]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/md.c
md: move mddev_lock and related to md.h
[mirror_ubuntu-zesty-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static struct ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static struct ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static struct ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 struct mddev *mddev)
160 {
161 struct bio *b;
162
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
165
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 if (!b)
168 return NULL;
169 return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 struct mddev *mddev)
175 {
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
178
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 /*
184 * We have a system wide 'event count' that is incremented
185 * on any 'interesting' event, and readers of /proc/mdstat
186 * can use 'poll' or 'select' to find out when the event
187 * count increases.
188 *
189 * Events are:
190 * start array, stop array, error, add device, remove device,
191 * start build, activate spare
192 */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 atomic_inc(&md_event_count);
198 wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201
202 /* Alternate version that can be called from interrupts
203 * when calling sysfs_notify isn't needed.
204 */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 atomic_inc(&md_event_count);
208 wake_up(&md_event_waiters);
209 }
210
211 /*
212 * Enables to iterate over all existing md arrays
213 * all_mddevs_lock protects this list.
214 */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217
218 /*
219 * iterates through all used mddevs in the system.
220 * We take care to grab the all_mddevs_lock whenever navigating
221 * the list, and to always hold a refcount when unlocked.
222 * Any code which breaks out of this loop while own
223 * a reference to the current mddev and must mddev_put it.
224 */
225 #define for_each_mddev(_mddev,_tmp) \
226 \
227 for (({ spin_lock(&all_mddevs_lock); \
228 _tmp = all_mddevs.next; \
229 _mddev = NULL;}); \
230 ({ if (_tmp != &all_mddevs) \
231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 spin_unlock(&all_mddevs_lock); \
233 if (_mddev) mddev_put(_mddev); \
234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
235 _tmp != &all_mddevs;}); \
236 ({ spin_lock(&all_mddevs_lock); \
237 _tmp = _tmp->next;}) \
238 )
239
240 /* Rather than calling directly into the personality make_request function,
241 * IO requests come here first so that we can check if the device is
242 * being suspended pending a reconfiguration.
243 * We hold a refcount over the call to ->make_request. By the time that
244 * call has finished, the bio has been linked into some internal structure
245 * and so is visible to ->quiesce(), so we don't need the refcount any more.
246 */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 const int rw = bio_data_dir(bio);
250 struct mddev *mddev = q->queuedata;
251 unsigned int sectors;
252
253 if (mddev == NULL || mddev->pers == NULL
254 || !mddev->ready) {
255 bio_io_error(bio);
256 return;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 return;
261 }
262 smp_rmb(); /* Ensure implications of 'active' are visible */
263 rcu_read_lock();
264 if (mddev->suspended) {
265 DEFINE_WAIT(__wait);
266 for (;;) {
267 prepare_to_wait(&mddev->sb_wait, &__wait,
268 TASK_UNINTERRUPTIBLE);
269 if (!mddev->suspended)
270 break;
271 rcu_read_unlock();
272 schedule();
273 rcu_read_lock();
274 }
275 finish_wait(&mddev->sb_wait, &__wait);
276 }
277 atomic_inc(&mddev->active_io);
278 rcu_read_unlock();
279
280 /*
281 * save the sectors now since our bio can
282 * go away inside make_request
283 */
284 sectors = bio_sectors(bio);
285 mddev->pers->make_request(mddev, bio);
286
287 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
288
289 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
290 wake_up(&mddev->sb_wait);
291 }
292
293 /* mddev_suspend makes sure no new requests are submitted
294 * to the device, and that any requests that have been submitted
295 * are completely handled.
296 * Once mddev_detach() is called and completes, the module will be
297 * completely unused.
298 */
299 void mddev_suspend(struct mddev *mddev)
300 {
301 BUG_ON(mddev->suspended);
302 mddev->suspended = 1;
303 synchronize_rcu();
304 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
305 mddev->pers->quiesce(mddev, 1);
306
307 del_timer_sync(&mddev->safemode_timer);
308 }
309 EXPORT_SYMBOL_GPL(mddev_suspend);
310
311 void mddev_resume(struct mddev *mddev)
312 {
313 mddev->suspended = 0;
314 wake_up(&mddev->sb_wait);
315 mddev->pers->quiesce(mddev, 0);
316
317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
318 md_wakeup_thread(mddev->thread);
319 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
320 }
321 EXPORT_SYMBOL_GPL(mddev_resume);
322
323 int mddev_congested(struct mddev *mddev, int bits)
324 {
325 struct md_personality *pers = mddev->pers;
326 int ret = 0;
327
328 rcu_read_lock();
329 if (mddev->suspended)
330 ret = 1;
331 else if (pers && pers->congested)
332 ret = pers->congested(mddev, bits);
333 rcu_read_unlock();
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(mddev_congested);
337 static int md_congested(void *data, int bits)
338 {
339 struct mddev *mddev = data;
340 return mddev_congested(mddev, bits);
341 }
342
343 static int md_mergeable_bvec(struct request_queue *q,
344 struct bvec_merge_data *bvm,
345 struct bio_vec *biovec)
346 {
347 struct mddev *mddev = q->queuedata;
348 int ret;
349 rcu_read_lock();
350 if (mddev->suspended) {
351 /* Must always allow one vec */
352 if (bvm->bi_size == 0)
353 ret = biovec->bv_len;
354 else
355 ret = 0;
356 } else {
357 struct md_personality *pers = mddev->pers;
358 if (pers && pers->mergeable_bvec)
359 ret = pers->mergeable_bvec(mddev, bvm, biovec);
360 else
361 ret = biovec->bv_len;
362 }
363 rcu_read_unlock();
364 return ret;
365 }
366 /*
367 * Generic flush handling for md
368 */
369
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 struct md_rdev *rdev = bio->bi_private;
373 struct mddev *mddev = rdev->mddev;
374
375 rdev_dec_pending(rdev, mddev);
376
377 if (atomic_dec_and_test(&mddev->flush_pending)) {
378 /* The pre-request flush has finished */
379 queue_work(md_wq, &mddev->flush_work);
380 }
381 bio_put(bio);
382 }
383
384 static void md_submit_flush_data(struct work_struct *ws);
385
386 static void submit_flushes(struct work_struct *ws)
387 {
388 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
389 struct md_rdev *rdev;
390
391 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 atomic_set(&mddev->flush_pending, 1);
393 rcu_read_lock();
394 rdev_for_each_rcu(rdev, mddev)
395 if (rdev->raid_disk >= 0 &&
396 !test_bit(Faulty, &rdev->flags)) {
397 /* Take two references, one is dropped
398 * when request finishes, one after
399 * we reclaim rcu_read_lock
400 */
401 struct bio *bi;
402 atomic_inc(&rdev->nr_pending);
403 atomic_inc(&rdev->nr_pending);
404 rcu_read_unlock();
405 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
406 bi->bi_end_io = md_end_flush;
407 bi->bi_private = rdev;
408 bi->bi_bdev = rdev->bdev;
409 atomic_inc(&mddev->flush_pending);
410 submit_bio(WRITE_FLUSH, bi);
411 rcu_read_lock();
412 rdev_dec_pending(rdev, mddev);
413 }
414 rcu_read_unlock();
415 if (atomic_dec_and_test(&mddev->flush_pending))
416 queue_work(md_wq, &mddev->flush_work);
417 }
418
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
422 struct bio *bio = mddev->flush_bio;
423
424 if (bio->bi_iter.bi_size == 0)
425 /* an empty barrier - all done */
426 bio_endio(bio, 0);
427 else {
428 bio->bi_rw &= ~REQ_FLUSH;
429 mddev->pers->make_request(mddev, bio);
430 }
431
432 mddev->flush_bio = NULL;
433 wake_up(&mddev->sb_wait);
434 }
435
436 void md_flush_request(struct mddev *mddev, struct bio *bio)
437 {
438 spin_lock_irq(&mddev->lock);
439 wait_event_lock_irq(mddev->sb_wait,
440 !mddev->flush_bio,
441 mddev->lock);
442 mddev->flush_bio = bio;
443 spin_unlock_irq(&mddev->lock);
444
445 INIT_WORK(&mddev->flush_work, submit_flushes);
446 queue_work(md_wq, &mddev->flush_work);
447 }
448 EXPORT_SYMBOL(md_flush_request);
449
450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
451 {
452 struct mddev *mddev = cb->data;
453 md_wakeup_thread(mddev->thread);
454 kfree(cb);
455 }
456 EXPORT_SYMBOL(md_unplug);
457
458 static inline struct mddev *mddev_get(struct mddev *mddev)
459 {
460 atomic_inc(&mddev->active);
461 return mddev;
462 }
463
464 static void mddev_delayed_delete(struct work_struct *ws);
465
466 static void mddev_put(struct mddev *mddev)
467 {
468 struct bio_set *bs = NULL;
469
470 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
471 return;
472 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
473 mddev->ctime == 0 && !mddev->hold_active) {
474 /* Array is not configured at all, and not held active,
475 * so destroy it */
476 list_del_init(&mddev->all_mddevs);
477 bs = mddev->bio_set;
478 mddev->bio_set = NULL;
479 if (mddev->gendisk) {
480 /* We did a probe so need to clean up. Call
481 * queue_work inside the spinlock so that
482 * flush_workqueue() after mddev_find will
483 * succeed in waiting for the work to be done.
