&
2633 !test_bit(Journal, &flags) &&
2634 !test_bit(In_sync, &flags))
2635 len += sprintf(page+len, "spare%s", sep);
2636 if (test_bit(WriteErrorSeen, &flags))
2637 len += sprintf(page+len, "write_error%s", sep);
2638 if (test_bit(WantReplacement, &flags))
2639 len += sprintf(page+len, "want_replacement%s", sep);
2640 if (test_bit(Replacement, &flags))
2641 len += sprintf(page+len, "replacement%s", sep);
2642 if (test_bit(ExternalBbl, &flags))
2643 len += sprintf(page+len, "external_bbl%s", sep);
2644 if (test_bit(FailFast, &flags))
2645 len += sprintf(page+len, "failfast%s", sep);
2646
2647 if (len)
2648 len -= strlen(sep);
2649
2650 return len+sprintf(page+len, "\n");
2651 }
2652
2653 static ssize_t
2654 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2655 {
2656 /* can write
2657 * faulty - simulates an error
2658 * remove - disconnects the device
2659 * writemostly - sets write_mostly
2660 * -writemostly - clears write_mostly
2661 * blocked - sets the Blocked flags
2662 * -blocked - clears the Blocked and possibly simulates an error
2663 * insync - sets Insync providing device isn't active
2664 * -insync - clear Insync for a device with a slot assigned,
2665 * so that it gets rebuilt based on bitmap
2666 * write_error - sets WriteErrorSeen
2667 * -write_error - clears WriteErrorSeen
2668 * {,-}failfast - set/clear FailFast
2669 */
2670 int err = -EINVAL;
2671 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2672 md_error(rdev->mddev, rdev);
2673 if (test_bit(Faulty, &rdev->flags))
2674 err = 0;
2675 else
2676 err = -EBUSY;
2677 } else if (cmd_match(buf, "remove")) {
2678 if (rdev->mddev->pers) {
2679 clear_bit(Blocked, &rdev->flags);
2680 remove_and_add_spares(rdev->mddev, rdev);
2681 }
2682 if (rdev->raid_disk >= 0)
2683 err = -EBUSY;
2684 else {
2685 struct mddev *mddev = rdev->mddev;
2686 err = 0;
2687 if (mddev_is_clustered(mddev))
2688 err = md_cluster_ops->remove_disk(mddev, rdev);
2689
2690 if (err == 0) {
2691 md_kick_rdev_from_array(rdev);
2692 if (mddev->pers) {
2693 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2694 md_wakeup_thread(mddev->thread);
2695 }
2696 md_new_event(mddev);
2697 }
2698 }
2699 } else if (cmd_match(buf, "writemostly")) {
2700 set_bit(WriteMostly, &rdev->flags);
2701 err = 0;
2702 } else if (cmd_match(buf, "-writemostly")) {
2703 clear_bit(WriteMostly, &rdev->flags);
2704 err = 0;
2705 } else if (cmd_match(buf, "blocked")) {
2706 set_bit(Blocked, &rdev->flags);
2707 err = 0;
2708 } else if (cmd_match(buf, "-blocked")) {
2709 if (!test_bit(Faulty, &rdev->flags) &&
2710 !test_bit(ExternalBbl, &rdev->flags) &&
2711 rdev->badblocks.unacked_exist) {
2712 /* metadata handler doesn't understand badblocks,
2713 * so we need to fail the device
2714 */
2715 md_error(rdev->mddev, rdev);
2716 }
2717 clear_bit(Blocked, &rdev->flags);
2718 clear_bit(BlockedBadBlocks, &rdev->flags);
2719 wake_up(&rdev->blocked_wait);
2720 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2721 md_wakeup_thread(rdev->mddev->thread);
2722
2723 err = 0;
2724 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2725 set_bit(In_sync, &rdev->flags);
2726 err = 0;
2727 } else if (cmd_match(buf, "failfast")) {
2728 set_bit(FailFast, &rdev->flags);
2729 err = 0;
2730 } else if (cmd_match(buf, "-failfast")) {
2731 clear_bit(FailFast, &rdev->flags);
2732 err = 0;
2733 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2734 !test_bit(Journal, &rdev->flags)) {
2735 if (rdev->mddev->pers == NULL) {
2736 clear_bit(In_sync, &rdev->flags);
2737 rdev->saved_raid_disk = rdev->raid_disk;
2738 rdev->raid_disk = -1;
2739 err = 0;
2740 }
2741 } else if (cmd_match(buf, "write_error")) {
2742 set_bit(WriteErrorSeen, &rdev->flags);
2743 err = 0;
2744 } else if (cmd_match(buf, "-write_error")) {
2745 clear_bit(WriteErrorSeen, &rdev->flags);
2746 err = 0;
2747 } else if (cmd_match(buf, "want_replacement")) {
2748 /* Any non-spare device that is not a replacement can
2749 * become want_replacement at any time, but we then need to
2750 * check if recovery is needed.
2751 */
2752 if (rdev->raid_disk >= 0 &&
2753 !test_bit(Journal, &rdev->flags) &&
2754 !test_bit(Replacement, &rdev->flags))
2755 set_bit(WantReplacement, &rdev->flags);
2756 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2757 md_wakeup_thread(rdev->mddev->thread);
2758 err = 0;
2759 } else if (cmd_match(buf, "-want_replacement")) {
2760 /* Clearing 'want_replacement' is always allowed.
2761 * Once replacements starts it is too late though.
2762 */
2763 err = 0;
2764 clear_bit(WantReplacement, &rdev->flags);
2765 } else if (cmd_match(buf, "replacement")) {
2766 /* Can only set a device as a replacement when array has not
2767 * yet been started. Once running, replacement is automatic
2768 * from spares, or by assigning 'slot'.
2769 */
2770 if (rdev->mddev->pers)
2771 err = -EBUSY;
2772 else {
2773 set_bit(Replacement, &rdev->flags);
2774 err = 0;
2775 }
2776 } else if (cmd_match(buf, "-replacement")) {
2777 /* Similarly, can only clear Replacement before start */
2778 if (rdev->mddev->pers)
2779 err = -EBUSY;
2780 else {
2781 clear_bit(Replacement, &rdev->flags);
2782 err = 0;
2783 }
2784 } else if (cmd_match(buf, "re-add")) {
2785 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2786 /* clear_bit is performed _after_ all the devices
2787 * have their local Faulty bit cleared. If any writes
2788 * happen in the meantime in the local node, they
2789 * will land in the local bitmap, which will be synced
2790 * by this node eventually
2791 */
2792 if (!mddev_is_clustered(rdev->mddev) ||
2793 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2794 clear_bit(Faulty, &rdev->flags);
2795 err = add_bound_rdev(rdev);
2796 }
2797 } else
2798 err = -EBUSY;
2799 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2800 set_bit(ExternalBbl, &rdev->flags);
2801 rdev->badblocks.shift = 0;
2802 err = 0;
2803 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2804 clear_bit(ExternalBbl, &rdev->flags);
2805 err = 0;
2806 }
2807 if (!err)
2808 sysfs_notify_dirent_safe(rdev->sysfs_state);
2809 return err ? err : len;
2810 }
2811 static struct rdev_sysfs_entry rdev_state =
2812 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2813
2814 static ssize_t
2815 errors_show(struct md_rdev *rdev, char *page)
2816 {
2817 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2818 }
2819
2820 static ssize_t
2821 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2822 {
2823 unsigned int n;
2824 int rv;
2825
2826 rv = kstrtouint(buf, 10, &n);
2827 if (rv < 0)
2828 return rv;
2829 atomic_set(&rdev->corrected_errors, n);
2830 return len;
2831 }
2832 static struct rdev_sysfs_entry rdev_errors =
2833 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2834
2835 static ssize_t
2836 slot_show(struct md_rdev *rdev, char *page)
2837 {
2838 if (test_bit(Journal, &rdev->flags))
2839 return sprintf(page, "journal\n");
2840 else if (rdev->raid_disk < 0)
2841 return sprintf(page, "none\n");
2842 else
2843 return sprintf(page, "%d\n", rdev->raid_disk);
2844 }
2845
2846 static ssize_t
2847 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2848 {
2849 int slot;
2850 int err;
2851
2852 if (test_bit(Journal, &rdev->flags))
2853 return -EBUSY;
2854 if (strncmp(buf, "none", 4)==0)
2855 slot = -1;
2856 else {
2857 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2858 if (err < 0)
2859 return err;
2860 }
2861 if (rdev->mddev->pers && slot == -1) {
2862 /* Setting 'slot' on an active array requires also
2863 * updating the 'rd%d' link, and communicating
2864 * with the personality with ->hot_*_disk.
2865 * For now we only support removing
2866 * failed/spare devices. This normally happens automatically,
2867 * but not when the metadata is externally managed.
2868 */
2869 if (rdev->raid_disk == -1)
2870 return -EEXIST;
2871 /* personality does all needed checks */
2872 if (rdev->mddev->pers->hot_remove_disk == NULL)
2873 return -EINVAL;
2874 clear_bit(Blocked, &rdev->flags);
2875 remove_and_add_spares(rdev->mddev, rdev);
2876 if (rdev->raid_disk >= 0)
2877 return -EBUSY;
2878 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2879 md_wakeup_thread(rdev->mddev->thread);
2880 } else if (rdev->mddev->pers) {
2881 /* Activating a spare .. or possibly reactivating
2882 * if we ever get bitmaps working here.
2883 */
2884 int err;
2885
2886 if (rdev->raid_disk != -1)
2887 return -EBUSY;
2888
2889 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2890 return -EBUSY;
2891
2892 if (rdev->mddev->pers->hot_add_disk == NULL)
2893 return -EINVAL;
2894
2895 if (slot >= rdev->mddev->raid_disks &&
2896 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2897 return -ENOSPC;
2898
2899 rdev->raid_disk = slot;
2900 if (test_bit(In_sync, &rdev->flags))
2901 rdev->saved_raid_disk = slot;
2902 else
2903 rdev->saved_raid_disk = -1;
2904 clear_bit(In_sync, &rdev->flags);
2905 clear_bit(Bitmap_sync, &rdev->flags);
2906 err = rdev->mddev->pers->
2907 hot_add_disk(rdev->mddev, rdev);
2908 if (err) {
2909 rdev->raid_disk = -1;
2910 return err;
2911 } else
2912 sysfs_notify_dirent_safe(rdev->sysfs_state);
2913 if (sysfs_link_rdev(rdev->mddev, rdev))
2914 /* failure here is OK */;
2915 /* don't wakeup anyone, leave that to userspace. */
2916 } else {
2917 if (slot >= rdev->mddev->raid_disks &&
2918 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2919 return -ENOSPC;
2920 rdev->raid_disk = slot;
2921 /* assume it is working */
2922 clear_bit(Faulty, &rdev->flags);
2923 clear_bit(WriteMostly, &rdev->flags);
2924 set_bit(In_sync, &rdev->flags);
2925 sysfs_notify_dirent_safe(rdev->sysfs_state);
2926 }
2927 return len;
2928 }
2929
2930 static struct rdev_sysfs_entry rdev_slot =
2931 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2932
2933 static ssize_t
2934 offset_show(struct md_rdev *rdev, char *page)
2935 {
2936 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2937 }
2938
2939 static ssize_t
2940 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2941 {
2942 unsigned long long offset;
2943 if (kstrtoull(buf, 10, &offset) < 0)
2944 return -EINVAL;
2945 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2946 return -EBUSY;
2947 if (rdev->sectors && rdev->mddev->external)
2948 /* Must set offset before size, so overlap checks
2949 * can be sane */
2950 return -EBUSY;
2951 rdev->data_offset = offset;
2952 rdev->new_data_offset = offset;
2953 return len;
2954 }
2955
2956 static struct rdev_sysfs_entry rdev_offset =
2957 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2958
2959 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2960 {
2961 return sprintf(page, "%llu\n",
2962 (unsigned long long)rdev->new_data_offset);
2963 }
2964
2965 static ssize_t new_offset_store(struct md_rdev *rdev,
2966 const char *buf, size_t len)
2967 {
2968 unsigned long long new_offset;
2969 struct mddev *mddev = rdev->mddev;
2970
2971 if (kstrtoull(buf, 10, &new_offset) < 0)
2972 return -EINVAL;
2973
2974 if (mddev->sync_thread ||
2975 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2976 return -EBUSY;
2977 if (new_offset == rdev->data_offset)
2978 /* reset is always permitted */
2979 ;
2980 else if (new_offset > rdev->data_offset) {
2981 /* must not push array size beyond rdev_sectors */
2982 if (new_offset - rdev->data_offset
2983 + mddev->dev_sectors > rdev->sectors)
2984 return -E2BIG;
2985 }
2986 /* Metadata worries about other space details. */
2987
2988 /* decreasing the offset is inconsistent with a backwards
2989 * reshape.
2990 */
2991 if (new_offset < rdev->data_offset &&
2992 mddev->reshape_backwards)
2993 return -EINVAL;
2994 /* Increasing offset is inconsistent with forwards
2995 * reshape. reshape_direction should be set to
2996 * 'backwards' first.
2997 */
2998 if (new_offset > rdev->data_offset &&
2999 !mddev->reshape_backwards)
3000 return -EINVAL;
3001
3002 if (mddev->pers && mddev->persistent &&
3003 !super_types[mddev->major_version]
3004 .allow_new_offset(rdev, new_offset))
3005 return -E2BIG;
3006 rdev->new_data_offset = new_offset;
3007 if (new_offset > rdev->data_offset)
3008 mddev->reshape_backwards = 1;
3009 else if (new_offset < rdev->data_offset)
3010 mddev->reshape_backwards = 0;
3011
3012 return len;
3013 }
3014 static struct rdev_sysfs_entry rdev_new_offset =
3015 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3016
3017 static ssize_t
3018 rdev_size_show(struct md_rdev *rdev, char *page)
3019 {
3020 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3021 }
3022
3023 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3024 {
3025 /* check if two start/length pairs overlap */
3026 if (s1+l1 <= s2)
3027 return 0;
3028 if (s2+l2 <= s1)
3029 return 0;
3030 return 1;
3031 }
3032
3033 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3034 {
3035 unsigned long long blocks;
3036 sector_t new;
3037
3038 if (kstrtoull(buf, 10, &blocks) < 0)
3039 return -EINVAL;
3040
3041 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3042 return -EINVAL; /* sector conversion overflow */
3043
3044 new = blocks * 2;
3045 if (new != blocks * 2)
3046 return -EINVAL; /* unsigned long long to sector_t overflow */
3047
3048 *sectors = new;
3049 return 0;
3050 }
3051
3052 static ssize_t
3053 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3054 {
3055 struct mddev *my_mddev = rdev->mddev;
3056 sector_t oldsectors = rdev->sectors;
3057 sector_t sectors;
3058
3059 if (test_bit(Journal, &rdev->flags))
3060 return -EBUSY;
3061 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3062 return -EINVAL;
3063 if (rdev->data_offset != rdev->new_data_offset)
3064 return -EINVAL; /* too confusing */
3065 if (my_mddev->pers && rdev->raid_disk >= 0) {
3066 if (my_mddev->persistent) {
3067 sectors = super_types[my_mddev->major_version].
3068 rdev_size_change(rdev, sectors);
3069 if (!sectors)
3070 return -EBUSY;
3071 } else if (!sectors)
3072 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3073 rdev->data_offset;
3074 if (!my_mddev->pers->resize)
3075 /* Cannot change size for RAID0 or Linear etc */
3076 return -EINVAL;
3077 }
3078 if (sectors < my_mddev->dev_sectors)
3079 return -EINVAL; /* component must fit device */
3080
3081 rdev->sectors = sectors;
3082 if (sectors > oldsectors && my_mddev->external) {
3083 /* Need to check that all other rdevs with the same
3084 * ->bdev do not overlap. 'rcu' is sufficient to walk
3085 * the rdev lists safely.
3086 * This check does not provide a hard guarantee, it
3087 * just helps avoid dangerous mistakes.
3088 */
3089 struct mddev *mddev;
3090 int overlap = 0;
3091 struct list_head *tmp;
3092
3093 rcu_read_lock();
3094 for_each_mddev(mddev, tmp) {
3095 struct md_rdev *rdev2;
3096
3097 rdev_for_each(rdev2, mddev)
3098 if (rdev->bdev == rdev2->bdev &&
3099 rdev != rdev2 &&
3100 overlaps(rdev->data_offset, rdev->sectors,
3101 rdev2->data_offset,
3102 rdev2->sectors)) {
3103 overlap = 1;
3104 break;
3105 }
3106 if (overlap) {
3107 mddev_put(mddev);
3108 break;
3109 }
3110 }
3111 rcu_read_unlock();
3112 if (overlap) {
3113 /* Someone else could have slipped in a size
3114 * change here, but doing so is just silly.
3115 * We put oldsectors back because we *know* it is
3116 * safe, and trust userspace not to race with
3117 * itself
3118 */
3119 rdev->sectors = oldsectors;
3120 return -EBUSY;
3121 }
3122 }
3123 return len;
3124 }
3125
3126 static struct rdev_sysfs_entry rdev_size =
3127 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3128
3129 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3130 {
3131 unsigned long long recovery_start = rdev->recovery_offset;
3132
3133 if (test_bit(In_sync, &rdev->flags) ||
3134 recovery_start == MaxSector)
3135 return sprintf(page, "none\n");
3136
3137 return sprintf(page, "%llu\n", recovery_start);
3138 }
3139
3140 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3141 {
3142 unsigned long long recovery_start;
3143
3144 if (cmd_match(buf, "none"))
3145 recovery_start = MaxSector;
3146 else if (kstrtoull(buf, 10, &recovery_start))
3147 return -EINVAL;
3148
3149 if (rdev->mddev->pers &&
3150 rdev->raid_disk >= 0)
3151 return -EBUSY;
3152
3153 rdev->recovery_offset = recovery_start;
3154 if (recovery_start == MaxSector)
3155 set_bit(In_sync, &rdev->flags);
3156 else
3157 clear_bit(In_sync, &rdev->flags);
3158 return len;
3159 }
3160
3161 static struct rdev_sysfs_entry rdev_recovery_start =
3162 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3163
3164 /* sysfs access to bad-blocks list.
3165 * We present two files.
3166 * 'bad-blocks' lists sector numbers and lengths of ranges that
3167 * are recorded as bad. The list is truncated to fit within
3168 * the one-page limit of sysfs.
3169 * Writing "sector length" to this file adds an acknowledged
3170 * bad block list.
3171 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3172 * been acknowledged. Writing to this file adds bad blocks
3173 * without acknowledging them. This is largely for testing.
3174 */
3175 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3176 {
3177 return badblocks_show(&rdev->badblocks, page, 0);
3178 }
3179 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3180 {
3181 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3182 /* Maybe that ack was all we needed */
3183 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3184 wake_up(&rdev->blocked_wait);
3185 return rv;
3186 }
3187 static struct rdev_sysfs_entry rdev_bad_blocks =
3188 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3189
3190 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3191 {
3192 return badblocks_show(&rdev->badblocks, page, 1);
3193 }
3194 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3195 {
3196 return badblocks_store(&rdev->badblocks, page, len, 1);
3197 }
3198 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3199 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3200
3201 static ssize_t
3202 ppl_sector_show(struct md_rdev *rdev, char *page)
3203 {
3204 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3205 }
3206
3207 static ssize_t
3208 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3209 {
3210 unsigned long long sector;
3211
3212 if (kstrtoull(buf, 10, &sector) < 0)
3213 return -EINVAL;
3214 if (sector != (sector_t)sector)
3215 return -EINVAL;
3216
3217 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3218 rdev->raid_disk >= 0)
3219 return -EBUSY;
3220
3221 if (rdev->mddev->persistent) {
3222 if (rdev->mddev->major_version == 0)
3223 return -EINVAL;
3224 if ((sector > rdev->sb_start &&
3225 sector - rdev->sb_start > S16_MAX) ||
3226 (sector < rdev->sb_start &&
3227 rdev->sb_start - sector > -S16_MIN))
3228 return -EINVAL;
3229 rdev->ppl.offset = sector - rdev->sb_start;
3230 } else if (!rdev->mddev->external) {
3231 return -EBUSY;
3232 }
3233 rdev->ppl.sector = sector;
3234 return len;
3235 }
3236
3237 static struct rdev_sysfs_entry rdev_ppl_sector =
3238 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3239
3240 static ssize_t
3241 ppl_size_show(struct md_rdev *rdev, char *page)
3242 {
3243 return sprintf(page, "%u\n", rdev->ppl.size);
3244 }
3245
3246 static ssize_t
3247 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3248 {
3249 unsigned int size;
3250
3251 if (kstrtouint(buf, 10, &size) < 0)
3252 return -EINVAL;
3253
3254 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3255 rdev->raid_disk >= 0)
3256 return -EBUSY;
3257
3258 if (rdev->mddev->persistent) {
3259 if (rdev->mddev->major_version == 0)
3260 return -EINVAL;
3261 if (size > U16_MAX)
3262 return -EINVAL;
3263 } else if (!rdev->mddev->external) {
3264 return -EBUSY;
3265 }
3266 rdev->ppl.size = size;
3267 return len;
3268 }
3269
3270 static struct rdev_sysfs_entry rdev_ppl_size =
3271 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3272
3273 static struct attribute *rdev_default_attrs[] = {
3274 &rdev_state.attr,
3275 &rdev_errors.attr,
3276 &rdev_slot.attr,
3277 &rdev_offset.attr,
3278 &rdev_new_offset.attr,
3279 &rdev_size.attr,
3280 &rdev_recovery_start.attr,
3281 &rdev_bad_blocks.attr,
3282 &rdev_unack_bad_blocks.attr,
3283 &rdev_ppl_sector.attr,
3284 &rdev_ppl_size.attr,
3285 NULL,
3286 };
3287 static ssize_t
3288 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3289 {
3290 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3291 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3292
3293 if (!entry->show)
3294 return -EIO;
3295 if (!rdev->mddev)
3296 return -EBUSY;
3297 return entry->show(rdev, page);
3298 }
3299
3300 static ssize_t
3301 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3302 const char *page, size_t length)
3303 {
3304 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3305 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3306 ssize_t rv;
3307 struct mddev *mddev = rdev->mddev;
3308
3309 if (!entry->store)
3310 return -EIO;
3311 if (!capable(CAP_SYS_ADMIN))
3312 return -EACCES;
3313 rv = mddev ? mddev_lock(mddev): -EBUSY;
3314 if (!rv) {
3315 if (rdev->mddev == NULL)
3316 rv = -EBUSY;
3317 else
3318 rv = entry->store(rdev, page, length);
3319 mddev_unlock(mddev);
3320 }
3321 return rv;
3322 }
3323
3324 static void rdev_free(struct kobject *ko)
3325 {
3326 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3327 kfree(rdev);
3328 }
3329 static const struct sysfs_ops rdev_sysfs_ops = {
3330 .show = rdev_attr_show,
3331 .store = rdev_attr_store,
3332 };
3333 static struct kobj_type rdev_ktype = {
3334 .release = rdev_free,
3335 .sysfs_ops = &rdev_sysfs_ops,
3336 .default_attrs = rdev_default_attrs,
3337 };
3338
3339 int md_rdev_init(struct md_rdev *rdev)
3340 {
3341 rdev->desc_nr = -1;
3342 rdev->saved_raid_disk = -1;
3343 rdev->raid_disk = -1;
3344 rdev->flags = 0;
3345 rdev->data_offset = 0;
3346 rdev->new_data_offset = 0;
3347 rdev->sb_events = 0;
3348 rdev->last_read_error = 0;
3349 rdev->sb_loaded = 0;
3350 rdev->bb_page = NULL;
3351 atomic_set(&rdev->nr_pending, 0);
3352 atomic_set(&rdev->read_errors, 0);
3353 atomic_set(&rdev->corrected_errors, 0);
3354
3355 INIT_LIST_HEAD(&rdev->same_set);
3356 init_waitqueue_head(&rdev->blocked_wait);
3357
3358 /* Add space to store bad block list.
3359 * This reserves the space even on arrays where it cannot
3360 * be used - I wonder if that matters
3361 */
3362 return badblocks_init(&rdev->badblocks, 0);
3363 }
3364 EXPORT_SYMBOL_GPL(md_rdev_init);
3365 /*
3366 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3367 *
3368 * mark the device faulty if:
3369 *
3370 * - the device is nonexistent (zero size)
3371 * - the device has no valid superblock
3372 *
3373 * a faulty rdev _never_ has rdev->sb set.
3374 */
3375 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3376 {
3377 char b[BDEVNAME_SIZE];
3378 int err;
3379 struct md_rdev *rdev;
3380 sector_t size;
3381
3382 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3383 if (!rdev)
3384 return ERR_PTR(-ENOMEM);
3385
3386 err = md_rdev_init(rdev);
3387 if (err)
3388 goto abort_free;
3389 err = alloc_disk_sb(rdev);
3390 if (err)
3391 goto abort_free;
3392
3393 err = lock_rdev(rdev, newdev, super_format == -2);
3394 if (err)
3395 goto abort_free;
3396
3397 kobject_init(&rdev->kobj, &rdev_ktype);
3398
3399 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3400 if (!size) {
3401 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3402 bdevname(rdev->bdev,b));
3403 err = -EINVAL;
3404 goto abort_free;
3405 }
3406
3407 if (super_format >= 0) {
3408 err = super_types[super_format].
3409 load_super(rdev, NULL, super_minor);
3410 if (err == -EINVAL) {
3411 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3412 bdevname(rdev->bdev,b),
3413 super_format, super_minor);
3414 goto abort_free;
3415 }
3416 if (err < 0) {
3417 pr_warn("md: could not read %s's sb, not importing!\n",
3418 bdevname(rdev->bdev,b));
3419 goto abort_free;
3420 }
3421 }
3422
3423 return rdev;
3424
3425 abort_free:
3426 if (rdev->bdev)
3427 unlock_rdev(rdev);
3428 md_rdev_clear(rdev);
3429 kfree(rdev);
3430 return ERR_PTR(err);
3431 }
3432
3433 /*
3434 * Check a full RAID array for plausibility
3435 */
3436
3437 static void analyze_sbs(struct mddev *mddev)
3438 {
3439 int i;
3440 struct md_rdev *rdev, *freshest, *tmp;
3441 char b[BDEVNAME_SIZE];
3442
3443 freshest = NULL;
3444 rdev_for_each_safe(rdev, tmp, mddev)
3445 switch (super_types[mddev->major_version].
