]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/md.c
md: minor cleanup in safe_delay_store.
[mirror_ubuntu-zesty-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static struct ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static struct ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static struct ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 struct mddev *mddev)
160 {
161 struct bio *b;
162
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
165
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 if (!b)
168 return NULL;
169 return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 struct mddev *mddev)
175 {
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
178
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 /*
184 * We have a system wide 'event count' that is incremented
185 * on any 'interesting' event, and readers of /proc/mdstat
186 * can use 'poll' or 'select' to find out when the event
187 * count increases.
188 *
189 * Events are:
190 * start array, stop array, error, add device, remove device,
191 * start build, activate spare
192 */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 atomic_inc(&md_event_count);
198 wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201
202 /* Alternate version that can be called from interrupts
203 * when calling sysfs_notify isn't needed.
204 */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 atomic_inc(&md_event_count);
208 wake_up(&md_event_waiters);
209 }
210
211 /*
212 * Enables to iterate over all existing md arrays
213 * all_mddevs_lock protects this list.
214 */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217
218 /*
219 * iterates through all used mddevs in the system.
220 * We take care to grab the all_mddevs_lock whenever navigating
221 * the list, and to always hold a refcount when unlocked.
222 * Any code which breaks out of this loop while own
223 * a reference to the current mddev and must mddev_put it.
224 */
225 #define for_each_mddev(_mddev,_tmp) \
226 \
227 for (({ spin_lock(&all_mddevs_lock); \
228 _tmp = all_mddevs.next; \
229 _mddev = NULL;}); \
230 ({ if (_tmp != &all_mddevs) \
231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 spin_unlock(&all_mddevs_lock); \
233 if (_mddev) mddev_put(_mddev); \
234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
235 _tmp != &all_mddevs;}); \
236 ({ spin_lock(&all_mddevs_lock); \
237 _tmp = _tmp->next;}) \
238 )
239
240 /* Rather than calling directly into the personality make_request function,
241 * IO requests come here first so that we can check if the device is
242 * being suspended pending a reconfiguration.
243 * We hold a refcount over the call to ->make_request. By the time that
244 * call has finished, the bio has been linked into some internal structure
245 * and so is visible to ->quiesce(), so we don't need the refcount any more.
246 */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 const int rw = bio_data_dir(bio);
250 struct mddev *mddev = q->queuedata;
251 unsigned int sectors;
252
253 if (mddev == NULL || mddev->pers == NULL
254 || !mddev->ready) {
255 bio_io_error(bio);
256 return;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 return;
261 }
262 smp_rmb(); /* Ensure implications of 'active' are visible */
263 rcu_read_lock();
264 if (mddev->suspended) {
265 DEFINE_WAIT(__wait);
266 for (;;) {
267 prepare_to_wait(&mddev->sb_wait, &__wait,
268 TASK_UNINTERRUPTIBLE);
269 if (!mddev->suspended)
270 break;
271 rcu_read_unlock();
272 schedule();
273 rcu_read_lock();
274 }
275 finish_wait(&mddev->sb_wait, &__wait);
276 }
277 atomic_inc(&mddev->active_io);
278 rcu_read_unlock();
279
280 /*
281 * save the sectors now since our bio can
282 * go away inside make_request
283 */
284 sectors = bio_sectors(bio);
285 mddev->pers->make_request(mddev, bio);
286
287 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
288
289 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
290 wake_up(&mddev->sb_wait);
291 }
292
293 /* mddev_suspend makes sure no new requests are submitted
294 * to the device, and that any requests that have been submitted
295 * are completely handled.
296 * Once mddev_detach() is called and completes, the module will be
297 * completely unused.
298 */
299 void mddev_suspend(struct mddev *mddev)
300 {
301 BUG_ON(mddev->suspended);
302 mddev->suspended = 1;
303 synchronize_rcu();
304 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
305 mddev->pers->quiesce(mddev, 1);
306
307 del_timer_sync(&mddev->safemode_timer);
308 }
309 EXPORT_SYMBOL_GPL(mddev_suspend);
310
311 void mddev_resume(struct mddev *mddev)
312 {
313 mddev->suspended = 0;
314 wake_up(&mddev->sb_wait);
315 mddev->pers->quiesce(mddev, 0);
316
317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
318 md_wakeup_thread(mddev->thread);
319 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
320 }
321 EXPORT_SYMBOL_GPL(mddev_resume);
322
323 int mddev_congested(struct mddev *mddev, int bits)
324 {
325 struct md_personality *pers = mddev->pers;
326 int ret = 0;
327
328 rcu_read_lock();
329 if (mddev->suspended)
330 ret = 1;
331 else if (pers && pers->congested)
332 ret = pers->congested(mddev, bits);
333 rcu_read_unlock();
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(mddev_congested);
337 static int md_congested(void *data, int bits)
338 {
339 struct mddev *mddev = data;
340 return mddev_congested(mddev, bits);
341 }
342
343 static int md_mergeable_bvec(struct request_queue *q,
344 struct bvec_merge_data *bvm,
345 struct bio_vec *biovec)
346 {
347 struct mddev *mddev = q->queuedata;
348 int ret;
349 rcu_read_lock();
350 if (mddev->suspended) {
351 /* Must always allow one vec */
352 if (bvm->bi_size == 0)
353 ret = biovec->bv_len;
354 else
355 ret = 0;
356 } else {
357 struct md_personality *pers = mddev->pers;
358 if (pers && pers->mergeable_bvec)
359 ret = pers->mergeable_bvec(mddev, bvm, biovec);
360 else
361 ret = biovec->bv_len;
362 }
363 rcu_read_unlock();
364 return ret;
365 }
366 /*
367 * Generic flush handling for md
368 */
369
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 struct md_rdev *rdev = bio->bi_private;
373 struct mddev *mddev = rdev->mddev;
374
375 rdev_dec_pending(rdev, mddev);
376
377 if (atomic_dec_and_test(&mddev->flush_pending)) {
378 /* The pre-request flush has finished */
379 queue_work(md_wq, &mddev->flush_work);
380 }
381 bio_put(bio);
382 }
383
384 static void md_submit_flush_data(struct work_struct *ws);
385
386 static void submit_flushes(struct work_struct *ws)
387 {
388 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
389 struct md_rdev *rdev;
390
391 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 atomic_set(&mddev->flush_pending, 1);
393 rcu_read_lock();
394 rdev_for_each_rcu(rdev, mddev)
395 if (rdev->raid_disk >= 0 &&
396 !test_bit(Faulty, &rdev->flags)) {
397 /* Take two references, one is dropped
398 * when request finishes, one after
399 * we reclaim rcu_read_lock
400 */
401 struct bio *bi;
402 atomic_inc(&rdev->nr_pending);
403 atomic_inc(&rdev->nr_pending);
404 rcu_read_unlock();
405 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
406 bi->bi_end_io = md_end_flush;
407 bi->bi_private = rdev;
408 bi->bi_bdev = rdev->bdev;
409 atomic_inc(&mddev->flush_pending);
410 submit_bio(WRITE_FLUSH, bi);
411 rcu_read_lock();
412 rdev_dec_pending(rdev, mddev);
413 }
414 rcu_read_unlock();
415 if (atomic_dec_and_test(&mddev->flush_pending))
416 queue_work(md_wq, &mddev->flush_work);
417 }
418
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
422 struct bio *bio = mddev->flush_bio;
423
424 if (bio->bi_iter.bi_size == 0)
425 /* an empty barrier - all done */
426 bio_endio(bio, 0);
427 else {
428 bio->bi_rw &= ~REQ_FLUSH;
429 mddev->pers->make_request(mddev, bio);
430 }
431
432 mddev->flush_bio = NULL;
433 wake_up(&mddev->sb_wait);
434 }
435
436 void md_flush_request(struct mddev *mddev, struct bio *bio)
437 {
438 spin_lock_irq(&mddev->lock);
439 wait_event_lock_irq(mddev->sb_wait,
440 !mddev->flush_bio,
441 mddev->lock);
442 mddev->flush_bio = bio;
443 spin_unlock_irq(&mddev->lock);
444
445 INIT_WORK(&mddev->flush_work, submit_flushes);
446 queue_work(md_wq, &mddev->flush_work);
447 }
448 EXPORT_SYMBOL(md_flush_request);
449
450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
451 {
452 struct mddev *mddev = cb->data;
453 md_wakeup_thread(mddev->thread);
454 kfree(cb);
455 }
456 EXPORT_SYMBOL(md_unplug);
457
458 static inline struct mddev *mddev_get(struct mddev *mddev)
459 {
460 atomic_inc(&mddev->active);
461 return mddev;
462 }
463
464 static void mddev_delayed_delete(struct work_struct *ws);
465
466 static void mddev_put(struct mddev *mddev)
467 {
468 struct bio_set *bs = NULL;
469
470 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
471 return;
472 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
473 mddev->ctime == 0 && !mddev->hold_active) {
474 /* Array is not configured at all, and not held active,
475 * so destroy it */
476 list_del_init(&mddev->all_mddevs);
477 bs = mddev->bio_set;
478 mddev->bio_set = NULL;
479 if (mddev->gendisk) {
480 /* We did a probe so need to clean up. Call
481 * queue_work inside the spinlock so that
482 * flush_workqueue() after mddev_find will
483 * succeed in waiting for the work to be done.
484 */
485 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
486 queue_work(md_misc_wq, &mddev->del_work);
487 } else
488 kfree(mddev);
489 }
490 spin_unlock(&all_mddevs_lock);
491 if (bs)
492 bioset_free(bs);
493 }
494
495 void mddev_init(struct mddev *mddev)
496 {
497 mutex_init(&mddev->open_mutex);
498 mutex_init(&mddev->reconfig_mutex);
499 mutex_init(&mddev->bitmap_info.mutex);
500 INIT_LIST_HEAD(&mddev->disks);
501 INIT_LIST_HEAD(&mddev->all_mddevs);
502 init_timer(&mddev->safemode_timer);
503 atomic_set(&mddev->active, 1);
504 atomic_set(&mddev->openers, 0);
505 atomic_set(&mddev->active_io, 0);
506 spin_lock_init(&mddev->lock);
507 atomic_set(&mddev->flush_pending, 0);
508 init_waitqueue_head(&mddev->sb_wait);
509 init_waitqueue_head(&mddev->recovery_wait);
510 mddev->reshape_position = MaxSector;
511 mddev->reshape_backwards = 0;
512 mddev->last_sync_action = "none";
513 mddev->resync_min = 0;
514 mddev->resync_max = MaxSector;
515 mddev->level = LEVEL_NONE;
516 }
517 EXPORT_SYMBOL_GPL(mddev_init);
518
519 static struct mddev *mddev_find(dev_t unit)
520 {
521 struct mddev *mddev, *new = NULL;
522
523 if (unit && MAJOR(unit) != MD_MAJOR)
524 unit &= ~((1<<MdpMinorShift)-1);
525
526 retry:
527 spin_lock(&all_mddevs_lock);
528
529 if (unit) {
530 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 if (mddev->unit == unit) {
532 mddev_get(mddev);
533 spin_unlock(&all_mddevs_lock);
534 kfree(new);
535 return mddev;
536 }
537
538 if (new) {
539 list_add(&new->all_mddevs, &all_mddevs);
540 spin_unlock(&all_mddevs_lock);
541 new->hold_active = UNTIL_IOCTL;
542 return new;
543 }
544 } else if (new) {
545 /* find an unused unit number */
546 static int next_minor = 512;
547 int start = next_minor;
548 int is_free = 0;
549 int dev = 0;
550 while (!is_free) {
551 dev = MKDEV(MD_MAJOR, next_minor);
552 next_minor++;
553 if (next_minor > MINORMASK)
554 next_minor = 0;
555 if (next_minor == start) {
556 /* Oh dear, all in use. */
557 spin_unlock(&all_mddevs_lock);
558 kfree(new);
559 return NULL;
560 }
561
562 is_free = 1;
563 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 if (mddev->unit == dev) {
565 is_free = 0;
566 break;
567 }
568 }
569 new->unit = dev;
570 new->md_minor = MINOR(dev);
571 new->hold_active = UNTIL_STOP;
572 list_add(&new->all_mddevs, &all_mddevs);
573 spin_unlock(&all_mddevs_lock);
574 return new;
575 }
576 spin_unlock(&all_mddevs_lock);
577
578 new = kzalloc(sizeof(*new), GFP_KERNEL);
579 if (!new)
580 return NULL;
581
582 new->unit = unit;
583 if (MAJOR(unit) == MD_MAJOR)
584 new->md_minor = MINOR(unit);
585 else
586 new->md_minor = MINOR(unit) >> MdpMinorShift;
587
588 mddev_init(new);
589
590 goto retry;
591 }
592
593 static inline int __must_check mddev_lock(struct mddev *mddev)
594 {
595 return mutex_lock_interruptible(&mddev->reconfig_mutex);
596 }
597
598 /* Sometimes we need to take the lock in a situation where
599 * failure due to interrupts is not acceptable.
600 */
601 static inline void mddev_lock_nointr(struct mddev *mddev)
602 {
603 mutex_lock(&mddev->reconfig_mutex);
604 }
605
606 static inline int mddev_is_locked(struct mddev *mddev)
607 {
608 return mutex_is_locked(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_trylock(struct mddev *mddev)
612 {
613 return mutex_trylock(&mddev->reconfig_mutex);
614 }
615
616 static struct attribute_group md_redundancy_group;
617
618 static void mddev_unlock(struct mddev *mddev)
619 {
620 if (mddev->to_remove) {
621 /* These cannot be removed under reconfig_mutex as
622 * an access to the files will try to take reconfig_mutex
623 * while holding the file unremovable, which leads to
624 * a deadlock.
625 * So hold set sysfs_active while the remove in happeing,
626 * and anything else which might set ->to_remove or my
627 * otherwise change the sysfs namespace will fail with
628 * -EBUSY if sysfs_active is still set.
629 * We set sysfs_active under reconfig_mutex and elsewhere
630 * test it under the same mutex to ensure its correct value
631 * is seen.
632 */
633 struct attribute_group *to_remove = mddev->to_remove;
634 mddev->to_remove = NULL;
635 mddev->sysfs_active = 1;
636 mutex_unlock(&mddev->reconfig_mutex);
637
638 if (mddev->kobj.sd) {
639 if (to_remove != &md_redundancy_group)
640 sysfs_remove_group(&mddev->kobj, to_remove);
641 if (mddev->pers == NULL ||
642 mddev->pers->sync_request == NULL) {
643 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
644 if (mddev->sysfs_action)
645 sysfs_put(mddev->sysfs_action);
646 mddev->sysfs_action = NULL;
647 }
648 }
649 mddev->sysfs_active = 0;
650 } else
651 mutex_unlock(&mddev->reconfig_mutex);
652
653 /* As we've dropped the mutex we need a spinlock to
654 * make sure the thread doesn't disappear
655 */
656 spin_lock(&pers_lock);
657 md_wakeup_thread(mddev->thread);
658 spin_unlock(&pers_lock);
659 }
660
661 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each_rcu(rdev, mddev)
666 if (rdev->desc_nr == nr)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
673 {
674 struct md_rdev *rdev;
675
676 rdev_for_each(rdev, mddev)
677 if (rdev->bdev->bd_dev == dev)
678 return rdev;
679
680 return NULL;
681 }
682
683 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
684 {
685 struct md_rdev *rdev;
686
687 rdev_for_each_rcu(rdev, mddev)
688 if (rdev->bdev->bd_dev == dev)
689 return rdev;
690
691 return NULL;
692 }
693
694 static struct md_personality *find_pers(int level, char *clevel)
695 {
696 struct md_personality *pers;
697 list_for_each_entry(pers, &pers_list, list) {
698 if (level != LEVEL_NONE && pers->level == level)
699 return pers;
700 if (strcmp(pers->name, clevel)==0)
701 return pers;
702 }
703 return NULL;
704 }
705
706 /* return the offset of the super block in 512byte sectors */
707 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
708 {
709 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
710 return MD_NEW_SIZE_SECTORS(num_sectors);
711 }
712
713 static int alloc_disk_sb(struct md_rdev *rdev)
714 {
715 rdev->sb_page = alloc_page(GFP_KERNEL);
716 if (!rdev->sb_page) {
717 printk(KERN_ALERT "md: out of memory.\n");
718 return -ENOMEM;
719 }
720
721 return 0;
722 }
723
724 void md_rdev_clear(struct md_rdev *rdev)
725 {
726 if (rdev->sb_page) {
727 put_page(rdev->sb_page);
728 rdev->sb_loaded = 0;
729 rdev->sb_page = NULL;
730 rdev->sb_start = 0;
731 rdev->sectors = 0;
732 }
733 if (rdev->bb_page) {
734 put_page(rdev->bb_page);
735 rdev->bb_page = NULL;
736 }
737 kfree(rdev->badblocks.page);
738 rdev->badblocks.page = NULL;
739 }
740 EXPORT_SYMBOL_GPL(md_rdev_clear);
741
742 static void super_written(struct bio *bio, int error)
743 {
744 struct md_rdev *rdev = bio->bi_private;
745 struct mddev *mddev = rdev->mddev;
746
747 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
748 printk("md: super_written gets error=%d, uptodate=%d\n",
749 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
750 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
751 md_error(mddev, rdev);
752 }
753
754 if (atomic_dec_and_test(&mddev->pending_writes))
755 wake_up(&mddev->sb_wait);
756 bio_put(bio);
757 }
758
759 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
760 sector_t sector, int size, struct page *page)
761 {
762 /* write first size bytes of page to sector of rdev
763 * Increment mddev->pending_writes before returning
764 * and decrement it on completion, waking up sb_wait
765 * if zero is reached.
766 * If an error occurred, call md_error
767 */
768 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
769
770 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
771 bio->bi_iter.bi_sector = sector;
772 bio_add_page(bio, page, size, 0);
773 bio->bi_private = rdev;
774 bio->bi_end_io = super_written;
775
776 atomic_inc(&mddev->pending_writes);
777 submit_bio(WRITE_FLUSH_FUA, bio);
778 }
779
780 void md_super_wait(struct mddev *mddev)
781 {
782 /* wait for all superblock writes that were scheduled to complete */
783 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
784 }
785
786 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
787 struct page *page, int rw, bool metadata_op)
788 {
789 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
790 int ret;
791
792 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
793 rdev->meta_bdev : rdev->bdev;
794 if (metadata_op)
795 bio->bi_iter.bi_sector = sector + rdev->sb_start;
796 else if (rdev->mddev->reshape_position != MaxSector &&
797 (rdev->mddev->reshape_backwards ==
798 (sector >= rdev->mddev->reshape_position)))
799 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
800 else
801 bio->bi_iter.bi_sector = sector + rdev->data_offset;
802 bio_add_page(bio, page, size, 0);
803 submit_bio_wait(rw, bio);
804
805 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
806 bio_put(bio);
807 return ret;
808 }
809 EXPORT_SYMBOL_GPL(sync_page_io);
810
811 static int read_disk_sb(struct md_rdev *rdev, int size)
812 {
813 char b[BDEVNAME_SIZE];
814
815 if (rdev->sb_loaded)
816 return 0;
817
818 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
819 goto fail;
820 rdev->sb_loaded = 1;
821 return 0;
822
823 fail:
824 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
825 bdevname(rdev->bdev,b));
826 return -EINVAL;
827 }
828
829 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
830 {
831 return sb1->set_uuid0 == sb2->set_uuid0 &&
832 sb1->set_uuid1 == sb2->set_uuid1 &&
833 sb1->set_uuid2 == sb2->set_uuid2 &&
834 sb1->set_uuid3 == sb2->set_uuid3;
835 }
836
837 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
838 {
839 int ret;
840 mdp_super_t *tmp1, *tmp2;
841
842 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
843 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
844
845 if (!tmp1 || !tmp2) {
846 ret = 0;
847 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
848 goto abort;
849 }
850
851 *tmp1 = *sb1;
852 *tmp2 = *sb2;
853
854 /*
855 * nr_disks is not constant
856 */
857 tmp1->nr_disks = 0;
858 tmp2->nr_disks = 0;
859
860 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
861 abort:
862 kfree(tmp1);
863 kfree(tmp2);
864 return ret;
865 }
866
867 static u32 md_csum_fold(u32 csum)
868 {
869 csum = (csum & 0xffff) + (csum >> 16);
870 return (csum & 0xffff) + (csum >> 16);
871 }
872
873 static unsigned int calc_sb_csum(mdp_super_t *sb)
874 {
875 u64 newcsum = 0;
876 u32 *sb32 = (u32*)sb;
877 int i;
878 unsigned int disk_csum, csum;
879
880 disk_csum = sb->sb_csum;
881 sb->sb_csum = 0;
882
883 for (i = 0; i < MD_SB_BYTES/4 ; i++)
884 newcsum += sb32[i];
885 csum = (newcsum & 0xffffffff) + (newcsum>>32);
886
887 #ifdef CONFIG_ALPHA
888 /* This used to use csum_partial, which was wrong for several
889 * reasons including that different results are returned on
890 * different architectures. It isn't critical that we get exactly
891 * the same return value as before (we always csum_fold before
892 * testing, and that removes any differences). However as we
893 * know that csum_partial always returned a 16bit value on
894 * alphas, do a fold to maximise conformity to previous behaviour.
895 */
896 sb->sb_csum = md_csum_fold(disk_csum);
897 #else
898 sb->sb_csum = disk_csum;
899 #endif
900 return csum;
901 }
902
903 /*
904 * Handle superblock details.
905 * We want to be able to handle multiple superblock formats
906 * so we have a common interface to them all, and an array of
907 * different handlers.
908 * We rely on user-space to write the initial superblock, and support
909 * reading and updating of superblocks.
910 * Interface methods are:
911 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
912 * loads and validates a superblock on dev.
913 * if refdev != NULL, compare superblocks on both devices
914 * Return:
915 * 0 - dev has a superblock that is compatible with refdev
916 * 1 - dev has a superblock that is compatible and newer than refdev
917 * so dev should be used as the refdev in future
918 * -EINVAL superblock incompatible or invalid
919 * -othererror e.g. -EIO
920 *
921 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
922 * Verify that dev is acceptable into mddev.
923 * The first time, mddev->raid_disks will be 0, and data from
924 * dev should be merged in. Subsequent calls check that dev
925 * is new enough. Return 0 or -EINVAL
926 *
927 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
928 * Update the superblock for rdev with data in mddev
929 * This does not write to disc.
930 *
931 */
932
933 struct super_type {
934 char *name;
935 struct module *owner;
936 int (*load_super)(struct md_rdev *rdev,
937 struct md_rdev *refdev,
938 int minor_version);
939 int (*validate_super)(struct mddev *mddev,
940 struct md_rdev *rdev);
941 void (*sync_super)(struct mddev *mddev,
942 struct md_rdev *rdev);
943 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
944 sector_t num_sectors);
945 int (*allow_new_offset)(struct md_rdev *rdev,
946 unsigned long long new_offset);
947 };
948
949 /*
950 * Check that the given mddev has no bitmap.
951 *
952 * This function is called from the run method of all personalities that do not
953 * support bitmaps. It prints an error message and returns non-zero if mddev
954 * has a bitmap. Otherwise, it returns 0.
955 *
956 */
957 int md_check_no_bitmap(struct mddev *mddev)
958 {
959 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
960 return 0;
961 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
962 mdname(mddev), mddev->pers->name);
963 return 1;
964 }
965 EXPORT_SYMBOL(md_check_no_bitmap);
966
967 /*
968 * load_super for 0.90.0
969 */
970 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
971 {
972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
973 mdp_super_t *sb;
974 int ret;
975
976 /*
977 * Calculate the position of the superblock (512byte sectors),
978 * it's at the end of the disk.
979 *
980 * It also happens to be a multiple of 4Kb.
981 */
982 rdev->sb_start = calc_dev_sboffset(rdev);
983
984 ret = read_disk_sb(rdev, MD_SB_BYTES);
985 if (ret) return ret;
986
987 ret = -EINVAL;
988
989 bdevname(rdev->bdev, b);
990 sb = page_address(rdev->sb_page);
991
992 if (sb->md_magic != MD_SB_MAGIC) {
993 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
994 b);
995 goto abort;
996 }
997
998 if (sb->major_version != 0 ||
999 sb->minor_version < 90 ||
1000 sb->minor_version > 91) {
1001 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1002 sb->major_version, sb->minor_version,
1003 b);
1004 goto abort;
1005 }
1006
1007 if (sb->raid_disks <= 0)
1008 goto abort;
1009
1010 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1011 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1012 b);
1013 goto abort;
1014 }
1015
1016 rdev->preferred_minor = sb->md_minor;
1017 rdev->data_offset = 0;
1018 rdev->new_data_offset = 0;
1019 rdev->sb_size = MD_SB_BYTES;
1020 rdev->badblocks.shift = -1;
1021
1022 if (sb->level == LEVEL_MULTIPATH)
1023 rdev->desc_nr = -1;
1024 else
1025 rdev->desc_nr = sb->this_disk.number;
1026
1027 if (!refdev) {
1028 ret = 1;
1029 } else {
1030 __u64 ev1, ev2;
1031 mdp_super_t *refsb = page_address(refdev->sb_page);
1032 if (!uuid_equal(refsb, sb)) {
1033 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 b, bdevname(refdev->bdev,b2));
1035 goto abort;
1036 }
1037 if (!sb_equal(refsb, sb)) {
1038 printk(KERN_WARNING "md: %s has same UUID"
1039 " but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051 /* Limit to 4TB as metadata cannot record more than that.
1052 * (not needed for Linear and RAID0 as metadata doesn't
1053 * record this size)
1054 */
1055 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1056 rdev->sectors = (2ULL << 32) - 2;
1057
1058 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1059 /* "this cannot possibly happen" ... */
1060 ret = -EINVAL;
1061
1062 abort:
1063 return ret;
1064 }
1065
1066 /*
1067 * validate_super for 0.90.0
1068 */
1069 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1070 {
1071 mdp_disk_t *desc;
1072 mdp_super_t *sb = page_address(rdev->sb_page);
1073 __u64 ev1 = md_event(sb);
1074
1075 rdev->raid_disk = -1;
1076 clear_bit(Faulty, &rdev->flags);
1077 clear_bit(In_sync, &rdev->flags);
1078 clear_bit(Bitmap_sync, &rdev->flags);
1079 clear_bit(WriteMostly, &rdev->flags);
1080
1081 if (mddev->raid_disks == 0) {
1082 mddev->major_version = 0;
1083 mddev->minor_version = sb->minor_version;
1084 mddev->patch_version = sb->patch_version;
1085 mddev->external = 0;
1086 mddev->chunk_sectors = sb->chunk_size >> 9;
1087 mddev->ctime = sb->ctime;
1088 mddev->utime = sb->utime;
1089 mddev->level = sb->level;
1090 mddev->clevel[0] = 0;
1091 mddev->layout = sb->layout;
1092 mddev->raid_disks = sb->raid_disks;
1093 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1094 mddev->events = ev1;
1095 mddev->bitmap_info.offset = 0;
1096 mddev->bitmap_info.space = 0;
1097 /* bitmap can use 60 K after the 4K superblocks */
1098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1100 mddev->reshape_backwards = 0;
1101
1102 if (mddev->minor_version >= 91) {
1103 mddev->reshape_position = sb->reshape_position;
1104 mddev->delta_disks = sb->delta_disks;
1105 mddev->new_level = sb->new_level;
1106 mddev->new_layout = sb->new_layout;
1107 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1108 if (mddev->delta_disks < 0)
1109 mddev->reshape_backwards = 1;
1110 } else {
1111 mddev->reshape_position = MaxSector;
1112 mddev->delta_disks = 0;
1113 mddev->new_level = mddev->level;
1114 mddev->new_layout = mddev->layout;
1115 mddev->new_chunk_sectors = mddev->chunk_sectors;
1116 }
1117
1118 if (sb->state & (1<<MD_SB_CLEAN))
1119 mddev->recovery_cp = MaxSector;
1120 else {
1121 if (sb->events_hi == sb->cp_events_hi &&
1122 sb->events_lo == sb->cp_events_lo) {
1123 mddev->recovery_cp = sb->recovery_cp;
1124 } else
1125 mddev->recovery_cp = 0;
1126 }
1127
1128 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1129 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1130 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1131 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1132
1133 mddev->max_disks = MD_SB_DISKS;
1134
1135 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1136 mddev->bitmap_info.file == NULL) {
1137 mddev->bitmap_info.offset =
1138 mddev->bitmap_info.default_offset;
1139 mddev->bitmap_info.space =
1140 mddev->bitmap_info.default_space;
1141 }
1142
1143 } else if (mddev->pers == NULL) {
1144 /* Insist on good event counter while assembling, except
1145 * for spares (which don't need an event count) */
1146 ++ev1;
1147 if (sb->disks[rdev->desc_nr].state & (
1148 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1149 if (ev1 < mddev->events)
1150 return -EINVAL;
1151 } else if (mddev->bitmap) {
1152 /* if adding to array with a bitmap, then we can accept an
1153 * older device ... but not too old.
1154 */
1155 if (ev1 < mddev->bitmap->events_cleared)
1156 return 0;
1157 if (ev1 < mddev->events)
1158 set_bit(Bitmap_sync, &rdev->flags);
1159 } else {
1160 if (ev1 < mddev->events)
1161 /* just a hot-add of a new device, leave raid_disk at -1 */
1162 return 0;
1163 }
1164
1165 if (mddev->level != LEVEL_MULTIPATH) {
1166 desc = sb->disks + rdev->desc_nr;
1167
1168 if (desc->state & (1<<MD_DISK_FAULTY))
1169 set_bit(Faulty, &rdev->flags);
1170 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1171 desc->raid_disk < mddev->raid_disks */) {
1172 set_bit(In_sync, &rdev->flags);
1173 rdev->raid_disk = desc->raid_disk;
1174 rdev->saved_raid_disk = desc->raid_disk;
1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1176 /* active but not in sync implies recovery up to
1177 * reshape position. We don't know exactly where
1178 * that is, so set to zero for now */
1179 if (mddev->minor_version >= 91) {
1180 rdev->recovery_offset = 0;
1181 rdev->raid_disk = desc->raid_disk;
1182 }
1183 }
1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1185 set_bit(WriteMostly, &rdev->flags);
1186 } else /* MULTIPATH are always insync */
1187 set_bit(In_sync, &rdev->flags);
1188 return 0;
1189 }
1190
1191 /*
1192 * sync_super for 0.90.0
1193 */
1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1195 {
1196 mdp_super_t *sb;
1197 struct md_rdev *rdev2;
1198 int next_spare = mddev->raid_disks;
1199
1200 /* make rdev->sb match mddev data..
1201 *
1202 * 1/ zero out disks
1203 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1204 * 3/ any empty disks < next_spare become removed
1205 *
1206 * disks[0] gets initialised to REMOVED because
1207 * we cannot be sure from other fields if it has
1208 * been initialised or not.
1209 */
1210 int i;
1211 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1212
1213 rdev->sb_size = MD_SB_BYTES;
1214
1215 sb = page_address(rdev->sb_page);
1216
1217 memset(sb, 0, sizeof(*sb));
1218
1219 sb->md_magic = MD_SB_MAGIC;
1220 sb->major_version = mddev->major_version;
1221 sb->patch_version = mddev->patch_version;
1222 sb->gvalid_words = 0; /* ignored */
1223 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1224 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1225 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1226 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1227
1228 sb->ctime = mddev->ctime;
1229 sb->level = mddev->level;
1230 sb->size = mddev->dev_sectors / 2;
1231 sb->raid_disks = mddev->raid_disks;
1232 sb->md_minor = mddev->md_minor;
1233 sb->not_persistent = 0;
1234 sb->utime = mddev->utime;
1235 sb->state = 0;
1236 sb->events_hi = (mddev->events>>32);
1237 sb->events_lo = (u32)mddev->events;
1238
1239 if (mddev->reshape_position == MaxSector)
1240 sb->minor_version = 90;
1241 else {
1242 sb->minor_version = 91;
1243 sb->reshape_position = mddev->reshape_position;
1244 sb->new_level = mddev->new_level;
1245 sb->delta_disks = mddev->delta_disks;
1246 sb->new_layout = mddev->new_layout;
1247 sb->new_chunk = mddev->new_chunk_sectors << 9;
1248 }
1249 mddev->minor_version = sb->minor_version;
1250 if (mddev->in_sync)
1251 {
1252 sb->recovery_cp = mddev->recovery_cp;
1253 sb->cp_events_hi = (mddev->events>>32);
1254 sb->cp_events_lo = (u32)mddev->events;
1255 if (mddev->recovery_cp == MaxSector)
1256 sb->state = (1<< MD_SB_CLEAN);
1257 } else
1258 sb->recovery_cp = 0;
1259
1260 sb->layout = mddev->layout;
1261 sb->chunk_size = mddev->chunk_sectors << 9;
1262
1263 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1264 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1265
1266 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1267 rdev_for_each(rdev2, mddev) {
1268 mdp_disk_t *d;
1269 int desc_nr;
1270 int is_active = test_bit(In_sync, &rdev2->flags);
1271
1272 if (rdev2->raid_disk >= 0 &&
1273 sb->minor_version >= 91)
1274 /* we have nowhere to store the recovery_offset,
1275 * but if it is not below the reshape_position,
1276 * we can piggy-back on that.
