]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/md/md.c
Merge tag 'rpmsg-v4.20' of git://github.com/andersson/remoteproc
[mirror_ubuntu-eoan-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "md-bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 static struct kobj_type md_ktype;
88
89 struct md_cluster_operations *md_cluster_ops;
90 EXPORT_SYMBOL(md_cluster_ops);
91 struct module *md_cluster_mod;
92 EXPORT_SYMBOL(md_cluster_mod);
93
94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
95 static struct workqueue_struct *md_wq;
96 static struct workqueue_struct *md_misc_wq;
97
98 static int remove_and_add_spares(struct mddev *mddev,
99 struct md_rdev *this);
100 static void mddev_detach(struct mddev *mddev);
101
102 /*
103 * Default number of read corrections we'll attempt on an rdev
104 * before ejecting it from the array. We divide the read error
105 * count by 2 for every hour elapsed between read errors.
106 */
107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
108 /*
109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
110 * is 1000 KB/sec, so the extra system load does not show up that much.
111 * Increase it if you want to have more _guaranteed_ speed. Note that
112 * the RAID driver will use the maximum available bandwidth if the IO
113 * subsystem is idle. There is also an 'absolute maximum' reconstruction
114 * speed limit - in case reconstruction slows down your system despite
115 * idle IO detection.
116 *
117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
118 * or /sys/block/mdX/md/sync_speed_{min,max}
119 */
120
121 static int sysctl_speed_limit_min = 1000;
122 static int sysctl_speed_limit_max = 200000;
123 static inline int speed_min(struct mddev *mddev)
124 {
125 return mddev->sync_speed_min ?
126 mddev->sync_speed_min : sysctl_speed_limit_min;
127 }
128
129 static inline int speed_max(struct mddev *mddev)
130 {
131 return mddev->sync_speed_max ?
132 mddev->sync_speed_max : sysctl_speed_limit_max;
133 }
134
135 static void * flush_info_alloc(gfp_t gfp_flags, void *data)
136 {
137 return kzalloc(sizeof(struct flush_info), gfp_flags);
138 }
139 static void flush_info_free(void *flush_info, void *data)
140 {
141 kfree(flush_info);
142 }
143
144 static void * flush_bio_alloc(gfp_t gfp_flags, void *data)
145 {
146 return kzalloc(sizeof(struct flush_bio), gfp_flags);
147 }
148 static void flush_bio_free(void *flush_bio, void *data)
149 {
150 kfree(flush_bio);
151 }
152
153 static struct ctl_table_header *raid_table_header;
154
155 static struct ctl_table raid_table[] = {
156 {
157 .procname = "speed_limit_min",
158 .data = &sysctl_speed_limit_min,
159 .maxlen = sizeof(int),
160 .mode = S_IRUGO|S_IWUSR,
161 .proc_handler = proc_dointvec,
162 },
163 {
164 .procname = "speed_limit_max",
165 .data = &sysctl_speed_limit_max,
166 .maxlen = sizeof(int),
167 .mode = S_IRUGO|S_IWUSR,
168 .proc_handler = proc_dointvec,
169 },
170 { }
171 };
172
173 static struct ctl_table raid_dir_table[] = {
174 {
175 .procname = "raid",
176 .maxlen = 0,
177 .mode = S_IRUGO|S_IXUGO,
178 .child = raid_table,
179 },
180 { }
181 };
182
183 static struct ctl_table raid_root_table[] = {
184 {
185 .procname = "dev",
186 .maxlen = 0,
187 .mode = 0555,
188 .child = raid_dir_table,
189 },
190 { }
191 };
192
193 static const struct block_device_operations md_fops;
194
195 static int start_readonly;
196
197 /*
198 * The original mechanism for creating an md device is to create
199 * a device node in /dev and to open it. This causes races with device-close.
200 * The preferred method is to write to the "new_array" module parameter.
201 * This can avoid races.
202 * Setting create_on_open to false disables the original mechanism
203 * so all the races disappear.
204 */
205 static bool create_on_open = true;
206
207 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
208 struct mddev *mddev)
209 {
210 struct bio *b;
211
212 if (!mddev || !bioset_initialized(&mddev->bio_set))
213 return bio_alloc(gfp_mask, nr_iovecs);
214
215 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
216 if (!b)
217 return NULL;
218 return b;
219 }
220 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
221
222 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
223 {
224 if (!mddev || !bioset_initialized(&mddev->sync_set))
225 return bio_alloc(GFP_NOIO, 1);
226
227 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
228 }
229
230 /*
231 * We have a system wide 'event count' that is incremented
232 * on any 'interesting' event, and readers of /proc/mdstat
233 * can use 'poll' or 'select' to find out when the event
234 * count increases.
235 *
236 * Events are:
237 * start array, stop array, error, add device, remove device,
238 * start build, activate spare
239 */
240 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
241 static atomic_t md_event_count;
242 void md_new_event(struct mddev *mddev)
243 {
244 atomic_inc(&md_event_count);
245 wake_up(&md_event_waiters);
246 }
247 EXPORT_SYMBOL_GPL(md_new_event);
248
249 /*
250 * Enables to iterate over all existing md arrays
251 * all_mddevs_lock protects this list.
252 */
253 static LIST_HEAD(all_mddevs);
254 static DEFINE_SPINLOCK(all_mddevs_lock);
255
256 /*
257 * iterates through all used mddevs in the system.
258 * We take care to grab the all_mddevs_lock whenever navigating
259 * the list, and to always hold a refcount when unlocked.
260 * Any code which breaks out of this loop while own
261 * a reference to the current mddev and must mddev_put it.
262 */
263 #define for_each_mddev(_mddev,_tmp) \
264 \
265 for (({ spin_lock(&all_mddevs_lock); \
266 _tmp = all_mddevs.next; \
267 _mddev = NULL;}); \
268 ({ if (_tmp != &all_mddevs) \
269 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
270 spin_unlock(&all_mddevs_lock); \
271 if (_mddev) mddev_put(_mddev); \
272 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
273 _tmp != &all_mddevs;}); \
274 ({ spin_lock(&all_mddevs_lock); \
275 _tmp = _tmp->next;}) \
276 )
277
278 /* Rather than calling directly into the personality make_request function,
279 * IO requests come here first so that we can check if the device is
280 * being suspended pending a reconfiguration.
281 * We hold a refcount over the call to ->make_request. By the time that
282 * call has finished, the bio has been linked into some internal structure
283 * and so is visible to ->quiesce(), so we don't need the refcount any more.
284 */
285 static bool is_suspended(struct mddev *mddev, struct bio *bio)
286 {
287 if (mddev->suspended)
288 return true;
289 if (bio_data_dir(bio) != WRITE)
290 return false;
291 if (mddev->suspend_lo >= mddev->suspend_hi)
292 return false;
293 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
294 return false;
295 if (bio_end_sector(bio) < mddev->suspend_lo)
296 return false;
297 return true;
298 }
299
300 void md_handle_request(struct mddev *mddev, struct bio *bio)
301 {
302 check_suspended:
303 rcu_read_lock();
304 if (is_suspended(mddev, bio)) {
305 DEFINE_WAIT(__wait);
306 for (;;) {
307 prepare_to_wait(&mddev->sb_wait, &__wait,
308 TASK_UNINTERRUPTIBLE);
309 if (!is_suspended(mddev, bio))
310 break;
311 rcu_read_unlock();
312 schedule();
313 rcu_read_lock();
314 }
315 finish_wait(&mddev->sb_wait, &__wait);
316 }
317 atomic_inc(&mddev->active_io);
318 rcu_read_unlock();
319
320 if (!mddev->pers->make_request(mddev, bio)) {
321 atomic_dec(&mddev->active_io);
322 wake_up(&mddev->sb_wait);
323 goto check_suspended;
324 }
325
326 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
327 wake_up(&mddev->sb_wait);
328 }
329 EXPORT_SYMBOL(md_handle_request);
330
331 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
332 {
333 const int rw = bio_data_dir(bio);
334 const int sgrp = op_stat_group(bio_op(bio));
335 struct mddev *mddev = q->queuedata;
336 unsigned int sectors;
337 int cpu;
338
339 blk_queue_split(q, &bio);
340
341 if (mddev == NULL || mddev->pers == NULL) {
342 bio_io_error(bio);
343 return BLK_QC_T_NONE;
344 }
345 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
346 if (bio_sectors(bio) != 0)
347 bio->bi_status = BLK_STS_IOERR;
348 bio_endio(bio);
349 return BLK_QC_T_NONE;
350 }
351
352 /*
353 * save the sectors now since our bio can
354 * go away inside make_request
355 */
356 sectors = bio_sectors(bio);
357 /* bio could be mergeable after passing to underlayer */
358 bio->bi_opf &= ~REQ_NOMERGE;
359
360 md_handle_request(mddev, bio);
361
362 cpu = part_stat_lock();
363 part_stat_inc(cpu, &mddev->gendisk->part0, ios[sgrp]);
364 part_stat_add(cpu, &mddev->gendisk->part0, sectors[sgrp], sectors);
365 part_stat_unlock();
366
367 return BLK_QC_T_NONE;
368 }
369
370 /* mddev_suspend makes sure no new requests are submitted
371 * to the device, and that any requests that have been submitted
372 * are completely handled.
373 * Once mddev_detach() is called and completes, the module will be
374 * completely unused.
375 */
376 void mddev_suspend(struct mddev *mddev)
377 {
378 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
379 lockdep_assert_held(&mddev->reconfig_mutex);
380 if (mddev->suspended++)
381 return;
382 synchronize_rcu();
383 wake_up(&mddev->sb_wait);
384 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
385 smp_mb__after_atomic();
386 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
387 mddev->pers->quiesce(mddev, 1);
388 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
389 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
390
391 del_timer_sync(&mddev->safemode_timer);
392 }
393 EXPORT_SYMBOL_GPL(mddev_suspend);
394
395 void mddev_resume(struct mddev *mddev)
396 {
397 lockdep_assert_held(&mddev->reconfig_mutex);
398 if (--mddev->suspended)
399 return;
400 wake_up(&mddev->sb_wait);
401 mddev->pers->quiesce(mddev, 0);
402
403 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411 struct md_personality *pers = mddev->pers;
412 int ret = 0;
413
414 rcu_read_lock();
415 if (mddev->suspended)
416 ret = 1;
417 else if (pers && pers->congested)
418 ret = pers->congested(mddev, bits);
419 rcu_read_unlock();
420 return ret;
421 }
422 EXPORT_SYMBOL_GPL(mddev_congested);
423 static int md_congested(void *data, int bits)
424 {
425 struct mddev *mddev = data;
426 return mddev_congested(mddev, bits);
427 }
428
429 /*
430 * Generic flush handling for md
431 */
432 static void submit_flushes(struct work_struct *ws)
433 {
434 struct flush_info *fi = container_of(ws, struct flush_info, flush_work);
435 struct mddev *mddev = fi->mddev;
436 struct bio *bio = fi->bio;
437
438 bio->bi_opf &= ~REQ_PREFLUSH;
439 md_handle_request(mddev, bio);
440
441 mempool_free(fi, mddev->flush_pool);
442 }
443
444 static void md_end_flush(struct bio *fbio)
445 {
446 struct flush_bio *fb = fbio->bi_private;
447 struct md_rdev *rdev = fb->rdev;
448 struct flush_info *fi = fb->fi;
449 struct bio *bio = fi->bio;
450 struct mddev *mddev = fi->mddev;
451
452 rdev_dec_pending(rdev, mddev);
453
454 if (atomic_dec_and_test(&fi->flush_pending)) {
455 if (bio->bi_iter.bi_size == 0) {
456 /* an empty barrier - all done */
457 bio_endio(bio);
458 mempool_free(fi, mddev->flush_pool);
459 } else {
460 INIT_WORK(&fi->flush_work, submit_flushes);
461 queue_work(md_wq, &fi->flush_work);
462 }
463 }
464
465 mempool_free(fb, mddev->flush_bio_pool);
466 bio_put(fbio);
467 }
468
469 void md_flush_request(struct mddev *mddev, struct bio *bio)
470 {
471 struct md_rdev *rdev;
472 struct flush_info *fi;
473
474 fi = mempool_alloc(mddev->flush_pool, GFP_NOIO);
475
476 fi->bio = bio;
477 fi->mddev = mddev;
478 atomic_set(&fi->flush_pending, 1);
479
480 rcu_read_lock();
481 rdev_for_each_rcu(rdev, mddev)
482 if (rdev->raid_disk >= 0 &&
483 !test_bit(Faulty, &rdev->flags)) {
484 /* Take two references, one is dropped
485 * when request finishes, one after
486 * we reclaim rcu_read_lock
487 */
488 struct bio *bi;
489 struct flush_bio *fb;
490 atomic_inc(&rdev->nr_pending);
491 atomic_inc(&rdev->nr_pending);
492 rcu_read_unlock();
493
494 fb = mempool_alloc(mddev->flush_bio_pool, GFP_NOIO);
495 fb->fi = fi;
496 fb->rdev = rdev;
497
498 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
499 bio_set_dev(bi, rdev->bdev);
500 bi->bi_end_io = md_end_flush;
501 bi->bi_private = fb;
502 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
503
504 atomic_inc(&fi->flush_pending);
505 submit_bio(bi);
506
507 rcu_read_lock();
508 rdev_dec_pending(rdev, mddev);
509 }
510 rcu_read_unlock();
511
512 if (atomic_dec_and_test(&fi->flush_pending)) {
513 if (bio->bi_iter.bi_size == 0) {
514 /* an empty barrier - all done */
515 bio_endio(bio);
516 mempool_free(fi, mddev->flush_pool);
517 } else {
518 INIT_WORK(&fi->flush_work, submit_flushes);
519 queue_work(md_wq, &fi->flush_work);
520 }
521 }
522 }
523 EXPORT_SYMBOL(md_flush_request);
524
525 static inline struct mddev *mddev_get(struct mddev *mddev)
526 {
527 atomic_inc(&mddev->active);
528 return mddev;
529 }
530
531 static void mddev_delayed_delete(struct work_struct *ws);
532
533 static void mddev_put(struct mddev *mddev)
534 {
535 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
536 return;
537 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
538 mddev->ctime == 0 && !mddev->hold_active) {
539 /* Array is not configured at all, and not held active,
540 * so destroy it */
541 list_del_init(&mddev->all_mddevs);
542
543 /*
544 * Call queue_work inside the spinlock so that
545 * flush_workqueue() after mddev_find will succeed in waiting
546 * for the work to be done.
547 */
548 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
549 queue_work(md_misc_wq, &mddev->del_work);
550 }
551 spin_unlock(&all_mddevs_lock);
552 }
553
554 static void md_safemode_timeout(struct timer_list *t);
555
556 void mddev_init(struct mddev *mddev)
557 {
558 kobject_init(&mddev->kobj, &md_ktype);
559 mutex_init(&mddev->open_mutex);
560 mutex_init(&mddev->reconfig_mutex);
561 mutex_init(&mddev->bitmap_info.mutex);
562 INIT_LIST_HEAD(&mddev->disks);
563 INIT_LIST_HEAD(&mddev->all_mddevs);
564 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
565 atomic_set(&mddev->active, 1);
566 atomic_set(&mddev->openers, 0);
567 atomic_set(&mddev->active_io, 0);
568 spin_lock_init(&mddev->lock);
569 init_waitqueue_head(&mddev->sb_wait);
570 init_waitqueue_head(&mddev->recovery_wait);
571 mddev->reshape_position = MaxSector;
572 mddev->reshape_backwards = 0;
573 mddev->last_sync_action = "none";
574 mddev->resync_min = 0;
575 mddev->resync_max = MaxSector;
576 mddev->level = LEVEL_NONE;
577 }
578 EXPORT_SYMBOL_GPL(mddev_init);
579
580 static struct mddev *mddev_find(dev_t unit)
581 {
582 struct mddev *mddev, *new = NULL;
583
584 if (unit && MAJOR(unit) != MD_MAJOR)
585 unit &= ~((1<<MdpMinorShift)-1);
586
587 retry:
588 spin_lock(&all_mddevs_lock);
589
590 if (unit) {
591 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
592 if (mddev->unit == unit) {
593 mddev_get(mddev);
594 spin_unlock(&all_mddevs_lock);
595 kfree(new);
596 return mddev;
597 }
598
599 if (new) {
600 list_add(&new->all_mddevs, &all_mddevs);
601 spin_unlock(&all_mddevs_lock);
602 new->hold_active = UNTIL_IOCTL;
603 return new;
604 }
605 } else if (new) {
606 /* find an unused unit number */
607 static int next_minor = 512;
608 int start = next_minor;
609 int is_free = 0;
610 int dev = 0;
611 while (!is_free) {
612 dev = MKDEV(MD_MAJOR, next_minor);
613 next_minor++;
614 if (next_minor > MINORMASK)
615 next_minor = 0;
616 if (next_minor == start) {
617 /* Oh dear, all in use. */
618 spin_unlock(&all_mddevs_lock);
619 kfree(new);
620 return NULL;
621 }
622
623 is_free = 1;
624 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
625 if (mddev->unit == dev) {
626 is_free = 0;
627 break;
628 }
629 }
630 new->unit = dev;
631 new->md_minor = MINOR(dev);
632 new->hold_active = UNTIL_STOP;
633 list_add(&new->all_mddevs, &all_mddevs);
634 spin_unlock(&all_mddevs_lock);
635 return new;
636 }
637 spin_unlock(&all_mddevs_lock);
638
639 new = kzalloc(sizeof(*new), GFP_KERNEL);
640 if (!new)
641 return NULL;
642
643 new->unit = unit;
644 if (MAJOR(unit) == MD_MAJOR)
645 new->md_minor = MINOR(unit);
646 else
647 new->md_minor = MINOR(unit) >> MdpMinorShift;
648
649 mddev_init(new);
650
651 goto retry;
652 }
653
654 static struct attribute_group md_redundancy_group;
655
656 void mddev_unlock(struct mddev *mddev)
657 {
658 if (mddev->to_remove) {
659 /* These cannot be removed under reconfig_mutex as
660 * an access to the files will try to take reconfig_mutex
661 * while holding the file unremovable, which leads to
662 * a deadlock.
663 * So hold set sysfs_active while the remove in happeing,
664 * and anything else which might set ->to_remove or my
665 * otherwise change the sysfs namespace will fail with
666 * -EBUSY if sysfs_active is still set.
667 * We set sysfs_active under reconfig_mutex and elsewhere
668 * test it under the same mutex to ensure its correct value
669 * is seen.
670 */
671 struct attribute_group *to_remove = mddev->to_remove;
672 mddev->to_remove = NULL;
673 mddev->sysfs_active = 1;
674 mutex_unlock(&mddev->reconfig_mutex);
675
676 if (mddev->kobj.sd) {
677 if (to_remove != &md_redundancy_group)
678 sysfs_remove_group(&mddev->kobj, to_remove);
679 if (mddev->pers == NULL ||
680 mddev->pers->sync_request == NULL) {
681 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
682 if (mddev->sysfs_action)
683 sysfs_put(mddev->sysfs_action);
684 mddev->sysfs_action = NULL;
685 }
686 }
687 mddev->sysfs_active = 0;
688 } else
689 mutex_unlock(&mddev->reconfig_mutex);
690
691 /* As we've dropped the mutex we need a spinlock to
692 * make sure the thread doesn't disappear
693 */
694 spin_lock(&pers_lock);
695 md_wakeup_thread(mddev->thread);
696 wake_up(&mddev->sb_wait);
697 spin_unlock(&pers_lock);
698 }
699 EXPORT_SYMBOL_GPL(mddev_unlock);
700
701 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
702 {
703 struct md_rdev *rdev;
704
705 rdev_for_each_rcu(rdev, mddev)
706 if (rdev->desc_nr == nr)
707 return rdev;
708
709 return NULL;
710 }
711 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
712
713 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
714 {
715 struct md_rdev *rdev;
716
717 rdev_for_each(rdev, mddev)
718 if (rdev->bdev->bd_dev == dev)
719 return rdev;
720
721 return NULL;
722 }
723
724 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
725 {
726 struct md_rdev *rdev;
727
728 rdev_for_each_rcu(rdev, mddev)
729 if (rdev->bdev->bd_dev == dev)
730 return rdev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
735
736 static struct md_personality *find_pers(int level, char *clevel)
737 {
738 struct md_personality *pers;
739 list_for_each_entry(pers, &pers_list, list) {
740 if (level != LEVEL_NONE && pers->level == level)
741 return pers;
742 if (strcmp(pers->name, clevel)==0)
743 return pers;
744 }
745 return NULL;
746 }
747
748 /* return the offset of the super block in 512byte sectors */
749 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
750 {
751 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
752 return MD_NEW_SIZE_SECTORS(num_sectors);
753 }
754
755 static int alloc_disk_sb(struct md_rdev *rdev)
756 {
757 rdev->sb_page = alloc_page(GFP_KERNEL);
758 if (!rdev->sb_page)
759 return -ENOMEM;
760 return 0;
761 }
762
763 void md_rdev_clear(struct md_rdev *rdev)
764 {
765 if (rdev->sb_page) {
766 put_page(rdev->sb_page);
767 rdev->sb_loaded = 0;
768 rdev->sb_page = NULL;
769 rdev->sb_start = 0;
770 rdev->sectors = 0;
771 }
772 if (rdev->bb_page) {
773 put_page(rdev->bb_page);
774 rdev->bb_page = NULL;
775 }
776 badblocks_exit(&rdev->badblocks);
777 }
778 EXPORT_SYMBOL_GPL(md_rdev_clear);
779
780 static void super_written(struct bio *bio)
781 {
782 struct md_rdev *rdev = bio->bi_private;
783 struct mddev *mddev = rdev->mddev;
784
785 if (bio->bi_status) {
786 pr_err("md: super_written gets error=%d\n", bio->bi_status);
787 md_error(mddev, rdev);
788 if (!test_bit(Faulty, &rdev->flags)
789 && (bio->bi_opf & MD_FAILFAST)) {
790 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
791 set_bit(LastDev, &rdev->flags);
792 }
793 } else
794 clear_bit(LastDev, &rdev->flags);
795
796 if (atomic_dec_and_test(&mddev->pending_writes))
797 wake_up(&mddev->sb_wait);
798 rdev_dec_pending(rdev, mddev);
799 bio_put(bio);
800 }
801
802 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
803 sector_t sector, int size, struct page *page)
804 {
805 /* write first size bytes of page to sector of rdev
806 * Increment mddev->pending_writes before returning
807 * and decrement it on completion, waking up sb_wait
808 * if zero is reached.
809 * If an error occurred, call md_error
810 */
811 struct bio *bio;
812 int ff = 0;
813
814 if (!page)
815 return;
816
817 if (test_bit(Faulty, &rdev->flags))
818 return;
819
820 bio = md_bio_alloc_sync(mddev);
821
822 atomic_inc(&rdev->nr_pending);
823
824 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
825 bio->bi_iter.bi_sector = sector;
826 bio_add_page(bio, page, size, 0);
827 bio->bi_private = rdev;
828 bio->bi_end_io = super_written;
829
830 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
831 test_bit(FailFast, &rdev->flags) &&
832 !test_bit(LastDev, &rdev->flags))
833 ff = MD_FAILFAST;
834 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
835
836 atomic_inc(&mddev->pending_writes);
837 submit_bio(bio);
838 }
839
840 int md_super_wait(struct mddev *mddev)
841 {
842 /* wait for all superblock writes that were scheduled to complete */
843 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
844 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
845 return -EAGAIN;
846 return 0;
847 }
848
849 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
850 struct page *page, int op, int op_flags, bool metadata_op)
851 {
852 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
853 int ret;
854
855 if (metadata_op && rdev->meta_bdev)
856 bio_set_dev(bio, rdev->meta_bdev);
857 else
858 bio_set_dev(bio, rdev->bdev);
859 bio_set_op_attrs(bio, op, op_flags);
860 if (metadata_op)
861 bio->bi_iter.bi_sector = sector + rdev->sb_start;
862 else if (rdev->mddev->reshape_position != MaxSector &&
863 (rdev->mddev->reshape_backwards ==
864 (sector >= rdev->mddev->reshape_position)))
865 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
866 else
867 bio->bi_iter.bi_sector = sector + rdev->data_offset;
868 bio_add_page(bio, page, size, 0);
869
870 submit_bio_wait(bio);
871
872 ret = !bio->bi_status;
873 bio_put(bio);
874 return ret;
875 }
876 EXPORT_SYMBOL_GPL(sync_page_io);
877
878 static int read_disk_sb(struct md_rdev *rdev, int size)
879 {
880 char b[BDEVNAME_SIZE];
881
882 if (rdev->sb_loaded)
883 return 0;
884
885 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
886 goto fail;
887 rdev->sb_loaded = 1;
888 return 0;
889
890 fail:
891 pr_err("md: disabled device %s, could not read superblock.\n",
892 bdevname(rdev->bdev,b));
893 return -EINVAL;
894 }
895
896 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
897 {
898 return sb1->set_uuid0 == sb2->set_uuid0 &&
899 sb1->set_uuid1 == sb2->set_uuid1 &&
900 sb1->set_uuid2 == sb2->set_uuid2 &&
901 sb1->set_uuid3 == sb2->set_uuid3;
902 }
903
904 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
905 {
906 int ret;
907 mdp_super_t *tmp1, *tmp2;
908
909 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
910 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
911
912 if (!tmp1 || !tmp2) {
913 ret = 0;
914 goto abort;
915 }
916
917 *tmp1 = *sb1;
918 *tmp2 = *sb2;
919
920 /*
921 * nr_disks is not constant
922 */
923 tmp1->nr_disks = 0;
924 tmp2->nr_disks = 0;
925
926 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
927 abort:
928 kfree(tmp1);
929 kfree(tmp2);
930 return ret;
931 }
932
933 static u32 md_csum_fold(u32 csum)
934 {
935 csum = (csum & 0xffff) + (csum >> 16);
936 return (csum & 0xffff) + (csum >> 16);
937 }
938
939 static unsigned int calc_sb_csum(mdp_super_t *sb)
940 {
941 u64 newcsum = 0;
942 u32 *sb32 = (u32*)sb;
943 int i;
944 unsigned int disk_csum, csum;
945
946 disk_csum = sb->sb_csum;
947 sb->sb_csum = 0;
948
949 for (i = 0; i < MD_SB_BYTES/4 ; i++)
950 newcsum += sb32[i];
951 csum = (newcsum & 0xffffffff) + (newcsum>>32);
952
953 #ifdef CONFIG_ALPHA
954 /* This used to use csum_partial, which was wrong for several
955 * reasons including that different results are returned on
956 * different architectures. It isn't critical that we get exactly
957 * the same return value as before (we always csum_fold before
958 * testing, and that removes any differences). However as we
959 * know that csum_partial always returned a 16bit value on
960 * alphas, do a fold to maximise conformity to previous behaviour.
961 */
962 sb->sb_csum = md_csum_fold(disk_csum);
963 #else
964 sb->sb_csum = disk_csum;
965 #endif
966 return csum;
967 }
968
969 /*
970 * Handle superblock details.
971 * We want to be able to handle multiple superblock formats
972 * so we have a common interface to them all, and an array of
973 * different handlers.
974 * We rely on user-space to write the initial superblock, and support
975 * reading and updating of superblocks.
976 * Interface methods are:
977 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
978 * loads and validates a superblock on dev.
979 * if refdev != NULL, compare superblocks on both devices
980 * Return:
981 * 0 - dev has a superblock that is compatible with refdev
982 * 1 - dev has a superblock that is compatible and newer than refdev
983 * so dev should be used as the refdev in future
984 * -EINVAL superblock incompatible or invalid
985 * -othererror e.g. -EIO
986 *
987 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
988 * Verify that dev is acceptable into mddev.
989 * The first time, mddev->raid_disks will be 0, and data from
990 * dev should be merged in. Subsequent calls check that dev
991 * is new enough. Return 0 or -EINVAL
992 *
993 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
994 * Update the superblock for rdev with data in mddev
995 * This does not write to disc.
996 *
997 */
998
999 struct super_type {
1000 char *name;
1001 struct module *owner;
1002 int (*load_super)(struct md_rdev *rdev,
1003 struct md_rdev *refdev,
1004 int minor_version);
1005 int (*validate_super)(struct mddev *mddev,
1006 struct md_rdev *rdev);
1007 void (*sync_super)(struct mddev *mddev,
1008 struct md_rdev *rdev);
1009 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1010 sector_t num_sectors);
1011 int (*allow_new_offset)(struct md_rdev *rdev,
1012 unsigned long long new_offset);
1013 };
1014
1015 /*
1016 * Check that the given mddev has no bitmap.
1017 *
1018 * This function is called from the run method of all personalities that do not
1019 * support bitmaps. It prints an error message and returns non-zero if mddev
1020 * has a bitmap. Otherwise, it returns 0.
1021 *
1022 */
1023 int md_check_no_bitmap(struct mddev *mddev)
1024 {
1025 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1026 return 0;
1027 pr_warn("%s: bitmaps are not supported for %s\n",
1028 mdname(mddev), mddev->pers->name);
1029 return 1;
1030 }
1031 EXPORT_SYMBOL(md_check_no_bitmap);
1032
1033 /*
1034 * load_super for 0.90.0
1035 */
1036 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1037 {
1038 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1039 mdp_super_t *sb;
1040 int ret;
1041
1042 /*
1043 * Calculate the position of the superblock (512byte sectors),
1044 * it's at the end of the disk.
1045 *
1046 * It also happens to be a multiple of 4Kb.
1047 */
1048 rdev->sb_start = calc_dev_sboffset(rdev);
1049
1050 ret = read_disk_sb(rdev, MD_SB_BYTES);
1051 if (ret)
1052 return ret;
1053
1054 ret = -EINVAL;
1055
1056 bdevname(rdev->bdev, b);
1057 sb = page_address(rdev->sb_page);
1058
1059 if (sb->md_magic != MD_SB_MAGIC) {
1060 pr_warn("md: invalid raid superblock magic on %s\n", b);
1061 goto abort;
1062 }
1063
1064 if (sb->major_version != 0 ||
1065 sb->minor_version < 90 ||
1066 sb->minor_version > 91) {
1067 pr_warn("Bad version number %d.%d on %s\n",
1068 sb->major_version, sb->minor_version, b);
1069 goto abort;
1070 }
1071
1072 if (sb->raid_disks <= 0)
1073 goto abort;
1074
1075 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1076 pr_warn("md: invalid superblock checksum on %s\n", b);
1077 goto abort;
1078 }
1079
1080 rdev->preferred_minor = sb->md_minor;
1081 rdev->data_offset = 0;
1082 rdev->new_data_offset = 0;
1083 rdev->sb_size = MD_SB_BYTES;
1084 rdev->badblocks.shift = -1;
1085
1086 if (sb->level == LEVEL_MULTIPATH)
1087 rdev->desc_nr = -1;
1088 else
1089 rdev->desc_nr = sb->this_disk.number;
1090
1091 if (!refdev) {
1092 ret = 1;
1093 } else {
1094 __u64 ev1, ev2;
1095 mdp_super_t *refsb = page_address(refdev->sb_page);
1096 if (!md_uuid_equal(refsb, sb)) {
1097 pr_warn("md: %s has different UUID to %s\n",
1098 b, bdevname(refdev->bdev,b2));
1099 goto abort;
1100 }
1101 if (!md_sb_equal(refsb, sb)) {
1102 pr_warn("md: %s has same UUID but different superblock to %s\n",
1103 b, bdevname(refdev->bdev, b2));
1104 goto abort;
1105 }
1106 ev1 = md_event(sb);
1107 ev2 = md_event(refsb);
1108 if (ev1 > ev2)
1109 ret = 1;
1110 else
1111 ret = 0;
1112 }
1113 rdev->sectors = rdev->sb_start;
1114 /* Limit to 4TB as metadata cannot record more than that.
1115 * (not needed for Linear and RAID0 as metadata doesn't
1116 * record this size)
1117 */
1118 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1119 sb->level >= 1)
1120 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1121
1122 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1123 /* "this cannot possibly happen" ... */
1124 ret = -EINVAL;
1125
1126 abort:
1127 return ret;
1128 }
1129
1130 /*
1131 * validate_super for 0.90.0
1132 */
1133 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1134 {
1135 mdp_disk_t *desc;
1136 mdp_super_t *sb = page_address(rdev->sb_page);
1137 __u64 ev1 = md_event(sb);
1138
1139 rdev->raid_disk = -1;
1140 clear_bit(Faulty, &rdev->flags);
1141 clear_bit(In_sync, &rdev->flags);
1142 clear_bit(Bitmap_sync, &rdev->flags);
1143 clear_bit(WriteMostly, &rdev->flags);
1144
1145 if (mddev->raid_disks == 0) {
1146 mddev->major_version = 0;
1147 mddev->minor_version = sb->minor_version;
1148 mddev->patch_version = sb->patch_version;
1149 mddev->external = 0;
1150 mddev->chunk_sectors = sb->chunk_size >> 9;
1151 mddev->ctime = sb->ctime;
1152 mddev->utime = sb->utime;
1153 mddev->level = sb->level;
1154 mddev->clevel[0] = 0;
1155 mddev->layout = sb->layout;
1156 mddev->raid_disks = sb->raid_disks;
1157 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1158 mddev->events = ev1;
1159 mddev->bitmap_info.offset = 0;
1160 mddev->bitmap_info.space = 0;
1161 /* bitmap can use 60 K after the 4K superblocks */
1162 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1163 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1164 mddev->reshape_backwards = 0;
1165
1166 if (mddev->minor_version >= 91) {
1167 mddev->reshape_position = sb->reshape_position;
1168 mddev->delta_disks = sb->delta_disks;
1169 mddev->new_level = sb->new_level;
1170 mddev->new_layout = sb->new_layout;
1171 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1172 if (mddev->delta_disks < 0)
1173 mddev->reshape_backwards = 1;
1174 } else {
1175 mddev->reshape_position = MaxSector;
1176 mddev->delta_disks = 0;
1177 mddev->new_level = mddev->level;
1178 mddev->new_layout = mddev->layout;
1179 mddev->new_chunk_sectors = mddev->chunk_sectors;
1180 }
1181
1182 if (sb->state & (1<<MD_SB_CLEAN))
1183 mddev->recovery_cp = MaxSector;
1184 else {
1185 if (sb->events_hi == sb->cp_events_hi &&
1186 sb->events_lo == sb->cp_events_lo) {
1187 mddev->recovery_cp = sb->recovery_cp;
1188 } else
1189 mddev->recovery_cp = 0;
1190 }
1191
1192 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1193 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1194 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1195 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1196
1197 mddev->max_disks = MD_SB_DISKS;
1198
1199 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1200 mddev->bitmap_info.file == NULL) {
1201 mddev->bitmap_info.offset =
1202 mddev->bitmap_info.default_offset;
1203 mddev->bitmap_info.space =
1204 mddev->bitmap_info.default_space;
1205 }
1206
1207 } else if (mddev->pers == NULL) {
1208 /* Insist on good event counter while assembling, except
1209 * for spares (which don't need an event count) */
1210 ++ev1;
1211 if (sb->disks[rdev->desc_nr].state & (
1212 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1213 if (ev1 < mddev->events)
1214 return -EINVAL;
1215 } else if (mddev->bitmap) {
1216 /* if adding to array with a bitmap, then we can accept an
1217 * older device ... but not too old.
1218 */
1219 if (ev1 < mddev->bitmap->events_cleared)
1220 return 0;
1221 if (ev1 < mddev->events)
1222 set_bit(Bitmap_sync, &rdev->flags);
1223 } else {
1224 if (ev1 < mddev->events)
1225 /* just a hot-add of a new device, leave raid_disk at -1 */
1226 return 0;
1227 }
1228
1229 if (mddev->level != LEVEL_MULTIPATH) {
1230 desc = sb->disks + rdev->desc_nr;
1231
1232 if (desc->state & (1<<MD_DISK_FAULTY))
1233 set_bit(Faulty, &rdev->flags);
1234 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1235 desc->raid_disk < mddev->raid_disks */) {
1236 set_bit(In_sync, &rdev->flags);
1237 rdev->raid_disk = desc->raid_disk;
1238 rdev->saved_raid_disk = desc->raid_disk;
1239 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1240 /* active but not in sync implies recovery up to
1241 * reshape position. We don't know exactly where
1242 * that is, so set to zero for now */
1243 if (mddev->minor_version >= 91) {
1244 rdev->recovery_offset = 0;
1245 rdev->raid_disk = desc->raid_disk;
1246 }
1247 }
1248 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1249 set_bit(WriteMostly, &rdev->flags);
1250 if (desc->state & (1<<MD_DISK_FAILFAST))
1251 set_bit(FailFast, &rdev->flags);
1252 } else /* MULTIPATH are always insync */
1253 set_bit(In_sync, &rdev->flags);
1254 return 0;
1255 }
1256
1257 /*
1258 * sync_super for 0.90.0
1259 */
1260 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1261 {
1262 mdp_super_t *sb;
1263 struct md_rdev *rdev2;
1264 int next_spare = mddev->raid_disks;
1265
1266 /* make rdev->sb match mddev data..