3446 load_super(rdev, freshest, mddev->minor_version)) {
3447 case 1:
3448 freshest = rdev;
3449 break;
3450 case 0:
3451 break;
3452 default:
3453 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3454 bdevname(rdev->bdev,b));
3455 md_kick_rdev_from_array(rdev);
3456 }
3457
3458 super_types[mddev->major_version].
3459 validate_super(mddev, freshest);
3460
3461 i = 0;
3462 rdev_for_each_safe(rdev, tmp, mddev) {
3463 if (mddev->max_disks &&
3464 (rdev->desc_nr >= mddev->max_disks ||
3465 i > mddev->max_disks)) {
3466 pr_warn("md: %s: %s: only %d devices permitted\n",
3467 mdname(mddev), bdevname(rdev->bdev, b),
3468 mddev->max_disks);
3469 md_kick_rdev_from_array(rdev);
3470 continue;
3471 }
3472 if (rdev != freshest) {
3473 if (super_types[mddev->major_version].
3474 validate_super(mddev, rdev)) {
3475 pr_warn("md: kicking non-fresh %s from array!\n",
3476 bdevname(rdev->bdev,b));
3477 md_kick_rdev_from_array(rdev);
3478 continue;
3479 }
3480 }
3481 if (mddev->level == LEVEL_MULTIPATH) {
3482 rdev->desc_nr = i++;
3483 rdev->raid_disk = rdev->desc_nr;
3484 set_bit(In_sync, &rdev->flags);
3485 } else if (rdev->raid_disk >=
3486 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3487 !test_bit(Journal, &rdev->flags)) {
3488 rdev->raid_disk = -1;
3489 clear_bit(In_sync, &rdev->flags);
3490 }
3491 }
3492 }
3493
3494 /* Read a fixed-point number.
3495 * Numbers in sysfs attributes should be in "standard" units where
3496 * possible, so time should be in seconds.
3497 * However we internally use a a much smaller unit such as
3498 * milliseconds or jiffies.
3499 * This function takes a decimal number with a possible fractional
3500 * component, and produces an integer which is the result of
3501 * multiplying that number by 10^'scale'.
3502 * all without any floating-point arithmetic.
3503 */
3504 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3505 {
3506 unsigned long result = 0;
3507 long decimals = -1;
3508 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3509 if (*cp == '.')
3510 decimals = 0;
3511 else if (decimals < scale) {
3512 unsigned int value;
3513 value = *cp - '0';
3514 result = result * 10 + value;
3515 if (decimals >= 0)
3516 decimals++;
3517 }
3518 cp++;
3519 }
3520 if (*cp == '\n')
3521 cp++;
3522 if (*cp)
3523 return -EINVAL;
3524 if (decimals < 0)
3525 decimals = 0;
3526 while (decimals < scale) {
3527 result *= 10;
3528 decimals ++;
3529 }
3530 *res = result;
3531 return 0;
3532 }
3533
3534 static ssize_t
3535 safe_delay_show(struct mddev *mddev, char *page)
3536 {
3537 int msec = (mddev->safemode_delay*1000)/HZ;
3538 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3539 }
3540 static ssize_t
3541 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3542 {
3543 unsigned long msec;
3544
3545 if (mddev_is_clustered(mddev)) {
3546 pr_warn("md: Safemode is disabled for clustered mode\n");
3547 return -EINVAL;
3548 }
3549
3550 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3551 return -EINVAL;
3552 if (msec == 0)
3553 mddev->safemode_delay = 0;
3554 else {
3555 unsigned long old_delay = mddev->safemode_delay;
3556 unsigned long new_delay = (msec*HZ)/1000;
3557
3558 if (new_delay == 0)
3559 new_delay = 1;
3560 mddev->safemode_delay = new_delay;
3561 if (new_delay < old_delay || old_delay == 0)
3562 mod_timer(&mddev->safemode_timer, jiffies+1);
3563 }
3564 return len;
3565 }
3566 static struct md_sysfs_entry md_safe_delay =
3567 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3568
3569 static ssize_t
3570 level_show(struct mddev *mddev, char *page)
3571 {
3572 struct md_personality *p;
3573 int ret;
3574 spin_lock(&mddev->lock);
3575 p = mddev->pers;
3576 if (p)
3577 ret = sprintf(page, "%s\n", p->name);
3578 else if (mddev->clevel[0])
3579 ret = sprintf(page, "%s\n", mddev->clevel);
3580 else if (mddev->level != LEVEL_NONE)
3581 ret = sprintf(page, "%d\n", mddev->level);
3582 else
3583 ret = 0;
3584 spin_unlock(&mddev->lock);
3585 return ret;
3586 }
3587
3588 static ssize_t
3589 level_store(struct mddev *mddev, const char *buf, size_t len)
3590 {
3591 char clevel[16];
3592 ssize_t rv;
3593 size_t slen = len;
3594 struct md_personality *pers, *oldpers;
3595 long level;
3596 void *priv, *oldpriv;
3597 struct md_rdev *rdev;
3598
3599 if (slen == 0 || slen >= sizeof(clevel))
3600 return -EINVAL;
3601
3602 rv = mddev_lock(mddev);
3603 if (rv)
3604 return rv;
3605
3606 if (mddev->pers == NULL) {
3607 strncpy(mddev->clevel, buf, slen);
3608 if (mddev->clevel[slen-1] == '\n')
3609 slen--;
3610 mddev->clevel[slen] = 0;
3611 mddev->level = LEVEL_NONE;
3612 rv = len;
3613 goto out_unlock;
3614 }
3615 rv = -EROFS;
3616 if (mddev->ro)
3617 goto out_unlock;
3618
3619 /* request to change the personality. Need to ensure:
3620 * - array is not engaged in resync/recovery/reshape
3621 * - old personality can be suspended
3622 * - new personality will access other array.
3623 */
3624
3625 rv = -EBUSY;
3626 if (mddev->sync_thread ||
3627 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3628 mddev->reshape_position != MaxSector ||
3629 mddev->sysfs_active)
3630 goto out_unlock;
3631
3632 rv = -EINVAL;
3633 if (!mddev->pers->quiesce) {
3634 pr_warn("md: %s: %s does not support online personality change\n",
3635 mdname(mddev), mddev->pers->name);
3636 goto out_unlock;
3637 }
3638
3639 /* Now find the new personality */
3640 strncpy(clevel, buf, slen);
3641 if (clevel[slen-1] == '\n')
3642 slen--;
3643 clevel[slen] = 0;
3644 if (kstrtol(clevel, 10, &level))
3645 level = LEVEL_NONE;
3646
3647 if (request_module("md-%s", clevel) != 0)
3648 request_module("md-level-%s", clevel);
3649 spin_lock(&pers_lock);
3650 pers = find_pers(level, clevel);
3651 if (!pers || !try_module_get(pers->owner)) {
3652 spin_unlock(&pers_lock);
3653 pr_warn("md: personality %s not loaded\n", clevel);
3654 rv = -EINVAL;
3655 goto out_unlock;
3656 }
3657 spin_unlock(&pers_lock);
3658
3659 if (pers == mddev->pers) {
3660 /* Nothing to do! */
3661 module_put(pers->owner);
3662 rv = len;
3663 goto out_unlock;
3664 }
3665 if (!pers->takeover) {
3666 module_put(pers->owner);
3667 pr_warn("md: %s: %s does not support personality takeover\n",
3668 mdname(mddev), clevel);
3669 rv = -EINVAL;
3670 goto out_unlock;
3671 }
3672
3673 rdev_for_each(rdev, mddev)
3674 rdev->new_raid_disk = rdev->raid_disk;
3675
3676 /* ->takeover must set new_* and/or delta_disks
3677 * if it succeeds, and may set them when it fails.
3678 */
3679 priv = pers->takeover(mddev);
3680 if (IS_ERR(priv)) {
3681 mddev->new_level = mddev->level;
3682 mddev->new_layout = mddev->layout;
3683 mddev->new_chunk_sectors = mddev->chunk_sectors;
3684 mddev->raid_disks -= mddev->delta_disks;
3685 mddev->delta_disks = 0;
3686 mddev->reshape_backwards = 0;
3687 module_put(pers->owner);
3688 pr_warn("md: %s: %s would not accept array\n",
3689 mdname(mddev), clevel);
3690 rv = PTR_ERR(priv);
3691 goto out_unlock;
3692 }
3693
3694 /* Looks like we have a winner */
3695 mddev_suspend(mddev);
3696 mddev_detach(mddev);
3697
3698 spin_lock(&mddev->lock);
3699 oldpers = mddev->pers;
3700 oldpriv = mddev->private;
3701 mddev->pers = pers;
3702 mddev->private = priv;
3703 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3704 mddev->level = mddev->new_level;
3705 mddev->layout = mddev->new_layout;
3706 mddev->chunk_sectors = mddev->new_chunk_sectors;
3707 mddev->delta_disks = 0;
3708 mddev->reshape_backwards = 0;
3709 mddev->degraded = 0;
3710 spin_unlock(&mddev->lock);
3711
3712 if (oldpers->sync_request == NULL &&
3713 mddev->external) {
3714 /* We are converting from a no-redundancy array
3715 * to a redundancy array and metadata is managed
3716 * externally so we need to be sure that writes
3717 * won't block due to a need to transition
3718 * clean->dirty
3719 * until external management is started.
3720 */
3721 mddev->in_sync = 0;
3722 mddev->safemode_delay = 0;
3723 mddev->safemode = 0;
3724 }
3725
3726 oldpers->free(mddev, oldpriv);
3727
3728 if (oldpers->sync_request == NULL &&
3729 pers->sync_request != NULL) {
3730 /* need to add the md_redundancy_group */
3731 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3732 pr_warn("md: cannot register extra attributes for %s\n",
3733 mdname(mddev));
3734 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3735 }
3736 if (oldpers->sync_request != NULL &&
3737 pers->sync_request == NULL) {
3738 /* need to remove the md_redundancy_group */
3739 if (mddev->to_remove == NULL)
3740 mddev->to_remove = &md_redundancy_group;
3741 }
3742
3743 module_put(oldpers->owner);
3744
3745 rdev_for_each(rdev, mddev) {
3746 if (rdev->raid_disk < 0)
3747 continue;
3748 if (rdev->new_raid_disk >= mddev->raid_disks)
3749 rdev->new_raid_disk = -1;
3750 if (rdev->new_raid_disk == rdev->raid_disk)
3751 continue;
3752 sysfs_unlink_rdev(mddev, rdev);
3753 }
3754 rdev_for_each(rdev, mddev) {
3755 if (rdev->raid_disk < 0)
3756 continue;
3757 if (rdev->new_raid_disk == rdev->raid_disk)
3758 continue;
3759 rdev->raid_disk = rdev->new_raid_disk;
3760 if (rdev->raid_disk < 0)
3761 clear_bit(In_sync, &rdev->flags);
3762 else {
3763 if (sysfs_link_rdev(mddev, rdev))
3764 pr_warn("md: cannot register rd%d for %s after level change\n",
3765 rdev->raid_disk, mdname(mddev));
3766 }
3767 }
3768
3769 if (pers->sync_request == NULL) {
3770 /* this is now an array without redundancy, so
3771 * it must always be in_sync
3772 */
3773 mddev->in_sync = 1;
3774 del_timer_sync(&mddev->safemode_timer);
3775 }
3776 blk_set_stacking_limits(&mddev->queue->limits);
3777 pers->run(mddev);
3778 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3779 mddev_resume(mddev);
3780 if (!mddev->thread)
3781 md_update_sb(mddev, 1);
3782 sysfs_notify(&mddev->kobj, NULL, "level");
3783 md_new_event(mddev);
3784 rv = len;
3785 out_unlock:
3786 mddev_unlock(mddev);
3787 return rv;
3788 }
3789
3790 static struct md_sysfs_entry md_level =
3791 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3792
3793 static ssize_t
3794 layout_show(struct mddev *mddev, char *page)
3795 {
3796 /* just a number, not meaningful for all levels */
3797 if (mddev->reshape_position != MaxSector &&
3798 mddev->layout != mddev->new_layout)
3799 return sprintf(page, "%d (%d)\n",
3800 mddev->new_layout, mddev->layout);
3801 return sprintf(page, "%d\n", mddev->layout);
3802 }
3803
3804 static ssize_t
3805 layout_store(struct mddev *mddev, const char *buf, size_t len)
3806 {
3807 unsigned int n;
3808 int err;
3809
3810 err = kstrtouint(buf, 10, &n);
3811 if (err < 0)
3812 return err;
3813 err = mddev_lock(mddev);
3814 if (err)
3815 return err;
3816
3817 if (mddev->pers) {
3818 if (mddev->pers->check_reshape == NULL)
3819 err = -EBUSY;
3820 else if (mddev->ro)
3821 err = -EROFS;
3822 else {
3823 mddev->new_layout = n;
3824 err = mddev->pers->check_reshape(mddev);
3825 if (err)
3826 mddev->new_layout = mddev->layout;
3827 }
3828 } else {
3829 mddev->new_layout = n;
3830 if (mddev->reshape_position == MaxSector)
3831 mddev->layout = n;
3832 }
3833 mddev_unlock(mddev);
3834 return err ?: len;
3835 }
3836 static struct md_sysfs_entry md_layout =
3837 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3838
3839 static ssize_t
3840 raid_disks_show(struct mddev *mddev, char *page)
3841 {
3842 if (mddev->raid_disks == 0)
3843 return 0;
3844 if (mddev->reshape_position != MaxSector &&
3845 mddev->delta_disks != 0)
3846 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3847 mddev->raid_disks - mddev->delta_disks);
3848 return sprintf(page, "%d\n", mddev->raid_disks);
3849 }
3850
3851 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3852
3853 static ssize_t
3854 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3855 {
3856 unsigned int n;
3857 int err;
3858
3859 err = kstrtouint(buf, 10, &n);
3860 if (err < 0)
3861 return err;
3862
3863 err = mddev_lock(mddev);
3864 if (err)
3865 return err;
3866 if (mddev->pers)
3867 err = update_raid_disks(mddev, n);
3868 else if (mddev->reshape_position != MaxSector) {
3869 struct md_rdev *rdev;
3870 int olddisks = mddev->raid_disks - mddev->delta_disks;
3871
3872 err = -EINVAL;
3873 rdev_for_each(rdev, mddev) {
3874 if (olddisks < n &&
3875 rdev->data_offset < rdev->new_data_offset)
3876 goto out_unlock;
3877 if (olddisks > n &&
3878 rdev->data_offset > rdev->new_data_offset)
3879 goto out_unlock;
3880 }
3881 err = 0;
3882 mddev->delta_disks = n - olddisks;
3883 mddev->raid_disks = n;
3884 mddev->reshape_backwards = (mddev->delta_disks < 0);
3885 } else
3886 mddev->raid_disks = n;
3887 out_unlock:
3888 mddev_unlock(mddev);
3889 return err ? err : len;
3890 }
3891 static struct md_sysfs_entry md_raid_disks =
3892 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3893
3894 static ssize_t
3895 chunk_size_show(struct mddev *mddev, char *page)
3896 {
3897 if (mddev->reshape_position != MaxSector &&
3898 mddev->chunk_sectors != mddev->new_chunk_sectors)
3899 return sprintf(page, "%d (%d)\n",
3900 mddev->new_chunk_sectors << 9,
3901 mddev->chunk_sectors << 9);
3902 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3903 }
3904
3905 static ssize_t
3906 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3907 {
3908 unsigned long n;
3909 int err;
3910
3911 err = kstrtoul(buf, 10, &n);
3912 if (err < 0)
3913 return err;
3914
3915 err = mddev_lock(mddev);
3916 if (err)
3917 return err;
3918 if (mddev->pers) {
3919 if (mddev->pers->check_reshape == NULL)
3920 err = -EBUSY;
3921 else if (mddev->ro)
3922 err = -EROFS;
3923 else {
3924 mddev->new_chunk_sectors = n >> 9;
3925 err = mddev->pers->check_reshape(mddev);
3926 if (err)
3927 mddev->new_chunk_sectors = mddev->chunk_sectors;
3928 }
3929 } else {
3930 mddev->new_chunk_sectors = n >> 9;
3931 if (mddev->reshape_position == MaxSector)
3932 mddev->chunk_sectors = n >> 9;
3933 }
3934 mddev_unlock(mddev);
3935 return err ?: len;
3936 }
3937 static struct md_sysfs_entry md_chunk_size =
3938 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3939
3940 static ssize_t
3941 resync_start_show(struct mddev *mddev, char *page)
3942 {
3943 if (mddev->recovery_cp == MaxSector)
3944 return sprintf(page, "none\n");
3945 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3946 }
3947
3948 static ssize_t
3949 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3950 {
3951 unsigned long long n;
3952 int err;
3953
3954 if (cmd_match(buf, "none"))
3955 n = MaxSector;
3956 else {
3957 err = kstrtoull(buf, 10, &n);
3958 if (err < 0)
3959 return err;
3960 if (n != (sector_t)n)
3961 return -EINVAL;
3962 }
3963
3964 err = mddev_lock(mddev);
3965 if (err)
3966 return err;
3967 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3968 err = -EBUSY;
3969
3970 if (!err) {
3971 mddev->recovery_cp = n;
3972 if (mddev->pers)
3973 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
3974 }
3975 mddev_unlock(mddev);
3976 return err ?: len;
3977 }
3978 static struct md_sysfs_entry md_resync_start =
3979 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3980 resync_start_show, resync_start_store);
3981
3982 /*
3983 * The array state can be:
3984 *
3985 * clear
3986 * No devices, no size, no level
3987 * Equivalent to STOP_ARRAY ioctl
3988 * inactive
3989 * May have some settings, but array is not active
3990 * all IO results in error
3991 * When written, doesn't tear down array, but just stops it
3992 * suspended (not supported yet)
3993 * All IO requests will block. The array can be reconfigured.
3994 * Writing this, if accepted, will block until array is quiescent
3995 * readonly
3996 * no resync can happen. no superblocks get written.
3997 * write requests fail
3998 * read-auto
3999 * like readonly, but behaves like 'clean' on a write request.
4000 *
4001 * clean - no pending writes, but otherwise active.
4002 * When written to inactive array, starts without resync
4003 * If a write request arrives then
4004 * if metadata is known, mark 'dirty' and switch to 'active'.
4005 * if not known, block and switch to write-pending
4006 * If written to an active array that has pending writes, then fails.
4007 * active
4008 * fully active: IO and resync can be happening.
4009 * When written to inactive array, starts with resync
4010 *
4011 * write-pending
4012 * clean, but writes are blocked waiting for 'active' to be written.
4013 *
4014 * active-idle
4015 * like active, but no writes have been seen for a while (100msec).
4016 *
4017 */
4018 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4019 write_pending, active_idle, bad_word};
4020 static char *array_states[] = {
4021 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4022 "write-pending", "active-idle", NULL };
4023
4024 static int match_word(const char *word, char **list)
4025 {
4026 int n;
4027 for (n=0; list[n]; n++)
4028 if (cmd_match(word, list[n]))
4029 break;
4030 return n;
4031 }
4032
4033 static ssize_t
4034 array_state_show(struct mddev *mddev, char *page)
4035 {
4036 enum array_state st = inactive;
4037
4038 if (mddev->pers)
4039 switch(mddev->ro) {
4040 case 1:
4041 st = readonly;
4042 break;
4043 case 2:
4044 st = read_auto;
4045 break;
4046 case 0:
4047 spin_lock(&mddev->lock);
4048 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4049 st = write_pending;
4050 else if (mddev->in_sync)
4051 st = clean;
4052 else if (mddev->safemode)
4053 st = active_idle;
4054 else
4055 st = active;
4056 spin_unlock(&mddev->lock);
4057 }
4058 else {
4059 if (list_empty(&mddev->disks) &&
4060 mddev->raid_disks == 0 &&
4061 mddev->dev_sectors == 0)
4062 st = clear;
4063 else
4064 st = inactive;
4065 }
4066 return sprintf(page, "%s\n", array_states[st]);
4067 }
4068
4069 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4070 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4071 static int do_md_run(struct mddev *mddev);
4072 static int restart_array(struct mddev *mddev);
4073
4074 static ssize_t
4075 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4076 {
4077 int err = 0;
4078 enum array_state st = match_word(buf, array_states);
4079
4080 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4081 /* don't take reconfig_mutex when toggling between
4082 * clean and active
4083 */
4084 spin_lock(&mddev->lock);
4085 if (st == active) {
4086 restart_array(mddev);
4087 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4088 md_wakeup_thread(mddev->thread);
4089 wake_up(&mddev->sb_wait);
4090 } else /* st == clean */ {
4091 restart_array(mddev);
4092 if (!set_in_sync(mddev))
4093 err = -EBUSY;
4094 }
4095 if (!err)
4096 sysfs_notify_dirent_safe(mddev->sysfs_state);
4097 spin_unlock(&mddev->lock);
4098 return err ?: len;
4099 }
4100 err = mddev_lock(mddev);
4101 if (err)
4102 return err;
4103 err = -EINVAL;
4104 switch(st) {
4105 case bad_word:
4106 break;
4107 case clear:
4108 /* stopping an active array */
4109 err = do_md_stop(mddev, 0, NULL);
4110 break;
4111 case inactive:
4112 /* stopping an active array */
4113 if (mddev->pers)
4114 err = do_md_stop(mddev, 2, NULL);
4115 else
4116 err = 0; /* already inactive */
4117 break;
4118 case suspended:
4119 break; /* not supported yet */
4120 case readonly:
4121 if (mddev->pers)
4122 err = md_set_readonly(mddev, NULL);
4123 else {
4124 mddev->ro = 1;
4125 set_disk_ro(mddev->gendisk, 1);
4126 err = do_md_run(mddev);
4127 }
4128 break;
4129 case read_auto:
4130 if (mddev->pers) {
4131 if (mddev->ro == 0)
4132 err = md_set_readonly(mddev, NULL);
4133 else if (mddev->ro == 1)
4134 err = restart_array(mddev);
4135 if (err == 0) {
4136 mddev->ro = 2;
4137 set_disk_ro(mddev->gendisk, 0);
4138 }
4139 } else {
4140 mddev->ro = 2;
4141 err = do_md_run(mddev);
4142 }
4143 break;
4144 case clean:
4145 if (mddev->pers) {
4146 err = restart_array(mddev);
4147 if (err)
4148 break;
4149 spin_lock(&mddev->lock);
4150 if (!set_in_sync(mddev))
4151 err = -EBUSY;
4152 spin_unlock(&mddev->lock);
4153 } else
4154 err = -EINVAL;
4155 break;
4156 case active:
4157 if (mddev->pers) {
4158 err = restart_array(mddev);
4159 if (err)
4160 break;
4161 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4162 wake_up(&mddev->sb_wait);
4163 err = 0;
4164 } else {
4165 mddev->ro = 0;
4166 set_disk_ro(mddev->gendisk, 0);
4167 err = do_md_run(mddev);
4168 }
4169 break;
4170 case write_pending:
4171 case active_idle:
4172 /* these cannot be set */
4173 break;
4174 }
4175
4176 if (!err) {
4177 if (mddev->hold_active == UNTIL_IOCTL)
4178 mddev->hold_active = 0;
4179 sysfs_notify_dirent_safe(mddev->sysfs_state);
4180 }
4181 mddev_unlock(mddev);
4182 return err ?: len;
4183 }
4184 static struct md_sysfs_entry md_array_state =
4185 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4186
4187 static ssize_t
4188 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4189 return sprintf(page, "%d\n",
4190 atomic_read(&mddev->max_corr_read_errors));
4191 }
4192
4193 static ssize_t
4194 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4195 {
4196 unsigned int n;
4197 int rv;
4198
4199 rv = kstrtouint(buf, 10, &n);
4200 if (rv < 0)
4201 return rv;
4202 atomic_set(&mddev->max_corr_read_errors, n);
4203 return len;
4204 }
4205
4206 static struct md_sysfs_entry max_corr_read_errors =
4207 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4208 max_corrected_read_errors_store);
4209
4210 static ssize_t
4211 null_show(struct mddev *mddev, char *page)
4212 {
4213 return -EINVAL;
4214 }
4215
4216 static ssize_t
4217 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4218 {
4219 /* buf must be %d:%d\n? giving major and minor numbers */
4220 /* The new device is added to the array.
4221 * If the array has a persistent superblock, we read the
4222 * superblock to initialise info and check validity.
4223 * Otherwise, only checking done is that in bind_rdev_to_array,
4224 * which mainly checks size.