1277 */
1278 is_active = 1;
1279 if (rdev2->raid_disk < 0 ||
1280 test_bit(Faulty, &rdev2->flags))
1281 is_active = 0;
1282 if (is_active)
1283 desc_nr = rdev2->raid_disk;
1284 else
1285 desc_nr = next_spare++;
1286 rdev2->desc_nr = desc_nr;
1287 d = &sb->disks[rdev2->desc_nr];
1288 nr_disks++;
1289 d->number = rdev2->desc_nr;
1290 d->major = MAJOR(rdev2->bdev->bd_dev);
1291 d->minor = MINOR(rdev2->bdev->bd_dev);
1292 if (is_active)
1293 d->raid_disk = rdev2->raid_disk;
1294 else
1295 d->raid_disk = rdev2->desc_nr; /* compatibility */
1296 if (test_bit(Faulty, &rdev2->flags))
1297 d->state = (1<<MD_DISK_FAULTY);
1298 else if (is_active) {
1299 d->state = (1<<MD_DISK_ACTIVE);
1300 if (test_bit(In_sync, &rdev2->flags))
1301 d->state |= (1<<MD_DISK_SYNC);
1302 active++;
1303 working++;
1304 } else {
1305 d->state = 0;
1306 spare++;
1307 working++;
1308 }
1309 if (test_bit(WriteMostly, &rdev2->flags))
1310 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1311 }
1312 /* now set the "removed" and "faulty" bits on any missing devices */
1313 for (i=0 ; i < mddev->raid_disks ; i++) {
1314 mdp_disk_t *d = &sb->disks[i];
1315 if (d->state == 0 && d->number == 0) {
1316 d->number = i;
1317 d->raid_disk = i;
1318 d->state = (1<<MD_DISK_REMOVED);
1319 d->state |= (1<<MD_DISK_FAULTY);
1320 failed++;
1321 }
1322 }
1323 sb->nr_disks = nr_disks;
1324 sb->active_disks = active;
1325 sb->working_disks = working;
1326 sb->failed_disks = failed;
1327 sb->spare_disks = spare;
1328
1329 sb->this_disk = sb->disks[rdev->desc_nr];
1330 sb->sb_csum = calc_sb_csum(sb);
1331 }
1332
1333 /*
1334 * rdev_size_change for 0.90.0
1335 */
1336 static unsigned long long
1337 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1338 {
1339 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1340 return 0; /* component must fit device */
1341 if (rdev->mddev->bitmap_info.offset)
1342 return 0; /* can't move bitmap */
1343 rdev->sb_start = calc_dev_sboffset(rdev);
1344 if (!num_sectors || num_sectors > rdev->sb_start)
1345 num_sectors = rdev->sb_start;
1346 /* Limit to 4TB as metadata cannot record more than that.
1347 * 4TB == 2^32 KB, or 2*2^32 sectors.
1348 */
1349 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1350 num_sectors = (2ULL << 32) - 2;
1351 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1352 rdev->sb_page);
1353 md_super_wait(rdev->mddev);
1354 return num_sectors;
1355 }
1356
1357 static int
1358 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1359 {
1360 /* non-zero offset changes not possible with v0.90 */
1361 return new_offset == 0;
1362 }
1363
1364 /*
1365 * version 1 superblock
1366 */
1367
1368 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1369 {
1370 __le32 disk_csum;
1371 u32 csum;
1372 unsigned long long newcsum;
1373 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1374 __le32 *isuper = (__le32*)sb;
1375
1376 disk_csum = sb->sb_csum;
1377 sb->sb_csum = 0;
1378 newcsum = 0;
1379 for (; size >= 4; size -= 4)
1380 newcsum += le32_to_cpu(*isuper++);
1381
1382 if (size == 2)
1383 newcsum += le16_to_cpu(*(__le16*) isuper);
1384
1385 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1386 sb->sb_csum = disk_csum;
1387 return cpu_to_le32(csum);
1388 }
1389
1390 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1391 int acknowledged);
1392 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1393 {
1394 struct mdp_superblock_1 *sb;
1395 int ret;
1396 sector_t sb_start;
1397 sector_t sectors;
1398 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1399 int bmask;
1400
1401 /*
1402 * Calculate the position of the superblock in 512byte sectors.
1403 * It is always aligned to a 4K boundary and
1404 * depeding on minor_version, it can be:
1405 * 0: At least 8K, but less than 12K, from end of device
1406 * 1: At start of device
1407 * 2: 4K from start of device.
1408 */
1409 switch(minor_version) {
1410 case 0:
1411 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1412 sb_start -= 8*2;
1413 sb_start &= ~(sector_t)(4*2-1);
1414 break;
1415 case 1:
1416 sb_start = 0;
1417 break;
1418 case 2:
1419 sb_start = 8;
1420 break;
1421 default:
1422 return -EINVAL;
1423 }
1424 rdev->sb_start = sb_start;
1425
1426 /* superblock is rarely larger than 1K, but it can be larger,
1427 * and it is safe to read 4k, so we do that
1428 */
1429 ret = read_disk_sb(rdev, 4096);
1430 if (ret) return ret;
1431
1432 sb = page_address(rdev->sb_page);
1433
1434 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1435 sb->major_version != cpu_to_le32(1) ||
1436 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1437 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1438 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1439 return -EINVAL;
1440
1441 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1442 printk("md: invalid superblock checksum on %s\n",
1443 bdevname(rdev->bdev,b));
1444 return -EINVAL;
1445 }
1446 if (le64_to_cpu(sb->data_size) < 10) {
1447 printk("md: data_size too small on %s\n",
1448 bdevname(rdev->bdev,b));
1449 return -EINVAL;
1450 }
1451 if (sb->pad0 ||
1452 sb->pad3[0] ||
1453 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1454 /* Some padding is non-zero, might be a new feature */
1455 return -EINVAL;
1456
1457 rdev->preferred_minor = 0xffff;
1458 rdev->data_offset = le64_to_cpu(sb->data_offset);
1459 rdev->new_data_offset = rdev->data_offset;
1460 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1461 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1462 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1463 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1464
1465 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1466 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1467 if (rdev->sb_size & bmask)
1468 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1469
1470 if (minor_version
1471 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1472 return -EINVAL;
1473 if (minor_version
1474 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1475 return -EINVAL;
1476
1477 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1478 rdev->desc_nr = -1;
1479 else
1480 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1481
1482 if (!rdev->bb_page) {
1483 rdev->bb_page = alloc_page(GFP_KERNEL);
1484 if (!rdev->bb_page)
1485 return -ENOMEM;
1486 }
1487 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1488 rdev->badblocks.count == 0) {
1489 /* need to load the bad block list.
1490 * Currently we limit it to one page.
1491 */
1492 s32 offset;
1493 sector_t bb_sector;
1494 u64 *bbp;
1495 int i;
1496 int sectors = le16_to_cpu(sb->bblog_size);
1497 if (sectors > (PAGE_SIZE / 512))
1498 return -EINVAL;
1499 offset = le32_to_cpu(sb->bblog_offset);
1500 if (offset == 0)
1501 return -EINVAL;
1502 bb_sector = (long long)offset;
1503 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1504 rdev->bb_page, READ, true))
1505 return -EIO;
1506 bbp = (u64 *)page_address(rdev->bb_page);
1507 rdev->badblocks.shift = sb->bblog_shift;
1508 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1509 u64 bb = le64_to_cpu(*bbp);
1510 int count = bb & (0x3ff);
1511 u64 sector = bb >> 10;
1512 sector <<= sb->bblog_shift;
1513 count <<= sb->bblog_shift;
1514 if (bb + 1 == 0)
1515 break;
1516 if (md_set_badblocks(&rdev->badblocks,
1517 sector, count, 1) == 0)
1518 return -EINVAL;
1519 }
1520 } else if (sb->bblog_offset != 0)
1521 rdev->badblocks.shift = 0;
1522
1523 if (!refdev) {
1524 ret = 1;
1525 } else {
1526 __u64 ev1, ev2;
1527 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1528
1529 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1530 sb->level != refsb->level ||
1531 sb->layout != refsb->layout ||
1532 sb->chunksize != refsb->chunksize) {
1533 printk(KERN_WARNING "md: %s has strangely different"
1534 " superblock to %s\n",
1535 bdevname(rdev->bdev,b),
1536 bdevname(refdev->bdev,b2));
1537 return -EINVAL;
1538 }
1539 ev1 = le64_to_cpu(sb->events);
1540 ev2 = le64_to_cpu(refsb->events);
1541
1542 if (ev1 > ev2)
1543 ret = 1;
1544 else
1545 ret = 0;
1546 }
1547 if (minor_version) {
1548 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1549 sectors -= rdev->data_offset;
1550 } else
1551 sectors = rdev->sb_start;
1552 if (sectors < le64_to_cpu(sb->data_size))
1553 return -EINVAL;
1554 rdev->sectors = le64_to_cpu(sb->data_size);
1555 return ret;
1556 }
1557
1558 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1559 {
1560 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1561 __u64 ev1 = le64_to_cpu(sb->events);
1562
1563 rdev->raid_disk = -1;
1564 clear_bit(Faulty, &rdev->flags);
1565 clear_bit(In_sync, &rdev->flags);
1566 clear_bit(Bitmap_sync, &rdev->flags);
1567 clear_bit(WriteMostly, &rdev->flags);
1568
1569 if (mddev->raid_disks == 0) {
1570 mddev->major_version = 1;
1571 mddev->patch_version = 0;
1572 mddev->external = 0;
1573 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1574 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1575 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1576 mddev->level = le32_to_cpu(sb->level);
1577 mddev->clevel[0] = 0;
1578 mddev->layout = le32_to_cpu(sb->layout);
1579 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1580 mddev->dev_sectors = le64_to_cpu(sb->size);
1581 mddev->events = ev1;
1582 mddev->bitmap_info.offset = 0;
1583 mddev->bitmap_info.space = 0;
1584 /* Default location for bitmap is 1K after superblock
1585 * using 3K - total of 4K
1586 */
1587 mddev->bitmap_info.default_offset = 1024 >> 9;
1588 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1589 mddev->reshape_backwards = 0;
1590
1591 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1592 memcpy(mddev->uuid, sb->set_uuid, 16);
1593
1594 mddev->max_disks = (4096-256)/2;
1595
1596 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1597 mddev->bitmap_info.file == NULL) {
1598 mddev->bitmap_info.offset =
1599 (__s32)le32_to_cpu(sb->bitmap_offset);
1600 /* Metadata doesn't record how much space is available.
1601 * For 1.0, we assume we can use up to the superblock
1602 * if before, else to 4K beyond superblock.
1603 * For others, assume no change is possible.
1604 */
1605 if (mddev->minor_version > 0)
1606 mddev->bitmap_info.space = 0;
1607 else if (mddev->bitmap_info.offset > 0)
1608 mddev->bitmap_info.space =
1609 8 - mddev->bitmap_info.offset;
1610 else
1611 mddev->bitmap_info.space =
1612 -mddev->bitmap_info.offset;
1613 }
1614
1615 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1616 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1617 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1618 mddev->new_level = le32_to_cpu(sb->new_level);
1619 mddev->new_layout = le32_to_cpu(sb->new_layout);
1620 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1621 if (mddev->delta_disks < 0 ||
1622 (mddev->delta_disks == 0 &&
1623 (le32_to_cpu(sb->feature_map)
1624 & MD_FEATURE_RESHAPE_BACKWARDS)))
1625 mddev->reshape_backwards = 1;
1626 } else {
1627 mddev->reshape_position = MaxSector;
1628 mddev->delta_disks = 0;
1629 mddev->new_level = mddev->level;
1630 mddev->new_layout = mddev->layout;
1631 mddev->new_chunk_sectors = mddev->chunk_sectors;
1632 }
1633
1634 } else if (mddev->pers == NULL) {
1635 /* Insist of good event counter while assembling, except for
1636 * spares (which don't need an event count) */
1637 ++ev1;
1638 if (rdev->desc_nr >= 0 &&
1639 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1640 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1641 if (ev1 < mddev->events)
1642 return -EINVAL;
1643 } else if (mddev->bitmap) {
1644 /* If adding to array with a bitmap, then we can accept an
1645 * older device, but not too old.
1646 */
1647 if (ev1 < mddev->bitmap->events_cleared)
1648 return 0;
1649 if (ev1 < mddev->events)
1650 set_bit(Bitmap_sync, &rdev->flags);
1651 } else {
1652 if (ev1 < mddev->events)
1653 /* just a hot-add of a new device, leave raid_disk at -1 */
1654 return 0;
1655 }
1656 if (mddev->level != LEVEL_MULTIPATH) {
1657 int role;
1658 if (rdev->desc_nr < 0 ||
1659 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1660 role = 0xffff;
1661 rdev->desc_nr = -1;
1662 } else
1663 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1664 switch(role) {
1665 case 0xffff: /* spare */
1666 break;
1667 case 0xfffe: /* faulty */
1668 set_bit(Faulty, &rdev->flags);
1669 break;
1670 default:
1671 rdev->saved_raid_disk = role;
1672 if ((le32_to_cpu(sb->feature_map) &
1673 MD_FEATURE_RECOVERY_OFFSET)) {
1674 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1675 if (!(le32_to_cpu(sb->feature_map) &
1676 MD_FEATURE_RECOVERY_BITMAP))
1677 rdev->saved_raid_disk = -1;
1678 } else
1679 set_bit(In_sync, &rdev->flags);
1680 rdev->raid_disk = role;
1681 break;
1682 }
1683 if (sb->devflags & WriteMostly1)
1684 set_bit(WriteMostly, &rdev->flags);
1685 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1686 set_bit(Replacement, &rdev->flags);
1687 } else /* MULTIPATH are always insync */
1688 set_bit(In_sync, &rdev->flags);
1689
1690 return 0;
1691 }
1692
1693 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695 struct mdp_superblock_1 *sb;
1696 struct md_rdev *rdev2;
1697 int max_dev, i;
1698 /* make rdev->sb match mddev and rdev data. */
1699
1700 sb = page_address(rdev->sb_page);
1701
1702 sb->feature_map = 0;
1703 sb->pad0 = 0;
1704 sb->recovery_offset = cpu_to_le64(0);
1705 memset(sb->pad3, 0, sizeof(sb->pad3));
1706
1707 sb->utime = cpu_to_le64((__u64)mddev->utime);
1708 sb->events = cpu_to_le64(mddev->events);
1709 if (mddev->in_sync)
1710 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1711 else
1712 sb->resync_offset = cpu_to_le64(0);
1713
1714 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1715
1716 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1717 sb->size = cpu_to_le64(mddev->dev_sectors);
1718 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1719 sb->level = cpu_to_le32(mddev->level);
1720 sb->layout = cpu_to_le32(mddev->layout);
1721
1722 if (test_bit(WriteMostly, &rdev->flags))
1723 sb->devflags |= WriteMostly1;
1724 else
1725 sb->devflags &= ~WriteMostly1;
1726 sb->data_offset = cpu_to_le64(rdev->data_offset);
1727 sb->data_size = cpu_to_le64(rdev->sectors);
1728
1729 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1730 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1731 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1732 }
1733
1734 if (rdev->raid_disk >= 0 &&
1735 !test_bit(In_sync, &rdev->flags)) {
1736 sb->feature_map |=
1737 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1738 sb->recovery_offset =
1739 cpu_to_le64(rdev->recovery_offset);
1740 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1741 sb->feature_map |=
1742 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1743 }
1744 if (test_bit(Replacement, &rdev->flags))
1745 sb->feature_map |=
1746 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1747
1748 if (mddev->reshape_position != MaxSector) {
1749 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1750 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1751 sb->new_layout = cpu_to_le32(mddev->new_layout);
1752 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1753 sb->new_level = cpu_to_le32(mddev->new_level);
1754 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1755 if (mddev->delta_disks == 0 &&
1756 mddev->reshape_backwards)
1757 sb->feature_map
1758 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1759 if (rdev->new_data_offset != rdev->data_offset) {
1760 sb->feature_map
1761 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1762 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1763 - rdev->data_offset));
1764 }
1765 }
1766
1767 if (rdev->badblocks.count == 0)
1768 /* Nothing to do for bad blocks*/ ;
1769 else if (sb->bblog_offset == 0)
1770 /* Cannot record bad blocks on this device */
1771 md_error(mddev, rdev);
1772 else {
1773 struct badblocks *bb = &rdev->badblocks;
1774 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1775 u64 *p = bb->page;
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1777 if (bb->changed) {
1778 unsigned seq;
1779
1780 retry:
1781 seq = read_seqbegin(&bb->lock);
1782
1783 memset(bbp, 0xff, PAGE_SIZE);
1784
1785 for (i = 0 ; i < bb->count ; i++) {
1786 u64 internal_bb = p[i];
1787 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1788 | BB_LEN(internal_bb));
1789 bbp[i] = cpu_to_le64(store_bb);
1790 }
1791 bb->changed = 0;
1792 if (read_seqretry(&bb->lock, seq))
1793 goto retry;
1794
1795 bb->sector = (rdev->sb_start +
1796 (int)le32_to_cpu(sb->bblog_offset));
1797 bb->size = le16_to_cpu(sb->bblog_size);
1798 }
1799 }
1800
1801 max_dev = 0;
1802 rdev_for_each(rdev2, mddev)
1803 if (rdev2->desc_nr+1 > max_dev)
1804 max_dev = rdev2->desc_nr+1;
1805
1806 if (max_dev > le32_to_cpu(sb->max_dev)) {
1807 int bmask;
1808 sb->max_dev = cpu_to_le32(max_dev);
1809 rdev->sb_size = max_dev * 2 + 256;
1810 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1811 if (rdev->sb_size & bmask)
1812 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1813 } else
1814 max_dev = le32_to_cpu(sb->max_dev);
1815
1816 for (i=0; i<max_dev;i++)
1817 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1818
1819 rdev_for_each(rdev2, mddev) {
1820 i = rdev2->desc_nr;
1821 if (test_bit(Faulty, &rdev2->flags))
1822 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1823 else if (test_bit(In_sync, &rdev2->flags))
1824 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1825 else if (rdev2->raid_disk >= 0)
1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 else
1828 sb->dev_roles[i] = cpu_to_le16(0xffff);
1829 }
1830
1831 sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837 struct mdp_superblock_1 *sb;
1838 sector_t max_sectors;
1839 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840 return 0; /* component must fit device */
1841 if (rdev->data_offset != rdev->new_data_offset)
1842 return 0; /* too confusing */
1843 if (rdev->sb_start < rdev->data_offset) {
1844 /* minor versions 1 and 2; superblock before data */
1845 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846 max_sectors -= rdev->data_offset;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 } else if (rdev->mddev->bitmap_info.offset) {
1850 /* minor version 0 with bitmap we can't move */
1851 return 0;
1852 } else {
1853 /* minor version 0; superblock after data */
1854 sector_t sb_start;
1855 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856 sb_start &= ~(sector_t)(4*2 - 1);
1857 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858 if (!num_sectors || num_sectors > max_sectors)
1859 num_sectors = max_sectors;
1860 rdev->sb_start = sb_start;
1861 }
1862 sb = page_address(rdev->sb_page);
1863 sb->data_size = cpu_to_le64(num_sectors);
1864 sb->super_offset = rdev->sb_start;
1865 sb->sb_csum = calc_sb_1_csum(sb);
1866 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867 rdev->sb_page);
1868 md_super_wait(rdev->mddev);
1869 return num_sectors;
1870
1871 }
1872
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875 unsigned long long new_offset)
1876 {
1877 /* All necessary checks on new >= old have been done */
1878 struct bitmap *bitmap;
1879 if (new_offset >= rdev->data_offset)
1880 return 1;
1881
1882 /* with 1.0 metadata, there is no metadata to tread on
1883 * so we can always move back */
1884 if (rdev->mddev->minor_version == 0)
1885 return 1;
1886
1887 /* otherwise we must be sure not to step on
1888 * any metadata, so stay:
1889 * 36K beyond start of superblock
1890 * beyond end of badblocks
1891 * beyond write-intent bitmap
1892 */
1893 if (rdev->sb_start + (32+4)*2 > new_offset)
1894 return 0;
1895 bitmap = rdev->mddev->bitmap;
1896 if (bitmap && !rdev->mddev->bitmap_info.file &&
1897 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899 return 0;
1900 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901 return 0;
1902
1903 return 1;
1904 }
1905
1906 static struct super_type super_types[] = {
1907 [0] = {
1908 .name = "0.90.0",
1909 .owner = THIS_MODULE,
1910 .load_super = super_90_load,
1911 .validate_super = super_90_validate,
1912 .sync_super = super_90_sync,
1913 .rdev_size_change = super_90_rdev_size_change,
1914 .allow_new_offset = super_90_allow_new_offset,
1915 },
1916 [1] = {
1917 .name = "md-1",
1918 .owner = THIS_MODULE,
1919 .load_super = super_1_load,
1920 .validate_super = super_1_validate,
1921 .sync_super = super_1_sync,
1922 .rdev_size_change = super_1_rdev_size_change,
1923 .allow_new_offset = super_1_allow_new_offset,
1924 },
1925 };
1926
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929 if (mddev->sync_super) {
1930 mddev->sync_super(mddev, rdev);
1931 return;
1932 }
1933
1934 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935
1936 super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941 struct md_rdev *rdev, *rdev2;
1942
1943 rcu_read_lock();
1944 rdev_for_each_rcu(rdev, mddev1)
1945 rdev_for_each_rcu(rdev2, mddev2)
1946 if (rdev->bdev->bd_contains ==
1947 rdev2->bdev->bd_contains) {
1948 rcu_read_unlock();
1949 return 1;
1950 }
1951 rcu_read_unlock();
1952 return 0;
1953 }
1954
1955 static LIST_HEAD(pending_raid_disks);
1956
1957 /*
1958 * Try to register data integrity profile for an mddev
1959 *
1960 * This is called when an array is started and after a disk has been kicked
1961 * from the array. It only succeeds if all working and active component devices
1962 * are integrity capable with matching profiles.
1963 */
1964 int md_integrity_register(struct mddev *mddev)
1965 {
1966 struct md_rdev *rdev, *reference = NULL;
1967
1968 if (list_empty(&mddev->disks))
1969 return 0; /* nothing to do */
1970 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1971 return 0; /* shouldn't register, or already is */
1972 rdev_for_each(rdev, mddev) {
1973 /* skip spares and non-functional disks */
1974 if (test_bit(Faulty, &rdev->flags))
1975 continue;
1976 if (rdev->raid_disk < 0)
1977 continue;
1978 if (!reference) {
1979 /* Use the first rdev as the reference */
1980 reference = rdev;
1981 continue;
1982 }
1983 /* does this rdev's profile match the reference profile? */
1984 if (blk_integrity_compare(reference->bdev->bd_disk,
1985 rdev->bdev->bd_disk) < 0)
1986 return -EINVAL;
1987 }
1988 if (!reference || !bdev_get_integrity(reference->bdev))
1989 return 0;
1990 /*
1991 * All component devices are integrity capable and have matching
1992 * profiles, register the common profile for the md device.
1993 */
1994 if (blk_integrity_register(mddev->gendisk,
1995 bdev_get_integrity(reference->bdev)) != 0) {
1996 printk(KERN_ERR "md: failed to register integrity for %s\n",
1997 mdname(mddev));
1998 return -EINVAL;
1999 }
2000 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2001 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2002 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2003 mdname(mddev));
2004 return -EINVAL;
2005 }
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(md_integrity_register);
2009
2010 /* Disable data integrity if non-capable/non-matching disk is being added */
2011 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2012 {
2013 struct blk_integrity *bi_rdev;
2014 struct blk_integrity *bi_mddev;
2015
2016 if (!mddev->gendisk)
2017 return;
2018
2019 bi_rdev = bdev_get_integrity(rdev->bdev);
2020 bi_mddev = blk_get_integrity(mddev->gendisk);
2021
2022 if (!bi_mddev) /* nothing to do */
2023 return;
2024 if (rdev->raid_disk < 0) /* skip spares */
2025 return;
2026 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2027 rdev->bdev->bd_disk) >= 0)
2028 return;
2029 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2030 blk_integrity_unregister(mddev->gendisk);
2031 }
2032 EXPORT_SYMBOL(md_integrity_add_rdev);
2033
2034 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2035 {
2036 char b[BDEVNAME_SIZE];
2037 struct kobject *ko;
2038 char *s;
2039 int err;
2040
2041 /* prevent duplicates */
2042 if (find_rdev(mddev, rdev->bdev->bd_dev))
2043 return -EEXIST;
2044
2045 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2046 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2047 rdev->sectors < mddev->dev_sectors)) {
2048 if (mddev->pers) {
2049 /* Cannot change size, so fail
2050 * If mddev->level <= 0, then we don't care
2051 * about aligning sizes (e.g. linear)
2052 */
2053 if (mddev->level > 0)
2054 return -ENOSPC;
2055 } else
2056 mddev->dev_sectors = rdev->sectors;
2057 }
2058
2059 /* Verify rdev->desc_nr is unique.
2060 * If it is -1, assign a free number, else
2061 * check number is not in use
2062 */
2063 rcu_read_lock();
2064 if (rdev->desc_nr < 0) {
2065 int choice = 0;
2066 if (mddev->pers)
2067 choice = mddev->raid_disks;
2068 while (find_rdev_nr_rcu(mddev, choice))
2069 choice++;
2070 rdev->desc_nr = choice;
2071 } else {
2072 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2073 rcu_read_unlock();
2074 return -EBUSY;
2075 }
2076 }
2077 rcu_read_unlock();
2078 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2079 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2080 mdname(mddev), mddev->max_disks);
2081 return -EBUSY;
2082 }
2083 bdevname(rdev->bdev,b);
2084 while ( (s=strchr(b, '/')) != NULL)
2085 *s = '!';
2086
2087 rdev->mddev = mddev;
2088 printk(KERN_INFO "md: bind<%s>\n", b);
2089
2090 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2091 goto fail;
2092
2093 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2094 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2095 /* failure here is OK */;
2096 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2097
2098 list_add_rcu(&rdev->same_set, &mddev->disks);
2099 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2100
2101 /* May as well allow recovery to be retried once */
2102 mddev->recovery_disabled++;
2103
2104 return 0;
2105
2106 fail:
2107 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2108 b, mdname(mddev));
2109 return err;
2110 }
2111
2112 static void md_delayed_delete(struct work_struct *ws)
2113 {
2114 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2115 kobject_del(&rdev->kobj);
2116 kobject_put(&rdev->kobj);
2117 }
2118
2119 static void unbind_rdev_from_array(struct md_rdev *rdev)
2120 {
2121 char b[BDEVNAME_SIZE];
2122
2123 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2124 list_del_rcu(&rdev->same_set);
2125 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2126 rdev->mddev = NULL;
2127 sysfs_remove_link(&rdev->kobj, "block");
2128 sysfs_put(rdev->sysfs_state);
2129 rdev->sysfs_state = NULL;
2130 rdev->badblocks.count = 0;
2131 /* We need to delay this, otherwise we can deadlock when
2132 * writing to 'remove' to "dev/state". We also need
2133 * to delay it due to rcu usage.
2134 */
2135 synchronize_rcu();
2136 INIT_WORK(&rdev->del_work, md_delayed_delete);
2137 kobject_get(&rdev->kobj);
2138 queue_work(md_misc_wq, &rdev->del_work);
2139 }
2140
2141 /*
2142 * prevent the device from being mounted, repartitioned or
2143 * otherwise reused by a RAID array (or any other kernel
2144 * subsystem), by bd_claiming the device.
2145 */
2146 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2147 {
2148 int err = 0;
2149 struct block_device *bdev;
2150 char b[BDEVNAME_SIZE];
2151
2152 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2153 shared ? (struct md_rdev *)lock_rdev : rdev);
2154 if (IS_ERR(bdev)) {
2155 printk(KERN_ERR "md: could not open %s.\n",
2156 __bdevname(dev, b));
2157 return PTR_ERR(bdev);
2158 }
2159 rdev->bdev = bdev;
2160 return err;
2161 }
2162
2163 static void unlock_rdev(struct md_rdev *rdev)
2164 {
2165 struct block_device *bdev = rdev->bdev;
2166 rdev->bdev = NULL;
2167 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2168 }
2169
2170 void md_autodetect_dev(dev_t dev);
2171
2172 static void export_rdev(struct md_rdev *rdev)
2173 {
2174 char b[BDEVNAME_SIZE];
2175
2176 printk(KERN_INFO "md: export_rdev(%s)\n",
2177 bdevname(rdev->bdev,b));
2178 md_rdev_clear(rdev);
2179 #ifndef MODULE
2180 if (test_bit(AutoDetected, &rdev->flags))
2181 md_autodetect_dev(rdev->bdev->bd_dev);
2182 #endif
2183 unlock_rdev(rdev);
2184 kobject_put(&rdev->kobj);
2185 }
2186
2187 static void kick_rdev_from_array(struct md_rdev *rdev)
2188 {
2189 unbind_rdev_from_array(rdev);
2190 export_rdev(rdev);
2191 }
2192
2193 static void export_array(struct mddev *mddev)
2194 {
2195 struct md_rdev *rdev;
2196
2197 while (!list_empty(&mddev->disks)) {
2198 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2199 same_set);
2200 kick_rdev_from_array(rdev);
2201 }
2202 mddev->raid_disks = 0;
2203 mddev->major_version = 0;
2204 }
2205
2206 static void sync_sbs(struct mddev *mddev, int nospares)
2207 {
2208 /* Update each superblock (in-memory image), but
2209 * if we are allowed to, skip spares which already
2210 * have the right event counter, or have one earlier
2211 * (which would mean they aren't being marked as dirty
2212 * with the rest of the array)
2213 */
2214 struct md_rdev *rdev;
2215 rdev_for_each(rdev, mddev) {
2216 if (rdev->sb_events == mddev->events ||
2217 (nospares &&
2218 rdev->raid_disk < 0 &&
2219 rdev->sb_events+1 == mddev->events)) {
2220 /* Don't update this superblock */
2221 rdev->sb_loaded = 2;
2222 } else {
2223 sync_super(mddev, rdev);
2224 rdev->sb_loaded = 1;
2225 }
2226 }
2227 }
2228
2229 static void md_update_sb(struct mddev *mddev, int force_change)
2230 {
2231 struct md_rdev *rdev;
2232 int sync_req;
2233 int nospares = 0;
2234 int any_badblocks_changed = 0;
2235
2236 if (mddev->ro) {
2237 if (force_change)
2238 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2239 return;
2240 }
2241 repeat:
2242 /* First make sure individual recovery_offsets are correct */
2243 rdev_for_each(rdev, mddev) {
2244 if (rdev->raid_disk >= 0 &&
2245 mddev->delta_disks >= 0 &&
2246 !test_bit(In_sync, &rdev->flags) &&
2247 mddev->curr_resync_completed > rdev->recovery_offset)
2248 rdev->recovery_offset = mddev->curr_resync_completed;
2249
2250 }
2251 if (!mddev->persistent) {
2252 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2253 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2254 if (!mddev->external) {
2255 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2256 rdev_for_each(rdev, mddev) {
2257 if (rdev->badblocks.changed) {
2258 rdev->badblocks.changed = 0;
2259 md_ack_all_badblocks(&rdev->badblocks);
2260 md_error(mddev, rdev);
2261 }
2262 clear_bit(Blocked, &rdev->flags);
2263 clear_bit(BlockedBadBlocks, &rdev->flags);
2264 wake_up(&rdev->blocked_wait);
2265 }
2266 }
2267 wake_up(&mddev->sb_wait);
2268 return;
2269 }
2270
2271 spin_lock(&mddev->lock);
2272
2273 mddev->utime = get_seconds();
2274
2275 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2276 force_change = 1;
2277 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2278 /* just a clean<-> dirty transition, possibly leave spares alone,
2279 * though if events isn't the right even/odd, we will have to do
2280 * spares after all
2281 */
2282 nospares = 1;
2283 if (force_change)
2284 nospares = 0;
2285 if (mddev->degraded)
2286 /* If the array is degraded, then skipping spares is both
2287 * dangerous and fairly pointless.
2288 * Dangerous because a device that was removed from the array
2289 * might have a event_count that still looks up-to-date,
2290 * so it can be re-added without a resync.
2291 * Pointless because if there are any spares to skip,
2292 * then a recovery will happen and soon that array won't
2293 * be degraded any more and the spare can go back to sleep then.
2294 */
2295 nospares = 0;
2296
2297 sync_req = mddev->in_sync;
2298
2299 /* If this is just a dirty<->clean transition, and the array is clean
2300 * and 'events' is odd, we can roll back to the previous clean state */
2301 if (nospares
2302 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2303 && mddev->can_decrease_events
2304 && mddev->events != 1) {
2305 mddev->events--;
2306 mddev->can_decrease_events = 0;
2307 } else {
2308 /* otherwise we have to go forward and ... */
2309 mddev->events ++;
2310 mddev->can_decrease_events = nospares;
2311 }
2312
2313 /*
2314 * This 64-bit counter should never wrap.