484 */
485 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
486 queue_work(md_misc_wq, &mddev->del_work);
487 } else
488 kfree(mddev);
489 }
490 spin_unlock(&all_mddevs_lock);
491 if (bs)
492 bioset_free(bs);
493 }
494
495 void mddev_init(struct mddev *mddev)
496 {
497 mutex_init(&mddev->open_mutex);
498 mutex_init(&mddev->reconfig_mutex);
499 mutex_init(&mddev->bitmap_info.mutex);
500 INIT_LIST_HEAD(&mddev->disks);
501 INIT_LIST_HEAD(&mddev->all_mddevs);
502 init_timer(&mddev->safemode_timer);
503 atomic_set(&mddev->active, 1);
504 atomic_set(&mddev->openers, 0);
505 atomic_set(&mddev->active_io, 0);
506 spin_lock_init(&mddev->lock);
507 atomic_set(&mddev->flush_pending, 0);
508 init_waitqueue_head(&mddev->sb_wait);
509 init_waitqueue_head(&mddev->recovery_wait);
510 mddev->reshape_position = MaxSector;
511 mddev->reshape_backwards = 0;
512 mddev->last_sync_action = "none";
513 mddev->resync_min = 0;
514 mddev->resync_max = MaxSector;
515 mddev->level = LEVEL_NONE;
516 }
517 EXPORT_SYMBOL_GPL(mddev_init);
518
519 static struct mddev *mddev_find(dev_t unit)
520 {
521 struct mddev *mddev, *new = NULL;
522
523 if (unit && MAJOR(unit) != MD_MAJOR)
524 unit &= ~((1<<MdpMinorShift)-1);
525
526 retry:
527 spin_lock(&all_mddevs_lock);
528
529 if (unit) {
530 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 if (mddev->unit == unit) {
532 mddev_get(mddev);
533 spin_unlock(&all_mddevs_lock);
534 kfree(new);
535 return mddev;
536 }
537
538 if (new) {
539 list_add(&new->all_mddevs, &all_mddevs);
540 spin_unlock(&all_mddevs_lock);
541 new->hold_active = UNTIL_IOCTL;
542 return new;
543 }
544 } else if (new) {
545 /* find an unused unit number */
546 static int next_minor = 512;
547 int start = next_minor;
548 int is_free = 0;
549 int dev = 0;
550 while (!is_free) {
551 dev = MKDEV(MD_MAJOR, next_minor);
552 next_minor++;
553 if (next_minor > MINORMASK)
554 next_minor = 0;
555 if (next_minor == start) {
556 /* Oh dear, all in use. */
557 spin_unlock(&all_mddevs_lock);
558 kfree(new);
559 return NULL;
560 }
561
562 is_free = 1;
563 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 if (mddev->unit == dev) {
565 is_free = 0;
566 break;
567 }
568 }
569 new->unit = dev;
570 new->md_minor = MINOR(dev);
571 new->hold_active = UNTIL_STOP;
572 list_add(&new->all_mddevs, &all_mddevs);
573 spin_unlock(&all_mddevs_lock);
574 return new;
575 }
576 spin_unlock(&all_mddevs_lock);
577
578 new = kzalloc(sizeof(*new), GFP_KERNEL);
579 if (!new)
580 return NULL;
581
582 new->unit = unit;
583 if (MAJOR(unit) == MD_MAJOR)
584 new->md_minor = MINOR(unit);
585 else
586 new->md_minor = MINOR(unit) >> MdpMinorShift;
587
588 mddev_init(new);
589
590 goto retry;
591 }
592
593 static struct attribute_group md_redundancy_group;
594
595 void mddev_unlock(struct mddev *mddev)
596 {
597 if (mddev->to_remove) {
598 /* These cannot be removed under reconfig_mutex as
599 * an access to the files will try to take reconfig_mutex
600 * while holding the file unremovable, which leads to
601 * a deadlock.
602 * So hold set sysfs_active while the remove in happeing,
603 * and anything else which might set ->to_remove or my
604 * otherwise change the sysfs namespace will fail with
605 * -EBUSY if sysfs_active is still set.
606 * We set sysfs_active under reconfig_mutex and elsewhere
607 * test it under the same mutex to ensure its correct value
608 * is seen.
609 */
610 struct attribute_group *to_remove = mddev->to_remove;
611 mddev->to_remove = NULL;
612 mddev->sysfs_active = 1;
613 mutex_unlock(&mddev->reconfig_mutex);
614
615 if (mddev->kobj.sd) {
616 if (to_remove != &md_redundancy_group)
617 sysfs_remove_group(&mddev->kobj, to_remove);
618 if (mddev->pers == NULL ||
619 mddev->pers->sync_request == NULL) {
620 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
621 if (mddev->sysfs_action)
622 sysfs_put(mddev->sysfs_action);
623 mddev->sysfs_action = NULL;
624 }
625 }
626 mddev->sysfs_active = 0;
627 } else
628 mutex_unlock(&mddev->reconfig_mutex);
629
630 /* As we've dropped the mutex we need a spinlock to
631 * make sure the thread doesn't disappear
632 */
633 spin_lock(&pers_lock);
634 md_wakeup_thread(mddev->thread);
635 spin_unlock(&pers_lock);
636 }
637 EXPORT_SYMBOL_GPL(mddev_unlock);
638
639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
640 {
641 struct md_rdev *rdev;
642
643 rdev_for_each_rcu(rdev, mddev)
644 if (rdev->desc_nr == nr)
645 return rdev;
646
647 return NULL;
648 }
649
650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
651 {
652 struct md_rdev *rdev;
653
654 rdev_for_each(rdev, mddev)
655 if (rdev->bdev->bd_dev == dev)
656 return rdev;
657
658 return NULL;
659 }
660
661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each_rcu(rdev, mddev)
666 if (rdev->bdev->bd_dev == dev)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_personality *find_pers(int level, char *clevel)
673 {
674 struct md_personality *pers;
675 list_for_each_entry(pers, &pers_list, list) {
676 if (level != LEVEL_NONE && pers->level == level)
677 return pers;
678 if (strcmp(pers->name, clevel)==0)
679 return pers;
680 }
681 return NULL;
682 }
683
684 /* return the offset of the super block in 512byte sectors */
685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
686 {
687 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
688 return MD_NEW_SIZE_SECTORS(num_sectors);
689 }
690
691 static int alloc_disk_sb(struct md_rdev *rdev)
692 {
693 rdev->sb_page = alloc_page(GFP_KERNEL);
694 if (!rdev->sb_page) {
695 printk(KERN_ALERT "md: out of memory.\n");
696 return -ENOMEM;
697 }
698
699 return 0;
700 }
701
702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 if (rdev->sb_page) {
705 put_page(rdev->sb_page);
706 rdev->sb_loaded = 0;
707 rdev->sb_page = NULL;
708 rdev->sb_start = 0;
709 rdev->sectors = 0;
710 }
711 if (rdev->bb_page) {
712 put_page(rdev->bb_page);
713 rdev->bb_page = NULL;
714 }
715 kfree(rdev->badblocks.page);
716 rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719
720 static void super_written(struct bio *bio, int error)
721 {
722 struct md_rdev *rdev = bio->bi_private;
723 struct mddev *mddev = rdev->mddev;
724
725 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
726 printk("md: super_written gets error=%d, uptodate=%d\n",
727 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
728 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
729 md_error(mddev, rdev);
730 }
731
732 if (atomic_dec_and_test(&mddev->pending_writes))
733 wake_up(&mddev->sb_wait);
734 bio_put(bio);
735 }
736
737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
738 sector_t sector, int size, struct page *page)
739 {
740 /* write first size bytes of page to sector of rdev
741 * Increment mddev->pending_writes before returning
742 * and decrement it on completion, waking up sb_wait
743 * if zero is reached.
744 * If an error occurred, call md_error
745 */
746 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
747
748 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
749 bio->bi_iter.bi_sector = sector;
750 bio_add_page(bio, page, size, 0);
751 bio->bi_private = rdev;
752 bio->bi_end_io = super_written;
753
754 atomic_inc(&mddev->pending_writes);
755 submit_bio(WRITE_FLUSH_FUA, bio);
756 }
757
758 void md_super_wait(struct mddev *mddev)
759 {
760 /* wait for all superblock writes that were scheduled to complete */
761 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
762 }
763
764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
765 struct page *page, int rw, bool metadata_op)
766 {
767 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
768 int ret;
769
770 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
771 rdev->meta_bdev : rdev->bdev;
772 if (metadata_op)
773 bio->bi_iter.bi_sector = sector + rdev->sb_start;
774 else if (rdev->mddev->reshape_position != MaxSector &&
775 (rdev->mddev->reshape_backwards ==
776 (sector >= rdev->mddev->reshape_position)))
777 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
778 else
779 bio->bi_iter.bi_sector = sector + rdev->data_offset;
780 bio_add_page(bio, page, size, 0);
781 submit_bio_wait(rw, bio);
782
783 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
784 bio_put(bio);
785 return ret;
786 }
787 EXPORT_SYMBOL_GPL(sync_page_io);
788
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 char b[BDEVNAME_SIZE];
792
793 if (rdev->sb_loaded)
794 return 0;
795
796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
797 goto fail;
798 rdev->sb_loaded = 1;
799 return 0;
800
801 fail:
802 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
803 bdevname(rdev->bdev,b));
804 return -EINVAL;
805 }
806
807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 return sb1->set_uuid0 == sb2->set_uuid0 &&
810 sb1->set_uuid1 == sb2->set_uuid1 &&
811 sb1->set_uuid2 == sb2->set_uuid2 &&
812 sb1->set_uuid3 == sb2->set_uuid3;
813 }
814
815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
816 {
817 int ret;
818 mdp_super_t *tmp1, *tmp2;
819
820 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
821 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
822
823 if (!tmp1 || !tmp2) {
824 ret = 0;
825 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
826 goto abort;
827 }
828
829 *tmp1 = *sb1;
830 *tmp2 = *sb2;
831
832 /*
833 * nr_disks is not constant
834 */
835 tmp1->nr_disks = 0;
836 tmp2->nr_disks = 0;
837
838 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
839 abort:
840 kfree(tmp1);
841 kfree(tmp2);
842 return ret;
843 }
844
845 static u32 md_csum_fold(u32 csum)
846 {
847 csum = (csum & 0xffff) + (csum >> 16);
848 return (csum & 0xffff) + (csum >> 16);
849 }
850
851 static unsigned int calc_sb_csum(mdp_super_t *sb)
852 {
853 u64 newcsum = 0;
854 u32 *sb32 = (u32*)sb;
855 int i;
856 unsigned int disk_csum, csum;
857
858 disk_csum = sb->sb_csum;
859 sb->sb_csum = 0;
860
861 for (i = 0; i < MD_SB_BYTES/4 ; i++)
862 newcsum += sb32[i];
863 csum = (newcsum & 0xffffffff) + (newcsum>>32);
864
865 #ifdef CONFIG_ALPHA
866 /* This used to use csum_partial, which was wrong for several
867 * reasons including that different results are returned on
868 * different architectures. It isn't critical that we get exactly
869 * the same return value as before (we always csum_fold before
870 * testing, and that removes any differences). However as we
871 * know that csum_partial always returned a 16bit value on
872 * alphas, do a fold to maximise conformity to previous behaviour.
873 */
874 sb->sb_csum = md_csum_fold(disk_csum);
875 #else
876 sb->sb_csum = disk_csum;
877 #endif
878 return csum;
879 }
880
881 /*
882 * Handle superblock details.
883 * We want to be able to handle multiple superblock formats
884 * so we have a common interface to them all, and an array of
885 * different handlers.