4225 */
4226 char *e;
4227 int major = simple_strtoul(buf, &e, 10);
4228 int minor;
4229 dev_t dev;
4230 struct md_rdev *rdev;
4231 int err;
4232
4233 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4234 return -EINVAL;
4235 minor = simple_strtoul(e+1, &e, 10);
4236 if (*e && *e != '\n')
4237 return -EINVAL;
4238 dev = MKDEV(major, minor);
4239 if (major != MAJOR(dev) ||
4240 minor != MINOR(dev))
4241 return -EOVERFLOW;
4242
4243 flush_workqueue(md_misc_wq);
4244
4245 err = mddev_lock(mddev);
4246 if (err)
4247 return err;
4248 if (mddev->persistent) {
4249 rdev = md_import_device(dev, mddev->major_version,
4250 mddev->minor_version);
4251 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4252 struct md_rdev *rdev0
4253 = list_entry(mddev->disks.next,
4254 struct md_rdev, same_set);
4255 err = super_types[mddev->major_version]
4256 .load_super(rdev, rdev0, mddev->minor_version);
4257 if (err < 0)
4258 goto out;
4259 }
4260 } else if (mddev->external)
4261 rdev = md_import_device(dev, -2, -1);
4262 else
4263 rdev = md_import_device(dev, -1, -1);
4264
4265 if (IS_ERR(rdev)) {
4266 mddev_unlock(mddev);
4267 return PTR_ERR(rdev);
4268 }
4269 err = bind_rdev_to_array(rdev, mddev);
4270 out:
4271 if (err)
4272 export_rdev(rdev);
4273 mddev_unlock(mddev);
4274 return err ? err : len;
4275 }
4276
4277 static struct md_sysfs_entry md_new_device =
4278 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4279
4280 static ssize_t
4281 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4282 {
4283 char *end;
4284 unsigned long chunk, end_chunk;
4285 int err;
4286
4287 err = mddev_lock(mddev);
4288 if (err)
4289 return err;
4290 if (!mddev->bitmap)
4291 goto out;
4292 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4293 while (*buf) {
4294 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4295 if (buf == end) break;
4296 if (*end == '-') { /* range */
4297 buf = end + 1;
4298 end_chunk = simple_strtoul(buf, &end, 0);
4299 if (buf == end) break;
4300 }
4301 if (*end && !isspace(*end)) break;
4302 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4303 buf = skip_spaces(end);
4304 }
4305 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4306 out:
4307 mddev_unlock(mddev);
4308 return len;
4309 }
4310
4311 static struct md_sysfs_entry md_bitmap =
4312 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4313
4314 static ssize_t
4315 size_show(struct mddev *mddev, char *page)
4316 {
4317 return sprintf(page, "%llu\n",
4318 (unsigned long long)mddev->dev_sectors / 2);
4319 }
4320
4321 static int update_size(struct mddev *mddev, sector_t num_sectors);
4322
4323 static ssize_t
4324 size_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326 /* If array is inactive, we can reduce the component size, but
4327 * not increase it (except from 0).
4328 * If array is active, we can try an on-line resize
4329 */
4330 sector_t sectors;
4331 int err = strict_blocks_to_sectors(buf, &sectors);
4332
4333 if (err < 0)
4334 return err;
4335 err = mddev_lock(mddev);
4336 if (err)
4337 return err;
4338 if (mddev->pers) {
4339 err = update_size(mddev, sectors);
4340 if (err == 0)
4341 md_update_sb(mddev, 1);
4342 } else {
4343 if (mddev->dev_sectors == 0 ||
4344 mddev->dev_sectors > sectors)
4345 mddev->dev_sectors = sectors;
4346 else
4347 err = -ENOSPC;
4348 }
4349 mddev_unlock(mddev);
4350 return err ? err : len;
4351 }
4352
4353 static struct md_sysfs_entry md_size =
4354 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4355
4356 /* Metadata version.
4357 * This is one of
4358 * 'none' for arrays with no metadata (good luck...)
4359 * 'external' for arrays with externally managed metadata,
4360 * or N.M for internally known formats
4361 */
4362 static ssize_t
4363 metadata_show(struct mddev *mddev, char *page)
4364 {
4365 if (mddev->persistent)
4366 return sprintf(page, "%d.%d\n",
4367 mddev->major_version, mddev->minor_version);
4368 else if (mddev->external)
4369 return sprintf(page, "external:%s\n", mddev->metadata_type);
4370 else
4371 return sprintf(page, "none\n");
4372 }
4373
4374 static ssize_t
4375 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4376 {
4377 int major, minor;
4378 char *e;
4379 int err;
4380 /* Changing the details of 'external' metadata is
4381 * always permitted. Otherwise there must be
4382 * no devices attached to the array.
4383 */
4384
4385 err = mddev_lock(mddev);
4386 if (err)
4387 return err;
4388 err = -EBUSY;
4389 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4390 ;
4391 else if (!list_empty(&mddev->disks))
4392 goto out_unlock;
4393
4394 err = 0;
4395 if (cmd_match(buf, "none")) {
4396 mddev->persistent = 0;
4397 mddev->external = 0;
4398 mddev->major_version = 0;
4399 mddev->minor_version = 90;
4400 goto out_unlock;
4401 }
4402 if (strncmp(buf, "external:", 9) == 0) {
4403 size_t namelen = len-9;
4404 if (namelen >= sizeof(mddev->metadata_type))
4405 namelen = sizeof(mddev->metadata_type)-1;
4406 strncpy(mddev->metadata_type, buf+9, namelen);
4407 mddev->metadata_type[namelen] = 0;
4408 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4409 mddev->metadata_type[--namelen] = 0;
4410 mddev->persistent = 0;
4411 mddev->external = 1;
4412 mddev->major_version = 0;
4413 mddev->minor_version = 90;
4414 goto out_unlock;
4415 }
4416 major = simple_strtoul(buf, &e, 10);
4417 err = -EINVAL;
4418 if (e==buf || *e != '.')
4419 goto out_unlock;
4420 buf = e+1;
4421 minor = simple_strtoul(buf, &e, 10);
4422 if (e==buf || (*e && *e != '\n') )
4423 goto out_unlock;
4424 err = -ENOENT;
4425 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4426 goto out_unlock;
4427 mddev->major_version = major;
4428 mddev->minor_version = minor;
4429 mddev->persistent = 1;
4430 mddev->external = 0;
4431 err = 0;
4432 out_unlock:
4433 mddev_unlock(mddev);
4434 return err ?: len;
4435 }
4436
4437 static struct md_sysfs_entry md_metadata =
4438 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4439
4440 static ssize_t
4441 action_show(struct mddev *mddev, char *page)
4442 {
4443 char *type = "idle";
4444 unsigned long recovery = mddev->recovery;
4445 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4446 type = "frozen";
4447 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4448 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4449 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4450 type = "reshape";
4451 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4452 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4453 type = "resync";
4454 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4455 type = "check";
4456 else
4457 type = "repair";
4458 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4459 type = "recover";
4460 else if (mddev->reshape_position != MaxSector)
4461 type = "reshape";
4462 }
4463 return sprintf(page, "%s\n", type);
4464 }
4465
4466 static ssize_t
4467 action_store(struct mddev *mddev, const char *page, size_t len)
4468 {
4469 if (!mddev->pers || !mddev->pers->sync_request)
4470 return -EINVAL;
4471
4472
4473 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4474 if (cmd_match(page, "frozen"))
4475 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4476 else
4477 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4478 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4479 mddev_lock(mddev) == 0) {
4480 flush_workqueue(md_misc_wq);
4481 if (mddev->sync_thread) {
4482 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4483 md_reap_sync_thread(mddev);
4484 }
4485 mddev_unlock(mddev);
4486 }
4487 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4488 return -EBUSY;
4489 else if (cmd_match(page, "resync"))
4490 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4491 else if (cmd_match(page, "recover")) {
4492 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4493 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4494 } else if (cmd_match(page, "reshape")) {
4495 int err;
4496 if (mddev->pers->start_reshape == NULL)
4497 return -EINVAL;
4498 err = mddev_lock(mddev);
4499 if (!err) {
4500 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501 err = -EBUSY;
4502 else {
4503 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4504 err = mddev->pers->start_reshape(mddev);
4505 }
4506 mddev_unlock(mddev);
4507 }
4508 if (err)
4509 return err;
4510 sysfs_notify(&mddev->kobj, NULL, "degraded");
4511 } else {
4512 if (cmd_match(page, "check"))
4513 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4514 else if (!cmd_match(page, "repair"))
4515 return -EINVAL;
4516 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4517 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4518 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4519 }
4520 if (mddev->ro == 2) {
4521 /* A write to sync_action is enough to justify
4522 * canceling read-auto mode
4523 */
4524 mddev->ro = 0;
4525 md_wakeup_thread(mddev->sync_thread);
4526 }
4527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4528 md_wakeup_thread(mddev->thread);
4529 sysfs_notify_dirent_safe(mddev->sysfs_action);
4530 return len;
4531 }
4532
4533 static struct md_sysfs_entry md_scan_mode =
4534 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4535
4536 static ssize_t
4537 last_sync_action_show(struct mddev *mddev, char *page)
4538 {
4539 return sprintf(page, "%s\n", mddev->last_sync_action);
4540 }
4541
4542 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4543
4544 static ssize_t
4545 mismatch_cnt_show(struct mddev *mddev, char *page)
4546 {
4547 return sprintf(page, "%llu\n",
4548 (unsigned long long)
4549 atomic64_read(&mddev->resync_mismatches));
4550 }
4551
4552 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4553
4554 static ssize_t
4555 sync_min_show(struct mddev *mddev, char *page)
4556 {
4557 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4558 mddev->sync_speed_min ? "local": "system");
4559 }
4560
4561 static ssize_t
4562 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4563 {
4564 unsigned int min;
4565 int rv;
4566
4567 if (strncmp(buf, "system", 6)==0) {
4568 min = 0;
4569 } else {
4570 rv = kstrtouint(buf, 10, &min);
4571 if (rv < 0)
4572 return rv;
4573 if (min == 0)
4574 return -EINVAL;
4575 }
4576 mddev->sync_speed_min = min;
4577 return len;
4578 }
4579
4580 static struct md_sysfs_entry md_sync_min =
4581 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4582
4583 static ssize_t
4584 sync_max_show(struct mddev *mddev, char *page)
4585 {
4586 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4587 mddev->sync_speed_max ? "local": "system");
4588 }
4589
4590 static ssize_t
4591 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4592 {
4593 unsigned int max;
4594 int rv;
4595
4596 if (strncmp(buf, "system", 6)==0) {
4597 max = 0;
4598 } else {
4599 rv = kstrtouint(buf, 10, &max);
4600 if (rv < 0)
4601 return rv;
4602 if (max == 0)
4603 return -EINVAL;
4604 }
4605 mddev->sync_speed_max = max;
4606 return len;
4607 }
4608
4609 static struct md_sysfs_entry md_sync_max =
4610 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4611
4612 static ssize_t
4613 degraded_show(struct mddev *mddev, char *page)
4614 {
4615 return sprintf(page, "%d\n", mddev->degraded);
4616 }
4617 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4618
4619 static ssize_t
4620 sync_force_parallel_show(struct mddev *mddev, char *page)
4621 {
4622 return sprintf(page, "%d\n", mddev->parallel_resync);
4623 }
4624
4625 static ssize_t
4626 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4627 {
4628 long n;
4629
4630 if (kstrtol(buf, 10, &n))
4631 return -EINVAL;
4632
4633 if (n != 0 && n != 1)
4634 return -EINVAL;
4635
4636 mddev->parallel_resync = n;
4637
4638 if (mddev->sync_thread)
4639 wake_up(&resync_wait);
4640
4641 return len;
4642 }
4643
4644 /* force parallel resync, even with shared block devices */
4645 static struct md_sysfs_entry md_sync_force_parallel =
4646 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4647 sync_force_parallel_show, sync_force_parallel_store);
4648
4649 static ssize_t
4650 sync_speed_show(struct mddev *mddev, char *page)
4651 {
4652 unsigned long resync, dt, db;
4653 if (mddev->curr_resync == 0)
4654 return sprintf(page, "none\n");
4655 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4656 dt = (jiffies - mddev->resync_mark) / HZ;
4657 if (!dt) dt++;
4658 db = resync - mddev->resync_mark_cnt;
4659 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4660 }
4661
4662 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4663
4664 static ssize_t
4665 sync_completed_show(struct mddev *mddev, char *page)
4666 {
4667 unsigned long long max_sectors, resync;
4668
4669 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4670 return sprintf(page, "none\n");
4671
4672 if (mddev->curr_resync == 1 ||
4673 mddev->curr_resync == 2)
4674 return sprintf(page, "delayed\n");
4675
4676 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4677 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4678 max_sectors = mddev->resync_max_sectors;
4679 else
4680 max_sectors = mddev->dev_sectors;
4681
4682 resync = mddev->curr_resync_completed;
4683 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4684 }
4685
4686 static struct md_sysfs_entry md_sync_completed =
4687 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4688
4689 static ssize_t
4690 min_sync_show(struct mddev *mddev, char *page)
4691 {
4692 return sprintf(page, "%llu\n",
4693 (unsigned long long)mddev->resync_min);
4694 }
4695 static ssize_t
4696 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4697 {
4698 unsigned long long min;
4699 int err;
4700
4701 if (kstrtoull(buf, 10, &min))
4702 return -EINVAL;
4703
4704 spin_lock(&mddev->lock);
4705 err = -EINVAL;
4706 if (min > mddev->resync_max)
4707 goto out_unlock;
4708
4709 err = -EBUSY;
4710 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4711 goto out_unlock;
4712
4713 /* Round down to multiple of 4K for safety */
4714 mddev->resync_min = round_down(min, 8);
4715 err = 0;
4716
4717 out_unlock:
4718 spin_unlock(&mddev->lock);
4719 return err ?: len;
4720 }
4721
4722 static struct md_sysfs_entry md_min_sync =
4723 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4724
4725 static ssize_t
4726 max_sync_show(struct mddev *mddev, char *page)
4727 {
4728 if (mddev->resync_max == MaxSector)
4729 return sprintf(page, "max\n");
4730 else
4731 return sprintf(page, "%llu\n",
4732 (unsigned long long)mddev->resync_max);
4733 }
4734 static ssize_t
4735 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4736 {
4737 int err;
4738 spin_lock(&mddev->lock);
4739 if (strncmp(buf, "max", 3) == 0)
4740 mddev->resync_max = MaxSector;
4741 else {
4742 unsigned long long max;
4743 int chunk;
4744
4745 err = -EINVAL;
4746 if (kstrtoull(buf, 10, &max))
4747 goto out_unlock;
4748 if (max < mddev->resync_min)
4749 goto out_unlock;
4750
4751 err = -EBUSY;
4752 if (max < mddev->resync_max &&
4753 mddev->ro == 0 &&
4754 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4755 goto out_unlock;
4756
4757 /* Must be a multiple of chunk_size */
4758 chunk = mddev->chunk_sectors;
4759 if (chunk) {
4760 sector_t temp = max;
4761
4762 err = -EINVAL;
4763 if (sector_div(temp, chunk))
4764 goto out_unlock;
4765 }
4766 mddev->resync_max = max;
4767 }
4768 wake_up(&mddev->recovery_wait);
4769 err = 0;
4770 out_unlock:
4771 spin_unlock(&mddev->lock);
4772 return err ?: len;
4773 }
4774
4775 static struct md_sysfs_entry md_max_sync =
4776 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4777
4778 static ssize_t
4779 suspend_lo_show(struct mddev *mddev, char *page)
4780 {
4781 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4782 }
4783
4784 static ssize_t
4785 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4786 {
4787 unsigned long long old, new;
4788 int err;
4789
4790 err = kstrtoull(buf, 10, &new);
4791 if (err < 0)
4792 return err;
4793 if (new != (sector_t)new)
4794 return -EINVAL;
4795
4796 err = mddev_lock(mddev);
4797 if (err)
4798 return err;
4799 err = -EINVAL;
4800 if (mddev->pers == NULL ||
4801 mddev->pers->quiesce == NULL)
4802 goto unlock;
4803 old = mddev->suspend_lo;
4804 mddev->suspend_lo = new;
4805 if (new >= old)
4806 /* Shrinking suspended region */
4807 mddev->pers->quiesce(mddev, 2);
4808 else {
4809 /* Expanding suspended region - need to wait */
4810 mddev->pers->quiesce(mddev, 1);
4811 mddev->pers->quiesce(mddev, 0);
4812 }
4813 err = 0;
4814 unlock:
4815 mddev_unlock(mddev);
4816 return err ?: len;
4817 }
4818 static struct md_sysfs_entry md_suspend_lo =
4819 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4820
4821 static ssize_t
4822 suspend_hi_show(struct mddev *mddev, char *page)
4823 {
4824 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4825 }
4826
4827 static ssize_t
4828 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4829 {
4830 unsigned long long old, new;
4831 int err;
4832
4833 err = kstrtoull(buf, 10, &new);
4834 if (err < 0)
4835 return err;
4836 if (new != (sector_t)new)
4837 return -EINVAL;
4838
4839 err = mddev_lock(mddev);
4840 if (err)
4841 return err;
4842 err = -EINVAL;
4843 if (mddev->pers == NULL ||
4844 mddev->pers->quiesce == NULL)
4845 goto unlock;
4846 old = mddev->suspend_hi;
4847 mddev->suspend_hi = new;
4848 if (new <= old)
4849 /* Shrinking suspended region */
4850 mddev->pers->quiesce(mddev, 2);
4851 else {
4852 /* Expanding suspended region - need to wait */
4853 mddev->pers->quiesce(mddev, 1);
4854 mddev->pers->quiesce(mddev, 0);
4855 }
4856 err = 0;
4857 unlock:
4858 mddev_unlock(mddev);
4859 return err ?: len;
4860 }
4861 static struct md_sysfs_entry md_suspend_hi =
4862 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4863
4864 static ssize_t
4865 reshape_position_show(struct mddev *mddev, char *page)
4866 {
4867 if (mddev->reshape_position != MaxSector)
4868 return sprintf(page, "%llu\n",
4869 (unsigned long long)mddev->reshape_position);
4870 strcpy(page, "none\n");
4871 return 5;
4872 }
4873
4874 static ssize_t
4875 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4876 {
4877 struct md_rdev *rdev;
4878 unsigned long long new;
4879 int err;
4880
4881 err = kstrtoull(buf, 10, &new);
4882 if (err < 0)
4883 return err;
4884 if (new != (sector_t)new)
4885 return -EINVAL;
4886 err = mddev_lock(mddev);
4887 if (err)
4888 return err;
4889 err = -EBUSY;
4890 if (mddev->pers)
4891 goto unlock;
4892 mddev->reshape_position = new;
4893 mddev->delta_disks = 0;
4894 mddev->reshape_backwards = 0;
4895 mddev->new_level = mddev->level;
4896 mddev->new_layout = mddev->layout;
4897 mddev->new_chunk_sectors = mddev->chunk_sectors;
4898 rdev_for_each(rdev, mddev)
4899 rdev->new_data_offset = rdev->data_offset;
4900 err = 0;
4901 unlock:
4902 mddev_unlock(mddev);
4903 return err ?: len;
4904 }
4905
4906 static struct md_sysfs_entry md_reshape_position =
4907 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4908 reshape_position_store);
4909
4910 static ssize_t
4911 reshape_direction_show(struct mddev *mddev, char *page)
4912 {
4913 return sprintf(page, "%s\n",
4914 mddev->reshape_backwards ? "backwards" : "forwards");
4915 }
4916
4917 static ssize_t
4918 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4919 {
4920 int backwards = 0;
4921 int err;
4922
4923 if (cmd_match(buf, "forwards"))
4924 backwards = 0;
4925 else if (cmd_match(buf, "backwards"))
4926 backwards = 1;
4927 else
4928 return -EINVAL;
4929 if (mddev->reshape_backwards == backwards)
4930 return len;
4931
4932 err = mddev_lock(mddev);
4933 if (err)
4934 return err;
4935 /* check if we are allowed to change */
4936 if (mddev->delta_disks)
4937 err = -EBUSY;
4938 else if (mddev->persistent &&
4939 mddev->major_version == 0)
4940 err = -EINVAL;
4941 else
4942 mddev->reshape_backwards = backwards;
4943 mddev_unlock(mddev);
4944 return err ?: len;
4945 }
4946
4947 static struct md_sysfs_entry md_reshape_direction =
4948 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4949 reshape_direction_store);
4950
4951 static ssize_t
4952 array_size_show(struct mddev *mddev, char *page)
4953 {
4954 if (mddev->external_size)
4955 return sprintf(page, "%llu\n",
4956 (unsigned long long)mddev->array_sectors/2);
4957 else
4958 return sprintf(page, "default\n");
4959 }
4960
4961 static ssize_t
4962 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4963 {
4964 sector_t sectors;
4965 int err;
4966
4967 err = mddev_lock(mddev);
4968 if (err)
4969 return err;
4970
4971 /* cluster raid doesn't support change array_sectors */
4972 if (mddev_is_clustered(mddev)) {
4973 mddev_unlock(mddev);
4974 return -EINVAL;
4975 }
4976
4977 if (strncmp(buf, "default", 7) == 0) {
4978 if (mddev->pers)
4979 sectors = mddev->pers->size(mddev, 0, 0);
4980 else
4981 sectors = mddev->array_sectors;
4982
4983 mddev->external_size = 0;
4984 } else {
4985 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4986 err = -EINVAL;
4987 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4988 err = -E2BIG;
4989 else
4990 mddev->external_size = 1;
4991 }
4992
4993 if (!err) {
4994 mddev->array_sectors = sectors;
4995 if (mddev->pers) {
4996 set_capacity(mddev->gendisk, mddev->array_sectors);
4997 revalidate_disk(mddev->gendisk);
4998 }
4999 }
5000 mddev_unlock(mddev);
5001 return err ?: len;
5002 }
5003
5004 static struct md_sysfs_entry md_array_size =
5005 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5006 array_size_store);
5007
5008 static ssize_t
5009 consistency_policy_show(struct mddev *mddev, char *page)
5010 {
5011 int ret;
5012
5013 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5014 ret = sprintf(page, "journal\n");
5015 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5016 ret = sprintf(page, "ppl\n");
5017 } else if (mddev->bitmap) {
5018 ret = sprintf(page, "bitmap\n");
5019 } else if (mddev->pers) {
5020 if (mddev->pers->sync_request)
5021 ret = sprintf(page, "resync\n");
5022 else
5023 ret = sprintf(page, "none\n");
5024 } else {
5025 ret = sprintf(page, "unknown\n");
5026 }
5027
5028 return ret;
5029 }
5030
5031 static ssize_t
5032 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5033 {
5034 int err = 0;
5035
5036 if (mddev->pers) {
5037 if (mddev->pers->change_consistency_policy)
5038 err = mddev->pers->change_consistency_policy(mddev, buf);
5039 else
5040 err = -EBUSY;
5041 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5042 set_bit(MD_HAS_PPL, &mddev->flags);
5043 } else {
5044 err = -EINVAL;
5045 }
5046
5047 return err ? err : len;
5048 }
5049
5050 static struct md_sysfs_entry md_consistency_policy =
5051 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5052 consistency_policy_store);
5053
5054 static struct attribute *md_default_attrs[] = {
5055 &md_level.attr,
5056 &md_layout.attr,
5057 &md_raid_disks.attr,
5058 &md_chunk_size.attr,
5059 &md_size.attr,
5060 &md_resync_start.attr,
5061 &md_metadata.attr,
5062 &md_new_device.attr,
5063 &md_safe_delay.attr,
5064 &md_array_state.attr,
5065 &md_reshape_position.attr,
5066 &md_reshape_direction.attr,
5067 &md_array_size.attr,
5068 &max_corr_read_errors.attr,
5069 &md_consistency_policy.attr,
5070 NULL,
5071 };
5072
5073 static struct attribute *md_redundancy_attrs[] = {
5074 &md_scan_mode.attr,
5075 &md_last_scan_mode.attr,
5076 &md_mismatches.attr,
5077 &md_sync_min.attr,
5078 &md_sync_max.attr,
5079 &md_sync_speed.attr,
5080 &md_sync_force_parallel.attr,
5081 &md_sync_completed.attr,
5082 &md_min_sync.attr,
5083 &md_max_sync.attr,
5084 &md_suspend_lo.attr,
5085 &md_suspend_hi.attr,
5086 &md_bitmap.attr,
5087 &md_degraded.attr,
5088 NULL,
5089 };
5090 static struct attribute_group md_redundancy_group = {
5091 .name = NULL,
5092 .attrs = md_redundancy_attrs,
5093 };
5094
5095 static ssize_t
5096 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5097 {
5098 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5099 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5100 ssize_t rv;
5101
5102 if (!entry->show)
5103 return -EIO;
5104 spin_lock(&all_mddevs_lock);
5105 if (list_empty(&mddev->all_mddevs)) {
5106 spin_unlock(&all_mddevs_lock);
5107 return -EBUSY;
5108 }
5109 mddev_get(mddev);
5110 spin_unlock(&all_mddevs_lock);
5111
5112 rv = entry->show(mddev, page);
5113 mddev_put(mddev);
5114 return rv;
5115 }
5116
5117 static ssize_t
5118 md_attr_store(struct kobject *kobj, struct attribute *attr,
5119 const char *page, size_t length)
5120 {
5121 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5122 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5123 ssize_t rv;
5124
5125 if (!entry->store)
5126 return -EIO;
5127 if (!capable(CAP_SYS_ADMIN))
5128 return -EACCES;
5129 spin_lock(&all_mddevs_lock);
5130 if (list_empty(&mddev->all_mddevs)) {
5131 spin_unlock(&all_mddevs_lock);
5132 return -EBUSY;
5133 }
5134 mddev_get(mddev);
5135 spin_unlock(&all_mddevs_lock);
5136 rv = entry->store(mddev, page, length);
5137 mddev_put(mddev);
5138 return rv;
5139 }
5140
5141 static void md_free(struct kobject *ko)
5142 {
5143 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5144
5145 if (mddev->sysfs_state)
5146 sysfs_put(mddev->sysfs_state);
5147
5148 if (mddev->queue)
5149 blk_cleanup_queue(mddev->queue);
5150 if (mddev->gendisk) {
5151 del_gendisk(mddev->gendisk);
5152 put_disk(mddev->gendisk);
5153 }
5154 percpu_ref_exit(&mddev->writes_pending);
5155
5156 kfree(mddev);
5157 }
5158
5159 static const struct sysfs_ops md_sysfs_ops = {
5160 .show = md_attr_show,
5161 .store = md_attr_store,
5162 };
5163 static struct kobj_type md_ktype = {
5164 .release = md_free,
5165 .sysfs_ops = &md_sysfs_ops,
5166 .default_attrs = md_default_attrs,
5167 };
5168
5169 int mdp_major = 0;
5170
5171 static void mddev_delayed_delete(struct work_struct *ws)
5172 {
5173 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5174
5175 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5176 kobject_del(&mddev->kobj);
5177 kobject_put(&mddev->kobj);
5178 }
5179
5180 static void no_op(struct percpu_ref *r) {}
5181
5182 int mddev_init_writes_pending(struct mddev *mddev)
5183 {
5184 if (mddev->writes_pending.percpu_count_ptr)
5185 return 0;
5186 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5187 return -ENOMEM;
5188 /* We want to start with the refcount at zero */
5189 percpu_ref_put(&mddev->writes_pending);
5190 return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5193
5194 static int md_alloc(dev_t dev, char *name)
5195 {
5196 /*
5197 * If dev is zero, name is the name of a device to allocate with
5198 * an arbitrary minor number. It will be "md_???"