1267 *
1268 * 1/ zero out disks
1269 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1270 * 3/ any empty disks < next_spare become removed
1271 *
1272 * disks[0] gets initialised to REMOVED because
1273 * we cannot be sure from other fields if it has
1274 * been initialised or not.
1275 */
1276 int i;
1277 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1278
1279 rdev->sb_size = MD_SB_BYTES;
1280
1281 sb = page_address(rdev->sb_page);
1282
1283 memset(sb, 0, sizeof(*sb));
1284
1285 sb->md_magic = MD_SB_MAGIC;
1286 sb->major_version = mddev->major_version;
1287 sb->patch_version = mddev->patch_version;
1288 sb->gvalid_words = 0; /* ignored */
1289 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1290 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1291 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1292 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1293
1294 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1295 sb->level = mddev->level;
1296 sb->size = mddev->dev_sectors / 2;
1297 sb->raid_disks = mddev->raid_disks;
1298 sb->md_minor = mddev->md_minor;
1299 sb->not_persistent = 0;
1300 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1301 sb->state = 0;
1302 sb->events_hi = (mddev->events>>32);
1303 sb->events_lo = (u32)mddev->events;
1304
1305 if (mddev->reshape_position == MaxSector)
1306 sb->minor_version = 90;
1307 else {
1308 sb->minor_version = 91;
1309 sb->reshape_position = mddev->reshape_position;
1310 sb->new_level = mddev->new_level;
1311 sb->delta_disks = mddev->delta_disks;
1312 sb->new_layout = mddev->new_layout;
1313 sb->new_chunk = mddev->new_chunk_sectors << 9;
1314 }
1315 mddev->minor_version = sb->minor_version;
1316 if (mddev->in_sync)
1317 {
1318 sb->recovery_cp = mddev->recovery_cp;
1319 sb->cp_events_hi = (mddev->events>>32);
1320 sb->cp_events_lo = (u32)mddev->events;
1321 if (mddev->recovery_cp == MaxSector)
1322 sb->state = (1<< MD_SB_CLEAN);
1323 } else
1324 sb->recovery_cp = 0;
1325
1326 sb->layout = mddev->layout;
1327 sb->chunk_size = mddev->chunk_sectors << 9;
1328
1329 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1330 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1331
1332 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1333 rdev_for_each(rdev2, mddev) {
1334 mdp_disk_t *d;
1335 int desc_nr;
1336 int is_active = test_bit(In_sync, &rdev2->flags);
1337
1338 if (rdev2->raid_disk >= 0 &&
1339 sb->minor_version >= 91)
1340 /* we have nowhere to store the recovery_offset,
1341 * but if it is not below the reshape_position,
1342 * we can piggy-back on that.
1343 */
1344 is_active = 1;
1345 if (rdev2->raid_disk < 0 ||
1346 test_bit(Faulty, &rdev2->flags))
1347 is_active = 0;
1348 if (is_active)
1349 desc_nr = rdev2->raid_disk;
1350 else
1351 desc_nr = next_spare++;
1352 rdev2->desc_nr = desc_nr;
1353 d = &sb->disks[rdev2->desc_nr];
1354 nr_disks++;
1355 d->number = rdev2->desc_nr;
1356 d->major = MAJOR(rdev2->bdev->bd_dev);
1357 d->minor = MINOR(rdev2->bdev->bd_dev);
1358 if (is_active)
1359 d->raid_disk = rdev2->raid_disk;
1360 else
1361 d->raid_disk = rdev2->desc_nr; /* compatibility */
1362 if (test_bit(Faulty, &rdev2->flags))
1363 d->state = (1<<MD_DISK_FAULTY);
1364 else if (is_active) {
1365 d->state = (1<<MD_DISK_ACTIVE);
1366 if (test_bit(In_sync, &rdev2->flags))
1367 d->state |= (1<<MD_DISK_SYNC);
1368 active++;
1369 working++;
1370 } else {
1371 d->state = 0;
1372 spare++;
1373 working++;
1374 }
1375 if (test_bit(WriteMostly, &rdev2->flags))
1376 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1377 if (test_bit(FailFast, &rdev2->flags))
1378 d->state |= (1<<MD_DISK_FAILFAST);
1379 }
1380 /* now set the "removed" and "faulty" bits on any missing devices */
1381 for (i=0 ; i < mddev->raid_disks ; i++) {
1382 mdp_disk_t *d = &sb->disks[i];
1383 if (d->state == 0 && d->number == 0) {
1384 d->number = i;
1385 d->raid_disk = i;
1386 d->state = (1<<MD_DISK_REMOVED);
1387 d->state |= (1<<MD_DISK_FAULTY);
1388 failed++;
1389 }
1390 }
1391 sb->nr_disks = nr_disks;
1392 sb->active_disks = active;
1393 sb->working_disks = working;
1394 sb->failed_disks = failed;
1395 sb->spare_disks = spare;
1396
1397 sb->this_disk = sb->disks[rdev->desc_nr];
1398 sb->sb_csum = calc_sb_csum(sb);
1399 }
1400
1401 /*
1402 * rdev_size_change for 0.90.0
1403 */
1404 static unsigned long long
1405 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1406 {
1407 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1408 return 0; /* component must fit device */
1409 if (rdev->mddev->bitmap_info.offset)
1410 return 0; /* can't move bitmap */
1411 rdev->sb_start = calc_dev_sboffset(rdev);
1412 if (!num_sectors || num_sectors > rdev->sb_start)
1413 num_sectors = rdev->sb_start;
1414 /* Limit to 4TB as metadata cannot record more than that.
1415 * 4TB == 2^32 KB, or 2*2^32 sectors.
1416 */
1417 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1418 rdev->mddev->level >= 1)
1419 num_sectors = (sector_t)(2ULL << 32) - 2;
1420 do {
1421 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1422 rdev->sb_page);
1423 } while (md_super_wait(rdev->mddev) < 0);
1424 return num_sectors;
1425 }
1426
1427 static int
1428 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1429 {
1430 /* non-zero offset changes not possible with v0.90 */
1431 return new_offset == 0;
1432 }
1433
1434 /*
1435 * version 1 superblock
1436 */
1437
1438 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1439 {
1440 __le32 disk_csum;
1441 u32 csum;
1442 unsigned long long newcsum;
1443 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1444 __le32 *isuper = (__le32*)sb;
1445
1446 disk_csum = sb->sb_csum;
1447 sb->sb_csum = 0;
1448 newcsum = 0;
1449 for (; size >= 4; size -= 4)
1450 newcsum += le32_to_cpu(*isuper++);
1451
1452 if (size == 2)
1453 newcsum += le16_to_cpu(*(__le16*) isuper);
1454
1455 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1456 sb->sb_csum = disk_csum;
1457 return cpu_to_le32(csum);
1458 }
1459
1460 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1461 {
1462 struct mdp_superblock_1 *sb;
1463 int ret;
1464 sector_t sb_start;
1465 sector_t sectors;
1466 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1467 int bmask;
1468
1469 /*
1470 * Calculate the position of the superblock in 512byte sectors.
1471 * It is always aligned to a 4K boundary and
1472 * depeding on minor_version, it can be:
1473 * 0: At least 8K, but less than 12K, from end of device
1474 * 1: At start of device
1475 * 2: 4K from start of device.
1476 */
1477 switch(minor_version) {
1478 case 0:
1479 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1480 sb_start -= 8*2;
1481 sb_start &= ~(sector_t)(4*2-1);
1482 break;
1483 case 1:
1484 sb_start = 0;
1485 break;
1486 case 2:
1487 sb_start = 8;
1488 break;
1489 default:
1490 return -EINVAL;
1491 }
1492 rdev->sb_start = sb_start;
1493
1494 /* superblock is rarely larger than 1K, but it can be larger,
1495 * and it is safe to read 4k, so we do that
1496 */
1497 ret = read_disk_sb(rdev, 4096);
1498 if (ret) return ret;
1499
1500 sb = page_address(rdev->sb_page);
1501
1502 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1503 sb->major_version != cpu_to_le32(1) ||
1504 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1505 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1506 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1507 return -EINVAL;
1508
1509 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1510 pr_warn("md: invalid superblock checksum on %s\n",
1511 bdevname(rdev->bdev,b));
1512 return -EINVAL;
1513 }
1514 if (le64_to_cpu(sb->data_size) < 10) {
1515 pr_warn("md: data_size too small on %s\n",
1516 bdevname(rdev->bdev,b));
1517 return -EINVAL;
1518 }
1519 if (sb->pad0 ||
1520 sb->pad3[0] ||
1521 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1522 /* Some padding is non-zero, might be a new feature */
1523 return -EINVAL;
1524
1525 rdev->preferred_minor = 0xffff;
1526 rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 rdev->new_data_offset = rdev->data_offset;
1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1529 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1530 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1531 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1532
1533 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1534 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1535 if (rdev->sb_size & bmask)
1536 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1537
1538 if (minor_version
1539 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1540 return -EINVAL;
1541 if (minor_version
1542 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1543 return -EINVAL;
1544
1545 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1546 rdev->desc_nr = -1;
1547 else
1548 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1549
1550 if (!rdev->bb_page) {
1551 rdev->bb_page = alloc_page(GFP_KERNEL);
1552 if (!rdev->bb_page)
1553 return -ENOMEM;
1554 }
1555 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1556 rdev->badblocks.count == 0) {
1557 /* need to load the bad block list.
1558 * Currently we limit it to one page.
1559 */
1560 s32 offset;
1561 sector_t bb_sector;
1562 u64 *bbp;
1563 int i;
1564 int sectors = le16_to_cpu(sb->bblog_size);
1565 if (sectors > (PAGE_SIZE / 512))
1566 return -EINVAL;
1567 offset = le32_to_cpu(sb->bblog_offset);
1568 if (offset == 0)
1569 return -EINVAL;
1570 bb_sector = (long long)offset;
1571 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1572 rdev->bb_page, REQ_OP_READ, 0, true))
1573 return -EIO;
1574 bbp = (u64 *)page_address(rdev->bb_page);
1575 rdev->badblocks.shift = sb->bblog_shift;
1576 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1577 u64 bb = le64_to_cpu(*bbp);
1578 int count = bb & (0x3ff);
1579 u64 sector = bb >> 10;
1580 sector <<= sb->bblog_shift;
1581 count <<= sb->bblog_shift;
1582 if (bb + 1 == 0)
1583 break;
1584 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1585 return -EINVAL;
1586 }
1587 } else if (sb->bblog_offset != 0)
1588 rdev->badblocks.shift = 0;
1589
1590 if ((le32_to_cpu(sb->feature_map) &
1591 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1592 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1593 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1594 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1595 }
1596
1597 if (!refdev) {
1598 ret = 1;
1599 } else {
1600 __u64 ev1, ev2;
1601 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1602
1603 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1604 sb->level != refsb->level ||
1605 sb->layout != refsb->layout ||
1606 sb->chunksize != refsb->chunksize) {
1607 pr_warn("md: %s has strangely different superblock to %s\n",
1608 bdevname(rdev->bdev,b),
1609 bdevname(refdev->bdev,b2));
1610 return -EINVAL;
1611 }
1612 ev1 = le64_to_cpu(sb->events);
1613 ev2 = le64_to_cpu(refsb->events);
1614
1615 if (ev1 > ev2)
1616 ret = 1;
1617 else
1618 ret = 0;
1619 }
1620 if (minor_version) {
1621 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1622 sectors -= rdev->data_offset;
1623 } else
1624 sectors = rdev->sb_start;
1625 if (sectors < le64_to_cpu(sb->data_size))
1626 return -EINVAL;
1627 rdev->sectors = le64_to_cpu(sb->data_size);
1628 return ret;
1629 }
1630
1631 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1632 {
1633 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1634 __u64 ev1 = le64_to_cpu(sb->events);
1635
1636 rdev->raid_disk = -1;
1637 clear_bit(Faulty, &rdev->flags);
1638 clear_bit(In_sync, &rdev->flags);
1639 clear_bit(Bitmap_sync, &rdev->flags);
1640 clear_bit(WriteMostly, &rdev->flags);
1641
1642 if (mddev->raid_disks == 0) {
1643 mddev->major_version = 1;
1644 mddev->patch_version = 0;
1645 mddev->external = 0;
1646 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1647 mddev->ctime = le64_to_cpu(sb->ctime);
1648 mddev->utime = le64_to_cpu(sb->utime);
1649 mddev->level = le32_to_cpu(sb->level);
1650 mddev->clevel[0] = 0;
1651 mddev->layout = le32_to_cpu(sb->layout);
1652 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1653 mddev->dev_sectors = le64_to_cpu(sb->size);
1654 mddev->events = ev1;
1655 mddev->bitmap_info.offset = 0;
1656 mddev->bitmap_info.space = 0;
1657 /* Default location for bitmap is 1K after superblock
1658 * using 3K - total of 4K
1659 */
1660 mddev->bitmap_info.default_offset = 1024 >> 9;
1661 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1662 mddev->reshape_backwards = 0;
1663
1664 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1665 memcpy(mddev->uuid, sb->set_uuid, 16);
1666
1667 mddev->max_disks = (4096-256)/2;
1668
1669 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1670 mddev->bitmap_info.file == NULL) {
1671 mddev->bitmap_info.offset =
1672 (__s32)le32_to_cpu(sb->bitmap_offset);
1673 /* Metadata doesn't record how much space is available.
1674 * For 1.0, we assume we can use up to the superblock
1675 * if before, else to 4K beyond superblock.
1676 * For others, assume no change is possible.
1677 */
1678 if (mddev->minor_version > 0)
1679 mddev->bitmap_info.space = 0;
1680 else if (mddev->bitmap_info.offset > 0)
1681 mddev->bitmap_info.space =
1682 8 - mddev->bitmap_info.offset;
1683 else
1684 mddev->bitmap_info.space =
1685 -mddev->bitmap_info.offset;
1686 }
1687
1688 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1689 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1690 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1691 mddev->new_level = le32_to_cpu(sb->new_level);
1692 mddev->new_layout = le32_to_cpu(sb->new_layout);
1693 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1694 if (mddev->delta_disks < 0 ||
1695 (mddev->delta_disks == 0 &&
1696 (le32_to_cpu(sb->feature_map)
1697 & MD_FEATURE_RESHAPE_BACKWARDS)))
1698 mddev->reshape_backwards = 1;
1699 } else {
1700 mddev->reshape_position = MaxSector;
1701 mddev->delta_disks = 0;
1702 mddev->new_level = mddev->level;
1703 mddev->new_layout = mddev->layout;
1704 mddev->new_chunk_sectors = mddev->chunk_sectors;
1705 }
1706
1707 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1708 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1709
1710 if (le32_to_cpu(sb->feature_map) &
1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1712 if (le32_to_cpu(sb->feature_map) &
1713 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1714 return -EINVAL;
1715 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1716 (le32_to_cpu(sb->feature_map) &
1717 MD_FEATURE_MULTIPLE_PPLS))
1718 return -EINVAL;
1719 set_bit(MD_HAS_PPL, &mddev->flags);
1720 }
1721 } else if (mddev->pers == NULL) {
1722 /* Insist of good event counter while assembling, except for
1723 * spares (which don't need an event count) */
1724 ++ev1;
1725 if (rdev->desc_nr >= 0 &&
1726 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1727 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1728 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1729 if (ev1 < mddev->events)
1730 return -EINVAL;
1731 } else if (mddev->bitmap) {
1732 /* If adding to array with a bitmap, then we can accept an
1733 * older device, but not too old.
1734 */
1735 if (ev1 < mddev->bitmap->events_cleared)
1736 return 0;
1737 if (ev1 < mddev->events)
1738 set_bit(Bitmap_sync, &rdev->flags);
1739 } else {
1740 if (ev1 < mddev->events)
1741 /* just a hot-add of a new device, leave raid_disk at -1 */
1742 return 0;
1743 }
1744 if (mddev->level != LEVEL_MULTIPATH) {
1745 int role;
1746 if (rdev->desc_nr < 0 ||
1747 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1748 role = MD_DISK_ROLE_SPARE;
1749 rdev->desc_nr = -1;
1750 } else
1751 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1752 switch(role) {
1753 case MD_DISK_ROLE_SPARE: /* spare */
1754 break;
1755 case MD_DISK_ROLE_FAULTY: /* faulty */
1756 set_bit(Faulty, &rdev->flags);
1757 break;
1758 case MD_DISK_ROLE_JOURNAL: /* journal device */
1759 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1760 /* journal device without journal feature */
1761 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1762 return -EINVAL;
1763 }
1764 set_bit(Journal, &rdev->flags);
1765 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1766 rdev->raid_disk = 0;
1767 break;
1768 default:
1769 rdev->saved_raid_disk = role;
1770 if ((le32_to_cpu(sb->feature_map) &
1771 MD_FEATURE_RECOVERY_OFFSET)) {
1772 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1773 if (!(le32_to_cpu(sb->feature_map) &
1774 MD_FEATURE_RECOVERY_BITMAP))
1775 rdev->saved_raid_disk = -1;
1776 } else
1777 set_bit(In_sync, &rdev->flags);
1778 rdev->raid_disk = role;
1779 break;
1780 }
1781 if (sb->devflags & WriteMostly1)
1782 set_bit(WriteMostly, &rdev->flags);
1783 if (sb->devflags & FailFast1)
1784 set_bit(FailFast, &rdev->flags);
1785 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1786 set_bit(Replacement, &rdev->flags);
1787 } else /* MULTIPATH are always insync */
1788 set_bit(In_sync, &rdev->flags);
1789
1790 return 0;
1791 }
1792
1793 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1794 {
1795 struct mdp_superblock_1 *sb;
1796 struct md_rdev *rdev2;
1797 int max_dev, i;
1798 /* make rdev->sb match mddev and rdev data. */
1799
1800 sb = page_address(rdev->sb_page);
1801
1802 sb->feature_map = 0;
1803 sb->pad0 = 0;
1804 sb->recovery_offset = cpu_to_le64(0);
1805 memset(sb->pad3, 0, sizeof(sb->pad3));
1806
1807 sb->utime = cpu_to_le64((__u64)mddev->utime);
1808 sb->events = cpu_to_le64(mddev->events);
1809 if (mddev->in_sync)
1810 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1811 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1812 sb->resync_offset = cpu_to_le64(MaxSector);
1813 else
1814 sb->resync_offset = cpu_to_le64(0);
1815
1816 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1817
1818 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1819 sb->size = cpu_to_le64(mddev->dev_sectors);
1820 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1821 sb->level = cpu_to_le32(mddev->level);
1822 sb->layout = cpu_to_le32(mddev->layout);
1823 if (test_bit(FailFast, &rdev->flags))
1824 sb->devflags |= FailFast1;
1825 else
1826 sb->devflags &= ~FailFast1;
1827
1828 if (test_bit(WriteMostly, &rdev->flags))
1829 sb->devflags |= WriteMostly1;
1830 else
1831 sb->devflags &= ~WriteMostly1;
1832 sb->data_offset = cpu_to_le64(rdev->data_offset);
1833 sb->data_size = cpu_to_le64(rdev->sectors);
1834
1835 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1836 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1837 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1838 }
1839
1840 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1841 !test_bit(In_sync, &rdev->flags)) {
1842 sb->feature_map |=
1843 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1844 sb->recovery_offset =
1845 cpu_to_le64(rdev->recovery_offset);
1846 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1847 sb->feature_map |=
1848 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1849 }
1850 /* Note: recovery_offset and journal_tail share space */
1851 if (test_bit(Journal, &rdev->flags))
1852 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1853 if (test_bit(Replacement, &rdev->flags))
1854 sb->feature_map |=
1855 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1856
1857 if (mddev->reshape_position != MaxSector) {
1858 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1859 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1860 sb->new_layout = cpu_to_le32(mddev->new_layout);
1861 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1862 sb->new_level = cpu_to_le32(mddev->new_level);
1863 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1864 if (mddev->delta_disks == 0 &&
1865 mddev->reshape_backwards)
1866 sb->feature_map
1867 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1868 if (rdev->new_data_offset != rdev->data_offset) {
1869 sb->feature_map
1870 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1871 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1872 - rdev->data_offset));
1873 }
1874 }
1875
1876 if (mddev_is_clustered(mddev))
1877 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1878
1879 if (rdev->badblocks.count == 0)
1880 /* Nothing to do for bad blocks*/ ;
1881 else if (sb->bblog_offset == 0)
1882 /* Cannot record bad blocks on this device */
1883 md_error(mddev, rdev);
1884 else {
1885 struct badblocks *bb = &rdev->badblocks;
1886 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1887 u64 *p = bb->page;
1888 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1889 if (bb->changed) {
1890 unsigned seq;
1891
1892 retry:
1893 seq = read_seqbegin(&bb->lock);
1894
1895 memset(bbp, 0xff, PAGE_SIZE);
1896
1897 for (i = 0 ; i < bb->count ; i++) {
1898 u64 internal_bb = p[i];
1899 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1900 | BB_LEN(internal_bb));
1901 bbp[i] = cpu_to_le64(store_bb);
1902 }
1903 bb->changed = 0;
1904 if (read_seqretry(&bb->lock, seq))
1905 goto retry;
1906
1907 bb->sector = (rdev->sb_start +
1908 (int)le32_to_cpu(sb->bblog_offset));
1909 bb->size = le16_to_cpu(sb->bblog_size);
1910 }
1911 }
1912
1913 max_dev = 0;
1914 rdev_for_each(rdev2, mddev)
1915 if (rdev2->desc_nr+1 > max_dev)
1916 max_dev = rdev2->desc_nr+1;
1917
1918 if (max_dev > le32_to_cpu(sb->max_dev)) {
1919 int bmask;
1920 sb->max_dev = cpu_to_le32(max_dev);
1921 rdev->sb_size = max_dev * 2 + 256;
1922 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1923 if (rdev->sb_size & bmask)
1924 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1925 } else
1926 max_dev = le32_to_cpu(sb->max_dev);
1927
1928 for (i=0; i<max_dev;i++)
1929 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1930
1931 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1932 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1933
1934 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1935 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1936 sb->feature_map |=
1937 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1938 else
1939 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1940 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1941 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1942 }
1943
1944 rdev_for_each(rdev2, mddev) {
1945 i = rdev2->desc_nr;
1946 if (test_bit(Faulty, &rdev2->flags))
1947 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1948 else if (test_bit(In_sync, &rdev2->flags))
1949 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1950 else if (test_bit(Journal, &rdev2->flags))
1951 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1952 else if (rdev2->raid_disk >= 0)
1953 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1954 else
1955 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1956 }
1957
1958 sb->sb_csum = calc_sb_1_csum(sb);
1959 }
1960
1961 static unsigned long long
1962 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1963 {
1964 struct mdp_superblock_1 *sb;
1965 sector_t max_sectors;
1966 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1967 return 0; /* component must fit device */
1968 if (rdev->data_offset != rdev->new_data_offset)
1969 return 0; /* too confusing */
1970 if (rdev->sb_start < rdev->data_offset) {
1971 /* minor versions 1 and 2; superblock before data */
1972 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1973 max_sectors -= rdev->data_offset;
1974 if (!num_sectors || num_sectors > max_sectors)
1975 num_sectors = max_sectors;
1976 } else if (rdev->mddev->bitmap_info.offset) {
1977 /* minor version 0 with bitmap we can't move */
1978 return 0;
1979 } else {
1980 /* minor version 0; superblock after data */
1981 sector_t sb_start;
1982 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1983 sb_start &= ~(sector_t)(4*2 - 1);
1984 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1985 if (!num_sectors || num_sectors > max_sectors)
1986 num_sectors = max_sectors;
1987 rdev->sb_start = sb_start;
1988 }
1989 sb = page_address(rdev->sb_page);
1990 sb->data_size = cpu_to_le64(num_sectors);
1991 sb->super_offset = cpu_to_le64(rdev->sb_start);
1992 sb->sb_csum = calc_sb_1_csum(sb);
1993 do {
1994 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1995 rdev->sb_page);
1996 } while (md_super_wait(rdev->mddev) < 0);
1997 return num_sectors;
1998
1999 }
2000
2001 static int
2002 super_1_allow_new_offset(struct md_rdev *rdev,
2003 unsigned long long new_offset)
2004 {
2005 /* All necessary checks on new >= old have been done */
2006 struct bitmap *bitmap;
2007 if (new_offset >= rdev->data_offset)
2008 return 1;
2009
2010 /* with 1.0 metadata, there is no metadata to tread on
2011 * so we can always move back */
2012 if (rdev->mddev->minor_version == 0)
2013 return 1;
2014
2015 /* otherwise we must be sure not to step on
2016 * any metadata, so stay:
2017 * 36K beyond start of superblock
2018 * beyond end of badblocks
2019 * beyond write-intent bitmap
2020 */
2021 if (rdev->sb_start + (32+4)*2 > new_offset)
2022 return 0;
2023 bitmap = rdev->mddev->bitmap;
2024 if (bitmap && !rdev->mddev->bitmap_info.file &&
2025 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2026 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2027 return 0;
2028 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2029 return 0;
2030
2031 return 1;
2032 }
2033
2034 static struct super_type super_types[] = {
2035 [0] = {
2036 .name = "0.90.0",
2037 .owner = THIS_MODULE,
2038 .load_super = super_90_load,
2039 .validate_super = super_90_validate,
2040 .sync_super = super_90_sync,
2041 .rdev_size_change = super_90_rdev_size_change,
2042 .allow_new_offset = super_90_allow_new_offset,
2043 },
2044 [1] = {
2045 .name = "md-1",
2046 .owner = THIS_MODULE,
2047 .load_super = super_1_load,
2048 .validate_super = super_1_validate,
2049 .sync_super = super_1_sync,
2050 .rdev_size_change = super_1_rdev_size_change,
2051 .allow_new_offset = super_1_allow_new_offset,
2052 },
2053 };
2054
2055 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2056 {
2057 if (mddev->sync_super) {
2058 mddev->sync_super(mddev, rdev);
2059 return;
2060 }
2061
2062 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2063
2064 super_types[mddev->major_version].sync_super(mddev, rdev);
2065 }
2066
2067 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2068 {
2069 struct md_rdev *rdev, *rdev2;
2070
2071 rcu_read_lock();
2072 rdev_for_each_rcu(rdev, mddev1) {
2073 if (test_bit(Faulty, &rdev->flags) ||
2074 test_bit(Journal, &rdev->flags) ||
2075 rdev->raid_disk == -1)
2076 continue;
2077 rdev_for_each_rcu(rdev2, mddev2) {
2078 if (test_bit(Faulty, &rdev2->flags) ||
2079 test_bit(Journal, &rdev2->flags) ||
2080 rdev2->raid_disk == -1)
2081 continue;
2082 if (rdev->bdev->bd_contains ==
2083 rdev2->bdev->bd_contains) {
2084 rcu_read_unlock();
2085 return 1;
2086 }
2087 }
2088 }
2089 rcu_read_unlock();
2090 return 0;
2091 }
2092
2093 static LIST_HEAD(pending_raid_disks);
2094
2095 /*
2096 * Try to register data integrity profile for an mddev
2097 *
2098 * This is called when an array is started and after a disk has been kicked
2099 * from the array. It only succeeds if all working and active component devices
2100 * are integrity capable with matching profiles.
2101 */
2102 int md_integrity_register(struct mddev *mddev)
2103 {
2104 struct md_rdev *rdev, *reference = NULL;
2105
2106 if (list_empty(&mddev->disks))
2107 return 0; /* nothing to do */
2108 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2109 return 0; /* shouldn't register, or already is */
2110 rdev_for_each(rdev, mddev) {
2111 /* skip spares and non-functional disks */
2112 if (test_bit(Faulty, &rdev->flags))
2113 continue;
2114 if (rdev->raid_disk < 0)
2115 continue;
2116 if (!reference) {
2117 /* Use the first rdev as the reference */
2118 reference = rdev;
2119 continue;
2120 }
2121 /* does this rdev's profile match the reference profile? */
2122 if (blk_integrity_compare(reference->bdev->bd_disk,
2123 rdev->bdev->bd_disk) < 0)
2124 return -EINVAL;
2125 }
2126 if (!reference || !bdev_get_integrity(reference->bdev))
2127 return 0;
2128 /*
2129 * All component devices are integrity capable and have matching
2130 * profiles, register the common profile for the md device.
2131 */
2132 blk_integrity_register(mddev->gendisk,
2133 bdev_get_integrity(reference->bdev));
2134
2135 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2136 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2137 pr_err("md: failed to create integrity pool for %s\n",
2138 mdname(mddev));
2139 return -EINVAL;
2140 }
2141 return 0;
2142 }
2143 EXPORT_SYMBOL(md_integrity_register);
2144
2145 /*
2146 * Attempt to add an rdev, but only if it is consistent with the current
2147 * integrity profile
2148 */
2149 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2150 {
2151 struct blk_integrity *bi_rdev;
2152 struct blk_integrity *bi_mddev;
2153 char name[BDEVNAME_SIZE];
2154
2155 if (!mddev->gendisk)
2156 return 0;
2157
2158 bi_rdev = bdev_get_integrity(rdev->bdev);
2159 bi_mddev = blk_get_integrity(mddev->gendisk);
2160
2161 if (!bi_mddev) /* nothing to do */
2162 return 0;
2163
2164 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2165 pr_err("%s: incompatible integrity profile for %s\n",
2166 mdname(mddev), bdevname(rdev->bdev, name));
2167 return -ENXIO;
2168 }
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(md_integrity_add_rdev);
2173
2174 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2175 {
2176 char b[BDEVNAME_SIZE];
2177 struct kobject *ko;
2178 int err;
2179
2180 /* prevent duplicates */
2181 if (find_rdev(mddev, rdev->bdev->bd_dev))
2182 return -EEXIST;
2183
2184 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2185 mddev->pers)
2186 return -EROFS;
2187
2188 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2189 if (!test_bit(Journal, &rdev->flags) &&
2190 rdev->sectors &&
2191 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2192 if (mddev->pers) {
2193 /* Cannot change size, so fail
2194 * If mddev->level <= 0, then we don't care
2195 * about aligning sizes (e.g. linear)
2196 */
2197 if (mddev->level > 0)
2198 return -ENOSPC;
2199 } else
2200 mddev->dev_sectors = rdev->sectors;
2201 }
2202
2203 /* Verify rdev->desc_nr is unique.
2204 * If it is -1, assign a free number, else
2205 * check number is not in use
2206 */
2207 rcu_read_lock();
2208 if (rdev->desc_nr < 0) {
2209 int choice = 0;
2210 if (mddev->pers)
2211 choice = mddev->raid_disks;
2212 while (md_find_rdev_nr_rcu(mddev, choice))
2213 choice++;
2214 rdev->desc_nr = choice;
2215 } else {
2216 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2217 rcu_read_unlock();
2218 return -EBUSY;
2219 }
2220 }
2221 rcu_read_unlock();
2222 if (!test_bit(Journal, &rdev->flags) &&
2223 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2224 pr_warn("md: %s: array is limited to %d devices\n",
2225 mdname(mddev), mddev->max_disks);
2226 return -EBUSY;
2227 }
2228 bdevname(rdev->bdev,b);
2229 strreplace(b, '/', '!');
2230
2231 rdev->mddev = mddev;
2232 pr_debug("md: bind<%s>\n", b);
2233
2234 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2235 goto fail;
2236
2237 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2238 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2239 /* failure here is OK */;
2240 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2241
2242 list_add_rcu(&rdev->same_set, &mddev->disks);
2243 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2244
2245 /* May as well allow recovery to be retried once */
2246 mddev->recovery_disabled++;
2247
2248 return 0;
2249
2250 fail:
2251 pr_warn("md: failed to register dev-%s for %s\n",
2252 b, mdname(mddev));
2253 return err;
2254 }
2255
2256 static void md_delayed_delete(struct work_struct *ws)
2257 {
2258 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2259 kobject_del(&rdev->kobj);
2260 kobject_put(&rdev->kobj);
2261 }
2262
2263 static void unbind_rdev_from_array(struct md_rdev *rdev)
2264 {
2265 char b[BDEVNAME_SIZE];
2266
2267 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2268 list_del_rcu(&rdev->same_set);
2269 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2270 rdev->mddev = NULL;
2271 sysfs_remove_link(&rdev->kobj, "block");
2272 sysfs_put(rdev->sysfs_state);
2273 rdev->sysfs_state = NULL;
2274 rdev->badblocks.count = 0;
2275 /* We need to delay this, otherwise we can deadlock when
2276 * writing to 'remove' to "dev/state". We also need
2277 * to delay it due to rcu usage.
2278 */
2279 synchronize_rcu();
2280 INIT_WORK(&rdev->del_work, md_delayed_delete);
2281 kobject_get(&rdev->kobj);
2282 queue_work(md_misc_wq, &rdev->del_work);
2283 }
2284
2285 /*
2286 * prevent the device from being mounted, repartitioned or
2287 * otherwise reused by a RAID array (or any other kernel
2288 * subsystem), by bd_claiming the device.
2289 */
2290 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2291 {
2292 int err = 0;
2293 struct block_device *bdev;
2294 char b[BDEVNAME_SIZE];
2295
2296 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2297 shared ? (struct md_rdev *)lock_rdev : rdev);
2298 if (IS_ERR(bdev)) {
2299 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2300 return PTR_ERR(bdev);
2301 }
2302 rdev->bdev = bdev;
2303 return err;
2304 }
2305
2306 static void unlock_rdev(struct md_rdev *rdev)
2307 {
2308 struct block_device *bdev = rdev->bdev;
2309 rdev->bdev = NULL;
2310 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2311 }
2312
2313 void md_autodetect_dev(dev_t dev);
2314
2315 static void export_rdev(struct md_rdev *rdev)
2316 {
2317 char b[BDEVNAME_SIZE];
2318
2319 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2320 md_rdev_clear(rdev);
2321 #ifndef MODULE
2322 if (test_bit(AutoDetected, &rdev->flags))
2323 md_autodetect_dev(rdev->bdev->bd_dev);
2324 #endif
2325 unlock_rdev(rdev);
2326 kobject_put(&rdev->kobj);
2327 }
2328
2329 void md_kick_rdev_from_array(struct md_rdev *rdev)
2330 {
2331 unbind_rdev_from_array(rdev);
2332 export_rdev(rdev);
2333 }
2334 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2335
2336 static void export_array(struct mddev *mddev)
2337 {
2338 struct md_rdev *rdev;
2339
2340 while (!list_empty(&mddev->disks)) {
2341 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2342 same_set);
2343 md_kick_rdev_from_array(rdev);
2344 }
2345 mddev->raid_disks = 0;
2346 mddev->major_version = 0;
2347 }
2348
2349 static bool set_in_sync(struct mddev *mddev)
2350 {
2351 lockdep_assert_held(&mddev->lock);
2352 if (!mddev->in_sync) {
2353 mddev->sync_checkers++;
2354 spin_unlock(&mddev->lock);
2355 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2356 spin_lock(&mddev->lock);
2357 if (!mddev->in_sync &&
2358 percpu_ref_is_zero(&mddev->writes_pending)) {
2359 mddev->in_sync = 1;
2360 /*
2361 * Ensure ->in_sync is visible before we clear
2362 * ->sync_checkers.
2363 */
2364 smp_mb();
2365 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2366 sysfs_notify_dirent_safe(mddev->sysfs_state);
2367 }
2368 if (--mddev->sync_checkers == 0)
2369 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2370 }
2371 if (mddev->safemode == 1)
2372 mddev->safemode = 0;
2373 return mddev->in_sync;
2374 }
2375
2376 static void sync_sbs(struct mddev *mddev, int nospares)
2377 {
2378 /* Update each superblock (in-memory image), but
2379 * if we are allowed to, skip spares which already
2380 * have the right event counter, or have one earlier
2381 * (which would mean they aren't being marked as dirty
2382 * with the rest of the array)
2383 */
2384 struct md_rdev *rdev;
2385 rdev_for_each(rdev, mddev) {
2386 if (rdev->sb_events == mddev->events ||
2387 (nospares &&
2388 rdev->raid_disk < 0 &&
2389 rdev->sb_events+1 == mddev->events)) {
2390 /* Don't update this superblock */
2391 rdev->sb_loaded = 2;
2392 } else {
2393 sync_super(mddev, rdev);
2394 rdev->sb_loaded = 1;
2395 }
2396 }
2397 }
2398
2399 static bool does_sb_need_changing(struct mddev *mddev)
2400 {
2401 struct md_rdev *rdev;
2402 struct mdp_superblock_1 *sb;
2403 int role;
2404
2405 /* Find a good rdev */
2406 rdev_for_each(rdev, mddev)
2407 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2408 break;
2409
2410 /* No good device found. */
2411 if (!rdev)
2412 return false;
2413
2414 sb = page_address(rdev->sb_page);
2415 /* Check if a device has become faulty or a spare become active */
2416 rdev_for_each(rdev, mddev) {
2417 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2418 /* Device activated? */
2419 if (role == 0xffff && rdev->raid_disk >=0 &&
2420 !test_bit(Faulty, &rdev->flags))
2421 return true;
2422 /* Device turned faulty? */
2423 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2424 return true;
2425 }
2426
2427 /* Check if any mddev parameters have changed */
2428 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2429 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2430 (mddev->layout != le32_to_cpu(sb->layout)) ||
2431 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2432 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2433 return true;
2434
2435 return false;
2436 }
2437
2438 void md_update_sb(struct mddev *mddev, int force_change)
2439 {
2440 struct md_rdev *rdev;
2441 int sync_req;
2442 int nospares = 0;
2443 int any_badblocks_changed = 0;
2444 int ret = -1;
2445
2446 if (mddev->ro) {
2447 if (force_change)
2448 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2449 return;
2450 }
2451
2452 repeat:
2453 if (mddev_is_clustered(mddev)) {
2454 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2455 force_change = 1;
2456 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2457 nospares = 1;
2458 ret = md_cluster_ops->metadata_update_start(mddev);
2459 /* Has someone else has updated the sb */
2460 if (!does_sb_need_changing(mddev)) {
2461 if (ret == 0)
2462 md_cluster_ops->metadata_update_cancel(mddev);
2463 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2464 BIT(MD_SB_CHANGE_DEVS) |
2465 BIT(MD_SB_CHANGE_CLEAN));
2466 return;
2467 }
2468 }
2469
2470 /*
2471 * First make sure individual recovery_offsets are correct
2472 * curr_resync_completed can only be used during recovery.