2315 * Either we are in around ~1 trillion A.C., assuming
2316 * 1 reboot per second, or we have a bug...
2317 */
2318 WARN_ON(mddev->events == 0);
2319
2320 rdev_for_each(rdev, mddev) {
2321 if (rdev->badblocks.changed)
2322 any_badblocks_changed++;
2323 if (test_bit(Faulty, &rdev->flags))
2324 set_bit(FaultRecorded, &rdev->flags);
2325 }
2326
2327 sync_sbs(mddev, nospares);
2328 spin_unlock(&mddev->lock);
2329
2330 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2331 mdname(mddev), mddev->in_sync);
2332
2333 bitmap_update_sb(mddev->bitmap);
2334 rdev_for_each(rdev, mddev) {
2335 char b[BDEVNAME_SIZE];
2336
2337 if (rdev->sb_loaded != 1)
2338 continue; /* no noise on spare devices */
2339
2340 if (!test_bit(Faulty, &rdev->flags)) {
2341 md_super_write(mddev,rdev,
2342 rdev->sb_start, rdev->sb_size,
2343 rdev->sb_page);
2344 pr_debug("md: (write) %s's sb offset: %llu\n",
2345 bdevname(rdev->bdev, b),
2346 (unsigned long long)rdev->sb_start);
2347 rdev->sb_events = mddev->events;
2348 if (rdev->badblocks.size) {
2349 md_super_write(mddev, rdev,
2350 rdev->badblocks.sector,
2351 rdev->badblocks.size << 9,
2352 rdev->bb_page);
2353 rdev->badblocks.size = 0;
2354 }
2355
2356 } else
2357 pr_debug("md: %s (skipping faulty)\n",
2358 bdevname(rdev->bdev, b));
2359
2360 if (mddev->level == LEVEL_MULTIPATH)
2361 /* only need to write one superblock... */
2362 break;
2363 }
2364 md_super_wait(mddev);
2365 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2366
2367 spin_lock(&mddev->lock);
2368 if (mddev->in_sync != sync_req ||
2369 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2370 /* have to write it out again */
2371 spin_unlock(&mddev->lock);
2372 goto repeat;
2373 }
2374 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2375 spin_unlock(&mddev->lock);
2376 wake_up(&mddev->sb_wait);
2377 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2378 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2379
2380 rdev_for_each(rdev, mddev) {
2381 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2382 clear_bit(Blocked, &rdev->flags);
2383
2384 if (any_badblocks_changed)
2385 md_ack_all_badblocks(&rdev->badblocks);
2386 clear_bit(BlockedBadBlocks, &rdev->flags);
2387 wake_up(&rdev->blocked_wait);
2388 }
2389 }
2390
2391 /* words written to sysfs files may, or may not, be \n terminated.
2392 * We want to accept with case. For this we use cmd_match.
2393 */
2394 static int cmd_match(const char *cmd, const char *str)
2395 {
2396 /* See if cmd, written into a sysfs file, matches
2397 * str. They must either be the same, or cmd can
2398 * have a trailing newline
2399 */
2400 while (*cmd && *str && *cmd == *str) {
2401 cmd++;
2402 str++;
2403 }
2404 if (*cmd == '\n')
2405 cmd++;
2406 if (*str || *cmd)
2407 return 0;
2408 return 1;
2409 }
2410
2411 struct rdev_sysfs_entry {
2412 struct attribute attr;
2413 ssize_t (*show)(struct md_rdev *, char *);
2414 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2415 };
2416
2417 static ssize_t
2418 state_show(struct md_rdev *rdev, char *page)
2419 {
2420 char *sep = "";
2421 size_t len = 0;
2422 unsigned long flags = ACCESS_ONCE(rdev->flags);
2423
2424 if (test_bit(Faulty, &flags) ||
2425 rdev->badblocks.unacked_exist) {
2426 len+= sprintf(page+len, "%sfaulty",sep);
2427 sep = ",";
2428 }
2429 if (test_bit(In_sync, &flags)) {
2430 len += sprintf(page+len, "%sin_sync",sep);
2431 sep = ",";
2432 }
2433 if (test_bit(WriteMostly, &flags)) {
2434 len += sprintf(page+len, "%swrite_mostly",sep);
2435 sep = ",";
2436 }
2437 if (test_bit(Blocked, &flags) ||
2438 (rdev->badblocks.unacked_exist
2439 && !test_bit(Faulty, &flags))) {
2440 len += sprintf(page+len, "%sblocked", sep);
2441 sep = ",";
2442 }
2443 if (!test_bit(Faulty, &flags) &&
2444 !test_bit(In_sync, &flags)) {
2445 len += sprintf(page+len, "%sspare", sep);
2446 sep = ",";
2447 }
2448 if (test_bit(WriteErrorSeen, &flags)) {
2449 len += sprintf(page+len, "%swrite_error", sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WantReplacement, &flags)) {
2453 len += sprintf(page+len, "%swant_replacement", sep);
2454 sep = ",";
2455 }
2456 if (test_bit(Replacement, &flags)) {
2457 len += sprintf(page+len, "%sreplacement", sep);
2458 sep = ",";
2459 }
2460
2461 return len+sprintf(page+len, "\n");
2462 }
2463
2464 static ssize_t
2465 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2466 {
2467 /* can write
2468 * faulty - simulates an error
2469 * remove - disconnects the device
2470 * writemostly - sets write_mostly
2471 * -writemostly - clears write_mostly
2472 * blocked - sets the Blocked flags
2473 * -blocked - clears the Blocked and possibly simulates an error
2474 * insync - sets Insync providing device isn't active
2475 * -insync - clear Insync for a device with a slot assigned,
2476 * so that it gets rebuilt based on bitmap
2477 * write_error - sets WriteErrorSeen
2478 * -write_error - clears WriteErrorSeen
2479 */
2480 int err = -EINVAL;
2481 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2482 md_error(rdev->mddev, rdev);
2483 if (test_bit(Faulty, &rdev->flags))
2484 err = 0;
2485 else
2486 err = -EBUSY;
2487 } else if (cmd_match(buf, "remove")) {
2488 if (rdev->raid_disk >= 0)
2489 err = -EBUSY;
2490 else {
2491 struct mddev *mddev = rdev->mddev;
2492 kick_rdev_from_array(rdev);
2493 if (mddev->pers)
2494 md_update_sb(mddev, 1);
2495 md_new_event(mddev);
2496 err = 0;
2497 }
2498 } else if (cmd_match(buf, "writemostly")) {
2499 set_bit(WriteMostly, &rdev->flags);
2500 err = 0;
2501 } else if (cmd_match(buf, "-writemostly")) {
2502 clear_bit(WriteMostly, &rdev->flags);
2503 err = 0;
2504 } else if (cmd_match(buf, "blocked")) {
2505 set_bit(Blocked, &rdev->flags);
2506 err = 0;
2507 } else if (cmd_match(buf, "-blocked")) {
2508 if (!test_bit(Faulty, &rdev->flags) &&
2509 rdev->badblocks.unacked_exist) {
2510 /* metadata handler doesn't understand badblocks,
2511 * so we need to fail the device
2512 */
2513 md_error(rdev->mddev, rdev);
2514 }
2515 clear_bit(Blocked, &rdev->flags);
2516 clear_bit(BlockedBadBlocks, &rdev->flags);
2517 wake_up(&rdev->blocked_wait);
2518 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2519 md_wakeup_thread(rdev->mddev->thread);
2520
2521 err = 0;
2522 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2523 set_bit(In_sync, &rdev->flags);
2524 err = 0;
2525 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2526 if (rdev->mddev->pers == NULL) {
2527 clear_bit(In_sync, &rdev->flags);
2528 rdev->saved_raid_disk = rdev->raid_disk;
2529 rdev->raid_disk = -1;
2530 err = 0;
2531 }
2532 } else if (cmd_match(buf, "write_error")) {
2533 set_bit(WriteErrorSeen, &rdev->flags);
2534 err = 0;
2535 } else if (cmd_match(buf, "-write_error")) {
2536 clear_bit(WriteErrorSeen, &rdev->flags);
2537 err = 0;
2538 } else if (cmd_match(buf, "want_replacement")) {
2539 /* Any non-spare device that is not a replacement can
2540 * become want_replacement at any time, but we then need to
2541 * check if recovery is needed.
2542 */
2543 if (rdev->raid_disk >= 0 &&
2544 !test_bit(Replacement, &rdev->flags))
2545 set_bit(WantReplacement, &rdev->flags);
2546 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2547 md_wakeup_thread(rdev->mddev->thread);
2548 err = 0;
2549 } else if (cmd_match(buf, "-want_replacement")) {
2550 /* Clearing 'want_replacement' is always allowed.
2551 * Once replacements starts it is too late though.
2552 */
2553 err = 0;
2554 clear_bit(WantReplacement, &rdev->flags);
2555 } else if (cmd_match(buf, "replacement")) {
2556 /* Can only set a device as a replacement when array has not
2557 * yet been started. Once running, replacement is automatic
2558 * from spares, or by assigning 'slot'.
2559 */
2560 if (rdev->mddev->pers)
2561 err = -EBUSY;
2562 else {
2563 set_bit(Replacement, &rdev->flags);
2564 err = 0;
2565 }
2566 } else if (cmd_match(buf, "-replacement")) {
2567 /* Similarly, can only clear Replacement before start */
2568 if (rdev->mddev->pers)
2569 err = -EBUSY;
2570 else {
2571 clear_bit(Replacement, &rdev->flags);
2572 err = 0;
2573 }
2574 }
2575 if (!err)
2576 sysfs_notify_dirent_safe(rdev->sysfs_state);
2577 return err ? err : len;
2578 }
2579 static struct rdev_sysfs_entry rdev_state =
2580 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2581
2582 static ssize_t
2583 errors_show(struct md_rdev *rdev, char *page)
2584 {
2585 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2586 }
2587
2588 static ssize_t
2589 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2590 {
2591 char *e;
2592 unsigned long n = simple_strtoul(buf, &e, 10);
2593 if (*buf && (*e == 0 || *e == '\n')) {
2594 atomic_set(&rdev->corrected_errors, n);
2595 return len;
2596 }
2597 return -EINVAL;
2598 }
2599 static struct rdev_sysfs_entry rdev_errors =
2600 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2601
2602 static ssize_t
2603 slot_show(struct md_rdev *rdev, char *page)
2604 {
2605 if (rdev->raid_disk < 0)
2606 return sprintf(page, "none\n");
2607 else
2608 return sprintf(page, "%d\n", rdev->raid_disk);
2609 }
2610
2611 static ssize_t
2612 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2613 {
2614 char *e;
2615 int err;
2616 int slot = simple_strtoul(buf, &e, 10);
2617 if (strncmp(buf, "none", 4)==0)
2618 slot = -1;
2619 else if (e==buf || (*e && *e!= '\n'))
2620 return -EINVAL;
2621 if (rdev->mddev->pers && slot == -1) {
2622 /* Setting 'slot' on an active array requires also
2623 * updating the 'rd%d' link, and communicating
2624 * with the personality with ->hot_*_disk.
2625 * For now we only support removing
2626 * failed/spare devices. This normally happens automatically,
2627 * but not when the metadata is externally managed.
2628 */
2629 if (rdev->raid_disk == -1)
2630 return -EEXIST;
2631 /* personality does all needed checks */
2632 if (rdev->mddev->pers->hot_remove_disk == NULL)
2633 return -EINVAL;
2634 clear_bit(Blocked, &rdev->flags);
2635 remove_and_add_spares(rdev->mddev, rdev);
2636 if (rdev->raid_disk >= 0)
2637 return -EBUSY;
2638 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2639 md_wakeup_thread(rdev->mddev->thread);
2640 } else if (rdev->mddev->pers) {
2641 /* Activating a spare .. or possibly reactivating
2642 * if we ever get bitmaps working here.
2643 */
2644
2645 if (rdev->raid_disk != -1)
2646 return -EBUSY;
2647
2648 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2649 return -EBUSY;
2650
2651 if (rdev->mddev->pers->hot_add_disk == NULL)
2652 return -EINVAL;
2653
2654 if (slot >= rdev->mddev->raid_disks &&
2655 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2656 return -ENOSPC;
2657
2658 rdev->raid_disk = slot;
2659 if (test_bit(In_sync, &rdev->flags))
2660 rdev->saved_raid_disk = slot;
2661 else
2662 rdev->saved_raid_disk = -1;
2663 clear_bit(In_sync, &rdev->flags);
2664 clear_bit(Bitmap_sync, &rdev->flags);
2665 err = rdev->mddev->pers->
2666 hot_add_disk(rdev->mddev, rdev);
2667 if (err) {
2668 rdev->raid_disk = -1;
2669 return err;
2670 } else
2671 sysfs_notify_dirent_safe(rdev->sysfs_state);
2672 if (sysfs_link_rdev(rdev->mddev, rdev))
2673 /* failure here is OK */;
2674 /* don't wakeup anyone, leave that to userspace. */
2675 } else {
2676 if (slot >= rdev->mddev->raid_disks &&
2677 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2678 return -ENOSPC;
2679 rdev->raid_disk = slot;
2680 /* assume it is working */
2681 clear_bit(Faulty, &rdev->flags);
2682 clear_bit(WriteMostly, &rdev->flags);
2683 set_bit(In_sync, &rdev->flags);
2684 sysfs_notify_dirent_safe(rdev->sysfs_state);
2685 }
2686 return len;
2687 }
2688
2689 static struct rdev_sysfs_entry rdev_slot =
2690 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2691
2692 static ssize_t
2693 offset_show(struct md_rdev *rdev, char *page)
2694 {
2695 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2696 }
2697
2698 static ssize_t
2699 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2700 {
2701 unsigned long long offset;
2702 if (kstrtoull(buf, 10, &offset) < 0)
2703 return -EINVAL;
2704 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2705 return -EBUSY;
2706 if (rdev->sectors && rdev->mddev->external)
2707 /* Must set offset before size, so overlap checks
2708 * can be sane */
2709 return -EBUSY;
2710 rdev->data_offset = offset;
2711 rdev->new_data_offset = offset;
2712 return len;
2713 }
2714
2715 static struct rdev_sysfs_entry rdev_offset =
2716 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2717
2718 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2719 {
2720 return sprintf(page, "%llu\n",
2721 (unsigned long long)rdev->new_data_offset);
2722 }
2723
2724 static ssize_t new_offset_store(struct md_rdev *rdev,
2725 const char *buf, size_t len)
2726 {
2727 unsigned long long new_offset;
2728 struct mddev *mddev = rdev->mddev;
2729
2730 if (kstrtoull(buf, 10, &new_offset) < 0)
2731 return -EINVAL;
2732
2733 if (mddev->sync_thread ||
2734 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2735 return -EBUSY;
2736 if (new_offset == rdev->data_offset)
2737 /* reset is always permitted */
2738 ;
2739 else if (new_offset > rdev->data_offset) {
2740 /* must not push array size beyond rdev_sectors */
2741 if (new_offset - rdev->data_offset
2742 + mddev->dev_sectors > rdev->sectors)
2743 return -E2BIG;
2744 }
2745 /* Metadata worries about other space details. */
2746
2747 /* decreasing the offset is inconsistent with a backwards
2748 * reshape.
2749 */
2750 if (new_offset < rdev->data_offset &&
2751 mddev->reshape_backwards)
2752 return -EINVAL;
2753 /* Increasing offset is inconsistent with forwards
2754 * reshape. reshape_direction should be set to
2755 * 'backwards' first.
2756 */
2757 if (new_offset > rdev->data_offset &&
2758 !mddev->reshape_backwards)
2759 return -EINVAL;
2760
2761 if (mddev->pers && mddev->persistent &&
2762 !super_types[mddev->major_version]
2763 .allow_new_offset(rdev, new_offset))
2764 return -E2BIG;
2765 rdev->new_data_offset = new_offset;
2766 if (new_offset > rdev->data_offset)
2767 mddev->reshape_backwards = 1;
2768 else if (new_offset < rdev->data_offset)
2769 mddev->reshape_backwards = 0;
2770
2771 return len;
2772 }
2773 static struct rdev_sysfs_entry rdev_new_offset =
2774 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2775
2776 static ssize_t
2777 rdev_size_show(struct md_rdev *rdev, char *page)
2778 {
2779 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2780 }
2781
2782 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2783 {
2784 /* check if two start/length pairs overlap */
2785 if (s1+l1 <= s2)
2786 return 0;
2787 if (s2+l2 <= s1)
2788 return 0;
2789 return 1;
2790 }
2791
2792 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2793 {
2794 unsigned long long blocks;
2795 sector_t new;
2796
2797 if (kstrtoull(buf, 10, &blocks) < 0)
2798 return -EINVAL;
2799
2800 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2801 return -EINVAL; /* sector conversion overflow */
2802
2803 new = blocks * 2;
2804 if (new != blocks * 2)
2805 return -EINVAL; /* unsigned long long to sector_t overflow */
2806
2807 *sectors = new;
2808 return 0;
2809 }
2810
2811 static ssize_t
2812 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2813 {
2814 struct mddev *my_mddev = rdev->mddev;
2815 sector_t oldsectors = rdev->sectors;
2816 sector_t sectors;
2817
2818 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2819 return -EINVAL;
2820 if (rdev->data_offset != rdev->new_data_offset)
2821 return -EINVAL; /* too confusing */
2822 if (my_mddev->pers && rdev->raid_disk >= 0) {
2823 if (my_mddev->persistent) {
2824 sectors = super_types[my_mddev->major_version].
2825 rdev_size_change(rdev, sectors);
2826 if (!sectors)
2827 return -EBUSY;
2828 } else if (!sectors)
2829 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2830 rdev->data_offset;
2831 if (!my_mddev->pers->resize)
2832 /* Cannot change size for RAID0 or Linear etc */
2833 return -EINVAL;
2834 }
2835 if (sectors < my_mddev->dev_sectors)
2836 return -EINVAL; /* component must fit device */
2837
2838 rdev->sectors = sectors;
2839 if (sectors > oldsectors && my_mddev->external) {
2840 /* Need to check that all other rdevs with the same
2841 * ->bdev do not overlap. 'rcu' is sufficient to walk
2842 * the rdev lists safely.
2843 * This check does not provide a hard guarantee, it
2844 * just helps avoid dangerous mistakes.
2845 */
2846 struct mddev *mddev;
2847 int overlap = 0;
2848 struct list_head *tmp;
2849
2850 rcu_read_lock();
2851 for_each_mddev(mddev, tmp) {
2852 struct md_rdev *rdev2;
2853
2854 rdev_for_each(rdev2, mddev)
2855 if (rdev->bdev == rdev2->bdev &&
2856 rdev != rdev2 &&
2857 overlaps(rdev->data_offset, rdev->sectors,
2858 rdev2->data_offset,
2859 rdev2->sectors)) {
2860 overlap = 1;
2861 break;
2862 }
2863 if (overlap) {
2864 mddev_put(mddev);
2865 break;
2866 }
2867 }
2868 rcu_read_unlock();
2869 if (overlap) {
2870 /* Someone else could have slipped in a size
2871 * change here, but doing so is just silly.
2872 * We put oldsectors back because we *know* it is
2873 * safe, and trust userspace not to race with
2874 * itself
2875 */
2876 rdev->sectors = oldsectors;
2877 return -EBUSY;
2878 }
2879 }
2880 return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_size =
2884 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2885
2886 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2887 {
2888 unsigned long long recovery_start = rdev->recovery_offset;
2889
2890 if (test_bit(In_sync, &rdev->flags) ||
2891 recovery_start == MaxSector)
2892 return sprintf(page, "none\n");
2893
2894 return sprintf(page, "%llu\n", recovery_start);
2895 }
2896
2897 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2898 {
2899 unsigned long long recovery_start;
2900
2901 if (cmd_match(buf, "none"))
2902 recovery_start = MaxSector;
2903 else if (kstrtoull(buf, 10, &recovery_start))
2904 return -EINVAL;
2905
2906 if (rdev->mddev->pers &&
2907 rdev->raid_disk >= 0)
2908 return -EBUSY;
2909
2910 rdev->recovery_offset = recovery_start;
2911 if (recovery_start == MaxSector)
2912 set_bit(In_sync, &rdev->flags);
2913 else
2914 clear_bit(In_sync, &rdev->flags);
2915 return len;
2916 }
2917
2918 static struct rdev_sysfs_entry rdev_recovery_start =
2919 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2920
2921 static ssize_t
2922 badblocks_show(struct badblocks *bb, char *page, int unack);
2923 static ssize_t
2924 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2925
2926 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2927 {
2928 return badblocks_show(&rdev->badblocks, page, 0);
2929 }
2930 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2931 {
2932 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2933 /* Maybe that ack was all we needed */
2934 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2935 wake_up(&rdev->blocked_wait);
2936 return rv;
2937 }
2938 static struct rdev_sysfs_entry rdev_bad_blocks =
2939 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2940
2941 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2942 {
2943 return badblocks_show(&rdev->badblocks, page, 1);
2944 }
2945 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2946 {
2947 return badblocks_store(&rdev->badblocks, page, len, 1);
2948 }
2949 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2950 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2951
2952 static struct attribute *rdev_default_attrs[] = {
2953 &rdev_state.attr,
2954 &rdev_errors.attr,
2955 &rdev_slot.attr,
2956 &rdev_offset.attr,
2957 &rdev_new_offset.attr,
2958 &rdev_size.attr,
2959 &rdev_recovery_start.attr,
2960 &rdev_bad_blocks.attr,
2961 &rdev_unack_bad_blocks.attr,
2962 NULL,
2963 };
2964 static ssize_t
2965 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2966 {
2967 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2968 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2969
2970 if (!entry->show)
2971 return -EIO;
2972 if (!rdev->mddev)
2973 return -EBUSY;
2974 return entry->show(rdev, page);
2975 }
2976
2977 static ssize_t
2978 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2979 const char *page, size_t length)
2980 {
2981 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2982 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2983 ssize_t rv;
2984 struct mddev *mddev = rdev->mddev;
2985
2986 if (!entry->store)
2987 return -EIO;
2988 if (!capable(CAP_SYS_ADMIN))
2989 return -EACCES;
2990 rv = mddev ? mddev_lock(mddev): -EBUSY;
2991 if (!rv) {
2992 if (rdev->mddev == NULL)
2993 rv = -EBUSY;
2994 else
2995 rv = entry->store(rdev, page, length);
2996 mddev_unlock(mddev);
2997 }
2998 return rv;
2999 }
3000
3001 static void rdev_free(struct kobject *ko)
3002 {
3003 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3004 kfree(rdev);
3005 }
3006 static const struct sysfs_ops rdev_sysfs_ops = {
3007 .show = rdev_attr_show,
3008 .store = rdev_attr_store,
3009 };
3010 static struct kobj_type rdev_ktype = {
3011 .release = rdev_free,
3012 .sysfs_ops = &rdev_sysfs_ops,
3013 .default_attrs = rdev_default_attrs,
3014 };
3015
3016 int md_rdev_init(struct md_rdev *rdev)
3017 {
3018 rdev->desc_nr = -1;
3019 rdev->saved_raid_disk = -1;
3020 rdev->raid_disk = -1;
3021 rdev->flags = 0;
3022 rdev->data_offset = 0;
3023 rdev->new_data_offset = 0;
3024 rdev->sb_events = 0;
3025 rdev->last_read_error.tv_sec = 0;
3026 rdev->last_read_error.tv_nsec = 0;
3027 rdev->sb_loaded = 0;
3028 rdev->bb_page = NULL;
3029 atomic_set(&rdev->nr_pending, 0);
3030 atomic_set(&rdev->read_errors, 0);
3031 atomic_set(&rdev->corrected_errors, 0);
3032
3033 INIT_LIST_HEAD(&rdev->same_set);
3034 init_waitqueue_head(&rdev->blocked_wait);
3035
3036 /* Add space to store bad block list.
3037 * This reserves the space even on arrays where it cannot
3038 * be used - I wonder if that matters
3039 */
3040 rdev->badblocks.count = 0;
3041 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3042 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3043 seqlock_init(&rdev->badblocks.lock);
3044 if (rdev->badblocks.page == NULL)
3045 return -ENOMEM;
3046
3047 return 0;
3048 }
3049 EXPORT_SYMBOL_GPL(md_rdev_init);
3050 /*
3051 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3052 *
3053 * mark the device faulty if:
3054 *
3055 * - the device is nonexistent (zero size)
3056 * - the device has no valid superblock
3057 *
3058 * a faulty rdev _never_ has rdev->sb set.
3059 */
3060 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3061 {
3062 char b[BDEVNAME_SIZE];
3063 int err;
3064 struct md_rdev *rdev;
3065 sector_t size;
3066
3067 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3068 if (!rdev) {
3069 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3070 return ERR_PTR(-ENOMEM);
3071 }
3072
3073 err = md_rdev_init(rdev);
3074 if (err)
3075 goto abort_free;
3076 err = alloc_disk_sb(rdev);
3077 if (err)
3078 goto abort_free;
3079
3080 err = lock_rdev(rdev, newdev, super_format == -2);
3081 if (err)
3082 goto abort_free;
3083
3084 kobject_init(&rdev->kobj, &rdev_ktype);
3085
3086 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3087 if (!size) {
3088 printk(KERN_WARNING
3089 "md: %s has zero or unknown size, marking faulty!\n",
3090 bdevname(rdev->bdev,b));
3091 err = -EINVAL;
3092 goto abort_free;
3093 }
3094
3095 if (super_format >= 0) {
3096 err = super_types[super_format].
3097 load_super(rdev, NULL, super_minor);
3098 if (err == -EINVAL) {
3099 printk(KERN_WARNING
3100 "md: %s does not have a valid v%d.%d "
3101 "superblock, not importing!\n",
3102 bdevname(rdev->bdev,b),
3103 super_format, super_minor);
3104 goto abort_free;
3105 }
3106 if (err < 0) {
3107 printk(KERN_WARNING
3108 "md: could not read %s's sb, not importing!\n",
3109 bdevname(rdev->bdev,b));
3110 goto abort_free;
3111 }
3112 }
3113
3114 return rdev;
3115
3116 abort_free:
3117 if (rdev->bdev)
3118 unlock_rdev(rdev);
3119 md_rdev_clear(rdev);
3120 kfree(rdev);
3121 return ERR_PTR(err);
3122 }
3123
3124 /*
3125 * Check a full RAID array for plausibility
3126 */
3127
3128 static void analyze_sbs(struct mddev *mddev)
3129 {
3130 int i;
3131 struct md_rdev *rdev, *freshest, *tmp;
3132 char b[BDEVNAME_SIZE];
3133
3134 freshest = NULL;
3135 rdev_for_each_safe(rdev, tmp, mddev)
3136 switch (super_types[mddev->major_version].
3137 load_super(rdev, freshest, mddev->minor_version)) {
3138 case 1:
3139 freshest = rdev;
3140 break;
3141 case 0:
3142 break;
3143 default:
3144 printk( KERN_ERR \
3145 "md: fatal superblock inconsistency in %s"
3146 " -- removing from array\n",
3147 bdevname(rdev->bdev,b));
3148 kick_rdev_from_array(rdev);
3149 }
3150
3151 super_types[mddev->major_version].
3152 validate_super(mddev, freshest);
3153
3154 i = 0;
3155 rdev_for_each_safe(rdev, tmp, mddev) {
3156 if (mddev->max_disks &&
3157 (rdev->desc_nr >= mddev->max_disks ||
3158 i > mddev->max_disks)) {
3159 printk(KERN_WARNING
3160 "md: %s: %s: only %d devices permitted\n",
3161 mdname(mddev), bdevname(rdev->bdev, b),
3162 mddev->max_disks);
3163 kick_rdev_from_array(rdev);
3164 continue;
3165 }
3166 if (rdev != freshest)
3167 if (super_types[mddev->major_version].
3168 validate_super(mddev, rdev)) {
3169 printk(KERN_WARNING "md: kicking non-fresh %s"
3170 " from array!\n",
3171 bdevname(rdev->bdev,b));
3172 kick_rdev_from_array(rdev);
3173 continue;
3174 }
3175 if (mddev->level == LEVEL_MULTIPATH) {
3176 rdev->desc_nr = i++;
3177 rdev->raid_disk = rdev->desc_nr;
3178 set_bit(In_sync, &rdev->flags);
3179 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3180 rdev->raid_disk = -1;
3181 clear_bit(In_sync, &rdev->flags);
3182 }
3183 }
3184 }
3185
3186 /* Read a fixed-point number.
3187 * Numbers in sysfs attributes should be in "standard" units where
3188 * possible, so time should be in seconds.
3189 * However we internally use a a much smaller unit such as
3190 * milliseconds or jiffies.
3191 * This function takes a decimal number with a possible fractional
3192 * component, and produces an integer which is the result of
3193 * multiplying that number by 10^'scale'.
3194 * all without any floating-point arithmetic.
3195 */
3196 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3197 {
3198 unsigned long result = 0;
3199 long decimals = -1;
3200 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3201 if (*cp == '.')
3202 decimals = 0;
3203 else if (decimals < scale) {
3204 unsigned int value;
3205 value = *cp - '0';
3206 result = result * 10 + value;
3207 if (decimals >= 0)
3208 decimals++;
3209 }
3210 cp++;
3211 }
3212 if (*cp == '\n')
3213 cp++;
3214 if (*cp)
3215 return -EINVAL;
3216 if (decimals < 0)
3217 decimals = 0;
3218 while (decimals < scale) {
3219 result *= 10;
3220 decimals ++;
3221 }
3222 *res = result;
3223 return 0;
3224 }
3225
3226 static void md_safemode_timeout(unsigned long data);
3227
3228 static ssize_t
3229 safe_delay_show(struct mddev *mddev, char *page)
3230 {
3231 int msec = (mddev->safemode_delay*1000)/HZ;
3232 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3233 }
3234 static ssize_t
3235 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3236 {
3237 unsigned long msec;
3238
3239 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3240 return -EINVAL;
3241 if (msec == 0)
3242 mddev->safemode_delay = 0;
3243 else {
3244 unsigned long old_delay = mddev->safemode_delay;
3245 unsigned long new_delay = (msec*HZ)/1000;
3246
3247 if (new_delay == 0)
3248 new_delay = 1;
3249 mddev->safemode_delay = new_delay;
3250 if (new_delay < old_delay || old_delay == 0)
3251 mod_timer(&mddev->safemode_timer, jiffies+1);
3252 }
3253 return len;
3254 }
3255 static struct md_sysfs_entry md_safe_delay =
3256 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3257
3258 static ssize_t
3259 level_show(struct mddev *mddev, char *page)
3260 {
3261 struct md_personality *p;
3262 int ret;
3263 spin_lock(&mddev->lock);
3264 p = mddev->pers;
3265 if (p)
3266 ret = sprintf(page, "%s\n", p->name);
3267 else if (mddev->clevel[0])
3268 ret = sprintf(page, "%s\n", mddev->clevel);
3269 else if (mddev->level != LEVEL_NONE)
3270 ret = sprintf(page, "%d\n", mddev->level);
3271 else
3272 ret = 0;
3273 spin_unlock(&mddev->lock);
3274 return ret;
3275 }
3276
3277 static ssize_t
3278 level_store(struct mddev *mddev, const char *buf, size_t len)
3279 {
3280 char clevel[16];
3281 ssize_t rv = len;
3282 struct md_personality *pers, *oldpers;
3283 long level;
3284 void *priv, *oldpriv;
3285 struct md_rdev *rdev;
3286
3287 if (mddev->pers == NULL) {
3288 if (len == 0)
3289 return 0;
3290 if (len >= sizeof(mddev->clevel))
3291 return -ENOSPC;
3292 strncpy(mddev->clevel, buf, len);
3293 if (mddev->clevel[len-1] == '\n')
3294 len--;
3295 mddev->clevel[len] = 0;
3296 mddev->level = LEVEL_NONE;
3297 return rv;
3298 }
3299 if (mddev->ro)
3300 return -EROFS;
3301
3302 /* request to change the personality. Need to ensure:
3303 * - array is not engaged in resync/recovery/reshape
3304 * - old personality can be suspended
3305 * - new personality will access other array.