886 * We rely on user-space to write the initial superblock, and support
887 * reading and updating of superblocks.
888 * Interface methods are:
889 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
890 * loads and validates a superblock on dev.
891 * if refdev != NULL, compare superblocks on both devices
892 * Return:
893 * 0 - dev has a superblock that is compatible with refdev
894 * 1 - dev has a superblock that is compatible and newer than refdev
895 * so dev should be used as the refdev in future
896 * -EINVAL superblock incompatible or invalid
897 * -othererror e.g. -EIO
898 *
899 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
900 * Verify that dev is acceptable into mddev.
901 * The first time, mddev->raid_disks will be 0, and data from
902 * dev should be merged in. Subsequent calls check that dev
903 * is new enough. Return 0 or -EINVAL
904 *
905 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
906 * Update the superblock for rdev with data in mddev
907 * This does not write to disc.
908 *
909 */
910
911 struct super_type {
912 char *name;
913 struct module *owner;
914 int (*load_super)(struct md_rdev *rdev,
915 struct md_rdev *refdev,
916 int minor_version);
917 int (*validate_super)(struct mddev *mddev,
918 struct md_rdev *rdev);
919 void (*sync_super)(struct mddev *mddev,
920 struct md_rdev *rdev);
921 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
922 sector_t num_sectors);
923 int (*allow_new_offset)(struct md_rdev *rdev,
924 unsigned long long new_offset);
925 };
926
927 /*
928 * Check that the given mddev has no bitmap.
929 *
930 * This function is called from the run method of all personalities that do not
931 * support bitmaps. It prints an error message and returns non-zero if mddev
932 * has a bitmap. Otherwise, it returns 0.
933 *
934 */
935 int md_check_no_bitmap(struct mddev *mddev)
936 {
937 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
938 return 0;
939 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
940 mdname(mddev), mddev->pers->name);
941 return 1;
942 }
943 EXPORT_SYMBOL(md_check_no_bitmap);
944
945 /*
946 * load_super for 0.90.0
947 */
948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
949 {
950 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
951 mdp_super_t *sb;
952 int ret;
953
954 /*
955 * Calculate the position of the superblock (512byte sectors),
956 * it's at the end of the disk.
957 *
958 * It also happens to be a multiple of 4Kb.
959 */
960 rdev->sb_start = calc_dev_sboffset(rdev);
961
962 ret = read_disk_sb(rdev, MD_SB_BYTES);
963 if (ret) return ret;
964
965 ret = -EINVAL;
966
967 bdevname(rdev->bdev, b);
968 sb = page_address(rdev->sb_page);
969
970 if (sb->md_magic != MD_SB_MAGIC) {
971 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
972 b);
973 goto abort;
974 }
975
976 if (sb->major_version != 0 ||
977 sb->minor_version < 90 ||
978 sb->minor_version > 91) {
979 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
980 sb->major_version, sb->minor_version,
981 b);
982 goto abort;
983 }
984
985 if (sb->raid_disks <= 0)
986 goto abort;
987
988 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
989 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
990 b);
991 goto abort;
992 }
993
994 rdev->preferred_minor = sb->md_minor;
995 rdev->data_offset = 0;
996 rdev->new_data_offset = 0;
997 rdev->sb_size = MD_SB_BYTES;
998 rdev->badblocks.shift = -1;
999
1000 if (sb->level == LEVEL_MULTIPATH)
1001 rdev->desc_nr = -1;
1002 else
1003 rdev->desc_nr = sb->this_disk.number;
1004
1005 if (!refdev) {
1006 ret = 1;
1007 } else {
1008 __u64 ev1, ev2;
1009 mdp_super_t *refsb = page_address(refdev->sb_page);
1010 if (!uuid_equal(refsb, sb)) {
1011 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1012 b, bdevname(refdev->bdev,b2));
1013 goto abort;
1014 }
1015 if (!sb_equal(refsb, sb)) {
1016 printk(KERN_WARNING "md: %s has same UUID"
1017 " but different superblock to %s\n",
1018 b, bdevname(refdev->bdev, b2));
1019 goto abort;
1020 }
1021 ev1 = md_event(sb);
1022 ev2 = md_event(refsb);
1023 if (ev1 > ev2)
1024 ret = 1;
1025 else
1026 ret = 0;
1027 }
1028 rdev->sectors = rdev->sb_start;
1029 /* Limit to 4TB as metadata cannot record more than that.
1030 * (not needed for Linear and RAID0 as metadata doesn't
1031 * record this size)
1032 */
1033 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1034 rdev->sectors = (2ULL << 32) - 2;
1035
1036 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1037 /* "this cannot possibly happen" ... */
1038 ret = -EINVAL;
1039
1040 abort:
1041 return ret;
1042 }
1043
1044 /*
1045 * validate_super for 0.90.0
1046 */
1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1048 {
1049 mdp_disk_t *desc;
1050 mdp_super_t *sb = page_address(rdev->sb_page);
1051 __u64 ev1 = md_event(sb);
1052
1053 rdev->raid_disk = -1;
1054 clear_bit(Faulty, &rdev->flags);
1055 clear_bit(In_sync, &rdev->flags);
1056 clear_bit(Bitmap_sync, &rdev->flags);
1057 clear_bit(WriteMostly, &rdev->flags);
1058
1059 if (mddev->raid_disks == 0) {
1060 mddev->major_version = 0;
1061 mddev->minor_version = sb->minor_version;
1062 mddev->patch_version = sb->patch_version;
1063 mddev->external = 0;
1064 mddev->chunk_sectors = sb->chunk_size >> 9;
1065 mddev->ctime = sb->ctime;
1066 mddev->utime = sb->utime;
1067 mddev->level = sb->level;
1068 mddev->clevel[0] = 0;
1069 mddev->layout = sb->layout;
1070 mddev->raid_disks = sb->raid_disks;
1071 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1072 mddev->events = ev1;
1073 mddev->bitmap_info.offset = 0;
1074 mddev->bitmap_info.space = 0;
1075 /* bitmap can use 60 K after the 4K superblocks */
1076 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1077 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1078 mddev->reshape_backwards = 0;
1079
1080 if (mddev->minor_version >= 91) {
1081 mddev->reshape_position = sb->reshape_position;
1082 mddev->delta_disks = sb->delta_disks;
1083 mddev->new_level = sb->new_level;
1084 mddev->new_layout = sb->new_layout;
1085 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1086 if (mddev->delta_disks < 0)
1087 mddev->reshape_backwards = 1;
1088 } else {
1089 mddev->reshape_position = MaxSector;
1090 mddev->delta_disks = 0;
1091 mddev->new_level = mddev->level;
1092 mddev->new_layout = mddev->layout;
1093 mddev->new_chunk_sectors = mddev->chunk_sectors;
1094 }
1095
1096 if (sb->state & (1<<MD_SB_CLEAN))
1097 mddev->recovery_cp = MaxSector;
1098 else {
1099 if (sb->events_hi == sb->cp_events_hi &&
1100 sb->events_lo == sb->cp_events_lo) {
1101 mddev->recovery_cp = sb->recovery_cp;
1102 } else
1103 mddev->recovery_cp = 0;
1104 }
1105
1106 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1107 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1108 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1109 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1110
1111 mddev->max_disks = MD_SB_DISKS;
1112
1113 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1114 mddev->bitmap_info.file == NULL) {
1115 mddev->bitmap_info.offset =
1116 mddev->bitmap_info.default_offset;
1117 mddev->bitmap_info.space =
1118 mddev->bitmap_info.default_space;
1119 }
1120
1121 } else if (mddev->pers == NULL) {
1122 /* Insist on good event counter while assembling, except
1123 * for spares (which don't need an event count) */
1124 ++ev1;
1125 if (sb->disks[rdev->desc_nr].state & (
1126 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1127 if (ev1 < mddev->events)
1128 return -EINVAL;
1129 } else if (mddev->bitmap) {
1130 /* if adding to array with a bitmap, then we can accept an
1131 * older device ... but not too old.
1132 */
1133 if (ev1 < mddev->bitmap->events_cleared)
1134 return 0;
1135 if (ev1 < mddev->events)
1136 set_bit(Bitmap_sync, &rdev->flags);
1137 } else {
1138 if (ev1 < mddev->events)
1139 /* just a hot-add of a new device, leave raid_disk at -1 */
1140 return 0;
1141 }
1142
1143 if (mddev->level != LEVEL_MULTIPATH) {
1144 desc = sb->disks + rdev->desc_nr;
1145
1146 if (desc->state & (1<<MD_DISK_FAULTY))
1147 set_bit(Faulty, &rdev->flags);
1148 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1149 desc->raid_disk < mddev->raid_disks */) {
1150 set_bit(In_sync, &rdev->flags);
1151 rdev->raid_disk = desc->raid_disk;
1152 rdev->saved_raid_disk = desc->raid_disk;
1153 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1154 /* active but not in sync implies recovery up to
1155 * reshape position. We don't know exactly where
1156 * that is, so set to zero for now */
1157 if (mddev->minor_version >= 91) {
1158 rdev->recovery_offset = 0;
1159 rdev->raid_disk = desc->raid_disk;
1160 }
1161 }
1162 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1163 set_bit(WriteMostly, &rdev->flags);
1164 } else /* MULTIPATH are always insync */
1165 set_bit(In_sync, &rdev->flags);
1166 return 0;
1167 }
1168
1169 /*
1170 * sync_super for 0.90.0
1171 */
1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1173 {
1174 mdp_super_t *sb;
1175 struct md_rdev *rdev2;
1176 int next_spare = mddev->raid_disks;
1177
1178 /* make rdev->sb match mddev data..
1179 *
1180 * 1/ zero out disks
1181 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1182 * 3/ any empty disks < next_spare become removed
1183 *
1184 * disks[0] gets initialised to REMOVED because
1185 * we cannot be sure from other fields if it has
1186 * been initialised or not.