2473 * During reshape/resync it might use array-addresses rather
2474 * that device addresses.
2475 */
2476 rdev_for_each(rdev, mddev) {
2477 if (rdev->raid_disk >= 0 &&
2478 mddev->delta_disks >= 0 &&
2479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2480 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2481 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2482 !test_bit(Journal, &rdev->flags) &&
2483 !test_bit(In_sync, &rdev->flags) &&
2484 mddev->curr_resync_completed > rdev->recovery_offset)
2485 rdev->recovery_offset = mddev->curr_resync_completed;
2486
2487 }
2488 if (!mddev->persistent) {
2489 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2490 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2491 if (!mddev->external) {
2492 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2493 rdev_for_each(rdev, mddev) {
2494 if (rdev->badblocks.changed) {
2495 rdev->badblocks.changed = 0;
2496 ack_all_badblocks(&rdev->badblocks);
2497 md_error(mddev, rdev);
2498 }
2499 clear_bit(Blocked, &rdev->flags);
2500 clear_bit(BlockedBadBlocks, &rdev->flags);
2501 wake_up(&rdev->blocked_wait);
2502 }
2503 }
2504 wake_up(&mddev->sb_wait);
2505 return;
2506 }
2507
2508 spin_lock(&mddev->lock);
2509
2510 mddev->utime = ktime_get_real_seconds();
2511
2512 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2513 force_change = 1;
2514 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2515 /* just a clean<-> dirty transition, possibly leave spares alone,
2516 * though if events isn't the right even/odd, we will have to do
2517 * spares after all
2518 */
2519 nospares = 1;
2520 if (force_change)
2521 nospares = 0;
2522 if (mddev->degraded)
2523 /* If the array is degraded, then skipping spares is both
2524 * dangerous and fairly pointless.
2525 * Dangerous because a device that was removed from the array
2526 * might have a event_count that still looks up-to-date,
2527 * so it can be re-added without a resync.
2528 * Pointless because if there are any spares to skip,
2529 * then a recovery will happen and soon that array won't
2530 * be degraded any more and the spare can go back to sleep then.
2531 */
2532 nospares = 0;
2533
2534 sync_req = mddev->in_sync;
2535
2536 /* If this is just a dirty<->clean transition, and the array is clean
2537 * and 'events' is odd, we can roll back to the previous clean state */
2538 if (nospares
2539 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2540 && mddev->can_decrease_events
2541 && mddev->events != 1) {
2542 mddev->events--;
2543 mddev->can_decrease_events = 0;
2544 } else {
2545 /* otherwise we have to go forward and ... */
2546 mddev->events ++;
2547 mddev->can_decrease_events = nospares;
2548 }
2549
2550 /*
2551 * This 64-bit counter should never wrap.
2552 * Either we are in around ~1 trillion A.C., assuming
2553 * 1 reboot per second, or we have a bug...
2554 */
2555 WARN_ON(mddev->events == 0);
2556
2557 rdev_for_each(rdev, mddev) {
2558 if (rdev->badblocks.changed)
2559 any_badblocks_changed++;
2560 if (test_bit(Faulty, &rdev->flags))
2561 set_bit(FaultRecorded, &rdev->flags);
2562 }
2563
2564 sync_sbs(mddev, nospares);
2565 spin_unlock(&mddev->lock);
2566
2567 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2568 mdname(mddev), mddev->in_sync);
2569
2570 if (mddev->queue)
2571 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2572 rewrite:
2573 md_bitmap_update_sb(mddev->bitmap);
2574 rdev_for_each(rdev, mddev) {
2575 char b[BDEVNAME_SIZE];
2576
2577 if (rdev->sb_loaded != 1)
2578 continue; /* no noise on spare devices */
2579
2580 if (!test_bit(Faulty, &rdev->flags)) {
2581 md_super_write(mddev,rdev,
2582 rdev->sb_start, rdev->sb_size,
2583 rdev->sb_page);
2584 pr_debug("md: (write) %s's sb offset: %llu\n",
2585 bdevname(rdev->bdev, b),
2586 (unsigned long long)rdev->sb_start);
2587 rdev->sb_events = mddev->events;
2588 if (rdev->badblocks.size) {
2589 md_super_write(mddev, rdev,
2590 rdev->badblocks.sector,
2591 rdev->badblocks.size << 9,
2592 rdev->bb_page);
2593 rdev->badblocks.size = 0;
2594 }
2595
2596 } else
2597 pr_debug("md: %s (skipping faulty)\n",
2598 bdevname(rdev->bdev, b));
2599
2600 if (mddev->level == LEVEL_MULTIPATH)
2601 /* only need to write one superblock... */
2602 break;
2603 }
2604 if (md_super_wait(mddev) < 0)
2605 goto rewrite;
2606 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2607
2608 if (mddev_is_clustered(mddev) && ret == 0)
2609 md_cluster_ops->metadata_update_finish(mddev);
2610
2611 if (mddev->in_sync != sync_req ||
2612 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2613 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2614 /* have to write it out again */
2615 goto repeat;
2616 wake_up(&mddev->sb_wait);
2617 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2618 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2619
2620 rdev_for_each(rdev, mddev) {
2621 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2622 clear_bit(Blocked, &rdev->flags);
2623
2624 if (any_badblocks_changed)
2625 ack_all_badblocks(&rdev->badblocks);
2626 clear_bit(BlockedBadBlocks, &rdev->flags);
2627 wake_up(&rdev->blocked_wait);
2628 }
2629 }
2630 EXPORT_SYMBOL(md_update_sb);
2631
2632 static int add_bound_rdev(struct md_rdev *rdev)
2633 {
2634 struct mddev *mddev = rdev->mddev;
2635 int err = 0;
2636 bool add_journal = test_bit(Journal, &rdev->flags);
2637
2638 if (!mddev->pers->hot_remove_disk || add_journal) {
2639 /* If there is hot_add_disk but no hot_remove_disk
2640 * then added disks for geometry changes,
2641 * and should be added immediately.
2642 */
2643 super_types[mddev->major_version].
2644 validate_super(mddev, rdev);
2645 if (add_journal)
2646 mddev_suspend(mddev);
2647 err = mddev->pers->hot_add_disk(mddev, rdev);
2648 if (add_journal)
2649 mddev_resume(mddev);
2650 if (err) {
2651 md_kick_rdev_from_array(rdev);
2652 return err;
2653 }
2654 }
2655 sysfs_notify_dirent_safe(rdev->sysfs_state);
2656
2657 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2658 if (mddev->degraded)
2659 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2661 md_new_event(mddev);
2662 md_wakeup_thread(mddev->thread);
2663 return 0;
2664 }
2665
2666 /* words written to sysfs files may, or may not, be \n terminated.
2667 * We want to accept with case. For this we use cmd_match.
2668 */
2669 static int cmd_match(const char *cmd, const char *str)
2670 {
2671 /* See if cmd, written into a sysfs file, matches
2672 * str. They must either be the same, or cmd can
2673 * have a trailing newline
2674 */
2675 while (*cmd && *str && *cmd == *str) {
2676 cmd++;
2677 str++;
2678 }
2679 if (*cmd == '\n')
2680 cmd++;
2681 if (*str || *cmd)
2682 return 0;
2683 return 1;
2684 }
2685
2686 struct rdev_sysfs_entry {
2687 struct attribute attr;
2688 ssize_t (*show)(struct md_rdev *, char *);
2689 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2690 };
2691
2692 static ssize_t
2693 state_show(struct md_rdev *rdev, char *page)
2694 {
2695 char *sep = ",";
2696 size_t len = 0;
2697 unsigned long flags = READ_ONCE(rdev->flags);
2698
2699 if (test_bit(Faulty, &flags) ||
2700 (!test_bit(ExternalBbl, &flags) &&
2701 rdev->badblocks.unacked_exist))
2702 len += sprintf(page+len, "faulty%s", sep);
2703 if (test_bit(In_sync, &flags))
2704 len += sprintf(page+len, "in_sync%s", sep);
2705 if (test_bit(Journal, &flags))
2706 len += sprintf(page+len, "journal%s", sep);
2707 if (test_bit(WriteMostly, &flags))
2708 len += sprintf(page+len, "write_mostly%s", sep);
2709 if (test_bit(Blocked, &flags) ||
2710 (rdev->badblocks.unacked_exist
2711 && !test_bit(Faulty, &flags)))
2712 len += sprintf(page+len, "blocked%s", sep);
2713 if (!test_bit(Faulty, &flags) &&
2714 !test_bit(Journal, &flags) &&
2715 !test_bit(In_sync, &flags))
2716 len += sprintf(page+len, "spare%s", sep);
2717 if (test_bit(WriteErrorSeen, &flags))
2718 len += sprintf(page+len, "write_error%s", sep);
2719 if (test_bit(WantReplacement, &flags))
2720 len += sprintf(page+len, "want_replacement%s", sep);
2721 if (test_bit(Replacement, &flags))
2722 len += sprintf(page+len, "replacement%s", sep);
2723 if (test_bit(ExternalBbl, &flags))
2724 len += sprintf(page+len, "external_bbl%s", sep);
2725 if (test_bit(FailFast, &flags))
2726 len += sprintf(page+len, "failfast%s", sep);
2727
2728 if (len)
2729 len -= strlen(sep);
2730
2731 return len+sprintf(page+len, "\n");
2732 }
2733
2734 static ssize_t
2735 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2736 {
2737 /* can write
2738 * faulty - simulates an error
2739 * remove - disconnects the device
2740 * writemostly - sets write_mostly
2741 * -writemostly - clears write_mostly
2742 * blocked - sets the Blocked flags
2743 * -blocked - clears the Blocked and possibly simulates an error
2744 * insync - sets Insync providing device isn't active
2745 * -insync - clear Insync for a device with a slot assigned,
2746 * so that it gets rebuilt based on bitmap
2747 * write_error - sets WriteErrorSeen
2748 * -write_error - clears WriteErrorSeen
2749 * {,-}failfast - set/clear FailFast
2750 */
2751 int err = -EINVAL;
2752 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2753 md_error(rdev->mddev, rdev);
2754 if (test_bit(Faulty, &rdev->flags))
2755 err = 0;
2756 else
2757 err = -EBUSY;
2758 } else if (cmd_match(buf, "remove")) {
2759 if (rdev->mddev->pers) {
2760 clear_bit(Blocked, &rdev->flags);
2761 remove_and_add_spares(rdev->mddev, rdev);
2762 }
2763 if (rdev->raid_disk >= 0)
2764 err = -EBUSY;
2765 else {
2766 struct mddev *mddev = rdev->mddev;
2767 err = 0;
2768 if (mddev_is_clustered(mddev))
2769 err = md_cluster_ops->remove_disk(mddev, rdev);
2770
2771 if (err == 0) {
2772 md_kick_rdev_from_array(rdev);
2773 if (mddev->pers) {
2774 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775 md_wakeup_thread(mddev->thread);
2776 }
2777 md_new_event(mddev);
2778 }
2779 }
2780 } else if (cmd_match(buf, "writemostly")) {
2781 set_bit(WriteMostly, &rdev->flags);
2782 err = 0;
2783 } else if (cmd_match(buf, "-writemostly")) {
2784 clear_bit(WriteMostly, &rdev->flags);
2785 err = 0;
2786 } else if (cmd_match(buf, "blocked")) {
2787 set_bit(Blocked, &rdev->flags);
2788 err = 0;
2789 } else if (cmd_match(buf, "-blocked")) {
2790 if (!test_bit(Faulty, &rdev->flags) &&
2791 !test_bit(ExternalBbl, &rdev->flags) &&
2792 rdev->badblocks.unacked_exist) {
2793 /* metadata handler doesn't understand badblocks,
2794 * so we need to fail the device
2795 */
2796 md_error(rdev->mddev, rdev);
2797 }
2798 clear_bit(Blocked, &rdev->flags);
2799 clear_bit(BlockedBadBlocks, &rdev->flags);
2800 wake_up(&rdev->blocked_wait);
2801 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2802 md_wakeup_thread(rdev->mddev->thread);
2803
2804 err = 0;
2805 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2806 set_bit(In_sync, &rdev->flags);
2807 err = 0;
2808 } else if (cmd_match(buf, "failfast")) {
2809 set_bit(FailFast, &rdev->flags);
2810 err = 0;
2811 } else if (cmd_match(buf, "-failfast")) {
2812 clear_bit(FailFast, &rdev->flags);
2813 err = 0;
2814 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2815 !test_bit(Journal, &rdev->flags)) {
2816 if (rdev->mddev->pers == NULL) {
2817 clear_bit(In_sync, &rdev->flags);
2818 rdev->saved_raid_disk = rdev->raid_disk;
2819 rdev->raid_disk = -1;
2820 err = 0;
2821 }
2822 } else if (cmd_match(buf, "write_error")) {
2823 set_bit(WriteErrorSeen, &rdev->flags);
2824 err = 0;
2825 } else if (cmd_match(buf, "-write_error")) {
2826 clear_bit(WriteErrorSeen, &rdev->flags);
2827 err = 0;
2828 } else if (cmd_match(buf, "want_replacement")) {
2829 /* Any non-spare device that is not a replacement can
2830 * become want_replacement at any time, but we then need to
2831 * check if recovery is needed.
2832 */
2833 if (rdev->raid_disk >= 0 &&
2834 !test_bit(Journal, &rdev->flags) &&
2835 !test_bit(Replacement, &rdev->flags))
2836 set_bit(WantReplacement, &rdev->flags);
2837 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2838 md_wakeup_thread(rdev->mddev->thread);
2839 err = 0;
2840 } else if (cmd_match(buf, "-want_replacement")) {
2841 /* Clearing 'want_replacement' is always allowed.
2842 * Once replacements starts it is too late though.
2843 */
2844 err = 0;
2845 clear_bit(WantReplacement, &rdev->flags);
2846 } else if (cmd_match(buf, "replacement")) {
2847 /* Can only set a device as a replacement when array has not
2848 * yet been started. Once running, replacement is automatic
2849 * from spares, or by assigning 'slot'.
2850 */
2851 if (rdev->mddev->pers)
2852 err = -EBUSY;
2853 else {
2854 set_bit(Replacement, &rdev->flags);
2855 err = 0;
2856 }
2857 } else if (cmd_match(buf, "-replacement")) {
2858 /* Similarly, can only clear Replacement before start */
2859 if (rdev->mddev->pers)
2860 err = -EBUSY;
2861 else {
2862 clear_bit(Replacement, &rdev->flags);
2863 err = 0;
2864 }
2865 } else if (cmd_match(buf, "re-add")) {
2866 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2867 rdev->saved_raid_disk >= 0) {
2868 /* clear_bit is performed _after_ all the devices
2869 * have their local Faulty bit cleared. If any writes
2870 * happen in the meantime in the local node, they
2871 * will land in the local bitmap, which will be synced
2872 * by this node eventually
2873 */
2874 if (!mddev_is_clustered(rdev->mddev) ||
2875 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2876 clear_bit(Faulty, &rdev->flags);
2877 err = add_bound_rdev(rdev);
2878 }
2879 } else
2880 err = -EBUSY;
2881 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2882 set_bit(ExternalBbl, &rdev->flags);
2883 rdev->badblocks.shift = 0;
2884 err = 0;
2885 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2886 clear_bit(ExternalBbl, &rdev->flags);
2887 err = 0;
2888 }
2889 if (!err)
2890 sysfs_notify_dirent_safe(rdev->sysfs_state);
2891 return err ? err : len;
2892 }
2893 static struct rdev_sysfs_entry rdev_state =
2894 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2895
2896 static ssize_t
2897 errors_show(struct md_rdev *rdev, char *page)
2898 {
2899 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2900 }
2901
2902 static ssize_t
2903 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2904 {
2905 unsigned int n;
2906 int rv;
2907
2908 rv = kstrtouint(buf, 10, &n);
2909 if (rv < 0)
2910 return rv;
2911 atomic_set(&rdev->corrected_errors, n);
2912 return len;
2913 }
2914 static struct rdev_sysfs_entry rdev_errors =
2915 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2916
2917 static ssize_t
2918 slot_show(struct md_rdev *rdev, char *page)
2919 {
2920 if (test_bit(Journal, &rdev->flags))
2921 return sprintf(page, "journal\n");
2922 else if (rdev->raid_disk < 0)
2923 return sprintf(page, "none\n");
2924 else
2925 return sprintf(page, "%d\n", rdev->raid_disk);
2926 }
2927
2928 static ssize_t
2929 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2930 {
2931 int slot;
2932 int err;
2933
2934 if (test_bit(Journal, &rdev->flags))
2935 return -EBUSY;
2936 if (strncmp(buf, "none", 4)==0)
2937 slot = -1;
2938 else {
2939 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2940 if (err < 0)
2941 return err;
2942 }
2943 if (rdev->mddev->pers && slot == -1) {
2944 /* Setting 'slot' on an active array requires also
2945 * updating the 'rd%d' link, and communicating
2946 * with the personality with ->hot_*_disk.
2947 * For now we only support removing
2948 * failed/spare devices. This normally happens automatically,
2949 * but not when the metadata is externally managed.
2950 */
2951 if (rdev->raid_disk == -1)
2952 return -EEXIST;
2953 /* personality does all needed checks */
2954 if (rdev->mddev->pers->hot_remove_disk == NULL)
2955 return -EINVAL;
2956 clear_bit(Blocked, &rdev->flags);
2957 remove_and_add_spares(rdev->mddev, rdev);
2958 if (rdev->raid_disk >= 0)
2959 return -EBUSY;
2960 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2961 md_wakeup_thread(rdev->mddev->thread);
2962 } else if (rdev->mddev->pers) {
2963 /* Activating a spare .. or possibly reactivating
2964 * if we ever get bitmaps working here.
2965 */
2966 int err;
2967
2968 if (rdev->raid_disk != -1)
2969 return -EBUSY;
2970
2971 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2972 return -EBUSY;
2973
2974 if (rdev->mddev->pers->hot_add_disk == NULL)
2975 return -EINVAL;
2976
2977 if (slot >= rdev->mddev->raid_disks &&
2978 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2979 return -ENOSPC;
2980
2981 rdev->raid_disk = slot;
2982 if (test_bit(In_sync, &rdev->flags))
2983 rdev->saved_raid_disk = slot;
2984 else
2985 rdev->saved_raid_disk = -1;
2986 clear_bit(In_sync, &rdev->flags);
2987 clear_bit(Bitmap_sync, &rdev->flags);
2988 err = rdev->mddev->pers->
2989 hot_add_disk(rdev->mddev, rdev);
2990 if (err) {
2991 rdev->raid_disk = -1;
2992 return err;
2993 } else
2994 sysfs_notify_dirent_safe(rdev->sysfs_state);
2995 if (sysfs_link_rdev(rdev->mddev, rdev))
2996 /* failure here is OK */;
2997 /* don't wakeup anyone, leave that to userspace. */
2998 } else {
2999 if (slot >= rdev->mddev->raid_disks &&
3000 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3001 return -ENOSPC;
3002 rdev->raid_disk = slot;
3003 /* assume it is working */
3004 clear_bit(Faulty, &rdev->flags);
3005 clear_bit(WriteMostly, &rdev->flags);
3006 set_bit(In_sync, &rdev->flags);
3007 sysfs_notify_dirent_safe(rdev->sysfs_state);
3008 }
3009 return len;
3010 }
3011
3012 static struct rdev_sysfs_entry rdev_slot =
3013 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3014
3015 static ssize_t
3016 offset_show(struct md_rdev *rdev, char *page)
3017 {
3018 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3019 }
3020
3021 static ssize_t
3022 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3023 {
3024 unsigned long long offset;
3025 if (kstrtoull(buf, 10, &offset) < 0)
3026 return -EINVAL;
3027 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3028 return -EBUSY;
3029 if (rdev->sectors && rdev->mddev->external)
3030 /* Must set offset before size, so overlap checks
3031 * can be sane */
3032 return -EBUSY;
3033 rdev->data_offset = offset;
3034 rdev->new_data_offset = offset;
3035 return len;
3036 }
3037
3038 static struct rdev_sysfs_entry rdev_offset =
3039 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3040
3041 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3042 {
3043 return sprintf(page, "%llu\n",
3044 (unsigned long long)rdev->new_data_offset);
3045 }
3046
3047 static ssize_t new_offset_store(struct md_rdev *rdev,
3048 const char *buf, size_t len)
3049 {
3050 unsigned long long new_offset;
3051 struct mddev *mddev = rdev->mddev;
3052
3053 if (kstrtoull(buf, 10, &new_offset) < 0)
3054 return -EINVAL;
3055
3056 if (mddev->sync_thread ||
3057 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3058 return -EBUSY;
3059 if (new_offset == rdev->data_offset)
3060 /* reset is always permitted */
3061 ;
3062 else if (new_offset > rdev->data_offset) {
3063 /* must not push array size beyond rdev_sectors */
3064 if (new_offset - rdev->data_offset
3065 + mddev->dev_sectors > rdev->sectors)
3066 return -E2BIG;
3067 }
3068 /* Metadata worries about other space details. */
3069
3070 /* decreasing the offset is inconsistent with a backwards
3071 * reshape.
3072 */
3073 if (new_offset < rdev->data_offset &&
3074 mddev->reshape_backwards)
3075 return -EINVAL;
3076 /* Increasing offset is inconsistent with forwards
3077 * reshape. reshape_direction should be set to
3078 * 'backwards' first.
3079 */
3080 if (new_offset > rdev->data_offset &&
3081 !mddev->reshape_backwards)
3082 return -EINVAL;
3083
3084 if (mddev->pers && mddev->persistent &&
3085 !super_types[mddev->major_version]
3086 .allow_new_offset(rdev, new_offset))
3087 return -E2BIG;
3088 rdev->new_data_offset = new_offset;
3089 if (new_offset > rdev->data_offset)
3090 mddev->reshape_backwards = 1;
3091 else if (new_offset < rdev->data_offset)
3092 mddev->reshape_backwards = 0;
3093
3094 return len;
3095 }
3096 static struct rdev_sysfs_entry rdev_new_offset =
3097 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3098
3099 static ssize_t
3100 rdev_size_show(struct md_rdev *rdev, char *page)
3101 {
3102 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3103 }
3104
3105 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3106 {
3107 /* check if two start/length pairs overlap */
3108 if (s1+l1 <= s2)
3109 return 0;
3110 if (s2+l2 <= s1)
3111 return 0;
3112 return 1;
3113 }
3114
3115 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3116 {
3117 unsigned long long blocks;
3118 sector_t new;
3119
3120 if (kstrtoull(buf, 10, &blocks) < 0)
3121 return -EINVAL;
3122
3123 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3124 return -EINVAL; /* sector conversion overflow */
3125
3126 new = blocks * 2;
3127 if (new != blocks * 2)
3128 return -EINVAL; /* unsigned long long to sector_t overflow */
3129
3130 *sectors = new;
3131 return 0;
3132 }
3133
3134 static ssize_t
3135 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3136 {
3137 struct mddev *my_mddev = rdev->mddev;
3138 sector_t oldsectors = rdev->sectors;
3139 sector_t sectors;
3140
3141 if (test_bit(Journal, &rdev->flags))
3142 return -EBUSY;
3143 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3144 return -EINVAL;
3145 if (rdev->data_offset != rdev->new_data_offset)
3146 return -EINVAL; /* too confusing */
3147 if (my_mddev->pers && rdev->raid_disk >= 0) {
3148 if (my_mddev->persistent) {
3149 sectors = super_types[my_mddev->major_version].
3150 rdev_size_change(rdev, sectors);
3151 if (!sectors)
3152 return -EBUSY;
3153 } else if (!sectors)
3154 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3155 rdev->data_offset;
3156 if (!my_mddev->pers->resize)
3157 /* Cannot change size for RAID0 or Linear etc */
3158 return -EINVAL;
3159 }
3160 if (sectors < my_mddev->dev_sectors)
3161 return -EINVAL; /* component must fit device */
3162
3163 rdev->sectors = sectors;
3164 if (sectors > oldsectors && my_mddev->external) {
3165 /* Need to check that all other rdevs with the same
3166 * ->bdev do not overlap. 'rcu' is sufficient to walk
3167 * the rdev lists safely.
3168 * This check does not provide a hard guarantee, it
3169 * just helps avoid dangerous mistakes.
3170 */
3171 struct mddev *mddev;
3172 int overlap = 0;
3173 struct list_head *tmp;
3174
3175 rcu_read_lock();
3176 for_each_mddev(mddev, tmp) {
3177 struct md_rdev *rdev2;
3178
3179 rdev_for_each(rdev2, mddev)
3180 if (rdev->bdev == rdev2->bdev &&
3181 rdev != rdev2 &&
3182 overlaps(rdev->data_offset, rdev->sectors,
3183 rdev2->data_offset,
3184 rdev2->sectors)) {
3185 overlap = 1;
3186 break;
3187 }
3188 if (overlap) {
3189 mddev_put(mddev);
3190 break;
3191 }
3192 }
3193 rcu_read_unlock();
3194 if (overlap) {
3195 /* Someone else could have slipped in a size
3196 * change here, but doing so is just silly.
3197 * We put oldsectors back because we *know* it is
3198 * safe, and trust userspace not to race with
3199 * itself
3200 */
3201 rdev->sectors = oldsectors;
3202 return -EBUSY;
3203 }
3204 }
3205 return len;
3206 }
3207
3208 static struct rdev_sysfs_entry rdev_size =
3209 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3210
3211 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3212 {
3213 unsigned long long recovery_start = rdev->recovery_offset;
3214
3215 if (test_bit(In_sync, &rdev->flags) ||
3216 recovery_start == MaxSector)
3217 return sprintf(page, "none\n");
3218
3219 return sprintf(page, "%llu\n", recovery_start);
3220 }
3221
3222 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3223 {
3224 unsigned long long recovery_start;
3225
3226 if (cmd_match(buf, "none"))
3227 recovery_start = MaxSector;
3228 else if (kstrtoull(buf, 10, &recovery_start))
3229 return -EINVAL;
3230
3231 if (rdev->mddev->pers &&
3232 rdev->raid_disk >= 0)
3233 return -EBUSY;
3234
3235 rdev->recovery_offset = recovery_start;
3236 if (recovery_start == MaxSector)
3237 set_bit(In_sync, &rdev->flags);
3238 else
3239 clear_bit(In_sync, &rdev->flags);
3240 return len;
3241 }
3242
3243 static struct rdev_sysfs_entry rdev_recovery_start =
3244 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3245
3246 /* sysfs access to bad-blocks list.
3247 * We present two files.
3248 * 'bad-blocks' lists sector numbers and lengths of ranges that
3249 * are recorded as bad. The list is truncated to fit within
3250 * the one-page limit of sysfs.
3251 * Writing "sector length" to this file adds an acknowledged
3252 * bad block list.
3253 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3254 * been acknowledged. Writing to this file adds bad blocks
3255 * without acknowledging them. This is largely for testing.
3256 */
3257 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3258 {
3259 return badblocks_show(&rdev->badblocks, page, 0);
3260 }
3261 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3262 {
3263 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3264 /* Maybe that ack was all we needed */
3265 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3266 wake_up(&rdev->blocked_wait);
3267 return rv;
3268 }
3269 static struct rdev_sysfs_entry rdev_bad_blocks =
3270 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3271
3272 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3273 {
3274 return badblocks_show(&rdev->badblocks, page, 1);
3275 }
3276 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3277 {
3278 return badblocks_store(&rdev->badblocks, page, len, 1);
3279 }
3280 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3281 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3282
3283 static ssize_t
3284 ppl_sector_show(struct md_rdev *rdev, char *page)
3285 {
3286 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3287 }
3288
3289 static ssize_t
3290 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3291 {
3292 unsigned long long sector;
3293
3294 if (kstrtoull(buf, 10, &sector) < 0)
3295 return -EINVAL;
3296 if (sector != (sector_t)sector)
3297 return -EINVAL;
3298
3299 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3300 rdev->raid_disk >= 0)
3301 return -EBUSY;
3302
3303 if (rdev->mddev->persistent) {
3304 if (rdev->mddev->major_version == 0)
3305 return -EINVAL;
3306 if ((sector > rdev->sb_start &&
3307 sector - rdev->sb_start > S16_MAX) ||
3308 (sector < rdev->sb_start &&
3309 rdev->sb_start - sector > -S16_MIN))
3310 return -EINVAL;
3311 rdev->ppl.offset = sector - rdev->sb_start;
3312 } else if (!rdev->mddev->external) {
3313 return -EBUSY;
3314 }
3315 rdev->ppl.sector = sector;
3316 return len;
3317 }
3318
3319 static struct rdev_sysfs_entry rdev_ppl_sector =
3320 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3321
3322 static ssize_t
3323 ppl_size_show(struct md_rdev *rdev, char *page)
3324 {
3325 return sprintf(page, "%u\n", rdev->ppl.size);
3326 }
3327
3328 static ssize_t
3329 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3330 {
3331 unsigned int size;
3332
3333 if (kstrtouint(buf, 10, &size) < 0)
3334 return -EINVAL;
3335
3336 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3337 rdev->raid_disk >= 0)
3338 return -EBUSY;
3339
3340 if (rdev->mddev->persistent) {
3341 if (rdev->mddev->major_version == 0)
3342 return -EINVAL;
3343 if (size > U16_MAX)
3344 return -EINVAL;
3345 } else if (!rdev->mddev->external) {
3346 return -EBUSY;
3347 }
3348 rdev->ppl.size = size;
3349 return len;
3350 }
3351
3352 static struct rdev_sysfs_entry rdev_ppl_size =
3353 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3354
3355 static struct attribute *rdev_default_attrs[] = {
3356 &rdev_state.attr,
3357 &rdev_errors.attr,
3358 &rdev_slot.attr,
3359 &rdev_offset.attr,
3360 &rdev_new_offset.attr,
3361 &rdev_size.attr,
3362 &rdev_recovery_start.attr,
3363 &rdev_bad_blocks.attr,
3364 &rdev_unack_bad_blocks.attr,
3365 &rdev_ppl_sector.attr,
3366 &rdev_ppl_size.attr,
3367 NULL,
3368 };
3369 static ssize_t
3370 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3371 {
3372 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3373 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3374
3375 if (!entry->show)
3376 return -EIO;
3377 if (!rdev->mddev)
3378 return -EBUSY;
3379 return entry->show(rdev, page);
3380 }
3381
3382 static ssize_t
3383 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3384 const char *page, size_t length)
3385 {
3386 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3387 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3388 ssize_t rv;
3389 struct mddev *mddev = rdev->mddev;
3390
3391 if (!entry->store)
3392 return -EIO;
3393 if (!capable(CAP_SYS_ADMIN))
3394 return -EACCES;
3395 rv = mddev ? mddev_lock(mddev): -EBUSY;
3396 if (!rv) {
3397 if (rdev->mddev == NULL)
3398 rv = -EBUSY;
3399 else
3400 rv = entry->store(rdev, page, length);
3401 mddev_unlock(mddev);
3402 }
3403 return rv;
3404 }
3405
3406 static void rdev_free(struct kobject *ko)
3407 {
3408 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3409 kfree(rdev);
3410 }
3411 static const struct sysfs_ops rdev_sysfs_ops = {
3412 .show = rdev_attr_show,
3413 .store = rdev_attr_store,
3414 };
3415 static struct kobj_type rdev_ktype = {
3416 .release = rdev_free,
3417 .sysfs_ops = &rdev_sysfs_ops,
3418 .default_attrs = rdev_default_attrs,
3419 };
3420
3421 int md_rdev_init(struct md_rdev *rdev)
3422 {
3423 rdev->desc_nr = -1;
3424 rdev->saved_raid_disk = -1;
3425 rdev->raid_disk = -1;
3426 rdev->flags = 0;
3427 rdev->data_offset = 0;
3428 rdev->new_data_offset = 0;
3429 rdev->sb_events = 0;
3430 rdev->last_read_error = 0;
3431 rdev->sb_loaded = 0;
3432 rdev->bb_page = NULL;
3433 atomic_set(&rdev->nr_pending, 0);
3434 atomic_set(&rdev->read_errors, 0);
3435 atomic_set(&rdev->corrected_errors, 0);
3436
3437 INIT_LIST_HEAD(&rdev->same_set);
3438 init_waitqueue_head(&rdev->blocked_wait);
3439
3440 /* Add space to store bad block list.
3441 * This reserves the space even on arrays where it cannot
3442 * be used - I wonder if that matters
3443 */
3444 return badblocks_init(&rdev->badblocks, 0);
3445 }
3446 EXPORT_SYMBOL_GPL(md_rdev_init);
3447 /*
3448 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3449 *
3450 * mark the device faulty if:
3451 *
3452 * - the device is nonexistent (zero size)
3453 * - the device has no valid superblock
3454 *
3455 * a faulty rdev _never_ has rdev->sb set.
3456 */
3457 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3458 {
3459 char b[BDEVNAME_SIZE];
3460 int err;
3461 struct md_rdev *rdev;
3462 sector_t size;
3463
3464 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3465 if (!rdev)
3466 return ERR_PTR(-ENOMEM);
3467
3468 err = md_rdev_init(rdev);
3469 if (err)
3470 goto abort_free;
3471 err = alloc_disk_sb(rdev);
3472 if (err)
3473 goto abort_free;
3474
3475 err = lock_rdev(rdev, newdev, super_format == -2);
3476 if (err)
3477 goto abort_free;
3478
3479 kobject_init(&rdev->kobj, &rdev_ktype);
3480
3481 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3482 if (!size) {
3483 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3484 bdevname(rdev->bdev,b));
3485 err = -EINVAL;
3486 goto abort_free;
3487 }
3488
3489 if (super_format >= 0) {
3490 err = super_types[super_format].
3491 load_super(rdev, NULL, super_minor);
3492 if (err == -EINVAL) {
3493 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3494 bdevname(rdev->bdev,b),
3495 super_format, super_minor);
3496 goto abort_free;
3497 }
3498 if (err < 0) {
3499 pr_warn("md: could not read %s's sb, not importing!\n",
3500 bdevname(rdev->bdev,b));
3501 goto abort_free;
3502 }
3503 }
3504
3505 return rdev;
3506
3507 abort_free:
3508 if (rdev->bdev)
3509 unlock_rdev(rdev);
3510 md_rdev_clear(rdev);
3511 kfree(rdev);
3512 return ERR_PTR(err);
3513 }
3514
3515 /*
3516 * Check a full RAID array for plausibility
3517 */
3518
3519 static void analyze_sbs(struct mddev *mddev)
3520 {
3521 int i;
3522 struct md_rdev *rdev, *freshest, *tmp;
3523 char b[BDEVNAME_SIZE];
3524
3525 freshest = NULL;
3526 rdev_for_each_safe(rdev, tmp, mddev)
3527 switch (super_types[mddev->major_version].
3528 load_super(rdev, freshest, mddev->minor_version)) {
3529 case 1:
3530 freshest = rdev;
3531 break;
3532 case 0:
3533 break;
3534 default:
3535 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3536 bdevname(rdev->bdev,b));
3537 md_kick_rdev_from_array(rdev);
3538 }
3539
3540 super_types[mddev->major_version].
3541 validate_super(mddev, freshest);
3542
3543 i = 0;
3544 rdev_for_each_safe(rdev, tmp, mddev) {
3545 if (mddev->max_disks &&
3546 (rdev->desc_nr >= mddev->max_disks ||
3547 i > mddev->max_disks)) {
3548 pr_warn("md: %s: %s: only %d devices permitted\n",
3549 mdname(mddev), bdevname(rdev->bdev, b),
3550 mddev->max_disks);
3551 md_kick_rdev_from_array(rdev);
3552 continue;
3553 }
3554 if (rdev != freshest) {
3555 if (super_types[mddev->major_version].