5199 * If dev is non-zero it must be a device number with a MAJOR of
5200 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5201 * the device is being created by opening a node in /dev.
5202 * If "name" is not NULL, the device is being created by
5203 * writing to /sys/module/md_mod/parameters/new_array.
5204 */
5205 static DEFINE_MUTEX(disks_mutex);
5206 struct mddev *mddev = mddev_find(dev);
5207 struct gendisk *disk;
5208 int partitioned;
5209 int shift;
5210 int unit;
5211 int error;
5212
5213 if (!mddev)
5214 return -ENODEV;
5215
5216 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5217 shift = partitioned ? MdpMinorShift : 0;
5218 unit = MINOR(mddev->unit) >> shift;
5219
5220 /* wait for any previous instance of this device to be
5221 * completely removed (mddev_delayed_delete).
5222 */
5223 flush_workqueue(md_misc_wq);
5224
5225 mutex_lock(&disks_mutex);
5226 error = -EEXIST;
5227 if (mddev->gendisk)
5228 goto abort;
5229
5230 if (name && !dev) {
5231 /* Need to ensure that 'name' is not a duplicate.
5232 */
5233 struct mddev *mddev2;
5234 spin_lock(&all_mddevs_lock);
5235
5236 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5237 if (mddev2->gendisk &&
5238 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5239 spin_unlock(&all_mddevs_lock);
5240 goto abort;
5241 }
5242 spin_unlock(&all_mddevs_lock);
5243 }
5244 if (name && dev)
5245 /*
5246 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5247 */
5248 mddev->hold_active = UNTIL_STOP;
5249
5250 error = -ENOMEM;
5251 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5252 if (!mddev->queue)
5253 goto abort;
5254 mddev->queue->queuedata = mddev;
5255
5256 blk_queue_make_request(mddev->queue, md_make_request);
5257 blk_set_stacking_limits(&mddev->queue->limits);
5258
5259 disk = alloc_disk(1 << shift);
5260 if (!disk) {
5261 blk_cleanup_queue(mddev->queue);
5262 mddev->queue = NULL;
5263 goto abort;
5264 }
5265 disk->major = MAJOR(mddev->unit);
5266 disk->first_minor = unit << shift;
5267 if (name)
5268 strcpy(disk->disk_name, name);
5269 else if (partitioned)
5270 sprintf(disk->disk_name, "md_d%d", unit);
5271 else
5272 sprintf(disk->disk_name, "md%d", unit);
5273 disk->fops = &md_fops;
5274 disk->private_data = mddev;
5275 disk->queue = mddev->queue;
5276 blk_queue_write_cache(mddev->queue, true, true);
5277 /* Allow extended partitions. This makes the
5278 * 'mdp' device redundant, but we can't really
5279 * remove it now.
5280 */
5281 disk->flags |= GENHD_FL_EXT_DEVT;
5282 mddev->gendisk = disk;
5283 /* As soon as we call add_disk(), another thread could get
5284 * through to md_open, so make sure it doesn't get too far
5285 */
5286 mutex_lock(&mddev->open_mutex);
5287 add_disk(disk);
5288
5289 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5290 &disk_to_dev(disk)->kobj, "%s", "md");
5291 if (error) {
5292 /* This isn't possible, but as kobject_init_and_add is marked
5293 * __must_check, we must do something with the result
5294 */
5295 pr_debug("md: cannot register %s/md - name in use\n",
5296 disk->disk_name);
5297 error = 0;
5298 }
5299 if (mddev->kobj.sd &&
5300 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5301 pr_debug("pointless warning\n");
5302 mutex_unlock(&mddev->open_mutex);
5303 abort:
5304 mutex_unlock(&disks_mutex);
5305 if (!error && mddev->kobj.sd) {
5306 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5307 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5308 }
5309 mddev_put(mddev);
5310 return error;
5311 }
5312
5313 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5314 {
5315 if (create_on_open)
5316 md_alloc(dev, NULL);
5317 return NULL;
5318 }
5319
5320 static int add_named_array(const char *val, struct kernel_param *kp)
5321 {
5322 /*
5323 * val must be "md_*" or "mdNNN".
5324 * For "md_*" we allocate an array with a large free minor number, and
5325 * set the name to val. val must not already be an active name.
5326 * For "mdNNN" we allocate an array with the minor number NNN
5327 * which must not already be in use.
5328 */
5329 int len = strlen(val);
5330 char buf[DISK_NAME_LEN];
5331 unsigned long devnum;
5332
5333 while (len && val[len-1] == '\n')
5334 len--;
5335 if (len >= DISK_NAME_LEN)
5336 return -E2BIG;
5337 strlcpy(buf, val, len+1);
5338 if (strncmp(buf, "md_", 3) == 0)
5339 return md_alloc(0, buf);
5340 if (strncmp(buf, "md", 2) == 0 &&
5341 isdigit(buf[2]) &&
5342 kstrtoul(buf+2, 10, &devnum) == 0 &&
5343 devnum <= MINORMASK)
5344 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5345
5346 return -EINVAL;
5347 }
5348
5349 static void md_safemode_timeout(unsigned long data)
5350 {
5351 struct mddev *mddev = (struct mddev *) data;
5352
5353 mddev->safemode = 1;
5354 if (mddev->external)
5355 sysfs_notify_dirent_safe(mddev->sysfs_state);
5356
5357 md_wakeup_thread(mddev->thread);
5358 }
5359
5360 static int start_dirty_degraded;
5361
5362 int md_run(struct mddev *mddev)
5363 {
5364 int err;
5365 struct md_rdev *rdev;
5366 struct md_personality *pers;
5367
5368 if (list_empty(&mddev->disks))
5369 /* cannot run an array with no devices.. */
5370 return -EINVAL;
5371
5372 if (mddev->pers)
5373 return -EBUSY;
5374 /* Cannot run until previous stop completes properly */
5375 if (mddev->sysfs_active)
5376 return -EBUSY;
5377
5378 /*
5379 * Analyze all RAID superblock(s)
5380 */
5381 if (!mddev->raid_disks) {
5382 if (!mddev->persistent)
5383 return -EINVAL;
5384 analyze_sbs(mddev);
5385 }
5386
5387 if (mddev->level != LEVEL_NONE)
5388 request_module("md-level-%d", mddev->level);
5389 else if (mddev->clevel[0])
5390 request_module("md-%s", mddev->clevel);
5391
5392 /*
5393 * Drop all container device buffers, from now on
5394 * the only valid external interface is through the md
5395 * device.
5396 */
5397 rdev_for_each(rdev, mddev) {
5398 if (test_bit(Faulty, &rdev->flags))
5399 continue;
5400 sync_blockdev(rdev->bdev);
5401 invalidate_bdev(rdev->bdev);
5402 if (mddev->ro != 1 &&
5403 (bdev_read_only(rdev->bdev) ||
5404 bdev_read_only(rdev->meta_bdev))) {
5405 mddev->ro = 1;
5406 if (mddev->gendisk)
5407 set_disk_ro(mddev->gendisk, 1);
5408 }
5409
5410 /* perform some consistency tests on the device.
5411 * We don't want the data to overlap the metadata,
5412 * Internal Bitmap issues have been handled elsewhere.
5413 */
5414 if (rdev->meta_bdev) {
5415 /* Nothing to check */;
5416 } else if (rdev->data_offset < rdev->sb_start) {
5417 if (mddev->dev_sectors &&
5418 rdev->data_offset + mddev->dev_sectors
5419 > rdev->sb_start) {
5420 pr_warn("md: %s: data overlaps metadata\n",
5421 mdname(mddev));
5422 return -EINVAL;
5423 }
5424 } else {
5425 if (rdev->sb_start + rdev->sb_size/512
5426 > rdev->data_offset) {
5427 pr_warn("md: %s: metadata overlaps data\n",
5428 mdname(mddev));
5429 return -EINVAL;
5430 }
5431 }
5432 sysfs_notify_dirent_safe(rdev->sysfs_state);
5433 }
5434
5435 if (mddev->bio_set == NULL) {
5436 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5437 if (!mddev->bio_set)
5438 return -ENOMEM;
5439 }
5440
5441 spin_lock(&pers_lock);
5442 pers = find_pers(mddev->level, mddev->clevel);
5443 if (!pers || !try_module_get(pers->owner)) {
5444 spin_unlock(&pers_lock);
5445 if (mddev->level != LEVEL_NONE)
5446 pr_warn("md: personality for level %d is not loaded!\n",
5447 mddev->level);
5448 else
5449 pr_warn("md: personality for level %s is not loaded!\n",
5450 mddev->clevel);
5451 return -EINVAL;
5452 }
5453 spin_unlock(&pers_lock);
5454 if (mddev->level != pers->level) {
5455 mddev->level = pers->level;
5456 mddev->new_level = pers->level;
5457 }
5458 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5459
5460 if (mddev->reshape_position != MaxSector &&
5461 pers->start_reshape == NULL) {
5462 /* This personality cannot handle reshaping... */
5463 module_put(pers->owner);
5464 return -EINVAL;
5465 }
5466
5467 if (pers->sync_request) {
5468 /* Warn if this is a potentially silly
5469 * configuration.
5470 */
5471 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5472 struct md_rdev *rdev2;
5473 int warned = 0;
5474
5475 rdev_for_each(rdev, mddev)
5476 rdev_for_each(rdev2, mddev) {
5477 if (rdev < rdev2 &&
5478 rdev->bdev->bd_contains ==
5479 rdev2->bdev->bd_contains) {
5480 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5481 mdname(mddev),
5482 bdevname(rdev->bdev,b),
5483 bdevname(rdev2->bdev,b2));
5484 warned = 1;
5485 }
5486 }
5487
5488 if (warned)
5489 pr_warn("True protection against single-disk failure might be compromised.\n");
5490 }
5491
5492 mddev->recovery = 0;
5493 /* may be over-ridden by personality */
5494 mddev->resync_max_sectors = mddev->dev_sectors;
5495
5496 mddev->ok_start_degraded = start_dirty_degraded;
5497
5498 if (start_readonly && mddev->ro == 0)
5499 mddev->ro = 2; /* read-only, but switch on first write */
5500
5501 /*
5502 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes
5503 * up mddev->thread. It is important to initialize critical
5504 * resources for mddev->thread BEFORE calling pers->run().
5505 */
5506 err = pers->run(mddev);
5507 if (err)
5508 pr_warn("md: pers->run() failed ...\n");
5509 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5510 WARN_ONCE(!mddev->external_size,
5511 "%s: default size too small, but 'external_size' not in effect?\n",
5512 __func__);
5513 pr_warn("md: invalid array_size %llu > default size %llu\n",
5514 (unsigned long long)mddev->array_sectors / 2,
5515 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5516 err = -EINVAL;
5517 }
5518 if (err == 0 && pers->sync_request &&
5519 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5520 struct bitmap *bitmap;
5521
5522 bitmap = bitmap_create(mddev, -1);
5523 if (IS_ERR(bitmap)) {
5524 err = PTR_ERR(bitmap);
5525 pr_warn("%s: failed to create bitmap (%d)\n",
5526 mdname(mddev), err);
5527 } else
5528 mddev->bitmap = bitmap;
5529
5530 }
5531 if (err) {
5532 mddev_detach(mddev);
5533 if (mddev->private)
5534 pers->free(mddev, mddev->private);
5535 mddev->private = NULL;
5536 module_put(pers->owner);
5537 bitmap_destroy(mddev);
5538 return err;
5539 }
5540 if (mddev->queue) {
5541 bool nonrot = true;
5542
5543 rdev_for_each(rdev, mddev) {
5544 if (rdev->raid_disk >= 0 &&
5545 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5546 nonrot = false;
5547 break;
5548 }
5549 }
5550 if (mddev->degraded)
5551 nonrot = false;
5552 if (nonrot)
5553 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5554 else
5555 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue);
5556 mddev->queue->backing_dev_info->congested_data = mddev;
5557 mddev->queue->backing_dev_info->congested_fn = md_congested;
5558 }
5559 if (pers->sync_request) {
5560 if (mddev->kobj.sd &&
5561 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5562 pr_warn("md: cannot register extra attributes for %s\n",
5563 mdname(mddev));
5564 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5565 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5566 mddev->ro = 0;
5567
5568 atomic_set(&mddev->max_corr_read_errors,
5569 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5570 mddev->safemode = 0;
5571 if (mddev_is_clustered(mddev))
5572 mddev->safemode_delay = 0;
5573 else
5574 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5575 mddev->in_sync = 1;
5576 smp_wmb();
5577 spin_lock(&mddev->lock);
5578 mddev->pers = pers;
5579 spin_unlock(&mddev->lock);
5580 rdev_for_each(rdev, mddev)
5581 if (rdev->raid_disk >= 0)
5582 if (sysfs_link_rdev(mddev, rdev))
5583 /* failure here is OK */;
5584
5585 if (mddev->degraded && !mddev->ro)
5586 /* This ensures that recovering status is reported immediately
5587 * via sysfs - until a lack of spares is confirmed.
5588 */
5589 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5590 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5591
5592 if (mddev->sb_flags)
5593 md_update_sb(mddev, 0);
5594
5595 md_new_event(mddev);
5596 sysfs_notify_dirent_safe(mddev->sysfs_state);
5597 sysfs_notify_dirent_safe(mddev->sysfs_action);
5598 sysfs_notify(&mddev->kobj, NULL, "degraded");
5599 return 0;
5600 }
5601 EXPORT_SYMBOL_GPL(md_run);
5602
5603 static int do_md_run(struct mddev *mddev)
5604 {
5605 int err;
5606
5607 err = md_run(mddev);
5608 if (err)
5609 goto out;
5610 err = bitmap_load(mddev);
5611 if (err) {
5612 bitmap_destroy(mddev);
5613 goto out;
5614 }
5615
5616 if (mddev_is_clustered(mddev))
5617 md_allow_write(mddev);
5618
5619 md_wakeup_thread(mddev->thread);
5620 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5621
5622 set_capacity(mddev->gendisk, mddev->array_sectors);
5623 revalidate_disk(mddev->gendisk);
5624 mddev->changed = 1;
5625 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5626 out:
5627 return err;
5628 }
5629
5630 static int restart_array(struct mddev *mddev)
5631 {
5632 struct gendisk *disk = mddev->gendisk;
5633 struct md_rdev *rdev;
5634 bool has_journal = false;
5635 bool has_readonly = false;
5636
5637 /* Complain if it has no devices */
5638 if (list_empty(&mddev->disks))
5639 return -ENXIO;
5640 if (!mddev->pers)
5641 return -EINVAL;
5642 if (!mddev->ro)
5643 return -EBUSY;
5644
5645 rcu_read_lock();
5646 rdev_for_each_rcu(rdev, mddev) {
5647 if (test_bit(Journal, &rdev->flags) &&
5648 !test_bit(Faulty, &rdev->flags))
5649 has_journal = true;
5650 if (bdev_read_only(rdev->bdev))
5651 has_readonly = true;
5652 }
5653 rcu_read_unlock();
5654 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5655 /* Don't restart rw with journal missing/faulty */
5656 return -EINVAL;
5657 if (has_readonly)
5658 return -EROFS;
5659
5660 mddev->safemode = 0;
5661 mddev->ro = 0;
5662 set_disk_ro(disk, 0);
5663 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5664 /* Kick recovery or resync if necessary */
5665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5666 md_wakeup_thread(mddev->thread);
5667 md_wakeup_thread(mddev->sync_thread);
5668 sysfs_notify_dirent_safe(mddev->sysfs_state);
5669 return 0;
5670 }
5671
5672 static void md_clean(struct mddev *mddev)
5673 {
5674 mddev->array_sectors = 0;
5675 mddev->external_size = 0;
5676 mddev->dev_sectors = 0;
5677 mddev->raid_disks = 0;
5678 mddev->recovery_cp = 0;
5679 mddev->resync_min = 0;
5680 mddev->resync_max = MaxSector;
5681 mddev->reshape_position = MaxSector;
5682 mddev->external = 0;
5683 mddev->persistent = 0;
5684 mddev->level = LEVEL_NONE;
5685 mddev->clevel[0] = 0;
5686 mddev->flags = 0;
5687 mddev->sb_flags = 0;
5688 mddev->ro = 0;
5689 mddev->metadata_type[0] = 0;
5690 mddev->chunk_sectors = 0;
5691 mddev->ctime = mddev->utime = 0;
5692 mddev->layout = 0;
5693 mddev->max_disks = 0;
5694 mddev->events = 0;
5695 mddev->can_decrease_events = 0;
5696 mddev->delta_disks = 0;
5697 mddev->reshape_backwards = 0;
5698 mddev->new_level = LEVEL_NONE;
5699 mddev->new_layout = 0;
5700 mddev->new_chunk_sectors = 0;
5701 mddev->curr_resync = 0;
5702 atomic64_set(&mddev->resync_mismatches, 0);
5703 mddev->suspend_lo = mddev->suspend_hi = 0;
5704 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5705 mddev->recovery = 0;
5706 mddev->in_sync = 0;
5707 mddev->changed = 0;
5708 mddev->degraded = 0;
5709 mddev->safemode = 0;
5710 mddev->private = NULL;
5711 mddev->cluster_info = NULL;
5712 mddev->bitmap_info.offset = 0;
5713 mddev->bitmap_info.default_offset = 0;
5714 mddev->bitmap_info.default_space = 0;
5715 mddev->bitmap_info.chunksize = 0;
5716 mddev->bitmap_info.daemon_sleep = 0;
5717 mddev->bitmap_info.max_write_behind = 0;
5718 mddev->bitmap_info.nodes = 0;
5719 }
5720
5721 static void __md_stop_writes(struct mddev *mddev)
5722 {
5723 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5724 flush_workqueue(md_misc_wq);
5725 if (mddev->sync_thread) {
5726 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5727 md_reap_sync_thread(mddev);
5728 }
5729
5730 del_timer_sync(&mddev->safemode_timer);
5731
5732 if (mddev->pers && mddev->pers->quiesce) {
5733 mddev->pers->quiesce(mddev, 1);
5734 mddev->pers->quiesce(mddev, 0);
5735 }
5736 bitmap_flush(mddev);
5737
5738 if (mddev->ro == 0 &&
5739 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5740 mddev->sb_flags)) {
5741 /* mark array as shutdown cleanly */
5742 if (!mddev_is_clustered(mddev))
5743 mddev->in_sync = 1;
5744 md_update_sb(mddev, 1);
5745 }
5746 }
5747
5748 void md_stop_writes(struct mddev *mddev)
5749 {
5750 mddev_lock_nointr(mddev);
5751 __md_stop_writes(mddev);
5752 mddev_unlock(mddev);
5753 }
5754 EXPORT_SYMBOL_GPL(md_stop_writes);
5755
5756 static void mddev_detach(struct mddev *mddev)
5757 {
5758 bitmap_wait_behind_writes(mddev);
5759 if (mddev->pers && mddev->pers->quiesce) {
5760 mddev->pers->quiesce(mddev, 1);
5761 mddev->pers->quiesce(mddev, 0);
5762 }
5763 md_unregister_thread(&mddev->thread);
5764 if (mddev->queue)
5765 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5766 }
5767
5768 static void __md_stop(struct mddev *mddev)
5769 {
5770 struct md_personality *pers = mddev->pers;
5771 bitmap_destroy(mddev);
5772 mddev_detach(mddev);
5773 /* Ensure ->event_work is done */
5774 flush_workqueue(md_misc_wq);
5775 spin_lock(&mddev->lock);
5776 mddev->pers = NULL;
5777 spin_unlock(&mddev->lock);
5778 pers->free(mddev, mddev->private);
5779 mddev->private = NULL;
5780 if (pers->sync_request && mddev->to_remove == NULL)
5781 mddev->to_remove = &md_redundancy_group;
5782 module_put(pers->owner);
5783 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5784 }
5785
5786 void md_stop(struct mddev *mddev)
5787 {
5788 /* stop the array and free an attached data structures.
5789 * This is called from dm-raid
5790 */
5791 __md_stop(mddev);
5792 if (mddev->bio_set)
5793 bioset_free(mddev->bio_set);
5794 }
5795
5796 EXPORT_SYMBOL_GPL(md_stop);
5797
5798 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5799 {
5800 int err = 0;
5801 int did_freeze = 0;
5802
5803 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5804 did_freeze = 1;
5805 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5806 md_wakeup_thread(mddev->thread);
5807 }
5808 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5809 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5810 if (mddev->sync_thread)
5811 /* Thread might be blocked waiting for metadata update
5812 * which will now never happen */
5813 wake_up_process(mddev->sync_thread->tsk);
5814
5815 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5816 return -EBUSY;
5817 mddev_unlock(mddev);
5818 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5819 &mddev->recovery));
5820 wait_event(mddev->sb_wait,
5821 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5822 mddev_lock_nointr(mddev);
5823
5824 mutex_lock(&mddev->open_mutex);
5825 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5826 mddev->sync_thread ||
5827 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5828 pr_warn("md: %s still in use.\n",mdname(mddev));
5829 if (did_freeze) {
5830 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5831 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5832 md_wakeup_thread(mddev->thread);
5833 }
5834 err = -EBUSY;
5835 goto out;
5836 }
5837 if (mddev->pers) {
5838 __md_stop_writes(mddev);
5839
5840 err = -ENXIO;
5841 if (mddev->ro==1)
5842 goto out;
5843 mddev->ro = 1;
5844 set_disk_ro(mddev->gendisk, 1);
5845 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5846 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5847 md_wakeup_thread(mddev->thread);
5848 sysfs_notify_dirent_safe(mddev->sysfs_state);
5849 err = 0;
5850 }
5851 out:
5852 mutex_unlock(&mddev->open_mutex);
5853 return err;
5854 }
5855
5856 /* mode:
5857 * 0 - completely stop and dis-assemble array
5858 * 2 - stop but do not disassemble array
5859 */
5860 static int do_md_stop(struct mddev *mddev, int mode,
5861 struct block_device *bdev)
5862 {
5863 struct gendisk *disk = mddev->gendisk;
5864 struct md_rdev *rdev;
5865 int did_freeze = 0;
5866
5867 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5868 did_freeze = 1;
5869 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5870 md_wakeup_thread(mddev->thread);
5871 }
5872 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5873 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5874 if (mddev->sync_thread)
5875 /* Thread might be blocked waiting for metadata update
5876 * which will now never happen */
5877 wake_up_process(mddev->sync_thread->tsk);
5878
5879 mddev_unlock(mddev);
5880 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5881 !test_bit(MD_RECOVERY_RUNNING,
5882 &mddev->recovery)));
5883 mddev_lock_nointr(mddev);
5884
5885 mutex_lock(&mddev->open_mutex);
5886 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5887 mddev->sysfs_active ||
5888 mddev->sync_thread ||
5889 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5890 pr_warn("md: %s still in use.\n",mdname(mddev));
5891 mutex_unlock(&mddev->open_mutex);
5892 if (did_freeze) {
5893 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5895 md_wakeup_thread(mddev->thread);
5896 }
5897 return -EBUSY;
5898 }
5899 if (mddev->pers) {
5900 if (mddev->ro)
5901 set_disk_ro(disk, 0);
5902
5903 __md_stop_writes(mddev);
5904 __md_stop(mddev);
5905 mddev->queue->backing_dev_info->congested_fn = NULL;
5906
5907 /* tell userspace to handle 'inactive' */
5908 sysfs_notify_dirent_safe(mddev->sysfs_state);
5909
5910 rdev_for_each(rdev, mddev)
5911 if (rdev->raid_disk >= 0)
5912 sysfs_unlink_rdev(mddev, rdev);
5913
5914 set_capacity(disk, 0);
5915 mutex_unlock(&mddev->open_mutex);
5916 mddev->changed = 1;
5917 revalidate_disk(disk);
5918
5919 if (mddev->ro)
5920 mddev->ro = 0;
5921 } else
5922 mutex_unlock(&mddev->open_mutex);
5923 /*
5924 * Free resources if final stop
5925 */
5926 if (mode == 0) {
5927 pr_info("md: %s stopped.\n", mdname(mddev));
5928
5929 if (mddev->bitmap_info.file) {
5930 struct file *f = mddev->bitmap_info.file;
5931 spin_lock(&mddev->lock);
5932 mddev->bitmap_info.file = NULL;
5933 spin_unlock(&mddev->lock);
5934 fput(f);
5935 }
5936 mddev->bitmap_info.offset = 0;
5937
5938 export_array(mddev);
5939
5940 md_clean(mddev);
5941 if (mddev->hold_active == UNTIL_STOP)
5942 mddev->hold_active = 0;
5943 }
5944 md_new_event(mddev);
5945 sysfs_notify_dirent_safe(mddev->sysfs_state);
5946 return 0;
5947 }
5948
5949 #ifndef MODULE
5950 static void autorun_array(struct mddev *mddev)
5951 {
5952 struct md_rdev *rdev;
5953 int err;
5954
5955 if (list_empty(&mddev->disks))
5956 return;
5957
5958 pr_info("md: running: ");
5959
5960 rdev_for_each(rdev, mddev) {
5961 char b[BDEVNAME_SIZE];
5962 pr_cont("<%s>", bdevname(rdev->bdev,b));
5963 }
5964 pr_cont("\n");
5965
5966 err = do_md_run(mddev);
5967 if (err) {
5968 pr_warn("md: do_md_run() returned %d\n", err);
5969 do_md_stop(mddev, 0, NULL);
5970 }
5971 }
5972
5973 /*
5974 * lets try to run arrays based on all disks that have arrived
5975 * until now. (those are in pending_raid_disks)
5976 *
5977 * the method: pick the first pending disk, collect all disks with
5978 * the same UUID, remove all from the pending list and put them into
5979 * the 'same_array' list. Then order this list based on superblock
5980 * update time (freshest comes first), kick out 'old' disks and
5981 * compare superblocks. If everything's fine then run it.