1187 */
1188 int i;
1189 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1190
1191 rdev->sb_size = MD_SB_BYTES;
1192
1193 sb = page_address(rdev->sb_page);
1194
1195 memset(sb, 0, sizeof(*sb));
1196
1197 sb->md_magic = MD_SB_MAGIC;
1198 sb->major_version = mddev->major_version;
1199 sb->patch_version = mddev->patch_version;
1200 sb->gvalid_words = 0; /* ignored */
1201 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1202 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1203 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1204 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1205
1206 sb->ctime = mddev->ctime;
1207 sb->level = mddev->level;
1208 sb->size = mddev->dev_sectors / 2;
1209 sb->raid_disks = mddev->raid_disks;
1210 sb->md_minor = mddev->md_minor;
1211 sb->not_persistent = 0;
1212 sb->utime = mddev->utime;
1213 sb->state = 0;
1214 sb->events_hi = (mddev->events>>32);
1215 sb->events_lo = (u32)mddev->events;
1216
1217 if (mddev->reshape_position == MaxSector)
1218 sb->minor_version = 90;
1219 else {
1220 sb->minor_version = 91;
1221 sb->reshape_position = mddev->reshape_position;
1222 sb->new_level = mddev->new_level;
1223 sb->delta_disks = mddev->delta_disks;
1224 sb->new_layout = mddev->new_layout;
1225 sb->new_chunk = mddev->new_chunk_sectors << 9;
1226 }
1227 mddev->minor_version = sb->minor_version;
1228 if (mddev->in_sync)
1229 {
1230 sb->recovery_cp = mddev->recovery_cp;
1231 sb->cp_events_hi = (mddev->events>>32);
1232 sb->cp_events_lo = (u32)mddev->events;
1233 if (mddev->recovery_cp == MaxSector)
1234 sb->state = (1<< MD_SB_CLEAN);
1235 } else
1236 sb->recovery_cp = 0;
1237
1238 sb->layout = mddev->layout;
1239 sb->chunk_size = mddev->chunk_sectors << 9;
1240
1241 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1242 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1243
1244 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1245 rdev_for_each(rdev2, mddev) {
1246 mdp_disk_t *d;
1247 int desc_nr;
1248 int is_active = test_bit(In_sync, &rdev2->flags);
1249
1250 if (rdev2->raid_disk >= 0 &&
1251 sb->minor_version >= 91)
1252 /* we have nowhere to store the recovery_offset,
1253 * but if it is not below the reshape_position,
1254 * we can piggy-back on that.
1255 */
1256 is_active = 1;
1257 if (rdev2->raid_disk < 0 ||
1258 test_bit(Faulty, &rdev2->flags))
1259 is_active = 0;
1260 if (is_active)
1261 desc_nr = rdev2->raid_disk;
1262 else
1263 desc_nr = next_spare++;
1264 rdev2->desc_nr = desc_nr;
1265 d = &sb->disks[rdev2->desc_nr];
1266 nr_disks++;
1267 d->number = rdev2->desc_nr;
1268 d->major = MAJOR(rdev2->bdev->bd_dev);
1269 d->minor = MINOR(rdev2->bdev->bd_dev);
1270 if (is_active)
1271 d->raid_disk = rdev2->raid_disk;
1272 else
1273 d->raid_disk = rdev2->desc_nr; /* compatibility */
1274 if (test_bit(Faulty, &rdev2->flags))
1275 d->state = (1<<MD_DISK_FAULTY);
1276 else if (is_active) {
1277 d->state = (1<<MD_DISK_ACTIVE);
1278 if (test_bit(In_sync, &rdev2->flags))
1279 d->state |= (1<<MD_DISK_SYNC);
1280 active++;
1281 working++;
1282 } else {
1283 d->state = 0;
1284 spare++;
1285 working++;
1286 }
1287 if (test_bit(WriteMostly, &rdev2->flags))
1288 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1289 }
1290 /* now set the "removed" and "faulty" bits on any missing devices */
1291 for (i=0 ; i < mddev->raid_disks ; i++) {
1292 mdp_disk_t *d = &sb->disks[i];
1293 if (d->state == 0 && d->number == 0) {
1294 d->number = i;
1295 d->raid_disk = i;
1296 d->state = (1<<MD_DISK_REMOVED);
1297 d->state |= (1<<MD_DISK_FAULTY);
1298 failed++;
1299 }
1300 }
1301 sb->nr_disks = nr_disks;
1302 sb->active_disks = active;
1303 sb->working_disks = working;
1304 sb->failed_disks = failed;
1305 sb->spare_disks = spare;
1306
1307 sb->this_disk = sb->disks[rdev->desc_nr];
1308 sb->sb_csum = calc_sb_csum(sb);
1309 }
1310
1311 /*
1312 * rdev_size_change for 0.90.0
1313 */
1314 static unsigned long long
1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1316 {
1317 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1318 return 0; /* component must fit device */
1319 if (rdev->mddev->bitmap_info.offset)
1320 return 0; /* can't move bitmap */
1321 rdev->sb_start = calc_dev_sboffset(rdev);
1322 if (!num_sectors || num_sectors > rdev->sb_start)
1323 num_sectors = rdev->sb_start;
1324 /* Limit to 4TB as metadata cannot record more than that.
1325 * 4TB == 2^32 KB, or 2*2^32 sectors.
1326 */
1327 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1328 num_sectors = (2ULL << 32) - 2;
1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 rdev->sb_page);
1331 md_super_wait(rdev->mddev);
1332 return num_sectors;
1333 }
1334
1335 static int
1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1337 {
1338 /* non-zero offset changes not possible with v0.90 */
1339 return new_offset == 0;
1340 }
1341
1342 /*
1343 * version 1 superblock
1344 */
1345
1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1347 {
1348 __le32 disk_csum;
1349 u32 csum;
1350 unsigned long long newcsum;
1351 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1352 __le32 *isuper = (__le32*)sb;
1353
1354 disk_csum = sb->sb_csum;
1355 sb->sb_csum = 0;
1356 newcsum = 0;
1357 for (; size >= 4; size -= 4)
1358 newcsum += le32_to_cpu(*isuper++);
1359
1360 if (size == 2)
1361 newcsum += le16_to_cpu(*(__le16*) isuper);
1362
1363 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1364 sb->sb_csum = disk_csum;
1365 return cpu_to_le32(csum);
1366 }
1367
1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1369 int acknowledged);
1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1371 {
1372 struct mdp_superblock_1 *sb;
1373 int ret;
1374 sector_t sb_start;
1375 sector_t sectors;
1376 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1377 int bmask;
1378
1379 /*
1380 * Calculate the position of the superblock in 512byte sectors.
1381 * It is always aligned to a 4K boundary and
1382 * depeding on minor_version, it can be:
1383 * 0: At least 8K, but less than 12K, from end of device
1384 * 1: At start of device
1385 * 2: 4K from start of device.
1386 */
1387 switch(minor_version) {
1388 case 0:
1389 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1390 sb_start -= 8*2;
1391 sb_start &= ~(sector_t)(4*2-1);
1392 break;
1393 case 1:
1394 sb_start = 0;
1395 break;
1396 case 2:
1397 sb_start = 8;
1398 break;
1399 default:
1400 return -EINVAL;
1401 }
1402 rdev->sb_start = sb_start;
1403
1404 /* superblock is rarely larger than 1K, but it can be larger,
1405 * and it is safe to read 4k, so we do that
1406 */
1407 ret = read_disk_sb(rdev, 4096);
1408 if (ret) return ret;
1409
1410 sb = page_address(rdev->sb_page);
1411
1412 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1413 sb->major_version != cpu_to_le32(1) ||
1414 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1415 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1416 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1417 return -EINVAL;
1418
1419 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1420 printk("md: invalid superblock checksum on %s\n",
1421 bdevname(rdev->bdev,b));
1422 return -EINVAL;
1423 }
1424 if (le64_to_cpu(sb->data_size) < 10) {
1425 printk("md: data_size too small on %s\n",
1426 bdevname(rdev->bdev,b));
1427 return -EINVAL;
1428 }
1429 if (sb->pad0 ||
1430 sb->pad3[0] ||
1431 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1432 /* Some padding is non-zero, might be a new feature */
1433 return -EINVAL;
1434
1435 rdev->preferred_minor = 0xffff;
1436 rdev->data_offset = le64_to_cpu(sb->data_offset);
1437 rdev->new_data_offset = rdev->data_offset;
1438 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1439 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1440 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1441 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1442
1443 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1444 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1445 if (rdev->sb_size & bmask)
1446 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1447
1448 if (minor_version
1449 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1450 return -EINVAL;
1451 if (minor_version
1452 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1453 return -EINVAL;
1454
1455 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1456 rdev->desc_nr = -1;
1457 else
1458 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1459
1460 if (!rdev->bb_page) {
1461 rdev->bb_page = alloc_page(GFP_KERNEL);
1462 if (!rdev->bb_page)
1463 return -ENOMEM;
1464 }
1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1466 rdev->badblocks.count == 0) {
1467 /* need to load the bad block list.
1468 * Currently we limit it to one page.
1469 */
1470 s32 offset;
1471 sector_t bb_sector;
1472 u64 *bbp;
1473 int i;
1474 int sectors = le16_to_cpu(sb->bblog_size);
1475 if (sectors > (PAGE_SIZE / 512))
1476 return -EINVAL;
1477 offset = le32_to_cpu(sb->bblog_offset);
1478 if (offset == 0)
1479 return -EINVAL;
1480 bb_sector = (long long)offset;
1481 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1482 rdev->bb_page, READ, true))
1483 return -EIO;
1484 bbp = (u64 *)page_address(rdev->bb_page);
1485 rdev->badblocks.shift = sb->bblog_shift;
1486 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1487 u64 bb = le64_to_cpu(*bbp);
1488 int count = bb & (0x3ff);
1489 u64 sector = bb >> 10;
1490 sector <<= sb->bblog_shift;
1491 count <<= sb->bblog_shift;
1492 if (bb + 1 == 0)
1493 break;
1494 if (md_set_badblocks(&rdev->badblocks,
1495 sector, count, 1) == 0)
1496 return -EINVAL;
1497 }
1498 } else if (sb->bblog_offset != 0)
1499 rdev->badblocks.shift = 0;
1500
1501 if (!refdev) {
1502 ret = 1;
1503 } else {
1504 __u64 ev1, ev2;
1505 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1506
1507 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1508 sb->level != refsb->level ||
1509 sb->layout != refsb->layout ||
1510 sb->chunksize != refsb->chunksize) {
1511 printk(KERN_WARNING "md: %s has strangely different"
1512 " superblock to %s\n",
1513 bdevname(rdev->bdev,b),
1514 bdevname(refdev->bdev,b2));
1515 return -EINVAL;
1516 }
1517 ev1 = le64_to_cpu(sb->events);
1518 ev2 = le64_to_cpu(refsb->events);
1519
1520 if (ev1 > ev2)
1521 ret = 1;
1522 else
1523 ret = 0;
1524 }
1525 if (minor_version) {
1526 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1527 sectors -= rdev->data_offset;
1528 } else
1529 sectors = rdev->sb_start;
1530 if (sectors < le64_to_cpu(sb->data_size))
1531 return -EINVAL;
1532 rdev->sectors = le64_to_cpu(sb->data_size);
1533 return ret;
1534 }
1535
1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1537 {
1538 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1539 __u64 ev1 = le64_to_cpu(sb->events);
1540
1541 rdev->raid_disk = -1;
1542 clear_bit(Faulty, &rdev->flags);
1543 clear_bit(In_sync, &rdev->flags);
1544 clear_bit(Bitmap_sync, &rdev->flags);
1545 clear_bit(WriteMostly, &rdev->flags);
1546
1547 if (mddev->raid_disks == 0) {
1548 mddev->major_version = 1;
1549 mddev->patch_version = 0;
1550 mddev->external = 0;
1551 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1552 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1553 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1554 mddev->level = le32_to_cpu(sb->level);
1555 mddev->clevel[0] = 0;
1556 mddev->layout = le32_to_cpu(sb->layout);
1557 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1558 mddev->dev_sectors = le64_to_cpu(sb->size);
1559 mddev->events = ev1;
1560 mddev->bitmap_info.offset = 0;
1561 mddev->bitmap_info.space = 0;
1562 /* Default location for bitmap is 1K after superblock
1563 * using 3K - total of 4K
1564 */
1565 mddev->bitmap_info.default_offset = 1024 >> 9;
1566 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1567 mddev->reshape_backwards = 0;
1568
1569 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1570 memcpy(mddev->uuid, sb->set_uuid, 16);
1571
1572 mddev->max_disks = (4096-256)/2;
1573
1574 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1575 mddev->bitmap_info.file == NULL) {
1576 mddev->bitmap_info.offset =
1577 (__s32)le32_to_cpu(sb->bitmap_offset);
1578 /* Metadata doesn't record how much space is available.