3306 */
3307
3308 if (mddev->sync_thread ||
3309 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3310 mddev->reshape_position != MaxSector ||
3311 mddev->sysfs_active)
3312 return -EBUSY;
3313
3314 if (!mddev->pers->quiesce) {
3315 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3316 mdname(mddev), mddev->pers->name);
3317 return -EINVAL;
3318 }
3319
3320 /* Now find the new personality */
3321 if (len == 0 || len >= sizeof(clevel))
3322 return -EINVAL;
3323 strncpy(clevel, buf, len);
3324 if (clevel[len-1] == '\n')
3325 len--;
3326 clevel[len] = 0;
3327 if (kstrtol(clevel, 10, &level))
3328 level = LEVEL_NONE;
3329
3330 if (request_module("md-%s", clevel) != 0)
3331 request_module("md-level-%s", clevel);
3332 spin_lock(&pers_lock);
3333 pers = find_pers(level, clevel);
3334 if (!pers || !try_module_get(pers->owner)) {
3335 spin_unlock(&pers_lock);
3336 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3337 return -EINVAL;
3338 }
3339 spin_unlock(&pers_lock);
3340
3341 if (pers == mddev->pers) {
3342 /* Nothing to do! */
3343 module_put(pers->owner);
3344 return rv;
3345 }
3346 if (!pers->takeover) {
3347 module_put(pers->owner);
3348 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3349 mdname(mddev), clevel);
3350 return -EINVAL;
3351 }
3352
3353 rdev_for_each(rdev, mddev)
3354 rdev->new_raid_disk = rdev->raid_disk;
3355
3356 /* ->takeover must set new_* and/or delta_disks
3357 * if it succeeds, and may set them when it fails.
3358 */
3359 priv = pers->takeover(mddev);
3360 if (IS_ERR(priv)) {
3361 mddev->new_level = mddev->level;
3362 mddev->new_layout = mddev->layout;
3363 mddev->new_chunk_sectors = mddev->chunk_sectors;
3364 mddev->raid_disks -= mddev->delta_disks;
3365 mddev->delta_disks = 0;
3366 mddev->reshape_backwards = 0;
3367 module_put(pers->owner);
3368 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3369 mdname(mddev), clevel);
3370 return PTR_ERR(priv);
3371 }
3372
3373 /* Looks like we have a winner */
3374 mddev_suspend(mddev);
3375 mddev_detach(mddev);
3376
3377 spin_lock(&mddev->lock);
3378 oldpers = mddev->pers;
3379 oldpriv = mddev->private;
3380 mddev->pers = pers;
3381 mddev->private = priv;
3382 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3383 mddev->level = mddev->new_level;
3384 mddev->layout = mddev->new_layout;
3385 mddev->chunk_sectors = mddev->new_chunk_sectors;
3386 mddev->delta_disks = 0;
3387 mddev->reshape_backwards = 0;
3388 mddev->degraded = 0;
3389 spin_unlock(&mddev->lock);
3390
3391 if (oldpers->sync_request == NULL &&
3392 mddev->external) {
3393 /* We are converting from a no-redundancy array
3394 * to a redundancy array and metadata is managed
3395 * externally so we need to be sure that writes
3396 * won't block due to a need to transition
3397 * clean->dirty
3398 * until external management is started.
3399 */
3400 mddev->in_sync = 0;
3401 mddev->safemode_delay = 0;
3402 mddev->safemode = 0;
3403 }
3404
3405 oldpers->free(mddev, oldpriv);
3406
3407 if (oldpers->sync_request == NULL &&
3408 pers->sync_request != NULL) {
3409 /* need to add the md_redundancy_group */
3410 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3411 printk(KERN_WARNING
3412 "md: cannot register extra attributes for %s\n",
3413 mdname(mddev));
3414 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3415 }
3416 if (oldpers->sync_request != NULL &&
3417 pers->sync_request == NULL) {
3418 /* need to remove the md_redundancy_group */
3419 if (mddev->to_remove == NULL)
3420 mddev->to_remove = &md_redundancy_group;
3421 }
3422
3423 rdev_for_each(rdev, mddev) {
3424 if (rdev->raid_disk < 0)
3425 continue;
3426 if (rdev->new_raid_disk >= mddev->raid_disks)
3427 rdev->new_raid_disk = -1;
3428 if (rdev->new_raid_disk == rdev->raid_disk)
3429 continue;
3430 sysfs_unlink_rdev(mddev, rdev);
3431 }
3432 rdev_for_each(rdev, mddev) {
3433 if (rdev->raid_disk < 0)
3434 continue;
3435 if (rdev->new_raid_disk == rdev->raid_disk)
3436 continue;
3437 rdev->raid_disk = rdev->new_raid_disk;
3438 if (rdev->raid_disk < 0)
3439 clear_bit(In_sync, &rdev->flags);
3440 else {
3441 if (sysfs_link_rdev(mddev, rdev))
3442 printk(KERN_WARNING "md: cannot register rd%d"
3443 " for %s after level change\n",
3444 rdev->raid_disk, mdname(mddev));
3445 }
3446 }
3447
3448 if (pers->sync_request == NULL) {
3449 /* this is now an array without redundancy, so
3450 * it must always be in_sync
3451 */
3452 mddev->in_sync = 1;
3453 del_timer_sync(&mddev->safemode_timer);
3454 }
3455 blk_set_stacking_limits(&mddev->queue->limits);
3456 pers->run(mddev);
3457 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3458 mddev_resume(mddev);
3459 if (!mddev->thread)
3460 md_update_sb(mddev, 1);
3461 sysfs_notify(&mddev->kobj, NULL, "level");
3462 md_new_event(mddev);
3463 return rv;
3464 }
3465
3466 static struct md_sysfs_entry md_level =
3467 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3468
3469 static ssize_t
3470 layout_show(struct mddev *mddev, char *page)
3471 {
3472 /* just a number, not meaningful for all levels */
3473 if (mddev->reshape_position != MaxSector &&
3474 mddev->layout != mddev->new_layout)
3475 return sprintf(page, "%d (%d)\n",
3476 mddev->new_layout, mddev->layout);
3477 return sprintf(page, "%d\n", mddev->layout);
3478 }
3479
3480 static ssize_t
3481 layout_store(struct mddev *mddev, const char *buf, size_t len)
3482 {
3483 char *e;
3484 unsigned long n = simple_strtoul(buf, &e, 10);
3485
3486 if (!*buf || (*e && *e != '\n'))
3487 return -EINVAL;
3488
3489 if (mddev->pers) {
3490 int err;
3491 if (mddev->pers->check_reshape == NULL)
3492 return -EBUSY;
3493 if (mddev->ro)
3494 return -EROFS;
3495 mddev->new_layout = n;
3496 err = mddev->pers->check_reshape(mddev);
3497 if (err) {
3498 mddev->new_layout = mddev->layout;
3499 return err;
3500 }
3501 } else {
3502 mddev->new_layout = n;
3503 if (mddev->reshape_position == MaxSector)
3504 mddev->layout = n;
3505 }
3506 return len;
3507 }
3508 static struct md_sysfs_entry md_layout =
3509 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3510
3511 static ssize_t
3512 raid_disks_show(struct mddev *mddev, char *page)
3513 {
3514 if (mddev->raid_disks == 0)
3515 return 0;
3516 if (mddev->reshape_position != MaxSector &&
3517 mddev->delta_disks != 0)
3518 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3519 mddev->raid_disks - mddev->delta_disks);
3520 return sprintf(page, "%d\n", mddev->raid_disks);
3521 }
3522
3523 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3524
3525 static ssize_t
3526 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528 char *e;
3529 int rv = 0;
3530 unsigned long n = simple_strtoul(buf, &e, 10);
3531
3532 if (!*buf || (*e && *e != '\n'))
3533 return -EINVAL;
3534
3535 if (mddev->pers)
3536 rv = update_raid_disks(mddev, n);
3537 else if (mddev->reshape_position != MaxSector) {
3538 struct md_rdev *rdev;
3539 int olddisks = mddev->raid_disks - mddev->delta_disks;
3540
3541 rdev_for_each(rdev, mddev) {
3542 if (olddisks < n &&
3543 rdev->data_offset < rdev->new_data_offset)
3544 return -EINVAL;
3545 if (olddisks > n &&
3546 rdev->data_offset > rdev->new_data_offset)
3547 return -EINVAL;
3548 }
3549 mddev->delta_disks = n - olddisks;
3550 mddev->raid_disks = n;
3551 mddev->reshape_backwards = (mddev->delta_disks < 0);
3552 } else
3553 mddev->raid_disks = n;
3554 return rv ? rv : len;
3555 }
3556 static struct md_sysfs_entry md_raid_disks =
3557 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3558
3559 static ssize_t
3560 chunk_size_show(struct mddev *mddev, char *page)
3561 {
3562 if (mddev->reshape_position != MaxSector &&
3563 mddev->chunk_sectors != mddev->new_chunk_sectors)
3564 return sprintf(page, "%d (%d)\n",
3565 mddev->new_chunk_sectors << 9,
3566 mddev->chunk_sectors << 9);
3567 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3568 }
3569
3570 static ssize_t
3571 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573 char *e;
3574 unsigned long n = simple_strtoul(buf, &e, 10);
3575
3576 if (!*buf || (*e && *e != '\n'))
3577 return -EINVAL;
3578
3579 if (mddev->pers) {
3580 int err;
3581 if (mddev->pers->check_reshape == NULL)
3582 return -EBUSY;
3583 if (mddev->ro)
3584 return -EROFS;
3585 mddev->new_chunk_sectors = n >> 9;
3586 err = mddev->pers->check_reshape(mddev);
3587 if (err) {
3588 mddev->new_chunk_sectors = mddev->chunk_sectors;
3589 return err;
3590 }
3591 } else {
3592 mddev->new_chunk_sectors = n >> 9;
3593 if (mddev->reshape_position == MaxSector)
3594 mddev->chunk_sectors = n >> 9;
3595 }
3596 return len;
3597 }
3598 static struct md_sysfs_entry md_chunk_size =
3599 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3600
3601 static ssize_t
3602 resync_start_show(struct mddev *mddev, char *page)
3603 {
3604 if (mddev->recovery_cp == MaxSector)
3605 return sprintf(page, "none\n");
3606 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3607 }
3608
3609 static ssize_t
3610 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3611 {
3612 char *e;
3613 unsigned long long n = simple_strtoull(buf, &e, 10);
3614
3615 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3616 return -EBUSY;
3617 if (cmd_match(buf, "none"))
3618 n = MaxSector;
3619 else if (!*buf || (*e && *e != '\n'))
3620 return -EINVAL;
3621
3622 mddev->recovery_cp = n;
3623 if (mddev->pers)
3624 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3625 return len;
3626 }
3627 static struct md_sysfs_entry md_resync_start =
3628 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3629
3630 /*
3631 * The array state can be:
3632 *
3633 * clear
3634 * No devices, no size, no level
3635 * Equivalent to STOP_ARRAY ioctl
3636 * inactive
3637 * May have some settings, but array is not active
3638 * all IO results in error
3639 * When written, doesn't tear down array, but just stops it
3640 * suspended (not supported yet)
3641 * All IO requests will block. The array can be reconfigured.
3642 * Writing this, if accepted, will block until array is quiescent
3643 * readonly
3644 * no resync can happen. no superblocks get written.
3645 * write requests fail
3646 * read-auto
3647 * like readonly, but behaves like 'clean' on a write request.
3648 *
3649 * clean - no pending writes, but otherwise active.
3650 * When written to inactive array, starts without resync
3651 * If a write request arrives then
3652 * if metadata is known, mark 'dirty' and switch to 'active'.
3653 * if not known, block and switch to write-pending
3654 * If written to an active array that has pending writes, then fails.
3655 * active
3656 * fully active: IO and resync can be happening.
3657 * When written to inactive array, starts with resync
3658 *
3659 * write-pending
3660 * clean, but writes are blocked waiting for 'active' to be written.
3661 *
3662 * active-idle
3663 * like active, but no writes have been seen for a while (100msec).
3664 *
3665 */
3666 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3667 write_pending, active_idle, bad_word};
3668 static char *array_states[] = {
3669 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3670 "write-pending", "active-idle", NULL };
3671
3672 static int match_word(const char *word, char **list)
3673 {
3674 int n;
3675 for (n=0; list[n]; n++)
3676 if (cmd_match(word, list[n]))
3677 break;
3678 return n;
3679 }
3680
3681 static ssize_t
3682 array_state_show(struct mddev *mddev, char *page)
3683 {
3684 enum array_state st = inactive;
3685
3686 if (mddev->pers)
3687 switch(mddev->ro) {
3688 case 1:
3689 st = readonly;
3690 break;
3691 case 2:
3692 st = read_auto;
3693 break;
3694 case 0:
3695 if (mddev->in_sync)
3696 st = clean;
3697 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3698 st = write_pending;
3699 else if (mddev->safemode)
3700 st = active_idle;
3701 else
3702 st = active;
3703 }
3704 else {
3705 if (list_empty(&mddev->disks) &&
3706 mddev->raid_disks == 0 &&
3707 mddev->dev_sectors == 0)
3708 st = clear;
3709 else
3710 st = inactive;
3711 }
3712 return sprintf(page, "%s\n", array_states[st]);
3713 }
3714
3715 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3716 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3717 static int do_md_run(struct mddev *mddev);
3718 static int restart_array(struct mddev *mddev);
3719
3720 static ssize_t
3721 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3722 {
3723 int err = -EINVAL;
3724 enum array_state st = match_word(buf, array_states);
3725 switch(st) {
3726 case bad_word:
3727 break;
3728 case clear:
3729 /* stopping an active array */
3730 err = do_md_stop(mddev, 0, NULL);
3731 break;
3732 case inactive:
3733 /* stopping an active array */
3734 if (mddev->pers)
3735 err = do_md_stop(mddev, 2, NULL);
3736 else
3737 err = 0; /* already inactive */
3738 break;
3739 case suspended:
3740 break; /* not supported yet */
3741 case readonly:
3742 if (mddev->pers)
3743 err = md_set_readonly(mddev, NULL);
3744 else {
3745 mddev->ro = 1;
3746 set_disk_ro(mddev->gendisk, 1);
3747 err = do_md_run(mddev);
3748 }
3749 break;
3750 case read_auto:
3751 if (mddev->pers) {
3752 if (mddev->ro == 0)
3753 err = md_set_readonly(mddev, NULL);
3754 else if (mddev->ro == 1)
3755 err = restart_array(mddev);
3756 if (err == 0) {
3757 mddev->ro = 2;
3758 set_disk_ro(mddev->gendisk, 0);
3759 }
3760 } else {
3761 mddev->ro = 2;
3762 err = do_md_run(mddev);
3763 }
3764 break;
3765 case clean:
3766 if (mddev->pers) {
3767 restart_array(mddev);
3768 spin_lock(&mddev->lock);
3769 if (atomic_read(&mddev->writes_pending) == 0) {
3770 if (mddev->in_sync == 0) {
3771 mddev->in_sync = 1;
3772 if (mddev->safemode == 1)
3773 mddev->safemode = 0;
3774 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3775 }
3776 err = 0;
3777 } else
3778 err = -EBUSY;
3779 spin_unlock(&mddev->lock);
3780 } else
3781 err = -EINVAL;
3782 break;
3783 case active:
3784 if (mddev->pers) {
3785 restart_array(mddev);
3786 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3787 wake_up(&mddev->sb_wait);
3788 err = 0;
3789 } else {
3790 mddev->ro = 0;
3791 set_disk_ro(mddev->gendisk, 0);
3792 err = do_md_run(mddev);
3793 }
3794 break;
3795 case write_pending:
3796 case active_idle:
3797 /* these cannot be set */
3798 break;
3799 }
3800 if (err)
3801 return err;
3802 else {
3803 if (mddev->hold_active == UNTIL_IOCTL)
3804 mddev->hold_active = 0;
3805 sysfs_notify_dirent_safe(mddev->sysfs_state);
3806 return len;
3807 }
3808 }
3809 static struct md_sysfs_entry md_array_state =
3810 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3811
3812 static ssize_t
3813 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3814 return sprintf(page, "%d\n",
3815 atomic_read(&mddev->max_corr_read_errors));
3816 }
3817
3818 static ssize_t
3819 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3820 {
3821 char *e;
3822 unsigned long n = simple_strtoul(buf, &e, 10);
3823
3824 if (*buf && (*e == 0 || *e == '\n')) {
3825 atomic_set(&mddev->max_corr_read_errors, n);
3826 return len;
3827 }
3828 return -EINVAL;
3829 }
3830
3831 static struct md_sysfs_entry max_corr_read_errors =
3832 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3833 max_corrected_read_errors_store);
3834
3835 static ssize_t
3836 null_show(struct mddev *mddev, char *page)
3837 {
3838 return -EINVAL;
3839 }
3840
3841 static ssize_t
3842 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3843 {
3844 /* buf must be %d:%d\n? giving major and minor numbers */
3845 /* The new device is added to the array.
3846 * If the array has a persistent superblock, we read the
3847 * superblock to initialise info and check validity.
3848 * Otherwise, only checking done is that in bind_rdev_to_array,
3849 * which mainly checks size.
3850 */
3851 char *e;
3852 int major = simple_strtoul(buf, &e, 10);
3853 int minor;
3854 dev_t dev;
3855 struct md_rdev *rdev;
3856 int err;
3857
3858 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3859 return -EINVAL;
3860 minor = simple_strtoul(e+1, &e, 10);
3861 if (*e && *e != '\n')
3862 return -EINVAL;
3863 dev = MKDEV(major, minor);
3864 if (major != MAJOR(dev) ||
3865 minor != MINOR(dev))
3866 return -EOVERFLOW;
3867
3868 if (mddev->persistent) {
3869 rdev = md_import_device(dev, mddev->major_version,
3870 mddev->minor_version);
3871 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3872 struct md_rdev *rdev0
3873 = list_entry(mddev->disks.next,
3874 struct md_rdev, same_set);
3875 err = super_types[mddev->major_version]
3876 .load_super(rdev, rdev0, mddev->minor_version);
3877 if (err < 0)
3878 goto out;
3879 }
3880 } else if (mddev->external)
3881 rdev = md_import_device(dev, -2, -1);
3882 else
3883 rdev = md_import_device(dev, -1, -1);
3884
3885 if (IS_ERR(rdev))
3886 return PTR_ERR(rdev);
3887 err = bind_rdev_to_array(rdev, mddev);
3888 out:
3889 if (err)
3890 export_rdev(rdev);
3891 return err ? err : len;
3892 }
3893
3894 static struct md_sysfs_entry md_new_device =
3895 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3896
3897 static ssize_t
3898 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3899 {
3900 char *end;
3901 unsigned long chunk, end_chunk;
3902
3903 if (!mddev->bitmap)
3904 goto out;
3905 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3906 while (*buf) {
3907 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3908 if (buf == end) break;
3909 if (*end == '-') { /* range */
3910 buf = end + 1;
3911 end_chunk = simple_strtoul(buf, &end, 0);
3912 if (buf == end) break;
3913 }
3914 if (*end && !isspace(*end)) break;
3915 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3916 buf = skip_spaces(end);
3917 }
3918 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3919 out:
3920 return len;
3921 }
3922
3923 static struct md_sysfs_entry md_bitmap =
3924 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3925
3926 static ssize_t
3927 size_show(struct mddev *mddev, char *page)
3928 {
3929 return sprintf(page, "%llu\n",
3930 (unsigned long long)mddev->dev_sectors / 2);
3931 }
3932
3933 static int update_size(struct mddev *mddev, sector_t num_sectors);
3934
3935 static ssize_t
3936 size_store(struct mddev *mddev, const char *buf, size_t len)
3937 {
3938 /* If array is inactive, we can reduce the component size, but
3939 * not increase it (except from 0).
3940 * If array is active, we can try an on-line resize
3941 */
3942 sector_t sectors;
3943 int err = strict_blocks_to_sectors(buf, &sectors);
3944
3945 if (err < 0)
3946 return err;
3947 if (mddev->pers) {
3948 err = update_size(mddev, sectors);
3949 md_update_sb(mddev, 1);
3950 } else {
3951 if (mddev->dev_sectors == 0 ||
3952 mddev->dev_sectors > sectors)
3953 mddev->dev_sectors = sectors;
3954 else
3955 err = -ENOSPC;
3956 }
3957 return err ? err : len;
3958 }
3959
3960 static struct md_sysfs_entry md_size =
3961 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3962
3963 /* Metadata version.
3964 * This is one of
3965 * 'none' for arrays with no metadata (good luck...)
3966 * 'external' for arrays with externally managed metadata,
3967 * or N.M for internally known formats
3968 */
3969 static ssize_t
3970 metadata_show(struct mddev *mddev, char *page)
3971 {
3972 if (mddev->persistent)
3973 return sprintf(page, "%d.%d\n",
3974 mddev->major_version, mddev->minor_version);
3975 else if (mddev->external)
3976 return sprintf(page, "external:%s\n", mddev->metadata_type);
3977 else
3978 return sprintf(page, "none\n");
3979 }
3980
3981 static ssize_t
3982 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3983 {
3984 int major, minor;
3985 char *e;
3986 /* Changing the details of 'external' metadata is
3987 * always permitted. Otherwise there must be
3988 * no devices attached to the array.
3989 */
3990 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3991 ;
3992 else if (!list_empty(&mddev->disks))
3993 return -EBUSY;
3994
3995 if (cmd_match(buf, "none")) {
3996 mddev->persistent = 0;
3997 mddev->external = 0;
3998 mddev->major_version = 0;
3999 mddev->minor_version = 90;
4000 return len;
4001 }
4002 if (strncmp(buf, "external:", 9) == 0) {
4003 size_t namelen = len-9;
4004 if (namelen >= sizeof(mddev->metadata_type))
4005 namelen = sizeof(mddev->metadata_type)-1;
4006 strncpy(mddev->metadata_type, buf+9, namelen);
4007 mddev->metadata_type[namelen] = 0;
4008 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4009 mddev->metadata_type[--namelen] = 0;
4010 mddev->persistent = 0;
4011 mddev->external = 1;
4012 mddev->major_version = 0;
4013 mddev->minor_version = 90;
4014 return len;
4015 }
4016 major = simple_strtoul(buf, &e, 10);
4017 if (e==buf || *e != '.')
4018 return -EINVAL;
4019 buf = e+1;
4020 minor = simple_strtoul(buf, &e, 10);
4021 if (e==buf || (*e && *e != '\n') )
4022 return -EINVAL;
4023 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4024 return -ENOENT;
4025 mddev->major_version = major;
4026 mddev->minor_version = minor;
4027 mddev->persistent = 1;
4028 mddev->external = 0;
4029 return len;
4030 }
4031
4032 static struct md_sysfs_entry md_metadata =
4033 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4034
4035 static ssize_t
4036 action_show(struct mddev *mddev, char *page)
4037 {
4038 char *type = "idle";
4039 unsigned long recovery = mddev->recovery;
4040 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4041 type = "frozen";
4042 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4043 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4044 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4045 type = "reshape";
4046 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4047 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4048 type = "resync";
4049 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4050 type = "check";
4051 else
4052 type = "repair";
4053 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4054 type = "recover";
4055 }
4056 return sprintf(page, "%s\n", type);
4057 }
4058
4059 static ssize_t
4060 action_store(struct mddev *mddev, const char *page, size_t len)
4061 {
4062 if (!mddev->pers || !mddev->pers->sync_request)
4063 return -EINVAL;
4064
4065 if (cmd_match(page, "frozen"))
4066 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4067 else
4068 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4069
4070 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4071 flush_workqueue(md_misc_wq);
4072 if (mddev->sync_thread) {
4073 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4074 md_reap_sync_thread(mddev);
4075 }
4076 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4077 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4078 return -EBUSY;
4079 else if (cmd_match(page, "resync"))
4080 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4081 else if (cmd_match(page, "recover")) {
4082 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4083 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4084 } else if (cmd_match(page, "reshape")) {
4085 int err;
4086 if (mddev->pers->start_reshape == NULL)
4087 return -EINVAL;
4088 err = mddev->pers->start_reshape(mddev);
4089 if (err)
4090 return err;
4091 sysfs_notify(&mddev->kobj, NULL, "degraded");
4092 } else {
4093 if (cmd_match(page, "check"))
4094 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4095 else if (!cmd_match(page, "repair"))
4096 return -EINVAL;
4097 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4098 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4099 }
4100 if (mddev->ro == 2) {
4101 /* A write to sync_action is enough to justify
4102 * canceling read-auto mode
4103 */
4104 mddev->ro = 0;
4105 md_wakeup_thread(mddev->sync_thread);
4106 }
4107 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4108 md_wakeup_thread(mddev->thread);
4109 sysfs_notify_dirent_safe(mddev->sysfs_action);
4110 return len;
4111 }
4112
4113 static struct md_sysfs_entry md_scan_mode =
4114 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4115
4116 static ssize_t
4117 last_sync_action_show(struct mddev *mddev, char *page)
4118 {
4119 return sprintf(page, "%s\n", mddev->last_sync_action);
4120 }
4121
4122 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4123
4124 static ssize_t
4125 mismatch_cnt_show(struct mddev *mddev, char *page)
4126 {
4127 return sprintf(page, "%llu\n",
4128 (unsigned long long)
4129 atomic64_read(&mddev->resync_mismatches));
4130 }
4131
4132 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4133
4134 static ssize_t
4135 sync_min_show(struct mddev *mddev, char *page)
4136 {
4137 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4138 mddev->sync_speed_min ? "local": "system");
4139 }
4140
4141 static ssize_t
4142 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4143 {
4144 int min;
4145 char *e;
4146 if (strncmp(buf, "system", 6)==0) {
4147 mddev->sync_speed_min = 0;
4148 return len;
4149 }
4150 min = simple_strtoul(buf, &e, 10);
4151 if (buf == e || (*e && *e != '\n') || min <= 0)
4152 return -EINVAL;
4153 mddev->sync_speed_min = min;
4154 return len;
4155 }
4156
4157 static struct md_sysfs_entry md_sync_min =
4158 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4159
4160 static ssize_t
4161 sync_max_show(struct mddev *mddev, char *page)
4162 {
4163 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4164 mddev->sync_speed_max ? "local": "system");
4165 }
4166
4167 static ssize_t
4168 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4169 {
4170 int max;
4171 char *e;
4172 if (strncmp(buf, "system", 6)==0) {
4173 mddev->sync_speed_max = 0;
4174 return len;
4175 }
4176 max = simple_strtoul(buf, &e, 10);
4177 if (buf == e || (*e && *e != '\n') || max <= 0)
4178 return -EINVAL;
4179 mddev->sync_speed_max = max;
4180 return len;
4181 }
4182
4183 static struct md_sysfs_entry md_sync_max =
4184 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4185
4186 static ssize_t
4187 degraded_show(struct mddev *mddev, char *page)
4188 {
4189 return sprintf(page, "%d\n", mddev->degraded);
4190 }
4191 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4192
4193 static ssize_t
4194 sync_force_parallel_show(struct mddev *mddev, char *page)
4195 {
4196 return sprintf(page, "%d\n", mddev->parallel_resync);
4197 }
4198
4199 static ssize_t
4200 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4201 {
4202 long n;
4203
4204 if (kstrtol(buf, 10, &n))
4205 return -EINVAL;
4206
4207 if (n != 0 && n != 1)
4208 return -EINVAL;
4209
4210 mddev->parallel_resync = n;
4211
4212 if (mddev->sync_thread)
4213 wake_up(&resync_wait);
4214
4215 return len;
4216 }
4217
4218 /* force parallel resync, even with shared block devices */
4219 static struct md_sysfs_entry md_sync_force_parallel =
4220 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4221 sync_force_parallel_show, sync_force_parallel_store);
4222
4223 static ssize_t
4224 sync_speed_show(struct mddev *mddev, char *page)
4225 {
4226 unsigned long resync, dt, db;
4227 if (mddev->curr_resync == 0)
4228 return sprintf(page, "none\n");
4229 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4230 dt = (jiffies - mddev->resync_mark) / HZ;
4231 if (!dt) dt++;
4232 db = resync - mddev->resync_mark_cnt;
4233 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4234 }
4235
4236 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4237
4238 static ssize_t
4239 sync_completed_show(struct mddev *mddev, char *page)
4240 {
4241 unsigned long long max_sectors, resync;
4242
4243 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4244 return sprintf(page, "none\n");
4245
4246 if (mddev->curr_resync == 1 ||
4247 mddev->curr_resync == 2)
4248 return sprintf(page, "delayed\n");
4249
4250 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4251 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4252 max_sectors = mddev->resync_max_sectors;
4253 else
4254 max_sectors = mddev->dev_sectors;
4255
4256 resync = mddev->curr_resync_completed;
4257 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4258 }
4259
4260 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4261
4262 static ssize_t
4263 min_sync_show(struct mddev *mddev, char *page)
4264 {
4265 return sprintf(page, "%llu\n",
4266 (unsigned long long)mddev->resync_min);
4267 }
4268 static ssize_t
4269 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4270 {
4271 unsigned long long min;
4272 if (kstrtoull(buf, 10, &min))
4273 return -EINVAL;
4274 if (min > mddev->resync_max)
4275 return -EINVAL;
4276 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4277 return -EBUSY;
4278
4279 /* Must be a multiple of chunk_size */
4280 if (mddev->chunk_sectors) {
4281 sector_t temp = min;
4282 if (sector_div(temp, mddev->chunk_sectors))
4283 return -EINVAL;
4284 }
4285 mddev->resync_min = min;
4286
4287 return len;
4288 }
4289
4290 static struct md_sysfs_entry md_min_sync =
4291 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4292
4293 static ssize_t
4294 max_sync_show(struct mddev *mddev, char *page)
4295 {
4296 if (mddev->resync_max == MaxSector)
4297 return sprintf(page, "max\n");
4298 else
4299 return sprintf(page, "%llu\n",
4300 (unsigned long long)mddev->resync_max);
4301 }
4302 static ssize_t
4303 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4304 {
4305 if (strncmp(buf, "max", 3) == 0)
4306 mddev->resync_max = MaxSector;
4307 else {
4308 unsigned long long max;
4309 if (kstrtoull(buf, 10, &max))
4310 return -EINVAL;
4311 if (max < mddev->resync_min)
4312 return -EINVAL;
4313 if (max < mddev->resync_max &&
4314 mddev->ro == 0 &&
4315 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4316 return -EBUSY;
4317
4318 /* Must be a multiple of chunk_size */
4319 if (mddev->chunk_sectors) {
4320 sector_t temp = max;
4321 if (sector_div(temp, mddev->chunk_sectors))
4322 return -EINVAL;
4323 }
4324 mddev->resync_max = max;
4325 }
4326 wake_up(&mddev->recovery_wait);
4327 return len;
4328 }
4329
4330 static struct md_sysfs_entry md_max_sync =
4331 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4332
4333 static ssize_t
4334 suspend_lo_show(struct mddev *mddev, char *page)
4335 {
4336 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4337 }
4338
4339 static ssize_t
4340 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4341 {
4342 char *e;
4343 unsigned long long new = simple_strtoull(buf, &e, 10);
4344 unsigned long long old = mddev->suspend_lo;
4345
4346 if (mddev->pers == NULL ||
4347 mddev->pers->quiesce == NULL)
4348 return -EINVAL;
4349 if (buf == e || (*e && *e != '\n'))
4350 return -EINVAL;
4351
4352 mddev->suspend_lo = new;
4353 if (new >= old)
4354 /* Shrinking suspended region */
4355 mddev->pers->quiesce(mddev, 2);
4356 else {
4357 /* Expanding suspended region - need to wait */
4358 mddev->pers->quiesce(mddev, 1);
4359 mddev->pers->quiesce(mddev, 0);
4360 }
4361 return len;
4362 }
4363 static struct md_sysfs_entry md_suspend_lo =
4364 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4365
4366 static ssize_t
4367 suspend_hi_show(struct mddev *mddev, char *page)
4368 {
4369 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4370 }
4371
4372 static ssize_t
4373 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4374 {
4375 char *e;
4376 unsigned long long new = simple_strtoull(buf, &e, 10);
4377 unsigned long long old = mddev->suspend_hi;
4378
4379 if (mddev->pers == NULL ||
4380 mddev->pers->quiesce == NULL)
4381 return -EINVAL;
4382 if (buf == e || (*e && *e != '\n'))
4383 return -EINVAL;
4384
4385 mddev->suspend_hi = new;
4386 if (new <= old)
4387 /* Shrinking suspended region */
4388 mddev->pers->quiesce(mddev, 2);
4389 else {
4390 /* Expanding suspended region - need to wait */
4391 mddev->pers->quiesce(mddev, 1);
4392 mddev->pers->quiesce(mddev, 0);
4393 }
4394 return len;
4395 }
4396 static struct md_sysfs_entry md_suspend_hi =
4397 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4398
4399 static ssize_t
4400 reshape_position_show(struct mddev *mddev, char *page)
4401 {
4402 if (mddev->reshape_position != MaxSector)
4403 return sprintf(page, "%llu\n",
4404 (unsigned long long)mddev->reshape_position);
4405 strcpy(page, "none\n");
4406 return 5;
4407 }
4408
4409 static ssize_t
4410 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 struct md_rdev *rdev;
4413 char *e;
4414 unsigned long long new = simple_strtoull(buf, &e, 10);
4415 if (mddev->pers)
4416 return -EBUSY;
4417 if (buf == e || (*e && *e != '\n'))
4418 return -EINVAL;
4419 mddev->reshape_position = new;
4420 mddev->delta_disks = 0;
4421 mddev->reshape_backwards = 0;
4422 mddev->new_level = mddev->level;
4423 mddev->new_layout = mddev->layout;
4424 mddev->new_chunk_sectors = mddev->chunk_sectors;
4425 rdev_for_each(rdev, mddev)
4426 rdev->new_data_offset = rdev->data_offset;
4427 return len;
4428 }
4429
4430 static struct md_sysfs_entry md_reshape_position =
4431 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4432 reshape_position_store);
4433
4434 static ssize_t
4435 reshape_direction_show(struct mddev *mddev, char *page)
4436 {
4437 return sprintf(page, "%s\n",
4438 mddev->reshape_backwards ? "backwards" : "forwards");
4439 }
4440
4441 static ssize_t
4442 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4443 {
4444 int backwards = 0;
4445 if (cmd_match(buf, "forwards"))
4446 backwards = 0;
4447 else if (cmd_match(buf, "backwards"))
4448 backwards = 1;
4449 else
4450 return -EINVAL;
4451 if (mddev->reshape_backwards == backwards)
4452 return len;
4453
4454 /* check if we are allowed to change */
4455 if (mddev->delta_disks)
4456 return -EBUSY;
4457
4458 if (mddev->persistent &&
4459 mddev->major_version == 0)
4460 return -EINVAL;
4461
4462 mddev->reshape_backwards = backwards;
4463 return len;
4464 }
4465
4466 static struct md_sysfs_entry md_reshape_direction =
4467 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4468 reshape_direction_store);
4469
4470 static ssize_t
4471 array_size_show(struct mddev *mddev, char *page)
4472 {
4473 if (mddev->external_size)
4474 return sprintf(page, "%llu\n",
4475 (unsigned long long)mddev->array_sectors/2);
4476 else
4477 return sprintf(page, "default\n");
4478 }
4479
4480 static ssize_t
4481 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4482 {
4483 sector_t sectors;
4484
4485 if (strncmp(buf, "default", 7) == 0) {
4486 if (mddev->pers)
4487 sectors = mddev->pers->size(mddev, 0, 0);
4488 else
4489 sectors = mddev->array_sectors;
4490
4491 mddev->external_size = 0;
4492 } else {
4493 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4494 return -EINVAL;
4495 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4496 return -E2BIG;
4497
4498 mddev->external_size = 1;
4499 }
4500
4501 mddev->array_sectors = sectors;
4502 if (mddev->pers) {
4503 set_capacity(mddev->gendisk, mddev->array_sectors);
4504 revalidate_disk(mddev->gendisk);
4505 }
4506 return len;
4507 }
4508
4509 static struct md_sysfs_entry md_array_size =
4510 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4511 array_size_store);
4512
4513 static struct attribute *md_default_attrs[] = {
4514 &md_level.attr,
4515 &md_layout.attr,
4516 &md_raid_disks.attr,
4517 &md_chunk_size.attr,
4518 &md_size.attr,
4519 &md_resync_start.attr,
4520 &md_metadata.attr,
4521 &md_new_device.attr,
4522 &md_safe_delay.attr,
4523 &md_array_state.attr,
4524 &md_reshape_position.attr,
4525 &md_reshape_direction.attr,
4526 &md_array_size.attr,
4527 &max_corr_read_errors.attr,
4528 NULL,
4529 };
4530
4531 static struct attribute *md_redundancy_attrs[] = {
4532 &md_scan_mode.attr,
4533 &md_last_scan_mode.attr,
4534 &md_mismatches.attr,
4535 &md_sync_min.attr,
4536 &md_sync_max.attr,
4537 &md_sync_speed.attr,
4538 &md_sync_force_parallel.attr,
4539 &md_sync_completed.attr,
4540 &md_min_sync.attr,
4541 &md_max_sync.attr,
4542 &md_suspend_lo.attr,
4543 &md_suspend_hi.attr,
4544 &md_bitmap.attr,
4545 &md_degraded.attr,
4546 NULL,
4547 };
4548 static struct attribute_group md_redundancy_group = {
4549 .name = NULL,
4550 .attrs = md_redundancy_attrs,
4551 };
4552
4553 static ssize_t
4554 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4555 {
4556 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4557 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4558 ssize_t rv;
4559
4560 if (!entry->show)
4561 return -EIO;
4562 spin_lock(&all_mddevs_lock);
4563 if (list_empty(&mddev->all_mddevs)) {
4564 spin_unlock(&all_mddevs_lock);
4565 return -EBUSY;
4566 }
4567 mddev_get(mddev);
4568 spin_unlock(&all_mddevs_lock);
4569
4570 rv = entry->show(mddev, page);
4571 mddev_put(mddev);
4572 return rv;
4573 }
4574
4575 static ssize_t
4576 md_attr_store(struct kobject *kobj, struct attribute *attr,
4577 const char *page, size_t length)
4578 {
4579 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4580 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4581 ssize_t rv;
4582
4583 if (!entry->store)
4584 return -EIO;
4585 if (!capable(CAP_SYS_ADMIN))
4586 return -EACCES;
4587 spin_lock(&all_mddevs_lock);
4588 if (list_empty(&mddev->all_mddevs)) {
4589 spin_unlock(&all_mddevs_lock);
4590 return -EBUSY;
4591 }
4592 mddev_get(mddev);
4593 spin_unlock(&all_mddevs_lock);
4594 if (entry->store == new_dev_store)
4595 flush_workqueue(md_misc_wq);
4596 rv = mddev_lock(mddev);
4597 if (!rv) {
4598 rv = entry->store(mddev, page, length);
4599 mddev_unlock(mddev);
4600 }
4601 mddev_put(mddev);
4602 return rv;
4603 }
4604
4605 static void md_free(struct kobject *ko)
4606 {
4607 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4608
4609 if (mddev->sysfs_state)
4610 sysfs_put(mddev->sysfs_state);
4611
4612 if (mddev->gendisk) {
4613 del_gendisk(mddev->gendisk);
4614 put_disk(mddev->gendisk);
4615 }
4616 if (mddev->queue)
4617 blk_cleanup_queue(mddev->queue);
4618
4619 kfree(mddev);
4620 }
4621
4622 static const struct sysfs_ops md_sysfs_ops = {
4623 .show = md_attr_show,
4624 .store = md_attr_store,
4625 };
4626 static struct kobj_type md_ktype = {
4627 .release = md_free,
4628 .sysfs_ops = &md_sysfs_ops,
4629 .default_attrs = md_default_attrs,
4630 };
4631
4632 int mdp_major = 0;
4633
4634 static void mddev_delayed_delete(struct work_struct *ws)
4635 {
4636 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4637
4638 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4639 kobject_del(&mddev->kobj);
4640 kobject_put(&mddev->kobj);
4641 }
4642
4643 static int md_alloc(dev_t dev, char *name)
4644 {
4645 static DEFINE_MUTEX(disks_mutex);
4646 struct mddev *mddev = mddev_find(dev);
4647 struct gendisk *disk;
4648 int partitioned;
4649 int shift;
4650 int unit;
4651 int error;
4652
4653 if (!mddev)
4654 return -ENODEV;
4655
4656 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4657 shift = partitioned ? MdpMinorShift : 0;
4658 unit = MINOR(mddev->unit) >> shift;
4659
4660 /* wait for any previous instance of this device to be
4661 * completely removed (mddev_delayed_delete).