5982 *
5983 * If "unit" is allocated, then bump its reference count
5984 */
5985 static void autorun_devices(int part)
5986 {
5987 struct md_rdev *rdev0, *rdev, *tmp;
5988 struct mddev *mddev;
5989 char b[BDEVNAME_SIZE];
5990
5991 pr_info("md: autorun ...\n");
5992 while (!list_empty(&pending_raid_disks)) {
5993 int unit;
5994 dev_t dev;
5995 LIST_HEAD(candidates);
5996 rdev0 = list_entry(pending_raid_disks.next,
5997 struct md_rdev, same_set);
5998
5999 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6000 INIT_LIST_HEAD(&candidates);
6001 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6002 if (super_90_load(rdev, rdev0, 0) >= 0) {
6003 pr_debug("md: adding %s ...\n",
6004 bdevname(rdev->bdev,b));
6005 list_move(&rdev->same_set, &candidates);
6006 }
6007 /*
6008 * now we have a set of devices, with all of them having
6009 * mostly sane superblocks. It's time to allocate the
6010 * mddev.
6011 */
6012 if (part) {
6013 dev = MKDEV(mdp_major,
6014 rdev0->preferred_minor << MdpMinorShift);
6015 unit = MINOR(dev) >> MdpMinorShift;
6016 } else {
6017 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6018 unit = MINOR(dev);
6019 }
6020 if (rdev0->preferred_minor != unit) {
6021 pr_warn("md: unit number in %s is bad: %d\n",
6022 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6023 break;
6024 }
6025
6026 md_probe(dev, NULL, NULL);
6027 mddev = mddev_find(dev);
6028 if (!mddev || !mddev->gendisk) {
6029 if (mddev)
6030 mddev_put(mddev);
6031 break;
6032 }
6033 if (mddev_lock(mddev))
6034 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6035 else if (mddev->raid_disks || mddev->major_version
6036 || !list_empty(&mddev->disks)) {
6037 pr_warn("md: %s already running, cannot run %s\n",
6038 mdname(mddev), bdevname(rdev0->bdev,b));
6039 mddev_unlock(mddev);
6040 } else {
6041 pr_debug("md: created %s\n", mdname(mddev));
6042 mddev->persistent = 1;
6043 rdev_for_each_list(rdev, tmp, &candidates) {
6044 list_del_init(&rdev->same_set);
6045 if (bind_rdev_to_array(rdev, mddev))
6046 export_rdev(rdev);
6047 }
6048 autorun_array(mddev);
6049 mddev_unlock(mddev);
6050 }
6051 /* on success, candidates will be empty, on error
6052 * it won't...
6053 */
6054 rdev_for_each_list(rdev, tmp, &candidates) {
6055 list_del_init(&rdev->same_set);
6056 export_rdev(rdev);
6057 }
6058 mddev_put(mddev);
6059 }
6060 pr_info("md: ... autorun DONE.\n");
6061 }
6062 #endif /* !MODULE */
6063
6064 static int get_version(void __user *arg)
6065 {
6066 mdu_version_t ver;
6067
6068 ver.major = MD_MAJOR_VERSION;
6069 ver.minor = MD_MINOR_VERSION;
6070 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6071
6072 if (copy_to_user(arg, &ver, sizeof(ver)))
6073 return -EFAULT;
6074
6075 return 0;
6076 }
6077
6078 static int get_array_info(struct mddev *mddev, void __user *arg)
6079 {
6080 mdu_array_info_t info;
6081 int nr,working,insync,failed,spare;
6082 struct md_rdev *rdev;
6083
6084 nr = working = insync = failed = spare = 0;
6085 rcu_read_lock();
6086 rdev_for_each_rcu(rdev, mddev) {
6087 nr++;
6088 if (test_bit(Faulty, &rdev->flags))
6089 failed++;
6090 else {
6091 working++;
6092 if (test_bit(In_sync, &rdev->flags))
6093 insync++;
6094 else if (test_bit(Journal, &rdev->flags))
6095 /* TODO: add journal count to md_u.h */
6096 ;
6097 else
6098 spare++;
6099 }
6100 }
6101 rcu_read_unlock();
6102
6103 info.major_version = mddev->major_version;
6104 info.minor_version = mddev->minor_version;
6105 info.patch_version = MD_PATCHLEVEL_VERSION;
6106 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6107 info.level = mddev->level;
6108 info.size = mddev->dev_sectors / 2;
6109 if (info.size != mddev->dev_sectors / 2) /* overflow */
6110 info.size = -1;
6111 info.nr_disks = nr;
6112 info.raid_disks = mddev->raid_disks;
6113 info.md_minor = mddev->md_minor;
6114 info.not_persistent= !mddev->persistent;
6115
6116 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6117 info.state = 0;
6118 if (mddev->in_sync)
6119 info.state = (1<<MD_SB_CLEAN);
6120 if (mddev->bitmap && mddev->bitmap_info.offset)
6121 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6122 if (mddev_is_clustered(mddev))
6123 info.state |= (1<<MD_SB_CLUSTERED);
6124 info.active_disks = insync;
6125 info.working_disks = working;
6126 info.failed_disks = failed;
6127 info.spare_disks = spare;
6128
6129 info.layout = mddev->layout;
6130 info.chunk_size = mddev->chunk_sectors << 9;
6131
6132 if (copy_to_user(arg, &info, sizeof(info)))
6133 return -EFAULT;
6134
6135 return 0;
6136 }
6137
6138 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6139 {
6140 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6141 char *ptr;
6142 int err;
6143
6144 file = kzalloc(sizeof(*file), GFP_NOIO);
6145 if (!file)
6146 return -ENOMEM;
6147
6148 err = 0;
6149 spin_lock(&mddev->lock);
6150 /* bitmap enabled */
6151 if (mddev->bitmap_info.file) {
6152 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6153 sizeof(file->pathname));
6154 if (IS_ERR(ptr))
6155 err = PTR_ERR(ptr);
6156 else
6157 memmove(file->pathname, ptr,
6158 sizeof(file->pathname)-(ptr-file->pathname));
6159 }
6160 spin_unlock(&mddev->lock);
6161
6162 if (err == 0 &&
6163 copy_to_user(arg, file, sizeof(*file)))
6164 err = -EFAULT;
6165
6166 kfree(file);
6167 return err;
6168 }
6169
6170 static int get_disk_info(struct mddev *mddev, void __user * arg)
6171 {
6172 mdu_disk_info_t info;
6173 struct md_rdev *rdev;
6174
6175 if (copy_from_user(&info, arg, sizeof(info)))
6176 return -EFAULT;
6177
6178 rcu_read_lock();
6179 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6180 if (rdev) {
6181 info.major = MAJOR(rdev->bdev->bd_dev);
6182 info.minor = MINOR(rdev->bdev->bd_dev);
6183 info.raid_disk = rdev->raid_disk;
6184 info.state = 0;
6185 if (test_bit(Faulty, &rdev->flags))
6186 info.state |= (1<<MD_DISK_FAULTY);
6187 else if (test_bit(In_sync, &rdev->flags)) {
6188 info.state |= (1<<MD_DISK_ACTIVE);
6189 info.state |= (1<<MD_DISK_SYNC);
6190 }
6191 if (test_bit(Journal, &rdev->flags))
6192 info.state |= (1<<MD_DISK_JOURNAL);
6193 if (test_bit(WriteMostly, &rdev->flags))
6194 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6195 if (test_bit(FailFast, &rdev->flags))
6196 info.state |= (1<<MD_DISK_FAILFAST);
6197 } else {
6198 info.major = info.minor = 0;
6199 info.raid_disk = -1;
6200 info.state = (1<<MD_DISK_REMOVED);
6201 }
6202 rcu_read_unlock();
6203
6204 if (copy_to_user(arg, &info, sizeof(info)))
6205 return -EFAULT;
6206
6207 return 0;
6208 }
6209
6210 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6211 {
6212 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6213 struct md_rdev *rdev;
6214 dev_t dev = MKDEV(info->major,info->minor);
6215
6216 if (mddev_is_clustered(mddev) &&
6217 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6218 pr_warn("%s: Cannot add to clustered mddev.\n",
6219 mdname(mddev));
6220 return -EINVAL;
6221 }
6222
6223 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6224 return -EOVERFLOW;
6225
6226 if (!mddev->raid_disks) {
6227 int err;
6228 /* expecting a device which has a superblock */
6229 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6230 if (IS_ERR(rdev)) {
6231 pr_warn("md: md_import_device returned %ld\n",
6232 PTR_ERR(rdev));
6233 return PTR_ERR(rdev);
6234 }
6235 if (!list_empty(&mddev->disks)) {
6236 struct md_rdev *rdev0
6237 = list_entry(mddev->disks.next,
6238 struct md_rdev, same_set);
6239 err = super_types[mddev->major_version]
6240 .load_super(rdev, rdev0, mddev->minor_version);
6241 if (err < 0) {
6242 pr_warn("md: %s has different UUID to %s\n",
6243 bdevname(rdev->bdev,b),
6244 bdevname(rdev0->bdev,b2));
6245 export_rdev(rdev);
6246 return -EINVAL;
6247 }
6248 }
6249 err = bind_rdev_to_array(rdev, mddev);
6250 if (err)
6251 export_rdev(rdev);
6252 return err;
6253 }
6254
6255 /*
6256 * add_new_disk can be used once the array is assembled
6257 * to add "hot spares". They must already have a superblock
6258 * written
6259 */
6260 if (mddev->pers) {
6261 int err;
6262 if (!mddev->pers->hot_add_disk) {
6263 pr_warn("%s: personality does not support diskops!\n",
6264 mdname(mddev));
6265 return -EINVAL;
6266 }
6267 if (mddev->persistent)
6268 rdev = md_import_device(dev, mddev->major_version,
6269 mddev->minor_version);
6270 else
6271 rdev = md_import_device(dev, -1, -1);
6272 if (IS_ERR(rdev)) {
6273 pr_warn("md: md_import_device returned %ld\n",
6274 PTR_ERR(rdev));
6275 return PTR_ERR(rdev);
6276 }
6277 /* set saved_raid_disk if appropriate */
6278 if (!mddev->persistent) {
6279 if (info->state & (1<<MD_DISK_SYNC) &&
6280 info->raid_disk < mddev->raid_disks) {
6281 rdev->raid_disk = info->raid_disk;
6282 set_bit(In_sync, &rdev->flags);
6283 clear_bit(Bitmap_sync, &rdev->flags);
6284 } else
6285 rdev->raid_disk = -1;
6286 rdev->saved_raid_disk = rdev->raid_disk;
6287 } else
6288 super_types[mddev->major_version].
6289 validate_super(mddev, rdev);
6290 if ((info->state & (1<<MD_DISK_SYNC)) &&
6291 rdev->raid_disk != info->raid_disk) {
6292 /* This was a hot-add request, but events doesn't
6293 * match, so reject it.
6294 */
6295 export_rdev(rdev);
6296 return -EINVAL;
6297 }
6298
6299 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6300 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6301 set_bit(WriteMostly, &rdev->flags);
6302 else
6303 clear_bit(WriteMostly, &rdev->flags);
6304 if (info->state & (1<<MD_DISK_FAILFAST))
6305 set_bit(FailFast, &rdev->flags);
6306 else
6307 clear_bit(FailFast, &rdev->flags);
6308
6309 if (info->state & (1<<MD_DISK_JOURNAL)) {
6310 struct md_rdev *rdev2;
6311 bool has_journal = false;
6312
6313 /* make sure no existing journal disk */
6314 rdev_for_each(rdev2, mddev) {
6315 if (test_bit(Journal, &rdev2->flags)) {
6316 has_journal = true;
6317 break;
6318 }
6319 }
6320 if (has_journal) {
6321 export_rdev(rdev);
6322 return -EBUSY;
6323 }
6324 set_bit(Journal, &rdev->flags);
6325 }
6326 /*
6327 * check whether the device shows up in other nodes
6328 */
6329 if (mddev_is_clustered(mddev)) {
6330 if (info->state & (1 << MD_DISK_CANDIDATE))
6331 set_bit(Candidate, &rdev->flags);
6332 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6333 /* --add initiated by this node */
6334 err = md_cluster_ops->add_new_disk(mddev, rdev);
6335 if (err) {
6336 export_rdev(rdev);
6337 return err;
6338 }
6339 }
6340 }
6341
6342 rdev->raid_disk = -1;
6343 err = bind_rdev_to_array(rdev, mddev);
6344
6345 if (err)
6346 export_rdev(rdev);
6347
6348 if (mddev_is_clustered(mddev)) {
6349 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6350 if (!err) {
6351 err = md_cluster_ops->new_disk_ack(mddev,
6352 err == 0);
6353 if (err)
6354 md_kick_rdev_from_array(rdev);
6355 }
6356 } else {
6357 if (err)
6358 md_cluster_ops->add_new_disk_cancel(mddev);
6359 else
6360 err = add_bound_rdev(rdev);
6361 }
6362
6363 } else if (!err)
6364 err = add_bound_rdev(rdev);
6365
6366 return err;
6367 }
6368
6369 /* otherwise, add_new_disk is only allowed
6370 * for major_version==0 superblocks
6371 */
6372 if (mddev->major_version != 0) {
6373 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6374 return -EINVAL;
6375 }
6376
6377 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6378 int err;
6379 rdev = md_import_device(dev, -1, 0);
6380 if (IS_ERR(rdev)) {
6381 pr_warn("md: error, md_import_device() returned %ld\n",
6382 PTR_ERR(rdev));
6383 return PTR_ERR(rdev);
6384 }
6385 rdev->desc_nr = info->number;
6386 if (info->raid_disk < mddev->raid_disks)
6387 rdev->raid_disk = info->raid_disk;
6388 else
6389 rdev->raid_disk = -1;
6390
6391 if (rdev->raid_disk < mddev->raid_disks)
6392 if (info->state & (1<<MD_DISK_SYNC))
6393 set_bit(In_sync, &rdev->flags);
6394
6395 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6396 set_bit(WriteMostly, &rdev->flags);
6397 if (info->state & (1<<MD_DISK_FAILFAST))
6398 set_bit(FailFast, &rdev->flags);
6399
6400 if (!mddev->persistent) {
6401 pr_debug("md: nonpersistent superblock ...\n");
6402 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6403 } else
6404 rdev->sb_start = calc_dev_sboffset(rdev);
6405 rdev->sectors = rdev->sb_start;
6406
6407 err = bind_rdev_to_array(rdev, mddev);
6408 if (err) {
6409 export_rdev(rdev);
6410 return err;
6411 }
6412 }
6413
6414 return 0;
6415 }
6416
6417 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6418 {
6419 char b[BDEVNAME_SIZE];
6420 struct md_rdev *rdev;
6421
6422 rdev = find_rdev(mddev, dev);
6423 if (!rdev)
6424 return -ENXIO;
6425
6426 if (rdev->raid_disk < 0)
6427 goto kick_rdev;
6428
6429 clear_bit(Blocked, &rdev->flags);
6430 remove_and_add_spares(mddev, rdev);
6431
6432 if (rdev->raid_disk >= 0)
6433 goto busy;
6434
6435 kick_rdev:
6436 if (mddev_is_clustered(mddev))
6437 md_cluster_ops->remove_disk(mddev, rdev);
6438
6439 md_kick_rdev_from_array(rdev);
6440 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6441 if (mddev->thread)
6442 md_wakeup_thread(mddev->thread);
6443 else
6444 md_update_sb(mddev, 1);
6445 md_new_event(mddev);
6446
6447 return 0;
6448 busy:
6449 pr_debug("md: cannot remove active disk %s from %s ...\n",
6450 bdevname(rdev->bdev,b), mdname(mddev));
6451 return -EBUSY;
6452 }
6453
6454 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6455 {
6456 char b[BDEVNAME_SIZE];
6457 int err;
6458 struct md_rdev *rdev;
6459
6460 if (!mddev->pers)
6461 return -ENODEV;
6462
6463 if (mddev->major_version != 0) {
6464 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6465 mdname(mddev));
6466 return -EINVAL;
6467 }
6468 if (!mddev->pers->hot_add_disk) {
6469 pr_warn("%s: personality does not support diskops!\n",
6470 mdname(mddev));
6471 return -EINVAL;
6472 }
6473
6474 rdev = md_import_device(dev, -1, 0);
6475 if (IS_ERR(rdev)) {
6476 pr_warn("md: error, md_import_device() returned %ld\n",
6477 PTR_ERR(rdev));
6478 return -EINVAL;
6479 }
6480
6481 if (mddev->persistent)
6482 rdev->sb_start = calc_dev_sboffset(rdev);
6483 else
6484 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6485
6486 rdev->sectors = rdev->sb_start;
6487
6488 if (test_bit(Faulty, &rdev->flags)) {
6489 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6490 bdevname(rdev->bdev,b), mdname(mddev));
6491 err = -EINVAL;
6492 goto abort_export;
6493 }
6494
6495 clear_bit(In_sync, &rdev->flags);
6496 rdev->desc_nr = -1;
6497 rdev->saved_raid_disk = -1;
6498 err = bind_rdev_to_array(rdev, mddev);
6499 if (err)
6500 goto abort_export;
6501
6502 /*
6503 * The rest should better be atomic, we can have disk failures
6504 * noticed in interrupt contexts ...
6505 */
6506
6507 rdev->raid_disk = -1;
6508
6509 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6510 if (!mddev->thread)
6511 md_update_sb(mddev, 1);
6512 /*
6513 * Kick recovery, maybe this spare has to be added to the
6514 * array immediately.
6515 */
6516 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6517 md_wakeup_thread(mddev->thread);
6518 md_new_event(mddev);
6519 return 0;
6520
6521 abort_export:
6522 export_rdev(rdev);
6523 return err;
6524 }
6525
6526 static int set_bitmap_file(struct mddev *mddev, int fd)
6527 {
6528 int err = 0;
6529
6530 if (mddev->pers) {
6531 if (!mddev->pers->quiesce || !mddev->thread)
6532 return -EBUSY;
6533 if (mddev->recovery || mddev->sync_thread)
6534 return -EBUSY;
6535 /* we should be able to change the bitmap.. */
6536 }
6537
6538 if (fd >= 0) {
6539 struct inode *inode;
6540 struct file *f;
6541
6542 if (mddev->bitmap || mddev->bitmap_info.file)
6543 return -EEXIST; /* cannot add when bitmap is present */
6544 f = fget(fd);
6545
6546 if (f == NULL) {
6547 pr_warn("%s: error: failed to get bitmap file\n",
6548 mdname(mddev));
6549 return -EBADF;
6550 }
6551
6552 inode = f->f_mapping->host;
6553 if (!S_ISREG(inode->i_mode)) {
6554 pr_warn("%s: error: bitmap file must be a regular file\n",
6555 mdname(mddev));
6556 err = -EBADF;
6557 } else if (!(f->f_mode & FMODE_WRITE)) {
6558 pr_warn("%s: error: bitmap file must open for write\n",
6559 mdname(mddev));
6560 err = -EBADF;
6561 } else if (atomic_read(&inode->i_writecount) != 1) {
6562 pr_warn("%s: error: bitmap file is already in use\n",
6563 mdname(mddev));
6564 err = -EBUSY;
6565 }
6566 if (err) {
6567 fput(f);
6568 return err;
6569 }
6570 mddev->bitmap_info.file = f;
6571 mddev->bitmap_info.offset = 0; /* file overrides offset */
6572 } else if (mddev->bitmap == NULL)
6573 return -ENOENT; /* cannot remove what isn't there */
6574 err = 0;
6575 if (mddev->pers) {
6576 mddev->pers->quiesce(mddev, 1);
6577 if (fd >= 0) {
6578 struct bitmap *bitmap;
6579
6580 bitmap = bitmap_create(mddev, -1);
6581 if (!IS_ERR(bitmap)) {
6582 mddev->bitmap = bitmap;
6583 err = bitmap_load(mddev);
6584 } else
6585 err = PTR_ERR(bitmap);
6586 }
6587 if (fd < 0 || err) {
6588 bitmap_destroy(mddev);
6589 fd = -1; /* make sure to put the file */
6590 }
6591 mddev->pers->quiesce(mddev, 0);
6592 }
6593 if (fd < 0) {
6594 struct file *f = mddev->bitmap_info.file;
6595 if (f) {
6596 spin_lock(&mddev->lock);
6597 mddev->bitmap_info.file = NULL;
6598 spin_unlock(&mddev->lock);
6599 fput(f);
6600 }
6601 }
6602
6603 return err;
6604 }
6605
6606 /*
6607 * set_array_info is used two different ways
6608 * The original usage is when creating a new array.
6609 * In this usage, raid_disks is > 0 and it together with
6610 * level, size, not_persistent,layout,chunksize determine the
6611 * shape of the array.
6612 * This will always create an array with a type-0.90.0 superblock.
6613 * The newer usage is when assembling an array.
6614 * In this case raid_disks will be 0, and the major_version field is
6615 * use to determine which style super-blocks are to be found on the devices.
6616 * The minor and patch _version numbers are also kept incase the
6617 * super_block handler wishes to interpret them.
6618 */
6619 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6620 {
6621
6622 if (info->raid_disks == 0) {
6623 /* just setting version number for superblock loading */
6624 if (info->major_version < 0 ||
6625 info->major_version >= ARRAY_SIZE(super_types) ||
6626 super_types[info->major_version].name == NULL) {
6627 /* maybe try to auto-load a module? */
6628 pr_warn("md: superblock version %d not known\n",
6629 info->major_version);
6630 return -EINVAL;
6631 }
6632 mddev->major_version = info->major_version;
6633 mddev->minor_version = info->minor_version;
6634 mddev->patch_version = info->patch_version;
6635 mddev->persistent = !info->not_persistent;
6636 /* ensure mddev_put doesn't delete this now that there
6637 * is some minimal configuration.
6638 */
6639 mddev->ctime = ktime_get_real_seconds();
6640 return 0;
6641 }
6642 mddev->major_version = MD_MAJOR_VERSION;
6643 mddev->minor_version = MD_MINOR_VERSION;
6644 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6645 mddev->ctime = ktime_get_real_seconds();
6646
6647 mddev->level = info->level;
6648 mddev->clevel[0] = 0;
6649 mddev->dev_sectors = 2 * (sector_t)info->size;
6650 mddev->raid_disks = info->raid_disks;
6651 /* don't set md_minor, it is determined by which /dev/md* was
6652 * openned
6653 */
6654 if (info->state & (1<<MD_SB_CLEAN))
6655 mddev->recovery_cp = MaxSector;
6656 else
6657 mddev->recovery_cp = 0;
6658 mddev->persistent = ! info->not_persistent;
6659 mddev->external = 0;
6660
6661 mddev->layout = info->layout;
6662 mddev->chunk_sectors = info->chunk_size >> 9;
6663
6664 if (mddev->persistent) {
6665 mddev->max_disks = MD_SB_DISKS;
6666 mddev->flags = 0;
6667 mddev->sb_flags = 0;
6668 }
6669 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6670
6671 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6672 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6673 mddev->bitmap_info.offset = 0;
6674
6675 mddev->reshape_position = MaxSector;
6676
6677 /*
6678 * Generate a 128 bit UUID
6679 */
6680 get_random_bytes(mddev->uuid, 16);
6681
6682 mddev->new_level = mddev->level;
6683 mddev->new_chunk_sectors = mddev->chunk_sectors;
6684 mddev->new_layout = mddev->layout;
6685 mddev->delta_disks = 0;
6686 mddev->reshape_backwards = 0;
6687
6688 return 0;
6689 }
6690
6691 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6692 {
6693 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6694
6695 if (mddev->external_size)
6696 return;
6697
6698 mddev->array_sectors = array_sectors;
6699 }
6700 EXPORT_SYMBOL(md_set_array_sectors);
6701
6702 static int update_size(struct mddev *mddev, sector_t num_sectors)
6703 {
6704 struct md_rdev *rdev;
6705 int rv;
6706 int fit = (num_sectors == 0);
6707 sector_t old_dev_sectors = mddev->dev_sectors;
6708
6709 if (mddev->pers->resize == NULL)
6710 return -EINVAL;
6711 /* The "num_sectors" is the number of sectors of each device that
6712 * is used. This can only make sense for arrays with redundancy.
6713 * linear and raid0 always use whatever space is available. We can only
6714 * consider changing this number if no resync or reconstruction is
6715 * happening, and if the new size is acceptable. It must fit before the
6716 * sb_start or, if that is <data_offset, it must fit before the size
6717 * of each device. If num_sectors is zero, we find the largest size
6718 * that fits.