1579 * For 1.0, we assume we can use up to the superblock
1580 * if before, else to 4K beyond superblock.
1581 * For others, assume no change is possible.
1582 */
1583 if (mddev->minor_version > 0)
1584 mddev->bitmap_info.space = 0;
1585 else if (mddev->bitmap_info.offset > 0)
1586 mddev->bitmap_info.space =
1587 8 - mddev->bitmap_info.offset;
1588 else
1589 mddev->bitmap_info.space =
1590 -mddev->bitmap_info.offset;
1591 }
1592
1593 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1594 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1595 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1596 mddev->new_level = le32_to_cpu(sb->new_level);
1597 mddev->new_layout = le32_to_cpu(sb->new_layout);
1598 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1599 if (mddev->delta_disks < 0 ||
1600 (mddev->delta_disks == 0 &&
1601 (le32_to_cpu(sb->feature_map)
1602 & MD_FEATURE_RESHAPE_BACKWARDS)))
1603 mddev->reshape_backwards = 1;
1604 } else {
1605 mddev->reshape_position = MaxSector;
1606 mddev->delta_disks = 0;
1607 mddev->new_level = mddev->level;
1608 mddev->new_layout = mddev->layout;
1609 mddev->new_chunk_sectors = mddev->chunk_sectors;
1610 }
1611
1612 } else if (mddev->pers == NULL) {
1613 /* Insist of good event counter while assembling, except for
1614 * spares (which don't need an event count) */
1615 ++ev1;
1616 if (rdev->desc_nr >= 0 &&
1617 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1619 if (ev1 < mddev->events)
1620 return -EINVAL;
1621 } else if (mddev->bitmap) {
1622 /* If adding to array with a bitmap, then we can accept an
1623 * older device, but not too old.
1624 */
1625 if (ev1 < mddev->bitmap->events_cleared)
1626 return 0;
1627 if (ev1 < mddev->events)
1628 set_bit(Bitmap_sync, &rdev->flags);
1629 } else {
1630 if (ev1 < mddev->events)
1631 /* just a hot-add of a new device, leave raid_disk at -1 */
1632 return 0;
1633 }
1634 if (mddev->level != LEVEL_MULTIPATH) {
1635 int role;
1636 if (rdev->desc_nr < 0 ||
1637 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1638 role = 0xffff;
1639 rdev->desc_nr = -1;
1640 } else
1641 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1642 switch(role) {
1643 case 0xffff: /* spare */
1644 break;
1645 case 0xfffe: /* faulty */
1646 set_bit(Faulty, &rdev->flags);
1647 break;
1648 default:
1649 rdev->saved_raid_disk = role;
1650 if ((le32_to_cpu(sb->feature_map) &
1651 MD_FEATURE_RECOVERY_OFFSET)) {
1652 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1653 if (!(le32_to_cpu(sb->feature_map) &
1654 MD_FEATURE_RECOVERY_BITMAP))
1655 rdev->saved_raid_disk = -1;
1656 } else
1657 set_bit(In_sync, &rdev->flags);
1658 rdev->raid_disk = role;
1659 break;
1660 }
1661 if (sb->devflags & WriteMostly1)
1662 set_bit(WriteMostly, &rdev->flags);
1663 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1664 set_bit(Replacement, &rdev->flags);
1665 } else /* MULTIPATH are always insync */
1666 set_bit(In_sync, &rdev->flags);
1667
1668 return 0;
1669 }
1670
1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1672 {
1673 struct mdp_superblock_1 *sb;
1674 struct md_rdev *rdev2;
1675 int max_dev, i;
1676 /* make rdev->sb match mddev and rdev data. */
1677
1678 sb = page_address(rdev->sb_page);
1679
1680 sb->feature_map = 0;
1681 sb->pad0 = 0;
1682 sb->recovery_offset = cpu_to_le64(0);
1683 memset(sb->pad3, 0, sizeof(sb->pad3));
1684
1685 sb->utime = cpu_to_le64((__u64)mddev->utime);
1686 sb->events = cpu_to_le64(mddev->events);
1687 if (mddev->in_sync)
1688 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1689 else
1690 sb->resync_offset = cpu_to_le64(0);
1691
1692 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1693
1694 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1695 sb->size = cpu_to_le64(mddev->dev_sectors);
1696 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1697 sb->level = cpu_to_le32(mddev->level);
1698 sb->layout = cpu_to_le32(mddev->layout);
1699
1700 if (test_bit(WriteMostly, &rdev->flags))
1701 sb->devflags |= WriteMostly1;
1702 else
1703 sb->devflags &= ~WriteMostly1;
1704 sb->data_offset = cpu_to_le64(rdev->data_offset);
1705 sb->data_size = cpu_to_le64(rdev->sectors);
1706
1707 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1708 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1709 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1710 }
1711
1712 if (rdev->raid_disk >= 0 &&
1713 !test_bit(In_sync, &rdev->flags)) {
1714 sb->feature_map |=
1715 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1716 sb->recovery_offset =
1717 cpu_to_le64(rdev->recovery_offset);
1718 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1719 sb->feature_map |=
1720 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1721 }
1722 if (test_bit(Replacement, &rdev->flags))
1723 sb->feature_map |=
1724 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1725
1726 if (mddev->reshape_position != MaxSector) {
1727 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1728 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1729 sb->new_layout = cpu_to_le32(mddev->new_layout);
1730 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1731 sb->new_level = cpu_to_le32(mddev->new_level);
1732 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1733 if (mddev->delta_disks == 0 &&
1734 mddev->reshape_backwards)
1735 sb->feature_map
1736 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1737 if (rdev->new_data_offset != rdev->data_offset) {
1738 sb->feature_map
1739 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1740 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1741 - rdev->data_offset));
1742 }
1743 }
1744
1745 if (rdev->badblocks.count == 0)
1746 /* Nothing to do for bad blocks*/ ;
1747 else if (sb->bblog_offset == 0)
1748 /* Cannot record bad blocks on this device */
1749 md_error(mddev, rdev);
1750 else {
1751 struct badblocks *bb = &rdev->badblocks;
1752 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1753 u64 *p = bb->page;
1754 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1755 if (bb->changed) {
1756 unsigned seq;
1757
1758 retry:
1759 seq = read_seqbegin(&bb->lock);
1760
1761 memset(bbp, 0xff, PAGE_SIZE);
1762
1763 for (i = 0 ; i < bb->count ; i++) {
1764 u64 internal_bb = p[i];
1765 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1766 | BB_LEN(internal_bb));
1767 bbp[i] = cpu_to_le64(store_bb);
1768 }
1769 bb->changed = 0;
1770 if (read_seqretry(&bb->lock, seq))
1771 goto retry;
1772
1773 bb->sector = (rdev->sb_start +
1774 (int)le32_to_cpu(sb->bblog_offset));
1775 bb->size = le16_to_cpu(sb->bblog_size);
1776 }
1777 }
1778
1779 max_dev = 0;
1780 rdev_for_each(rdev2, mddev)
1781 if (rdev2->desc_nr+1 > max_dev)
1782 max_dev = rdev2->desc_nr+1;
1783
1784 if (max_dev > le32_to_cpu(sb->max_dev)) {
1785 int bmask;
1786 sb->max_dev = cpu_to_le32(max_dev);
1787 rdev->sb_size = max_dev * 2 + 256;
1788 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1789 if (rdev->sb_size & bmask)
1790 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1791 } else
1792 max_dev = le32_to_cpu(sb->max_dev);
1793
1794 for (i=0; i<max_dev;i++)
1795 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1796
1797 rdev_for_each(rdev2, mddev) {
1798 i = rdev2->desc_nr;
1799 if (test_bit(Faulty, &rdev2->flags))
1800 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801 else if (test_bit(In_sync, &rdev2->flags))
1802 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803 else if (rdev2->raid_disk >= 0)
1804 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1805 else
1806 sb->dev_roles[i] = cpu_to_le16(0xffff);
1807 }
1808
1809 sb->sb_csum = calc_sb_1_csum(sb);
1810 }
1811
1812 static unsigned long long
1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1814 {
1815 struct mdp_superblock_1 *sb;
1816 sector_t max_sectors;
1817 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1818 return 0; /* component must fit device */
1819 if (rdev->data_offset != rdev->new_data_offset)
1820 return 0; /* too confusing */
1821 if (rdev->sb_start < rdev->data_offset) {
1822 /* minor versions 1 and 2; superblock before data */
1823 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1824 max_sectors -= rdev->data_offset;
1825 if (!num_sectors || num_sectors > max_sectors)
1826 num_sectors = max_sectors;
1827 } else if (rdev->mddev->bitmap_info.offset) {
1828 /* minor version 0 with bitmap we can't move */
1829 return 0;
1830 } else {
1831 /* minor version 0; superblock after data */
1832 sector_t sb_start;
1833 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1834 sb_start &= ~(sector_t)(4*2 - 1);
1835 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 rdev->sb_start = sb_start;
1839 }
1840 sb = page_address(rdev->sb_page);
1841 sb->data_size = cpu_to_le64(num_sectors);
1842 sb->super_offset = rdev->sb_start;
1843 sb->sb_csum = calc_sb_1_csum(sb);
1844 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1845 rdev->sb_page);
1846 md_super_wait(rdev->mddev);
1847 return num_sectors;
1848
1849 }
1850
1851 static int
1852 super_1_allow_new_offset(struct md_rdev *rdev,
1853 unsigned long long new_offset)
1854 {
1855 /* All necessary checks on new >= old have been done */
1856 struct bitmap *bitmap;
1857 if (new_offset >= rdev->data_offset)
1858 return 1;
1859
1860 /* with 1.0 metadata, there is no metadata to tread on
1861 * so we can always move back */
1862 if (rdev->mddev->minor_version == 0)
1863 return 1;
1864
1865 /* otherwise we must be sure not to step on
1866 * any metadata, so stay:
1867 * 36K beyond start of superblock
1868 * beyond end of badblocks
1869 * beyond write-intent bitmap
1870 */
1871 if (rdev->sb_start + (32+4)*2 > new_offset)
1872 return 0;
1873 bitmap = rdev->mddev->bitmap;
1874 if (bitmap && !rdev->mddev->bitmap_info.file &&
1875 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1876 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1877 return 0;
1878 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1879 return 0;
1880
1881 return 1;
1882 }
1883