4662 */
4663 flush_workqueue(md_misc_wq);
4664
4665 mutex_lock(&disks_mutex);
4666 error = -EEXIST;
4667 if (mddev->gendisk)
4668 goto abort;
4669
4670 if (name) {
4671 /* Need to ensure that 'name' is not a duplicate.
4672 */
4673 struct mddev *mddev2;
4674 spin_lock(&all_mddevs_lock);
4675
4676 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4677 if (mddev2->gendisk &&
4678 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4679 spin_unlock(&all_mddevs_lock);
4680 goto abort;
4681 }
4682 spin_unlock(&all_mddevs_lock);
4683 }
4684
4685 error = -ENOMEM;
4686 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4687 if (!mddev->queue)
4688 goto abort;
4689 mddev->queue->queuedata = mddev;
4690
4691 blk_queue_make_request(mddev->queue, md_make_request);
4692 blk_set_stacking_limits(&mddev->queue->limits);
4693
4694 disk = alloc_disk(1 << shift);
4695 if (!disk) {
4696 blk_cleanup_queue(mddev->queue);
4697 mddev->queue = NULL;
4698 goto abort;
4699 }
4700 disk->major = MAJOR(mddev->unit);
4701 disk->first_minor = unit << shift;
4702 if (name)
4703 strcpy(disk->disk_name, name);
4704 else if (partitioned)
4705 sprintf(disk->disk_name, "md_d%d", unit);
4706 else
4707 sprintf(disk->disk_name, "md%d", unit);
4708 disk->fops = &md_fops;
4709 disk->private_data = mddev;
4710 disk->queue = mddev->queue;
4711 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4712 /* Allow extended partitions. This makes the
4713 * 'mdp' device redundant, but we can't really
4714 * remove it now.
4715 */
4716 disk->flags |= GENHD_FL_EXT_DEVT;
4717 mddev->gendisk = disk;
4718 /* As soon as we call add_disk(), another thread could get
4719 * through to md_open, so make sure it doesn't get too far
4720 */
4721 mutex_lock(&mddev->open_mutex);
4722 add_disk(disk);
4723
4724 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4725 &disk_to_dev(disk)->kobj, "%s", "md");
4726 if (error) {
4727 /* This isn't possible, but as kobject_init_and_add is marked
4728 * __must_check, we must do something with the result
4729 */
4730 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4731 disk->disk_name);
4732 error = 0;
4733 }
4734 if (mddev->kobj.sd &&
4735 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4736 printk(KERN_DEBUG "pointless warning\n");
4737 mutex_unlock(&mddev->open_mutex);
4738 abort:
4739 mutex_unlock(&disks_mutex);
4740 if (!error && mddev->kobj.sd) {
4741 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4742 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4743 }
4744 mddev_put(mddev);
4745 return error;
4746 }
4747
4748 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4749 {
4750 md_alloc(dev, NULL);
4751 return NULL;
4752 }
4753
4754 static int add_named_array(const char *val, struct kernel_param *kp)
4755 {
4756 /* val must be "md_*" where * is not all digits.
4757 * We allocate an array with a large free minor number, and
4758 * set the name to val. val must not already be an active name.
4759 */
4760 int len = strlen(val);
4761 char buf[DISK_NAME_LEN];
4762
4763 while (len && val[len-1] == '\n')
4764 len--;
4765 if (len >= DISK_NAME_LEN)
4766 return -E2BIG;
4767 strlcpy(buf, val, len+1);
4768 if (strncmp(buf, "md_", 3) != 0)
4769 return -EINVAL;
4770 return md_alloc(0, buf);
4771 }
4772
4773 static void md_safemode_timeout(unsigned long data)
4774 {
4775 struct mddev *mddev = (struct mddev *) data;
4776
4777 if (!atomic_read(&mddev->writes_pending)) {
4778 mddev->safemode = 1;
4779 if (mddev->external)
4780 sysfs_notify_dirent_safe(mddev->sysfs_state);
4781 }
4782 md_wakeup_thread(mddev->thread);
4783 }
4784
4785 static int start_dirty_degraded;
4786
4787 int md_run(struct mddev *mddev)
4788 {
4789 int err;
4790 struct md_rdev *rdev;
4791 struct md_personality *pers;
4792
4793 if (list_empty(&mddev->disks))
4794 /* cannot run an array with no devices.. */
4795 return -EINVAL;
4796
4797 if (mddev->pers)
4798 return -EBUSY;
4799 /* Cannot run until previous stop completes properly */
4800 if (mddev->sysfs_active)
4801 return -EBUSY;
4802
4803 /*
4804 * Analyze all RAID superblock(s)
4805 */
4806 if (!mddev->raid_disks) {
4807 if (!mddev->persistent)
4808 return -EINVAL;
4809 analyze_sbs(mddev);
4810 }
4811
4812 if (mddev->level != LEVEL_NONE)
4813 request_module("md-level-%d", mddev->level);
4814 else if (mddev->clevel[0])
4815 request_module("md-%s", mddev->clevel);
4816
4817 /*
4818 * Drop all container device buffers, from now on
4819 * the only valid external interface is through the md
4820 * device.
4821 */
4822 rdev_for_each(rdev, mddev) {
4823 if (test_bit(Faulty, &rdev->flags))
4824 continue;
4825 sync_blockdev(rdev->bdev);
4826 invalidate_bdev(rdev->bdev);
4827
4828 /* perform some consistency tests on the device.
4829 * We don't want the data to overlap the metadata,
4830 * Internal Bitmap issues have been handled elsewhere.
4831 */
4832 if (rdev->meta_bdev) {
4833 /* Nothing to check */;
4834 } else if (rdev->data_offset < rdev->sb_start) {
4835 if (mddev->dev_sectors &&
4836 rdev->data_offset + mddev->dev_sectors
4837 > rdev->sb_start) {
4838 printk("md: %s: data overlaps metadata\n",
4839 mdname(mddev));
4840 return -EINVAL;
4841 }
4842 } else {
4843 if (rdev->sb_start + rdev->sb_size/512
4844 > rdev->data_offset) {
4845 printk("md: %s: metadata overlaps data\n",
4846 mdname(mddev));
4847 return -EINVAL;
4848 }
4849 }
4850 sysfs_notify_dirent_safe(rdev->sysfs_state);
4851 }
4852
4853 if (mddev->bio_set == NULL)
4854 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4855
4856 spin_lock(&pers_lock);
4857 pers = find_pers(mddev->level, mddev->clevel);
4858 if (!pers || !try_module_get(pers->owner)) {
4859 spin_unlock(&pers_lock);
4860 if (mddev->level != LEVEL_NONE)
4861 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4862 mddev->level);
4863 else
4864 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4865 mddev->clevel);
4866 return -EINVAL;
4867 }
4868 spin_unlock(&pers_lock);
4869 if (mddev->level != pers->level) {
4870 mddev->level = pers->level;
4871 mddev->new_level = pers->level;
4872 }
4873 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4874
4875 if (mddev->reshape_position != MaxSector &&
4876 pers->start_reshape == NULL) {
4877 /* This personality cannot handle reshaping... */
4878 module_put(pers->owner);
4879 return -EINVAL;
4880 }
4881
4882 if (pers->sync_request) {
4883 /* Warn if this is a potentially silly
4884 * configuration.
4885 */
4886 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4887 struct md_rdev *rdev2;
4888 int warned = 0;
4889
4890 rdev_for_each(rdev, mddev)
4891 rdev_for_each(rdev2, mddev) {
4892 if (rdev < rdev2 &&
4893 rdev->bdev->bd_contains ==
4894 rdev2->bdev->bd_contains) {
4895 printk(KERN_WARNING
4896 "%s: WARNING: %s appears to be"
4897 " on the same physical disk as"
4898 " %s.\n",
4899 mdname(mddev),
4900 bdevname(rdev->bdev,b),
4901 bdevname(rdev2->bdev,b2));
4902 warned = 1;
4903 }
4904 }
4905
4906 if (warned)
4907 printk(KERN_WARNING
4908 "True protection against single-disk"
4909 " failure might be compromised.\n");
4910 }
4911
4912 mddev->recovery = 0;
4913 /* may be over-ridden by personality */
4914 mddev->resync_max_sectors = mddev->dev_sectors;
4915
4916 mddev->ok_start_degraded = start_dirty_degraded;
4917
4918 if (start_readonly && mddev->ro == 0)
4919 mddev->ro = 2; /* read-only, but switch on first write */
4920
4921 err = pers->run(mddev);
4922 if (err)
4923 printk(KERN_ERR "md: pers->run() failed ...\n");
4924 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
4925 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4926 " but 'external_size' not in effect?\n", __func__);
4927 printk(KERN_ERR
4928 "md: invalid array_size %llu > default size %llu\n",
4929 (unsigned long long)mddev->array_sectors / 2,
4930 (unsigned long long)pers->size(mddev, 0, 0) / 2);
4931 err = -EINVAL;
4932 }
4933 if (err == 0 && pers->sync_request &&
4934 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4935 err = bitmap_create(mddev);
4936 if (err)
4937 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4938 mdname(mddev), err);
4939 }
4940 if (err) {
4941 mddev_detach(mddev);
4942 pers->free(mddev, mddev->private);
4943 module_put(pers->owner);
4944 bitmap_destroy(mddev);
4945 return err;
4946 }
4947 if (mddev->queue) {
4948 mddev->queue->backing_dev_info.congested_data = mddev;
4949 mddev->queue->backing_dev_info.congested_fn = md_congested;
4950 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
4951 }
4952 if (pers->sync_request) {
4953 if (mddev->kobj.sd &&
4954 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4955 printk(KERN_WARNING
4956 "md: cannot register extra attributes for %s\n",
4957 mdname(mddev));
4958 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4959 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4960 mddev->ro = 0;
4961
4962 atomic_set(&mddev->writes_pending,0);
4963 atomic_set(&mddev->max_corr_read_errors,
4964 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4965 mddev->safemode = 0;
4966 mddev->safemode_timer.function = md_safemode_timeout;
4967 mddev->safemode_timer.data = (unsigned long) mddev;
4968 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4969 mddev->in_sync = 1;
4970 smp_wmb();
4971 spin_lock(&mddev->lock);
4972 mddev->pers = pers;
4973 mddev->ready = 1;
4974 spin_unlock(&mddev->lock);
4975 rdev_for_each(rdev, mddev)
4976 if (rdev->raid_disk >= 0)
4977 if (sysfs_link_rdev(mddev, rdev))
4978 /* failure here is OK */;
4979
4980 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4981
4982 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4983 md_update_sb(mddev, 0);
4984
4985 md_new_event(mddev);
4986 sysfs_notify_dirent_safe(mddev->sysfs_state);
4987 sysfs_notify_dirent_safe(mddev->sysfs_action);
4988 sysfs_notify(&mddev->kobj, NULL, "degraded");
4989 return 0;
4990 }
4991 EXPORT_SYMBOL_GPL(md_run);
4992
4993 static int do_md_run(struct mddev *mddev)
4994 {
4995 int err;
4996
4997 err = md_run(mddev);
4998 if (err)
4999 goto out;
5000 err = bitmap_load(mddev);
5001 if (err) {
5002 bitmap_destroy(mddev);
5003 goto out;
5004 }
5005
5006 md_wakeup_thread(mddev->thread);
5007 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5008
5009 set_capacity(mddev->gendisk, mddev->array_sectors);
5010 revalidate_disk(mddev->gendisk);
5011 mddev->changed = 1;
5012 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5013 out:
5014 return err;
5015 }
5016
5017 static int restart_array(struct mddev *mddev)
5018 {
5019 struct gendisk *disk = mddev->gendisk;
5020
5021 /* Complain if it has no devices */
5022 if (list_empty(&mddev->disks))
5023 return -ENXIO;
5024 if (!mddev->pers)
5025 return -EINVAL;
5026 if (!mddev->ro)
5027 return -EBUSY;
5028 mddev->safemode = 0;
5029 mddev->ro = 0;
5030 set_disk_ro(disk, 0);
5031 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5032 mdname(mddev));
5033 /* Kick recovery or resync if necessary */
5034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5035 md_wakeup_thread(mddev->thread);
5036 md_wakeup_thread(mddev->sync_thread);
5037 sysfs_notify_dirent_safe(mddev->sysfs_state);
5038 return 0;
5039 }
5040
5041 static void md_clean(struct mddev *mddev)
5042 {
5043 mddev->array_sectors = 0;
5044 mddev->external_size = 0;
5045 mddev->dev_sectors = 0;
5046 mddev->raid_disks = 0;
5047 mddev->recovery_cp = 0;
5048 mddev->resync_min = 0;
5049 mddev->resync_max = MaxSector;
5050 mddev->reshape_position = MaxSector;
5051 mddev->external = 0;
5052 mddev->persistent = 0;
5053 mddev->level = LEVEL_NONE;
5054 mddev->clevel[0] = 0;
5055 mddev->flags = 0;
5056 mddev->ro = 0;
5057 mddev->metadata_type[0] = 0;
5058 mddev->chunk_sectors = 0;
5059 mddev->ctime = mddev->utime = 0;
5060 mddev->layout = 0;
5061 mddev->max_disks = 0;
5062 mddev->events = 0;
5063 mddev->can_decrease_events = 0;
5064 mddev->delta_disks = 0;
5065 mddev->reshape_backwards = 0;
5066 mddev->new_level = LEVEL_NONE;
5067 mddev->new_layout = 0;
5068 mddev->new_chunk_sectors = 0;
5069 mddev->curr_resync = 0;
5070 atomic64_set(&mddev->resync_mismatches, 0);
5071 mddev->suspend_lo = mddev->suspend_hi = 0;
5072 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5073 mddev->recovery = 0;
5074 mddev->in_sync = 0;
5075 mddev->changed = 0;
5076 mddev->degraded = 0;
5077 mddev->safemode = 0;
5078 mddev->merge_check_needed = 0;
5079 mddev->bitmap_info.offset = 0;
5080 mddev->bitmap_info.default_offset = 0;
5081 mddev->bitmap_info.default_space = 0;
5082 mddev->bitmap_info.chunksize = 0;
5083 mddev->bitmap_info.daemon_sleep = 0;
5084 mddev->bitmap_info.max_write_behind = 0;
5085 }
5086
5087 static void __md_stop_writes(struct mddev *mddev)
5088 {
5089 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5090 flush_workqueue(md_misc_wq);
5091 if (mddev->sync_thread) {
5092 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5093 md_reap_sync_thread(mddev);
5094 }
5095
5096 del_timer_sync(&mddev->safemode_timer);
5097
5098 bitmap_flush(mddev);
5099 md_super_wait(mddev);
5100
5101 if (mddev->ro == 0 &&
5102 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5103 /* mark array as shutdown cleanly */
5104 mddev->in_sync = 1;
5105 md_update_sb(mddev, 1);
5106 }
5107 }
5108
5109 void md_stop_writes(struct mddev *mddev)
5110 {
5111 mddev_lock_nointr(mddev);
5112 __md_stop_writes(mddev);
5113 mddev_unlock(mddev);
5114 }
5115 EXPORT_SYMBOL_GPL(md_stop_writes);
5116
5117 static void mddev_detach(struct mddev *mddev)
5118 {
5119 struct bitmap *bitmap = mddev->bitmap;
5120 /* wait for behind writes to complete */
5121 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5122 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5123 mdname(mddev));
5124 /* need to kick something here to make sure I/O goes? */
5125 wait_event(bitmap->behind_wait,
5126 atomic_read(&bitmap->behind_writes) == 0);
5127 }
5128 if (mddev->pers && mddev->pers->quiesce) {
5129 mddev->pers->quiesce(mddev, 1);
5130 mddev->pers->quiesce(mddev, 0);
5131 }
5132 md_unregister_thread(&mddev->thread);
5133 if (mddev->queue)
5134 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5135 }
5136
5137 static void __md_stop(struct mddev *mddev)
5138 {
5139 struct md_personality *pers = mddev->pers;
5140 mddev_detach(mddev);
5141 spin_lock(&mddev->lock);
5142 mddev->ready = 0;
5143 mddev->pers = NULL;
5144 spin_unlock(&mddev->lock);
5145 pers->free(mddev, mddev->private);
5146 if (pers->sync_request && mddev->to_remove == NULL)
5147 mddev->to_remove = &md_redundancy_group;
5148 module_put(pers->owner);
5149 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5150 }
5151
5152 void md_stop(struct mddev *mddev)
5153 {
5154 /* stop the array and free an attached data structures.
5155 * This is called from dm-raid
5156 */
5157 __md_stop(mddev);
5158 bitmap_destroy(mddev);
5159 if (mddev->bio_set)
5160 bioset_free(mddev->bio_set);
5161 }
5162
5163 EXPORT_SYMBOL_GPL(md_stop);
5164
5165 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5166 {
5167 int err = 0;
5168 int did_freeze = 0;
5169
5170 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5171 did_freeze = 1;
5172 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5173 md_wakeup_thread(mddev->thread);
5174 }
5175 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5176 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5177 if (mddev->sync_thread)
5178 /* Thread might be blocked waiting for metadata update
5179 * which will now never happen */
5180 wake_up_process(mddev->sync_thread->tsk);
5181
5182 mddev_unlock(mddev);
5183 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5184 &mddev->recovery));
5185 mddev_lock_nointr(mddev);
5186
5187 mutex_lock(&mddev->open_mutex);
5188 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5189 mddev->sync_thread ||
5190 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5191 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5192 printk("md: %s still in use.\n",mdname(mddev));
5193 if (did_freeze) {
5194 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5195 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5196 md_wakeup_thread(mddev->thread);
5197 }
5198 err = -EBUSY;
5199 goto out;
5200 }
5201 if (mddev->pers) {
5202 __md_stop_writes(mddev);
5203
5204 err = -ENXIO;
5205 if (mddev->ro==1)
5206 goto out;
5207 mddev->ro = 1;
5208 set_disk_ro(mddev->gendisk, 1);
5209 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5210 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5211 md_wakeup_thread(mddev->thread);
5212 sysfs_notify_dirent_safe(mddev->sysfs_state);
5213 err = 0;
5214 }
5215 out:
5216 mutex_unlock(&mddev->open_mutex);
5217 return err;
5218 }
5219
5220 /* mode:
5221 * 0 - completely stop and dis-assemble array
5222 * 2 - stop but do not disassemble array
5223 */
5224 static int do_md_stop(struct mddev *mddev, int mode,
5225 struct block_device *bdev)
5226 {
5227 struct gendisk *disk = mddev->gendisk;
5228 struct md_rdev *rdev;
5229 int did_freeze = 0;
5230
5231 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5232 did_freeze = 1;
5233 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5234 md_wakeup_thread(mddev->thread);
5235 }
5236 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5237 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5238 if (mddev->sync_thread)
5239 /* Thread might be blocked waiting for metadata update
5240 * which will now never happen */
5241 wake_up_process(mddev->sync_thread->tsk);
5242
5243 mddev_unlock(mddev);
5244 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5245 !test_bit(MD_RECOVERY_RUNNING,
5246 &mddev->recovery)));
5247 mddev_lock_nointr(mddev);
5248
5249 mutex_lock(&mddev->open_mutex);
5250 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5251 mddev->sysfs_active ||
5252 mddev->sync_thread ||
5253 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5254 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5255 printk("md: %s still in use.\n",mdname(mddev));
5256 mutex_unlock(&mddev->open_mutex);
5257 if (did_freeze) {
5258 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5260 md_wakeup_thread(mddev->thread);
5261 }
5262 return -EBUSY;
5263 }
5264 if (mddev->pers) {
5265 if (mddev->ro)
5266 set_disk_ro(disk, 0);
5267
5268 __md_stop_writes(mddev);
5269 __md_stop(mddev);
5270 mddev->queue->merge_bvec_fn = NULL;
5271 mddev->queue->backing_dev_info.congested_fn = NULL;
5272
5273 /* tell userspace to handle 'inactive' */
5274 sysfs_notify_dirent_safe(mddev->sysfs_state);
5275
5276 rdev_for_each(rdev, mddev)
5277 if (rdev->raid_disk >= 0)
5278 sysfs_unlink_rdev(mddev, rdev);
5279
5280 set_capacity(disk, 0);
5281 mutex_unlock(&mddev->open_mutex);
5282 mddev->changed = 1;
5283 revalidate_disk(disk);
5284
5285 if (mddev->ro)
5286 mddev->ro = 0;
5287 } else
5288 mutex_unlock(&mddev->open_mutex);
5289 /*
5290 * Free resources if final stop
5291 */
5292 if (mode == 0) {
5293 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5294
5295 bitmap_destroy(mddev);
5296 if (mddev->bitmap_info.file) {
5297 struct file *f = mddev->bitmap_info.file;
5298 spin_lock(&mddev->lock);
5299 mddev->bitmap_info.file = NULL;
5300 spin_unlock(&mddev->lock);
5301 fput(f);
5302 }
5303 mddev->bitmap_info.offset = 0;
5304
5305 export_array(mddev);
5306
5307 md_clean(mddev);
5308 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5309 if (mddev->hold_active == UNTIL_STOP)
5310 mddev->hold_active = 0;
5311 }
5312 blk_integrity_unregister(disk);
5313 md_new_event(mddev);
5314 sysfs_notify_dirent_safe(mddev->sysfs_state);
5315 return 0;
5316 }
5317
5318 #ifndef MODULE
5319 static void autorun_array(struct mddev *mddev)
5320 {
5321 struct md_rdev *rdev;
5322 int err;
5323
5324 if (list_empty(&mddev->disks))
5325 return;
5326
5327 printk(KERN_INFO "md: running: ");
5328
5329 rdev_for_each(rdev, mddev) {
5330 char b[BDEVNAME_SIZE];
5331 printk("<%s>", bdevname(rdev->bdev,b));
5332 }
5333 printk("\n");
5334
5335 err = do_md_run(mddev);
5336 if (err) {
5337 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5338 do_md_stop(mddev, 0, NULL);
5339 }
5340 }
5341
5342 /*
5343 * lets try to run arrays based on all disks that have arrived
5344 * until now. (those are in pending_raid_disks)
5345 *
5346 * the method: pick the first pending disk, collect all disks with
5347 * the same UUID, remove all from the pending list and put them into
5348 * the 'same_array' list. Then order this list based on superblock
5349 * update time (freshest comes first), kick out 'old' disks and
5350 * compare superblocks. If everything's fine then run it.
5351 *
5352 * If "unit" is allocated, then bump its reference count
5353 */
5354 static void autorun_devices(int part)
5355 {
5356 struct md_rdev *rdev0, *rdev, *tmp;
5357 struct mddev *mddev;
5358 char b[BDEVNAME_SIZE];
5359
5360 printk(KERN_INFO "md: autorun ...\n");
5361 while (!list_empty(&pending_raid_disks)) {
5362 int unit;
5363 dev_t dev;
5364 LIST_HEAD(candidates);
5365 rdev0 = list_entry(pending_raid_disks.next,
5366 struct md_rdev, same_set);
5367
5368 printk(KERN_INFO "md: considering %s ...\n",
5369 bdevname(rdev0->bdev,b));
5370 INIT_LIST_HEAD(&candidates);
5371 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5372 if (super_90_load(rdev, rdev0, 0) >= 0) {
5373 printk(KERN_INFO "md: adding %s ...\n",
5374 bdevname(rdev->bdev,b));
5375 list_move(&rdev->same_set, &candidates);
5376 }
5377 /*
5378 * now we have a set of devices, with all of them having
5379 * mostly sane superblocks. It's time to allocate the
5380 * mddev.
5381 */
5382 if (part) {
5383 dev = MKDEV(mdp_major,
5384 rdev0->preferred_minor << MdpMinorShift);
5385 unit = MINOR(dev) >> MdpMinorShift;
5386 } else {
5387 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5388 unit = MINOR(dev);
5389 }
5390 if (rdev0->preferred_minor != unit) {
5391 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5392 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5393 break;
5394 }
5395
5396 md_probe(dev, NULL, NULL);
5397 mddev = mddev_find(dev);
5398 if (!mddev || !mddev->gendisk) {
5399 if (mddev)
5400 mddev_put(mddev);
5401 printk(KERN_ERR
5402 "md: cannot allocate memory for md drive.\n");
5403 break;
5404 }
5405 if (mddev_lock(mddev))
5406 printk(KERN_WARNING "md: %s locked, cannot run\n",
5407 mdname(mddev));
5408 else if (mddev->raid_disks || mddev->major_version
5409 || !list_empty(&mddev->disks)) {
5410 printk(KERN_WARNING
5411 "md: %s already running, cannot run %s\n",
5412 mdname(mddev), bdevname(rdev0->bdev,b));
5413 mddev_unlock(mddev);
5414 } else {
5415 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5416 mddev->persistent = 1;
5417 rdev_for_each_list(rdev, tmp, &candidates) {
5418 list_del_init(&rdev->same_set);
5419 if (bind_rdev_to_array(rdev, mddev))
5420 export_rdev(rdev);
5421 }
5422 autorun_array(mddev);
5423 mddev_unlock(mddev);
5424 }
5425 /* on success, candidates will be empty, on error
5426 * it won't...