3556 validate_super(mddev, rdev)) {
3557 pr_warn("md: kicking non-fresh %s from array!\n",
3558 bdevname(rdev->bdev,b));
3559 md_kick_rdev_from_array(rdev);
3560 continue;
3561 }
3562 }
3563 if (mddev->level == LEVEL_MULTIPATH) {
3564 rdev->desc_nr = i++;
3565 rdev->raid_disk = rdev->desc_nr;
3566 set_bit(In_sync, &rdev->flags);
3567 } else if (rdev->raid_disk >=
3568 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3569 !test_bit(Journal, &rdev->flags)) {
3570 rdev->raid_disk = -1;
3571 clear_bit(In_sync, &rdev->flags);
3572 }
3573 }
3574 }
3575
3576 /* Read a fixed-point number.
3577 * Numbers in sysfs attributes should be in "standard" units where
3578 * possible, so time should be in seconds.
3579 * However we internally use a a much smaller unit such as
3580 * milliseconds or jiffies.
3581 * This function takes a decimal number with a possible fractional
3582 * component, and produces an integer which is the result of
3583 * multiplying that number by 10^'scale'.
3584 * all without any floating-point arithmetic.
3585 */
3586 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3587 {
3588 unsigned long result = 0;
3589 long decimals = -1;
3590 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3591 if (*cp == '.')
3592 decimals = 0;
3593 else if (decimals < scale) {
3594 unsigned int value;
3595 value = *cp - '0';
3596 result = result * 10 + value;
3597 if (decimals >= 0)
3598 decimals++;
3599 }
3600 cp++;
3601 }
3602 if (*cp == '\n')
3603 cp++;
3604 if (*cp)
3605 return -EINVAL;
3606 if (decimals < 0)
3607 decimals = 0;
3608 while (decimals < scale) {
3609 result *= 10;
3610 decimals ++;
3611 }
3612 *res = result;
3613 return 0;
3614 }
3615
3616 static ssize_t
3617 safe_delay_show(struct mddev *mddev, char *page)
3618 {
3619 int msec = (mddev->safemode_delay*1000)/HZ;
3620 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3621 }
3622 static ssize_t
3623 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3624 {
3625 unsigned long msec;
3626
3627 if (mddev_is_clustered(mddev)) {
3628 pr_warn("md: Safemode is disabled for clustered mode\n");
3629 return -EINVAL;
3630 }
3631
3632 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3633 return -EINVAL;
3634 if (msec == 0)
3635 mddev->safemode_delay = 0;
3636 else {
3637 unsigned long old_delay = mddev->safemode_delay;
3638 unsigned long new_delay = (msec*HZ)/1000;
3639
3640 if (new_delay == 0)
3641 new_delay = 1;
3642 mddev->safemode_delay = new_delay;
3643 if (new_delay < old_delay || old_delay == 0)
3644 mod_timer(&mddev->safemode_timer, jiffies+1);
3645 }
3646 return len;
3647 }
3648 static struct md_sysfs_entry md_safe_delay =
3649 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3650
3651 static ssize_t
3652 level_show(struct mddev *mddev, char *page)
3653 {
3654 struct md_personality *p;
3655 int ret;
3656 spin_lock(&mddev->lock);
3657 p = mddev->pers;
3658 if (p)
3659 ret = sprintf(page, "%s\n", p->name);
3660 else if (mddev->clevel[0])
3661 ret = sprintf(page, "%s\n", mddev->clevel);
3662 else if (mddev->level != LEVEL_NONE)
3663 ret = sprintf(page, "%d\n", mddev->level);
3664 else
3665 ret = 0;
3666 spin_unlock(&mddev->lock);
3667 return ret;
3668 }
3669
3670 static ssize_t
3671 level_store(struct mddev *mddev, const char *buf, size_t len)
3672 {
3673 char clevel[16];
3674 ssize_t rv;
3675 size_t slen = len;
3676 struct md_personality *pers, *oldpers;
3677 long level;
3678 void *priv, *oldpriv;
3679 struct md_rdev *rdev;
3680
3681 if (slen == 0 || slen >= sizeof(clevel))
3682 return -EINVAL;
3683
3684 rv = mddev_lock(mddev);
3685 if (rv)
3686 return rv;
3687
3688 if (mddev->pers == NULL) {
3689 strncpy(mddev->clevel, buf, slen);
3690 if (mddev->clevel[slen-1] == '\n')
3691 slen--;
3692 mddev->clevel[slen] = 0;
3693 mddev->level = LEVEL_NONE;
3694 rv = len;
3695 goto out_unlock;
3696 }
3697 rv = -EROFS;
3698 if (mddev->ro)
3699 goto out_unlock;
3700
3701 /* request to change the personality. Need to ensure:
3702 * - array is not engaged in resync/recovery/reshape
3703 * - old personality can be suspended
3704 * - new personality will access other array.
3705 */
3706
3707 rv = -EBUSY;
3708 if (mddev->sync_thread ||
3709 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3710 mddev->reshape_position != MaxSector ||
3711 mddev->sysfs_active)
3712 goto out_unlock;
3713
3714 rv = -EINVAL;
3715 if (!mddev->pers->quiesce) {
3716 pr_warn("md: %s: %s does not support online personality change\n",
3717 mdname(mddev), mddev->pers->name);
3718 goto out_unlock;
3719 }
3720
3721 /* Now find the new personality */
3722 strncpy(clevel, buf, slen);
3723 if (clevel[slen-1] == '\n')
3724 slen--;
3725 clevel[slen] = 0;
3726 if (kstrtol(clevel, 10, &level))
3727 level = LEVEL_NONE;
3728
3729 if (request_module("md-%s", clevel) != 0)
3730 request_module("md-level-%s", clevel);
3731 spin_lock(&pers_lock);
3732 pers = find_pers(level, clevel);
3733 if (!pers || !try_module_get(pers->owner)) {
3734 spin_unlock(&pers_lock);
3735 pr_warn("md: personality %s not loaded\n", clevel);
3736 rv = -EINVAL;
3737 goto out_unlock;
3738 }
3739 spin_unlock(&pers_lock);
3740
3741 if (pers == mddev->pers) {
3742 /* Nothing to do! */
3743 module_put(pers->owner);
3744 rv = len;
3745 goto out_unlock;
3746 }
3747 if (!pers->takeover) {
3748 module_put(pers->owner);
3749 pr_warn("md: %s: %s does not support personality takeover\n",
3750 mdname(mddev), clevel);
3751 rv = -EINVAL;
3752 goto out_unlock;
3753 }
3754
3755 rdev_for_each(rdev, mddev)
3756 rdev->new_raid_disk = rdev->raid_disk;
3757
3758 /* ->takeover must set new_* and/or delta_disks
3759 * if it succeeds, and may set them when it fails.
3760 */
3761 priv = pers->takeover(mddev);
3762 if (IS_ERR(priv)) {
3763 mddev->new_level = mddev->level;
3764 mddev->new_layout = mddev->layout;
3765 mddev->new_chunk_sectors = mddev->chunk_sectors;
3766 mddev->raid_disks -= mddev->delta_disks;
3767 mddev->delta_disks = 0;
3768 mddev->reshape_backwards = 0;
3769 module_put(pers->owner);
3770 pr_warn("md: %s: %s would not accept array\n",
3771 mdname(mddev), clevel);
3772 rv = PTR_ERR(priv);
3773 goto out_unlock;
3774 }
3775
3776 /* Looks like we have a winner */
3777 mddev_suspend(mddev);
3778 mddev_detach(mddev);
3779
3780 spin_lock(&mddev->lock);
3781 oldpers = mddev->pers;
3782 oldpriv = mddev->private;
3783 mddev->pers = pers;
3784 mddev->private = priv;
3785 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3786 mddev->level = mddev->new_level;
3787 mddev->layout = mddev->new_layout;
3788 mddev->chunk_sectors = mddev->new_chunk_sectors;
3789 mddev->delta_disks = 0;
3790 mddev->reshape_backwards = 0;
3791 mddev->degraded = 0;
3792 spin_unlock(&mddev->lock);
3793
3794 if (oldpers->sync_request == NULL &&
3795 mddev->external) {
3796 /* We are converting from a no-redundancy array
3797 * to a redundancy array and metadata is managed
3798 * externally so we need to be sure that writes
3799 * won't block due to a need to transition
3800 * clean->dirty
3801 * until external management is started.
3802 */
3803 mddev->in_sync = 0;
3804 mddev->safemode_delay = 0;
3805 mddev->safemode = 0;
3806 }
3807
3808 oldpers->free(mddev, oldpriv);
3809
3810 if (oldpers->sync_request == NULL &&
3811 pers->sync_request != NULL) {
3812 /* need to add the md_redundancy_group */
3813 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3814 pr_warn("md: cannot register extra attributes for %s\n",
3815 mdname(mddev));
3816 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3817 }
3818 if (oldpers->sync_request != NULL &&
3819 pers->sync_request == NULL) {
3820 /* need to remove the md_redundancy_group */
3821 if (mddev->to_remove == NULL)
3822 mddev->to_remove = &md_redundancy_group;
3823 }
3824
3825 module_put(oldpers->owner);
3826
3827 rdev_for_each(rdev, mddev) {
3828 if (rdev->raid_disk < 0)
3829 continue;
3830 if (rdev->new_raid_disk >= mddev->raid_disks)
3831 rdev->new_raid_disk = -1;
3832 if (rdev->new_raid_disk == rdev->raid_disk)
3833 continue;
3834 sysfs_unlink_rdev(mddev, rdev);
3835 }
3836 rdev_for_each(rdev, mddev) {
3837 if (rdev->raid_disk < 0)
3838 continue;
3839 if (rdev->new_raid_disk == rdev->raid_disk)
3840 continue;
3841 rdev->raid_disk = rdev->new_raid_disk;
3842 if (rdev->raid_disk < 0)
3843 clear_bit(In_sync, &rdev->flags);
3844 else {
3845 if (sysfs_link_rdev(mddev, rdev))
3846 pr_warn("md: cannot register rd%d for %s after level change\n",
3847 rdev->raid_disk, mdname(mddev));
3848 }
3849 }
3850
3851 if (pers->sync_request == NULL) {
3852 /* this is now an array without redundancy, so
3853 * it must always be in_sync
3854 */
3855 mddev->in_sync = 1;
3856 del_timer_sync(&mddev->safemode_timer);
3857 }
3858 blk_set_stacking_limits(&mddev->queue->limits);
3859 pers->run(mddev);
3860 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3861 mddev_resume(mddev);
3862 if (!mddev->thread)
3863 md_update_sb(mddev, 1);
3864 sysfs_notify(&mddev->kobj, NULL, "level");
3865 md_new_event(mddev);
3866 rv = len;
3867 out_unlock:
3868 mddev_unlock(mddev);
3869 return rv;
3870 }
3871
3872 static struct md_sysfs_entry md_level =
3873 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3874
3875 static ssize_t
3876 layout_show(struct mddev *mddev, char *page)
3877 {
3878 /* just a number, not meaningful for all levels */
3879 if (mddev->reshape_position != MaxSector &&
3880 mddev->layout != mddev->new_layout)
3881 return sprintf(page, "%d (%d)\n",
3882 mddev->new_layout, mddev->layout);
3883 return sprintf(page, "%d\n", mddev->layout);
3884 }
3885
3886 static ssize_t
3887 layout_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889 unsigned int n;
3890 int err;
3891
3892 err = kstrtouint(buf, 10, &n);
3893 if (err < 0)
3894 return err;
3895 err = mddev_lock(mddev);
3896 if (err)
3897 return err;
3898
3899 if (mddev->pers) {
3900 if (mddev->pers->check_reshape == NULL)
3901 err = -EBUSY;
3902 else if (mddev->ro)
3903 err = -EROFS;
3904 else {
3905 mddev->new_layout = n;
3906 err = mddev->pers->check_reshape(mddev);
3907 if (err)
3908 mddev->new_layout = mddev->layout;
3909 }
3910 } else {
3911 mddev->new_layout = n;
3912 if (mddev->reshape_position == MaxSector)
3913 mddev->layout = n;
3914 }
3915 mddev_unlock(mddev);
3916 return err ?: len;
3917 }
3918 static struct md_sysfs_entry md_layout =
3919 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3920
3921 static ssize_t
3922 raid_disks_show(struct mddev *mddev, char *page)
3923 {
3924 if (mddev->raid_disks == 0)
3925 return 0;
3926 if (mddev->reshape_position != MaxSector &&
3927 mddev->delta_disks != 0)
3928 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3929 mddev->raid_disks - mddev->delta_disks);
3930 return sprintf(page, "%d\n", mddev->raid_disks);
3931 }
3932
3933 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3934
3935 static ssize_t
3936 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3937 {
3938 unsigned int n;
3939 int err;
3940
3941 err = kstrtouint(buf, 10, &n);
3942 if (err < 0)
3943 return err;
3944
3945 err = mddev_lock(mddev);
3946 if (err)
3947 return err;
3948 if (mddev->pers)
3949 err = update_raid_disks(mddev, n);
3950 else if (mddev->reshape_position != MaxSector) {
3951 struct md_rdev *rdev;
3952 int olddisks = mddev->raid_disks - mddev->delta_disks;
3953
3954 err = -EINVAL;
3955 rdev_for_each(rdev, mddev) {
3956 if (olddisks < n &&
3957 rdev->data_offset < rdev->new_data_offset)
3958 goto out_unlock;
3959 if (olddisks > n &&
3960 rdev->data_offset > rdev->new_data_offset)
3961 goto out_unlock;
3962 }
3963 err = 0;
3964 mddev->delta_disks = n - olddisks;
3965 mddev->raid_disks = n;
3966 mddev->reshape_backwards = (mddev->delta_disks < 0);
3967 } else
3968 mddev->raid_disks = n;
3969 out_unlock:
3970 mddev_unlock(mddev);
3971 return err ? err : len;
3972 }
3973 static struct md_sysfs_entry md_raid_disks =
3974 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3975
3976 static ssize_t
3977 chunk_size_show(struct mddev *mddev, char *page)
3978 {
3979 if (mddev->reshape_position != MaxSector &&
3980 mddev->chunk_sectors != mddev->new_chunk_sectors)
3981 return sprintf(page, "%d (%d)\n",
3982 mddev->new_chunk_sectors << 9,
3983 mddev->chunk_sectors << 9);
3984 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3985 }
3986
3987 static ssize_t
3988 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3989 {
3990 unsigned long n;
3991 int err;
3992
3993 err = kstrtoul(buf, 10, &n);
3994 if (err < 0)
3995 return err;
3996
3997 err = mddev_lock(mddev);
3998 if (err)
3999 return err;
4000 if (mddev->pers) {
4001 if (mddev->pers->check_reshape == NULL)
4002 err = -EBUSY;
4003 else if (mddev->ro)
4004 err = -EROFS;
4005 else {
4006 mddev->new_chunk_sectors = n >> 9;
4007 err = mddev->pers->check_reshape(mddev);
4008 if (err)
4009 mddev->new_chunk_sectors = mddev->chunk_sectors;
4010 }
4011 } else {
4012 mddev->new_chunk_sectors = n >> 9;
4013 if (mddev->reshape_position == MaxSector)
4014 mddev->chunk_sectors = n >> 9;
4015 }
4016 mddev_unlock(mddev);
4017 return err ?: len;
4018 }
4019 static struct md_sysfs_entry md_chunk_size =
4020 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4021
4022 static ssize_t
4023 resync_start_show(struct mddev *mddev, char *page)
4024 {
4025 if (mddev->recovery_cp == MaxSector)
4026 return sprintf(page, "none\n");
4027 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4028 }
4029
4030 static ssize_t
4031 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 unsigned long long n;
4034 int err;
4035
4036 if (cmd_match(buf, "none"))
4037 n = MaxSector;
4038 else {
4039 err = kstrtoull(buf, 10, &n);
4040 if (err < 0)
4041 return err;
4042 if (n != (sector_t)n)
4043 return -EINVAL;
4044 }
4045
4046 err = mddev_lock(mddev);
4047 if (err)
4048 return err;
4049 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4050 err = -EBUSY;
4051
4052 if (!err) {
4053 mddev->recovery_cp = n;
4054 if (mddev->pers)
4055 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4056 }
4057 mddev_unlock(mddev);
4058 return err ?: len;
4059 }
4060 static struct md_sysfs_entry md_resync_start =
4061 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4062 resync_start_show, resync_start_store);
4063
4064 /*
4065 * The array state can be:
4066 *
4067 * clear
4068 * No devices, no size, no level
4069 * Equivalent to STOP_ARRAY ioctl
4070 * inactive
4071 * May have some settings, but array is not active
4072 * all IO results in error
4073 * When written, doesn't tear down array, but just stops it
4074 * suspended (not supported yet)
4075 * All IO requests will block. The array can be reconfigured.
4076 * Writing this, if accepted, will block until array is quiescent
4077 * readonly
4078 * no resync can happen. no superblocks get written.
4079 * write requests fail
4080 * read-auto
4081 * like readonly, but behaves like 'clean' on a write request.
4082 *
4083 * clean - no pending writes, but otherwise active.
4084 * When written to inactive array, starts without resync
4085 * If a write request arrives then
4086 * if metadata is known, mark 'dirty' and switch to 'active'.
4087 * if not known, block and switch to write-pending
4088 * If written to an active array that has pending writes, then fails.
4089 * active
4090 * fully active: IO and resync can be happening.
4091 * When written to inactive array, starts with resync
4092 *
4093 * write-pending
4094 * clean, but writes are blocked waiting for 'active' to be written.
4095 *
4096 * active-idle
4097 * like active, but no writes have been seen for a while (100msec).
4098 *
4099 */
4100 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4101 write_pending, active_idle, bad_word};
4102 static char *array_states[] = {
4103 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4104 "write-pending", "active-idle", NULL };
4105
4106 static int match_word(const char *word, char **list)
4107 {
4108 int n;
4109 for (n=0; list[n]; n++)
4110 if (cmd_match(word, list[n]))
4111 break;
4112 return n;
4113 }
4114
4115 static ssize_t
4116 array_state_show(struct mddev *mddev, char *page)
4117 {
4118 enum array_state st = inactive;
4119
4120 if (mddev->pers)
4121 switch(mddev->ro) {
4122 case 1:
4123 st = readonly;
4124 break;
4125 case 2:
4126 st = read_auto;
4127 break;
4128 case 0:
4129 spin_lock(&mddev->lock);
4130 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4131 st = write_pending;
4132 else if (mddev->in_sync)
4133 st = clean;
4134 else if (mddev->safemode)
4135 st = active_idle;
4136 else
4137 st = active;
4138 spin_unlock(&mddev->lock);
4139 }
4140 else {
4141 if (list_empty(&mddev->disks) &&
4142 mddev->raid_disks == 0 &&
4143 mddev->dev_sectors == 0)
4144 st = clear;
4145 else
4146 st = inactive;
4147 }
4148 return sprintf(page, "%s\n", array_states[st]);
4149 }
4150
4151 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4152 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4153 static int do_md_run(struct mddev *mddev);
4154 static int restart_array(struct mddev *mddev);
4155
4156 static ssize_t
4157 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4158 {
4159 int err = 0;
4160 enum array_state st = match_word(buf, array_states);
4161
4162 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4163 /* don't take reconfig_mutex when toggling between
4164 * clean and active
4165 */
4166 spin_lock(&mddev->lock);
4167 if (st == active) {
4168 restart_array(mddev);
4169 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4170 md_wakeup_thread(mddev->thread);
4171 wake_up(&mddev->sb_wait);
4172 } else /* st == clean */ {
4173 restart_array(mddev);
4174 if (!set_in_sync(mddev))
4175 err = -EBUSY;
4176 }
4177 if (!err)
4178 sysfs_notify_dirent_safe(mddev->sysfs_state);
4179 spin_unlock(&mddev->lock);
4180 return err ?: len;
4181 }
4182 err = mddev_lock(mddev);
4183 if (err)
4184 return err;
4185 err = -EINVAL;
4186 switch(st) {
4187 case bad_word:
4188 break;
4189 case clear:
4190 /* stopping an active array */
4191 err = do_md_stop(mddev, 0, NULL);
4192 break;
4193 case inactive:
4194 /* stopping an active array */
4195 if (mddev->pers)
4196 err = do_md_stop(mddev, 2, NULL);
4197 else
4198 err = 0; /* already inactive */
4199 break;
4200 case suspended:
4201 break; /* not supported yet */
4202 case readonly:
4203 if (mddev->pers)
4204 err = md_set_readonly(mddev, NULL);
4205 else {
4206 mddev->ro = 1;
4207 set_disk_ro(mddev->gendisk, 1);
4208 err = do_md_run(mddev);
4209 }
4210 break;
4211 case read_auto:
4212 if (mddev->pers) {
4213 if (mddev->ro == 0)
4214 err = md_set_readonly(mddev, NULL);
4215 else if (mddev->ro == 1)
4216 err = restart_array(mddev);
4217 if (err == 0) {
4218 mddev->ro = 2;
4219 set_disk_ro(mddev->gendisk, 0);
4220 }
4221 } else {
4222 mddev->ro = 2;
4223 err = do_md_run(mddev);
4224 }
4225 break;
4226 case clean:
4227 if (mddev->pers) {
4228 err = restart_array(mddev);
4229 if (err)
4230 break;
4231 spin_lock(&mddev->lock);
4232 if (!set_in_sync(mddev))
4233 err = -EBUSY;
4234 spin_unlock(&mddev->lock);
4235 } else
4236 err = -EINVAL;
4237 break;
4238 case active:
4239 if (mddev->pers) {
4240 err = restart_array(mddev);
4241 if (err)
4242 break;
4243 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4244 wake_up(&mddev->sb_wait);
4245 err = 0;
4246 } else {
4247 mddev->ro = 0;
4248 set_disk_ro(mddev->gendisk, 0);
4249 err = do_md_run(mddev);
4250 }
4251 break;
4252 case write_pending:
4253 case active_idle:
4254 /* these cannot be set */
4255 break;
4256 }
4257
4258 if (!err) {
4259 if (mddev->hold_active == UNTIL_IOCTL)
4260 mddev->hold_active = 0;
4261 sysfs_notify_dirent_safe(mddev->sysfs_state);
4262 }
4263 mddev_unlock(mddev);
4264 return err ?: len;
4265 }
4266 static struct md_sysfs_entry md_array_state =
4267 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4268
4269 static ssize_t
4270 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4271 return sprintf(page, "%d\n",
4272 atomic_read(&mddev->max_corr_read_errors));
4273 }
4274
4275 static ssize_t
4276 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4277 {
4278 unsigned int n;
4279 int rv;
4280
4281 rv = kstrtouint(buf, 10, &n);
4282 if (rv < 0)
4283 return rv;
4284 atomic_set(&mddev->max_corr_read_errors, n);
4285 return len;
4286 }
4287
4288 static struct md_sysfs_entry max_corr_read_errors =
4289 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4290 max_corrected_read_errors_store);
4291
4292 static ssize_t
4293 null_show(struct mddev *mddev, char *page)
4294 {
4295 return -EINVAL;
4296 }
4297
4298 static ssize_t
4299 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 /* buf must be %d:%d\n? giving major and minor numbers */
4302 /* The new device is added to the array.
4303 * If the array has a persistent superblock, we read the
4304 * superblock to initialise info and check validity.
4305 * Otherwise, only checking done is that in bind_rdev_to_array,
4306 * which mainly checks size.
4307 */
4308 char *e;
4309 int major = simple_strtoul(buf, &e, 10);
4310 int minor;
4311 dev_t dev;
4312 struct md_rdev *rdev;
4313 int err;
4314
4315 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4316 return -EINVAL;
4317 minor = simple_strtoul(e+1, &e, 10);
4318 if (*e && *e != '\n')
4319 return -EINVAL;
4320 dev = MKDEV(major, minor);
4321 if (major != MAJOR(dev) ||
4322 minor != MINOR(dev))
4323 return -EOVERFLOW;
4324
4325 flush_workqueue(md_misc_wq);
4326
4327 err = mddev_lock(mddev);
4328 if (err)
4329 return err;
4330 if (mddev->persistent) {
4331 rdev = md_import_device(dev, mddev->major_version,
4332 mddev->minor_version);
4333 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4334 struct md_rdev *rdev0
4335 = list_entry(mddev->disks.next,
4336 struct md_rdev, same_set);
4337 err = super_types[mddev->major_version]
4338 .load_super(rdev, rdev0, mddev->minor_version);
4339 if (err < 0)
4340 goto out;
4341 }
4342 } else if (mddev->external)
4343 rdev = md_import_device(dev, -2, -1);
4344 else
4345 rdev = md_import_device(dev, -1, -1);
4346
4347 if (IS_ERR(rdev)) {
4348 mddev_unlock(mddev);
4349 return PTR_ERR(rdev);
4350 }
4351 err = bind_rdev_to_array(rdev, mddev);
4352 out:
4353 if (err)
4354 export_rdev(rdev);
4355 mddev_unlock(mddev);
4356 if (!err)
4357 md_new_event(mddev);
4358 return err ? err : len;
4359 }
4360
4361 static struct md_sysfs_entry md_new_device =
4362 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4363
4364 static ssize_t
4365 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4366 {
4367 char *end;
4368 unsigned long chunk, end_chunk;
4369 int err;
4370
4371 err = mddev_lock(mddev);
4372 if (err)
4373 return err;
4374 if (!mddev->bitmap)
4375 goto out;
4376 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4377 while (*buf) {
4378 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4379 if (buf == end) break;
4380 if (*end == '-') { /* range */
4381 buf = end + 1;
4382 end_chunk = simple_strtoul(buf, &end, 0);
4383 if (buf == end) break;
4384 }
4385 if (*end && !isspace(*end)) break;
4386 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4387 buf = skip_spaces(end);
4388 }
4389 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4390 out:
4391 mddev_unlock(mddev);
4392 return len;
4393 }
4394
4395 static struct md_sysfs_entry md_bitmap =
4396 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4397
4398 static ssize_t
4399 size_show(struct mddev *mddev, char *page)
4400 {
4401 return sprintf(page, "%llu\n",
4402 (unsigned long long)mddev->dev_sectors / 2);
4403 }
4404
4405 static int update_size(struct mddev *mddev, sector_t num_sectors);
4406
4407 static ssize_t
4408 size_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410 /* If array is inactive, we can reduce the component size, but
4411 * not increase it (except from 0).
4412 * If array is active, we can try an on-line resize
4413 */
4414 sector_t sectors;
4415 int err = strict_blocks_to_sectors(buf, &sectors);
4416
4417 if (err < 0)
4418 return err;
4419 err = mddev_lock(mddev);
4420 if (err)
4421 return err;
4422 if (mddev->pers) {
4423 err = update_size(mddev, sectors);
4424 if (err == 0)
4425 md_update_sb(mddev, 1);
4426 } else {
4427 if (mddev->dev_sectors == 0 ||
4428 mddev->dev_sectors > sectors)
4429 mddev->dev_sectors = sectors;
4430 else
4431 err = -ENOSPC;
4432 }
4433 mddev_unlock(mddev);
4434 return err ? err : len;
4435 }
4436
4437 static struct md_sysfs_entry md_size =
4438 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4439
4440 /* Metadata version.
4441 * This is one of
4442 * 'none' for arrays with no metadata (good luck...)
4443 * 'external' for arrays with externally managed metadata,
4444 * or N.M for internally known formats
4445 */
4446 static ssize_t
4447 metadata_show(struct mddev *mddev, char *page)
4448 {
4449 if (mddev->persistent)
4450 return sprintf(page, "%d.%d\n",
4451 mddev->major_version, mddev->minor_version);
4452 else if (mddev->external)
4453 return sprintf(page, "external:%s\n", mddev->metadata_type);
4454 else
4455 return sprintf(page, "none\n");
4456 }
4457
4458 static ssize_t
4459 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4460 {
4461 int major, minor;
4462 char *e;
4463 int err;
4464 /* Changing the details of 'external' metadata is
4465 * always permitted. Otherwise there must be
4466 * no devices attached to the array.
4467 */
4468
4469 err = mddev_lock(mddev);
4470 if (err)
4471 return err;
4472 err = -EBUSY;
4473 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4474 ;
4475 else if (!list_empty(&mddev->disks))
4476 goto out_unlock;
4477
4478 err = 0;
4479 if (cmd_match(buf, "none")) {
4480 mddev->persistent = 0;
4481 mddev->external = 0;
4482 mddev->major_version = 0;
4483 mddev->minor_version = 90;
4484 goto out_unlock;
4485 }
4486 if (strncmp(buf, "external:", 9) == 0) {
4487 size_t namelen = len-9;
4488 if (namelen >= sizeof(mddev->metadata_type))
4489 namelen = sizeof(mddev->metadata_type)-1;
4490 strncpy(mddev->metadata_type, buf+9, namelen);
4491 mddev->metadata_type[namelen] = 0;
4492 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4493 mddev->metadata_type[--namelen] = 0;
4494 mddev->persistent = 0;
4495 mddev->external = 1;
4496 mddev->major_version = 0;
4497 mddev->minor_version = 90;
4498 goto out_unlock;
4499 }
4500 major = simple_strtoul(buf, &e, 10);
4501 err = -EINVAL;
4502 if (e==buf || *e != '.')