6719 */
6720 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6721 mddev->sync_thread)
6722 return -EBUSY;
6723 if (mddev->ro)
6724 return -EROFS;
6725
6726 rdev_for_each(rdev, mddev) {
6727 sector_t avail = rdev->sectors;
6728
6729 if (fit && (num_sectors == 0 || num_sectors > avail))
6730 num_sectors = avail;
6731 if (avail < num_sectors)
6732 return -ENOSPC;
6733 }
6734 rv = mddev->pers->resize(mddev, num_sectors);
6735 if (!rv) {
6736 if (mddev_is_clustered(mddev))
6737 md_cluster_ops->update_size(mddev, old_dev_sectors);
6738 else if (mddev->queue) {
6739 set_capacity(mddev->gendisk, mddev->array_sectors);
6740 revalidate_disk(mddev->gendisk);
6741 }
6742 }
6743 return rv;
6744 }
6745
6746 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6747 {
6748 int rv;
6749 struct md_rdev *rdev;
6750 /* change the number of raid disks */
6751 if (mddev->pers->check_reshape == NULL)
6752 return -EINVAL;
6753 if (mddev->ro)
6754 return -EROFS;
6755 if (raid_disks <= 0 ||
6756 (mddev->max_disks && raid_disks >= mddev->max_disks))
6757 return -EINVAL;
6758 if (mddev->sync_thread ||
6759 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6760 mddev->reshape_position != MaxSector)
6761 return -EBUSY;
6762
6763 rdev_for_each(rdev, mddev) {
6764 if (mddev->raid_disks < raid_disks &&
6765 rdev->data_offset < rdev->new_data_offset)
6766 return -EINVAL;
6767 if (mddev->raid_disks > raid_disks &&
6768 rdev->data_offset > rdev->new_data_offset)
6769 return -EINVAL;
6770 }
6771
6772 mddev->delta_disks = raid_disks - mddev->raid_disks;
6773 if (mddev->delta_disks < 0)
6774 mddev->reshape_backwards = 1;
6775 else if (mddev->delta_disks > 0)
6776 mddev->reshape_backwards = 0;
6777
6778 rv = mddev->pers->check_reshape(mddev);
6779 if (rv < 0) {
6780 mddev->delta_disks = 0;
6781 mddev->reshape_backwards = 0;
6782 }
6783 return rv;
6784 }
6785
6786 /*
6787 * update_array_info is used to change the configuration of an
6788 * on-line array.
6789 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6790 * fields in the info are checked against the array.
6791 * Any differences that cannot be handled will cause an error.
6792 * Normally, only one change can be managed at a time.
6793 */
6794 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6795 {
6796 int rv = 0;
6797 int cnt = 0;
6798 int state = 0;
6799
6800 /* calculate expected state,ignoring low bits */
6801 if (mddev->bitmap && mddev->bitmap_info.offset)
6802 state |= (1 << MD_SB_BITMAP_PRESENT);
6803
6804 if (mddev->major_version != info->major_version ||
6805 mddev->minor_version != info->minor_version ||
6806 /* mddev->patch_version != info->patch_version || */
6807 mddev->ctime != info->ctime ||
6808 mddev->level != info->level ||
6809 /* mddev->layout != info->layout || */
6810 mddev->persistent != !info->not_persistent ||
6811 mddev->chunk_sectors != info->chunk_size >> 9 ||
6812 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6813 ((state^info->state) & 0xfffffe00)
6814 )
6815 return -EINVAL;
6816 /* Check there is only one change */
6817 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6818 cnt++;
6819 if (mddev->raid_disks != info->raid_disks)
6820 cnt++;
6821 if (mddev->layout != info->layout)
6822 cnt++;
6823 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6824 cnt++;
6825 if (cnt == 0)
6826 return 0;
6827 if (cnt > 1)
6828 return -EINVAL;
6829
6830 if (mddev->layout != info->layout) {
6831 /* Change layout
6832 * we don't need to do anything at the md level, the
6833 * personality will take care of it all.
6834 */
6835 if (mddev->pers->check_reshape == NULL)
6836 return -EINVAL;
6837 else {
6838 mddev->new_layout = info->layout;
6839 rv = mddev->pers->check_reshape(mddev);
6840 if (rv)
6841 mddev->new_layout = mddev->layout;
6842 return rv;
6843 }
6844 }
6845 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6846 rv = update_size(mddev, (sector_t)info->size * 2);
6847
6848 if (mddev->raid_disks != info->raid_disks)
6849 rv = update_raid_disks(mddev, info->raid_disks);
6850
6851 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6852 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6853 rv = -EINVAL;
6854 goto err;
6855 }
6856 if (mddev->recovery || mddev->sync_thread) {
6857 rv = -EBUSY;
6858 goto err;
6859 }
6860 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6861 struct bitmap *bitmap;
6862 /* add the bitmap */
6863 if (mddev->bitmap) {
6864 rv = -EEXIST;
6865 goto err;
6866 }
6867 if (mddev->bitmap_info.default_offset == 0) {
6868 rv = -EINVAL;
6869 goto err;
6870 }
6871 mddev->bitmap_info.offset =
6872 mddev->bitmap_info.default_offset;
6873 mddev->bitmap_info.space =
6874 mddev->bitmap_info.default_space;
6875 mddev->pers->quiesce(mddev, 1);
6876 bitmap = bitmap_create(mddev, -1);
6877 if (!IS_ERR(bitmap)) {
6878 mddev->bitmap = bitmap;
6879 rv = bitmap_load(mddev);
6880 } else
6881 rv = PTR_ERR(bitmap);
6882 if (rv)
6883 bitmap_destroy(mddev);
6884 mddev->pers->quiesce(mddev, 0);
6885 } else {
6886 /* remove the bitmap */
6887 if (!mddev->bitmap) {
6888 rv = -ENOENT;
6889 goto err;
6890 }
6891 if (mddev->bitmap->storage.file) {
6892 rv = -EINVAL;
6893 goto err;
6894 }
6895 if (mddev->bitmap_info.nodes) {
6896 /* hold PW on all the bitmap lock */
6897 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6898 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6899 rv = -EPERM;
6900 md_cluster_ops->unlock_all_bitmaps(mddev);
6901 goto err;
6902 }
6903
6904 mddev->bitmap_info.nodes = 0;
6905 md_cluster_ops->leave(mddev);
6906 }
6907 mddev->pers->quiesce(mddev, 1);
6908 bitmap_destroy(mddev);
6909 mddev->pers->quiesce(mddev, 0);
6910 mddev->bitmap_info.offset = 0;
6911 }
6912 }
6913 md_update_sb(mddev, 1);
6914 return rv;
6915 err:
6916 return rv;
6917 }
6918
6919 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6920 {
6921 struct md_rdev *rdev;
6922 int err = 0;
6923
6924 if (mddev->pers == NULL)
6925 return -ENODEV;
6926
6927 rcu_read_lock();
6928 rdev = find_rdev_rcu(mddev, dev);
6929 if (!rdev)
6930 err = -ENODEV;
6931 else {
6932 md_error(mddev, rdev);
6933 if (!test_bit(Faulty, &rdev->flags))
6934 err = -EBUSY;
6935 }
6936 rcu_read_unlock();
6937 return err;
6938 }
6939
6940 /*
6941 * We have a problem here : there is no easy way to give a CHS
6942 * virtual geometry. We currently pretend that we have a 2 heads
6943 * 4 sectors (with a BIG number of cylinders...). This drives
6944 * dosfs just mad... ;-)
6945 */
6946 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6947 {
6948 struct mddev *mddev = bdev->bd_disk->private_data;
6949
6950 geo->heads = 2;
6951 geo->sectors = 4;
6952 geo->cylinders = mddev->array_sectors / 8;
6953 return 0;
6954 }
6955
6956 static inline bool md_ioctl_valid(unsigned int cmd)
6957 {
6958 switch (cmd) {
6959 case ADD_NEW_DISK:
6960 case BLKROSET:
6961 case GET_ARRAY_INFO:
6962 case GET_BITMAP_FILE:
6963 case GET_DISK_INFO:
6964 case HOT_ADD_DISK:
6965 case HOT_REMOVE_DISK:
6966 case RAID_AUTORUN:
6967 case RAID_VERSION:
6968 case RESTART_ARRAY_RW:
6969 case RUN_ARRAY:
6970 case SET_ARRAY_INFO:
6971 case SET_BITMAP_FILE:
6972 case SET_DISK_FAULTY:
6973 case STOP_ARRAY:
6974 case STOP_ARRAY_RO:
6975 case CLUSTERED_DISK_NACK:
6976 return true;
6977 default:
6978 return false;
6979 }
6980 }
6981
6982 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6983 unsigned int cmd, unsigned long arg)
6984 {
6985 int err = 0;
6986 void __user *argp = (void __user *)arg;
6987 struct mddev *mddev = NULL;
6988 int ro;
6989 bool did_set_md_closing = false;
6990
6991 if (!md_ioctl_valid(cmd))
6992 return -ENOTTY;
6993
6994 switch (cmd) {
6995 case RAID_VERSION:
6996 case GET_ARRAY_INFO:
6997 case GET_DISK_INFO:
6998 break;
6999 default:
7000 if (!capable(CAP_SYS_ADMIN))
7001 return -EACCES;
7002 }
7003
7004 /*
7005 * Commands dealing with the RAID driver but not any
7006 * particular array:
7007 */
7008 switch (cmd) {
7009 case RAID_VERSION:
7010 err = get_version(argp);
7011 goto out;
7012
7013 #ifndef MODULE
7014 case RAID_AUTORUN:
7015 err = 0;
7016 autostart_arrays(arg);
7017 goto out;
7018 #endif
7019 default:;
7020 }
7021
7022 /*
7023 * Commands creating/starting a new array:
7024 */
7025
7026 mddev = bdev->bd_disk->private_data;
7027
7028 if (!mddev) {
7029 BUG();
7030 goto out;
7031 }
7032
7033 /* Some actions do not requires the mutex */
7034 switch (cmd) {
7035 case GET_ARRAY_INFO:
7036 if (!mddev->raid_disks && !mddev->external)
7037 err = -ENODEV;
7038 else
7039 err = get_array_info(mddev, argp);
7040 goto out;
7041
7042 case GET_DISK_INFO:
7043 if (!mddev->raid_disks && !mddev->external)
7044 err = -ENODEV;
7045 else
7046 err = get_disk_info(mddev, argp);
7047 goto out;
7048
7049 case SET_DISK_FAULTY:
7050 err = set_disk_faulty(mddev, new_decode_dev(arg));
7051 goto out;
7052
7053 case GET_BITMAP_FILE:
7054 err = get_bitmap_file(mddev, argp);
7055 goto out;
7056
7057 }
7058
7059 if (cmd == ADD_NEW_DISK)
7060 /* need to ensure md_delayed_delete() has completed */
7061 flush_workqueue(md_misc_wq);
7062
7063 if (cmd == HOT_REMOVE_DISK)
7064 /* need to ensure recovery thread has run */
7065 wait_event_interruptible_timeout(mddev->sb_wait,
7066 !test_bit(MD_RECOVERY_NEEDED,
7067 &mddev->recovery),
7068 msecs_to_jiffies(5000));
7069 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7070 /* Need to flush page cache, and ensure no-one else opens
7071 * and writes
7072 */
7073 mutex_lock(&mddev->open_mutex);
7074 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7075 mutex_unlock(&mddev->open_mutex);
7076 err = -EBUSY;
7077 goto out;
7078 }
7079 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7080 set_bit(MD_CLOSING, &mddev->flags);
7081 did_set_md_closing = true;
7082 mutex_unlock(&mddev->open_mutex);
7083 sync_blockdev(bdev);
7084 }
7085 err = mddev_lock(mddev);
7086 if (err) {
7087 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7088 err, cmd);
7089 goto out;
7090 }
7091
7092 if (cmd == SET_ARRAY_INFO) {
7093 mdu_array_info_t info;
7094 if (!arg)
7095 memset(&info, 0, sizeof(info));
7096 else if (copy_from_user(&info, argp, sizeof(info))) {
7097 err = -EFAULT;
7098 goto unlock;
7099 }
7100 if (mddev->pers) {
7101 err = update_array_info(mddev, &info);
7102 if (err) {
7103 pr_warn("md: couldn't update array info. %d\n", err);
7104 goto unlock;
7105 }
7106 goto unlock;
7107 }
7108 if (!list_empty(&mddev->disks)) {
7109 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7110 err = -EBUSY;
7111 goto unlock;
7112 }
7113 if (mddev->raid_disks) {
7114 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7115 err = -EBUSY;
7116 goto unlock;
7117 }
7118 err = set_array_info(mddev, &info);
7119 if (err) {
7120 pr_warn("md: couldn't set array info. %d\n", err);
7121 goto unlock;
7122 }
7123 goto unlock;
7124 }
7125
7126 /*
7127 * Commands querying/configuring an existing array:
7128 */
7129 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7130 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7131 if ((!mddev->raid_disks && !mddev->external)
7132 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7133 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7134 && cmd != GET_BITMAP_FILE) {
7135 err = -ENODEV;
7136 goto unlock;
7137 }
7138
7139 /*
7140 * Commands even a read-only array can execute:
7141 */
7142 switch (cmd) {
7143 case RESTART_ARRAY_RW:
7144 err = restart_array(mddev);
7145 goto unlock;
7146
7147 case STOP_ARRAY:
7148 err = do_md_stop(mddev, 0, bdev);
7149 goto unlock;
7150
7151 case STOP_ARRAY_RO:
7152 err = md_set_readonly(mddev, bdev);
7153 goto unlock;
7154
7155 case HOT_REMOVE_DISK:
7156 err = hot_remove_disk(mddev, new_decode_dev(arg));
7157 goto unlock;
7158
7159 case ADD_NEW_DISK:
7160 /* We can support ADD_NEW_DISK on read-only arrays
7161 * only if we are re-adding a preexisting device.
7162 * So require mddev->pers and MD_DISK_SYNC.
7163 */
7164 if (mddev->pers) {
7165 mdu_disk_info_t info;
7166 if (copy_from_user(&info, argp, sizeof(info)))
7167 err = -EFAULT;
7168 else if (!(info.state & (1<<MD_DISK_SYNC)))
7169 /* Need to clear read-only for this */
7170 break;
7171 else
7172 err = add_new_disk(mddev, &info);
7173 goto unlock;
7174 }
7175 break;
7176
7177 case BLKROSET:
7178 if (get_user(ro, (int __user *)(arg))) {
7179 err = -EFAULT;
7180 goto unlock;
7181 }
7182 err = -EINVAL;
7183
7184 /* if the bdev is going readonly the value of mddev->ro
7185 * does not matter, no writes are coming
7186 */
7187 if (ro)
7188 goto unlock;
7189
7190 /* are we are already prepared for writes? */
7191 if (mddev->ro != 1)
7192 goto unlock;
7193
7194 /* transitioning to readauto need only happen for
7195 * arrays that call md_write_start
7196 */
7197 if (mddev->pers) {
7198 err = restart_array(mddev);
7199 if (err == 0) {
7200 mddev->ro = 2;
7201 set_disk_ro(mddev->gendisk, 0);
7202 }
7203 }
7204 goto unlock;
7205 }
7206
7207 /*
7208 * The remaining ioctls are changing the state of the
7209 * superblock, so we do not allow them on read-only arrays.
7210 */
7211 if (mddev->ro && mddev->pers) {
7212 if (mddev->ro == 2) {
7213 mddev->ro = 0;
7214 sysfs_notify_dirent_safe(mddev->sysfs_state);
7215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7216 /* mddev_unlock will wake thread */
7217 /* If a device failed while we were read-only, we
7218 * need to make sure the metadata is updated now.
7219 */
7220 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7221 mddev_unlock(mddev);
7222 wait_event(mddev->sb_wait,
7223 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7224 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7225 mddev_lock_nointr(mddev);
7226 }
7227 } else {
7228 err = -EROFS;
7229 goto unlock;
7230 }
7231 }
7232
7233 switch (cmd) {
7234 case ADD_NEW_DISK:
7235 {
7236 mdu_disk_info_t info;
7237 if (copy_from_user(&info, argp, sizeof(info)))
7238 err = -EFAULT;
7239 else
7240 err = add_new_disk(mddev, &info);
7241 goto unlock;
7242 }
7243
7244 case CLUSTERED_DISK_NACK:
7245 if (mddev_is_clustered(mddev))
7246 md_cluster_ops->new_disk_ack(mddev, false);
7247 else
7248 err = -EINVAL;
7249 goto unlock;
7250
7251 case HOT_ADD_DISK:
7252 err = hot_add_disk(mddev, new_decode_dev(arg));
7253 goto unlock;
7254
7255 case RUN_ARRAY:
7256 err = do_md_run(mddev);
7257 goto unlock;
7258
7259 case SET_BITMAP_FILE:
7260 err = set_bitmap_file(mddev, (int)arg);
7261 goto unlock;
7262
7263 default:
7264 err = -EINVAL;
7265 goto unlock;
7266 }
7267
7268 unlock:
7269 if (mddev->hold_active == UNTIL_IOCTL &&
7270 err != -EINVAL)
7271 mddev->hold_active = 0;
7272 mddev_unlock(mddev);
7273 out:
7274 if(did_set_md_closing)
7275 clear_bit(MD_CLOSING, &mddev->flags);
7276 return err;
7277 }
7278 #ifdef CONFIG_COMPAT
7279 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7280 unsigned int cmd, unsigned long arg)
7281 {
7282 switch (cmd) {
7283 case HOT_REMOVE_DISK:
7284 case HOT_ADD_DISK:
7285 case SET_DISK_FAULTY:
7286 case SET_BITMAP_FILE:
7287 /* These take in integer arg, do not convert */
7288 break;
7289 default:
7290 arg = (unsigned long)compat_ptr(arg);
7291 break;
7292 }
7293
7294 return md_ioctl(bdev, mode, cmd, arg);
7295 }
7296 #endif /* CONFIG_COMPAT */
7297
7298 static int md_open(struct block_device *bdev, fmode_t mode)
7299 {
7300 /*
7301 * Succeed if we can lock the mddev, which confirms that
7302 * it isn't being stopped right now.
7303 */
7304 struct mddev *mddev = mddev_find(bdev->bd_dev);
7305 int err;
7306
7307 if (!mddev)
7308 return -ENODEV;
7309
7310 if (mddev->gendisk != bdev->bd_disk) {
7311 /* we are racing with mddev_put which is discarding this
7312 * bd_disk.
7313 */
7314 mddev_put(mddev);
7315 /* Wait until bdev->bd_disk is definitely gone */
7316 flush_workqueue(md_misc_wq);
7317 /* Then retry the open from the top */
7318 return -ERESTARTSYS;
7319 }
7320 BUG_ON(mddev != bdev->bd_disk->private_data);
7321
7322 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7323 goto out;
7324
7325 if (test_bit(MD_CLOSING, &mddev->flags)) {
7326 mutex_unlock(&mddev->open_mutex);
7327 err = -ENODEV;
7328 goto out;
7329 }
7330
7331 err = 0;
7332 atomic_inc(&mddev->openers);
7333 mutex_unlock(&mddev->open_mutex);
7334
7335 check_disk_change(bdev);
7336 out:
7337 if (err)
7338 mddev_put(mddev);
7339 return err;
7340 }
7341
7342 static void md_release(struct gendisk *disk, fmode_t mode)
7343 {
7344 struct mddev *mddev = disk->private_data;
7345
7346 BUG_ON(!mddev);
7347 atomic_dec(&mddev->openers);
7348 mddev_put(mddev);
7349 }
7350
7351 static int md_media_changed(struct gendisk *disk)
7352 {
7353 struct mddev *mddev = disk->private_data;
7354
7355 return mddev->changed;
7356 }
7357
7358 static int md_revalidate(struct gendisk *disk)
7359 {
7360 struct mddev *mddev = disk->private_data;
7361
7362 mddev->changed = 0;
7363 return 0;
7364 }
7365 static const struct block_device_operations md_fops =
7366 {
7367 .owner = THIS_MODULE,
7368 .open = md_open,
7369 .release = md_release,
7370 .ioctl = md_ioctl,
7371 #ifdef CONFIG_COMPAT
7372 .compat_ioctl = md_compat_ioctl,
7373 #endif
7374 .getgeo = md_getgeo,
7375 .media_changed = md_media_changed,
7376 .revalidate_disk= md_revalidate,
7377 };
7378
7379 static int md_thread(void *arg)
7380 {
7381 struct md_thread *thread = arg;
7382
7383 /*
7384 * md_thread is a 'system-thread', it's priority should be very
7385 * high. We avoid resource deadlocks individually in each
7386 * raid personality. (RAID5 does preallocation) We also use RR and
7387 * the very same RT priority as kswapd, thus we will never get
7388 * into a priority inversion deadlock.
7389 *
7390 * we definitely have to have equal or higher priority than
7391 * bdflush, otherwise bdflush will deadlock if there are too
7392 * many dirty RAID5 blocks.
7393 */
7394
7395 allow_signal(SIGKILL);
7396 while (!kthread_should_stop()) {
7397
7398 /* We need to wait INTERRUPTIBLE so that
7399 * we don't add to the load-average.
7400 * That means we need to be sure no signals are
7401 * pending
7402 */
7403 if (signal_pending(current))
7404 flush_signals(current);
7405
7406 wait_event_interruptible_timeout
7407 (thread->wqueue,
7408 test_bit(THREAD_WAKEUP, &thread->flags)
7409 || kthread_should_stop() || kthread_should_park(),
7410 thread->timeout);
7411
7412 clear_bit(THREAD_WAKEUP, &thread->flags);
7413 if (kthread_should_park())
7414 kthread_parkme();
7415 if (!kthread_should_stop())
7416 thread->run(thread);
7417 }
7418
7419 return 0;
7420 }
7421
7422 void md_wakeup_thread(struct md_thread *thread)
7423 {
7424 if (thread) {
7425 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7426 if (!test_and_set_bit(THREAD_WAKEUP, &thread->flags))
7427 wake_up(&thread->wqueue);
7428 }
7429 }
7430 EXPORT_SYMBOL(md_wakeup_thread);
7431
7432 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7433 struct mddev *mddev, const char *name)
7434 {
7435 struct md_thread *thread;
7436
7437 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7438 if (!thread)
7439 return NULL;
7440
7441 init_waitqueue_head(&thread->wqueue);
7442
7443 thread->run = run;
7444 thread->mddev = mddev;
7445 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7446 thread->tsk = kthread_run(md_thread, thread,
7447 "%s_%s",
7448 mdname(thread->mddev),
7449 name);
7450 if (IS_ERR(thread->tsk)) {
7451 kfree(thread);
7452 return NULL;
7453 }
7454 return thread;
7455 }
7456 EXPORT_SYMBOL(md_register_thread);
7457
7458 void md_unregister_thread(struct md_thread **threadp)
7459 {
7460 struct md_thread *thread = *threadp;
7461 if (!thread)
7462 return;
7463 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7464 /* Locking ensures that mddev_unlock does not wake_up a
7465 * non-existent thread
7466 */
7467 spin_lock(&pers_lock);
7468 *threadp = NULL;
7469 spin_unlock(&pers_lock);
7470
7471 kthread_stop(thread->tsk);
7472 kfree(thread);
7473 }
7474 EXPORT_SYMBOL(md_unregister_thread);
7475
7476 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7477 {
7478 if (!rdev || test_bit(Faulty, &rdev->flags))
7479 return;
7480
7481 if (!mddev->pers || !mddev->pers->error_handler)
7482 return;
7483 mddev->pers->error_handler(mddev,rdev);
7484 if (mddev->degraded)
7485 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7486 sysfs_notify_dirent_safe(rdev->sysfs_state);
7487 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7488 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7489 md_wakeup_thread(mddev->thread);
7490 if (mddev->event_work.func)
7491 queue_work(md_misc_wq, &mddev->event_work);
7492 md_new_event(mddev);
7493 }
7494 EXPORT_SYMBOL(md_error);
7495
7496 /* seq_file implementation /proc/mdstat */
7497
7498 static void status_unused(struct seq_file *seq)
7499 {
7500 int i = 0;
7501 struct md_rdev *rdev;
7502
7503 seq_printf(seq, "unused devices: ");
7504
7505 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7506 char b[BDEVNAME_SIZE];
7507 i++;
7508 seq_printf(seq, "%s ",
7509 bdevname(rdev->bdev,b));
7510 }
7511 if (!i)
7512 seq_printf(seq, "<none>");
7513
7514 seq_printf(seq, "\n");
7515 }
7516
7517 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7518 {
7519 sector_t max_sectors, resync, res;
7520 unsigned long dt, db;
7521 sector_t rt;
7522 int scale;
7523 unsigned int per_milli;
7524
7525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7526 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7527 max_sectors = mddev->resync_max_sectors;
7528 else
7529 max_sectors = mddev->dev_sectors;
7530
7531 resync = mddev->curr_resync;
7532 if (resync <= 3) {
7533 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7534 /* Still cleaning up */
7535 resync = max_sectors;
7536 } else
7537 resync -= atomic_read(&mddev->recovery_active);
7538
7539 if (resync == 0) {
7540 if (mddev->recovery_cp < MaxSector) {
7541 seq_printf(seq, "\tresync=PENDING");
7542 return 1;
7543 }
7544 return 0;
7545 }
7546 if (resync < 3) {
7547 seq_printf(seq, "\tresync=DELAYED");
7548 return 1;
7549 }
7550
7551 WARN_ON(max_sectors == 0);
7552 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7553 * in a sector_t, and (max_sectors>>scale) will fit in a
7554 * u32, as those are the requirements for sector_div.
7555 * Thus 'scale' must be at least 10
7556 */
7557 scale = 10;
7558 if (sizeof(sector_t) > sizeof(unsigned long)) {
7559 while ( max_sectors/2 > (1ULL<<(scale+32)))
7560 scale++;
7561 }
7562 res = (resync>>scale)*1000;
7563 sector_div(res, (u32)((max_sectors>>scale)+1));
7564
7565 per_milli = res;
7566 {
7567 int i, x = per_milli/50, y = 20-x;
7568 seq_printf(seq, "[");
7569 for (i = 0; i < x; i++)
7570 seq_printf(seq, "=");
7571 seq_printf(seq, ">");
7572 for (i = 0; i < y; i++)
7573 seq_printf(seq, ".");
7574 seq_printf(seq, "] ");
7575 }
7576 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7577 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7578 "reshape" :
7579 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7580 "check" :
7581 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7582 "resync" : "recovery"))),
7583 per_milli/10, per_milli % 10,
7584 (unsigned long long) resync/2,
7585 (unsigned long long) max_sectors/2);
7586
7587 /*
7588 * dt: time from mark until now
7589 * db: blocks written from mark until now
7590 * rt: remaining time
7591 *
7592 * rt is a sector_t, so could be 32bit or 64bit.
7593 * So we divide before multiply in case it is 32bit and close
7594 * to the limit.
7595 * We scale the divisor (db) by 32 to avoid losing precision
7596 * near the end of resync when the number of remaining sectors
7597 * is close to 'db'.