5427 */
5428 rdev_for_each_list(rdev, tmp, &candidates) {
5429 list_del_init(&rdev->same_set);
5430 export_rdev(rdev);
5431 }
5432 mddev_put(mddev);
5433 }
5434 printk(KERN_INFO "md: ... autorun DONE.\n");
5435 }
5436 #endif /* !MODULE */
5437
5438 static int get_version(void __user *arg)
5439 {
5440 mdu_version_t ver;
5441
5442 ver.major = MD_MAJOR_VERSION;
5443 ver.minor = MD_MINOR_VERSION;
5444 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5445
5446 if (copy_to_user(arg, &ver, sizeof(ver)))
5447 return -EFAULT;
5448
5449 return 0;
5450 }
5451
5452 static int get_array_info(struct mddev *mddev, void __user *arg)
5453 {
5454 mdu_array_info_t info;
5455 int nr,working,insync,failed,spare;
5456 struct md_rdev *rdev;
5457
5458 nr = working = insync = failed = spare = 0;
5459 rcu_read_lock();
5460 rdev_for_each_rcu(rdev, mddev) {
5461 nr++;
5462 if (test_bit(Faulty, &rdev->flags))
5463 failed++;
5464 else {
5465 working++;
5466 if (test_bit(In_sync, &rdev->flags))
5467 insync++;
5468 else
5469 spare++;
5470 }
5471 }
5472 rcu_read_unlock();
5473
5474 info.major_version = mddev->major_version;
5475 info.minor_version = mddev->minor_version;
5476 info.patch_version = MD_PATCHLEVEL_VERSION;
5477 info.ctime = mddev->ctime;
5478 info.level = mddev->level;
5479 info.size = mddev->dev_sectors / 2;
5480 if (info.size != mddev->dev_sectors / 2) /* overflow */
5481 info.size = -1;
5482 info.nr_disks = nr;
5483 info.raid_disks = mddev->raid_disks;
5484 info.md_minor = mddev->md_minor;
5485 info.not_persistent= !mddev->persistent;
5486
5487 info.utime = mddev->utime;
5488 info.state = 0;
5489 if (mddev->in_sync)
5490 info.state = (1<<MD_SB_CLEAN);
5491 if (mddev->bitmap && mddev->bitmap_info.offset)
5492 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5493 info.active_disks = insync;
5494 info.working_disks = working;
5495 info.failed_disks = failed;
5496 info.spare_disks = spare;
5497
5498 info.layout = mddev->layout;
5499 info.chunk_size = mddev->chunk_sectors << 9;
5500
5501 if (copy_to_user(arg, &info, sizeof(info)))
5502 return -EFAULT;
5503
5504 return 0;
5505 }
5506
5507 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5508 {
5509 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5510 char *ptr;
5511 int err;
5512
5513 file = kmalloc(sizeof(*file), GFP_NOIO);
5514 if (!file)
5515 return -ENOMEM;
5516
5517 err = 0;
5518 spin_lock(&mddev->lock);
5519 /* bitmap disabled, zero the first byte and copy out */
5520 if (!mddev->bitmap_info.file)
5521 file->pathname[0] = '\0';
5522 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5523 file->pathname, sizeof(file->pathname))),
5524 IS_ERR(ptr))
5525 err = PTR_ERR(ptr);
5526 else
5527 memmove(file->pathname, ptr,
5528 sizeof(file->pathname)-(ptr-file->pathname));
5529 spin_unlock(&mddev->lock);
5530
5531 if (err == 0 &&
5532 copy_to_user(arg, file, sizeof(*file)))
5533 err = -EFAULT;
5534
5535 kfree(file);
5536 return err;
5537 }
5538
5539 static int get_disk_info(struct mddev *mddev, void __user * arg)
5540 {
5541 mdu_disk_info_t info;
5542 struct md_rdev *rdev;
5543
5544 if (copy_from_user(&info, arg, sizeof(info)))
5545 return -EFAULT;
5546
5547 rcu_read_lock();
5548 rdev = find_rdev_nr_rcu(mddev, info.number);
5549 if (rdev) {
5550 info.major = MAJOR(rdev->bdev->bd_dev);
5551 info.minor = MINOR(rdev->bdev->bd_dev);
5552 info.raid_disk = rdev->raid_disk;
5553 info.state = 0;
5554 if (test_bit(Faulty, &rdev->flags))
5555 info.state |= (1<<MD_DISK_FAULTY);
5556 else if (test_bit(In_sync, &rdev->flags)) {
5557 info.state |= (1<<MD_DISK_ACTIVE);
5558 info.state |= (1<<MD_DISK_SYNC);
5559 }
5560 if (test_bit(WriteMostly, &rdev->flags))
5561 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5562 } else {
5563 info.major = info.minor = 0;
5564 info.raid_disk = -1;
5565 info.state = (1<<MD_DISK_REMOVED);
5566 }
5567 rcu_read_unlock();
5568
5569 if (copy_to_user(arg, &info, sizeof(info)))
5570 return -EFAULT;
5571
5572 return 0;
5573 }
5574
5575 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5576 {
5577 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5578 struct md_rdev *rdev;
5579 dev_t dev = MKDEV(info->major,info->minor);
5580
5581 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5582 return -EOVERFLOW;
5583
5584 if (!mddev->raid_disks) {
5585 int err;
5586 /* expecting a device which has a superblock */
5587 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5588 if (IS_ERR(rdev)) {
5589 printk(KERN_WARNING
5590 "md: md_import_device returned %ld\n",
5591 PTR_ERR(rdev));
5592 return PTR_ERR(rdev);
5593 }
5594 if (!list_empty(&mddev->disks)) {
5595 struct md_rdev *rdev0
5596 = list_entry(mddev->disks.next,
5597 struct md_rdev, same_set);
5598 err = super_types[mddev->major_version]
5599 .load_super(rdev, rdev0, mddev->minor_version);
5600 if (err < 0) {
5601 printk(KERN_WARNING
5602 "md: %s has different UUID to %s\n",
5603 bdevname(rdev->bdev,b),
5604 bdevname(rdev0->bdev,b2));
5605 export_rdev(rdev);
5606 return -EINVAL;
5607 }
5608 }
5609 err = bind_rdev_to_array(rdev, mddev);
5610 if (err)
5611 export_rdev(rdev);
5612 return err;
5613 }
5614
5615 /*
5616 * add_new_disk can be used once the array is assembled
5617 * to add "hot spares". They must already have a superblock
5618 * written
5619 */
5620 if (mddev->pers) {
5621 int err;
5622 if (!mddev->pers->hot_add_disk) {
5623 printk(KERN_WARNING
5624 "%s: personality does not support diskops!\n",
5625 mdname(mddev));
5626 return -EINVAL;
5627 }
5628 if (mddev->persistent)
5629 rdev = md_import_device(dev, mddev->major_version,
5630 mddev->minor_version);
5631 else
5632 rdev = md_import_device(dev, -1, -1);
5633 if (IS_ERR(rdev)) {
5634 printk(KERN_WARNING
5635 "md: md_import_device returned %ld\n",
5636 PTR_ERR(rdev));
5637 return PTR_ERR(rdev);
5638 }
5639 /* set saved_raid_disk if appropriate */
5640 if (!mddev->persistent) {
5641 if (info->state & (1<<MD_DISK_SYNC) &&
5642 info->raid_disk < mddev->raid_disks) {
5643 rdev->raid_disk = info->raid_disk;
5644 set_bit(In_sync, &rdev->flags);
5645 clear_bit(Bitmap_sync, &rdev->flags);
5646 } else
5647 rdev->raid_disk = -1;
5648 rdev->saved_raid_disk = rdev->raid_disk;
5649 } else
5650 super_types[mddev->major_version].
5651 validate_super(mddev, rdev);
5652 if ((info->state & (1<<MD_DISK_SYNC)) &&
5653 rdev->raid_disk != info->raid_disk) {
5654 /* This was a hot-add request, but events doesn't
5655 * match, so reject it.
5656 */
5657 export_rdev(rdev);
5658 return -EINVAL;
5659 }
5660
5661 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5662 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5663 set_bit(WriteMostly, &rdev->flags);
5664 else
5665 clear_bit(WriteMostly, &rdev->flags);
5666
5667 rdev->raid_disk = -1;
5668 err = bind_rdev_to_array(rdev, mddev);
5669 if (!err && !mddev->pers->hot_remove_disk) {
5670 /* If there is hot_add_disk but no hot_remove_disk
5671 * then added disks for geometry changes,
5672 * and should be added immediately.
5673 */
5674 super_types[mddev->major_version].
5675 validate_super(mddev, rdev);
5676 err = mddev->pers->hot_add_disk(mddev, rdev);
5677 if (err)
5678 unbind_rdev_from_array(rdev);
5679 }
5680 if (err)
5681 export_rdev(rdev);
5682 else
5683 sysfs_notify_dirent_safe(rdev->sysfs_state);
5684
5685 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5686 if (mddev->degraded)
5687 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5688 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5689 if (!err)
5690 md_new_event(mddev);
5691 md_wakeup_thread(mddev->thread);
5692 return err;
5693 }
5694
5695 /* otherwise, add_new_disk is only allowed
5696 * for major_version==0 superblocks
5697 */
5698 if (mddev->major_version != 0) {
5699 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5700 mdname(mddev));
5701 return -EINVAL;
5702 }
5703
5704 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5705 int err;
5706 rdev = md_import_device(dev, -1, 0);
5707 if (IS_ERR(rdev)) {
5708 printk(KERN_WARNING
5709 "md: error, md_import_device() returned %ld\n",
5710 PTR_ERR(rdev));
5711 return PTR_ERR(rdev);
5712 }
5713 rdev->desc_nr = info->number;
5714 if (info->raid_disk < mddev->raid_disks)
5715 rdev->raid_disk = info->raid_disk;
5716 else
5717 rdev->raid_disk = -1;
5718
5719 if (rdev->raid_disk < mddev->raid_disks)
5720 if (info->state & (1<<MD_DISK_SYNC))
5721 set_bit(In_sync, &rdev->flags);
5722
5723 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5724 set_bit(WriteMostly, &rdev->flags);
5725
5726 if (!mddev->persistent) {
5727 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5728 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5729 } else
5730 rdev->sb_start = calc_dev_sboffset(rdev);
5731 rdev->sectors = rdev->sb_start;
5732
5733 err = bind_rdev_to_array(rdev, mddev);
5734 if (err) {
5735 export_rdev(rdev);
5736 return err;
5737 }
5738 }
5739
5740 return 0;
5741 }
5742
5743 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5744 {
5745 char b[BDEVNAME_SIZE];
5746 struct md_rdev *rdev;
5747
5748 rdev = find_rdev(mddev, dev);
5749 if (!rdev)
5750 return -ENXIO;
5751
5752 clear_bit(Blocked, &rdev->flags);
5753 remove_and_add_spares(mddev, rdev);
5754
5755 if (rdev->raid_disk >= 0)
5756 goto busy;
5757
5758 kick_rdev_from_array(rdev);
5759 md_update_sb(mddev, 1);
5760 md_new_event(mddev);
5761
5762 return 0;
5763 busy:
5764 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5765 bdevname(rdev->bdev,b), mdname(mddev));
5766 return -EBUSY;
5767 }
5768
5769 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5770 {
5771 char b[BDEVNAME_SIZE];
5772 int err;
5773 struct md_rdev *rdev;
5774
5775 if (!mddev->pers)
5776 return -ENODEV;
5777
5778 if (mddev->major_version != 0) {
5779 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5780 " version-0 superblocks.\n",
5781 mdname(mddev));
5782 return -EINVAL;
5783 }
5784 if (!mddev->pers->hot_add_disk) {
5785 printk(KERN_WARNING
5786 "%s: personality does not support diskops!\n",
5787 mdname(mddev));
5788 return -EINVAL;
5789 }
5790
5791 rdev = md_import_device(dev, -1, 0);
5792 if (IS_ERR(rdev)) {
5793 printk(KERN_WARNING
5794 "md: error, md_import_device() returned %ld\n",
5795 PTR_ERR(rdev));
5796 return -EINVAL;
5797 }
5798
5799 if (mddev->persistent)
5800 rdev->sb_start = calc_dev_sboffset(rdev);
5801 else
5802 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5803
5804 rdev->sectors = rdev->sb_start;
5805
5806 if (test_bit(Faulty, &rdev->flags)) {
5807 printk(KERN_WARNING
5808 "md: can not hot-add faulty %s disk to %s!\n",
5809 bdevname(rdev->bdev,b), mdname(mddev));
5810 err = -EINVAL;
5811 goto abort_export;
5812 }
5813 clear_bit(In_sync, &rdev->flags);
5814 rdev->desc_nr = -1;
5815 rdev->saved_raid_disk = -1;
5816 err = bind_rdev_to_array(rdev, mddev);
5817 if (err)
5818 goto abort_export;
5819
5820 /*
5821 * The rest should better be atomic, we can have disk failures
5822 * noticed in interrupt contexts ...
5823 */
5824
5825 rdev->raid_disk = -1;
5826
5827 md_update_sb(mddev, 1);
5828
5829 /*
5830 * Kick recovery, maybe this spare has to be added to the
5831 * array immediately.
5832 */
5833 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5834 md_wakeup_thread(mddev->thread);
5835 md_new_event(mddev);
5836 return 0;
5837
5838 abort_export:
5839 export_rdev(rdev);
5840 return err;
5841 }
5842
5843 static int set_bitmap_file(struct mddev *mddev, int fd)
5844 {
5845 int err = 0;
5846
5847 if (mddev->pers) {
5848 if (!mddev->pers->quiesce || !mddev->thread)
5849 return -EBUSY;
5850 if (mddev->recovery || mddev->sync_thread)
5851 return -EBUSY;
5852 /* we should be able to change the bitmap.. */
5853 }
5854
5855 if (fd >= 0) {
5856 struct inode *inode;
5857 struct file *f;
5858
5859 if (mddev->bitmap || mddev->bitmap_info.file)
5860 return -EEXIST; /* cannot add when bitmap is present */
5861 f = fget(fd);
5862
5863 if (f == NULL) {
5864 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5865 mdname(mddev));
5866 return -EBADF;
5867 }
5868
5869 inode = f->f_mapping->host;
5870 if (!S_ISREG(inode->i_mode)) {
5871 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5872 mdname(mddev));
5873 err = -EBADF;
5874 } else if (!(f->f_mode & FMODE_WRITE)) {
5875 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5876 mdname(mddev));
5877 err = -EBADF;
5878 } else if (atomic_read(&inode->i_writecount) != 1) {
5879 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5880 mdname(mddev));
5881 err = -EBUSY;
5882 }
5883 if (err) {
5884 fput(f);
5885 return err;
5886 }
5887 mddev->bitmap_info.file = f;
5888 mddev->bitmap_info.offset = 0; /* file overrides offset */
5889 } else if (mddev->bitmap == NULL)
5890 return -ENOENT; /* cannot remove what isn't there */
5891 err = 0;
5892 if (mddev->pers) {
5893 mddev->pers->quiesce(mddev, 1);
5894 if (fd >= 0) {
5895 err = bitmap_create(mddev);
5896 if (!err)
5897 err = bitmap_load(mddev);
5898 }
5899 if (fd < 0 || err) {
5900 bitmap_destroy(mddev);
5901 fd = -1; /* make sure to put the file */
5902 }
5903 mddev->pers->quiesce(mddev, 0);
5904 }
5905 if (fd < 0) {
5906 struct file *f = mddev->bitmap_info.file;
5907 if (f) {
5908 spin_lock(&mddev->lock);
5909 mddev->bitmap_info.file = NULL;
5910 spin_unlock(&mddev->lock);
5911 fput(f);
5912 }
5913 }
5914
5915 return err;
5916 }
5917
5918 /*
5919 * set_array_info is used two different ways
5920 * The original usage is when creating a new array.
5921 * In this usage, raid_disks is > 0 and it together with
5922 * level, size, not_persistent,layout,chunksize determine the
5923 * shape of the array.
5924 * This will always create an array with a type-0.90.0 superblock.
5925 * The newer usage is when assembling an array.
5926 * In this case raid_disks will be 0, and the major_version field is
5927 * use to determine which style super-blocks are to be found on the devices.
5928 * The minor and patch _version numbers are also kept incase the
5929 * super_block handler wishes to interpret them.
5930 */
5931 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5932 {
5933
5934 if (info->raid_disks == 0) {
5935 /* just setting version number for superblock loading */
5936 if (info->major_version < 0 ||
5937 info->major_version >= ARRAY_SIZE(super_types) ||
5938 super_types[info->major_version].name == NULL) {
5939 /* maybe try to auto-load a module? */
5940 printk(KERN_INFO
5941 "md: superblock version %d not known\n",
5942 info->major_version);
5943 return -EINVAL;
5944 }
5945 mddev->major_version = info->major_version;
5946 mddev->minor_version = info->minor_version;
5947 mddev->patch_version = info->patch_version;
5948 mddev->persistent = !info->not_persistent;
5949 /* ensure mddev_put doesn't delete this now that there
5950 * is some minimal configuration.
5951 */
5952 mddev->ctime = get_seconds();
5953 return 0;
5954 }
5955 mddev->major_version = MD_MAJOR_VERSION;
5956 mddev->minor_version = MD_MINOR_VERSION;
5957 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5958 mddev->ctime = get_seconds();
5959
5960 mddev->level = info->level;
5961 mddev->clevel[0] = 0;
5962 mddev->dev_sectors = 2 * (sector_t)info->size;
5963 mddev->raid_disks = info->raid_disks;
5964 /* don't set md_minor, it is determined by which /dev/md* was
5965 * openned
5966 */
5967 if (info->state & (1<<MD_SB_CLEAN))
5968 mddev->recovery_cp = MaxSector;
5969 else
5970 mddev->recovery_cp = 0;
5971 mddev->persistent = ! info->not_persistent;
5972 mddev->external = 0;
5973
5974 mddev->layout = info->layout;
5975 mddev->chunk_sectors = info->chunk_size >> 9;
5976
5977 mddev->max_disks = MD_SB_DISKS;
5978
5979 if (mddev->persistent)
5980 mddev->flags = 0;
5981 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5982
5983 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5984 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5985 mddev->bitmap_info.offset = 0;
5986
5987 mddev->reshape_position = MaxSector;
5988
5989 /*
5990 * Generate a 128 bit UUID
5991 */
5992 get_random_bytes(mddev->uuid, 16);
5993
5994 mddev->new_level = mddev->level;
5995 mddev->new_chunk_sectors = mddev->chunk_sectors;
5996 mddev->new_layout = mddev->layout;
5997 mddev->delta_disks = 0;
5998 mddev->reshape_backwards = 0;
5999
6000 return 0;
6001 }
6002
6003 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6004 {
6005 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6006
6007 if (mddev->external_size)
6008 return;
6009
6010 mddev->array_sectors = array_sectors;
6011 }
6012 EXPORT_SYMBOL(md_set_array_sectors);
6013
6014 static int update_size(struct mddev *mddev, sector_t num_sectors)
6015 {
6016 struct md_rdev *rdev;
6017 int rv;
6018 int fit = (num_sectors == 0);
6019
6020 if (mddev->pers->resize == NULL)
6021 return -EINVAL;
6022 /* The "num_sectors" is the number of sectors of each device that
6023 * is used. This can only make sense for arrays with redundancy.
6024 * linear and raid0 always use whatever space is available. We can only
6025 * consider changing this number if no resync or reconstruction is
6026 * happening, and if the new size is acceptable. It must fit before the
6027 * sb_start or, if that is <data_offset, it must fit before the size
6028 * of each device. If num_sectors is zero, we find the largest size
6029 * that fits.
6030 */
6031 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6032 mddev->sync_thread)
6033 return -EBUSY;
6034 if (mddev->ro)
6035 return -EROFS;
6036
6037 rdev_for_each(rdev, mddev) {
6038 sector_t avail = rdev->sectors;
6039
6040 if (fit && (num_sectors == 0 || num_sectors > avail))
6041 num_sectors = avail;
6042 if (avail < num_sectors)
6043 return -ENOSPC;
6044 }
6045 rv = mddev->pers->resize(mddev, num_sectors);
6046 if (!rv)
6047 revalidate_disk(mddev->gendisk);
6048 return rv;
6049 }
6050
6051 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6052 {
6053 int rv;
6054 struct md_rdev *rdev;
6055 /* change the number of raid disks */
6056 if (mddev->pers->check_reshape == NULL)
6057 return -EINVAL;
6058 if (mddev->ro)
6059 return -EROFS;
6060 if (raid_disks <= 0 ||
6061 (mddev->max_disks && raid_disks >= mddev->max_disks))
6062 return -EINVAL;
6063 if (mddev->sync_thread ||
6064 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6065 mddev->reshape_position != MaxSector)
6066 return -EBUSY;
6067
6068 rdev_for_each(rdev, mddev) {
6069 if (mddev->raid_disks < raid_disks &&
6070 rdev->data_offset < rdev->new_data_offset)
6071 return -EINVAL;
6072 if (mddev->raid_disks > raid_disks &&
6073 rdev->data_offset > rdev->new_data_offset)
6074 return -EINVAL;
6075 }
6076
6077 mddev->delta_disks = raid_disks - mddev->raid_disks;
6078 if (mddev->delta_disks < 0)
6079 mddev->reshape_backwards = 1;
6080 else if (mddev->delta_disks > 0)
6081 mddev->reshape_backwards = 0;
6082
6083 rv = mddev->pers->check_reshape(mddev);
6084 if (rv < 0) {
6085 mddev->delta_disks = 0;
6086 mddev->reshape_backwards = 0;
6087 }
6088 return rv;
6089 }
6090
6091 /*
6092 * update_array_info is used to change the configuration of an
6093 * on-line array.
6094 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6095 * fields in the info are checked against the array.
6096 * Any differences that cannot be handled will cause an error.
6097 * Normally, only one change can be managed at a time.
6098 */
6099 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6100 {
6101 int rv = 0;
6102 int cnt = 0;
6103 int state = 0;
6104
6105 /* calculate expected state,ignoring low bits */
6106 if (mddev->bitmap && mddev->bitmap_info.offset)
6107 state |= (1 << MD_SB_BITMAP_PRESENT);
6108
6109 if (mddev->major_version != info->major_version ||
6110 mddev->minor_version != info->minor_version ||
6111 /* mddev->patch_version != info->patch_version || */
6112 mddev->ctime != info->ctime ||
6113 mddev->level != info->level ||
6114 /* mddev->layout != info->layout || */
6115 !mddev->persistent != info->not_persistent||
6116 mddev->chunk_sectors != info->chunk_size >> 9 ||
6117 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6118 ((state^info->state) & 0xfffffe00)
6119 )
6120 return -EINVAL;
6121 /* Check there is only one change */
6122 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6123 cnt++;
6124 if (mddev->raid_disks != info->raid_disks)
6125 cnt++;
6126 if (mddev->layout != info->layout)
6127 cnt++;
6128 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6129 cnt++;
6130 if (cnt == 0)
6131 return 0;
6132 if (cnt > 1)
6133 return -EINVAL;
6134
6135 if (mddev->layout != info->layout) {
6136 /* Change layout
6137 * we don't need to do anything at the md level, the
6138 * personality will take care of it all.
6139 */
6140 if (mddev->pers->check_reshape == NULL)
6141 return -EINVAL;
6142 else {
6143 mddev->new_layout = info->layout;
6144 rv = mddev->pers->check_reshape(mddev);
6145 if (rv)
6146 mddev->new_layout = mddev->layout;
6147 return rv;
6148 }
6149 }
6150 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6151 rv = update_size(mddev, (sector_t)info->size * 2);
6152
6153 if (mddev->raid_disks != info->raid_disks)
6154 rv = update_raid_disks(mddev, info->raid_disks);
6155
6156 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6157 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6158 return -EINVAL;
6159 if (mddev->recovery || mddev->sync_thread)
6160 return -EBUSY;
6161 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6162 /* add the bitmap */
6163 if (mddev->bitmap)
6164 return -EEXIST;
6165 if (mddev->bitmap_info.default_offset == 0)
6166 return -EINVAL;
6167 mddev->bitmap_info.offset =
6168 mddev->bitmap_info.default_offset;
6169 mddev->bitmap_info.space =
6170 mddev->bitmap_info.default_space;
6171 mddev->pers->quiesce(mddev, 1);
6172 rv = bitmap_create(mddev);
6173 if (!rv)
6174 rv = bitmap_load(mddev);
6175 if (rv)
6176 bitmap_destroy(mddev);
6177 mddev->pers->quiesce(mddev, 0);
6178 } else {
6179 /* remove the bitmap */
6180 if (!mddev->bitmap)
6181 return -ENOENT;
6182 if (mddev->bitmap->storage.file)
6183 return -EINVAL;
6184 mddev->pers->quiesce(mddev, 1);
6185 bitmap_destroy(mddev);
6186 mddev->pers->quiesce(mddev, 0);
6187 mddev->bitmap_info.offset = 0;
6188 }
6189 }
6190 md_update_sb(mddev, 1);
6191 return rv;
6192 }
6193
6194 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6195 {
6196 struct md_rdev *rdev;
6197 int err = 0;
6198
6199 if (mddev->pers == NULL)
6200 return -ENODEV;
6201
6202 rcu_read_lock();
6203 rdev = find_rdev_rcu(mddev, dev);
6204 if (!rdev)
6205 err = -ENODEV;
6206 else {
6207 md_error(mddev, rdev);
6208 if (!test_bit(Faulty, &rdev->flags))
6209 err = -EBUSY;
6210 }
6211 rcu_read_unlock();
6212 return err;
6213 }
6214
6215 /*
6216 * We have a problem here : there is no easy way to give a CHS
6217 * virtual geometry. We currently pretend that we have a 2 heads
6218 * 4 sectors (with a BIG number of cylinders...). This drives
6219 * dosfs just mad... ;-)
6220 */
6221 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6222 {
6223 struct mddev *mddev = bdev->bd_disk->private_data;
6224
6225 geo->heads = 2;
6226 geo->sectors = 4;
6227 geo->cylinders = mddev->array_sectors / 8;
6228 return 0;
6229 }
6230
6231 static inline bool md_ioctl_valid(unsigned int cmd)
6232 {
6233 switch (cmd) {
6234 case ADD_NEW_DISK:
6235 case BLKROSET:
6236 case GET_ARRAY_INFO:
6237 case GET_BITMAP_FILE:
6238 case GET_DISK_INFO:
6239 case HOT_ADD_DISK:
6240 case HOT_REMOVE_DISK:
6241 case RAID_AUTORUN:
6242 case RAID_VERSION:
6243 case RESTART_ARRAY_RW:
6244 case RUN_ARRAY:
6245 case SET_ARRAY_INFO:
6246 case SET_BITMAP_FILE:
6247 case SET_DISK_FAULTY:
6248 case STOP_ARRAY:
6249 case STOP_ARRAY_RO:
6250 return true;
6251 default:
6252 return false;
6253 }
6254 }
6255
6256 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6257 unsigned int cmd, unsigned long arg)
6258 {
6259 int err = 0;
6260 void __user *argp = (void __user *)arg;
6261 struct mddev *mddev = NULL;
6262 int ro;
6263
6264 if (!md_ioctl_valid(cmd))
6265 return -ENOTTY;
6266
6267 switch (cmd) {
6268 case RAID_VERSION:
6269 case GET_ARRAY_INFO:
6270 case GET_DISK_INFO:
6271 break;
6272 default:
6273 if (!capable(CAP_SYS_ADMIN))
6274 return -EACCES;
6275 }
6276
6277 /*
6278 * Commands dealing with the RAID driver but not any
6279 * particular array:
6280 */
6281 switch (cmd) {
6282 case RAID_VERSION:
6283 err = get_version(argp);
6284 goto out;
6285
6286 #ifndef MODULE
6287 case RAID_AUTORUN:
6288 err = 0;
6289 autostart_arrays(arg);
6290 goto out;
6291 #endif
6292 default:;
6293 }
6294
6295 /*
6296 * Commands creating/starting a new array:
6297 */
6298
6299 mddev = bdev->bd_disk->private_data;
6300
6301 if (!mddev) {
6302 BUG();
6303 goto out;
6304 }
6305
6306 /* Some actions do not requires the mutex */
6307 switch (cmd) {
6308 case GET_ARRAY_INFO:
6309 if (!mddev->raid_disks && !mddev->external)
6310 err = -ENODEV;
6311 else
6312 err = get_array_info(mddev, argp);
6313 goto out;
6314
6315 case GET_DISK_INFO:
6316 if (!mddev->raid_disks && !mddev->external)
6317 err = -ENODEV;
6318 else
6319 err = get_disk_info(mddev, argp);
6320 goto out;
6321
6322 case SET_DISK_FAULTY:
6323 err = set_disk_faulty(mddev, new_decode_dev(arg));
6324 goto out;
6325
6326 case GET_BITMAP_FILE:
6327 err = get_bitmap_file(mddev, argp);
6328 goto out;
6329
6330 }
6331
6332 if (cmd == ADD_NEW_DISK)
6333 /* need to ensure md_delayed_delete() has completed */
6334 flush_workqueue(md_misc_wq);
6335
6336 if (cmd == HOT_REMOVE_DISK)
6337 /* need to ensure recovery thread has run */
6338 wait_event_interruptible_timeout(mddev->sb_wait,
6339 !test_bit(MD_RECOVERY_NEEDED,
6340 &mddev->flags),
6341 msecs_to_jiffies(5000));
6342 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6343 /* Need to flush page cache, and ensure no-one else opens
6344 * and writes
6345 */
6346 mutex_lock(&mddev->open_mutex);
6347 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6348 mutex_unlock(&mddev->open_mutex);
6349 err = -EBUSY;
6350 goto out;
6351 }
6352 set_bit(MD_STILL_CLOSED, &mddev->flags);
6353 mutex_unlock(&mddev->open_mutex);
6354 sync_blockdev(bdev);
6355 }
6356 err = mddev_lock(mddev);
6357 if (err) {
6358 printk(KERN_INFO
6359 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6360 err, cmd);
6361 goto out;
6362 }
6363
6364 if (cmd == SET_ARRAY_INFO) {
6365 mdu_array_info_t info;
6366 if (!arg)
6367 memset(&info, 0, sizeof(info));
6368 else if (copy_from_user(&info, argp, sizeof(info))) {
6369 err = -EFAULT;
6370 goto unlock;
6371 }
6372 if (mddev->pers) {
6373 err = update_array_info(mddev, &info);
6374 if (err) {
6375 printk(KERN_WARNING "md: couldn't update"
6376 " array info. %d\n", err);
6377 goto unlock;
6378 }
6379 goto unlock;
6380 }
6381 if (!list_empty(&mddev->disks)) {
6382 printk(KERN_WARNING
6383 "md: array %s already has disks!\n",
6384 mdname(mddev));
6385 err = -EBUSY;
6386 goto unlock;
6387 }
6388 if (mddev->raid_disks) {
6389 printk(KERN_WARNING
6390 "md: array %s already initialised!\n",
6391 mdname(mddev));
6392 err = -EBUSY;
6393 goto unlock;
6394 }
6395 err = set_array_info(mddev, &info);
6396 if (err) {
6397 printk(KERN_WARNING "md: couldn't set"
6398 " array info. %d\n", err);
6399 goto unlock;
6400 }
6401 goto unlock;
6402 }
6403
6404 /*
6405 * Commands querying/configuring an existing array:
6406 */
6407 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6408 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6409 if ((!mddev->raid_disks && !mddev->external)
6410 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6411 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6412 && cmd != GET_BITMAP_FILE) {
6413 err = -ENODEV;
6414 goto unlock;
6415 }
6416
6417 /*
6418 * Commands even a read-only array can execute:
6419 */
6420 switch (cmd) {
6421 case RESTART_ARRAY_RW:
6422 err = restart_array(mddev);
6423 goto unlock;
6424
6425 case STOP_ARRAY:
6426 err = do_md_stop(mddev, 0, bdev);
6427 goto unlock;
6428
6429 case STOP_ARRAY_RO:
6430 err = md_set_readonly(mddev, bdev);
6431 goto unlock;
6432
6433 case HOT_REMOVE_DISK:
6434 err = hot_remove_disk(mddev, new_decode_dev(arg));
6435 goto unlock;
6436
6437 case ADD_NEW_DISK:
6438 /* We can support ADD_NEW_DISK on read-only arrays
6439 * on if we are re-adding a preexisting device.
6440 * So require mddev->pers and MD_DISK_SYNC.
6441 */
6442 if (mddev->pers) {
6443 mdu_disk_info_t info;
6444 if (copy_from_user(&info, argp, sizeof(info)))
6445 err = -EFAULT;
6446 else if (!(info.state & (1<<MD_DISK_SYNC)))
6447 /* Need to clear read-only for this */
6448 break;
6449 else
6450 err = add_new_disk(mddev, &info);
6451 goto unlock;
6452 }
6453 break;
6454
6455 case BLKROSET:
6456 if (get_user(ro, (int __user *)(arg))) {
6457 err = -EFAULT;
6458 goto unlock;
6459 }
6460 err = -EINVAL;
6461
6462 /* if the bdev is going readonly the value of mddev->ro
6463 * does not matter, no writes are coming
6464 */
6465 if (ro)
6466 goto unlock;
6467
6468 /* are we are already prepared for writes? */
6469 if (mddev->ro != 1)
6470 goto unlock;
6471
6472 /* transitioning to readauto need only happen for
6473 * arrays that call md_write_start
6474 */
6475 if (mddev->pers) {
6476 err = restart_array(mddev);
6477 if (err == 0) {
6478 mddev->ro = 2;
6479 set_disk_ro(mddev->gendisk, 0);
6480 }
6481 }
6482 goto unlock;
6483 }
6484
6485 /*
6486 * The remaining ioctls are changing the state of the
6487 * superblock, so we do not allow them on read-only arrays.
6488 */
6489 if (mddev->ro && mddev->pers) {
6490 if (mddev->ro == 2) {
6491 mddev->ro = 0;
6492 sysfs_notify_dirent_safe(mddev->sysfs_state);
6493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6494 /* mddev_unlock will wake thread */
6495 /* If a device failed while we were read-only, we
6496 * need to make sure the metadata is updated now.