4503 goto out_unlock;
4504 buf = e+1;
4505 minor = simple_strtoul(buf, &e, 10);
4506 if (e==buf || (*e && *e != '\n') )
4507 goto out_unlock;
4508 err = -ENOENT;
4509 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4510 goto out_unlock;
4511 mddev->major_version = major;
4512 mddev->minor_version = minor;
4513 mddev->persistent = 1;
4514 mddev->external = 0;
4515 err = 0;
4516 out_unlock:
4517 mddev_unlock(mddev);
4518 return err ?: len;
4519 }
4520
4521 static struct md_sysfs_entry md_metadata =
4522 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4523
4524 static ssize_t
4525 action_show(struct mddev *mddev, char *page)
4526 {
4527 char *type = "idle";
4528 unsigned long recovery = mddev->recovery;
4529 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4530 type = "frozen";
4531 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4532 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4533 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4534 type = "reshape";
4535 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4536 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4537 type = "resync";
4538 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4539 type = "check";
4540 else
4541 type = "repair";
4542 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4543 type = "recover";
4544 else if (mddev->reshape_position != MaxSector)
4545 type = "reshape";
4546 }
4547 return sprintf(page, "%s\n", type);
4548 }
4549
4550 static ssize_t
4551 action_store(struct mddev *mddev, const char *page, size_t len)
4552 {
4553 if (!mddev->pers || !mddev->pers->sync_request)
4554 return -EINVAL;
4555
4556
4557 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4558 if (cmd_match(page, "frozen"))
4559 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4560 else
4561 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4563 mddev_lock(mddev) == 0) {
4564 flush_workqueue(md_misc_wq);
4565 if (mddev->sync_thread) {
4566 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4567 md_reap_sync_thread(mddev);
4568 }
4569 mddev_unlock(mddev);
4570 }
4571 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4572 return -EBUSY;
4573 else if (cmd_match(page, "resync"))
4574 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4575 else if (cmd_match(page, "recover")) {
4576 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4577 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4578 } else if (cmd_match(page, "reshape")) {
4579 int err;
4580 if (mddev->pers->start_reshape == NULL)
4581 return -EINVAL;
4582 err = mddev_lock(mddev);
4583 if (!err) {
4584 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4585 err = -EBUSY;
4586 else {
4587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4588 err = mddev->pers->start_reshape(mddev);
4589 }
4590 mddev_unlock(mddev);
4591 }
4592 if (err)
4593 return err;
4594 sysfs_notify(&mddev->kobj, NULL, "degraded");
4595 } else {
4596 if (cmd_match(page, "check"))
4597 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4598 else if (!cmd_match(page, "repair"))
4599 return -EINVAL;
4600 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4601 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4602 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4603 }
4604 if (mddev->ro == 2) {
4605 /* A write to sync_action is enough to justify
4606 * canceling read-auto mode
4607 */
4608 mddev->ro = 0;
4609 md_wakeup_thread(mddev->sync_thread);
4610 }
4611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4612 md_wakeup_thread(mddev->thread);
4613 sysfs_notify_dirent_safe(mddev->sysfs_action);
4614 return len;
4615 }
4616
4617 static struct md_sysfs_entry md_scan_mode =
4618 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4619
4620 static ssize_t
4621 last_sync_action_show(struct mddev *mddev, char *page)
4622 {
4623 return sprintf(page, "%s\n", mddev->last_sync_action);
4624 }
4625
4626 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4627
4628 static ssize_t
4629 mismatch_cnt_show(struct mddev *mddev, char *page)
4630 {
4631 return sprintf(page, "%llu\n",
4632 (unsigned long long)
4633 atomic64_read(&mddev->resync_mismatches));
4634 }
4635
4636 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4637
4638 static ssize_t
4639 sync_min_show(struct mddev *mddev, char *page)
4640 {
4641 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4642 mddev->sync_speed_min ? "local": "system");
4643 }
4644
4645 static ssize_t
4646 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4647 {
4648 unsigned int min;
4649 int rv;
4650
4651 if (strncmp(buf, "system", 6)==0) {
4652 min = 0;
4653 } else {
4654 rv = kstrtouint(buf, 10, &min);
4655 if (rv < 0)
4656 return rv;
4657 if (min == 0)
4658 return -EINVAL;
4659 }
4660 mddev->sync_speed_min = min;
4661 return len;
4662 }
4663
4664 static struct md_sysfs_entry md_sync_min =
4665 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4666
4667 static ssize_t
4668 sync_max_show(struct mddev *mddev, char *page)
4669 {
4670 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4671 mddev->sync_speed_max ? "local": "system");
4672 }
4673
4674 static ssize_t
4675 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4676 {
4677 unsigned int max;
4678 int rv;
4679
4680 if (strncmp(buf, "system", 6)==0) {
4681 max = 0;
4682 } else {
4683 rv = kstrtouint(buf, 10, &max);
4684 if (rv < 0)
4685 return rv;
4686 if (max == 0)
4687 return -EINVAL;
4688 }
4689 mddev->sync_speed_max = max;
4690 return len;
4691 }
4692
4693 static struct md_sysfs_entry md_sync_max =
4694 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4695
4696 static ssize_t
4697 degraded_show(struct mddev *mddev, char *page)
4698 {
4699 return sprintf(page, "%d\n", mddev->degraded);
4700 }
4701 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4702
4703 static ssize_t
4704 sync_force_parallel_show(struct mddev *mddev, char *page)
4705 {
4706 return sprintf(page, "%d\n", mddev->parallel_resync);
4707 }
4708
4709 static ssize_t
4710 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4711 {
4712 long n;
4713
4714 if (kstrtol(buf, 10, &n))
4715 return -EINVAL;
4716
4717 if (n != 0 && n != 1)
4718 return -EINVAL;
4719
4720 mddev->parallel_resync = n;
4721
4722 if (mddev->sync_thread)
4723 wake_up(&resync_wait);
4724
4725 return len;
4726 }
4727
4728 /* force parallel resync, even with shared block devices */
4729 static struct md_sysfs_entry md_sync_force_parallel =
4730 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4731 sync_force_parallel_show, sync_force_parallel_store);
4732
4733 static ssize_t
4734 sync_speed_show(struct mddev *mddev, char *page)
4735 {
4736 unsigned long resync, dt, db;
4737 if (mddev->curr_resync == 0)
4738 return sprintf(page, "none\n");
4739 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4740 dt = (jiffies - mddev->resync_mark) / HZ;
4741 if (!dt) dt++;
4742 db = resync - mddev->resync_mark_cnt;
4743 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4744 }
4745
4746 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4747
4748 static ssize_t
4749 sync_completed_show(struct mddev *mddev, char *page)
4750 {
4751 unsigned long long max_sectors, resync;
4752
4753 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4754 return sprintf(page, "none\n");
4755
4756 if (mddev->curr_resync == 1 ||
4757 mddev->curr_resync == 2)
4758 return sprintf(page, "delayed\n");
4759
4760 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4761 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4762 max_sectors = mddev->resync_max_sectors;
4763 else
4764 max_sectors = mddev->dev_sectors;
4765
4766 resync = mddev->curr_resync_completed;
4767 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4768 }
4769
4770 static struct md_sysfs_entry md_sync_completed =
4771 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4772
4773 static ssize_t
4774 min_sync_show(struct mddev *mddev, char *page)
4775 {
4776 return sprintf(page, "%llu\n",
4777 (unsigned long long)mddev->resync_min);
4778 }
4779 static ssize_t
4780 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4781 {
4782 unsigned long long min;
4783 int err;
4784
4785 if (kstrtoull(buf, 10, &min))
4786 return -EINVAL;
4787
4788 spin_lock(&mddev->lock);
4789 err = -EINVAL;
4790 if (min > mddev->resync_max)
4791 goto out_unlock;
4792
4793 err = -EBUSY;
4794 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4795 goto out_unlock;
4796
4797 /* Round down to multiple of 4K for safety */
4798 mddev->resync_min = round_down(min, 8);
4799 err = 0;
4800
4801 out_unlock:
4802 spin_unlock(&mddev->lock);
4803 return err ?: len;
4804 }
4805
4806 static struct md_sysfs_entry md_min_sync =
4807 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4808
4809 static ssize_t
4810 max_sync_show(struct mddev *mddev, char *page)
4811 {
4812 if (mddev->resync_max == MaxSector)
4813 return sprintf(page, "max\n");
4814 else
4815 return sprintf(page, "%llu\n",
4816 (unsigned long long)mddev->resync_max);
4817 }
4818 static ssize_t
4819 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4820 {
4821 int err;
4822 spin_lock(&mddev->lock);
4823 if (strncmp(buf, "max", 3) == 0)
4824 mddev->resync_max = MaxSector;
4825 else {
4826 unsigned long long max;
4827 int chunk;
4828
4829 err = -EINVAL;
4830 if (kstrtoull(buf, 10, &max))
4831 goto out_unlock;
4832 if (max < mddev->resync_min)
4833 goto out_unlock;
4834
4835 err = -EBUSY;
4836 if (max < mddev->resync_max &&
4837 mddev->ro == 0 &&
4838 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4839 goto out_unlock;
4840
4841 /* Must be a multiple of chunk_size */
4842 chunk = mddev->chunk_sectors;
4843 if (chunk) {
4844 sector_t temp = max;
4845
4846 err = -EINVAL;
4847 if (sector_div(temp, chunk))
4848 goto out_unlock;
4849 }
4850 mddev->resync_max = max;
4851 }
4852 wake_up(&mddev->recovery_wait);
4853 err = 0;
4854 out_unlock:
4855 spin_unlock(&mddev->lock);
4856 return err ?: len;
4857 }
4858
4859 static struct md_sysfs_entry md_max_sync =
4860 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4861
4862 static ssize_t
4863 suspend_lo_show(struct mddev *mddev, char *page)
4864 {
4865 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4866 }
4867
4868 static ssize_t
4869 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4870 {
4871 unsigned long long new;
4872 int err;
4873
4874 err = kstrtoull(buf, 10, &new);
4875 if (err < 0)
4876 return err;
4877 if (new != (sector_t)new)
4878 return -EINVAL;
4879
4880 err = mddev_lock(mddev);
4881 if (err)
4882 return err;
4883 err = -EINVAL;
4884 if (mddev->pers == NULL ||
4885 mddev->pers->quiesce == NULL)
4886 goto unlock;
4887 mddev_suspend(mddev);
4888 mddev->suspend_lo = new;
4889 mddev_resume(mddev);
4890
4891 err = 0;
4892 unlock:
4893 mddev_unlock(mddev);
4894 return err ?: len;
4895 }
4896 static struct md_sysfs_entry md_suspend_lo =
4897 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4898
4899 static ssize_t
4900 suspend_hi_show(struct mddev *mddev, char *page)
4901 {
4902 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4903 }
4904
4905 static ssize_t
4906 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4907 {
4908 unsigned long long new;
4909 int err;
4910
4911 err = kstrtoull(buf, 10, &new);
4912 if (err < 0)
4913 return err;
4914 if (new != (sector_t)new)
4915 return -EINVAL;
4916
4917 err = mddev_lock(mddev);
4918 if (err)
4919 return err;
4920 err = -EINVAL;
4921 if (mddev->pers == NULL)
4922 goto unlock;
4923
4924 mddev_suspend(mddev);
4925 mddev->suspend_hi = new;
4926 mddev_resume(mddev);
4927
4928 err = 0;
4929 unlock:
4930 mddev_unlock(mddev);
4931 return err ?: len;
4932 }
4933 static struct md_sysfs_entry md_suspend_hi =
4934 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4935
4936 static ssize_t
4937 reshape_position_show(struct mddev *mddev, char *page)
4938 {
4939 if (mddev->reshape_position != MaxSector)
4940 return sprintf(page, "%llu\n",
4941 (unsigned long long)mddev->reshape_position);
4942 strcpy(page, "none\n");
4943 return 5;
4944 }
4945
4946 static ssize_t
4947 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4948 {
4949 struct md_rdev *rdev;
4950 unsigned long long new;
4951 int err;
4952
4953 err = kstrtoull(buf, 10, &new);
4954 if (err < 0)
4955 return err;
4956 if (new != (sector_t)new)
4957 return -EINVAL;
4958 err = mddev_lock(mddev);
4959 if (err)
4960 return err;
4961 err = -EBUSY;
4962 if (mddev->pers)
4963 goto unlock;
4964 mddev->reshape_position = new;
4965 mddev->delta_disks = 0;
4966 mddev->reshape_backwards = 0;
4967 mddev->new_level = mddev->level;
4968 mddev->new_layout = mddev->layout;
4969 mddev->new_chunk_sectors = mddev->chunk_sectors;
4970 rdev_for_each(rdev, mddev)
4971 rdev->new_data_offset = rdev->data_offset;
4972 err = 0;
4973 unlock:
4974 mddev_unlock(mddev);
4975 return err ?: len;
4976 }
4977
4978 static struct md_sysfs_entry md_reshape_position =
4979 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4980 reshape_position_store);
4981
4982 static ssize_t
4983 reshape_direction_show(struct mddev *mddev, char *page)
4984 {
4985 return sprintf(page, "%s\n",
4986 mddev->reshape_backwards ? "backwards" : "forwards");
4987 }
4988
4989 static ssize_t
4990 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4991 {
4992 int backwards = 0;
4993 int err;
4994
4995 if (cmd_match(buf, "forwards"))
4996 backwards = 0;
4997 else if (cmd_match(buf, "backwards"))
4998 backwards = 1;
4999 else
5000 return -EINVAL;
5001 if (mddev->reshape_backwards == backwards)
5002 return len;
5003
5004 err = mddev_lock(mddev);
5005 if (err)
5006 return err;
5007 /* check if we are allowed to change */
5008 if (mddev->delta_disks)
5009 err = -EBUSY;
5010 else if (mddev->persistent &&
5011 mddev->major_version == 0)
5012 err = -EINVAL;
5013 else
5014 mddev->reshape_backwards = backwards;
5015 mddev_unlock(mddev);
5016 return err ?: len;
5017 }
5018
5019 static struct md_sysfs_entry md_reshape_direction =
5020 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5021 reshape_direction_store);
5022
5023 static ssize_t
5024 array_size_show(struct mddev *mddev, char *page)
5025 {
5026 if (mddev->external_size)
5027 return sprintf(page, "%llu\n",
5028 (unsigned long long)mddev->array_sectors/2);
5029 else
5030 return sprintf(page, "default\n");
5031 }
5032
5033 static ssize_t
5034 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5035 {
5036 sector_t sectors;
5037 int err;
5038
5039 err = mddev_lock(mddev);
5040 if (err)
5041 return err;
5042
5043 /* cluster raid doesn't support change array_sectors */
5044 if (mddev_is_clustered(mddev)) {
5045 mddev_unlock(mddev);
5046 return -EINVAL;
5047 }
5048
5049 if (strncmp(buf, "default", 7) == 0) {
5050 if (mddev->pers)
5051 sectors = mddev->pers->size(mddev, 0, 0);
5052 else
5053 sectors = mddev->array_sectors;
5054
5055 mddev->external_size = 0;
5056 } else {
5057 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5058 err = -EINVAL;
5059 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5060 err = -E2BIG;
5061 else
5062 mddev->external_size = 1;
5063 }
5064
5065 if (!err) {
5066 mddev->array_sectors = sectors;
5067 if (mddev->pers) {
5068 set_capacity(mddev->gendisk, mddev->array_sectors);
5069 revalidate_disk(mddev->gendisk);
5070 }
5071 }
5072 mddev_unlock(mddev);
5073 return err ?: len;
5074 }
5075
5076 static struct md_sysfs_entry md_array_size =
5077 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5078 array_size_store);
5079
5080 static ssize_t
5081 consistency_policy_show(struct mddev *mddev, char *page)
5082 {
5083 int ret;
5084
5085 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5086 ret = sprintf(page, "journal\n");
5087 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5088 ret = sprintf(page, "ppl\n");
5089 } else if (mddev->bitmap) {
5090 ret = sprintf(page, "bitmap\n");
5091 } else if (mddev->pers) {
5092 if (mddev->pers->sync_request)
5093 ret = sprintf(page, "resync\n");
5094 else
5095 ret = sprintf(page, "none\n");
5096 } else {
5097 ret = sprintf(page, "unknown\n");
5098 }
5099
5100 return ret;
5101 }
5102
5103 static ssize_t
5104 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5105 {
5106 int err = 0;
5107
5108 if (mddev->pers) {
5109 if (mddev->pers->change_consistency_policy)
5110 err = mddev->pers->change_consistency_policy(mddev, buf);
5111 else
5112 err = -EBUSY;
5113 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5114 set_bit(MD_HAS_PPL, &mddev->flags);
5115 } else {
5116 err = -EINVAL;
5117 }
5118
5119 return err ? err : len;
5120 }
5121
5122 static struct md_sysfs_entry md_consistency_policy =
5123 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5124 consistency_policy_store);
5125
5126 static struct attribute *md_default_attrs[] = {
5127 &md_level.attr,
5128 &md_layout.attr,
5129 &md_raid_disks.attr,
5130 &md_chunk_size.attr,
5131 &md_size.attr,
5132 &md_resync_start.attr,
5133 &md_metadata.attr,
5134 &md_new_device.attr,
5135 &md_safe_delay.attr,
5136 &md_array_state.attr,
5137 &md_reshape_position.attr,
5138 &md_reshape_direction.attr,
5139 &md_array_size.attr,
5140 &max_corr_read_errors.attr,
5141 &md_consistency_policy.attr,
5142 NULL,
5143 };
5144
5145 static struct attribute *md_redundancy_attrs[] = {
5146 &md_scan_mode.attr,
5147 &md_last_scan_mode.attr,
5148 &md_mismatches.attr,
5149 &md_sync_min.attr,
5150 &md_sync_max.attr,
5151 &md_sync_speed.attr,
5152 &md_sync_force_parallel.attr,
5153 &md_sync_completed.attr,
5154 &md_min_sync.attr,
5155 &md_max_sync.attr,
5156 &md_suspend_lo.attr,
5157 &md_suspend_hi.attr,
5158 &md_bitmap.attr,
5159 &md_degraded.attr,
5160 NULL,
5161 };
5162 static struct attribute_group md_redundancy_group = {
5163 .name = NULL,
5164 .attrs = md_redundancy_attrs,
5165 };
5166
5167 static ssize_t
5168 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5169 {
5170 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5171 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5172 ssize_t rv;
5173
5174 if (!entry->show)
5175 return -EIO;
5176 spin_lock(&all_mddevs_lock);
5177 if (list_empty(&mddev->all_mddevs)) {
5178 spin_unlock(&all_mddevs_lock);
5179 return -EBUSY;
5180 }
5181 mddev_get(mddev);
5182 spin_unlock(&all_mddevs_lock);
5183
5184 rv = entry->show(mddev, page);
5185 mddev_put(mddev);
5186 return rv;
5187 }
5188
5189 static ssize_t
5190 md_attr_store(struct kobject *kobj, struct attribute *attr,
5191 const char *page, size_t length)
5192 {
5193 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5194 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5195 ssize_t rv;
5196
5197 if (!entry->store)
5198 return -EIO;
5199 if (!capable(CAP_SYS_ADMIN))
5200 return -EACCES;
5201 spin_lock(&all_mddevs_lock);
5202 if (list_empty(&mddev->all_mddevs)) {
5203 spin_unlock(&all_mddevs_lock);
5204 return -EBUSY;
5205 }
5206 mddev_get(mddev);
5207 spin_unlock(&all_mddevs_lock);
5208 rv = entry->store(mddev, page, length);
5209 mddev_put(mddev);
5210 return rv;
5211 }
5212
5213 static void md_free(struct kobject *ko)
5214 {
5215 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5216
5217 if (mddev->sysfs_state)
5218 sysfs_put(mddev->sysfs_state);
5219
5220 if (mddev->gendisk)
5221 del_gendisk(mddev->gendisk);
5222 if (mddev->queue)
5223 blk_cleanup_queue(mddev->queue);
5224 if (mddev->gendisk)
5225 put_disk(mddev->gendisk);
5226 percpu_ref_exit(&mddev->writes_pending);
5227
5228 bioset_exit(&mddev->bio_set);
5229 bioset_exit(&mddev->sync_set);
5230 kfree(mddev);
5231 }
5232
5233 static const struct sysfs_ops md_sysfs_ops = {
5234 .show = md_attr_show,
5235 .store = md_attr_store,
5236 };
5237 static struct kobj_type md_ktype = {
5238 .release = md_free,
5239 .sysfs_ops = &md_sysfs_ops,
5240 .default_attrs = md_default_attrs,
5241 };
5242
5243 int mdp_major = 0;
5244
5245 static void mddev_delayed_delete(struct work_struct *ws)
5246 {
5247 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5248
5249 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5250 kobject_del(&mddev->kobj);
5251 kobject_put(&mddev->kobj);
5252 }
5253
5254 static void no_op(struct percpu_ref *r) {}
5255
5256 int mddev_init_writes_pending(struct mddev *mddev)
5257 {
5258 if (mddev->writes_pending.percpu_count_ptr)
5259 return 0;
5260 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5261 return -ENOMEM;
5262 /* We want to start with the refcount at zero */
5263 percpu_ref_put(&mddev->writes_pending);
5264 return 0;
5265 }
5266 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5267
5268 static int md_alloc(dev_t dev, char *name)
5269 {
5270 /*
5271 * If dev is zero, name is the name of a device to allocate with
5272 * an arbitrary minor number. It will be "md_???"
5273 * If dev is non-zero it must be a device number with a MAJOR of
5274 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5275 * the device is being created by opening a node in /dev.
5276 * If "name" is not NULL, the device is being created by
5277 * writing to /sys/module/md_mod/parameters/new_array.
5278 */
5279 static DEFINE_MUTEX(disks_mutex);
5280 struct mddev *mddev = mddev_find(dev);
5281 struct gendisk *disk;
5282 int partitioned;
5283 int shift;
5284 int unit;
5285 int error;
5286
5287 if (!mddev)
5288 return -ENODEV;
5289
5290 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5291 shift = partitioned ? MdpMinorShift : 0;
5292 unit = MINOR(mddev->unit) >> shift;
5293
5294 /* wait for any previous instance of this device to be
5295 * completely removed (mddev_delayed_delete).
5296 */
5297 flush_workqueue(md_misc_wq);
5298
5299 mutex_lock(&disks_mutex);
5300 error = -EEXIST;
5301 if (mddev->gendisk)
5302 goto abort;
5303
5304 if (name && !dev) {
5305 /* Need to ensure that 'name' is not a duplicate.
5306 */
5307 struct mddev *mddev2;
5308 spin_lock(&all_mddevs_lock);
5309
5310 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5311 if (mddev2->gendisk &&
5312 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5313 spin_unlock(&all_mddevs_lock);
5314 goto abort;
5315 }
5316 spin_unlock(&all_mddevs_lock);
5317 }
5318 if (name && dev)
5319 /*
5320 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5321 */
5322 mddev->hold_active = UNTIL_STOP;
5323
5324 error = -ENOMEM;
5325 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5326 if (!mddev->queue)
5327 goto abort;
5328 mddev->queue->queuedata = mddev;
5329
5330 blk_queue_make_request(mddev->queue, md_make_request);
5331 blk_set_stacking_limits(&mddev->queue->limits);
5332
5333 disk = alloc_disk(1 << shift);
5334 if (!disk) {
5335 blk_cleanup_queue(mddev->queue);
5336 mddev->queue = NULL;
5337 goto abort;
5338 }
5339 disk->major = MAJOR(mddev->unit);
5340 disk->first_minor = unit << shift;
5341 if (name)
5342 strcpy(disk->disk_name, name);
5343 else if (partitioned)
5344 sprintf(disk->disk_name, "md_d%d", unit);
5345 else
5346 sprintf(disk->disk_name, "md%d", unit);
5347 disk->fops = &md_fops;
5348 disk->private_data = mddev;
5349 disk->queue = mddev->queue;
5350 blk_queue_write_cache(mddev->queue, true, true);
5351 /* Allow extended partitions. This makes the
5352 * 'mdp' device redundant, but we can't really
5353 * remove it now.
5354 */
5355 disk->flags |= GENHD_FL_EXT_DEVT;
5356 mddev->gendisk = disk;
5357 /* As soon as we call add_disk(), another thread could get
5358 * through to md_open, so make sure it doesn't get too far
5359 */
5360 mutex_lock(&mddev->open_mutex);
5361 add_disk(disk);
5362
5363 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5364 if (error) {
5365 /* This isn't possible, but as kobject_init_and_add is marked
5366 * __must_check, we must do something with the result
5367 */
5368 pr_debug("md: cannot register %s/md - name in use\n",
5369 disk->disk_name);
5370 error = 0;
5371 }
5372 if (mddev->kobj.sd &&
5373 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5374 pr_debug("pointless warning\n");
5375 mutex_unlock(&mddev->open_mutex);
5376 abort:
5377 mutex_unlock(&disks_mutex);
5378 if (!error && mddev->kobj.sd) {
5379 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5380 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5381 }
5382 mddev_put(mddev);
5383 return error;
5384 }
5385
5386 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5387 {
5388 if (create_on_open)
5389 md_alloc(dev, NULL);
5390 return NULL;
5391 }
5392
5393 static int add_named_array(const char *val, const struct kernel_param *kp)
5394 {
5395 /*
5396 * val must be "md_*" or "mdNNN".
5397 * For "md_*" we allocate an array with a large free minor number, and
5398 * set the name to val. val must not already be an active name.
5399 * For "mdNNN" we allocate an array with the minor number NNN
5400 * which must not already be in use.
5401 */
5402 int len = strlen(val);
5403 char buf[DISK_NAME_LEN];
5404 unsigned long devnum;
5405
5406 while (len && val[len-1] == '\n')
5407 len--;
5408 if (len >= DISK_NAME_LEN)
5409 return -E2BIG;
5410 strlcpy(buf, val, len+1);
5411 if (strncmp(buf, "md_", 3) == 0)
5412 return md_alloc(0, buf);
5413 if (strncmp(buf, "md", 2) == 0 &&
5414 isdigit(buf[2]) &&
5415 kstrtoul(buf+2, 10, &devnum) == 0 &&
5416 devnum <= MINORMASK)
5417 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5418
5419 return -EINVAL;
5420 }
5421
5422 static void md_safemode_timeout(struct timer_list *t)
5423 {
5424 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5425
5426 mddev->safemode = 1;
5427 if (mddev->external)
5428 sysfs_notify_dirent_safe(mddev->sysfs_state);
5429
5430 md_wakeup_thread(mddev->thread);
5431 }
5432
5433 static int start_dirty_degraded;
5434
5435 int md_run(struct mddev *mddev)
5436 {
5437 int err;
5438 struct md_rdev *rdev;
5439 struct md_personality *pers;
5440
5441 if (list_empty(&mddev->disks))
5442 /* cannot run an array with no devices.. */
5443 return -EINVAL;
5444
5445 if (mddev->pers)
5446 return -EBUSY;
5447 /* Cannot run until previous stop completes properly */
5448 if (mddev->sysfs_active)
5449 return -EBUSY;
5450
5451 /*
5452 * Analyze all RAID superblock(s)
5453 */
5454 if (!mddev->raid_disks) {
5455 if (!mddev->persistent)
5456 return -EINVAL;
5457 analyze_sbs(mddev);
5458 }
5459
5460 if (mddev->level != LEVEL_NONE)
5461 request_module("md-level-%d", mddev->level);
5462 else if (mddev->clevel[0])
5463 request_module("md-%s", mddev->clevel);
5464
5465 /*
5466 * Drop all container device buffers, from now on
5467 * the only valid external interface is through the md
5468 * device.
5469 */
5470 mddev->has_superblocks = false;
5471 rdev_for_each(rdev, mddev) {
5472 if (test_bit(Faulty, &rdev->flags))
5473 continue;
5474 sync_blockdev(rdev->bdev);
5475 invalidate_bdev(rdev->bdev);
5476 if (mddev->ro != 1 &&
5477 (bdev_read_only(rdev->bdev) ||
5478 bdev_read_only(rdev->meta_bdev))) {
5479 mddev->ro = 1;
5480 if (mddev->gendisk)
5481 set_disk_ro(mddev->gendisk, 1);
5482 }
5483
5484 if (rdev->sb_page)
5485 mddev->has_superblocks = true;
5486
5487 /* perform some consistency tests on the device.
5488 * We don't want the data to overlap the metadata,
5489 * Internal Bitmap issues have been handled elsewhere.
5490 */
5491 if (rdev->meta_bdev) {
5492 /* Nothing to check */;
5493 } else if (rdev->data_offset < rdev->sb_start) {
5494 if (mddev->dev_sectors &&
5495 rdev->data_offset + mddev->dev_sectors
5496 > rdev->sb_start) {
5497 pr_warn("md: %s: data overlaps metadata\n",
5498 mdname(mddev));
5499 return -EINVAL;
5500 }
5501 } else {
5502 if (rdev->sb_start + rdev->sb_size/512
5503 > rdev->data_offset) {
5504 pr_warn("md: %s: metadata overlaps data\n",
5505 mdname(mddev));
5506 return -EINVAL;
5507 }
5508 }
5509 sysfs_notify_dirent_safe(rdev->sysfs_state);
5510 }
5511
5512 if (!bioset_initialized(&mddev->bio_set)) {
5513 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5514 if (err)
5515 return err;
5516 }
5517 if (!bioset_initialized(&mddev->sync_set)) {
5518 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5519 if (err)
5520 return err;
5521 }
5522 if (mddev->flush_pool == NULL) {
5523 mddev->flush_pool = mempool_create(NR_FLUSH_INFOS, flush_info_alloc,
5524 flush_info_free, mddev);
5525 if (!mddev->flush_pool) {
5526 err = -ENOMEM;
5527 goto abort;
5528 }
5529 }
5530 if (mddev->flush_bio_pool == NULL) {
5531 mddev->flush_bio_pool = mempool_create(NR_FLUSH_BIOS, flush_bio_alloc,
5532 flush_bio_free, mddev);
5533 if (!mddev->flush_bio_pool) {
5534 err = -ENOMEM;
5535 goto abort;
5536 }
5537 }
5538
5539 spin_lock(&pers_lock);
5540 pers = find_pers(mddev->level, mddev->clevel);
5541 if (!pers || !try_module_get(pers->owner)) {
5542 spin_unlock(&pers_lock);
5543 if (mddev->level != LEVEL_NONE)
5544 pr_warn("md: personality for level %d is not loaded!\n",
5545 mddev->level);
5546 else
5547 pr_warn("md: personality for level %s is not loaded!\n",
5548 mddev->clevel);
5549 err = -EINVAL;
5550 goto abort;
5551 }
5552 spin_unlock(&pers_lock);
5553 if (mddev->level != pers->level) {
5554 mddev->level = pers->level;
5555 mddev->new_level = pers->level;
5556 }
5557 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5558
5559 if (mddev->reshape_position != MaxSector &&
5560 pers->start_reshape == NULL) {
5561 /* This personality cannot handle reshaping... */
5562 module_put(pers->owner);
5563 err = -EINVAL;
5564 goto abort;
5565 }
5566
5567 if (pers->sync_request) {
5568 /* Warn if this is a potentially silly
5569 * configuration.
5570 */
5571 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5572 struct md_rdev *rdev2;
5573 int warned = 0;
5574
5575 rdev_for_each(rdev, mddev)
5576 rdev_for_each(rdev2, mddev) {
5577 if (rdev < rdev2 &&
5578 rdev->bdev->bd_contains ==
5579 rdev2->bdev->bd_contains) {
5580 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5581 mdname(mddev),
5582 bdevname(rdev->bdev,b),
5583 bdevname(rdev2->bdev,b2));
5584 warned = 1;
5585 }
5586 }
5587
5588 if (warned)
5589 pr_warn("True protection against single-disk failure might be compromised.\n");
5590 }
5591
5592 mddev->recovery = 0;
5593 /* may be over-ridden by personality */
5594 mddev->resync_max_sectors = mddev->dev_sectors;
5595
5596 mddev->ok_start_degraded = start_dirty_degraded;
5597
5598 if (start_readonly && mddev->ro == 0)
5599 mddev->ro = 2; /* read-only, but switch on first write */
5600
5601 err = pers->run(mddev);
5602 if (err)
5603 pr_warn("md: pers->run() failed ...\n");
5604 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5605 WARN_ONCE(!mddev->external_size,
5606 "%s: default size too small, but 'external_size' not in effect?\n",
5607 __func__);
5608 pr_warn("md: invalid array_size %llu > default size %llu\n",
5609 (unsigned long long)mddev->array_sectors / 2,
5610 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5611 err = -EINVAL;
5612 }
5613 if (err == 0 && pers->sync_request &&
5614 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5615 struct bitmap *bitmap;
5616
5617 bitmap = md_bitmap_create(mddev, -1);
5618 if (IS_ERR(bitmap)) {
5619 err = PTR_ERR(bitmap);
5620 pr_warn("%s: failed to create bitmap (%d)\n",
5621 mdname(mddev), err);
5622 } else
5623 mddev->bitmap = bitmap;
5624
5625 }
5626 if (err) {
5627 mddev_detach(mddev);
5628 if (mddev->private)
5629 pers->free(mddev, mddev->private);
5630 mddev->private = NULL;
5631 module_put(pers->owner);
5632 md_bitmap_destroy(mddev);
5633 goto abort;
5634 }
5635 if (mddev->queue) {
5636 bool nonrot = true;
5637
5638 rdev_for_each(rdev, mddev) {
5639 if (rdev->raid_disk >= 0 &&
5640 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5641 nonrot = false;
5642 break;
5643 }
5644 }
5645 if (mddev->degraded)
5646 nonrot = false;
5647 if (nonrot)
5648 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5649 else
5650 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
5651 mddev->queue->backing_dev_info->congested_data = mddev;
5652 mddev->queue->backing_dev_info->congested_fn = md_congested;
5653 }
5654 if (pers->sync_request) {
5655 if (mddev->kobj.sd &&
5656 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5657 pr_warn("md: cannot register extra attributes for %s\n",
5658 mdname(mddev));
5659 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5660 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5661 mddev->ro = 0;
5662
5663 atomic_set(&mddev->max_corr_read_errors,
5664 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5665 mddev->safemode = 0;
5666 if (mddev_is_clustered(mddev))
5667 mddev->safemode_delay = 0;
5668 else
5669 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5670 mddev->in_sync = 1;
5671 smp_wmb();
5672 spin_lock(&mddev->lock);
5673 mddev->pers = pers;
5674 spin_unlock(&mddev->lock);
5675 rdev_for_each(rdev, mddev)
5676 if (rdev->raid_disk >= 0)
5677 if (sysfs_link_rdev(mddev, rdev))
5678 /* failure here is OK */;
5679
5680 if (mddev->degraded && !mddev->ro)
5681 /* This ensures that recovering status is reported immediately
5682 * via sysfs - until a lack of spares is confirmed.
5683 */
5684 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5686
5687 if (mddev->sb_flags)
5688 md_update_sb(mddev, 0);
5689
5690 md_new_event(mddev);
5691 sysfs_notify_dirent_safe(mddev->sysfs_state);
5692 sysfs_notify_dirent_safe(mddev->sysfs_action);
5693 sysfs_notify(&mddev->kobj, NULL, "degraded");
5694 return 0;
5695
5696 abort:
5697 if (mddev->flush_bio_pool) {
5698 mempool_destroy(mddev->flush_bio_pool);
5699 mddev->flush_bio_pool = NULL;
5700 }
5701 if (mddev->flush_pool){
5702 mempool_destroy(mddev->flush_pool);
5703 mddev->flush_pool = NULL;
5704 }
5705
5706 return err;
5707 }
5708 EXPORT_SYMBOL_GPL(md_run);
5709
5710 static int do_md_run(struct mddev *mddev)
5711 {
5712 int err;
5713
5714 err = md_run(mddev);
5715 if (err)
5716 goto out;
5717 err = md_bitmap_load(mddev);
5718 if (err) {
5719 md_bitmap_destroy(mddev);
5720 goto out;
5721 }
5722
5723 if (mddev_is_clustered(mddev))
5724 md_allow_write(mddev);
5725
5726 /* run start up tasks that require md_thread */
5727 md_start(mddev);
5728
5729 md_wakeup_thread(mddev->thread);
5730 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5731
5732 set_capacity(mddev->gendisk, mddev->array_sectors);
5733 revalidate_disk(mddev->gendisk);
5734 mddev->changed = 1;
5735 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5736 out:
5737 return err;
5738 }
5739
5740 int md_start(struct mddev *mddev)
5741 {
5742 int ret = 0;
5743
5744 if (mddev->pers->start) {
5745 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5746 md_wakeup_thread(mddev->thread);
5747 ret = mddev->pers->start(mddev);
5748 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5749 md_wakeup_thread(mddev->sync_thread);
5750 }
5751 return ret;
5752 }
5753 EXPORT_SYMBOL_GPL(md_start);
5754
5755 static int restart_array(struct mddev *mddev)
5756 {
5757 struct gendisk *disk = mddev->gendisk;
5758 struct md_rdev *rdev;
5759 bool has_journal = false;
5760 bool has_readonly = false;
5761
5762 /* Complain if it has no devices */
5763 if (list_empty(&mddev->disks))
5764 return -ENXIO;
5765 if (!mddev->pers)
5766 return -EINVAL;
5767 if (!mddev->ro)
5768 return -EBUSY;
5769
5770 rcu_read_lock();
5771 rdev_for_each_rcu(rdev, mddev) {
5772 if (test_bit(Journal, &rdev->flags) &&
5773 !test_bit(Faulty, &rdev->flags))
5774 has_journal = true;
5775 if (bdev_read_only(rdev->bdev))
5776 has_readonly = true;
5777 }
5778 rcu_read_unlock();
5779 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5780 /* Don't restart rw with journal missing/faulty */
5781 return -EINVAL;
5782 if (has_readonly)
5783 return -EROFS;
5784
5785 mddev->safemode = 0;
5786 mddev->ro = 0;
5787 set_disk_ro(disk, 0);
5788 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5789 /* Kick recovery or resync if necessary */
5790 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5791 md_wakeup_thread(mddev->thread);
5792 md_wakeup_thread(mddev->sync_thread);
5793 sysfs_notify_dirent_safe(mddev->sysfs_state);
5794 return 0;
5795 }
5796
5797 static void md_clean(struct mddev *mddev)
5798 {
5799 mddev->array_sectors = 0;
5800 mddev->external_size = 0;
5801 mddev->dev_sectors = 0;
5802 mddev->raid_disks = 0;
5803 mddev->recovery_cp = 0;
5804 mddev->resync_min = 0;
5805 mddev->resync_max = MaxSector;
5806 mddev->reshape_position = MaxSector;
5807 mddev->external = 0;
5808 mddev->persistent = 0;
5809 mddev->level = LEVEL_NONE;
5810 mddev->clevel[0] = 0;
5811 mddev->flags = 0;
5812 mddev->sb_flags = 0;
5813 mddev->ro = 0;
5814 mddev->metadata_type[0] = 0;
5815 mddev->chunk_sectors = 0;
5816 mddev->ctime = mddev->utime = 0;
5817 mddev->layout = 0;
5818 mddev->max_disks = 0;
5819 mddev->events = 0;
5820 mddev->can_decrease_events = 0;
5821 mddev->delta_disks = 0;
5822 mddev->reshape_backwards = 0;
5823 mddev->new_level = LEVEL_NONE;
5824 mddev->new_layout = 0;
5825 mddev->new_chunk_sectors = 0;
5826 mddev->curr_resync = 0;
5827 atomic64_set(&mddev->resync_mismatches, 0);
5828 mddev->suspend_lo = mddev->suspend_hi = 0;
5829 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5830 mddev->recovery = 0;
5831 mddev->in_sync = 0;
5832 mddev->changed = 0;
5833 mddev->degraded = 0;
5834 mddev->safemode = 0;
5835 mddev->private = NULL;
5836 mddev->cluster_info = NULL;
5837 mddev->bitmap_info.offset = 0;
5838 mddev->bitmap_info.default_offset = 0;
5839 mddev->bitmap_info.default_space = 0;
5840 mddev->bitmap_info.chunksize = 0;
5841 mddev->bitmap_info.daemon_sleep = 0;
5842 mddev->bitmap_info.max_write_behind = 0;
5843 mddev->bitmap_info.nodes = 0;
5844 }
5845
5846 static void __md_stop_writes(struct mddev *mddev)
5847 {
5848 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5849 flush_workqueue(md_misc_wq);
5850 if (mddev->sync_thread) {
5851 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5852 md_reap_sync_thread(mddev);
5853 }
5854
5855 del_timer_sync(&mddev->safemode_timer);
5856
5857 if (mddev->pers && mddev->pers->quiesce) {
5858 mddev->pers->quiesce(mddev, 1);
5859 mddev->pers->quiesce(mddev, 0);
5860 }
5861 md_bitmap_flush(mddev);
5862
5863 if (mddev->ro == 0 &&
5864 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5865 mddev->sb_flags)) {
5866 /* mark array as shutdown cleanly */
5867 if (!mddev_is_clustered(mddev))
5868 mddev->in_sync = 1;
5869 md_update_sb(mddev, 1);
5870 }
5871 }
5872
5873 void md_stop_writes(struct mddev *mddev)
5874 {
5875 mddev_lock_nointr(mddev);
5876 __md_stop_writes(mddev);
5877 mddev_unlock(mddev);
5878 }
5879 EXPORT_SYMBOL_GPL(md_stop_writes);
5880
5881 static void mddev_detach(struct mddev *mddev)
5882 {
5883 md_bitmap_wait_behind_writes(mddev);
5884 if (mddev->pers && mddev->pers->quiesce) {
5885 mddev->pers->quiesce(mddev, 1);
5886 mddev->pers->quiesce(mddev, 0);
5887 }
5888 md_unregister_thread(&mddev->thread);
5889 if (mddev->queue)
5890 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5891 }
5892
5893 static void __md_stop(struct mddev *mddev)
5894 {
5895 struct md_personality *pers = mddev->pers;
5896 md_bitmap_destroy(mddev);
5897 mddev_detach(mddev);
5898 /* Ensure ->event_work is done */
5899 flush_workqueue(md_misc_wq);
5900 spin_lock(&mddev->lock);
5901 mddev->pers = NULL;
5902 spin_unlock(&mddev->lock);
5903 pers->free(mddev, mddev->private);
5904 mddev->private = NULL;
5905 if (pers->sync_request && mddev->to_remove == NULL)
5906 mddev->to_remove = &md_redundancy_group;
5907 module_put(pers->owner);
5908 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5909 if (mddev->flush_bio_pool) {
5910 mempool_destroy(mddev->flush_bio_pool);
5911 mddev->flush_bio_pool = NULL;
5912 }
5913 if (mddev->flush_pool) {
5914 mempool_destroy(mddev->flush_pool);
5915 mddev->flush_pool = NULL;
5916 }
5917 }
5918
5919 void md_stop(struct mddev *mddev)
5920 {
5921 /* stop the array and free an attached data structures.