1884 static struct super_type super_types[] = {
1885 [0] = {
1886 .name = "0.90.0",
1887 .owner = THIS_MODULE,
1888 .load_super = super_90_load,
1889 .validate_super = super_90_validate,
1890 .sync_super = super_90_sync,
1891 .rdev_size_change = super_90_rdev_size_change,
1892 .allow_new_offset = super_90_allow_new_offset,
1893 },
1894 [1] = {
1895 .name = "md-1",
1896 .owner = THIS_MODULE,
1897 .load_super = super_1_load,
1898 .validate_super = super_1_validate,
1899 .sync_super = super_1_sync,
1900 .rdev_size_change = super_1_rdev_size_change,
1901 .allow_new_offset = super_1_allow_new_offset,
1902 },
1903 };
1904
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907 if (mddev->sync_super) {
1908 mddev->sync_super(mddev, rdev);
1909 return;
1910 }
1911
1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913
1914 super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919 struct md_rdev *rdev, *rdev2;
1920
1921 rcu_read_lock();
1922 rdev_for_each_rcu(rdev, mddev1)
1923 rdev_for_each_rcu(rdev2, mddev2)
1924 if (rdev->bdev->bd_contains ==
1925 rdev2->bdev->bd_contains) {
1926 rcu_read_unlock();
1927 return 1;
1928 }
1929 rcu_read_unlock();
1930 return 0;
1931 }
1932
1933 static LIST_HEAD(pending_raid_disks);
1934
1935 /*
1936 * Try to register data integrity profile for an mddev
1937 *
1938 * This is called when an array is started and after a disk has been kicked
1939 * from the array. It only succeeds if all working and active component devices
1940 * are integrity capable with matching profiles.
1941 */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944 struct md_rdev *rdev, *reference = NULL;
1945
1946 if (list_empty(&mddev->disks))
1947 return 0; /* nothing to do */
1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 return 0; /* shouldn't register, or already is */
1950 rdev_for_each(rdev, mddev) {
1951 /* skip spares and non-functional disks */
1952 if (test_bit(Faulty, &rdev->flags))
1953 continue;
1954 if (rdev->raid_disk < 0)
1955 continue;
1956 if (!reference) {
1957 /* Use the first rdev as the reference */
1958 reference = rdev;
1959 continue;
1960 }
1961 /* does this rdev's profile match the reference profile? */
1962 if (blk_integrity_compare(reference->bdev->bd_disk,
1963 rdev->bdev->bd_disk) < 0)
1964 return -EINVAL;
1965 }
1966 if (!reference || !bdev_get_integrity(reference->bdev))
1967 return 0;
1968 /*
1969 * All component devices are integrity capable and have matching
1970 * profiles, register the common profile for the md device.
1971 */
1972 if (blk_integrity_register(mddev->gendisk,
1973 bdev_get_integrity(reference->bdev)) != 0) {
1974 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 mdname(mddev));
1976 return -EINVAL;
1977 }
1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1983 }
1984 return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991 struct blk_integrity *bi_rdev;
1992 struct blk_integrity *bi_mddev;
1993
1994 if (!mddev->gendisk)
1995 return;
1996
1997 bi_rdev = bdev_get_integrity(rdev->bdev);
1998 bi_mddev = blk_get_integrity(mddev->gendisk);
1999
2000 if (!bi_mddev) /* nothing to do */
2001 return;
2002 if (rdev->raid_disk < 0) /* skip spares */
2003 return;
2004 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2005 rdev->bdev->bd_disk) >= 0)
2006 return;
2007 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2008 blk_integrity_unregister(mddev->gendisk);
2009 }
2010 EXPORT_SYMBOL(md_integrity_add_rdev);
2011
2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2013 {
2014 char b[BDEVNAME_SIZE];
2015 struct kobject *ko;
2016 char *s;
2017 int err;
2018
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 return -EEXIST;
2022
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2026 if (mddev->pers) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2030 */
2031 if (mddev->level > 0)
2032 return -ENOSPC;
2033 } else
2034 mddev->dev_sectors = rdev->sectors;
2035 }
2036
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2040 */
2041 rcu_read_lock();
2042 if (rdev->desc_nr < 0) {
2043 int choice = 0;
2044 if (mddev->pers)
2045 choice = mddev->raid_disks;
2046 while (find_rdev_nr_rcu(mddev, choice))
2047 choice++;
2048 rdev->desc_nr = choice;
2049 } else {
2050 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2051 rcu_read_unlock();
2052 return -EBUSY;
2053 }
2054 }
2055 rcu_read_unlock();
2056 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2057 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2058 mdname(mddev), mddev->max_disks);
2059 return -EBUSY;
2060 }
2061 bdevname(rdev->bdev,b);
2062 while ( (s=strchr(b, '/')) != NULL)
2063 *s = '!';
2064
2065 rdev->mddev = mddev;
2066 printk(KERN_INFO "md: bind<%s>\n", b);
2067
2068 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2069 goto fail;
2070
2071 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2072 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2073 /* failure here is OK */;
2074 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2075
2076 list_add_rcu(&rdev->same_set, &mddev->disks);
2077 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2078
2079 /* May as well allow recovery to be retried once */
2080 mddev->recovery_disabled++;
2081
2082 return 0;
2083
2084 fail:
2085 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086 b, mdname(mddev));
2087 return err;
2088 }
2089
2090 static void md_delayed_delete(struct work_struct *ws)
2091 {
2092 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2093 kobject_del(&rdev->kobj);
2094 kobject_put(&rdev->kobj);
2095 }
2096
2097 static void unbind_rdev_from_array(struct md_rdev *rdev)
2098 {
2099 char b[BDEVNAME_SIZE];
2100
2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 list_del_rcu(&rdev->same_set);
2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 rdev->mddev = NULL;
2105 sysfs_remove_link(&rdev->kobj, "block");
2106 sysfs_put(rdev->sysfs_state);
2107 rdev->sysfs_state = NULL;
2108 rdev->badblocks.count = 0;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2112 */
2113 synchronize_rcu();
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2123 */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 int err = 0;
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2129
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 if (IS_ERR(bdev)) {
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2136 }
2137 rdev->bdev = bdev;
2138 return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 struct block_device *bdev = rdev->bdev;
2144 rdev->bdev = NULL;
2145 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 }
2147
2148 void md_autodetect_dev(dev_t dev);
2149
2150 static void export_rdev(struct md_rdev *rdev)
2151 {
2152 char b[BDEVNAME_SIZE];
2153
2154 printk(KERN_INFO "md: export_rdev(%s)\n",
2155 bdevname(rdev->bdev,b));
2156 md_rdev_clear(rdev);
2157 #ifndef MODULE
2158 if (test_bit(AutoDetected, &rdev->flags))
2159 md_autodetect_dev(rdev->bdev->bd_dev);
2160 #endif
2161 unlock_rdev(rdev);
2162 kobject_put(&rdev->kobj);
2163 }
2164
2165 static void kick_rdev_from_array(struct md_rdev *rdev)
2166 {
2167 unbind_rdev_from_array(rdev);
2168 export_rdev(rdev);
2169 }
2170
2171 static void export_array(struct mddev *mddev)
2172 {
2173 struct md_rdev *rdev;
2174
2175 while (!list_empty(&mddev->disks)) {
2176 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2177 same_set);
2178 kick_rdev_from_array(rdev);
2179 }
2180 mddev->raid_disks = 0;
2181 mddev->major_version = 0;
2182 }
2183
2184 static void sync_sbs(struct mddev *mddev, int nospares)
2185 {
2186 /* Update each superblock (in-memory image), but
2187 * if we are allowed to, skip spares which already
2188 * have the right event counter, or have one earlier
2189 * (which would mean they aren't being marked as dirty
2190 * with the rest of the array)
2191 */
2192 struct md_rdev *rdev;
2193 rdev_for_each(rdev, mddev) {
2194 if (rdev->sb_events == mddev->events ||
2195 (nospares &&
2196 rdev->raid_disk < 0 &&
2197 rdev->sb_events+1 == mddev->events)) {
2198 /* Don't update this superblock */
2199 rdev->sb_loaded = 2;
2200 } else {
2201 sync_super(mddev, rdev);
2202 rdev->sb_loaded = 1;
2203 }
2204 }
2205 }
2206
2207 static void md_update_sb(struct mddev *mddev, int force_change)
2208 {
2209 struct md_rdev *rdev;
2210 int sync_req;
2211 int nospares = 0;
2212 int any_badblocks_changed = 0;
2213
2214 if (mddev->ro) {
2215 if (force_change)
2216 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2217 return;
2218 }
2219 repeat:
2220 /* First make sure individual recovery_offsets are correct */
2221 rdev_for_each(rdev, mddev) {
2222 if (rdev->raid_disk >= 0 &&
2223 mddev->delta_disks >= 0 &&
2224 !test_bit(In_sync, &rdev->flags) &&
2225 mddev->curr_resync_completed > rdev->recovery_offset)
2226 rdev->recovery_offset = mddev->curr_resync_completed;
2227
2228 }
2229 if (!mddev->persistent) {
2230 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2231 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2232 if (!mddev->external) {
2233 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2234 rdev_for_each(rdev, mddev) {
2235 if (rdev->badblocks.changed) {
2236 rdev->badblocks.changed = 0;
2237 md_ack_all_badblocks(&rdev->badblocks);
2238 md_error(mddev, rdev);
2239 }
2240 clear_bit(Blocked, &rdev->flags);
2241 clear_bit(BlockedBadBlocks, &rdev->flags);
2242 wake_up(&rdev->blocked_wait);
2243 }
2244 }
2245 wake_up(&mddev->sb_wait);
2246 return;
2247 }
2248
2249 spin_lock(&mddev->lock);
2250
2251 mddev->utime = get_seconds();
2252
2253 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2254 force_change = 1;
2255 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2256 /* just a clean<-> dirty transition, possibly leave spares alone,
2257 * though if events isn't the right even/odd, we will have to do
2258 * spares after all
2259 */
2260 nospares = 1;
2261 if (force_change)
2262 nospares = 0;
2263 if (mddev->degraded)
2264 /* If the array is degraded, then skipping spares is both
2265 * dangerous and fairly pointless.