7598 * We then divide rt by 32 after multiplying by db to compensate.
7599 * The '+1' avoids division by zero if db is very small.
7600 */
7601 dt = ((jiffies - mddev->resync_mark) / HZ);
7602 if (!dt) dt++;
7603 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7604 - mddev->resync_mark_cnt;
7605
7606 rt = max_sectors - resync; /* number of remaining sectors */
7607 sector_div(rt, db/32+1);
7608 rt *= dt;
7609 rt >>= 5;
7610
7611 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7612 ((unsigned long)rt % 60)/6);
7613
7614 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7615 return 1;
7616 }
7617
7618 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7619 {
7620 struct list_head *tmp;
7621 loff_t l = *pos;
7622 struct mddev *mddev;
7623
7624 if (l >= 0x10000)
7625 return NULL;
7626 if (!l--)
7627 /* header */
7628 return (void*)1;
7629
7630 spin_lock(&all_mddevs_lock);
7631 list_for_each(tmp,&all_mddevs)
7632 if (!l--) {
7633 mddev = list_entry(tmp, struct mddev, all_mddevs);
7634 mddev_get(mddev);
7635 spin_unlock(&all_mddevs_lock);
7636 return mddev;
7637 }
7638 spin_unlock(&all_mddevs_lock);
7639 if (!l--)
7640 return (void*)2;/* tail */
7641 return NULL;
7642 }
7643
7644 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7645 {
7646 struct list_head *tmp;
7647 struct mddev *next_mddev, *mddev = v;
7648
7649 ++*pos;
7650 if (v == (void*)2)
7651 return NULL;
7652
7653 spin_lock(&all_mddevs_lock);
7654 if (v == (void*)1)
7655 tmp = all_mddevs.next;
7656 else
7657 tmp = mddev->all_mddevs.next;
7658 if (tmp != &all_mddevs)
7659 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7660 else {
7661 next_mddev = (void*)2;
7662 *pos = 0x10000;
7663 }
7664 spin_unlock(&all_mddevs_lock);
7665
7666 if (v != (void*)1)
7667 mddev_put(mddev);
7668 return next_mddev;
7669
7670 }
7671
7672 static void md_seq_stop(struct seq_file *seq, void *v)
7673 {
7674 struct mddev *mddev = v;
7675
7676 if (mddev && v != (void*)1 && v != (void*)2)
7677 mddev_put(mddev);
7678 }
7679
7680 static int md_seq_show(struct seq_file *seq, void *v)
7681 {
7682 struct mddev *mddev = v;
7683 sector_t sectors;
7684 struct md_rdev *rdev;
7685
7686 if (v == (void*)1) {
7687 struct md_personality *pers;
7688 seq_printf(seq, "Personalities : ");
7689 spin_lock(&pers_lock);
7690 list_for_each_entry(pers, &pers_list, list)
7691 seq_printf(seq, "[%s] ", pers->name);
7692
7693 spin_unlock(&pers_lock);
7694 seq_printf(seq, "\n");
7695 seq->poll_event = atomic_read(&md_event_count);
7696 return 0;
7697 }
7698 if (v == (void*)2) {
7699 status_unused(seq);
7700 return 0;
7701 }
7702
7703 spin_lock(&mddev->lock);
7704 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7705 seq_printf(seq, "%s : %sactive", mdname(mddev),
7706 mddev->pers ? "" : "in");
7707 if (mddev->pers) {
7708 if (mddev->ro==1)
7709 seq_printf(seq, " (read-only)");
7710 if (mddev->ro==2)
7711 seq_printf(seq, " (auto-read-only)");
7712 seq_printf(seq, " %s", mddev->pers->name);
7713 }
7714
7715 sectors = 0;
7716 rcu_read_lock();
7717 rdev_for_each_rcu(rdev, mddev) {
7718 char b[BDEVNAME_SIZE];
7719 seq_printf(seq, " %s[%d]",
7720 bdevname(rdev->bdev,b), rdev->desc_nr);
7721 if (test_bit(WriteMostly, &rdev->flags))
7722 seq_printf(seq, "(W)");
7723 if (test_bit(Journal, &rdev->flags))
7724 seq_printf(seq, "(J)");
7725 if (test_bit(Faulty, &rdev->flags)) {
7726 seq_printf(seq, "(F)");
7727 continue;
7728 }
7729 if (rdev->raid_disk < 0)
7730 seq_printf(seq, "(S)"); /* spare */
7731 if (test_bit(Replacement, &rdev->flags))
7732 seq_printf(seq, "(R)");
7733 sectors += rdev->sectors;
7734 }
7735 rcu_read_unlock();
7736
7737 if (!list_empty(&mddev->disks)) {
7738 if (mddev->pers)
7739 seq_printf(seq, "\n %llu blocks",
7740 (unsigned long long)
7741 mddev->array_sectors / 2);
7742 else
7743 seq_printf(seq, "\n %llu blocks",
7744 (unsigned long long)sectors / 2);
7745 }
7746 if (mddev->persistent) {
7747 if (mddev->major_version != 0 ||
7748 mddev->minor_version != 90) {
7749 seq_printf(seq," super %d.%d",
7750 mddev->major_version,
7751 mddev->minor_version);
7752 }
7753 } else if (mddev->external)
7754 seq_printf(seq, " super external:%s",
7755 mddev->metadata_type);
7756 else
7757 seq_printf(seq, " super non-persistent");
7758
7759 if (mddev->pers) {
7760 mddev->pers->status(seq, mddev);
7761 seq_printf(seq, "\n ");
7762 if (mddev->pers->sync_request) {
7763 if (status_resync(seq, mddev))
7764 seq_printf(seq, "\n ");
7765 }
7766 } else
7767 seq_printf(seq, "\n ");
7768
7769 bitmap_status(seq, mddev->bitmap);
7770
7771 seq_printf(seq, "\n");
7772 }
7773 spin_unlock(&mddev->lock);
7774
7775 return 0;
7776 }
7777
7778 static const struct seq_operations md_seq_ops = {
7779 .start = md_seq_start,
7780 .next = md_seq_next,
7781 .stop = md_seq_stop,
7782 .show = md_seq_show,
7783 };
7784
7785 static int md_seq_open(struct inode *inode, struct file *file)
7786 {
7787 struct seq_file *seq;
7788 int error;
7789
7790 error = seq_open(file, &md_seq_ops);
7791 if (error)
7792 return error;
7793
7794 seq = file->private_data;
7795 seq->poll_event = atomic_read(&md_event_count);
7796 return error;
7797 }
7798
7799 static int md_unloading;
7800 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7801 {
7802 struct seq_file *seq = filp->private_data;
7803 int mask;
7804
7805 if (md_unloading)
7806 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7807 poll_wait(filp, &md_event_waiters, wait);
7808
7809 /* always allow read */
7810 mask = POLLIN | POLLRDNORM;
7811
7812 if (seq->poll_event != atomic_read(&md_event_count))
7813 mask |= POLLERR | POLLPRI;
7814 return mask;
7815 }
7816
7817 static const struct file_operations md_seq_fops = {
7818 .owner = THIS_MODULE,
7819 .open = md_seq_open,
7820 .read = seq_read,
7821 .llseek = seq_lseek,
7822 .release = seq_release_private,
7823 .poll = mdstat_poll,
7824 };
7825
7826 int register_md_personality(struct md_personality *p)
7827 {
7828 pr_debug("md: %s personality registered for level %d\n",
7829 p->name, p->level);
7830 spin_lock(&pers_lock);
7831 list_add_tail(&p->list, &pers_list);
7832 spin_unlock(&pers_lock);
7833 return 0;
7834 }
7835 EXPORT_SYMBOL(register_md_personality);
7836
7837 int unregister_md_personality(struct md_personality *p)
7838 {
7839 pr_debug("md: %s personality unregistered\n", p->name);
7840 spin_lock(&pers_lock);
7841 list_del_init(&p->list);
7842 spin_unlock(&pers_lock);
7843 return 0;
7844 }
7845 EXPORT_SYMBOL(unregister_md_personality);
7846
7847 int register_md_cluster_operations(struct md_cluster_operations *ops,
7848 struct module *module)
7849 {
7850 int ret = 0;
7851 spin_lock(&pers_lock);
7852 if (md_cluster_ops != NULL)
7853 ret = -EALREADY;
7854 else {
7855 md_cluster_ops = ops;
7856 md_cluster_mod = module;
7857 }
7858 spin_unlock(&pers_lock);
7859 return ret;
7860 }
7861 EXPORT_SYMBOL(register_md_cluster_operations);
7862
7863 int unregister_md_cluster_operations(void)
7864 {
7865 spin_lock(&pers_lock);
7866 md_cluster_ops = NULL;
7867 spin_unlock(&pers_lock);
7868 return 0;
7869 }
7870 EXPORT_SYMBOL(unregister_md_cluster_operations);
7871
7872 int md_setup_cluster(struct mddev *mddev, int nodes)
7873 {
7874 if (!md_cluster_ops)
7875 request_module("md-cluster");
7876 spin_lock(&pers_lock);
7877 /* ensure module won't be unloaded */
7878 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7879 pr_warn("can't find md-cluster module or get it's reference.\n");
7880 spin_unlock(&pers_lock);
7881 return -ENOENT;
7882 }
7883 spin_unlock(&pers_lock);
7884
7885 return md_cluster_ops->join(mddev, nodes);
7886 }
7887
7888 void md_cluster_stop(struct mddev *mddev)
7889 {
7890 if (!md_cluster_ops)
7891 return;
7892 md_cluster_ops->leave(mddev);
7893 module_put(md_cluster_mod);
7894 }
7895
7896 static int is_mddev_idle(struct mddev *mddev, int init)
7897 {
7898 struct md_rdev *rdev;
7899 int idle;
7900 int curr_events;
7901
7902 idle = 1;
7903 rcu_read_lock();
7904 rdev_for_each_rcu(rdev, mddev) {
7905 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7906 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7907 (int)part_stat_read(&disk->part0, sectors[1]) -
7908 atomic_read(&disk->sync_io);
7909 /* sync IO will cause sync_io to increase before the disk_stats
7910 * as sync_io is counted when a request starts, and
7911 * disk_stats is counted when it completes.
7912 * So resync activity will cause curr_events to be smaller than
7913 * when there was no such activity.
7914 * non-sync IO will cause disk_stat to increase without
7915 * increasing sync_io so curr_events will (eventually)
7916 * be larger than it was before. Once it becomes
7917 * substantially larger, the test below will cause
7918 * the array to appear non-idle, and resync will slow
7919 * down.
7920 * If there is a lot of outstanding resync activity when
7921 * we set last_event to curr_events, then all that activity
7922 * completing might cause the array to appear non-idle
7923 * and resync will be slowed down even though there might
7924 * not have been non-resync activity. This will only
7925 * happen once though. 'last_events' will soon reflect
7926 * the state where there is little or no outstanding
7927 * resync requests, and further resync activity will
7928 * always make curr_events less than last_events.
7929 *
7930 */
7931 if (init || curr_events - rdev->last_events > 64) {
7932 rdev->last_events = curr_events;
7933 idle = 0;
7934 }
7935 }
7936 rcu_read_unlock();
7937 return idle;
7938 }
7939
7940 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7941 {
7942 /* another "blocks" (512byte) blocks have been synced */
7943 atomic_sub(blocks, &mddev->recovery_active);
7944 wake_up(&mddev->recovery_wait);
7945 if (!ok) {
7946 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7947 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7948 md_wakeup_thread(mddev->thread);
7949 // stop recovery, signal do_sync ....
7950 }
7951 }
7952 EXPORT_SYMBOL(md_done_sync);
7953
7954 /* md_write_start(mddev, bi)
7955 * If we need to update some array metadata (e.g. 'active' flag
7956 * in superblock) before writing, schedule a superblock update
7957 * and wait for it to complete.
7958 * A return value of 'false' means that the write wasn't recorded
7959 * and cannot proceed as the array is being suspend.
7960 */
7961 bool md_write_start(struct mddev *mddev, struct bio *bi)
7962 {
7963 int did_change = 0;
7964 if (bio_data_dir(bi) != WRITE)
7965 return true;
7966
7967 BUG_ON(mddev->ro == 1);
7968 if (mddev->ro == 2) {
7969 /* need to switch to read/write */
7970 mddev->ro = 0;
7971 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7972 md_wakeup_thread(mddev->thread);
7973 md_wakeup_thread(mddev->sync_thread);
7974 did_change = 1;
7975 }
7976 rcu_read_lock();
7977 percpu_ref_get(&mddev->writes_pending);
7978 smp_mb(); /* Match smp_mb in set_in_sync() */
7979 if (mddev->safemode == 1)
7980 mddev->safemode = 0;
7981 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
7982 if (mddev->in_sync || !mddev->sync_checkers) {
7983 spin_lock(&mddev->lock);
7984 if (mddev->in_sync) {
7985 mddev->in_sync = 0;
7986 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
7987 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
7988 md_wakeup_thread(mddev->thread);
7989 did_change = 1;
7990 }
7991 spin_unlock(&mddev->lock);
7992 }
7993 rcu_read_unlock();
7994 if (did_change)
7995 sysfs_notify_dirent_safe(mddev->sysfs_state);
7996 wait_event(mddev->sb_wait,
7997 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && !mddev->suspended);
7998 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
7999 percpu_ref_put(&mddev->writes_pending);
8000 return false;
8001 }
8002 return true;
8003 }
8004 EXPORT_SYMBOL(md_write_start);
8005
8006 /* md_write_inc can only be called when md_write_start() has
8007 * already been called at least once of the current request.
8008 * It increments the counter and is useful when a single request
8009 * is split into several parts. Each part causes an increment and
8010 * so needs a matching md_write_end().
8011 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8012 * a spinlocked region.
8013 */
8014 void md_write_inc(struct mddev *mddev, struct bio *bi)
8015 {
8016 if (bio_data_dir(bi) != WRITE)
8017 return;
8018 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8019 percpu_ref_get(&mddev->writes_pending);
8020 }
8021 EXPORT_SYMBOL(md_write_inc);
8022
8023 void md_write_end(struct mddev *mddev)
8024 {
8025 percpu_ref_put(&mddev->writes_pending);
8026
8027 if (mddev->safemode == 2)
8028 md_wakeup_thread(mddev->thread);
8029 else if (mddev->safemode_delay)
8030 /* The roundup() ensures this only performs locking once
8031 * every ->safemode_delay jiffies
8032 */
8033 mod_timer(&mddev->safemode_timer,
8034 roundup(jiffies, mddev->safemode_delay) +
8035 mddev->safemode_delay);
8036 }
8037
8038 EXPORT_SYMBOL(md_write_end);
8039
8040 /* md_allow_write(mddev)
8041 * Calling this ensures that the array is marked 'active' so that writes
8042 * may proceed without blocking. It is important to call this before
8043 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8044 * Must be called with mddev_lock held.
8045 */
8046 void md_allow_write(struct mddev *mddev)
8047 {
8048 if (!mddev->pers)
8049 return;
8050 if (mddev->ro)
8051 return;
8052 if (!mddev->pers->sync_request)
8053 return;
8054
8055 spin_lock(&mddev->lock);
8056 if (mddev->in_sync) {
8057 mddev->in_sync = 0;
8058 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8059 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8060 if (mddev->safemode_delay &&
8061 mddev->safemode == 0)
8062 mddev->safemode = 1;
8063 spin_unlock(&mddev->lock);
8064 md_update_sb(mddev, 0);
8065 sysfs_notify_dirent_safe(mddev->sysfs_state);
8066 /* wait for the dirty state to be recorded in the metadata */
8067 wait_event(mddev->sb_wait,
8068 !test_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags) &&
8069 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8070 } else
8071 spin_unlock(&mddev->lock);
8072 }
8073 EXPORT_SYMBOL_GPL(md_allow_write);
8074
8075 #define SYNC_MARKS 10
8076 #define SYNC_MARK_STEP (3*HZ)
8077 #define UPDATE_FREQUENCY (5*60*HZ)
8078 void md_do_sync(struct md_thread *thread)
8079 {
8080 struct mddev *mddev = thread->mddev;
8081 struct mddev *mddev2;
8082 unsigned int currspeed = 0,
8083 window;
8084 sector_t max_sectors,j, io_sectors, recovery_done;
8085 unsigned long mark[SYNC_MARKS];
8086 unsigned long update_time;
8087 sector_t mark_cnt[SYNC_MARKS];
8088 int last_mark,m;
8089 struct list_head *tmp;
8090 sector_t last_check;
8091 int skipped = 0;
8092 struct md_rdev *rdev;
8093 char *desc, *action = NULL;
8094 struct blk_plug plug;
8095 int ret;
8096
8097 /* just incase thread restarts... */
8098 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8099 return;
8100 if (mddev->ro) {/* never try to sync a read-only array */
8101 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8102 return;
8103 }
8104
8105 if (mddev_is_clustered(mddev)) {
8106 ret = md_cluster_ops->resync_start(mddev);
8107 if (ret)
8108 goto skip;
8109
8110 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8111 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8112 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8113 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8114 && ((unsigned long long)mddev->curr_resync_completed
8115 < (unsigned long long)mddev->resync_max_sectors))
8116 goto skip;
8117 }
8118
8119 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8120 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8121 desc = "data-check";
8122 action = "check";
8123 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8124 desc = "requested-resync";
8125 action = "repair";
8126 } else
8127 desc = "resync";
8128 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8129 desc = "reshape";
8130 else
8131 desc = "recovery";
8132
8133 mddev->last_sync_action = action ?: desc;
8134
8135 /* we overload curr_resync somewhat here.
8136 * 0 == not engaged in resync at all
8137 * 2 == checking that there is no conflict with another sync
8138 * 1 == like 2, but have yielded to allow conflicting resync to
8139 * commense
8140 * other == active in resync - this many blocks
8141 *
8142 * Before starting a resync we must have set curr_resync to
8143 * 2, and then checked that every "conflicting" array has curr_resync
8144 * less than ours. When we find one that is the same or higher
8145 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8146 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8147 * This will mean we have to start checking from the beginning again.
8148 *
8149 */
8150
8151 do {
8152 int mddev2_minor = -1;
8153 mddev->curr_resync = 2;
8154
8155 try_again:
8156 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8157 goto skip;
8158 for_each_mddev(mddev2, tmp) {
8159 if (mddev2 == mddev)
8160 continue;
8161 if (!mddev->parallel_resync
8162 && mddev2->curr_resync
8163 && match_mddev_units(mddev, mddev2)) {
8164 DEFINE_WAIT(wq);
8165 if (mddev < mddev2 && mddev->curr_resync == 2) {
8166 /* arbitrarily yield */
8167 mddev->curr_resync = 1;
8168 wake_up(&resync_wait);
8169 }
8170 if (mddev > mddev2 && mddev->curr_resync == 1)
8171 /* no need to wait here, we can wait the next
8172 * time 'round when curr_resync == 2
8173 */
8174 continue;
8175 /* We need to wait 'interruptible' so as not to
8176 * contribute to the load average, and not to
8177 * be caught by 'softlockup'
8178 */
8179 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8180 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8181 mddev2->curr_resync >= mddev->curr_resync) {
8182 if (mddev2_minor != mddev2->md_minor) {
8183 mddev2_minor = mddev2->md_minor;
8184 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8185 desc, mdname(mddev),
8186 mdname(mddev2));
8187 }
8188 mddev_put(mddev2);
8189 if (signal_pending(current))
8190 flush_signals(current);
8191 schedule();
8192 finish_wait(&resync_wait, &wq);
8193 goto try_again;
8194 }
8195 finish_wait(&resync_wait, &wq);
8196 }
8197 }
8198 } while (mddev->curr_resync < 2);
8199
8200 j = 0;
8201 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8202 /* resync follows the size requested by the personality,
8203 * which defaults to physical size, but can be virtual size
8204 */
8205 max_sectors = mddev->resync_max_sectors;
8206 atomic64_set(&mddev->resync_mismatches, 0);
8207 /* we don't use the checkpoint if there's a bitmap */
8208 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8209 j = mddev->resync_min;
8210 else if (!mddev->bitmap)
8211 j = mddev->recovery_cp;
8212
8213 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8214 max_sectors = mddev->resync_max_sectors;
8215 else {
8216 /* recovery follows the physical size of devices */
8217 max_sectors = mddev->dev_sectors;
8218 j = MaxSector;
8219 rcu_read_lock();
8220 rdev_for_each_rcu(rdev, mddev)
8221 if (rdev->raid_disk >= 0 &&
8222 !test_bit(Journal, &rdev->flags) &&
8223 !test_bit(Faulty, &rdev->flags) &&
8224 !test_bit(In_sync, &rdev->flags) &&
8225 rdev->recovery_offset < j)
8226 j = rdev->recovery_offset;
8227 rcu_read_unlock();
8228
8229 /* If there is a bitmap, we need to make sure all
8230 * writes that started before we added a spare
8231 * complete before we start doing a recovery.
8232 * Otherwise the write might complete and (via
8233 * bitmap_endwrite) set a bit in the bitmap after the
8234 * recovery has checked that bit and skipped that
8235 * region.
8236 */
8237 if (mddev->bitmap) {
8238 mddev->pers->quiesce(mddev, 1);
8239 mddev->pers->quiesce(mddev, 0);
8240 }
8241 }
8242
8243 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8244 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8245 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8246 speed_max(mddev), desc);
8247
8248 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8249
8250 io_sectors = 0;
8251 for (m = 0; m < SYNC_MARKS; m++) {
8252 mark[m] = jiffies;
8253 mark_cnt[m] = io_sectors;
8254 }
8255 last_mark = 0;
8256 mddev->resync_mark = mark[last_mark];
8257 mddev->resync_mark_cnt = mark_cnt[last_mark];
8258
8259 /*
8260 * Tune reconstruction:
8261 */
8262 window = 32*(PAGE_SIZE/512);
8263 pr_debug("md: using %dk window, over a total of %lluk.\n",
8264 window/2, (unsigned long long)max_sectors/2);
8265
8266 atomic_set(&mddev->recovery_active, 0);
8267 last_check = 0;
8268
8269 if (j>2) {
8270 pr_debug("md: resuming %s of %s from checkpoint.\n",
8271 desc, mdname(mddev));
8272 mddev->curr_resync = j;
8273 } else
8274 mddev->curr_resync = 3; /* no longer delayed */
8275 mddev->curr_resync_completed = j;
8276 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8277 md_new_event(mddev);
8278 update_time = jiffies;
8279
8280 blk_start_plug(&plug);
8281 while (j < max_sectors) {
8282 sector_t sectors;
8283
8284 skipped = 0;
8285
8286 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8287 ((mddev->curr_resync > mddev->curr_resync_completed &&
8288 (mddev->curr_resync - mddev->curr_resync_completed)
8289 > (max_sectors >> 4)) ||
8290 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8291 (j - mddev->curr_resync_completed)*2
8292 >= mddev->resync_max - mddev->curr_resync_completed ||
8293 mddev->curr_resync_completed > mddev->resync_max
8294 )) {
8295 /* time to update curr_resync_completed */
8296 wait_event(mddev->recovery_wait,
8297 atomic_read(&mddev->recovery_active) == 0);
8298 mddev->curr_resync_completed = j;
8299 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8300 j > mddev->recovery_cp)
8301 mddev->recovery_cp = j;
8302 update_time = jiffies;
8303 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8304 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8305 }
8306
8307 while (j >= mddev->resync_max &&
8308 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8309 /* As this condition is controlled by user-space,
8310 * we can block indefinitely, so use '_interruptible'
8311 * to avoid triggering warnings.
8312 */
8313 flush_signals(current); /* just in case */
8314 wait_event_interruptible(mddev->recovery_wait,
8315 mddev->resync_max > j
8316 || test_bit(MD_RECOVERY_INTR,
8317 &mddev->recovery));
8318 }
8319
8320 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8321 break;
8322
8323 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8324 if (sectors == 0) {
8325 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8326 break;
8327 }
8328
8329 if (!skipped) { /* actual IO requested */
8330 io_sectors += sectors;
8331 atomic_add(sectors, &mddev->recovery_active);
8332 }
8333
8334 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8335 break;
8336
8337 j += sectors;
8338 if (j > max_sectors)
8339 /* when skipping, extra large numbers can be returned. */
8340 j = max_sectors;
8341 if (j > 2)
8342 mddev->curr_resync = j;
8343 mddev->curr_mark_cnt = io_sectors;
8344 if (last_check == 0)
8345 /* this is the earliest that rebuild will be
8346 * visible in /proc/mdstat
8347 */
8348 md_new_event(mddev);
8349
8350 if (last_check + window > io_sectors || j == max_sectors)
8351 continue;
8352
8353 last_check = io_sectors;
8354 repeat:
8355 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8356 /* step marks */
8357 int next = (last_mark+1) % SYNC_MARKS;
8358
8359 mddev->resync_mark = mark[next];
8360 mddev->resync_mark_cnt = mark_cnt[next];
8361 mark[next] = jiffies;
8362 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8363 last_mark = next;
8364 }
8365
8366 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8367 break;
8368
8369 /*
8370 * this loop exits only if either when we are slower than
8371 * the 'hard' speed limit, or the system was IO-idle for
8372 * a jiffy.
8373 * the system might be non-idle CPU-wise, but we only care
8374 * about not overloading the IO subsystem. (things like an
8375 * e2fsck being done on the RAID array should execute fast)
8376 */
8377 cond_resched();
8378
8379 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8380 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8381 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8382
8383 if (currspeed > speed_min(mddev)) {
8384 if (currspeed > speed_max(mddev)) {
8385 msleep(500);
8386 goto repeat;
8387 }
8388 if (!is_mddev_idle(mddev, 0)) {
8389 /*
8390 * Give other IO more of a chance.
8391 * The faster the devices, the less we wait.