5922 * This is called from dm-raid
5923 */
5924 __md_stop(mddev);
5925 bioset_exit(&mddev->bio_set);
5926 bioset_exit(&mddev->sync_set);
5927 }
5928
5929 EXPORT_SYMBOL_GPL(md_stop);
5930
5931 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5932 {
5933 int err = 0;
5934 int did_freeze = 0;
5935
5936 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5937 did_freeze = 1;
5938 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5939 md_wakeup_thread(mddev->thread);
5940 }
5941 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5942 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5943 if (mddev->sync_thread)
5944 /* Thread might be blocked waiting for metadata update
5945 * which will now never happen */
5946 wake_up_process(mddev->sync_thread->tsk);
5947
5948 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5949 return -EBUSY;
5950 mddev_unlock(mddev);
5951 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5952 &mddev->recovery));
5953 wait_event(mddev->sb_wait,
5954 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5955 mddev_lock_nointr(mddev);
5956
5957 mutex_lock(&mddev->open_mutex);
5958 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5959 mddev->sync_thread ||
5960 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5961 pr_warn("md: %s still in use.\n",mdname(mddev));
5962 if (did_freeze) {
5963 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5964 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5965 md_wakeup_thread(mddev->thread);
5966 }
5967 err = -EBUSY;
5968 goto out;
5969 }
5970 if (mddev->pers) {
5971 __md_stop_writes(mddev);
5972
5973 err = -ENXIO;
5974 if (mddev->ro==1)
5975 goto out;
5976 mddev->ro = 1;
5977 set_disk_ro(mddev->gendisk, 1);
5978 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5980 md_wakeup_thread(mddev->thread);
5981 sysfs_notify_dirent_safe(mddev->sysfs_state);
5982 err = 0;
5983 }
5984 out:
5985 mutex_unlock(&mddev->open_mutex);
5986 return err;
5987 }
5988
5989 /* mode:
5990 * 0 - completely stop and dis-assemble array
5991 * 2 - stop but do not disassemble array
5992 */
5993 static int do_md_stop(struct mddev *mddev, int mode,
5994 struct block_device *bdev)
5995 {
5996 struct gendisk *disk = mddev->gendisk;
5997 struct md_rdev *rdev;
5998 int did_freeze = 0;
5999
6000 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6001 did_freeze = 1;
6002 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6003 md_wakeup_thread(mddev->thread);
6004 }
6005 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6006 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6007 if (mddev->sync_thread)
6008 /* Thread might be blocked waiting for metadata update
6009 * which will now never happen */
6010 wake_up_process(mddev->sync_thread->tsk);
6011
6012 mddev_unlock(mddev);
6013 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6014 !test_bit(MD_RECOVERY_RUNNING,
6015 &mddev->recovery)));
6016 mddev_lock_nointr(mddev);
6017
6018 mutex_lock(&mddev->open_mutex);
6019 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6020 mddev->sysfs_active ||
6021 mddev->sync_thread ||
6022 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6023 pr_warn("md: %s still in use.\n",mdname(mddev));
6024 mutex_unlock(&mddev->open_mutex);
6025 if (did_freeze) {
6026 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6028 md_wakeup_thread(mddev->thread);
6029 }
6030 return -EBUSY;
6031 }
6032 if (mddev->pers) {
6033 if (mddev->ro)
6034 set_disk_ro(disk, 0);
6035
6036 __md_stop_writes(mddev);
6037 __md_stop(mddev);
6038 mddev->queue->backing_dev_info->congested_fn = NULL;
6039
6040 /* tell userspace to handle 'inactive' */
6041 sysfs_notify_dirent_safe(mddev->sysfs_state);
6042
6043 rdev_for_each(rdev, mddev)
6044 if (rdev->raid_disk >= 0)
6045 sysfs_unlink_rdev(mddev, rdev);
6046
6047 set_capacity(disk, 0);
6048 mutex_unlock(&mddev->open_mutex);
6049 mddev->changed = 1;
6050 revalidate_disk(disk);
6051
6052 if (mddev->ro)
6053 mddev->ro = 0;
6054 } else
6055 mutex_unlock(&mddev->open_mutex);
6056 /*
6057 * Free resources if final stop
6058 */
6059 if (mode == 0) {
6060 pr_info("md: %s stopped.\n", mdname(mddev));
6061
6062 if (mddev->bitmap_info.file) {
6063 struct file *f = mddev->bitmap_info.file;
6064 spin_lock(&mddev->lock);
6065 mddev->bitmap_info.file = NULL;
6066 spin_unlock(&mddev->lock);
6067 fput(f);
6068 }
6069 mddev->bitmap_info.offset = 0;
6070
6071 export_array(mddev);
6072
6073 md_clean(mddev);
6074 if (mddev->hold_active == UNTIL_STOP)
6075 mddev->hold_active = 0;
6076 }
6077 md_new_event(mddev);
6078 sysfs_notify_dirent_safe(mddev->sysfs_state);
6079 return 0;
6080 }
6081
6082 #ifndef MODULE
6083 static void autorun_array(struct mddev *mddev)
6084 {
6085 struct md_rdev *rdev;
6086 int err;
6087
6088 if (list_empty(&mddev->disks))
6089 return;
6090
6091 pr_info("md: running: ");
6092
6093 rdev_for_each(rdev, mddev) {
6094 char b[BDEVNAME_SIZE];
6095 pr_cont("<%s>", bdevname(rdev->bdev,b));
6096 }
6097 pr_cont("\n");
6098
6099 err = do_md_run(mddev);
6100 if (err) {
6101 pr_warn("md: do_md_run() returned %d\n", err);
6102 do_md_stop(mddev, 0, NULL);
6103 }
6104 }
6105
6106 /*
6107 * lets try to run arrays based on all disks that have arrived
6108 * until now. (those are in pending_raid_disks)
6109 *
6110 * the method: pick the first pending disk, collect all disks with
6111 * the same UUID, remove all from the pending list and put them into
6112 * the 'same_array' list. Then order this list based on superblock
6113 * update time (freshest comes first), kick out 'old' disks and
6114 * compare superblocks. If everything's fine then run it.
6115 *
6116 * If "unit" is allocated, then bump its reference count
6117 */
6118 static void autorun_devices(int part)
6119 {
6120 struct md_rdev *rdev0, *rdev, *tmp;
6121 struct mddev *mddev;
6122 char b[BDEVNAME_SIZE];
6123
6124 pr_info("md: autorun ...\n");
6125 while (!list_empty(&pending_raid_disks)) {
6126 int unit;
6127 dev_t dev;
6128 LIST_HEAD(candidates);
6129 rdev0 = list_entry(pending_raid_disks.next,
6130 struct md_rdev, same_set);
6131
6132 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6133 INIT_LIST_HEAD(&candidates);
6134 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6135 if (super_90_load(rdev, rdev0, 0) >= 0) {
6136 pr_debug("md: adding %s ...\n",
6137 bdevname(rdev->bdev,b));
6138 list_move(&rdev->same_set, &candidates);
6139 }
6140 /*
6141 * now we have a set of devices, with all of them having
6142 * mostly sane superblocks. It's time to allocate the
6143 * mddev.
6144 */
6145 if (part) {
6146 dev = MKDEV(mdp_major,
6147 rdev0->preferred_minor << MdpMinorShift);
6148 unit = MINOR(dev) >> MdpMinorShift;
6149 } else {
6150 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6151 unit = MINOR(dev);
6152 }
6153 if (rdev0->preferred_minor != unit) {
6154 pr_warn("md: unit number in %s is bad: %d\n",
6155 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6156 break;
6157 }
6158
6159 md_probe(dev, NULL, NULL);
6160 mddev = mddev_find(dev);
6161 if (!mddev || !mddev->gendisk) {
6162 if (mddev)
6163 mddev_put(mddev);
6164 break;
6165 }
6166 if (mddev_lock(mddev))
6167 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6168 else if (mddev->raid_disks || mddev->major_version
6169 || !list_empty(&mddev->disks)) {
6170 pr_warn("md: %s already running, cannot run %s\n",
6171 mdname(mddev), bdevname(rdev0->bdev,b));
6172 mddev_unlock(mddev);
6173 } else {
6174 pr_debug("md: created %s\n", mdname(mddev));
6175 mddev->persistent = 1;
6176 rdev_for_each_list(rdev, tmp, &candidates) {
6177 list_del_init(&rdev->same_set);
6178 if (bind_rdev_to_array(rdev, mddev))
6179 export_rdev(rdev);
6180 }
6181 autorun_array(mddev);
6182 mddev_unlock(mddev);
6183 }
6184 /* on success, candidates will be empty, on error
6185 * it won't...
6186 */
6187 rdev_for_each_list(rdev, tmp, &candidates) {
6188 list_del_init(&rdev->same_set);
6189 export_rdev(rdev);
6190 }
6191 mddev_put(mddev);
6192 }
6193 pr_info("md: ... autorun DONE.\n");
6194 }
6195 #endif /* !MODULE */
6196
6197 static int get_version(void __user *arg)
6198 {
6199 mdu_version_t ver;
6200
6201 ver.major = MD_MAJOR_VERSION;
6202 ver.minor = MD_MINOR_VERSION;
6203 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6204
6205 if (copy_to_user(arg, &ver, sizeof(ver)))
6206 return -EFAULT;
6207
6208 return 0;
6209 }
6210
6211 static int get_array_info(struct mddev *mddev, void __user *arg)
6212 {
6213 mdu_array_info_t info;
6214 int nr,working,insync,failed,spare;
6215 struct md_rdev *rdev;
6216
6217 nr = working = insync = failed = spare = 0;
6218 rcu_read_lock();
6219 rdev_for_each_rcu(rdev, mddev) {
6220 nr++;
6221 if (test_bit(Faulty, &rdev->flags))
6222 failed++;
6223 else {
6224 working++;
6225 if (test_bit(In_sync, &rdev->flags))
6226 insync++;
6227 else if (test_bit(Journal, &rdev->flags))
6228 /* TODO: add journal count to md_u.h */
6229 ;
6230 else
6231 spare++;
6232 }
6233 }
6234 rcu_read_unlock();
6235
6236 info.major_version = mddev->major_version;
6237 info.minor_version = mddev->minor_version;
6238 info.patch_version = MD_PATCHLEVEL_VERSION;
6239 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6240 info.level = mddev->level;
6241 info.size = mddev->dev_sectors / 2;
6242 if (info.size != mddev->dev_sectors / 2) /* overflow */
6243 info.size = -1;
6244 info.nr_disks = nr;
6245 info.raid_disks = mddev->raid_disks;
6246 info.md_minor = mddev->md_minor;
6247 info.not_persistent= !mddev->persistent;
6248
6249 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6250 info.state = 0;
6251 if (mddev->in_sync)
6252 info.state = (1<<MD_SB_CLEAN);
6253 if (mddev->bitmap && mddev->bitmap_info.offset)
6254 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6255 if (mddev_is_clustered(mddev))
6256 info.state |= (1<<MD_SB_CLUSTERED);
6257 info.active_disks = insync;
6258 info.working_disks = working;
6259 info.failed_disks = failed;
6260 info.spare_disks = spare;
6261
6262 info.layout = mddev->layout;
6263 info.chunk_size = mddev->chunk_sectors << 9;
6264
6265 if (copy_to_user(arg, &info, sizeof(info)))
6266 return -EFAULT;
6267
6268 return 0;
6269 }
6270
6271 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6272 {
6273 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6274 char *ptr;
6275 int err;
6276
6277 file = kzalloc(sizeof(*file), GFP_NOIO);
6278 if (!file)
6279 return -ENOMEM;
6280
6281 err = 0;
6282 spin_lock(&mddev->lock);
6283 /* bitmap enabled */
6284 if (mddev->bitmap_info.file) {
6285 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6286 sizeof(file->pathname));
6287 if (IS_ERR(ptr))
6288 err = PTR_ERR(ptr);
6289 else
6290 memmove(file->pathname, ptr,
6291 sizeof(file->pathname)-(ptr-file->pathname));
6292 }
6293 spin_unlock(&mddev->lock);
6294
6295 if (err == 0 &&
6296 copy_to_user(arg, file, sizeof(*file)))
6297 err = -EFAULT;
6298
6299 kfree(file);
6300 return err;
6301 }
6302
6303 static int get_disk_info(struct mddev *mddev, void __user * arg)
6304 {
6305 mdu_disk_info_t info;
6306 struct md_rdev *rdev;
6307
6308 if (copy_from_user(&info, arg, sizeof(info)))
6309 return -EFAULT;
6310
6311 rcu_read_lock();
6312 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6313 if (rdev) {
6314 info.major = MAJOR(rdev->bdev->bd_dev);
6315 info.minor = MINOR(rdev->bdev->bd_dev);
6316 info.raid_disk = rdev->raid_disk;
6317 info.state = 0;
6318 if (test_bit(Faulty, &rdev->flags))
6319 info.state |= (1<<MD_DISK_FAULTY);
6320 else if (test_bit(In_sync, &rdev->flags)) {
6321 info.state |= (1<<MD_DISK_ACTIVE);
6322 info.state |= (1<<MD_DISK_SYNC);
6323 }
6324 if (test_bit(Journal, &rdev->flags))
6325 info.state |= (1<<MD_DISK_JOURNAL);
6326 if (test_bit(WriteMostly, &rdev->flags))
6327 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6328 if (test_bit(FailFast, &rdev->flags))
6329 info.state |= (1<<MD_DISK_FAILFAST);
6330 } else {
6331 info.major = info.minor = 0;
6332 info.raid_disk = -1;
6333 info.state = (1<<MD_DISK_REMOVED);
6334 }
6335 rcu_read_unlock();
6336
6337 if (copy_to_user(arg, &info, sizeof(info)))
6338 return -EFAULT;
6339
6340 return 0;
6341 }
6342
6343 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6344 {
6345 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6346 struct md_rdev *rdev;
6347 dev_t dev = MKDEV(info->major,info->minor);
6348
6349 if (mddev_is_clustered(mddev) &&
6350 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6351 pr_warn("%s: Cannot add to clustered mddev.\n",
6352 mdname(mddev));
6353 return -EINVAL;
6354 }
6355
6356 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6357 return -EOVERFLOW;
6358
6359 if (!mddev->raid_disks) {
6360 int err;
6361 /* expecting a device which has a superblock */
6362 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6363 if (IS_ERR(rdev)) {
6364 pr_warn("md: md_import_device returned %ld\n",
6365 PTR_ERR(rdev));
6366 return PTR_ERR(rdev);
6367 }
6368 if (!list_empty(&mddev->disks)) {
6369 struct md_rdev *rdev0
6370 = list_entry(mddev->disks.next,
6371 struct md_rdev, same_set);
6372 err = super_types[mddev->major_version]
6373 .load_super(rdev, rdev0, mddev->minor_version);
6374 if (err < 0) {
6375 pr_warn("md: %s has different UUID to %s\n",
6376 bdevname(rdev->bdev,b),
6377 bdevname(rdev0->bdev,b2));
6378 export_rdev(rdev);
6379 return -EINVAL;
6380 }
6381 }
6382 err = bind_rdev_to_array(rdev, mddev);
6383 if (err)
6384 export_rdev(rdev);
6385 return err;
6386 }
6387
6388 /*
6389 * add_new_disk can be used once the array is assembled
6390 * to add "hot spares". They must already have a superblock
6391 * written
6392 */
6393 if (mddev->pers) {
6394 int err;
6395 if (!mddev->pers->hot_add_disk) {
6396 pr_warn("%s: personality does not support diskops!\n",
6397 mdname(mddev));
6398 return -EINVAL;
6399 }
6400 if (mddev->persistent)
6401 rdev = md_import_device(dev, mddev->major_version,
6402 mddev->minor_version);
6403 else
6404 rdev = md_import_device(dev, -1, -1);
6405 if (IS_ERR(rdev)) {
6406 pr_warn("md: md_import_device returned %ld\n",
6407 PTR_ERR(rdev));
6408 return PTR_ERR(rdev);
6409 }
6410 /* set saved_raid_disk if appropriate */
6411 if (!mddev->persistent) {
6412 if (info->state & (1<<MD_DISK_SYNC) &&
6413 info->raid_disk < mddev->raid_disks) {
6414 rdev->raid_disk = info->raid_disk;
6415 set_bit(In_sync, &rdev->flags);
6416 clear_bit(Bitmap_sync, &rdev->flags);
6417 } else
6418 rdev->raid_disk = -1;
6419 rdev->saved_raid_disk = rdev->raid_disk;
6420 } else
6421 super_types[mddev->major_version].
6422 validate_super(mddev, rdev);
6423 if ((info->state & (1<<MD_DISK_SYNC)) &&
6424 rdev->raid_disk != info->raid_disk) {
6425 /* This was a hot-add request, but events doesn't
6426 * match, so reject it.
6427 */
6428 export_rdev(rdev);
6429 return -EINVAL;
6430 }
6431
6432 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6433 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6434 set_bit(WriteMostly, &rdev->flags);
6435 else
6436 clear_bit(WriteMostly, &rdev->flags);
6437 if (info->state & (1<<MD_DISK_FAILFAST))
6438 set_bit(FailFast, &rdev->flags);
6439 else
6440 clear_bit(FailFast, &rdev->flags);
6441
6442 if (info->state & (1<<MD_DISK_JOURNAL)) {
6443 struct md_rdev *rdev2;
6444 bool has_journal = false;
6445
6446 /* make sure no existing journal disk */
6447 rdev_for_each(rdev2, mddev) {
6448 if (test_bit(Journal, &rdev2->flags)) {
6449 has_journal = true;
6450 break;
6451 }
6452 }
6453 if (has_journal || mddev->bitmap) {
6454 export_rdev(rdev);
6455 return -EBUSY;
6456 }
6457 set_bit(Journal, &rdev->flags);
6458 }
6459 /*
6460 * check whether the device shows up in other nodes
6461 */
6462 if (mddev_is_clustered(mddev)) {
6463 if (info->state & (1 << MD_DISK_CANDIDATE))
6464 set_bit(Candidate, &rdev->flags);
6465 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6466 /* --add initiated by this node */
6467 err = md_cluster_ops->add_new_disk(mddev, rdev);
6468 if (err) {
6469 export_rdev(rdev);
6470 return err;
6471 }
6472 }
6473 }
6474
6475 rdev->raid_disk = -1;
6476 err = bind_rdev_to_array(rdev, mddev);
6477
6478 if (err)
6479 export_rdev(rdev);
6480
6481 if (mddev_is_clustered(mddev)) {
6482 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6483 if (!err) {
6484 err = md_cluster_ops->new_disk_ack(mddev,
6485 err == 0);
6486 if (err)
6487 md_kick_rdev_from_array(rdev);
6488 }
6489 } else {
6490 if (err)
6491 md_cluster_ops->add_new_disk_cancel(mddev);
6492 else
6493 err = add_bound_rdev(rdev);
6494 }
6495
6496 } else if (!err)
6497 err = add_bound_rdev(rdev);
6498
6499 return err;
6500 }
6501
6502 /* otherwise, add_new_disk is only allowed
6503 * for major_version==0 superblocks
6504 */
6505 if (mddev->major_version != 0) {
6506 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6507 return -EINVAL;
6508 }
6509
6510 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6511 int err;
6512 rdev = md_import_device(dev, -1, 0);
6513 if (IS_ERR(rdev)) {
6514 pr_warn("md: error, md_import_device() returned %ld\n",
6515 PTR_ERR(rdev));
6516 return PTR_ERR(rdev);
6517 }
6518 rdev->desc_nr = info->number;
6519 if (info->raid_disk < mddev->raid_disks)
6520 rdev->raid_disk = info->raid_disk;
6521 else
6522 rdev->raid_disk = -1;
6523
6524 if (rdev->raid_disk < mddev->raid_disks)
6525 if (info->state & (1<<MD_DISK_SYNC))
6526 set_bit(In_sync, &rdev->flags);
6527
6528 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6529 set_bit(WriteMostly, &rdev->flags);
6530 if (info->state & (1<<MD_DISK_FAILFAST))
6531 set_bit(FailFast, &rdev->flags);
6532
6533 if (!mddev->persistent) {
6534 pr_debug("md: nonpersistent superblock ...\n");
6535 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6536 } else
6537 rdev->sb_start = calc_dev_sboffset(rdev);
6538 rdev->sectors = rdev->sb_start;
6539
6540 err = bind_rdev_to_array(rdev, mddev);
6541 if (err) {
6542 export_rdev(rdev);
6543 return err;
6544 }
6545 }
6546
6547 return 0;
6548 }
6549
6550 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6551 {
6552 char b[BDEVNAME_SIZE];
6553 struct md_rdev *rdev;
6554
6555 if (!mddev->pers)
6556 return -ENODEV;
6557
6558 rdev = find_rdev(mddev, dev);
6559 if (!rdev)
6560 return -ENXIO;
6561
6562 if (rdev->raid_disk < 0)
6563 goto kick_rdev;
6564
6565 clear_bit(Blocked, &rdev->flags);
6566 remove_and_add_spares(mddev, rdev);
6567
6568 if (rdev->raid_disk >= 0)
6569 goto busy;
6570
6571 kick_rdev:
6572 if (mddev_is_clustered(mddev))
6573 md_cluster_ops->remove_disk(mddev, rdev);
6574
6575 md_kick_rdev_from_array(rdev);
6576 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6577 if (mddev->thread)
6578 md_wakeup_thread(mddev->thread);
6579 else
6580 md_update_sb(mddev, 1);
6581 md_new_event(mddev);
6582
6583 return 0;
6584 busy:
6585 pr_debug("md: cannot remove active disk %s from %s ...\n",
6586 bdevname(rdev->bdev,b), mdname(mddev));
6587 return -EBUSY;
6588 }
6589
6590 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6591 {
6592 char b[BDEVNAME_SIZE];
6593 int err;
6594 struct md_rdev *rdev;
6595
6596 if (!mddev->pers)
6597 return -ENODEV;
6598
6599 if (mddev->major_version != 0) {
6600 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6601 mdname(mddev));
6602 return -EINVAL;
6603 }
6604 if (!mddev->pers->hot_add_disk) {
6605 pr_warn("%s: personality does not support diskops!\n",
6606 mdname(mddev));
6607 return -EINVAL;
6608 }
6609
6610 rdev = md_import_device(dev, -1, 0);
6611 if (IS_ERR(rdev)) {
6612 pr_warn("md: error, md_import_device() returned %ld\n",
6613 PTR_ERR(rdev));
6614 return -EINVAL;
6615 }
6616
6617 if (mddev->persistent)
6618 rdev->sb_start = calc_dev_sboffset(rdev);
6619 else
6620 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6621
6622 rdev->sectors = rdev->sb_start;
6623
6624 if (test_bit(Faulty, &rdev->flags)) {
6625 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6626 bdevname(rdev->bdev,b), mdname(mddev));
6627 err = -EINVAL;
6628 goto abort_export;
6629 }
6630
6631 clear_bit(In_sync, &rdev->flags);
6632 rdev->desc_nr = -1;
6633 rdev->saved_raid_disk = -1;
6634 err = bind_rdev_to_array(rdev, mddev);
6635 if (err)
6636 goto abort_export;
6637
6638 /*
6639 * The rest should better be atomic, we can have disk failures
6640 * noticed in interrupt contexts ...
6641 */
6642
6643 rdev->raid_disk = -1;
6644
6645 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6646 if (!mddev->thread)
6647 md_update_sb(mddev, 1);
6648 /*
6649 * Kick recovery, maybe this spare has to be added to the
6650 * array immediately.
6651 */
6652 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6653 md_wakeup_thread(mddev->thread);
6654 md_new_event(mddev);
6655 return 0;
6656
6657 abort_export:
6658 export_rdev(rdev);
6659 return err;
6660 }
6661
6662 static int set_bitmap_file(struct mddev *mddev, int fd)
6663 {
6664 int err = 0;
6665
6666 if (mddev->pers) {
6667 if (!mddev->pers->quiesce || !mddev->thread)
6668 return -EBUSY;
6669 if (mddev->recovery || mddev->sync_thread)
6670 return -EBUSY;
6671 /* we should be able to change the bitmap.. */
6672 }
6673
6674 if (fd >= 0) {
6675 struct inode *inode;
6676 struct file *f;
6677
6678 if (mddev->bitmap || mddev->bitmap_info.file)
6679 return -EEXIST; /* cannot add when bitmap is present */
6680 f = fget(fd);
6681
6682 if (f == NULL) {
6683 pr_warn("%s: error: failed to get bitmap file\n",
6684 mdname(mddev));
6685 return -EBADF;
6686 }
6687
6688 inode = f->f_mapping->host;
6689 if (!S_ISREG(inode->i_mode)) {
6690 pr_warn("%s: error: bitmap file must be a regular file\n",
6691 mdname(mddev));
6692 err = -EBADF;
6693 } else if (!(f->f_mode & FMODE_WRITE)) {
6694 pr_warn("%s: error: bitmap file must open for write\n",
6695 mdname(mddev));
6696 err = -EBADF;
6697 } else if (atomic_read(&inode->i_writecount) != 1) {
6698 pr_warn("%s: error: bitmap file is already in use\n",
6699 mdname(mddev));
6700 err = -EBUSY;
6701 }
6702 if (err) {
6703 fput(f);
6704 return err;
6705 }
6706 mddev->bitmap_info.file = f;
6707 mddev->bitmap_info.offset = 0; /* file overrides offset */
6708 } else if (mddev->bitmap == NULL)
6709 return -ENOENT; /* cannot remove what isn't there */
6710 err = 0;
6711 if (mddev->pers) {
6712 if (fd >= 0) {
6713 struct bitmap *bitmap;
6714
6715 bitmap = md_bitmap_create(mddev, -1);
6716 mddev_suspend(mddev);
6717 if (!IS_ERR(bitmap)) {
6718 mddev->bitmap = bitmap;
6719 err = md_bitmap_load(mddev);
6720 } else
6721 err = PTR_ERR(bitmap);
6722 if (err) {
6723 md_bitmap_destroy(mddev);
6724 fd = -1;
6725 }
6726 mddev_resume(mddev);
6727 } else if (fd < 0) {
6728 mddev_suspend(mddev);
6729 md_bitmap_destroy(mddev);
6730 mddev_resume(mddev);
6731 }
6732 }
6733 if (fd < 0) {
6734 struct file *f = mddev->bitmap_info.file;
6735 if (f) {
6736 spin_lock(&mddev->lock);
6737 mddev->bitmap_info.file = NULL;
6738 spin_unlock(&mddev->lock);
6739 fput(f);
6740 }
6741 }
6742
6743 return err;
6744 }
6745
6746 /*
6747 * set_array_info is used two different ways
6748 * The original usage is when creating a new array.
6749 * In this usage, raid_disks is > 0 and it together with
6750 * level, size, not_persistent,layout,chunksize determine the
6751 * shape of the array.
6752 * This will always create an array with a type-0.90.0 superblock.
6753 * The newer usage is when assembling an array.
6754 * In this case raid_disks will be 0, and the major_version field is
6755 * use to determine which style super-blocks are to be found on the devices.
6756 * The minor and patch _version numbers are also kept incase the
6757 * super_block handler wishes to interpret them.
6758 */
6759 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6760 {
6761
6762 if (info->raid_disks == 0) {
6763 /* just setting version number for superblock loading */
6764 if (info->major_version < 0 ||
6765 info->major_version >= ARRAY_SIZE(super_types) ||
6766 super_types[info->major_version].name == NULL) {
6767 /* maybe try to auto-load a module? */
6768 pr_warn("md: superblock version %d not known\n",
6769 info->major_version);
6770 return -EINVAL;
6771 }
6772 mddev->major_version = info->major_version;
6773 mddev->minor_version = info->minor_version;
6774 mddev->patch_version = info->patch_version;
6775 mddev->persistent = !info->not_persistent;
6776 /* ensure mddev_put doesn't delete this now that there
6777 * is some minimal configuration.
6778 */
6779 mddev->ctime = ktime_get_real_seconds();
6780 return 0;
6781 }
6782 mddev->major_version = MD_MAJOR_VERSION;
6783 mddev->minor_version = MD_MINOR_VERSION;
6784 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6785 mddev->ctime = ktime_get_real_seconds();
6786
6787 mddev->level = info->level;
6788 mddev->clevel[0] = 0;
6789 mddev->dev_sectors = 2 * (sector_t)info->size;
6790 mddev->raid_disks = info->raid_disks;
6791 /* don't set md_minor, it is determined by which /dev/md* was
6792 * openned
6793 */
6794 if (info->state & (1<<MD_SB_CLEAN))
6795 mddev->recovery_cp = MaxSector;
6796 else
6797 mddev->recovery_cp = 0;
6798 mddev->persistent = ! info->not_persistent;
6799 mddev->external = 0;
6800
6801 mddev->layout = info->layout;
6802 mddev->chunk_sectors = info->chunk_size >> 9;
6803
6804 if (mddev->persistent) {
6805 mddev->max_disks = MD_SB_DISKS;
6806 mddev->flags = 0;
6807 mddev->sb_flags = 0;
6808 }
6809 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6810
6811 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6812 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6813 mddev->bitmap_info.offset = 0;
6814
6815 mddev->reshape_position = MaxSector;
6816
6817 /*
6818 * Generate a 128 bit UUID
6819 */
6820 get_random_bytes(mddev->uuid, 16);
6821
6822 mddev->new_level = mddev->level;
6823 mddev->new_chunk_sectors = mddev->chunk_sectors;
6824 mddev->new_layout = mddev->layout;
6825 mddev->delta_disks = 0;
6826 mddev->reshape_backwards = 0;
6827
6828 return 0;
6829 }
6830
6831 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6832 {
6833 lockdep_assert_held(&mddev->reconfig_mutex);
6834
6835 if (mddev->external_size)
6836 return;
6837
6838 mddev->array_sectors = array_sectors;
6839 }
6840 EXPORT_SYMBOL(md_set_array_sectors);
6841
6842 static int update_size(struct mddev *mddev, sector_t num_sectors)
6843 {
6844 struct md_rdev *rdev;
6845 int rv;
6846 int fit = (num_sectors == 0);
6847 sector_t old_dev_sectors = mddev->dev_sectors;
6848
6849 if (mddev->pers->resize == NULL)
6850 return -EINVAL;
6851 /* The "num_sectors" is the number of sectors of each device that
6852 * is used. This can only make sense for arrays with redundancy.
6853 * linear and raid0 always use whatever space is available. We can only
6854 * consider changing this number if no resync or reconstruction is
6855 * happening, and if the new size is acceptable. It must fit before the
6856 * sb_start or, if that is <data_offset, it must fit before the size
6857 * of each device. If num_sectors is zero, we find the largest size
6858 * that fits.
6859 */
6860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6861 mddev->sync_thread)
6862 return -EBUSY;
6863 if (mddev->ro)
6864 return -EROFS;
6865
6866 rdev_for_each(rdev, mddev) {
6867 sector_t avail = rdev->sectors;
6868
6869 if (fit && (num_sectors == 0 || num_sectors > avail))
6870 num_sectors = avail;
6871 if (avail < num_sectors)
6872 return -ENOSPC;
6873 }
6874 rv = mddev->pers->resize(mddev, num_sectors);
6875 if (!rv) {
6876 if (mddev_is_clustered(mddev))
6877 md_cluster_ops->update_size(mddev, old_dev_sectors);
6878 else if (mddev->queue) {
6879 set_capacity(mddev->gendisk, mddev->array_sectors);
6880 revalidate_disk(mddev->gendisk);
6881 }
6882 }
6883 return rv;
6884 }
6885
6886 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6887 {
6888 int rv;
6889 struct md_rdev *rdev;
6890 /* change the number of raid disks */
6891 if (mddev->pers->check_reshape == NULL)
6892 return -EINVAL;
6893 if (mddev->ro)
6894 return -EROFS;
6895 if (raid_disks <= 0 ||
6896 (mddev->max_disks && raid_disks >= mddev->max_disks))
6897 return -EINVAL;
6898 if (mddev->sync_thread ||
6899 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6900 mddev->reshape_position != MaxSector)
6901 return -EBUSY;
6902
6903 rdev_for_each(rdev, mddev) {
6904 if (mddev->raid_disks < raid_disks &&
6905 rdev->data_offset < rdev->new_data_offset)
6906 return -EINVAL;
6907 if (mddev->raid_disks > raid_disks &&
6908 rdev->data_offset > rdev->new_data_offset)
6909 return -EINVAL;
6910 }
6911
6912 mddev->delta_disks = raid_disks - mddev->raid_disks;
6913 if (mddev->delta_disks < 0)
6914 mddev->reshape_backwards = 1;
6915 else if (mddev->delta_disks > 0)
6916 mddev->reshape_backwards = 0;
6917
6918 rv = mddev->pers->check_reshape(mddev);
6919 if (rv < 0) {
6920 mddev->delta_disks = 0;
6921 mddev->reshape_backwards = 0;
6922 }
6923 return rv;
6924 }
6925
6926 /*
6927 * update_array_info is used to change the configuration of an
6928 * on-line array.
6929 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6930 * fields in the info are checked against the array.
6931 * Any differences that cannot be handled will cause an error.
6932 * Normally, only one change can be managed at a time.
6933 */
6934 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6935 {
6936 int rv = 0;
6937 int cnt = 0;
6938 int state = 0;
6939
6940 /* calculate expected state,ignoring low bits */
6941 if (mddev->bitmap && mddev->bitmap_info.offset)
6942 state |= (1 << MD_SB_BITMAP_PRESENT);
6943
6944 if (mddev->major_version != info->major_version ||
6945 mddev->minor_version != info->minor_version ||
6946 /* mddev->patch_version != info->patch_version || */
6947 mddev->ctime != info->ctime ||
6948 mddev->level != info->level ||
6949 /* mddev->layout != info->layout || */
6950 mddev->persistent != !info->not_persistent ||
6951 mddev->chunk_sectors != info->chunk_size >> 9 ||
6952 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6953 ((state^info->state) & 0xfffffe00)
6954 )
6955 return -EINVAL;
6956 /* Check there is only one change */
6957 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6958 cnt++;
6959 if (mddev->raid_disks != info->raid_disks)
6960 cnt++;
6961 if (mddev->layout != info->layout)
6962 cnt++;
6963 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6964 cnt++;
6965 if (cnt == 0)
6966 return 0;
6967 if (cnt > 1)
6968 return -EINVAL;
6969
6970 if (mddev->layout != info->layout) {
6971 /* Change layout
6972 * we don't need to do anything at the md level, the
6973 * personality will take care of it all.