2266 * Dangerous because a device that was removed from the array
2267 * might have a event_count that still looks up-to-date,
2268 * so it can be re-added without a resync.
2269 * Pointless because if there are any spares to skip,
2270 * then a recovery will happen and soon that array won't
2271 * be degraded any more and the spare can go back to sleep then.
2272 */
2273 nospares = 0;
2274
2275 sync_req = mddev->in_sync;
2276
2277 /* If this is just a dirty<->clean transition, and the array is clean
2278 * and 'events' is odd, we can roll back to the previous clean state */
2279 if (nospares
2280 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2281 && mddev->can_decrease_events
2282 && mddev->events != 1) {
2283 mddev->events--;
2284 mddev->can_decrease_events = 0;
2285 } else {
2286 /* otherwise we have to go forward and ... */
2287 mddev->events ++;
2288 mddev->can_decrease_events = nospares;
2289 }
2290
2291 /*
2292 * This 64-bit counter should never wrap.
2293 * Either we are in around ~1 trillion A.C., assuming
2294 * 1 reboot per second, or we have a bug...
2295 */
2296 WARN_ON(mddev->events == 0);
2297
2298 rdev_for_each(rdev, mddev) {
2299 if (rdev->badblocks.changed)
2300 any_badblocks_changed++;
2301 if (test_bit(Faulty, &rdev->flags))
2302 set_bit(FaultRecorded, &rdev->flags);
2303 }
2304
2305 sync_sbs(mddev, nospares);
2306 spin_unlock(&mddev->lock);
2307
2308 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2309 mdname(mddev), mddev->in_sync);
2310
2311 bitmap_update_sb(mddev->bitmap);
2312 rdev_for_each(rdev, mddev) {
2313 char b[BDEVNAME_SIZE];
2314
2315 if (rdev->sb_loaded != 1)
2316 continue; /* no noise on spare devices */
2317
2318 if (!test_bit(Faulty, &rdev->flags)) {
2319 md_super_write(mddev,rdev,
2320 rdev->sb_start, rdev->sb_size,
2321 rdev->sb_page);
2322 pr_debug("md: (write) %s's sb offset: %llu\n",
2323 bdevname(rdev->bdev, b),
2324 (unsigned long long)rdev->sb_start);
2325 rdev->sb_events = mddev->events;
2326 if (rdev->badblocks.size) {
2327 md_super_write(mddev, rdev,
2328 rdev->badblocks.sector,
2329 rdev->badblocks.size << 9,
2330 rdev->bb_page);
2331 rdev->badblocks.size = 0;
2332 }
2333
2334 } else
2335 pr_debug("md: %s (skipping faulty)\n",
2336 bdevname(rdev->bdev, b));
2337
2338 if (mddev->level == LEVEL_MULTIPATH)
2339 /* only need to write one superblock... */
2340 break;
2341 }
2342 md_super_wait(mddev);
2343 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2344
2345 spin_lock(&mddev->lock);
2346 if (mddev->in_sync != sync_req ||
2347 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2348 /* have to write it out again */
2349 spin_unlock(&mddev->lock);
2350 goto repeat;
2351 }
2352 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2353 spin_unlock(&mddev->lock);
2354 wake_up(&mddev->sb_wait);
2355 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2356 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2357
2358 rdev_for_each(rdev, mddev) {
2359 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2360 clear_bit(Blocked, &rdev->flags);
2361
2362 if (any_badblocks_changed)
2363 md_ack_all_badblocks(&rdev->badblocks);
2364 clear_bit(BlockedBadBlocks, &rdev->flags);
2365 wake_up(&rdev->blocked_wait);
2366 }
2367 }
2368
2369 /* words written to sysfs files may, or may not, be \n terminated.
2370 * We want to accept with case. For this we use cmd_match.
2371 */
2372 static int cmd_match(const char *cmd, const char *str)
2373 {
2374 /* See if cmd, written into a sysfs file, matches
2375 * str. They must either be the same, or cmd can
2376 * have a trailing newline
2377 */
2378 while (*cmd && *str && *cmd == *str) {
2379 cmd++;
2380 str++;
2381 }
2382 if (*cmd == '\n')
2383 cmd++;
2384 if (*str || *cmd)
2385 return 0;
2386 return 1;
2387 }
2388
2389 struct rdev_sysfs_entry {
2390 struct attribute attr;
2391 ssize_t (*show)(struct md_rdev *, char *);
2392 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2393 };
2394
2395 static ssize_t
2396 state_show(struct md_rdev *rdev, char *page)
2397 {
2398 char *sep = "";
2399 size_t len = 0;
2400 unsigned long flags = ACCESS_ONCE(rdev->flags);
2401
2402 if (test_bit(Faulty, &flags) ||
2403 rdev->badblocks.unacked_exist) {
2404 len+= sprintf(page+len, "%sfaulty",sep);
2405 sep = ",";
2406 }
2407 if (test_bit(In_sync, &flags)) {
2408 len += sprintf(page+len, "%sin_sync",sep);
2409 sep = ",";
2410 }
2411 if (test_bit(WriteMostly, &flags)) {
2412 len += sprintf(page+len, "%swrite_mostly",sep);
2413 sep = ",";
2414 }
2415 if (test_bit(Blocked, &flags) ||
2416 (rdev->badblocks.unacked_exist
2417 && !test_bit(Faulty, &flags))) {
2418 len += sprintf(page+len, "%sblocked", sep);
2419 sep = ",";
2420 }
2421 if (!test_bit(Faulty, &flags) &&
2422 !test_bit(In_sync, &flags)) {
2423 len += sprintf(page+len, "%sspare", sep);
2424 sep = ",";
2425 }
2426 if (test_bit(WriteErrorSeen, &flags)) {
2427 len += sprintf(page+len, "%swrite_error", sep);
2428 sep = ",";
2429 }
2430 if (test_bit(WantReplacement, &flags)) {
2431 len += sprintf(page+len, "%swant_replacement", sep);
2432 sep = ",";
2433 }
2434 if (test_bit(Replacement, &flags)) {
2435 len += sprintf(page+len, "%sreplacement", sep);
2436 sep = ",";
2437 }
2438
2439 return len+sprintf(page+len, "\n");
2440 }
2441
2442 static ssize_t
2443 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2444 {
2445 /* can write
2446 * faulty - simulates an error
2447 * remove - disconnects the device
2448 * writemostly - sets write_mostly
2449 * -writemostly - clears write_mostly
2450 * blocked - sets the Blocked flags
2451 * -blocked - clears the Blocked and possibly simulates an error
2452 * insync - sets Insync providing device isn't active
2453 * -insync - clear Insync for a device with a slot assigned,
2454 * so that it gets rebuilt based on bitmap
2455 * write_error - sets WriteErrorSeen
2456 * -write_error - clears WriteErrorSeen
2457 */
2458 int err = -EINVAL;
2459 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2460 md_error(rdev->mddev, rdev);
2461 if (test_bit(Faulty, &rdev->flags))
2462 err = 0;
2463 else
2464 err = -EBUSY;
2465 } else if (cmd_match(buf, "remove")) {
2466 if (rdev->raid_disk >= 0)
2467 err = -EBUSY;
2468 else {
2469 struct mddev *mddev = rdev->mddev;
2470 kick_rdev_from_array(rdev);
2471 if (mddev->pers)
2472 md_update_sb(mddev, 1);
2473 md_new_event(mddev);
2474 err = 0;
2475 }
2476 } else if (cmd_match(buf, "writemostly")) {
2477 set_bit(WriteMostly, &rdev->flags);
2478 err = 0;
2479 } else if (cmd_match(buf, "-writemostly")) {
2480 clear_bit(WriteMostly, &rdev->flags);
2481 err = 0;
2482 } else if (cmd_match(buf, "blocked")) {
2483 set_bit(Blocked, &rdev->flags);
2484 err = 0;
2485 } else if (cmd_match(buf, "-blocked")) {
2486 if (!test_bit(Faulty, &rdev->flags) &&
2487 rdev->badblocks.unacked_exist) {
2488 /* metadata handler doesn't understand badblocks,
2489 * so we need to fail the device
2490 */
2491 md_error(rdev->mddev, rdev);
2492 }
2493 clear_bit(Blocked, &rdev->flags);
2494 clear_bit(BlockedBadBlocks, &rdev->flags);
2495 wake_up(&rdev->blocked_wait);
2496 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2497 md_wakeup_thread(rdev->mddev->thread);
2498
2499 err = 0;
2500 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2501 set_bit(In_sync, &rdev->flags);
2502 err = 0;
2503 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2504 if (rdev->mddev->pers == NULL) {
2505 clear_bit(In_sync, &rdev->flags);
2506 rdev->saved_raid_disk = rdev->raid_disk;
2507 rdev->raid_disk = -1;
2508 err = 0;
2509 }
2510 } else if (cmd_match(buf, "write_error")) {
2511 set_bit(WriteErrorSeen, &rdev->flags);
2512 err = 0;
2513 } else if (cmd_match(buf, "-write_error")) {
2514 clear_bit(WriteErrorSeen, &rdev->flags);
2515 err = 0;
2516 } else if (cmd_match(buf, "want_replacement")) {
2517 /* Any non-spare device that is not a replacement can
2518 * become want_replacement at any time, but we then need to
2519 * check if recovery is needed.