8392 */
8393 wait_event(mddev->recovery_wait,
8394 !atomic_read(&mddev->recovery_active));
8395 }
8396 }
8397 }
8398 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8399 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8400 ? "interrupted" : "done");
8401 /*
8402 * this also signals 'finished resyncing' to md_stop
8403 */
8404 blk_finish_plug(&plug);
8405 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8406
8407 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8408 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8409 mddev->curr_resync > 3) {
8410 mddev->curr_resync_completed = mddev->curr_resync;
8411 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8412 }
8413 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8414
8415 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8416 mddev->curr_resync > 3) {
8417 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8418 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8419 if (mddev->curr_resync >= mddev->recovery_cp) {
8420 pr_debug("md: checkpointing %s of %s.\n",
8421 desc, mdname(mddev));
8422 if (test_bit(MD_RECOVERY_ERROR,
8423 &mddev->recovery))
8424 mddev->recovery_cp =
8425 mddev->curr_resync_completed;
8426 else
8427 mddev->recovery_cp =
8428 mddev->curr_resync;
8429 }
8430 } else
8431 mddev->recovery_cp = MaxSector;
8432 } else {
8433 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8434 mddev->curr_resync = MaxSector;
8435 rcu_read_lock();
8436 rdev_for_each_rcu(rdev, mddev)
8437 if (rdev->raid_disk >= 0 &&
8438 mddev->delta_disks >= 0 &&
8439 !test_bit(Journal, &rdev->flags) &&
8440 !test_bit(Faulty, &rdev->flags) &&
8441 !test_bit(In_sync, &rdev->flags) &&
8442 rdev->recovery_offset < mddev->curr_resync)
8443 rdev->recovery_offset = mddev->curr_resync;
8444 rcu_read_unlock();
8445 }
8446 }
8447 skip:
8448 /* set CHANGE_PENDING here since maybe another update is needed,
8449 * so other nodes are informed. It should be harmless for normal
8450 * raid */
8451 set_mask_bits(&mddev->sb_flags, 0,
8452 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8453
8454 spin_lock(&mddev->lock);
8455 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8456 /* We completed so min/max setting can be forgotten if used. */
8457 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8458 mddev->resync_min = 0;
8459 mddev->resync_max = MaxSector;
8460 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8461 mddev->resync_min = mddev->curr_resync_completed;
8462 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8463 mddev->curr_resync = 0;
8464 spin_unlock(&mddev->lock);
8465
8466 wake_up(&resync_wait);
8467 md_wakeup_thread(mddev->thread);
8468 return;
8469 }
8470 EXPORT_SYMBOL_GPL(md_do_sync);
8471
8472 static int remove_and_add_spares(struct mddev *mddev,
8473 struct md_rdev *this)
8474 {
8475 struct md_rdev *rdev;
8476 int spares = 0;
8477 int removed = 0;
8478 bool remove_some = false;
8479
8480 rdev_for_each(rdev, mddev) {
8481 if ((this == NULL || rdev == this) &&
8482 rdev->raid_disk >= 0 &&
8483 !test_bit(Blocked, &rdev->flags) &&
8484 test_bit(Faulty, &rdev->flags) &&
8485 atomic_read(&rdev->nr_pending)==0) {
8486 /* Faulty non-Blocked devices with nr_pending == 0
8487 * never get nr_pending incremented,
8488 * never get Faulty cleared, and never get Blocked set.
8489 * So we can synchronize_rcu now rather than once per device
8490 */
8491 remove_some = true;
8492 set_bit(RemoveSynchronized, &rdev->flags);
8493 }
8494 }
8495
8496 if (remove_some)
8497 synchronize_rcu();
8498 rdev_for_each(rdev, mddev) {
8499 if ((this == NULL || rdev == this) &&
8500 rdev->raid_disk >= 0 &&
8501 !test_bit(Blocked, &rdev->flags) &&
8502 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8503 (!test_bit(In_sync, &rdev->flags) &&
8504 !test_bit(Journal, &rdev->flags))) &&
8505 atomic_read(&rdev->nr_pending)==0)) {
8506 if (mddev->pers->hot_remove_disk(
8507 mddev, rdev) == 0) {
8508 sysfs_unlink_rdev(mddev, rdev);
8509 rdev->raid_disk = -1;
8510 removed++;
8511 }
8512 }
8513 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8514 clear_bit(RemoveSynchronized, &rdev->flags);
8515 }
8516
8517 if (removed && mddev->kobj.sd)
8518 sysfs_notify(&mddev->kobj, NULL, "degraded");
8519
8520 if (this && removed)
8521 goto no_add;
8522
8523 rdev_for_each(rdev, mddev) {
8524 if (this && this != rdev)
8525 continue;
8526 if (test_bit(Candidate, &rdev->flags))
8527 continue;
8528 if (rdev->raid_disk >= 0 &&
8529 !test_bit(In_sync, &rdev->flags) &&
8530 !test_bit(Journal, &rdev->flags) &&
8531 !test_bit(Faulty, &rdev->flags))
8532 spares++;
8533 if (rdev->raid_disk >= 0)
8534 continue;
8535 if (test_bit(Faulty, &rdev->flags))
8536 continue;
8537 if (!test_bit(Journal, &rdev->flags)) {
8538 if (mddev->ro &&
8539 ! (rdev->saved_raid_disk >= 0 &&
8540 !test_bit(Bitmap_sync, &rdev->flags)))
8541 continue;
8542
8543 rdev->recovery_offset = 0;
8544 }
8545 if (mddev->pers->
8546 hot_add_disk(mddev, rdev) == 0) {
8547 if (sysfs_link_rdev(mddev, rdev))
8548 /* failure here is OK */;
8549 if (!test_bit(Journal, &rdev->flags))
8550 spares++;
8551 md_new_event(mddev);
8552 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8553 }
8554 }
8555 no_add:
8556 if (removed)
8557 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8558 return spares;
8559 }
8560
8561 static void md_start_sync(struct work_struct *ws)
8562 {
8563 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8564
8565 mddev->sync_thread = md_register_thread(md_do_sync,
8566 mddev,
8567 "resync");
8568 if (!mddev->sync_thread) {
8569 pr_warn("%s: could not start resync thread...\n",
8570 mdname(mddev));
8571 /* leave the spares where they are, it shouldn't hurt */
8572 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8573 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8574 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8575 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8576 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8577 wake_up(&resync_wait);
8578 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8579 &mddev->recovery))
8580 if (mddev->sysfs_action)
8581 sysfs_notify_dirent_safe(mddev->sysfs_action);
8582 } else
8583 md_wakeup_thread(mddev->sync_thread);
8584 sysfs_notify_dirent_safe(mddev->sysfs_action);
8585 md_new_event(mddev);
8586 }
8587
8588 /*
8589 * This routine is regularly called by all per-raid-array threads to
8590 * deal with generic issues like resync and super-block update.
8591 * Raid personalities that don't have a thread (linear/raid0) do not
8592 * need this as they never do any recovery or update the superblock.
8593 *
8594 * It does not do any resync itself, but rather "forks" off other threads
8595 * to do that as needed.
8596 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8597 * "->recovery" and create a thread at ->sync_thread.
8598 * When the thread finishes it sets MD_RECOVERY_DONE
8599 * and wakeups up this thread which will reap the thread and finish up.
8600 * This thread also removes any faulty devices (with nr_pending == 0).
8601 *
8602 * The overall approach is:
8603 * 1/ if the superblock needs updating, update it.
8604 * 2/ If a recovery thread is running, don't do anything else.
8605 * 3/ If recovery has finished, clean up, possibly marking spares active.
8606 * 4/ If there are any faulty devices, remove them.
8607 * 5/ If array is degraded, try to add spares devices
8608 * 6/ If array has spares or is not in-sync, start a resync thread.
8609 */
8610 void md_check_recovery(struct mddev *mddev)
8611 {
8612 if (mddev->suspended)
8613 return;
8614
8615 if (mddev->bitmap)
8616 bitmap_daemon_work(mddev);
8617
8618 if (signal_pending(current)) {
8619 if (mddev->pers->sync_request && !mddev->external) {
8620 pr_debug("md: %s in immediate safe mode\n",
8621 mdname(mddev));
8622 mddev->safemode = 2;
8623 }
8624 flush_signals(current);
8625 }
8626
8627 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8628 return;
8629 if ( ! (
8630 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8631 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8632 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8633 (mddev->external == 0 && mddev->safemode == 1) ||
8634 (mddev->safemode == 2
8635 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8636 ))
8637 return;
8638
8639 if (mddev_trylock(mddev)) {
8640 int spares = 0;
8641
8642 if (mddev->ro) {
8643 struct md_rdev *rdev;
8644 if (!mddev->external && mddev->in_sync)
8645 /* 'Blocked' flag not needed as failed devices
8646 * will be recorded if array switched to read/write.
8647 * Leaving it set will prevent the device
8648 * from being removed.
8649 */
8650 rdev_for_each(rdev, mddev)
8651 clear_bit(Blocked, &rdev->flags);
8652 /* On a read-only array we can:
8653 * - remove failed devices
8654 * - add already-in_sync devices if the array itself
8655 * is in-sync.
8656 * As we only add devices that are already in-sync,
8657 * we can activate the spares immediately.
8658 */
8659 remove_and_add_spares(mddev, NULL);
8660 /* There is no thread, but we need to call
8661 * ->spare_active and clear saved_raid_disk
8662 */
8663 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8664 md_reap_sync_thread(mddev);
8665 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8666 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8667 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8668 goto unlock;
8669 }
8670
8671 if (mddev_is_clustered(mddev)) {
8672 struct md_rdev *rdev;
8673 /* kick the device if another node issued a
8674 * remove disk.
8675 */
8676 rdev_for_each(rdev, mddev) {
8677 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8678 rdev->raid_disk < 0)
8679 md_kick_rdev_from_array(rdev);
8680 }
8681 }
8682
8683 if (!mddev->external && !mddev->in_sync) {
8684 spin_lock(&mddev->lock);
8685 set_in_sync(mddev);
8686 spin_unlock(&mddev->lock);
8687 }
8688
8689 if (mddev->sb_flags)
8690 md_update_sb(mddev, 0);
8691
8692 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8693 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8694 /* resync/recovery still happening */
8695 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8696 goto unlock;
8697 }
8698 if (mddev->sync_thread) {
8699 md_reap_sync_thread(mddev);
8700 goto unlock;
8701 }
8702 /* Set RUNNING before clearing NEEDED to avoid
8703 * any transients in the value of "sync_action".
8704 */
8705 mddev->curr_resync_completed = 0;
8706 spin_lock(&mddev->lock);
8707 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8708 spin_unlock(&mddev->lock);
8709 /* Clear some bits that don't mean anything, but
8710 * might be left set
8711 */
8712 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8713 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8714
8715 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8716 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8717 goto not_running;
8718 /* no recovery is running.
8719 * remove any failed drives, then
8720 * add spares if possible.
8721 * Spares are also removed and re-added, to allow
8722 * the personality to fail the re-add.
8723 */
8724
8725 if (mddev->reshape_position != MaxSector) {
8726 if (mddev->pers->check_reshape == NULL ||
8727 mddev->pers->check_reshape(mddev) != 0)
8728 /* Cannot proceed */
8729 goto not_running;
8730 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8731 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8732 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8733 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8734 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8735 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8736 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8737 } else if (mddev->recovery_cp < MaxSector) {
8738 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8739 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8740 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8741 /* nothing to be done ... */
8742 goto not_running;
8743
8744 if (mddev->pers->sync_request) {
8745 if (spares) {
8746 /* We are adding a device or devices to an array
8747 * which has the bitmap stored on all devices.
8748 * So make sure all bitmap pages get written
8749 */
8750 bitmap_write_all(mddev->bitmap);
8751 }
8752 INIT_WORK(&mddev->del_work, md_start_sync);
8753 queue_work(md_misc_wq, &mddev->del_work);
8754 goto unlock;
8755 }
8756 not_running:
8757 if (!mddev->sync_thread) {
8758 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8759 wake_up(&resync_wait);
8760 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8761 &mddev->recovery))
8762 if (mddev->sysfs_action)
8763 sysfs_notify_dirent_safe(mddev->sysfs_action);
8764 }
8765 unlock:
8766 wake_up(&mddev->sb_wait);
8767 mddev_unlock(mddev);
8768 }
8769 }
8770 EXPORT_SYMBOL(md_check_recovery);
8771
8772 void md_reap_sync_thread(struct mddev *mddev)
8773 {
8774 struct md_rdev *rdev;
8775
8776 /* resync has finished, collect result */
8777 md_unregister_thread(&mddev->sync_thread);
8778 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8779 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8780 /* success...*/
8781 /* activate any spares */
8782 if (mddev->pers->spare_active(mddev)) {
8783 sysfs_notify(&mddev->kobj, NULL,
8784 "degraded");
8785 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8786 }
8787 }
8788 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8789 mddev->pers->finish_reshape)
8790 mddev->pers->finish_reshape(mddev);
8791
8792 /* If array is no-longer degraded, then any saved_raid_disk
8793 * information must be scrapped.
8794 */
8795 if (!mddev->degraded)
8796 rdev_for_each(rdev, mddev)
8797 rdev->saved_raid_disk = -1;
8798
8799 md_update_sb(mddev, 1);
8800 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8801 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8802 * clustered raid */
8803 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8804 md_cluster_ops->resync_finish(mddev);
8805 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8806 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8807 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8808 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8809 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8810 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8811 wake_up(&resync_wait);
8812 /* flag recovery needed just to double check */
8813 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8814 sysfs_notify_dirent_safe(mddev->sysfs_action);
8815 md_new_event(mddev);
8816 if (mddev->event_work.func)
8817 queue_work(md_misc_wq, &mddev->event_work);
8818 }
8819 EXPORT_SYMBOL(md_reap_sync_thread);
8820
8821 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8822 {
8823 sysfs_notify_dirent_safe(rdev->sysfs_state);
8824 wait_event_timeout(rdev->blocked_wait,
8825 !test_bit(Blocked, &rdev->flags) &&
8826 !test_bit(BlockedBadBlocks, &rdev->flags),
8827 msecs_to_jiffies(5000));
8828 rdev_dec_pending(rdev, mddev);
8829 }
8830 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8831
8832 void md_finish_reshape(struct mddev *mddev)
8833 {
8834 /* called be personality module when reshape completes. */
8835 struct md_rdev *rdev;
8836
8837 rdev_for_each(rdev, mddev) {
8838 if (rdev->data_offset > rdev->new_data_offset)
8839 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8840 else
8841 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8842 rdev->data_offset = rdev->new_data_offset;
8843 }
8844 }
8845 EXPORT_SYMBOL(md_finish_reshape);
8846
8847 /* Bad block management */
8848
8849 /* Returns 1 on success, 0 on failure */
8850 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8851 int is_new)
8852 {
8853 struct mddev *mddev = rdev->mddev;
8854 int rv;
8855 if (is_new)
8856 s += rdev->new_data_offset;
8857 else
8858 s += rdev->data_offset;
8859 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8860 if (rv == 0) {
8861 /* Make sure they get written out promptly */
8862 if (test_bit(ExternalBbl, &rdev->flags))
8863 sysfs_notify(&rdev->kobj, NULL,
8864 "unacknowledged_bad_blocks");
8865 sysfs_notify_dirent_safe(rdev->sysfs_state);
8866 set_mask_bits(&mddev->sb_flags, 0,
8867 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
8868 md_wakeup_thread(rdev->mddev->thread);
8869 return 1;
8870 } else
8871 return 0;
8872 }
8873 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8874
8875 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8876 int is_new)
8877 {
8878 int rv;
8879 if (is_new)
8880 s += rdev->new_data_offset;
8881 else
8882 s += rdev->data_offset;
8883 rv = badblocks_clear(&rdev->badblocks, s, sectors);
8884 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
8885 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
8886 return rv;
8887 }
8888 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8889
8890 static int md_notify_reboot(struct notifier_block *this,
8891 unsigned long code, void *x)
8892 {
8893 struct list_head *tmp;
8894 struct mddev *mddev;
8895 int need_delay = 0;
8896
8897 for_each_mddev(mddev, tmp) {
8898 if (mddev_trylock(mddev)) {
8899 if (mddev->pers)
8900 __md_stop_writes(mddev);
8901 if (mddev->persistent)
8902 mddev->safemode = 2;
8903 mddev_unlock(mddev);
8904 }
8905 need_delay = 1;
8906 }
8907 /*
8908 * certain more exotic SCSI devices are known to be
8909 * volatile wrt too early system reboots. While the
8910 * right place to handle this issue is the given
8911 * driver, we do want to have a safe RAID driver ...
8912 */
8913 if (need_delay)
8914 mdelay(1000*1);
8915
8916 return NOTIFY_DONE;
8917 }
8918
8919 static struct notifier_block md_notifier = {
8920 .notifier_call = md_notify_reboot,
8921 .next = NULL,
8922 .priority = INT_MAX, /* before any real devices */
8923 };
8924
8925 static void md_geninit(void)
8926 {
8927 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8928
8929 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8930 }
8931
8932 static int __init md_init(void)
8933 {
8934 int ret = -ENOMEM;
8935
8936 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8937 if (!md_wq)
8938 goto err_wq;
8939
8940 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8941 if (!md_misc_wq)
8942 goto err_misc_wq;
8943
8944 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8945 goto err_md;
8946
8947 if ((ret = register_blkdev(0, "mdp")) < 0)
8948 goto err_mdp;
8949 mdp_major = ret;
8950
8951 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8952 md_probe, NULL, NULL);
8953 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8954 md_probe, NULL, NULL);
8955
8956 register_reboot_notifier(&md_notifier);
8957 raid_table_header = register_sysctl_table(raid_root_table);
8958
8959 md_geninit();
8960 return 0;
8961
8962 err_mdp:
8963 unregister_blkdev(MD_MAJOR, "md");
8964 err_md:
8965 destroy_workqueue(md_misc_wq);
8966 err_misc_wq:
8967 destroy_workqueue(md_wq);
8968 err_wq:
8969 return ret;
8970 }
8971
8972 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8973 {
8974 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8975 struct md_rdev *rdev2;
8976 int role, ret;
8977 char b[BDEVNAME_SIZE];
8978
8979 /*
8980 * If size is changed in another node then we need to
8981 * do resize as well.
8982 */
8983 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
8984 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
8985 if (ret)
8986 pr_info("md-cluster: resize failed\n");
8987 else
8988 bitmap_update_sb(mddev->bitmap);
8989 }
8990
8991 /* Check for change of roles in the active devices */
8992 rdev_for_each(rdev2, mddev) {
8993 if (test_bit(Faulty, &rdev2->flags))
8994 continue;
8995
8996 /* Check if the roles changed */
8997 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8998
8999 if (test_bit(Candidate, &rdev2->flags)) {
9000 if (role == 0xfffe) {
9001 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9002 md_kick_rdev_from_array(rdev2);
9003 continue;
9004 }
9005 else
9006 clear_bit(Candidate, &rdev2->flags);
9007 }
9008
9009 if (role != rdev2->raid_disk) {
9010 /* got activated */
9011 if (rdev2->raid_disk == -1 && role != 0xffff) {
9012 rdev2->saved_raid_disk = role;
9013 ret = remove_and_add_spares(mddev, rdev2);
9014 pr_info("Activated spare: %s\n",
9015 bdevname(rdev2->bdev,b));
9016 /* wakeup mddev->thread here, so array could
9017 * perform resync with the new activated disk */
9018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9019 md_wakeup_thread(mddev->thread);
9020
9021 }
9022 /* device faulty
9023 * We just want to do the minimum to mark the disk
9024 * as faulty. The recovery is performed by the
9025 * one who initiated the error.
9026 */
9027 if ((role == 0xfffe) || (role == 0xfffd)) {
9028 md_error(mddev, rdev2);
9029 clear_bit(Blocked, &rdev2->flags);
9030 }
9031 }
9032 }
9033
9034 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9035 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9036
9037 /* Finally set the event to be up to date */
9038 mddev->events = le64_to_cpu(sb->events);
9039 }
9040
9041 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9042 {
9043 int err;
9044 struct page *swapout = rdev->sb_page;
9045 struct mdp_superblock_1 *sb;
9046
9047 /* Store the sb page of the rdev in the swapout temporary
9048 * variable in case we err in the future
9049 */
9050 rdev->sb_page = NULL;
9051 err = alloc_disk_sb(rdev);
9052 if (err == 0) {
9053 ClearPageUptodate(rdev->sb_page);
9054 rdev->sb_loaded = 0;
9055 err = super_types[mddev->major_version].
9056 load_super(rdev, NULL, mddev->minor_version);
9057 }
9058 if (err < 0) {
9059 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9060 __func__, __LINE__, rdev->desc_nr, err);
9061 if (rdev->sb_page)
9062 put_page(rdev->sb_page);
9063 rdev->sb_page = swapout;
9064 rdev->sb_loaded = 1;
9065 return err;
9066 }
9067
9068 sb = page_address(rdev->sb_page);
9069 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9070 * is not set
9071 */
9072
9073 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9074 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9075
9076 /* The other node finished recovery, call spare_active to set
9077 * device In_sync and mddev->degraded
9078 */
9079 if (rdev->recovery_offset == MaxSector &&
9080 !test_bit(In_sync, &rdev->flags) &&
9081 mddev->pers->spare_active(mddev))
9082 sysfs_notify(&mddev->kobj, NULL, "degraded");
9083
9084 put_page(swapout);
9085 return 0;
9086 }
9087
9088 void md_reload_sb(struct mddev *mddev, int nr)
9089 {
9090 struct md_rdev *rdev;
9091 int err;
9092
9093 /* Find the rdev */
9094 rdev_for_each_rcu(rdev, mddev) {
9095 if (rdev->desc_nr == nr)
9096 break;
9097 }
9098
9099 if (!rdev || rdev->desc_nr != nr) {
9100 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9101 return;
9102 }
9103
9104 err = read_rdev(mddev, rdev);
9105 if (err < 0)
9106 return;
9107
9108 check_sb_changes(mddev, rdev);
9109
9110 /* Read all rdev's to update recovery_offset */
9111 rdev_for_each_rcu(rdev, mddev)
9112 read_rdev(mddev, rdev);
9113 }
9114 EXPORT_SYMBOL(md_reload_sb);
9115
9116 #ifndef MODULE
9117
9118 /*
9119 * Searches all registered partitions for autorun RAID arrays
9120 * at boot time.
9121 */
9122
9123 static DEFINE_MUTEX(detected_devices_mutex);
9124 static LIST_HEAD(all_detected_devices);
9125 struct detected_devices_node {
9126 struct list_head list;
9127 dev_t dev;
9128 };
9129
9130 void md_autodetect_dev(dev_t dev)
9131 {
9132 struct detected_devices_node *node_detected_dev;
9133
9134 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9135 if (node_detected_dev) {
9136 node_detected_dev->dev = dev;
9137 mutex_lock(&detected_devices_mutex);
9138 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9139 mutex_unlock(&detected_devices_mutex);
9140 }
9141 }
9142
9143 static void autostart_arrays(int part)
9144 {
9145 struct md_rdev *rdev;
9146 struct detected_devices_node *node_detected_dev;
9147 dev_t dev;
9148 int i_scanned, i_passed;
9149
9150 i_scanned = 0;
9151 i_passed = 0;
9152
9153 pr_info("md: Autodetecting RAID arrays.\n");
9154
9155 mutex_lock(&detected_devices_mutex);
9156 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9157 i_scanned++;
9158 node_detected_dev = list_entry(all_detected_devices.next,
9159 struct detected_devices_node, list);
9160 list_del(&node_detected_dev->list);
9161 dev = node_detected_dev->dev;
9162 kfree(node_detected_dev);
9163 mutex_unlock(&detected_devices_mutex);
9164 rdev = md_import_device(dev,0, 90);
9165 mutex_lock(&detected_devices_mutex);
9166 if (IS_ERR(rdev))
9167 continue;
9168
9169 if (test_bit(Faulty, &rdev->flags))
9170 continue;
9171
9172 set_bit(AutoDetected, &rdev->flags);
9173 list_add(&rdev->same_set, &pending_raid_disks);
9174 i_passed++;
9175 }
9176 mutex_unlock(&detected_devices_mutex);
9177
9178 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9179
9180 autorun_devices(part);
9181 }
9182
9183 #endif /* !MODULE */
9184
9185 static __exit void md_exit(void)
9186 {
9187 struct mddev *mddev;
9188 struct list_head *tmp;
9189 int delay = 1;
9190
9191 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9192 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9193
9194 unregister_blkdev(MD_MAJOR,"md");
9195 unregister_blkdev(mdp_major, "mdp");
9196 unregister_reboot_notifier(&md_notifier);
9197 unregister_sysctl_table(raid_table_header);
9198
9199 /* We cannot unload the modules while some process is
9200 * waiting for us in select() or poll() - wake them up
9201 */
9202 md_unloading = 1;
9203 while (waitqueue_active(&md_event_waiters)) {
9204 /* not safe to leave yet */
9205 wake_up(&md_event_waiters);
9206 msleep(delay);
9207 delay += delay;
9208 }
9209 remove_proc_entry("mdstat", NULL);
9210
9211 for_each_mddev(mddev, tmp) {
9212 export_array(mddev);
9213 mddev->ctime = 0;
9214 mddev->hold_active = 0;
9215 /*
9216 * for_each_mddev() will call mddev_put() at the end of each
9217 * iteration. As the mddev is now fully clear, this will
9218 * schedule the mddev for destruction by a workqueue, and the
9219 * destroy_workqueue() below will wait for that to complete.
9220 */
9221 }
9222 destroy_workqueue(md_misc_wq);
9223 destroy_workqueue(md_wq);
9224 }
9225
9226 subsys_initcall(md_init);
9227 module_exit(md_exit)
9228
9229 static int get_ro(char *buffer, struct kernel_param *kp)
9230 {
9231 return sprintf(buffer, "%d", start_readonly);
9232 }
9233 static int set_ro(const char *val, struct kernel_param *kp)
9234 {
9235 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9236 }
9237
9238 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9239 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9240 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9241 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9242
9243 MODULE_LICENSE("GPL");
9244 MODULE_DESCRIPTION("MD RAID framework");
9245 MODULE_ALIAS("md");
9246 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);