6974 */
6975 if (mddev->pers->check_reshape == NULL)
6976 return -EINVAL;
6977 else {
6978 mddev->new_layout = info->layout;
6979 rv = mddev->pers->check_reshape(mddev);
6980 if (rv)
6981 mddev->new_layout = mddev->layout;
6982 return rv;
6983 }
6984 }
6985 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6986 rv = update_size(mddev, (sector_t)info->size * 2);
6987
6988 if (mddev->raid_disks != info->raid_disks)
6989 rv = update_raid_disks(mddev, info->raid_disks);
6990
6991 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6992 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6993 rv = -EINVAL;
6994 goto err;
6995 }
6996 if (mddev->recovery || mddev->sync_thread) {
6997 rv = -EBUSY;
6998 goto err;
6999 }
7000 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7001 struct bitmap *bitmap;
7002 /* add the bitmap */
7003 if (mddev->bitmap) {
7004 rv = -EEXIST;
7005 goto err;
7006 }
7007 if (mddev->bitmap_info.default_offset == 0) {
7008 rv = -EINVAL;
7009 goto err;
7010 }
7011 mddev->bitmap_info.offset =
7012 mddev->bitmap_info.default_offset;
7013 mddev->bitmap_info.space =
7014 mddev->bitmap_info.default_space;
7015 bitmap = md_bitmap_create(mddev, -1);
7016 mddev_suspend(mddev);
7017 if (!IS_ERR(bitmap)) {
7018 mddev->bitmap = bitmap;
7019 rv = md_bitmap_load(mddev);
7020 } else
7021 rv = PTR_ERR(bitmap);
7022 if (rv)
7023 md_bitmap_destroy(mddev);
7024 mddev_resume(mddev);
7025 } else {
7026 /* remove the bitmap */
7027 if (!mddev->bitmap) {
7028 rv = -ENOENT;
7029 goto err;
7030 }
7031 if (mddev->bitmap->storage.file) {
7032 rv = -EINVAL;
7033 goto err;
7034 }
7035 if (mddev->bitmap_info.nodes) {
7036 /* hold PW on all the bitmap lock */
7037 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7038 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7039 rv = -EPERM;
7040 md_cluster_ops->unlock_all_bitmaps(mddev);
7041 goto err;
7042 }
7043
7044 mddev->bitmap_info.nodes = 0;
7045 md_cluster_ops->leave(mddev);
7046 }
7047 mddev_suspend(mddev);
7048 md_bitmap_destroy(mddev);
7049 mddev_resume(mddev);
7050 mddev->bitmap_info.offset = 0;
7051 }
7052 }
7053 md_update_sb(mddev, 1);
7054 return rv;
7055 err:
7056 return rv;
7057 }
7058
7059 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7060 {
7061 struct md_rdev *rdev;
7062 int err = 0;
7063
7064 if (mddev->pers == NULL)
7065 return -ENODEV;
7066
7067 rcu_read_lock();
7068 rdev = md_find_rdev_rcu(mddev, dev);
7069 if (!rdev)
7070 err = -ENODEV;
7071 else {
7072 md_error(mddev, rdev);
7073 if (!test_bit(Faulty, &rdev->flags))
7074 err = -EBUSY;
7075 }
7076 rcu_read_unlock();
7077 return err;
7078 }
7079
7080 /*
7081 * We have a problem here : there is no easy way to give a CHS
7082 * virtual geometry. We currently pretend that we have a 2 heads
7083 * 4 sectors (with a BIG number of cylinders...). This drives
7084 * dosfs just mad... ;-)
7085 */
7086 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7087 {
7088 struct mddev *mddev = bdev->bd_disk->private_data;
7089
7090 geo->heads = 2;
7091 geo->sectors = 4;
7092 geo->cylinders = mddev->array_sectors / 8;
7093 return 0;
7094 }
7095
7096 static inline bool md_ioctl_valid(unsigned int cmd)
7097 {
7098 switch (cmd) {
7099 case ADD_NEW_DISK:
7100 case BLKROSET:
7101 case GET_ARRAY_INFO:
7102 case GET_BITMAP_FILE:
7103 case GET_DISK_INFO:
7104 case HOT_ADD_DISK:
7105 case HOT_REMOVE_DISK:
7106 case RAID_AUTORUN:
7107 case RAID_VERSION:
7108 case RESTART_ARRAY_RW:
7109 case RUN_ARRAY:
7110 case SET_ARRAY_INFO:
7111 case SET_BITMAP_FILE:
7112 case SET_DISK_FAULTY:
7113 case STOP_ARRAY:
7114 case STOP_ARRAY_RO:
7115 case CLUSTERED_DISK_NACK:
7116 return true;
7117 default:
7118 return false;
7119 }
7120 }
7121
7122 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7123 unsigned int cmd, unsigned long arg)
7124 {
7125 int err = 0;
7126 void __user *argp = (void __user *)arg;
7127 struct mddev *mddev = NULL;
7128 int ro;
7129 bool did_set_md_closing = false;
7130
7131 if (!md_ioctl_valid(cmd))
7132 return -ENOTTY;
7133
7134 switch (cmd) {
7135 case RAID_VERSION:
7136 case GET_ARRAY_INFO:
7137 case GET_DISK_INFO:
7138 break;
7139 default:
7140 if (!capable(CAP_SYS_ADMIN))
7141 return -EACCES;
7142 }
7143
7144 /*
7145 * Commands dealing with the RAID driver but not any
7146 * particular array:
7147 */
7148 switch (cmd) {
7149 case RAID_VERSION:
7150 err = get_version(argp);
7151 goto out;
7152
7153 #ifndef MODULE
7154 case RAID_AUTORUN:
7155 err = 0;
7156 autostart_arrays(arg);
7157 goto out;
7158 #endif
7159 default:;
7160 }
7161
7162 /*
7163 * Commands creating/starting a new array:
7164 */
7165
7166 mddev = bdev->bd_disk->private_data;
7167
7168 if (!mddev) {
7169 BUG();
7170 goto out;
7171 }
7172
7173 /* Some actions do not requires the mutex */
7174 switch (cmd) {
7175 case GET_ARRAY_INFO:
7176 if (!mddev->raid_disks && !mddev->external)
7177 err = -ENODEV;
7178 else
7179 err = get_array_info(mddev, argp);
7180 goto out;
7181
7182 case GET_DISK_INFO:
7183 if (!mddev->raid_disks && !mddev->external)
7184 err = -ENODEV;
7185 else
7186 err = get_disk_info(mddev, argp);
7187 goto out;
7188
7189 case SET_DISK_FAULTY:
7190 err = set_disk_faulty(mddev, new_decode_dev(arg));
7191 goto out;
7192
7193 case GET_BITMAP_FILE:
7194 err = get_bitmap_file(mddev, argp);
7195 goto out;
7196
7197 }
7198
7199 if (cmd == ADD_NEW_DISK)
7200 /* need to ensure md_delayed_delete() has completed */
7201 flush_workqueue(md_misc_wq);
7202
7203 if (cmd == HOT_REMOVE_DISK)
7204 /* need to ensure recovery thread has run */
7205 wait_event_interruptible_timeout(mddev->sb_wait,
7206 !test_bit(MD_RECOVERY_NEEDED,
7207 &mddev->recovery),
7208 msecs_to_jiffies(5000));
7209 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7210 /* Need to flush page cache, and ensure no-one else opens
7211 * and writes
7212 */
7213 mutex_lock(&mddev->open_mutex);
7214 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7215 mutex_unlock(&mddev->open_mutex);
7216 err = -EBUSY;
7217 goto out;
7218 }
7219 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7220 set_bit(MD_CLOSING, &mddev->flags);
7221 did_set_md_closing = true;
7222 mutex_unlock(&mddev->open_mutex);
7223 sync_blockdev(bdev);
7224 }
7225 err = mddev_lock(mddev);
7226 if (err) {
7227 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7228 err, cmd);
7229 goto out;
7230 }
7231
7232 if (cmd == SET_ARRAY_INFO) {
7233 mdu_array_info_t info;
7234 if (!arg)
7235 memset(&info, 0, sizeof(info));
7236 else if (copy_from_user(&info, argp, sizeof(info))) {
7237 err = -EFAULT;
7238 goto unlock;
7239 }
7240 if (mddev->pers) {
7241 err = update_array_info(mddev, &info);
7242 if (err) {
7243 pr_warn("md: couldn't update array info. %d\n", err);
7244 goto unlock;
7245 }
7246 goto unlock;
7247 }
7248 if (!list_empty(&mddev->disks)) {
7249 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7250 err = -EBUSY;
7251 goto unlock;
7252 }
7253 if (mddev->raid_disks) {
7254 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7255 err = -EBUSY;
7256 goto unlock;
7257 }
7258 err = set_array_info(mddev, &info);
7259 if (err) {
7260 pr_warn("md: couldn't set array info. %d\n", err);
7261 goto unlock;
7262 }
7263 goto unlock;
7264 }
7265
7266 /*
7267 * Commands querying/configuring an existing array:
7268 */
7269 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7270 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7271 if ((!mddev->raid_disks && !mddev->external)
7272 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7273 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7274 && cmd != GET_BITMAP_FILE) {
7275 err = -ENODEV;
7276 goto unlock;
7277 }
7278
7279 /*
7280 * Commands even a read-only array can execute:
7281 */
7282 switch (cmd) {
7283 case RESTART_ARRAY_RW:
7284 err = restart_array(mddev);
7285 goto unlock;
7286
7287 case STOP_ARRAY:
7288 err = do_md_stop(mddev, 0, bdev);
7289 goto unlock;
7290
7291 case STOP_ARRAY_RO:
7292 err = md_set_readonly(mddev, bdev);
7293 goto unlock;
7294
7295 case HOT_REMOVE_DISK:
7296 err = hot_remove_disk(mddev, new_decode_dev(arg));
7297 goto unlock;
7298
7299 case ADD_NEW_DISK:
7300 /* We can support ADD_NEW_DISK on read-only arrays
7301 * only if we are re-adding a preexisting device.
7302 * So require mddev->pers and MD_DISK_SYNC.
7303 */
7304 if (mddev->pers) {
7305 mdu_disk_info_t info;
7306 if (copy_from_user(&info, argp, sizeof(info)))
7307 err = -EFAULT;
7308 else if (!(info.state & (1<<MD_DISK_SYNC)))
7309 /* Need to clear read-only for this */
7310 break;
7311 else
7312 err = add_new_disk(mddev, &info);
7313 goto unlock;
7314 }
7315 break;
7316
7317 case BLKROSET:
7318 if (get_user(ro, (int __user *)(arg))) {
7319 err = -EFAULT;
7320 goto unlock;
7321 }
7322 err = -EINVAL;
7323
7324 /* if the bdev is going readonly the value of mddev->ro
7325 * does not matter, no writes are coming
7326 */
7327 if (ro)
7328 goto unlock;
7329
7330 /* are we are already prepared for writes? */
7331 if (mddev->ro != 1)
7332 goto unlock;
7333
7334 /* transitioning to readauto need only happen for
7335 * arrays that call md_write_start
7336 */
7337 if (mddev->pers) {
7338 err = restart_array(mddev);
7339 if (err == 0) {
7340 mddev->ro = 2;
7341 set_disk_ro(mddev->gendisk, 0);
7342 }
7343 }
7344 goto unlock;
7345 }
7346
7347 /*
7348 * The remaining ioctls are changing the state of the
7349 * superblock, so we do not allow them on read-only arrays.
7350 */
7351 if (mddev->ro && mddev->pers) {
7352 if (mddev->ro == 2) {
7353 mddev->ro = 0;
7354 sysfs_notify_dirent_safe(mddev->sysfs_state);
7355 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7356 /* mddev_unlock will wake thread */
7357 /* If a device failed while we were read-only, we
7358 * need to make sure the metadata is updated now.
7359 */
7360 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7361 mddev_unlock(mddev);
7362 wait_event(mddev->sb_wait,
7363 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7364 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7365 mddev_lock_nointr(mddev);
7366 }
7367 } else {
7368 err = -EROFS;
7369 goto unlock;
7370 }
7371 }
7372
7373 switch (cmd) {
7374 case ADD_NEW_DISK:
7375 {
7376 mdu_disk_info_t info;
7377 if (copy_from_user(&info, argp, sizeof(info)))
7378 err = -EFAULT;
7379 else
7380 err = add_new_disk(mddev, &info);
7381 goto unlock;
7382 }
7383
7384 case CLUSTERED_DISK_NACK:
7385 if (mddev_is_clustered(mddev))
7386 md_cluster_ops->new_disk_ack(mddev, false);
7387 else
7388 err = -EINVAL;
7389 goto unlock;
7390
7391 case HOT_ADD_DISK:
7392 err = hot_add_disk(mddev, new_decode_dev(arg));
7393 goto unlock;
7394
7395 case RUN_ARRAY:
7396 err = do_md_run(mddev);
7397 goto unlock;
7398
7399 case SET_BITMAP_FILE:
7400 err = set_bitmap_file(mddev, (int)arg);
7401 goto unlock;
7402
7403 default:
7404 err = -EINVAL;
7405 goto unlock;
7406 }
7407
7408 unlock:
7409 if (mddev->hold_active == UNTIL_IOCTL &&
7410 err != -EINVAL)
7411 mddev->hold_active = 0;
7412 mddev_unlock(mddev);
7413 out:
7414 if(did_set_md_closing)
7415 clear_bit(MD_CLOSING, &mddev->flags);
7416 return err;
7417 }
7418 #ifdef CONFIG_COMPAT
7419 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7420 unsigned int cmd, unsigned long arg)
7421 {
7422 switch (cmd) {
7423 case HOT_REMOVE_DISK:
7424 case HOT_ADD_DISK:
7425 case SET_DISK_FAULTY:
7426 case SET_BITMAP_FILE:
7427 /* These take in integer arg, do not convert */
7428 break;
7429 default:
7430 arg = (unsigned long)compat_ptr(arg);
7431 break;
7432 }
7433
7434 return md_ioctl(bdev, mode, cmd, arg);
7435 }
7436 #endif /* CONFIG_COMPAT */
7437
7438 static int md_open(struct block_device *bdev, fmode_t mode)
7439 {
7440 /*
7441 * Succeed if we can lock the mddev, which confirms that
7442 * it isn't being stopped right now.
7443 */
7444 struct mddev *mddev = mddev_find(bdev->bd_dev);
7445 int err;
7446
7447 if (!mddev)
7448 return -ENODEV;
7449
7450 if (mddev->gendisk != bdev->bd_disk) {
7451 /* we are racing with mddev_put which is discarding this
7452 * bd_disk.
7453 */
7454 mddev_put(mddev);
7455 /* Wait until bdev->bd_disk is definitely gone */
7456 flush_workqueue(md_misc_wq);
7457 /* Then retry the open from the top */
7458 return -ERESTARTSYS;
7459 }
7460 BUG_ON(mddev != bdev->bd_disk->private_data);
7461
7462 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7463 goto out;
7464
7465 if (test_bit(MD_CLOSING, &mddev->flags)) {
7466 mutex_unlock(&mddev->open_mutex);
7467 err = -ENODEV;
7468 goto out;
7469 }
7470
7471 err = 0;
7472 atomic_inc(&mddev->openers);
7473 mutex_unlock(&mddev->open_mutex);
7474
7475 check_disk_change(bdev);
7476 out:
7477 if (err)
7478 mddev_put(mddev);
7479 return err;
7480 }
7481
7482 static void md_release(struct gendisk *disk, fmode_t mode)
7483 {
7484 struct mddev *mddev = disk->private_data;
7485
7486 BUG_ON(!mddev);
7487 atomic_dec(&mddev->openers);
7488 mddev_put(mddev);
7489 }
7490
7491 static int md_media_changed(struct gendisk *disk)
7492 {
7493 struct mddev *mddev = disk->private_data;
7494
7495 return mddev->changed;
7496 }
7497
7498 static int md_revalidate(struct gendisk *disk)
7499 {
7500 struct mddev *mddev = disk->private_data;
7501
7502 mddev->changed = 0;
7503 return 0;
7504 }
7505 static const struct block_device_operations md_fops =
7506 {
7507 .owner = THIS_MODULE,
7508 .open = md_open,
7509 .release = md_release,
7510 .ioctl = md_ioctl,
7511 #ifdef CONFIG_COMPAT
7512 .compat_ioctl = md_compat_ioctl,
7513 #endif
7514 .getgeo = md_getgeo,
7515 .media_changed = md_media_changed,
7516 .revalidate_disk= md_revalidate,
7517 };
7518
7519 static int md_thread(void *arg)
7520 {
7521 struct md_thread *thread = arg;
7522
7523 /*
7524 * md_thread is a 'system-thread', it's priority should be very
7525 * high. We avoid resource deadlocks individually in each
7526 * raid personality. (RAID5 does preallocation) We also use RR and
7527 * the very same RT priority as kswapd, thus we will never get
7528 * into a priority inversion deadlock.
7529 *
7530 * we definitely have to have equal or higher priority than
7531 * bdflush, otherwise bdflush will deadlock if there are too
7532 * many dirty RAID5 blocks.
7533 */
7534
7535 allow_signal(SIGKILL);
7536 while (!kthread_should_stop()) {
7537
7538 /* We need to wait INTERRUPTIBLE so that
7539 * we don't add to the load-average.
7540 * That means we need to be sure no signals are
7541 * pending
7542 */
7543 if (signal_pending(current))
7544 flush_signals(current);
7545
7546 wait_event_interruptible_timeout
7547 (thread->wqueue,
7548 test_bit(THREAD_WAKEUP, &thread->flags)
7549 || kthread_should_stop() || kthread_should_park(),
7550 thread->timeout);
7551
7552 clear_bit(THREAD_WAKEUP, &thread->flags);
7553 if (kthread_should_park())
7554 kthread_parkme();
7555 if (!kthread_should_stop())
7556 thread->run(thread);
7557 }
7558
7559 return 0;
7560 }
7561
7562 void md_wakeup_thread(struct md_thread *thread)
7563 {
7564 if (thread) {
7565 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7566 set_bit(THREAD_WAKEUP, &thread->flags);
7567 wake_up(&thread->wqueue);
7568 }
7569 }
7570 EXPORT_SYMBOL(md_wakeup_thread);
7571
7572 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7573 struct mddev *mddev, const char *name)
7574 {
7575 struct md_thread *thread;
7576
7577 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7578 if (!thread)
7579 return NULL;
7580
7581 init_waitqueue_head(&thread->wqueue);
7582
7583 thread->run = run;
7584 thread->mddev = mddev;
7585 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7586 thread->tsk = kthread_run(md_thread, thread,
7587 "%s_%s",
7588 mdname(thread->mddev),
7589 name);
7590 if (IS_ERR(thread->tsk)) {
7591 kfree(thread);
7592 return NULL;
7593 }
7594 return thread;
7595 }
7596 EXPORT_SYMBOL(md_register_thread);
7597
7598 void md_unregister_thread(struct md_thread **threadp)
7599 {
7600 struct md_thread *thread = *threadp;
7601 if (!thread)
7602 return;
7603 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7604 /* Locking ensures that mddev_unlock does not wake_up a
7605 * non-existent thread
7606 */
7607 spin_lock(&pers_lock);
7608 *threadp = NULL;
7609 spin_unlock(&pers_lock);
7610
7611 kthread_stop(thread->tsk);
7612 kfree(thread);
7613 }
7614 EXPORT_SYMBOL(md_unregister_thread);
7615
7616 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7617 {
7618 if (!rdev || test_bit(Faulty, &rdev->flags))
7619 return;
7620
7621 if (!mddev->pers || !mddev->pers->error_handler)
7622 return;
7623 mddev->pers->error_handler(mddev,rdev);
7624 if (mddev->degraded)
7625 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7626 sysfs_notify_dirent_safe(rdev->sysfs_state);
7627 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7628 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7629 md_wakeup_thread(mddev->thread);
7630 if (mddev->event_work.func)
7631 queue_work(md_misc_wq, &mddev->event_work);
7632 md_new_event(mddev);
7633 }
7634 EXPORT_SYMBOL(md_error);
7635
7636 /* seq_file implementation /proc/mdstat */
7637
7638 static void status_unused(struct seq_file *seq)
7639 {
7640 int i = 0;
7641 struct md_rdev *rdev;
7642
7643 seq_printf(seq, "unused devices: ");
7644
7645 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7646 char b[BDEVNAME_SIZE];
7647 i++;
7648 seq_printf(seq, "%s ",
7649 bdevname(rdev->bdev,b));
7650 }
7651 if (!i)
7652 seq_printf(seq, "<none>");
7653
7654 seq_printf(seq, "\n");
7655 }
7656
7657 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7658 {
7659 sector_t max_sectors, resync, res;
7660 unsigned long dt, db;
7661 sector_t rt;
7662 int scale;
7663 unsigned int per_milli;
7664
7665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7666 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7667 max_sectors = mddev->resync_max_sectors;
7668 else
7669 max_sectors = mddev->dev_sectors;
7670
7671 resync = mddev->curr_resync;
7672 if (resync <= 3) {
7673 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7674 /* Still cleaning up */
7675 resync = max_sectors;
7676 } else if (resync > max_sectors)
7677 resync = max_sectors;
7678 else
7679 resync -= atomic_read(&mddev->recovery_active);
7680
7681 if (resync == 0) {
7682 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
7683 struct md_rdev *rdev;
7684
7685 rdev_for_each(rdev, mddev)
7686 if (rdev->raid_disk >= 0 &&
7687 !test_bit(Faulty, &rdev->flags) &&
7688 rdev->recovery_offset != MaxSector &&
7689 rdev->recovery_offset) {
7690 seq_printf(seq, "\trecover=REMOTE");
7691 return 1;
7692 }
7693 if (mddev->reshape_position != MaxSector)
7694 seq_printf(seq, "\treshape=REMOTE");
7695 else
7696 seq_printf(seq, "\tresync=REMOTE");
7697 return 1;
7698 }
7699 if (mddev->recovery_cp < MaxSector) {
7700 seq_printf(seq, "\tresync=PENDING");
7701 return 1;
7702 }
7703 return 0;
7704 }
7705 if (resync < 3) {
7706 seq_printf(seq, "\tresync=DELAYED");
7707 return 1;
7708 }
7709
7710 WARN_ON(max_sectors == 0);
7711 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7712 * in a sector_t, and (max_sectors>>scale) will fit in a
7713 * u32, as those are the requirements for sector_div.
7714 * Thus 'scale' must be at least 10
7715 */
7716 scale = 10;
7717 if (sizeof(sector_t) > sizeof(unsigned long)) {
7718 while ( max_sectors/2 > (1ULL<<(scale+32)))
7719 scale++;
7720 }
7721 res = (resync>>scale)*1000;
7722 sector_div(res, (u32)((max_sectors>>scale)+1));
7723
7724 per_milli = res;
7725 {
7726 int i, x = per_milli/50, y = 20-x;
7727 seq_printf(seq, "[");
7728 for (i = 0; i < x; i++)
7729 seq_printf(seq, "=");
7730 seq_printf(seq, ">");
7731 for (i = 0; i < y; i++)
7732 seq_printf(seq, ".");
7733 seq_printf(seq, "] ");
7734 }
7735 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7736 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7737 "reshape" :
7738 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7739 "check" :
7740 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7741 "resync" : "recovery"))),
7742 per_milli/10, per_milli % 10,
7743 (unsigned long long) resync/2,
7744 (unsigned long long) max_sectors/2);
7745
7746 /*
7747 * dt: time from mark until now
7748 * db: blocks written from mark until now
7749 * rt: remaining time
7750 *
7751 * rt is a sector_t, so could be 32bit or 64bit.
7752 * So we divide before multiply in case it is 32bit and close
7753 * to the limit.
7754 * We scale the divisor (db) by 32 to avoid losing precision
7755 * near the end of resync when the number of remaining sectors
7756 * is close to 'db'.
7757 * We then divide rt by 32 after multiplying by db to compensate.
7758 * The '+1' avoids division by zero if db is very small.
7759 */
7760 dt = ((jiffies - mddev->resync_mark) / HZ);
7761 if (!dt) dt++;
7762 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7763 - mddev->resync_mark_cnt;
7764
7765 rt = max_sectors - resync; /* number of remaining sectors */
7766 sector_div(rt, db/32+1);
7767 rt *= dt;
7768 rt >>= 5;
7769
7770 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7771 ((unsigned long)rt % 60)/6);
7772
7773 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7774 return 1;
7775 }
7776
7777 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7778 {
7779 struct list_head *tmp;
7780 loff_t l = *pos;
7781 struct mddev *mddev;
7782
7783 if (l >= 0x10000)
7784 return NULL;
7785 if (!l--)
7786 /* header */
7787 return (void*)1;
7788
7789 spin_lock(&all_mddevs_lock);
7790 list_for_each(tmp,&all_mddevs)
7791 if (!l--) {
7792 mddev = list_entry(tmp, struct mddev, all_mddevs);
7793 mddev_get(mddev);
7794 spin_unlock(&all_mddevs_lock);
7795 return mddev;
7796 }
7797 spin_unlock(&all_mddevs_lock);
7798 if (!l--)
7799 return (void*)2;/* tail */
7800 return NULL;
7801 }
7802
7803 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7804 {
7805 struct list_head *tmp;
7806 struct mddev *next_mddev, *mddev = v;
7807
7808 ++*pos;
7809 if (v == (void*)2)
7810 return NULL;
7811
7812 spin_lock(&all_mddevs_lock);
7813 if (v == (void*)1)
7814 tmp = all_mddevs.next;
7815 else
7816 tmp = mddev->all_mddevs.next;
7817 if (tmp != &all_mddevs)
7818 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7819 else {
7820 next_mddev = (void*)2;
7821 *pos = 0x10000;
7822 }
7823 spin_unlock(&all_mddevs_lock);
7824
7825 if (v != (void*)1)
7826 mddev_put(mddev);
7827 return next_mddev;
7828
7829 }
7830
7831 static void md_seq_stop(struct seq_file *seq, void *v)
7832 {
7833 struct mddev *mddev = v;
7834
7835 if (mddev && v != (void*)1 && v != (void*)2)
7836 mddev_put(mddev);
7837 }
7838
7839 static int md_seq_show(struct seq_file *seq, void *v)
7840 {
7841 struct mddev *mddev = v;
7842 sector_t sectors;
7843 struct md_rdev *rdev;
7844
7845 if (v == (void*)1) {
7846 struct md_personality *pers;
7847 seq_printf(seq, "Personalities : ");
7848 spin_lock(&pers_lock);
7849 list_for_each_entry(pers, &pers_list, list)
7850 seq_printf(seq, "[%s] ", pers->name);
7851
7852 spin_unlock(&pers_lock);
7853 seq_printf(seq, "\n");
7854 seq->poll_event = atomic_read(&md_event_count);
7855 return 0;
7856 }
7857 if (v == (void*)2) {
7858 status_unused(seq);
7859 return 0;
7860 }
7861
7862 spin_lock(&mddev->lock);
7863 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7864 seq_printf(seq, "%s : %sactive", mdname(mddev),
7865 mddev->pers ? "" : "in");
7866 if (mddev->pers) {
7867 if (mddev->ro==1)
7868 seq_printf(seq, " (read-only)");
7869 if (mddev->ro==2)
7870 seq_printf(seq, " (auto-read-only)");
7871 seq_printf(seq, " %s", mddev->pers->name);
7872 }
7873
7874 sectors = 0;
7875 rcu_read_lock();
7876 rdev_for_each_rcu(rdev, mddev) {
7877 char b[BDEVNAME_SIZE];
7878 seq_printf(seq, " %s[%d]",
7879 bdevname(rdev->bdev,b), rdev->desc_nr);
7880 if (test_bit(WriteMostly, &rdev->flags))
7881 seq_printf(seq, "(W)");
7882 if (test_bit(Journal, &rdev->flags))
7883 seq_printf(seq, "(J)");
7884 if (test_bit(Faulty, &rdev->flags)) {
7885 seq_printf(seq, "(F)");
7886 continue;
7887 }
7888 if (rdev->raid_disk < 0)
7889 seq_printf(seq, "(S)"); /* spare */
7890 if (test_bit(Replacement, &rdev->flags))
7891 seq_printf(seq, "(R)");
7892 sectors += rdev->sectors;
7893 }
7894 rcu_read_unlock();
7895
7896 if (!list_empty(&mddev->disks)) {
7897 if (mddev->pers)
7898 seq_printf(seq, "\n %llu blocks",
7899 (unsigned long long)
7900 mddev->array_sectors / 2);
7901 else
7902 seq_printf(seq, "\n %llu blocks",
7903 (unsigned long long)sectors / 2);
7904 }
7905 if (mddev->persistent) {
7906 if (mddev->major_version != 0 ||
7907 mddev->minor_version != 90) {
7908 seq_printf(seq," super %d.%d",
7909 mddev->major_version,
7910 mddev->minor_version);
7911 }
7912 } else if (mddev->external)
7913 seq_printf(seq, " super external:%s",
7914 mddev->metadata_type);
7915 else
7916 seq_printf(seq, " super non-persistent");
7917
7918 if (mddev->pers) {
7919 mddev->pers->status(seq, mddev);
7920 seq_printf(seq, "\n ");
7921 if (mddev->pers->sync_request) {
7922 if (status_resync(seq, mddev))
7923 seq_printf(seq, "\n ");
7924 }
7925 } else
7926 seq_printf(seq, "\n ");
7927
7928 md_bitmap_status(seq, mddev->bitmap);
7929
7930 seq_printf(seq, "\n");
7931 }
7932 spin_unlock(&mddev->lock);
7933
7934 return 0;
7935 }
7936
7937 static const struct seq_operations md_seq_ops = {
7938 .start = md_seq_start,
7939 .next = md_seq_next,
7940 .stop = md_seq_stop,
7941 .show = md_seq_show,
7942 };
7943
7944 static int md_seq_open(struct inode *inode, struct file *file)
7945 {
7946 struct seq_file *seq;
7947 int error;
7948
7949 error = seq_open(file, &md_seq_ops);
7950 if (error)
7951 return error;
7952
7953 seq = file->private_data;
7954 seq->poll_event = atomic_read(&md_event_count);
7955 return error;
7956 }
7957
7958 static int md_unloading;
7959 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
7960 {
7961 struct seq_file *seq = filp->private_data;
7962 __poll_t mask;
7963
7964 if (md_unloading)
7965 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
7966 poll_wait(filp, &md_event_waiters, wait);
7967
7968 /* always allow read */
7969 mask = EPOLLIN | EPOLLRDNORM;
7970
7971 if (seq->poll_event != atomic_read(&md_event_count))
7972 mask |= EPOLLERR | EPOLLPRI;
7973 return mask;
7974 }
7975
7976 static const struct file_operations md_seq_fops = {
7977 .owner = THIS_MODULE,
7978 .open = md_seq_open,
7979 .read = seq_read,
7980 .llseek = seq_lseek,
7981 .release = seq_release,
7982 .poll = mdstat_poll,
7983 };
7984
7985 int register_md_personality(struct md_personality *p)
7986 {
7987 pr_debug("md: %s personality registered for level %d\n",
7988 p->name, p->level);
7989 spin_lock(&pers_lock);
7990 list_add_tail(&p->list, &pers_list);
7991 spin_unlock(&pers_lock);
7992 return 0;
7993 }
7994 EXPORT_SYMBOL(register_md_personality);
7995
7996 int unregister_md_personality(struct md_personality *p)
7997 {
7998 pr_debug("md: %s personality unregistered\n", p->name);
7999 spin_lock(&pers_lock);
8000 list_del_init(&p->list);
8001 spin_unlock(&pers_lock);
8002 return 0;
8003 }
8004 EXPORT_SYMBOL(unregister_md_personality);
8005
8006 int register_md_cluster_operations(struct md_cluster_operations *ops,
8007 struct module *module)
8008 {
8009 int ret = 0;
8010 spin_lock(&pers_lock);
8011 if (md_cluster_ops != NULL)
8012 ret = -EALREADY;
8013 else {
8014 md_cluster_ops = ops;
8015 md_cluster_mod = module;
8016 }
8017 spin_unlock(&pers_lock);
8018 return ret;
8019 }
8020 EXPORT_SYMBOL(register_md_cluster_operations);
8021
8022 int unregister_md_cluster_operations(void)
8023 {
8024 spin_lock(&pers_lock);
8025 md_cluster_ops = NULL;
8026 spin_unlock(&pers_lock);
8027 return 0;
8028 }
8029 EXPORT_SYMBOL(unregister_md_cluster_operations);
8030
8031 int md_setup_cluster(struct mddev *mddev, int nodes)
8032 {
8033 if (!md_cluster_ops)
8034 request_module("md-cluster");
8035 spin_lock(&pers_lock);
8036 /* ensure module won't be unloaded */
8037 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8038 pr_warn("can't find md-cluster module or get it's reference.\n");
8039 spin_unlock(&pers_lock);
8040 return -ENOENT;
8041 }
8042 spin_unlock(&pers_lock);
8043
8044 return md_cluster_ops->join(mddev, nodes);
8045 }
8046
8047 void md_cluster_stop(struct mddev *mddev)
8048 {
8049 if (!md_cluster_ops)
8050 return;
8051 md_cluster_ops->leave(mddev);
8052 module_put(md_cluster_mod);
8053 }
8054
8055 static int is_mddev_idle(struct mddev *mddev, int init)
8056 {
8057 struct md_rdev *rdev;
8058 int idle;
8059 int curr_events;
8060
8061 idle = 1;
8062 rcu_read_lock();
8063 rdev_for_each_rcu(rdev, mddev) {
8064 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
8065 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8066 atomic_read(&disk->sync_io);
8067 /* sync IO will cause sync_io to increase before the disk_stats
8068 * as sync_io is counted when a request starts, and
8069 * disk_stats is counted when it completes.
8070 * So resync activity will cause curr_events to be smaller than
8071 * when there was no such activity.
8072 * non-sync IO will cause disk_stat to increase without
8073 * increasing sync_io so curr_events will (eventually)
8074 * be larger than it was before. Once it becomes
8075 * substantially larger, the test below will cause
8076 * the array to appear non-idle, and resync will slow
8077 * down.
8078 * If there is a lot of outstanding resync activity when
8079 * we set last_event to curr_events, then all that activity
8080 * completing might cause the array to appear non-idle
8081 * and resync will be slowed down even though there might
8082 * not have been non-resync activity. This will only
8083 * happen once though. 'last_events' will soon reflect
8084 * the state where there is little or no outstanding
8085 * resync requests, and further resync activity will
8086 * always make curr_events less than last_events.
8087 *
8088 */
8089 if (init || curr_events - rdev->last_events > 64) {
8090 rdev->last_events = curr_events;
8091 idle = 0;
8092 }
8093 }
8094 rcu_read_unlock();
8095 return idle;
8096 }
8097
8098 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8099 {
8100 /* another "blocks" (512byte) blocks have been synced */
8101 atomic_sub(blocks, &mddev->recovery_active);
8102 wake_up(&mddev->recovery_wait);
8103 if (!ok) {
8104 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8105 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8106 md_wakeup_thread(mddev->thread);
8107 // stop recovery, signal do_sync ....
8108 }
8109 }
8110 EXPORT_SYMBOL(md_done_sync);
8111
8112 /* md_write_start(mddev, bi)
8113 * If we need to update some array metadata (e.g. 'active' flag
8114 * in superblock) before writing, schedule a superblock update
8115 * and wait for it to complete.
8116 * A return value of 'false' means that the write wasn't recorded
8117 * and cannot proceed as the array is being suspend.
8118 */
8119 bool md_write_start(struct mddev *mddev, struct bio *bi)
8120 {
8121 int did_change = 0;
8122
8123 if (bio_data_dir(bi) != WRITE)
8124 return true;
8125
8126 BUG_ON(mddev->ro == 1);
8127 if (mddev->ro == 2) {
8128 /* need to switch to read/write */
8129 mddev->ro = 0;
8130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8131 md_wakeup_thread(mddev->thread);
8132 md_wakeup_thread(mddev->sync_thread);
8133 did_change = 1;
8134 }
8135 rcu_read_lock();
8136 percpu_ref_get(&mddev->writes_pending);
8137 smp_mb(); /* Match smp_mb in set_in_sync() */
8138 if (mddev->safemode == 1)
8139 mddev->safemode = 0;
8140 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8141 if (mddev->in_sync || mddev->sync_checkers) {
8142 spin_lock(&mddev->lock);
8143 if (mddev->in_sync) {
8144 mddev->in_sync = 0;
8145 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8146 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8147 md_wakeup_thread(mddev->thread);
8148 did_change = 1;
8149 }
8150 spin_unlock(&mddev->lock);
8151 }
8152 rcu_read_unlock();
8153 if (did_change)
8154 sysfs_notify_dirent_safe(mddev->sysfs_state);
8155 if (!mddev->has_superblocks)
8156 return true;
8157 wait_event(mddev->sb_wait,
8158 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8159 mddev->suspended);
8160 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8161 percpu_ref_put(&mddev->writes_pending);
8162 return false;
8163 }
8164 return true;
8165 }
8166 EXPORT_SYMBOL(md_write_start);
8167
8168 /* md_write_inc can only be called when md_write_start() has
8169 * already been called at least once of the current request.
8170 * It increments the counter and is useful when a single request
8171 * is split into several parts. Each part causes an increment and
8172 * so needs a matching md_write_end().
8173 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8174 * a spinlocked region.
8175 */
8176 void md_write_inc(struct mddev *mddev, struct bio *bi)
8177 {
8178 if (bio_data_dir(bi) != WRITE)
8179 return;
8180 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8181 percpu_ref_get(&mddev->writes_pending);
8182 }
8183 EXPORT_SYMBOL(md_write_inc);
8184
8185 void md_write_end(struct mddev *mddev)
8186 {
8187 percpu_ref_put(&mddev->writes_pending);
8188
8189 if (mddev->safemode == 2)
8190 md_wakeup_thread(mddev->thread);
8191 else if (mddev->safemode_delay)
8192 /* The roundup() ensures this only performs locking once
8193 * every ->safemode_delay jiffies
8194 */
8195 mod_timer(&mddev->safemode_timer,
8196 roundup(jiffies, mddev->safemode_delay) +
8197 mddev->safemode_delay);
8198 }
8199
8200 EXPORT_SYMBOL(md_write_end);
8201
8202 /* md_allow_write(mddev)
8203 * Calling this ensures that the array is marked 'active' so that writes
8204 * may proceed without blocking. It is important to call this before
8205 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8206 * Must be called with mddev_lock held.
8207 */
8208 void md_allow_write(struct mddev *mddev)
8209 {
8210 if (!mddev->pers)
8211 return;
8212 if (mddev->ro)
8213 return;
8214 if (!mddev->pers->sync_request)
8215 return;
8216
8217 spin_lock(&mddev->lock);
8218 if (mddev->in_sync) {
8219 mddev->in_sync = 0;
8220 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8221 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8222 if (mddev->safemode_delay &&
8223 mddev->safemode == 0)
8224 mddev->safemode = 1;
8225 spin_unlock(&mddev->lock);
8226 md_update_sb(mddev, 0);
8227 sysfs_notify_dirent_safe(mddev->sysfs_state);
8228 /* wait for the dirty state to be recorded in the metadata */
8229 wait_event(mddev->sb_wait,
8230 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8231 } else
8232 spin_unlock(&mddev->lock);
8233 }
8234 EXPORT_SYMBOL_GPL(md_allow_write);
8235
8236 #define SYNC_MARKS 10
8237 #define SYNC_MARK_STEP (3*HZ)
8238 #define UPDATE_FREQUENCY (5*60*HZ)
8239 void md_do_sync(struct md_thread *thread)
8240 {
8241 struct mddev *mddev = thread->mddev;
8242 struct mddev *mddev2;
8243 unsigned int currspeed = 0,
8244 window;
8245 sector_t max_sectors,j, io_sectors, recovery_done;
8246 unsigned long mark[SYNC_MARKS];
8247 unsigned long update_time;
8248 sector_t mark_cnt[SYNC_MARKS];
8249 int last_mark,m;
8250 struct list_head *tmp;
8251 sector_t last_check;
8252 int skipped = 0;
8253 struct md_rdev *rdev;
8254 char *desc, *action = NULL;
8255 struct blk_plug plug;
8256 int ret;
8257
8258 /* just incase thread restarts... */
8259 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8260 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8261 return;
8262 if (mddev->ro) {/* never try to sync a read-only array */
8263 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8264 return;
8265 }
8266
8267 if (mddev_is_clustered(mddev)) {
8268 ret = md_cluster_ops->resync_start(mddev);
8269 if (ret)
8270 goto skip;
8271
8272 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8273 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8274 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8275 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8276 && ((unsigned long long)mddev->curr_resync_completed
8277 < (unsigned long long)mddev->resync_max_sectors))
8278 goto skip;
8279 }
8280
8281 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8282 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8283 desc = "data-check";
8284 action = "check";
8285 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8286 desc = "requested-resync";
8287 action = "repair";
8288 } else
8289 desc = "resync";
8290 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8291 desc = "reshape";
8292 else
8293 desc = "recovery";
8294
8295 mddev->last_sync_action = action ?: desc;
8296
8297 /* we overload curr_resync somewhat here.
8298 * 0 == not engaged in resync at all
8299 * 2 == checking that there is no conflict with another sync
8300 * 1 == like 2, but have yielded to allow conflicting resync to
8301 * commense
8302 * other == active in resync - this many blocks
8303 *
8304 * Before starting a resync we must have set curr_resync to
8305 * 2, and then checked that every "conflicting" array has curr_resync
8306 * less than ours. When we find one that is the same or higher
8307 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8308 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8309 * This will mean we have to start checking from the beginning again.