6497 */
6498 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6499 mddev_unlock(mddev);
6500 wait_event(mddev->sb_wait,
6501 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6502 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6503 mddev_lock_nointr(mddev);
6504 }
6505 } else {
6506 err = -EROFS;
6507 goto unlock;
6508 }
6509 }
6510
6511 switch (cmd) {
6512 case ADD_NEW_DISK:
6513 {
6514 mdu_disk_info_t info;
6515 if (copy_from_user(&info, argp, sizeof(info)))
6516 err = -EFAULT;
6517 else
6518 err = add_new_disk(mddev, &info);
6519 goto unlock;
6520 }
6521
6522 case HOT_ADD_DISK:
6523 err = hot_add_disk(mddev, new_decode_dev(arg));
6524 goto unlock;
6525
6526 case RUN_ARRAY:
6527 err = do_md_run(mddev);
6528 goto unlock;
6529
6530 case SET_BITMAP_FILE:
6531 err = set_bitmap_file(mddev, (int)arg);
6532 goto unlock;
6533
6534 default:
6535 err = -EINVAL;
6536 goto unlock;
6537 }
6538
6539 unlock:
6540 if (mddev->hold_active == UNTIL_IOCTL &&
6541 err != -EINVAL)
6542 mddev->hold_active = 0;
6543 mddev_unlock(mddev);
6544 out:
6545 return err;
6546 }
6547 #ifdef CONFIG_COMPAT
6548 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6549 unsigned int cmd, unsigned long arg)
6550 {
6551 switch (cmd) {
6552 case HOT_REMOVE_DISK:
6553 case HOT_ADD_DISK:
6554 case SET_DISK_FAULTY:
6555 case SET_BITMAP_FILE:
6556 /* These take in integer arg, do not convert */
6557 break;
6558 default:
6559 arg = (unsigned long)compat_ptr(arg);
6560 break;
6561 }
6562
6563 return md_ioctl(bdev, mode, cmd, arg);
6564 }
6565 #endif /* CONFIG_COMPAT */
6566
6567 static int md_open(struct block_device *bdev, fmode_t mode)
6568 {
6569 /*
6570 * Succeed if we can lock the mddev, which confirms that
6571 * it isn't being stopped right now.
6572 */
6573 struct mddev *mddev = mddev_find(bdev->bd_dev);
6574 int err;
6575
6576 if (!mddev)
6577 return -ENODEV;
6578
6579 if (mddev->gendisk != bdev->bd_disk) {
6580 /* we are racing with mddev_put which is discarding this
6581 * bd_disk.
6582 */
6583 mddev_put(mddev);
6584 /* Wait until bdev->bd_disk is definitely gone */
6585 flush_workqueue(md_misc_wq);
6586 /* Then retry the open from the top */
6587 return -ERESTARTSYS;
6588 }
6589 BUG_ON(mddev != bdev->bd_disk->private_data);
6590
6591 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6592 goto out;
6593
6594 err = 0;
6595 atomic_inc(&mddev->openers);
6596 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6597 mutex_unlock(&mddev->open_mutex);
6598
6599 check_disk_change(bdev);
6600 out:
6601 return err;
6602 }
6603
6604 static void md_release(struct gendisk *disk, fmode_t mode)
6605 {
6606 struct mddev *mddev = disk->private_data;
6607
6608 BUG_ON(!mddev);
6609 atomic_dec(&mddev->openers);
6610 mddev_put(mddev);
6611 }
6612
6613 static int md_media_changed(struct gendisk *disk)
6614 {
6615 struct mddev *mddev = disk->private_data;
6616
6617 return mddev->changed;
6618 }
6619
6620 static int md_revalidate(struct gendisk *disk)
6621 {
6622 struct mddev *mddev = disk->private_data;
6623
6624 mddev->changed = 0;
6625 return 0;
6626 }
6627 static const struct block_device_operations md_fops =
6628 {
6629 .owner = THIS_MODULE,
6630 .open = md_open,
6631 .release = md_release,
6632 .ioctl = md_ioctl,
6633 #ifdef CONFIG_COMPAT
6634 .compat_ioctl = md_compat_ioctl,
6635 #endif
6636 .getgeo = md_getgeo,
6637 .media_changed = md_media_changed,
6638 .revalidate_disk= md_revalidate,
6639 };
6640
6641 static int md_thread(void *arg)
6642 {
6643 struct md_thread *thread = arg;
6644
6645 /*
6646 * md_thread is a 'system-thread', it's priority should be very
6647 * high. We avoid resource deadlocks individually in each
6648 * raid personality. (RAID5 does preallocation) We also use RR and
6649 * the very same RT priority as kswapd, thus we will never get
6650 * into a priority inversion deadlock.
6651 *
6652 * we definitely have to have equal or higher priority than
6653 * bdflush, otherwise bdflush will deadlock if there are too
6654 * many dirty RAID5 blocks.
6655 */
6656
6657 allow_signal(SIGKILL);
6658 while (!kthread_should_stop()) {
6659
6660 /* We need to wait INTERRUPTIBLE so that
6661 * we don't add to the load-average.
6662 * That means we need to be sure no signals are
6663 * pending
6664 */
6665 if (signal_pending(current))
6666 flush_signals(current);
6667
6668 wait_event_interruptible_timeout
6669 (thread->wqueue,
6670 test_bit(THREAD_WAKEUP, &thread->flags)
6671 || kthread_should_stop(),
6672 thread->timeout);
6673
6674 clear_bit(THREAD_WAKEUP, &thread->flags);
6675 if (!kthread_should_stop())
6676 thread->run(thread);
6677 }
6678
6679 return 0;
6680 }
6681
6682 void md_wakeup_thread(struct md_thread *thread)
6683 {
6684 if (thread) {
6685 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6686 set_bit(THREAD_WAKEUP, &thread->flags);
6687 wake_up(&thread->wqueue);
6688 }
6689 }
6690 EXPORT_SYMBOL(md_wakeup_thread);
6691
6692 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6693 struct mddev *mddev, const char *name)
6694 {
6695 struct md_thread *thread;
6696
6697 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6698 if (!thread)
6699 return NULL;
6700
6701 init_waitqueue_head(&thread->wqueue);
6702
6703 thread->run = run;
6704 thread->mddev = mddev;
6705 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6706 thread->tsk = kthread_run(md_thread, thread,
6707 "%s_%s",
6708 mdname(thread->mddev),
6709 name);
6710 if (IS_ERR(thread->tsk)) {
6711 kfree(thread);
6712 return NULL;
6713 }
6714 return thread;
6715 }
6716 EXPORT_SYMBOL(md_register_thread);
6717
6718 void md_unregister_thread(struct md_thread **threadp)
6719 {
6720 struct md_thread *thread = *threadp;
6721 if (!thread)
6722 return;
6723 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6724 /* Locking ensures that mddev_unlock does not wake_up a
6725 * non-existent thread
6726 */
6727 spin_lock(&pers_lock);
6728 *threadp = NULL;
6729 spin_unlock(&pers_lock);
6730
6731 kthread_stop(thread->tsk);
6732 kfree(thread);
6733 }
6734 EXPORT_SYMBOL(md_unregister_thread);
6735
6736 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6737 {
6738 if (!rdev || test_bit(Faulty, &rdev->flags))
6739 return;
6740
6741 if (!mddev->pers || !mddev->pers->error_handler)
6742 return;
6743 mddev->pers->error_handler(mddev,rdev);
6744 if (mddev->degraded)
6745 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6746 sysfs_notify_dirent_safe(rdev->sysfs_state);
6747 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6748 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6749 md_wakeup_thread(mddev->thread);
6750 if (mddev->event_work.func)
6751 queue_work(md_misc_wq, &mddev->event_work);
6752 md_new_event_inintr(mddev);
6753 }
6754 EXPORT_SYMBOL(md_error);
6755
6756 /* seq_file implementation /proc/mdstat */
6757
6758 static void status_unused(struct seq_file *seq)
6759 {
6760 int i = 0;
6761 struct md_rdev *rdev;
6762
6763 seq_printf(seq, "unused devices: ");
6764
6765 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6766 char b[BDEVNAME_SIZE];
6767 i++;
6768 seq_printf(seq, "%s ",
6769 bdevname(rdev->bdev,b));
6770 }
6771 if (!i)
6772 seq_printf(seq, "<none>");
6773
6774 seq_printf(seq, "\n");
6775 }
6776
6777 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6778 {
6779 sector_t max_sectors, resync, res;
6780 unsigned long dt, db;
6781 sector_t rt;
6782 int scale;
6783 unsigned int per_milli;
6784
6785 if (mddev->curr_resync <= 3)
6786 resync = 0;
6787 else
6788 resync = mddev->curr_resync
6789 - atomic_read(&mddev->recovery_active);
6790
6791 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6792 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6793 max_sectors = mddev->resync_max_sectors;
6794 else
6795 max_sectors = mddev->dev_sectors;
6796
6797 WARN_ON(max_sectors == 0);
6798 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6799 * in a sector_t, and (max_sectors>>scale) will fit in a
6800 * u32, as those are the requirements for sector_div.
6801 * Thus 'scale' must be at least 10
6802 */
6803 scale = 10;
6804 if (sizeof(sector_t) > sizeof(unsigned long)) {
6805 while ( max_sectors/2 > (1ULL<<(scale+32)))
6806 scale++;
6807 }
6808 res = (resync>>scale)*1000;
6809 sector_div(res, (u32)((max_sectors>>scale)+1));
6810
6811 per_milli = res;
6812 {
6813 int i, x = per_milli/50, y = 20-x;
6814 seq_printf(seq, "[");
6815 for (i = 0; i < x; i++)
6816 seq_printf(seq, "=");
6817 seq_printf(seq, ">");
6818 for (i = 0; i < y; i++)
6819 seq_printf(seq, ".");
6820 seq_printf(seq, "] ");
6821 }
6822 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6823 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6824 "reshape" :
6825 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6826 "check" :
6827 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6828 "resync" : "recovery"))),
6829 per_milli/10, per_milli % 10,
6830 (unsigned long long) resync/2,
6831 (unsigned long long) max_sectors/2);
6832
6833 /*
6834 * dt: time from mark until now
6835 * db: blocks written from mark until now
6836 * rt: remaining time
6837 *
6838 * rt is a sector_t, so could be 32bit or 64bit.
6839 * So we divide before multiply in case it is 32bit and close
6840 * to the limit.
6841 * We scale the divisor (db) by 32 to avoid losing precision
6842 * near the end of resync when the number of remaining sectors
6843 * is close to 'db'.
6844 * We then divide rt by 32 after multiplying by db to compensate.
6845 * The '+1' avoids division by zero if db is very small.
6846 */
6847 dt = ((jiffies - mddev->resync_mark) / HZ);
6848 if (!dt) dt++;
6849 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6850 - mddev->resync_mark_cnt;
6851
6852 rt = max_sectors - resync; /* number of remaining sectors */
6853 sector_div(rt, db/32+1);
6854 rt *= dt;
6855 rt >>= 5;
6856
6857 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6858 ((unsigned long)rt % 60)/6);
6859
6860 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6861 }
6862
6863 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6864 {
6865 struct list_head *tmp;
6866 loff_t l = *pos;
6867 struct mddev *mddev;
6868
6869 if (l >= 0x10000)
6870 return NULL;
6871 if (!l--)
6872 /* header */
6873 return (void*)1;
6874
6875 spin_lock(&all_mddevs_lock);
6876 list_for_each(tmp,&all_mddevs)
6877 if (!l--) {
6878 mddev = list_entry(tmp, struct mddev, all_mddevs);
6879 mddev_get(mddev);
6880 spin_unlock(&all_mddevs_lock);
6881 return mddev;
6882 }
6883 spin_unlock(&all_mddevs_lock);
6884 if (!l--)
6885 return (void*)2;/* tail */
6886 return NULL;
6887 }
6888
6889 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6890 {
6891 struct list_head *tmp;
6892 struct mddev *next_mddev, *mddev = v;
6893
6894 ++*pos;
6895 if (v == (void*)2)
6896 return NULL;
6897
6898 spin_lock(&all_mddevs_lock);
6899 if (v == (void*)1)
6900 tmp = all_mddevs.next;
6901 else
6902 tmp = mddev->all_mddevs.next;
6903 if (tmp != &all_mddevs)
6904 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6905 else {
6906 next_mddev = (void*)2;
6907 *pos = 0x10000;
6908 }
6909 spin_unlock(&all_mddevs_lock);
6910
6911 if (v != (void*)1)
6912 mddev_put(mddev);
6913 return next_mddev;
6914
6915 }
6916
6917 static void md_seq_stop(struct seq_file *seq, void *v)
6918 {
6919 struct mddev *mddev = v;
6920
6921 if (mddev && v != (void*)1 && v != (void*)2)
6922 mddev_put(mddev);
6923 }
6924
6925 static int md_seq_show(struct seq_file *seq, void *v)
6926 {
6927 struct mddev *mddev = v;
6928 sector_t sectors;
6929 struct md_rdev *rdev;
6930
6931 if (v == (void*)1) {
6932 struct md_personality *pers;
6933 seq_printf(seq, "Personalities : ");
6934 spin_lock(&pers_lock);
6935 list_for_each_entry(pers, &pers_list, list)
6936 seq_printf(seq, "[%s] ", pers->name);
6937
6938 spin_unlock(&pers_lock);
6939 seq_printf(seq, "\n");
6940 seq->poll_event = atomic_read(&md_event_count);
6941 return 0;
6942 }
6943 if (v == (void*)2) {
6944 status_unused(seq);
6945 return 0;
6946 }
6947
6948 spin_lock(&mddev->lock);
6949 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6950 seq_printf(seq, "%s : %sactive", mdname(mddev),
6951 mddev->pers ? "" : "in");
6952 if (mddev->pers) {
6953 if (mddev->ro==1)
6954 seq_printf(seq, " (read-only)");
6955 if (mddev->ro==2)
6956 seq_printf(seq, " (auto-read-only)");
6957 seq_printf(seq, " %s", mddev->pers->name);
6958 }
6959
6960 sectors = 0;
6961 rcu_read_lock();
6962 rdev_for_each_rcu(rdev, mddev) {
6963 char b[BDEVNAME_SIZE];
6964 seq_printf(seq, " %s[%d]",
6965 bdevname(rdev->bdev,b), rdev->desc_nr);
6966 if (test_bit(WriteMostly, &rdev->flags))
6967 seq_printf(seq, "(W)");
6968 if (test_bit(Faulty, &rdev->flags)) {
6969 seq_printf(seq, "(F)");
6970 continue;
6971 }
6972 if (rdev->raid_disk < 0)
6973 seq_printf(seq, "(S)"); /* spare */
6974 if (test_bit(Replacement, &rdev->flags))
6975 seq_printf(seq, "(R)");
6976 sectors += rdev->sectors;
6977 }
6978 rcu_read_unlock();
6979
6980 if (!list_empty(&mddev->disks)) {
6981 if (mddev->pers)
6982 seq_printf(seq, "\n %llu blocks",
6983 (unsigned long long)
6984 mddev->array_sectors / 2);
6985 else
6986 seq_printf(seq, "\n %llu blocks",
6987 (unsigned long long)sectors / 2);
6988 }
6989 if (mddev->persistent) {
6990 if (mddev->major_version != 0 ||
6991 mddev->minor_version != 90) {
6992 seq_printf(seq," super %d.%d",
6993 mddev->major_version,
6994 mddev->minor_version);
6995 }
6996 } else if (mddev->external)
6997 seq_printf(seq, " super external:%s",
6998 mddev->metadata_type);
6999 else
7000 seq_printf(seq, " super non-persistent");
7001
7002 if (mddev->pers) {
7003 mddev->pers->status(seq, mddev);
7004 seq_printf(seq, "\n ");
7005 if (mddev->pers->sync_request) {
7006 if (mddev->curr_resync > 2) {
7007 status_resync(seq, mddev);
7008 seq_printf(seq, "\n ");
7009 } else if (mddev->curr_resync >= 1)
7010 seq_printf(seq, "\tresync=DELAYED\n ");
7011 else if (mddev->recovery_cp < MaxSector)
7012 seq_printf(seq, "\tresync=PENDING\n ");
7013 }
7014 } else
7015 seq_printf(seq, "\n ");
7016
7017 bitmap_status(seq, mddev->bitmap);
7018
7019 seq_printf(seq, "\n");
7020 }
7021 spin_unlock(&mddev->lock);
7022
7023 return 0;
7024 }
7025
7026 static const struct seq_operations md_seq_ops = {
7027 .start = md_seq_start,
7028 .next = md_seq_next,
7029 .stop = md_seq_stop,
7030 .show = md_seq_show,
7031 };
7032
7033 static int md_seq_open(struct inode *inode, struct file *file)
7034 {
7035 struct seq_file *seq;
7036 int error;
7037
7038 error = seq_open(file, &md_seq_ops);
7039 if (error)
7040 return error;
7041
7042 seq = file->private_data;
7043 seq->poll_event = atomic_read(&md_event_count);
7044 return error;
7045 }
7046
7047 static int md_unloading;
7048 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7049 {
7050 struct seq_file *seq = filp->private_data;
7051 int mask;
7052
7053 if (md_unloading)
7054 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7055 poll_wait(filp, &md_event_waiters, wait);
7056
7057 /* always allow read */
7058 mask = POLLIN | POLLRDNORM;
7059
7060 if (seq->poll_event != atomic_read(&md_event_count))
7061 mask |= POLLERR | POLLPRI;
7062 return mask;
7063 }
7064
7065 static const struct file_operations md_seq_fops = {
7066 .owner = THIS_MODULE,
7067 .open = md_seq_open,
7068 .read = seq_read,
7069 .llseek = seq_lseek,
7070 .release = seq_release_private,
7071 .poll = mdstat_poll,
7072 };
7073
7074 int register_md_personality(struct md_personality *p)
7075 {
7076 printk(KERN_INFO "md: %s personality registered for level %d\n",
7077 p->name, p->level);
7078 spin_lock(&pers_lock);
7079 list_add_tail(&p->list, &pers_list);
7080 spin_unlock(&pers_lock);
7081 return 0;
7082 }
7083 EXPORT_SYMBOL(register_md_personality);
7084
7085 int unregister_md_personality(struct md_personality *p)
7086 {
7087 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7088 spin_lock(&pers_lock);
7089 list_del_init(&p->list);
7090 spin_unlock(&pers_lock);
7091 return 0;
7092 }
7093 EXPORT_SYMBOL(unregister_md_personality);
7094
7095 static int is_mddev_idle(struct mddev *mddev, int init)
7096 {
7097 struct md_rdev *rdev;
7098 int idle;
7099 int curr_events;
7100
7101 idle = 1;
7102 rcu_read_lock();
7103 rdev_for_each_rcu(rdev, mddev) {
7104 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7105 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7106 (int)part_stat_read(&disk->part0, sectors[1]) -
7107 atomic_read(&disk->sync_io);
7108 /* sync IO will cause sync_io to increase before the disk_stats
7109 * as sync_io is counted when a request starts, and
7110 * disk_stats is counted when it completes.
7111 * So resync activity will cause curr_events to be smaller than
7112 * when there was no such activity.
7113 * non-sync IO will cause disk_stat to increase without
7114 * increasing sync_io so curr_events will (eventually)
7115 * be larger than it was before. Once it becomes
7116 * substantially larger, the test below will cause
7117 * the array to appear non-idle, and resync will slow
7118 * down.
7119 * If there is a lot of outstanding resync activity when
7120 * we set last_event to curr_events, then all that activity
7121 * completing might cause the array to appear non-idle
7122 * and resync will be slowed down even though there might
7123 * not have been non-resync activity. This will only
7124 * happen once though. 'last_events' will soon reflect
7125 * the state where there is little or no outstanding
7126 * resync requests, and further resync activity will
7127 * always make curr_events less than last_events.
7128 *
7129 */
7130 if (init || curr_events - rdev->last_events > 64) {
7131 rdev->last_events = curr_events;
7132 idle = 0;
7133 }
7134 }
7135 rcu_read_unlock();
7136 return idle;
7137 }
7138
7139 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7140 {
7141 /* another "blocks" (512byte) blocks have been synced */
7142 atomic_sub(blocks, &mddev->recovery_active);
7143 wake_up(&mddev->recovery_wait);
7144 if (!ok) {
7145 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7146 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7147 md_wakeup_thread(mddev->thread);
7148 // stop recovery, signal do_sync ....
7149 }
7150 }
7151 EXPORT_SYMBOL(md_done_sync);
7152
7153 /* md_write_start(mddev, bi)
7154 * If we need to update some array metadata (e.g. 'active' flag
7155 * in superblock) before writing, schedule a superblock update
7156 * and wait for it to complete.
7157 */
7158 void md_write_start(struct mddev *mddev, struct bio *bi)
7159 {
7160 int did_change = 0;
7161 if (bio_data_dir(bi) != WRITE)
7162 return;
7163
7164 BUG_ON(mddev->ro == 1);
7165 if (mddev->ro == 2) {
7166 /* need to switch to read/write */
7167 mddev->ro = 0;
7168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7169 md_wakeup_thread(mddev->thread);
7170 md_wakeup_thread(mddev->sync_thread);
7171 did_change = 1;
7172 }
7173 atomic_inc(&mddev->writes_pending);
7174 if (mddev->safemode == 1)
7175 mddev->safemode = 0;
7176 if (mddev->in_sync) {
7177 spin_lock(&mddev->lock);
7178 if (mddev->in_sync) {
7179 mddev->in_sync = 0;
7180 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7181 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7182 md_wakeup_thread(mddev->thread);
7183 did_change = 1;
7184 }
7185 spin_unlock(&mddev->lock);
7186 }
7187 if (did_change)
7188 sysfs_notify_dirent_safe(mddev->sysfs_state);
7189 wait_event(mddev->sb_wait,
7190 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7191 }
7192 EXPORT_SYMBOL(md_write_start);
7193
7194 void md_write_end(struct mddev *mddev)
7195 {
7196 if (atomic_dec_and_test(&mddev->writes_pending)) {
7197 if (mddev->safemode == 2)
7198 md_wakeup_thread(mddev->thread);
7199 else if (mddev->safemode_delay)
7200 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7201 }
7202 }
7203 EXPORT_SYMBOL(md_write_end);
7204
7205 /* md_allow_write(mddev)
7206 * Calling this ensures that the array is marked 'active' so that writes
7207 * may proceed without blocking. It is important to call this before
7208 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7209 * Must be called with mddev_lock held.
7210 *
7211 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7212 * is dropped, so return -EAGAIN after notifying userspace.
7213 */
7214 int md_allow_write(struct mddev *mddev)
7215 {
7216 if (!mddev->pers)
7217 return 0;
7218 if (mddev->ro)
7219 return 0;
7220 if (!mddev->pers->sync_request)
7221 return 0;
7222
7223 spin_lock(&mddev->lock);
7224 if (mddev->in_sync) {
7225 mddev->in_sync = 0;
7226 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7227 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7228 if (mddev->safemode_delay &&
7229 mddev->safemode == 0)
7230 mddev->safemode = 1;
7231 spin_unlock(&mddev->lock);
7232 md_update_sb(mddev, 0);
7233 sysfs_notify_dirent_safe(mddev->sysfs_state);
7234 } else
7235 spin_unlock(&mddev->lock);
7236
7237 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7238 return -EAGAIN;
7239 else
7240 return 0;
7241 }
7242 EXPORT_SYMBOL_GPL(md_allow_write);
7243
7244 #define SYNC_MARKS 10
7245 #define SYNC_MARK_STEP (3*HZ)
7246 #define UPDATE_FREQUENCY (5*60*HZ)
7247 void md_do_sync(struct md_thread *thread)
7248 {
7249 struct mddev *mddev = thread->mddev;
7250 struct mddev *mddev2;
7251 unsigned int currspeed = 0,
7252 window;
7253 sector_t max_sectors,j, io_sectors, recovery_done;
7254 unsigned long mark[SYNC_MARKS];
7255 unsigned long update_time;
7256 sector_t mark_cnt[SYNC_MARKS];
7257 int last_mark,m;
7258 struct list_head *tmp;
7259 sector_t last_check;
7260 int skipped = 0;
7261 struct md_rdev *rdev;
7262 char *desc, *action = NULL;
7263 struct blk_plug plug;
7264
7265 /* just incase thread restarts... */
7266 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7267 return;
7268 if (mddev->ro) {/* never try to sync a read-only array */
7269 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7270 return;
7271 }
7272
7273 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7274 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7275 desc = "data-check";
7276 action = "check";
7277 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7278 desc = "requested-resync";
7279 action = "repair";
7280 } else
7281 desc = "resync";
7282 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7283 desc = "reshape";
7284 else
7285 desc = "recovery";
7286
7287 mddev->last_sync_action = action ?: desc;
7288
7289 /* we overload curr_resync somewhat here.
7290 * 0 == not engaged in resync at all
7291 * 2 == checking that there is no conflict with another sync
7292 * 1 == like 2, but have yielded to allow conflicting resync to
7293 * commense
7294 * other == active in resync - this many blocks
7295 *
7296 * Before starting a resync we must have set curr_resync to
7297 * 2, and then checked that every "conflicting" array has curr_resync
7298 * less than ours. When we find one that is the same or higher
7299 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7300 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7301 * This will mean we have to start checking from the beginning again.
7302 *
7303 */
7304
7305 do {
7306 mddev->curr_resync = 2;
7307
7308 try_again:
7309 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7310 goto skip;
7311 for_each_mddev(mddev2, tmp) {
7312 if (mddev2 == mddev)
7313 continue;
7314 if (!mddev->parallel_resync
7315 && mddev2->curr_resync
7316 && match_mddev_units(mddev, mddev2)) {
7317 DEFINE_WAIT(wq);
7318 if (mddev < mddev2 && mddev->curr_resync == 2) {
7319 /* arbitrarily yield */
7320 mddev->curr_resync = 1;
7321 wake_up(&resync_wait);
7322 }
7323 if (mddev > mddev2 && mddev->curr_resync == 1)
7324 /* no need to wait here, we can wait the next
7325 * time 'round when curr_resync == 2
7326 */
7327 continue;
7328 /* We need to wait 'interruptible' so as not to
7329 * contribute to the load average, and not to
7330 * be caught by 'softlockup'
7331 */
7332 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7333 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7334 mddev2->curr_resync >= mddev->curr_resync) {
7335 printk(KERN_INFO "md: delaying %s of %s"
7336 " until %s has finished (they"
7337 " share one or more physical units)\n",
7338 desc, mdname(mddev), mdname(mddev2));
7339 mddev_put(mddev2);
7340 if (signal_pending(current))
7341 flush_signals(current);
7342 schedule();
7343 finish_wait(&resync_wait, &wq);
7344 goto try_again;
7345 }
7346 finish_wait(&resync_wait, &wq);
7347 }
7348 }
7349 } while (mddev->curr_resync < 2);
7350
7351 j = 0;
7352 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7353 /* resync follows the size requested by the personality,
7354 * which defaults to physical size, but can be virtual size
7355 */
7356 max_sectors = mddev->resync_max_sectors;
7357 atomic64_set(&mddev->resync_mismatches, 0);
7358 /* we don't use the checkpoint if there's a bitmap */
7359 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7360 j = mddev->resync_min;
7361 else if (!mddev->bitmap)
7362 j = mddev->recovery_cp;
7363
7364 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7365 max_sectors = mddev->resync_max_sectors;
7366 else {
7367 /* recovery follows the physical size of devices */
7368 max_sectors = mddev->dev_sectors;
7369 j = MaxSector;
7370 rcu_read_lock();
7371 rdev_for_each_rcu(rdev, mddev)
7372 if (rdev->raid_disk >= 0 &&
7373 !test_bit(Faulty, &rdev->flags) &&
7374 !test_bit(In_sync, &rdev->flags) &&
7375 rdev->recovery_offset < j)
7376 j = rdev->recovery_offset;
7377 rcu_read_unlock();
7378
7379 /* If there is a bitmap, we need to make sure all
7380 * writes that started before we added a spare
7381 * complete before we start doing a recovery.
7382 * Otherwise the write might complete and (via
7383 * bitmap_endwrite) set a bit in the bitmap after the
7384 * recovery has checked that bit and skipped that
7385 * region.
7386 */
7387 if (mddev->bitmap) {
7388 mddev->pers->quiesce(mddev, 1);
7389 mddev->pers->quiesce(mddev, 0);
7390 }
7391 }
7392
7393 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7394 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7395 " %d KB/sec/disk.\n", speed_min(mddev));
7396 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7397 "(but not more than %d KB/sec) for %s.\n",
7398 speed_max(mddev), desc);
7399
7400 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7401
7402 io_sectors = 0;
7403 for (m = 0; m < SYNC_MARKS; m++) {
7404 mark[m] = jiffies;
7405 mark_cnt[m] = io_sectors;
7406 }
7407 last_mark = 0;
7408 mddev->resync_mark = mark[last_mark];
7409 mddev->resync_mark_cnt = mark_cnt[last_mark];
7410
7411 /*
7412 * Tune reconstruction:
7413 */
7414 window = 32*(PAGE_SIZE/512);
7415 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7416 window/2, (unsigned long long)max_sectors/2);
7417
7418 atomic_set(&mddev->recovery_active, 0);
7419 last_check = 0;
7420
7421 if (j>2) {
7422 printk(KERN_INFO
7423 "md: resuming %s of %s from checkpoint.\n",
7424 desc, mdname(mddev));
7425 mddev->curr_resync = j;
7426 } else
7427 mddev->curr_resync = 3; /* no longer delayed */
7428 mddev->curr_resync_completed = j;
7429 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7430 md_new_event(mddev);
7431 update_time = jiffies;
7432
7433 blk_start_plug(&plug);
7434 while (j < max_sectors) {
7435 sector_t sectors;
7436
7437 skipped = 0;
7438
7439 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7440 ((mddev->curr_resync > mddev->curr_resync_completed &&
7441 (mddev->curr_resync - mddev->curr_resync_completed)
7442 > (max_sectors >> 4)) ||
7443 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7444 (j - mddev->curr_resync_completed)*2
7445 >= mddev->resync_max - mddev->curr_resync_completed
7446 )) {
7447 /* time to update curr_resync_completed */
7448 wait_event(mddev->recovery_wait,
7449 atomic_read(&mddev->recovery_active) == 0);
7450 mddev->curr_resync_completed = j;
7451 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7452 j > mddev->recovery_cp)
7453 mddev->recovery_cp = j;
7454 update_time = jiffies;
7455 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7456 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7457 }
7458
7459 while (j >= mddev->resync_max &&
7460 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7461 /* As this condition is controlled by user-space,
7462 * we can block indefinitely, so use '_interruptible'
7463 * to avoid triggering warnings.
7464 */
7465 flush_signals(current); /* just in case */
7466 wait_event_interruptible(mddev->recovery_wait,
7467 mddev->resync_max > j
7468 || test_bit(MD_RECOVERY_INTR,
7469 &mddev->recovery));
7470 }
7471
7472 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7473 break;
7474
7475 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7476 currspeed < speed_min(mddev));
7477 if (sectors == 0) {
7478 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7479 break;
7480 }
7481
7482 if (!skipped) { /* actual IO requested */
7483 io_sectors += sectors;
7484 atomic_add(sectors, &mddev->recovery_active);
7485 }
7486
7487 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7488 break;
7489
7490 j += sectors;
7491 if (j > 2)
7492 mddev->curr_resync = j;
7493 mddev->curr_mark_cnt = io_sectors;
7494 if (last_check == 0)
7495 /* this is the earliest that rebuild will be
7496 * visible in /proc/mdstat
7497 */
7498 md_new_event(mddev);
7499
7500 if (last_check + window > io_sectors || j == max_sectors)
7501 continue;
7502
7503 last_check = io_sectors;
7504 repeat:
7505 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7506 /* step marks */
7507 int next = (last_mark+1) % SYNC_MARKS;
7508
7509 mddev->resync_mark = mark[next];
7510 mddev->resync_mark_cnt = mark_cnt[next];
7511 mark[next] = jiffies;
7512 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7513 last_mark = next;
7514 }
7515
7516 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7517 break;
7518
7519 /*
7520 * this loop exits only if either when we are slower than
7521 * the 'hard' speed limit, or the system was IO-idle for
7522 * a jiffy.
7523 * the system might be non-idle CPU-wise, but we only care
7524 * about not overloading the IO subsystem. (things like an
7525 * e2fsck being done on the RAID array should execute fast)
7526 */
7527 cond_resched();
7528
7529 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7530 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7531 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7532
7533 if (currspeed > speed_min(mddev)) {
7534 if ((currspeed > speed_max(mddev)) ||
7535 !is_mddev_idle(mddev, 0)) {
7536 msleep(500);
7537 goto repeat;
7538 }
7539 }
7540 }
7541 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7542 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7543 ? "interrupted" : "done");
7544 /*
7545 * this also signals 'finished resyncing' to md_stop
7546 */
7547 blk_finish_plug(&plug);
7548 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7549
7550 /* tell personality that we are finished */
7551 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7552
7553 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7554 mddev->curr_resync > 2) {
7555 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7556 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7557 if (mddev->curr_resync >= mddev->recovery_cp) {
7558 printk(KERN_INFO
7559 "md: checkpointing %s of %s.\n",
7560 desc, mdname(mddev));
7561 if (test_bit(MD_RECOVERY_ERROR,
7562 &mddev->recovery))
7563 mddev->recovery_cp =
7564 mddev->curr_resync_completed;
7565 else
7566 mddev->recovery_cp =
7567 mddev->curr_resync;
7568 }
7569 } else
7570 mddev->recovery_cp = MaxSector;
7571 } else {
7572 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7573 mddev->curr_resync = MaxSector;
7574 rcu_read_lock();
7575 rdev_for_each_rcu(rdev, mddev)
7576 if (rdev->raid_disk >= 0 &&
7577 mddev->delta_disks >= 0 &&
7578 !test_bit(Faulty, &rdev->flags) &&
7579 !test_bit(In_sync, &rdev->flags) &&
7580 rdev->recovery_offset < mddev->curr_resync)
7581 rdev->recovery_offset = mddev->curr_resync;
7582 rcu_read_unlock();
7583 }
7584 }
7585 skip:
7586 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7587
7588 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7589 /* We completed so min/max setting can be forgotten if used. */
7590 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7591 mddev->resync_min = 0;
7592 mddev->resync_max = MaxSector;
7593 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7594 mddev->resync_min = mddev->curr_resync_completed;
7595 mddev->curr_resync = 0;
7596 wake_up(&resync_wait);
7597 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7598 md_wakeup_thread(mddev->thread);
7599 return;
7600 }
7601 EXPORT_SYMBOL_GPL(md_do_sync);
7602
7603 static int remove_and_add_spares(struct mddev *mddev,
7604 struct md_rdev *this)
7605 {
7606 struct md_rdev *rdev;
7607 int spares = 0;
7608 int removed = 0;
7609
7610 rdev_for_each(rdev, mddev)
7611 if ((this == NULL || rdev == this) &&
7612 rdev->raid_disk >= 0 &&
7613 !test_bit(Blocked, &rdev->flags) &&
7614 (test_bit(Faulty, &rdev->flags) ||
7615 ! test_bit(In_sync, &rdev->flags)) &&
7616 atomic_read(&rdev->nr_pending)==0) {
7617 if (mddev->pers->hot_remove_disk(
7618 mddev, rdev) == 0) {
7619 sysfs_unlink_rdev(mddev, rdev);
7620 rdev->raid_disk = -1;
7621 removed++;
7622 }
7623 }
7624 if (removed && mddev->kobj.sd)
7625 sysfs_notify(&mddev->kobj, NULL, "degraded");
7626
7627 if (this)
7628 goto no_add;
7629
7630 rdev_for_each(rdev, mddev) {
7631 if (rdev->raid_disk >= 0 &&
7632 !test_bit(In_sync, &rdev->flags) &&
7633 !test_bit(Faulty, &rdev->flags))
7634 spares++;
7635 if (rdev->raid_disk >= 0)
7636 continue;
7637 if (test_bit(Faulty, &rdev->flags))
7638 continue;
7639 if (mddev->ro &&
7640 ! (rdev->saved_raid_disk >= 0 &&
7641 !test_bit(Bitmap_sync, &rdev->flags)))
7642 continue;
7643
7644 if (rdev->saved_raid_disk < 0)
7645 rdev->recovery_offset = 0;
7646 if (mddev->pers->
7647 hot_add_disk(mddev, rdev) == 0) {
7648 if (sysfs_link_rdev(mddev, rdev))
7649 /* failure here is OK */;
7650 spares++;
7651 md_new_event(mddev);
7652 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7653 }
7654 }
7655 no_add:
7656 if (removed)
7657 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7658 return spares;
7659 }
7660
7661 static void md_start_sync(struct work_struct *ws)
7662 {
7663 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7664
7665 mddev->sync_thread = md_register_thread(md_do_sync,
7666 mddev,
7667 "resync");
7668 if (!mddev->sync_thread) {
7669 printk(KERN_ERR "%s: could not start resync"
7670 " thread...\n",
7671 mdname(mddev));
7672 /* leave the spares where they are, it shouldn't hurt */
7673 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7674 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7675 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7676 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7677 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7678 wake_up(&resync_wait);
7679 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7680 &mddev->recovery))
7681 if (mddev->sysfs_action)
7682 sysfs_notify_dirent_safe(mddev->sysfs_action);
7683 } else
7684 md_wakeup_thread(mddev->sync_thread);
7685 sysfs_notify_dirent_safe(mddev->sysfs_action);
7686 md_new_event(mddev);
7687 }
7688
7689 /*
7690 * This routine is regularly called by all per-raid-array threads to
7691 * deal with generic issues like resync and super-block update.
7692 * Raid personalities that don't have a thread (linear/raid0) do not
7693 * need this as they never do any recovery or update the superblock.
7694 *
7695 * It does not do any resync itself, but rather "forks" off other threads
7696 * to do that as needed.
7697 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7698 * "->recovery" and create a thread at ->sync_thread.
7699 * When the thread finishes it sets MD_RECOVERY_DONE
7700 * and wakeups up this thread which will reap the thread and finish up.
7701 * This thread also removes any faulty devices (with nr_pending == 0).
7702 *
7703 * The overall approach is:
7704 * 1/ if the superblock needs updating, update it.
7705 * 2/ If a recovery thread is running, don't do anything else.
7706 * 3/ If recovery has finished, clean up, possibly marking spares active.
7707 * 4/ If there are any faulty devices, remove them.
7708 * 5/ If array is degraded, try to add spares devices
7709 * 6/ If array has spares or is not in-sync, start a resync thread.
7710 */
7711 void md_check_recovery(struct mddev *mddev)
7712 {
7713 if (mddev->suspended)
7714 return;
7715
7716 if (mddev->bitmap)
7717 bitmap_daemon_work(mddev);
7718
7719 if (signal_pending(current)) {
7720 if (mddev->pers->sync_request && !mddev->external) {
7721 printk(KERN_INFO "md: %s in immediate safe mode\n",
7722 mdname(mddev));
7723 mddev->safemode = 2;
7724 }
7725 flush_signals(current);
7726 }
7727
7728 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7729 return;
7730 if ( ! (
7731 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7732 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7733 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7734 (mddev->external == 0 && mddev->safemode == 1) ||
7735 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7736 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7737 ))
7738 return;
7739
7740 if (mddev_trylock(mddev)) {
7741 int spares = 0;
7742
7743 if (mddev->ro) {
7744 /* On a read-only array we can:
7745 * - remove failed devices
7746 * - add already-in_sync devices if the array itself
7747 * is in-sync.
7748 * As we only add devices that are already in-sync,
7749 * we can activate the spares immediately.
7750 */
7751 remove_and_add_spares(mddev, NULL);
7752 /* There is no thread, but we need to call
7753 * ->spare_active and clear saved_raid_disk
7754 */
7755 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7756 md_reap_sync_thread(mddev);
7757 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7758 goto unlock;
7759 }
7760
7761 if (!mddev->external) {
7762 int did_change = 0;
7763 spin_lock(&mddev->lock);
7764 if (mddev->safemode &&
7765 !atomic_read(&mddev->writes_pending) &&
7766 !mddev->in_sync &&
7767 mddev->recovery_cp == MaxSector) {
7768 mddev->in_sync = 1;
7769 did_change = 1;
7770 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7771 }
7772 if (mddev->safemode == 1)
7773 mddev->safemode = 0;
7774 spin_unlock(&mddev->lock);
7775 if (did_change)
7776 sysfs_notify_dirent_safe(mddev->sysfs_state);
7777 }
7778
7779 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7780 md_update_sb(mddev, 0);
7781
7782 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7783 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7784 /* resync/recovery still happening */
7785 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7786 goto unlock;
7787 }
7788 if (mddev->sync_thread) {
7789 md_reap_sync_thread(mddev);
7790 goto unlock;
7791 }
7792 /* Set RUNNING before clearing NEEDED to avoid
7793 * any transients in the value of "sync_action".
7794 */
7795 mddev->curr_resync_completed = 0;
7796 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7797 /* Clear some bits that don't mean anything, but
7798 * might be left set
7799 */
7800 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7801 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7802
7803 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7804 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7805 goto not_running;
7806 /* no recovery is running.
7807 * remove any failed drives, then
7808 * add spares if possible.
7809 * Spares are also removed and re-added, to allow
7810 * the personality to fail the re-add.
7811 */
7812
7813 if (mddev->reshape_position != MaxSector) {
7814 if (mddev->pers->check_reshape == NULL ||
7815 mddev->pers->check_reshape(mddev) != 0)
7816 /* Cannot proceed */
7817 goto not_running;
7818 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7820 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7821 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7822 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7823 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7824 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7825 } else if (mddev->recovery_cp < MaxSector) {
7826 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7827 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7828 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7829 /* nothing to be done ... */
7830 goto not_running;
7831
7832 if (mddev->pers->sync_request) {
7833 if (spares) {
7834 /* We are adding a device or devices to an array
7835 * which has the bitmap stored on all devices.
7836 * So make sure all bitmap pages get written
7837 */
7838 bitmap_write_all(mddev->bitmap);
7839 }
7840 INIT_WORK(&mddev->del_work, md_start_sync);
7841 queue_work(md_misc_wq, &mddev->del_work);
7842 goto unlock;
7843 }
7844 not_running:
7845 if (!mddev->sync_thread) {
7846 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7847 wake_up(&resync_wait);
7848 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7849 &mddev->recovery))
7850 if (mddev->sysfs_action)
7851 sysfs_notify_dirent_safe(mddev->sysfs_action);
7852 }
7853 unlock:
7854 wake_up(&mddev->sb_wait);
7855 mddev_unlock(mddev);
7856 }
7857 }
7858 EXPORT_SYMBOL(md_check_recovery);
7859
7860 void md_reap_sync_thread(struct mddev *mddev)
7861 {
7862 struct md_rdev *rdev;
7863
7864 /* resync has finished, collect result */
7865 md_unregister_thread(&mddev->sync_thread);
7866 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7868 /* success...*/
7869 /* activate any spares */
7870 if (mddev->pers->spare_active(mddev)) {
7871 sysfs_notify(&mddev->kobj, NULL,
7872 "degraded");
7873 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7874 }
7875 }
7876 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7877 mddev->pers->finish_reshape)
7878 mddev->pers->finish_reshape(mddev);
7879
7880 /* If array is no-longer degraded, then any saved_raid_disk
7881 * information must be scrapped.
7882 */
7883 if (!mddev->degraded)
7884 rdev_for_each(rdev, mddev)
7885 rdev->saved_raid_disk = -1;
7886
7887 md_update_sb(mddev, 1);
7888 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7889 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7890 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7891 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7892 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7893 wake_up(&resync_wait);
7894 /* flag recovery needed just to double check */
7895 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7896 sysfs_notify_dirent_safe(mddev->sysfs_action);
7897 md_new_event(mddev);
7898 if (mddev->event_work.func)
7899 queue_work(md_misc_wq, &mddev->event_work);
7900 }
7901 EXPORT_SYMBOL(md_reap_sync_thread);
7902
7903 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7904 {
7905 sysfs_notify_dirent_safe(rdev->sysfs_state);
7906 wait_event_timeout(rdev->blocked_wait,
7907 !test_bit(Blocked, &rdev->flags) &&
7908 !test_bit(BlockedBadBlocks, &rdev->flags),
7909 msecs_to_jiffies(5000));
7910 rdev_dec_pending(rdev, mddev);
7911 }
7912 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7913
7914 void md_finish_reshape(struct mddev *mddev)
7915 {
7916 /* called be personality module when reshape completes. */
7917 struct md_rdev *rdev;
7918
7919 rdev_for_each(rdev, mddev) {
7920 if (rdev->data_offset > rdev->new_data_offset)
7921 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7922 else
7923 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7924 rdev->data_offset = rdev->new_data_offset;
7925 }
7926 }
7927 EXPORT_SYMBOL(md_finish_reshape);
7928
7929 /* Bad block management.
7930 * We can record which blocks on each device are 'bad' and so just
7931 * fail those blocks, or that stripe, rather than the whole device.
7932 * Entries in the bad-block table are 64bits wide. This comprises:
7933 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7934 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7935 * A 'shift' can be set so that larger blocks are tracked and
7936 * consequently larger devices can be covered.
7937 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7938 *
7939 * Locking of the bad-block table uses a seqlock so md_is_badblock
7940 * might need to retry if it is very unlucky.
7941 * We will sometimes want to check for bad blocks in a bi_end_io function,
7942 * so we use the write_seqlock_irq variant.
7943 *
7944 * When looking for a bad block we specify a range and want to
7945 * know if any block in the range is bad. So we binary-search
7946 * to the last range that starts at-or-before the given endpoint,
7947 * (or "before the sector after the target range")
7948 * then see if it ends after the given start.
7949 * We return
7950 * 0 if there are no known bad blocks in the range
7951 * 1 if there are known bad block which are all acknowledged
7952 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7953 * plus the start/length of the first bad section we overlap.
7954 */
7955 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7956 sector_t *first_bad, int *bad_sectors)
7957 {
7958 int hi;
7959 int lo;
7960 u64 *p = bb->page;
7961 int rv;
7962 sector_t target = s + sectors;
7963 unsigned seq;
7964
7965 if (bb->shift > 0) {
7966 /* round the start down, and the end up */
7967 s >>= bb->shift;
7968 target += (1<<bb->shift) - 1;
7969 target >>= bb->shift;
7970 sectors = target - s;
7971 }
7972 /* 'target' is now the first block after the bad range */
7973
7974 retry:
7975 seq = read_seqbegin(&bb->lock);
7976 lo = 0;
7977 rv = 0;
7978 hi = bb->count;
7979
7980 /* Binary search between lo and hi for 'target'
7981 * i.e. for the last range that starts before 'target'
7982 */
7983 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7984 * are known not to be the last range before target.
7985 * VARIANT: hi-lo is the number of possible
7986 * ranges, and decreases until it reaches 1
7987 */
7988 while (hi - lo > 1) {
7989 int mid = (lo + hi) / 2;
7990 sector_t a = BB_OFFSET(p[mid]);
7991 if (a < target)
7992 /* This could still be the one, earlier ranges
7993 * could not. */
7994 lo = mid;
7995 else
7996 /* This and later ranges are definitely out. */
7997 hi = mid;
7998 }
7999 /* 'lo' might be the last that started before target, but 'hi' isn't */
8000 if (hi > lo) {
8001 /* need to check all range that end after 's' to see if
8002 * any are unacknowledged.
8003 */
8004 while (lo >= 0 &&
8005 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8006 if (BB_OFFSET(p[lo]) < target) {
8007 /* starts before the end, and finishes after
8008 * the start, so they must overlap
8009 */
8010 if (rv != -1 && BB_ACK(p[lo]))
8011 rv = 1;
8012 else
8013 rv = -1;
8014 *first_bad = BB_OFFSET(p[lo]);
8015 *bad_sectors = BB_LEN(p[lo]);
8016 }
8017 lo--;
8018 }
8019 }
8020
8021 if (read_seqretry(&bb->lock, seq))
8022 goto retry;
8023
8024 return rv;
8025 }
8026 EXPORT_SYMBOL_GPL(md_is_badblock);
8027
8028 /*
8029 * Add a range of bad blocks to the table.
8030 * This might extend the table, or might contract it
8031 * if two adjacent ranges can be merged.
8032 * We binary-search to find the 'insertion' point, then
8033 * decide how best to handle it.
8034 */
8035 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8036 int acknowledged)
8037 {
8038 u64 *p;
8039 int lo, hi;
8040 int rv = 1;
8041 unsigned long flags;
8042
8043 if (bb->shift < 0)
8044 /* badblocks are disabled */
8045 return 0;
8046
8047 if (bb->shift) {
8048 /* round the start down, and the end up */
8049 sector_t next = s + sectors;
8050 s >>= bb->shift;
8051 next += (1<<bb->shift) - 1;
8052 next >>= bb->shift;
8053 sectors = next - s;
8054 }
8055
8056 write_seqlock_irqsave(&bb->lock, flags);
8057
8058 p = bb->page;
8059 lo = 0;
8060 hi = bb->count;
8061 /* Find the last range that starts at-or-before 's' */
8062 while (hi - lo > 1) {
8063 int mid = (lo + hi) / 2;
8064 sector_t a = BB_OFFSET(p[mid]);
8065 if (a <= s)
8066 lo = mid;
8067 else
8068 hi = mid;
8069 }
8070 if (hi > lo && BB_OFFSET(p[lo]) > s)
8071 hi = lo;
8072
8073 if (hi > lo) {
8074 /* we found a range that might merge with the start
8075 * of our new range
8076 */
8077 sector_t a = BB_OFFSET(p[lo]);
8078 sector_t e = a + BB_LEN(p[lo]);
8079 int ack = BB_ACK(p[lo]);
8080 if (e >= s) {
8081 /* Yes, we can merge with a previous range */
8082 if (s == a && s + sectors >= e)
8083 /* new range covers old */
8084 ack = acknowledged;
8085 else
8086 ack = ack && acknowledged;
8087
8088 if (e < s + sectors)
8089 e = s + sectors;
8090 if (e - a <= BB_MAX_LEN) {
8091 p[lo] = BB_MAKE(a, e-a, ack);
8092 s = e;
8093 } else {
8094 /* does not all fit in one range,
8095 * make p[lo] maximal
8096 */
8097 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8098 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8099 s = a + BB_MAX_LEN;
8100 }
8101 sectors = e - s;
8102 }
8103 }
8104 if (sectors && hi < bb->count) {
8105 /* 'hi' points to the first range that starts after 's'.
8106 * Maybe we can merge with the start of that range */
8107 sector_t a = BB_OFFSET(p[hi]);
8108 sector_t e = a + BB_LEN(p[hi]);
8109 int ack = BB_ACK(p[hi]);
8110 if (a <= s + sectors) {
8111 /* merging is possible */
8112 if (e <= s + sectors) {
8113 /* full overlap */
8114 e = s + sectors;
8115 ack = acknowledged;
8116 } else
8117 ack = ack && acknowledged;
8118
8119 a = s;
8120 if (e - a <= BB_MAX_LEN) {
8121 p[hi] = BB_MAKE(a, e-a, ack);
8122 s = e;
8123 } else {
8124 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8125 s = a + BB_MAX_LEN;
8126 }
8127 sectors = e - s;
8128 lo = hi;
8129 hi++;
8130 }
8131 }
8132 if (sectors == 0 && hi < bb->count) {
8133 /* we might be able to combine lo and hi */
8134 /* Note: 's' is at the end of 'lo' */
8135 sector_t a = BB_OFFSET(p[hi]);
8136 int lolen = BB_LEN(p[lo]);
8137 int hilen = BB_LEN(p[hi]);
8138 int newlen = lolen + hilen - (s - a);
8139 if (s >= a && newlen < BB_MAX_LEN) {
8140 /* yes, we can combine them */
8141 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8142 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8143 memmove(p + hi, p + hi + 1,
8144 (bb->count - hi - 1) * 8);
8145 bb->count--;
8146 }
8147 }
8148 while (sectors) {
8149 /* didn't merge (it all).
8150 * Need to add a range just before 'hi' */
8151 if (bb->count >= MD_MAX_BADBLOCKS) {
8152 /* No room for more */
8153 rv = 0;
8154 break;
8155 } else {
8156 int this_sectors = sectors;
8157 memmove(p + hi + 1, p + hi,
8158 (bb->count - hi) * 8);
8159 bb->count++;
8160
8161 if (this_sectors > BB_MAX_LEN)
8162 this_sectors = BB_MAX_LEN;
8163 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8164 sectors -= this_sectors;
8165 s += this_sectors;
8166 }
8167 }
8168
8169 bb->changed = 1;
8170 if (!acknowledged)
8171 bb->unacked_exist = 1;
8172 write_sequnlock_irqrestore(&bb->lock, flags);
8173
8174 return rv;
8175 }
8176
8177 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8178 int is_new)
8179 {
8180 int rv;
8181 if (is_new)
8182 s += rdev->new_data_offset;
8183 else
8184 s += rdev->data_offset;
8185 rv = md_set_badblocks(&rdev->badblocks,
8186 s, sectors, 0);
8187 if (rv) {
8188 /* Make sure they get written out promptly */
8189 sysfs_notify_dirent_safe(rdev->sysfs_state);
8190 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8191 md_wakeup_thread(rdev->mddev->thread);
8192 }
8193 return rv;
8194 }
8195 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8196
8197 /*
8198 * Remove a range of bad blocks from the table.
8199 * This may involve extending the table if we spilt a region,
8200 * but it must not fail. So if the table becomes full, we just
8201 * drop the remove request.
8202 */
8203 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8204 {
8205 u64 *p;
8206 int lo, hi;
8207 sector_t target = s + sectors;
8208 int rv = 0;
8209
8210 if (bb->shift > 0) {
8211 /* When clearing we round the start up and the end down.
8212 * This should not matter as the shift should align with
8213 * the block size and no rounding should ever be needed.
8214 * However it is better the think a block is bad when it
8215 * isn't than to think a block is not bad when it is.
8216 */
8217 s += (1<<bb->shift) - 1;
8218 s >>= bb->shift;
8219 target >>= bb->shift;
8220 sectors = target - s;
8221 }
8222
8223 write_seqlock_irq(&bb->lock);
8224
8225 p = bb->page;
8226 lo = 0;
8227 hi = bb->count;
8228 /* Find the last range that starts before 'target' */
8229 while (hi - lo > 1) {
8230 int mid = (lo + hi) / 2;
8231 sector_t a = BB_OFFSET(p[mid]);
8232 if (a < target)
8233 lo = mid;
8234 else
8235 hi = mid;
8236 }
8237 if (hi > lo) {
8238 /* p[lo] is the last range that could overlap the
8239 * current range. Earlier ranges could also overlap,
8240 * but only this one can overlap the end of the range.
8241 */
8242 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8243 /* Partial overlap, leave the tail of this range */
8244 int ack = BB_ACK(p[lo]);
8245 sector_t a = BB_OFFSET(p[lo]);
8246 sector_t end = a + BB_LEN(p[lo]);
8247
8248 if (a < s) {
8249 /* we need to split this range */
8250 if (bb->count >= MD_MAX_BADBLOCKS) {
8251 rv = -ENOSPC;
8252 goto out;
8253 }
8254 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8255 bb->count++;
8256 p[lo] = BB_MAKE(a, s-a, ack);
8257 lo++;
8258 }
8259 p[lo] = BB_MAKE(target, end - target, ack);
8260 /* there is no longer an overlap */
8261 hi = lo;
8262 lo--;
8263 }
8264 while (lo >= 0 &&
8265 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8266 /* This range does overlap */
8267 if (BB_OFFSET(p[lo]) < s) {
8268 /* Keep the early parts of this range. */
8269 int ack = BB_ACK(p[lo]);
8270 sector_t start = BB_OFFSET(p[lo]);
8271 p[lo] = BB_MAKE(start, s - start, ack);
8272 /* now low doesn't overlap, so.. */
8273 break;
8274 }
8275 lo--;
8276 }
8277 /* 'lo' is strictly before, 'hi' is strictly after,
8278 * anything between needs to be discarded
8279 */
8280 if (hi - lo > 1) {
8281 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8282 bb->count -= (hi - lo - 1);
8283 }
8284 }
8285
8286 bb->changed = 1;
8287 out:
8288 write_sequnlock_irq(&bb->lock);
8289 return rv;
8290 }
8291
8292 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8293 int is_new)
8294 {
8295 if (is_new)
8296 s += rdev->new_data_offset;
8297 else
8298 s += rdev->data_offset;
8299 return md_clear_badblocks(&rdev->badblocks,
8300 s, sectors);
8301 }
8302 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8303
8304 /*
8305 * Acknowledge all bad blocks in a list.
8306 * This only succeeds if ->changed is clear. It is used by
8307 * in-kernel metadata updates
8308 */
8309 void md_ack_all_badblocks(struct badblocks *bb)
8310 {
8311 if (bb->page == NULL || bb->changed)
8312 /* no point even trying */
8313 return;
8314 write_seqlock_irq(&bb->lock);
8315
8316 if (bb->changed == 0 && bb->unacked_exist) {
8317 u64 *p = bb->page;
8318 int i;
8319 for (i = 0; i < bb->count ; i++) {
8320 if (!BB_ACK(p[i])) {
8321 sector_t start = BB_OFFSET(p[i]);
8322 int len = BB_LEN(p[i]);
8323 p[i] = BB_MAKE(start, len, 1);
8324 }
8325 }
8326 bb->unacked_exist = 0;
8327 }
8328 write_sequnlock_irq(&bb->lock);
8329 }
8330 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8331
8332 /* sysfs access to bad-blocks list.
8333 * We present two files.
8334 * 'bad-blocks' lists sector numbers and lengths of ranges that
8335 * are recorded as bad. The list is truncated to fit within
8336 * the one-page limit of sysfs.
8337 * Writing "sector length" to this file adds an acknowledged
8338 * bad block list.
8339 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8340 * been acknowledged. Writing to this file adds bad blocks
8341 * without acknowledging them. This is largely for testing.
8342 */
8343
8344 static ssize_t
8345 badblocks_show(struct badblocks *bb, char *page, int unack)
8346 {
8347 size_t len;
8348 int i;
8349 u64 *p = bb->page;
8350 unsigned seq;
8351
8352 if (bb->shift < 0)
8353 return 0;
8354
8355 retry:
8356 seq = read_seqbegin(&bb->lock);
8357
8358 len = 0;
8359 i = 0;
8360
8361 while (len < PAGE_SIZE && i < bb->count) {
8362 sector_t s = BB_OFFSET(p[i]);
8363 unsigned int length = BB_LEN(p[i]);
8364 int ack = BB_ACK(p[i]);
8365 i++;
8366
8367 if (unack && ack)
8368 continue;
8369
8370 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8371 (unsigned long long)s << bb->shift,
8372 length << bb->shift);
8373 }
8374 if (unack && len == 0)
8375 bb->unacked_exist = 0;
8376
8377 if (read_seqretry(&bb->lock, seq))
8378 goto retry;
8379
8380 return len;
8381 }
8382
8383 #define DO_DEBUG 1
8384
8385 static ssize_t
8386 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8387 {
8388 unsigned long long sector;
8389 int length;
8390 char newline;
8391 #ifdef DO_DEBUG
8392 /* Allow clearing via sysfs *only* for testing/debugging.
8393 * Normally only a successful write may clear a badblock
8394 */
8395 int clear = 0;
8396 if (page[0] == '-') {
8397 clear = 1;
8398 page++;
8399 }
8400 #endif /* DO_DEBUG */
8401
8402 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8403 case 3:
8404 if (newline != '\n')
8405 return -EINVAL;
8406 case 2:
8407 if (length <= 0)
8408 return -EINVAL;
8409 break;
8410 default:
8411 return -EINVAL;
8412 }
8413
8414 #ifdef DO_DEBUG
8415 if (clear) {
8416 md_clear_badblocks(bb, sector, length);
8417 return len;
8418 }
8419 #endif /* DO_DEBUG */
8420 if (md_set_badblocks(bb, sector, length, !unack))
8421 return len;
8422 else
8423 return -ENOSPC;
8424 }
8425
8426 static int md_notify_reboot(struct notifier_block *this,
8427 unsigned long code, void *x)
8428 {
8429 struct list_head *tmp;
8430 struct mddev *mddev;
8431 int need_delay = 0;
8432
8433 for_each_mddev(mddev, tmp) {
8434 if (mddev_trylock(mddev)) {
8435 if (mddev->pers)
8436 __md_stop_writes(mddev);
8437 if (mddev->persistent)
8438 mddev->safemode = 2;
8439 mddev_unlock(mddev);
8440 }
8441 need_delay = 1;
8442 }
8443 /*
8444 * certain more exotic SCSI devices are known to be
8445 * volatile wrt too early system reboots. While the
8446 * right place to handle this issue is the given
8447 * driver, we do want to have a safe RAID driver ...
8448 */
8449 if (need_delay)
8450 mdelay(1000*1);
8451
8452 return NOTIFY_DONE;
8453 }
8454
8455 static struct notifier_block md_notifier = {
8456 .notifier_call = md_notify_reboot,
8457 .next = NULL,
8458 .priority = INT_MAX, /* before any real devices */
8459 };
8460
8461 static void md_geninit(void)
8462 {
8463 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8464
8465 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8466 }
8467
8468 static int __init md_init(void)
8469 {
8470 int ret = -ENOMEM;
8471
8472 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8473 if (!md_wq)
8474 goto err_wq;
8475
8476 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8477 if (!md_misc_wq)
8478 goto err_misc_wq;
8479
8480 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8481 goto err_md;
8482
8483 if ((ret = register_blkdev(0, "mdp")) < 0)
8484 goto err_mdp;
8485 mdp_major = ret;
8486
8487 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8488 md_probe, NULL, NULL);
8489 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8490 md_probe, NULL, NULL);
8491
8492 register_reboot_notifier(&md_notifier);
8493 raid_table_header = register_sysctl_table(raid_root_table);
8494
8495 md_geninit();
8496 return 0;
8497
8498 err_mdp:
8499 unregister_blkdev(MD_MAJOR, "md");
8500 err_md:
8501 destroy_workqueue(md_misc_wq);
8502 err_misc_wq:
8503 destroy_workqueue(md_wq);
8504 err_wq:
8505 return ret;
8506 }
8507
8508 #ifndef MODULE
8509
8510 /*
8511 * Searches all registered partitions for autorun RAID arrays
8512 * at boot time.
8513 */
8514
8515 static LIST_HEAD(all_detected_devices);
8516 struct detected_devices_node {
8517 struct list_head list;
8518 dev_t dev;
8519 };
8520
8521 void md_autodetect_dev(dev_t dev)
8522 {
8523 struct detected_devices_node *node_detected_dev;
8524
8525 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8526 if (node_detected_dev) {
8527 node_detected_dev->dev = dev;
8528 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8529 } else {
8530 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8531 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8532 }
8533 }
8534
8535 static void autostart_arrays(int part)
8536 {
8537 struct md_rdev *rdev;
8538 struct detected_devices_node *node_detected_dev;
8539 dev_t dev;
8540 int i_scanned, i_passed;
8541
8542 i_scanned = 0;
8543 i_passed = 0;
8544
8545 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8546
8547 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8548 i_scanned++;
8549 node_detected_dev = list_entry(all_detected_devices.next,
8550 struct detected_devices_node, list);
8551 list_del(&node_detected_dev->list);
8552 dev = node_detected_dev->dev;
8553 kfree(node_detected_dev);
8554 rdev = md_import_device(dev,0, 90);
8555 if (IS_ERR(rdev))
8556 continue;
8557
8558 if (test_bit(Faulty, &rdev->flags))
8559 continue;
8560
8561 set_bit(AutoDetected, &rdev->flags);
8562 list_add(&rdev->same_set, &pending_raid_disks);
8563 i_passed++;
8564 }
8565
8566 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8567 i_scanned, i_passed);
8568
8569 autorun_devices(part);
8570 }
8571
8572 #endif /* !MODULE */
8573
8574 static __exit void md_exit(void)
8575 {
8576 struct mddev *mddev;
8577 struct list_head *tmp;
8578 int delay = 1;
8579
8580 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8581 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8582
8583 unregister_blkdev(MD_MAJOR,"md");
8584 unregister_blkdev(mdp_major, "mdp");
8585 unregister_reboot_notifier(&md_notifier);
8586 unregister_sysctl_table(raid_table_header);
8587
8588 /* We cannot unload the modules while some process is
8589 * waiting for us in select() or poll() - wake them up
8590 */
8591 md_unloading = 1;
8592 while (waitqueue_active(&md_event_waiters)) {
8593 /* not safe to leave yet */
8594 wake_up(&md_event_waiters);
8595 msleep(delay);
8596 delay += delay;
8597 }
8598 remove_proc_entry("mdstat", NULL);
8599
8600 for_each_mddev(mddev, tmp) {
8601 export_array(mddev);
8602 mddev->hold_active = 0;
8603 }
8604 destroy_workqueue(md_misc_wq);
8605 destroy_workqueue(md_wq);
8606 }
8607
8608 subsys_initcall(md_init);
8609 module_exit(md_exit)
8610
8611 static int get_ro(char *buffer, struct kernel_param *kp)
8612 {
8613 return sprintf(buffer, "%d", start_readonly);
8614 }
8615 static int set_ro(const char *val, struct kernel_param *kp)
8616 {
8617 char *e;
8618 int num = simple_strtoul(val, &e, 10);
8619 if (*val && (*e == '\0' || *e == '\n')) {
8620 start_readonly = num;
8621 return 0;
8622 }
8623 return -EINVAL;
8624 }
8625
8626 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8627 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8628 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8629
8630 MODULE_LICENSE("GPL");
8631 MODULE_DESCRIPTION("MD RAID framework");
8632 MODULE_ALIAS("md");
8633 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);