8310 *
8311 */
8312
8313 do {
8314 int mddev2_minor = -1;
8315 mddev->curr_resync = 2;
8316
8317 try_again:
8318 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8319 goto skip;
8320 for_each_mddev(mddev2, tmp) {
8321 if (mddev2 == mddev)
8322 continue;
8323 if (!mddev->parallel_resync
8324 && mddev2->curr_resync
8325 && match_mddev_units(mddev, mddev2)) {
8326 DEFINE_WAIT(wq);
8327 if (mddev < mddev2 && mddev->curr_resync == 2) {
8328 /* arbitrarily yield */
8329 mddev->curr_resync = 1;
8330 wake_up(&resync_wait);
8331 }
8332 if (mddev > mddev2 && mddev->curr_resync == 1)
8333 /* no need to wait here, we can wait the next
8334 * time 'round when curr_resync == 2
8335 */
8336 continue;
8337 /* We need to wait 'interruptible' so as not to
8338 * contribute to the load average, and not to
8339 * be caught by 'softlockup'
8340 */
8341 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8342 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8343 mddev2->curr_resync >= mddev->curr_resync) {
8344 if (mddev2_minor != mddev2->md_minor) {
8345 mddev2_minor = mddev2->md_minor;
8346 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8347 desc, mdname(mddev),
8348 mdname(mddev2));
8349 }
8350 mddev_put(mddev2);
8351 if (signal_pending(current))
8352 flush_signals(current);
8353 schedule();
8354 finish_wait(&resync_wait, &wq);
8355 goto try_again;
8356 }
8357 finish_wait(&resync_wait, &wq);
8358 }
8359 }
8360 } while (mddev->curr_resync < 2);
8361
8362 j = 0;
8363 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8364 /* resync follows the size requested by the personality,
8365 * which defaults to physical size, but can be virtual size
8366 */
8367 max_sectors = mddev->resync_max_sectors;
8368 atomic64_set(&mddev->resync_mismatches, 0);
8369 /* we don't use the checkpoint if there's a bitmap */
8370 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8371 j = mddev->resync_min;
8372 else if (!mddev->bitmap)
8373 j = mddev->recovery_cp;
8374
8375 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8376 max_sectors = mddev->resync_max_sectors;
8377 /*
8378 * If the original node aborts reshaping then we continue the
8379 * reshaping, so set j again to avoid restart reshape from the
8380 * first beginning
8381 */
8382 if (mddev_is_clustered(mddev) &&
8383 mddev->reshape_position != MaxSector)
8384 j = mddev->reshape_position;
8385 } else {
8386 /* recovery follows the physical size of devices */
8387 max_sectors = mddev->dev_sectors;
8388 j = MaxSector;
8389 rcu_read_lock();
8390 rdev_for_each_rcu(rdev, mddev)
8391 if (rdev->raid_disk >= 0 &&
8392 !test_bit(Journal, &rdev->flags) &&
8393 !test_bit(Faulty, &rdev->flags) &&
8394 !test_bit(In_sync, &rdev->flags) &&
8395 rdev->recovery_offset < j)
8396 j = rdev->recovery_offset;
8397 rcu_read_unlock();
8398
8399 /* If there is a bitmap, we need to make sure all
8400 * writes that started before we added a spare
8401 * complete before we start doing a recovery.
8402 * Otherwise the write might complete and (via
8403 * bitmap_endwrite) set a bit in the bitmap after the
8404 * recovery has checked that bit and skipped that
8405 * region.
8406 */
8407 if (mddev->bitmap) {
8408 mddev->pers->quiesce(mddev, 1);
8409 mddev->pers->quiesce(mddev, 0);
8410 }
8411 }
8412
8413 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8414 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8415 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8416 speed_max(mddev), desc);
8417
8418 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8419
8420 io_sectors = 0;
8421 for (m = 0; m < SYNC_MARKS; m++) {
8422 mark[m] = jiffies;
8423 mark_cnt[m] = io_sectors;
8424 }
8425 last_mark = 0;
8426 mddev->resync_mark = mark[last_mark];
8427 mddev->resync_mark_cnt = mark_cnt[last_mark];
8428
8429 /*
8430 * Tune reconstruction:
8431 */
8432 window = 32*(PAGE_SIZE/512);
8433 pr_debug("md: using %dk window, over a total of %lluk.\n",
8434 window/2, (unsigned long long)max_sectors/2);
8435
8436 atomic_set(&mddev->recovery_active, 0);
8437 last_check = 0;
8438
8439 if (j>2) {
8440 pr_debug("md: resuming %s of %s from checkpoint.\n",
8441 desc, mdname(mddev));
8442 mddev->curr_resync = j;
8443 } else
8444 mddev->curr_resync = 3; /* no longer delayed */
8445 mddev->curr_resync_completed = j;
8446 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8447 md_new_event(mddev);
8448 update_time = jiffies;
8449
8450 blk_start_plug(&plug);
8451 while (j < max_sectors) {
8452 sector_t sectors;
8453
8454 skipped = 0;
8455
8456 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8457 ((mddev->curr_resync > mddev->curr_resync_completed &&
8458 (mddev->curr_resync - mddev->curr_resync_completed)
8459 > (max_sectors >> 4)) ||
8460 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8461 (j - mddev->curr_resync_completed)*2
8462 >= mddev->resync_max - mddev->curr_resync_completed ||
8463 mddev->curr_resync_completed > mddev->resync_max
8464 )) {
8465 /* time to update curr_resync_completed */
8466 wait_event(mddev->recovery_wait,
8467 atomic_read(&mddev->recovery_active) == 0);
8468 mddev->curr_resync_completed = j;
8469 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8470 j > mddev->recovery_cp)
8471 mddev->recovery_cp = j;
8472 update_time = jiffies;
8473 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8474 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8475 }
8476
8477 while (j >= mddev->resync_max &&
8478 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8479 /* As this condition is controlled by user-space,
8480 * we can block indefinitely, so use '_interruptible'
8481 * to avoid triggering warnings.
8482 */
8483 flush_signals(current); /* just in case */
8484 wait_event_interruptible(mddev->recovery_wait,
8485 mddev->resync_max > j
8486 || test_bit(MD_RECOVERY_INTR,
8487 &mddev->recovery));
8488 }
8489
8490 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8491 break;
8492
8493 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8494 if (sectors == 0) {
8495 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8496 break;
8497 }
8498
8499 if (!skipped) { /* actual IO requested */
8500 io_sectors += sectors;
8501 atomic_add(sectors, &mddev->recovery_active);
8502 }
8503
8504 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8505 break;
8506
8507 j += sectors;
8508 if (j > max_sectors)
8509 /* when skipping, extra large numbers can be returned. */
8510 j = max_sectors;
8511 if (j > 2)
8512 mddev->curr_resync = j;
8513 mddev->curr_mark_cnt = io_sectors;
8514 if (last_check == 0)
8515 /* this is the earliest that rebuild will be
8516 * visible in /proc/mdstat
8517 */
8518 md_new_event(mddev);
8519
8520 if (last_check + window > io_sectors || j == max_sectors)
8521 continue;
8522
8523 last_check = io_sectors;
8524 repeat:
8525 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8526 /* step marks */
8527 int next = (last_mark+1) % SYNC_MARKS;
8528
8529 mddev->resync_mark = mark[next];
8530 mddev->resync_mark_cnt = mark_cnt[next];
8531 mark[next] = jiffies;
8532 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8533 last_mark = next;
8534 }
8535
8536 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8537 break;
8538
8539 /*
8540 * this loop exits only if either when we are slower than
8541 * the 'hard' speed limit, or the system was IO-idle for
8542 * a jiffy.
8543 * the system might be non-idle CPU-wise, but we only care
8544 * about not overloading the IO subsystem. (things like an
8545 * e2fsck being done on the RAID array should execute fast)
8546 */
8547 cond_resched();
8548
8549 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8550 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8551 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8552
8553 if (currspeed > speed_min(mddev)) {
8554 if (currspeed > speed_max(mddev)) {
8555 msleep(500);
8556 goto repeat;
8557 }
8558 if (!is_mddev_idle(mddev, 0)) {
8559 /*
8560 * Give other IO more of a chance.
8561 * The faster the devices, the less we wait.
8562 */
8563 wait_event(mddev->recovery_wait,
8564 !atomic_read(&mddev->recovery_active));
8565 }
8566 }
8567 }
8568 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8569 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8570 ? "interrupted" : "done");
8571 /*
8572 * this also signals 'finished resyncing' to md_stop
8573 */
8574 blk_finish_plug(&plug);
8575 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8576
8577 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8578 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8579 mddev->curr_resync > 3) {
8580 mddev->curr_resync_completed = mddev->curr_resync;
8581 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8582 }
8583 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8584
8585 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8586 mddev->curr_resync > 3) {
8587 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8588 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8589 if (mddev->curr_resync >= mddev->recovery_cp) {
8590 pr_debug("md: checkpointing %s of %s.\n",
8591 desc, mdname(mddev));
8592 if (test_bit(MD_RECOVERY_ERROR,
8593 &mddev->recovery))
8594 mddev->recovery_cp =
8595 mddev->curr_resync_completed;
8596 else
8597 mddev->recovery_cp =
8598 mddev->curr_resync;
8599 }
8600 } else
8601 mddev->recovery_cp = MaxSector;
8602 } else {
8603 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8604 mddev->curr_resync = MaxSector;
8605 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8606 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8607 rcu_read_lock();
8608 rdev_for_each_rcu(rdev, mddev)
8609 if (rdev->raid_disk >= 0 &&
8610 mddev->delta_disks >= 0 &&
8611 !test_bit(Journal, &rdev->flags) &&
8612 !test_bit(Faulty, &rdev->flags) &&
8613 !test_bit(In_sync, &rdev->flags) &&
8614 rdev->recovery_offset < mddev->curr_resync)
8615 rdev->recovery_offset = mddev->curr_resync;
8616 rcu_read_unlock();
8617 }
8618 }
8619 }
8620 skip:
8621 /* set CHANGE_PENDING here since maybe another update is needed,
8622 * so other nodes are informed. It should be harmless for normal
8623 * raid */
8624 set_mask_bits(&mddev->sb_flags, 0,
8625 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8626
8627 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8628 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8629 mddev->delta_disks > 0 &&
8630 mddev->pers->finish_reshape &&
8631 mddev->pers->size &&
8632 mddev->queue) {
8633 mddev_lock_nointr(mddev);
8634 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
8635 mddev_unlock(mddev);
8636 if (!mddev_is_clustered(mddev)) {
8637 set_capacity(mddev->gendisk, mddev->array_sectors);
8638 revalidate_disk(mddev->gendisk);
8639 }
8640 }
8641
8642 spin_lock(&mddev->lock);
8643 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8644 /* We completed so min/max setting can be forgotten if used. */
8645 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8646 mddev->resync_min = 0;
8647 mddev->resync_max = MaxSector;
8648 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8649 mddev->resync_min = mddev->curr_resync_completed;
8650 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8651 mddev->curr_resync = 0;
8652 spin_unlock(&mddev->lock);
8653
8654 wake_up(&resync_wait);
8655 md_wakeup_thread(mddev->thread);
8656 return;
8657 }
8658 EXPORT_SYMBOL_GPL(md_do_sync);
8659
8660 static int remove_and_add_spares(struct mddev *mddev,
8661 struct md_rdev *this)
8662 {
8663 struct md_rdev *rdev;
8664 int spares = 0;
8665 int removed = 0;
8666 bool remove_some = false;
8667
8668 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8669 /* Mustn't remove devices when resync thread is running */
8670 return 0;
8671
8672 rdev_for_each(rdev, mddev) {
8673 if ((this == NULL || rdev == this) &&
8674 rdev->raid_disk >= 0 &&
8675 !test_bit(Blocked, &rdev->flags) &&
8676 test_bit(Faulty, &rdev->flags) &&
8677 atomic_read(&rdev->nr_pending)==0) {
8678 /* Faulty non-Blocked devices with nr_pending == 0
8679 * never get nr_pending incremented,
8680 * never get Faulty cleared, and never get Blocked set.
8681 * So we can synchronize_rcu now rather than once per device
8682 */
8683 remove_some = true;
8684 set_bit(RemoveSynchronized, &rdev->flags);
8685 }
8686 }
8687
8688 if (remove_some)
8689 synchronize_rcu();
8690 rdev_for_each(rdev, mddev) {
8691 if ((this == NULL || rdev == this) &&
8692 rdev->raid_disk >= 0 &&
8693 !test_bit(Blocked, &rdev->flags) &&
8694 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8695 (!test_bit(In_sync, &rdev->flags) &&
8696 !test_bit(Journal, &rdev->flags))) &&
8697 atomic_read(&rdev->nr_pending)==0)) {
8698 if (mddev->pers->hot_remove_disk(
8699 mddev, rdev) == 0) {
8700 sysfs_unlink_rdev(mddev, rdev);
8701 rdev->saved_raid_disk = rdev->raid_disk;
8702 rdev->raid_disk = -1;
8703 removed++;
8704 }
8705 }
8706 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8707 clear_bit(RemoveSynchronized, &rdev->flags);
8708 }
8709
8710 if (removed && mddev->kobj.sd)
8711 sysfs_notify(&mddev->kobj, NULL, "degraded");
8712
8713 if (this && removed)
8714 goto no_add;
8715
8716 rdev_for_each(rdev, mddev) {
8717 if (this && this != rdev)
8718 continue;
8719 if (test_bit(Candidate, &rdev->flags))
8720 continue;
8721 if (rdev->raid_disk >= 0 &&
8722 !test_bit(In_sync, &rdev->flags) &&
8723 !test_bit(Journal, &rdev->flags) &&
8724 !test_bit(Faulty, &rdev->flags))
8725 spares++;
8726 if (rdev->raid_disk >= 0)
8727 continue;
8728 if (test_bit(Faulty, &rdev->flags))
8729 continue;
8730 if (!test_bit(Journal, &rdev->flags)) {
8731 if (mddev->ro &&
8732 ! (rdev->saved_raid_disk >= 0 &&
8733 !test_bit(Bitmap_sync, &rdev->flags)))
8734 continue;
8735
8736 rdev->recovery_offset = 0;
8737 }
8738 if (mddev->pers->
8739 hot_add_disk(mddev, rdev) == 0) {
8740 if (sysfs_link_rdev(mddev, rdev))
8741 /* failure here is OK */;
8742 if (!test_bit(Journal, &rdev->flags))
8743 spares++;
8744 md_new_event(mddev);
8745 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8746 }
8747 }
8748 no_add:
8749 if (removed)
8750 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8751 return spares;
8752 }
8753
8754 static void md_start_sync(struct work_struct *ws)
8755 {
8756 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8757
8758 mddev->sync_thread = md_register_thread(md_do_sync,
8759 mddev,
8760 "resync");
8761 if (!mddev->sync_thread) {
8762 pr_warn("%s: could not start resync thread...\n",
8763 mdname(mddev));
8764 /* leave the spares where they are, it shouldn't hurt */
8765 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8766 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8767 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8768 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8769 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8770 wake_up(&resync_wait);
8771 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8772 &mddev->recovery))
8773 if (mddev->sysfs_action)
8774 sysfs_notify_dirent_safe(mddev->sysfs_action);
8775 } else
8776 md_wakeup_thread(mddev->sync_thread);
8777 sysfs_notify_dirent_safe(mddev->sysfs_action);
8778 md_new_event(mddev);
8779 }
8780
8781 /*
8782 * This routine is regularly called by all per-raid-array threads to
8783 * deal with generic issues like resync and super-block update.
8784 * Raid personalities that don't have a thread (linear/raid0) do not
8785 * need this as they never do any recovery or update the superblock.
8786 *
8787 * It does not do any resync itself, but rather "forks" off other threads
8788 * to do that as needed.
8789 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8790 * "->recovery" and create a thread at ->sync_thread.
8791 * When the thread finishes it sets MD_RECOVERY_DONE
8792 * and wakeups up this thread which will reap the thread and finish up.
8793 * This thread also removes any faulty devices (with nr_pending == 0).
8794 *
8795 * The overall approach is:
8796 * 1/ if the superblock needs updating, update it.
8797 * 2/ If a recovery thread is running, don't do anything else.
8798 * 3/ If recovery has finished, clean up, possibly marking spares active.
8799 * 4/ If there are any faulty devices, remove them.
8800 * 5/ If array is degraded, try to add spares devices
8801 * 6/ If array has spares or is not in-sync, start a resync thread.
8802 */
8803 void md_check_recovery(struct mddev *mddev)
8804 {
8805 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
8806 /* Write superblock - thread that called mddev_suspend()
8807 * holds reconfig_mutex for us.
8808 */
8809 set_bit(MD_UPDATING_SB, &mddev->flags);
8810 smp_mb__after_atomic();
8811 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
8812 md_update_sb(mddev, 0);
8813 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
8814 wake_up(&mddev->sb_wait);
8815 }
8816
8817 if (mddev->suspended)
8818 return;
8819
8820 if (mddev->bitmap)
8821 md_bitmap_daemon_work(mddev);
8822
8823 if (signal_pending(current)) {
8824 if (mddev->pers->sync_request && !mddev->external) {
8825 pr_debug("md: %s in immediate safe mode\n",
8826 mdname(mddev));
8827 mddev->safemode = 2;
8828 }
8829 flush_signals(current);
8830 }
8831
8832 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8833 return;
8834 if ( ! (
8835 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8836 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8837 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8838 (mddev->external == 0 && mddev->safemode == 1) ||
8839 (mddev->safemode == 2
8840 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8841 ))
8842 return;
8843
8844 if (mddev_trylock(mddev)) {
8845 int spares = 0;
8846
8847 if (!mddev->external && mddev->safemode == 1)
8848 mddev->safemode = 0;
8849
8850 if (mddev->ro) {
8851 struct md_rdev *rdev;
8852 if (!mddev->external && mddev->in_sync)
8853 /* 'Blocked' flag not needed as failed devices
8854 * will be recorded if array switched to read/write.
8855 * Leaving it set will prevent the device
8856 * from being removed.
8857 */
8858 rdev_for_each(rdev, mddev)
8859 clear_bit(Blocked, &rdev->flags);
8860 /* On a read-only array we can:
8861 * - remove failed devices
8862 * - add already-in_sync devices if the array itself
8863 * is in-sync.
8864 * As we only add devices that are already in-sync,
8865 * we can activate the spares immediately.
8866 */
8867 remove_and_add_spares(mddev, NULL);
8868 /* There is no thread, but we need to call
8869 * ->spare_active and clear saved_raid_disk
8870 */
8871 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8872 md_reap_sync_thread(mddev);
8873 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8874 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8875 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8876 goto unlock;
8877 }
8878
8879 if (mddev_is_clustered(mddev)) {
8880 struct md_rdev *rdev;
8881 /* kick the device if another node issued a
8882 * remove disk.
8883 */
8884 rdev_for_each(rdev, mddev) {
8885 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8886 rdev->raid_disk < 0)
8887 md_kick_rdev_from_array(rdev);
8888 }
8889 }
8890
8891 if (!mddev->external && !mddev->in_sync) {
8892 spin_lock(&mddev->lock);
8893 set_in_sync(mddev);
8894 spin_unlock(&mddev->lock);
8895 }
8896
8897 if (mddev->sb_flags)
8898 md_update_sb(mddev, 0);
8899
8900 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8901 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8902 /* resync/recovery still happening */
8903 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8904 goto unlock;
8905 }
8906 if (mddev->sync_thread) {
8907 md_reap_sync_thread(mddev);
8908 goto unlock;
8909 }
8910 /* Set RUNNING before clearing NEEDED to avoid
8911 * any transients in the value of "sync_action".
8912 */
8913 mddev->curr_resync_completed = 0;
8914 spin_lock(&mddev->lock);
8915 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8916 spin_unlock(&mddev->lock);
8917 /* Clear some bits that don't mean anything, but
8918 * might be left set
8919 */
8920 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8921 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8922
8923 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8924 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8925 goto not_running;
8926 /* no recovery is running.
8927 * remove any failed drives, then
8928 * add spares if possible.
8929 * Spares are also removed and re-added, to allow
8930 * the personality to fail the re-add.
8931 */
8932
8933 if (mddev->reshape_position != MaxSector) {
8934 if (mddev->pers->check_reshape == NULL ||
8935 mddev->pers->check_reshape(mddev) != 0)
8936 /* Cannot proceed */
8937 goto not_running;
8938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8939 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8940 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8942 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8943 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8944 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8945 } else if (mddev->recovery_cp < MaxSector) {
8946 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8947 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8948 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8949 /* nothing to be done ... */
8950 goto not_running;
8951
8952 if (mddev->pers->sync_request) {
8953 if (spares) {
8954 /* We are adding a device or devices to an array
8955 * which has the bitmap stored on all devices.
8956 * So make sure all bitmap pages get written
8957 */
8958 md_bitmap_write_all(mddev->bitmap);
8959 }
8960 INIT_WORK(&mddev->del_work, md_start_sync);
8961 queue_work(md_misc_wq, &mddev->del_work);
8962 goto unlock;
8963 }
8964 not_running:
8965 if (!mddev->sync_thread) {
8966 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8967 wake_up(&resync_wait);
8968 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8969 &mddev->recovery))
8970 if (mddev->sysfs_action)
8971 sysfs_notify_dirent_safe(mddev->sysfs_action);
8972 }
8973 unlock:
8974 wake_up(&mddev->sb_wait);
8975 mddev_unlock(mddev);
8976 }
8977 }
8978 EXPORT_SYMBOL(md_check_recovery);
8979
8980 void md_reap_sync_thread(struct mddev *mddev)
8981 {
8982 struct md_rdev *rdev;
8983 sector_t old_dev_sectors = mddev->dev_sectors;
8984 bool is_reshaped = false;
8985
8986 /* resync has finished, collect result */
8987 md_unregister_thread(&mddev->sync_thread);
8988 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8989 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8990 /* success...*/
8991 /* activate any spares */
8992 if (mddev->pers->spare_active(mddev)) {
8993 sysfs_notify(&mddev->kobj, NULL,
8994 "degraded");
8995 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8996 }
8997 }
8998 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8999 mddev->pers->finish_reshape) {
9000 mddev->pers->finish_reshape(mddev);
9001 if (mddev_is_clustered(mddev))
9002 is_reshaped = true;
9003 }
9004
9005 /* If array is no-longer degraded, then any saved_raid_disk
9006 * information must be scrapped.
9007 */
9008 if (!mddev->degraded)
9009 rdev_for_each(rdev, mddev)
9010 rdev->saved_raid_disk = -1;
9011
9012 md_update_sb(mddev, 1);
9013 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9014 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9015 * clustered raid */
9016 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9017 md_cluster_ops->resync_finish(mddev);
9018 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9019 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9020 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9021 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9022 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9023 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9024 /*
9025 * We call md_cluster_ops->update_size here because sync_size could
9026 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9027 * so it is time to update size across cluster.
9028 */
9029 if (mddev_is_clustered(mddev) && is_reshaped
9030 && !test_bit(MD_CLOSING, &mddev->flags))
9031 md_cluster_ops->update_size(mddev, old_dev_sectors);
9032 wake_up(&resync_wait);
9033 /* flag recovery needed just to double check */
9034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9035 sysfs_notify_dirent_safe(mddev->sysfs_action);
9036 md_new_event(mddev);
9037 if (mddev->event_work.func)
9038 queue_work(md_misc_wq, &mddev->event_work);
9039 }
9040 EXPORT_SYMBOL(md_reap_sync_thread);
9041
9042 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9043 {
9044 sysfs_notify_dirent_safe(rdev->sysfs_state);
9045 wait_event_timeout(rdev->blocked_wait,
9046 !test_bit(Blocked, &rdev->flags) &&
9047 !test_bit(BlockedBadBlocks, &rdev->flags),
9048 msecs_to_jiffies(5000));
9049 rdev_dec_pending(rdev, mddev);
9050 }
9051 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9052
9053 void md_finish_reshape(struct mddev *mddev)
9054 {
9055 /* called be personality module when reshape completes. */
9056 struct md_rdev *rdev;
9057
9058 rdev_for_each(rdev, mddev) {
9059 if (rdev->data_offset > rdev->new_data_offset)
9060 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9061 else
9062 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9063 rdev->data_offset = rdev->new_data_offset;
9064 }
9065 }
9066 EXPORT_SYMBOL(md_finish_reshape);
9067
9068 /* Bad block management */
9069
9070 /* Returns 1 on success, 0 on failure */
9071 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9072 int is_new)
9073 {
9074 struct mddev *mddev = rdev->mddev;
9075 int rv;
9076 if (is_new)
9077 s += rdev->new_data_offset;
9078 else
9079 s += rdev->data_offset;
9080 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9081 if (rv == 0) {
9082 /* Make sure they get written out promptly */
9083 if (test_bit(ExternalBbl, &rdev->flags))
9084 sysfs_notify(&rdev->kobj, NULL,
9085 "unacknowledged_bad_blocks");
9086 sysfs_notify_dirent_safe(rdev->sysfs_state);
9087 set_mask_bits(&mddev->sb_flags, 0,
9088 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9089 md_wakeup_thread(rdev->mddev->thread);
9090 return 1;
9091 } else
9092 return 0;
9093 }
9094 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9095
9096 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9097 int is_new)
9098 {
9099 int rv;
9100 if (is_new)
9101 s += rdev->new_data_offset;
9102 else
9103 s += rdev->data_offset;
9104 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9105 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9106 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
9107 return rv;
9108 }
9109 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9110
9111 static int md_notify_reboot(struct notifier_block *this,
9112 unsigned long code, void *x)
9113 {
9114 struct list_head *tmp;
9115 struct mddev *mddev;
9116 int need_delay = 0;
9117
9118 for_each_mddev(mddev, tmp) {
9119 if (mddev_trylock(mddev)) {
9120 if (mddev->pers)
9121 __md_stop_writes(mddev);
9122 if (mddev->persistent)
9123 mddev->safemode = 2;
9124 mddev_unlock(mddev);
9125 }
9126 need_delay = 1;
9127 }
9128 /*
9129 * certain more exotic SCSI devices are known to be
9130 * volatile wrt too early system reboots. While the
9131 * right place to handle this issue is the given
9132 * driver, we do want to have a safe RAID driver ...
9133 */
9134 if (need_delay)
9135 mdelay(1000*1);
9136
9137 return NOTIFY_DONE;
9138 }
9139
9140 static struct notifier_block md_notifier = {
9141 .notifier_call = md_notify_reboot,
9142 .next = NULL,
9143 .priority = INT_MAX, /* before any real devices */
9144 };
9145
9146 static void md_geninit(void)
9147 {
9148 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9149
9150 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9151 }
9152
9153 static int __init md_init(void)
9154 {
9155 int ret = -ENOMEM;
9156
9157 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9158 if (!md_wq)
9159 goto err_wq;
9160
9161 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9162 if (!md_misc_wq)
9163 goto err_misc_wq;
9164
9165 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9166 goto err_md;
9167
9168 if ((ret = register_blkdev(0, "mdp")) < 0)
9169 goto err_mdp;
9170 mdp_major = ret;
9171
9172 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9173 md_probe, NULL, NULL);
9174 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9175 md_probe, NULL, NULL);
9176
9177 register_reboot_notifier(&md_notifier);
9178 raid_table_header = register_sysctl_table(raid_root_table);
9179
9180 md_geninit();
9181 return 0;
9182
9183 err_mdp:
9184 unregister_blkdev(MD_MAJOR, "md");
9185 err_md:
9186 destroy_workqueue(md_misc_wq);
9187 err_misc_wq:
9188 destroy_workqueue(md_wq);
9189 err_wq:
9190 return ret;
9191 }
9192
9193 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9194 {
9195 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9196 struct md_rdev *rdev2;
9197 int role, ret;
9198 char b[BDEVNAME_SIZE];
9199
9200 /*
9201 * If size is changed in another node then we need to
9202 * do resize as well.
9203 */
9204 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9205 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9206 if (ret)
9207 pr_info("md-cluster: resize failed\n");
9208 else
9209 md_bitmap_update_sb(mddev->bitmap);
9210 }
9211
9212 /* Check for change of roles in the active devices */
9213 rdev_for_each(rdev2, mddev) {
9214 if (test_bit(Faulty, &rdev2->flags))
9215 continue;
9216
9217 /* Check if the roles changed */
9218 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9219
9220 if (test_bit(Candidate, &rdev2->flags)) {
9221 if (role == 0xfffe) {
9222 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9223 md_kick_rdev_from_array(rdev2);
9224 continue;
9225 }
9226 else
9227 clear_bit(Candidate, &rdev2->flags);
9228 }
9229
9230 if (role != rdev2->raid_disk) {
9231 /*
9232 * got activated except reshape is happening.
9233 */
9234 if (rdev2->raid_disk == -1 && role != 0xffff &&
9235 !(le32_to_cpu(sb->feature_map) &
9236 MD_FEATURE_RESHAPE_ACTIVE)) {
9237 rdev2->saved_raid_disk = role;
9238 ret = remove_and_add_spares(mddev, rdev2);
9239 pr_info("Activated spare: %s\n",
9240 bdevname(rdev2->bdev,b));
9241 /* wakeup mddev->thread here, so array could
9242 * perform resync with the new activated disk */
9243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9244 md_wakeup_thread(mddev->thread);
9245
9246 }
9247 /* device faulty
9248 * We just want to do the minimum to mark the disk
9249 * as faulty. The recovery is performed by the
9250 * one who initiated the error.
9251 */
9252 if ((role == 0xfffe) || (role == 0xfffd)) {
9253 md_error(mddev, rdev2);
9254 clear_bit(Blocked, &rdev2->flags);
9255 }
9256 }
9257 }
9258
9259 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9260 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9261
9262 /*
9263 * Since mddev->delta_disks has already updated in update_raid_disks,
9264 * so it is time to check reshape.
9265 */
9266 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9267 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9268 /*
9269 * reshape is happening in the remote node, we need to
9270 * update reshape_position and call start_reshape.
9271 */
9272 mddev->reshape_position = sb->reshape_position;
9273 if (mddev->pers->update_reshape_pos)
9274 mddev->pers->update_reshape_pos(mddev);
9275 if (mddev->pers->start_reshape)
9276 mddev->pers->start_reshape(mddev);
9277 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9278 mddev->reshape_position != MaxSector &&
9279 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9280 /* reshape is just done in another node. */
9281 mddev->reshape_position = MaxSector;
9282 if (mddev->pers->update_reshape_pos)
9283 mddev->pers->update_reshape_pos(mddev);
9284 }
9285
9286 /* Finally set the event to be up to date */
9287 mddev->events = le64_to_cpu(sb->events);
9288 }
9289
9290 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9291 {
9292 int err;
9293 struct page *swapout = rdev->sb_page;
9294 struct mdp_superblock_1 *sb;
9295
9296 /* Store the sb page of the rdev in the swapout temporary
9297 * variable in case we err in the future
9298 */
9299 rdev->sb_page = NULL;
9300 err = alloc_disk_sb(rdev);
9301 if (err == 0) {
9302 ClearPageUptodate(rdev->sb_page);
9303 rdev->sb_loaded = 0;
9304 err = super_types[mddev->major_version].
9305 load_super(rdev, NULL, mddev->minor_version);
9306 }
9307 if (err < 0) {
9308 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9309 __func__, __LINE__, rdev->desc_nr, err);
9310 if (rdev->sb_page)
9311 put_page(rdev->sb_page);
9312 rdev->sb_page = swapout;
9313 rdev->sb_loaded = 1;
9314 return err;
9315 }
9316
9317 sb = page_address(rdev->sb_page);
9318 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9319 * is not set
9320 */
9321
9322 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9323 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9324
9325 /* The other node finished recovery, call spare_active to set
9326 * device In_sync and mddev->degraded
9327 */
9328 if (rdev->recovery_offset == MaxSector &&
9329 !test_bit(In_sync, &rdev->flags) &&
9330 mddev->pers->spare_active(mddev))
9331 sysfs_notify(&mddev->kobj, NULL, "degraded");
9332
9333 put_page(swapout);
9334 return 0;
9335 }
9336
9337 void md_reload_sb(struct mddev *mddev, int nr)
9338 {
9339 struct md_rdev *rdev;
9340 int err;
9341
9342 /* Find the rdev */
9343 rdev_for_each_rcu(rdev, mddev) {
9344 if (rdev->desc_nr == nr)
9345 break;
9346 }
9347
9348 if (!rdev || rdev->desc_nr != nr) {
9349 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9350 return;
9351 }
9352
9353 err = read_rdev(mddev, rdev);
9354 if (err < 0)
9355 return;
9356
9357 check_sb_changes(mddev, rdev);
9358
9359 /* Read all rdev's to update recovery_offset */
9360 rdev_for_each_rcu(rdev, mddev) {
9361 if (!test_bit(Faulty, &rdev->flags))
9362 read_rdev(mddev, rdev);
9363 }
9364 }
9365 EXPORT_SYMBOL(md_reload_sb);
9366
9367 #ifndef MODULE
9368
9369 /*
9370 * Searches all registered partitions for autorun RAID arrays
9371 * at boot time.
9372 */
9373
9374 static DEFINE_MUTEX(detected_devices_mutex);
9375 static LIST_HEAD(all_detected_devices);
9376 struct detected_devices_node {
9377 struct list_head list;
9378 dev_t dev;
9379 };
9380
9381 void md_autodetect_dev(dev_t dev)
9382 {
9383 struct detected_devices_node *node_detected_dev;
9384
9385 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9386 if (node_detected_dev) {
9387 node_detected_dev->dev = dev;
9388 mutex_lock(&detected_devices_mutex);
9389 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9390 mutex_unlock(&detected_devices_mutex);
9391 }
9392 }
9393
9394 static void autostart_arrays(int part)
9395 {
9396 struct md_rdev *rdev;
9397 struct detected_devices_node *node_detected_dev;
9398 dev_t dev;
9399 int i_scanned, i_passed;
9400
9401 i_scanned = 0;
9402 i_passed = 0;
9403
9404 pr_info("md: Autodetecting RAID arrays.\n");
9405
9406 mutex_lock(&detected_devices_mutex);
9407 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9408 i_scanned++;
9409 node_detected_dev = list_entry(all_detected_devices.next,
9410 struct detected_devices_node, list);
9411 list_del(&node_detected_dev->list);
9412 dev = node_detected_dev->dev;
9413 kfree(node_detected_dev);
9414 mutex_unlock(&detected_devices_mutex);
9415 rdev = md_import_device(dev,0, 90);
9416 mutex_lock(&detected_devices_mutex);
9417 if (IS_ERR(rdev))
9418 continue;
9419
9420 if (test_bit(Faulty, &rdev->flags))
9421 continue;
9422
9423 set_bit(AutoDetected, &rdev->flags);
9424 list_add(&rdev->same_set, &pending_raid_disks);
9425 i_passed++;
9426 }
9427 mutex_unlock(&detected_devices_mutex);
9428
9429 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9430
9431 autorun_devices(part);
9432 }
9433
9434 #endif /* !MODULE */
9435
9436 static __exit void md_exit(void)
9437 {
9438 struct mddev *mddev;
9439 struct list_head *tmp;
9440 int delay = 1;
9441
9442 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9443 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9444
9445 unregister_blkdev(MD_MAJOR,"md");
9446 unregister_blkdev(mdp_major, "mdp");
9447 unregister_reboot_notifier(&md_notifier);
9448 unregister_sysctl_table(raid_table_header);
9449
9450 /* We cannot unload the modules while some process is
9451 * waiting for us in select() or poll() - wake them up
9452 */
9453 md_unloading = 1;
9454 while (waitqueue_active(&md_event_waiters)) {
9455 /* not safe to leave yet */
9456 wake_up(&md_event_waiters);
9457 msleep(delay);
9458 delay += delay;
9459 }
9460 remove_proc_entry("mdstat", NULL);
9461
9462 for_each_mddev(mddev, tmp) {
9463 export_array(mddev);
9464 mddev->ctime = 0;
9465 mddev->hold_active = 0;
9466 /*
9467 * for_each_mddev() will call mddev_put() at the end of each
9468 * iteration. As the mddev is now fully clear, this will
9469 * schedule the mddev for destruction by a workqueue, and the
9470 * destroy_workqueue() below will wait for that to complete.
9471 */
9472 }
9473 destroy_workqueue(md_misc_wq);
9474 destroy_workqueue(md_wq);
9475 }
9476
9477 subsys_initcall(md_init);
9478 module_exit(md_exit)
9479
9480 static int get_ro(char *buffer, const struct kernel_param *kp)
9481 {
9482 return sprintf(buffer, "%d", start_readonly);
9483 }
9484 static int set_ro(const char *val, const struct kernel_param *kp)
9485 {
9486 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9487 }
9488
9489 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9490 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9491 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9492 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9493
9494 MODULE_LICENSE("GPL");
9495 MODULE_DESCRIPTION("MD RAID framework");
9496 MODULE_ALIAS("md");
9497 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);