2520 */
2521 if (rdev->raid_disk >= 0 &&
2522 !test_bit(Replacement, &rdev->flags))
2523 set_bit(WantReplacement, &rdev->flags);
2524 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2525 md_wakeup_thread(rdev->mddev->thread);
2526 err = 0;
2527 } else if (cmd_match(buf, "-want_replacement")) {
2528 /* Clearing 'want_replacement' is always allowed.
2529 * Once replacements starts it is too late though.
2530 */
2531 err = 0;
2532 clear_bit(WantReplacement, &rdev->flags);
2533 } else if (cmd_match(buf, "replacement")) {
2534 /* Can only set a device as a replacement when array has not
2535 * yet been started. Once running, replacement is automatic
2536 * from spares, or by assigning 'slot'.
2537 */
2538 if (rdev->mddev->pers)
2539 err = -EBUSY;
2540 else {
2541 set_bit(Replacement, &rdev->flags);
2542 err = 0;
2543 }
2544 } else if (cmd_match(buf, "-replacement")) {
2545 /* Similarly, can only clear Replacement before start */
2546 if (rdev->mddev->pers)
2547 err = -EBUSY;
2548 else {
2549 clear_bit(Replacement, &rdev->flags);
2550 err = 0;
2551 }
2552 }
2553 if (!err)
2554 sysfs_notify_dirent_safe(rdev->sysfs_state);
2555 return err ? err : len;
2556 }
2557 static struct rdev_sysfs_entry rdev_state =
2558 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2559
2560 static ssize_t
2561 errors_show(struct md_rdev *rdev, char *page)
2562 {
2563 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2564 }
2565
2566 static ssize_t
2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 char *e;
2570 unsigned long n = simple_strtoul(buf, &e, 10);
2571 if (*buf && (*e == 0 || *e == '\n')) {
2572 atomic_set(&rdev->corrected_errors, n);
2573 return len;
2574 }
2575 return -EINVAL;
2576 }
2577 static struct rdev_sysfs_entry rdev_errors =
2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2579
2580 static ssize_t
2581 slot_show(struct md_rdev *rdev, char *page)
2582 {
2583 if (rdev->raid_disk < 0)
2584 return sprintf(page, "none\n");
2585 else
2586 return sprintf(page, "%d\n", rdev->raid_disk);
2587 }
2588
2589 static ssize_t
2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2591 {
2592 char *e;
2593 int err;
2594 int slot = simple_strtoul(buf, &e, 10);
2595 if (strncmp(buf, "none", 4)==0)
2596 slot = -1;
2597 else if (e==buf || (*e && *e!= '\n'))
2598 return -EINVAL;
2599 if (rdev->mddev->pers && slot == -1) {
2600 /* Setting 'slot' on an active array requires also
2601 * updating the 'rd%d' link, and communicating
2602 * with the personality with ->hot_*_disk.
2603 * For now we only support removing
2604 * failed/spare devices. This normally happens automatically,
2605 * but not when the metadata is externally managed.
2606 */
2607 if (rdev->raid_disk == -1)
2608 return -EEXIST;
2609 /* personality does all needed checks */
2610 if (rdev->mddev->pers->hot_remove_disk == NULL)
2611 return -EINVAL;
2612 clear_bit(Blocked, &rdev->flags);
2613 remove_and_add_spares(rdev->mddev, rdev);
2614 if (rdev->raid_disk >= 0)
2615 return -EBUSY;
2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 md_wakeup_thread(rdev->mddev->thread);
2618 } else if (rdev->mddev->pers) {
2619 /* Activating a spare .. or possibly reactivating
2620 * if we ever get bitmaps working here.
2621 */
2622
2623 if (rdev->raid_disk != -1)
2624 return -EBUSY;
2625
2626 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2627 return -EBUSY;
2628
2629 if (rdev->mddev->pers->hot_add_disk == NULL)
2630 return -EINVAL;
2631
2632 if (slot >= rdev->mddev->raid_disks &&
2633 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2634 return -ENOSPC;
2635
2636 rdev->raid_disk = slot;
2637 if (test_bit(In_sync, &rdev->flags))
2638 rdev->saved_raid_disk = slot;
2639 else
2640 rdev->saved_raid_disk = -1;
2641 clear_bit(In_sync, &rdev->flags);
2642 clear_bit(Bitmap_sync, &rdev->flags);
2643 err = rdev->mddev->pers->
2644 hot_add_disk(rdev->mddev, rdev);
2645 if (err) {
2646 rdev->raid_disk = -1;
2647 return err;
2648 } else
2649 sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 if (sysfs_link_rdev(rdev->mddev, rdev))
2651 /* failure here is OK */;
2652 /* don't wakeup anyone, leave that to userspace. */
2653 } else {
2654 if (slot >= rdev->mddev->raid_disks &&
2655 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2656 return -ENOSPC;
2657 rdev->raid_disk = slot;
2658 /* assume it is working */
2659 clear_bit(Faulty, &rdev->flags);
2660 clear_bit(WriteMostly, &rdev->flags);
2661 set_bit(In_sync, &rdev->flags);
2662 sysfs_notify_dirent_safe(rdev->sysfs_state);
2663 }
2664 return len;
2665 }
2666
2667 static struct rdev_sysfs_entry rdev_slot =
2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2669
2670 static ssize_t
2671 offset_show(struct md_rdev *rdev, char *page)
2672 {
2673 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2674 }
2675
2676 static ssize_t
2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2678 {
2679 unsigned long long offset;
2680 if (kstrtoull(buf, 10, &offset) < 0)
2681 return -EINVAL;
2682 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2683 return -EBUSY;
2684 if (rdev->sectors && rdev->mddev->external)
2685 /* Must set offset before size, so overlap checks
2686 * can be sane */
2687 return -EBUSY;
2688 rdev->data_offset = offset;
2689 rdev->new_data_offset = offset;
2690 return len;
2691 }
2692
2693 static struct rdev_sysfs_entry rdev_offset =
2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2695
2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2697 {
2698 return sprintf(page, "%llu\n",
2699 (unsigned long long)rdev->new_data_offset);
2700 }
2701
2702 static ssize_t new_offset_store(struct md_rdev *rdev,
2703 const char *buf, size_t len)
2704 {
2705 unsigned long long new_offset;
2706 struct mddev *mddev = rdev->mddev;
2707
2708 if (kstrtoull(buf, 10, &new_offset) < 0)
2709 return -EINVAL;
2710
2711 if (mddev->sync_thread ||
2712 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2713 return -EBUSY;
2714 if (new_offset == rdev->data_offset)
2715 /* reset is always permitted */
2716 ;
2717 else if (new_offset > rdev->data_offset) {
2718 /* must not push array size beyond rdev_sectors */
2719 if (new_offset - rdev->data_offset
2720 + mddev->dev_sectors > rdev->sectors)
2721 return -E2BIG;
2722 }
2723 /* Metadata worries about other space details. */
2724
2725 /* decreasing the offset is inconsistent with a backwards
2726 * reshape.
2727 */
2728 if (new_offset < rdev->data_offset &&
2729 mddev->reshape_backwards)
2730 return -EINVAL;
2731 /* Increasing offset is inconsistent with forwards
2732 * reshape. reshape_direction should be set to
2733 * 'backwards' first.
2734 */
2735 if (new_offset > rdev->data_offset &&
2736 !mddev->reshape_backwards)
2737 return -EINVAL;
2738
2739 if (mddev->pers && mddev->persistent &&
2740 !super_types[mddev->major_version]
2741 .allow_new_offset(rdev, new_offset))
2742 return -E2BIG;
2743 rdev->new_data_offset = new_offset;
2744 if (new_offset > rdev->data_offset)
2745 mddev->reshape_backwards = 1;
2746 else if (new_offset < rdev->data_offset)
2747 mddev->reshape_backwards = 0;
2748
2749 return len;
2750 }
2751 static struct rdev_sysfs_entry rdev_new_offset =
2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2753
2754 static ssize_t
2755 rdev_size_show(struct md_rdev *rdev, char *page)
2756 {
2757 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2758 }
2759
2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2761 {
2762 /* check if two start/length pairs overlap */
2763 if (s1+l1 <= s2)
2764 return 0;
2765 if (s2+l2 <= s1)
2766 return 0;
2767 return 1;
2768 }
2769
2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2771 {
2772 unsigned long long blocks;
2773 sector_t new;
2774
2775 if (kstrtoull(buf, 10, &blocks) < 0)
2776 return -EINVAL;
2777
2778 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2779 return -EINVAL; /* sector conversion overflow */
2780
2781 new = blocks * 2;
2782 if (new != blocks * 2)
2783 return -EINVAL; /* unsigned long long to sector_t overflow */
2784
2785 *sectors = new;
2786 return 0;
2787 }
2788
2789 static ssize_t
2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2791 {
2792 struct mddev *my_mddev = rdev->mddev;
2793 sector_t oldsectors = rdev->sectors;
2794 sector_t sectors;
2795
2796 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2797 return -EINVAL;
2798 if (rdev->data_offset != rdev->new_data_offset)
2799 return -EINVAL; /* too confusing */
2800 if (my_mddev->pers && rdev->raid_disk >= 0) {
2801 if (my_mddev->persistent) {
2802 sectors = super_types[my_mddev->major_version].
2803 rdev_size_change(rdev, sectors);
2804 if (!sectors)
2805 return -EBUSY;
2806 } else if (!sectors)
2807 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2808 rdev->data_offset;
2809 if (!my_mddev->pers->resize)
2810 /* Cannot change size for RAID0 or Linear etc */
2811 return -EINVAL;
2812 }
2813 if (sectors < my_mddev->dev_sectors)
2814 return -EINVAL; /* component must fit device */
2815
2816 rdev->sectors = sectors;
2817 if (sectors > oldsectors && my_mddev->external) {
2818 /* Need to check that all other rdevs with the same
2819 * ->bdev do not overlap. 'rcu' is sufficient to walk
2820 * the rdev lists safely.
2821 * This check does not provide a hard guarantee, it
2822 * just helps avoid dangerous mistakes.
2823 */
2824 struct mddev *mddev;
2825 int overlap = 0;
2826 struct list_head *tmp;
2827
2828 rcu_read_lock();
2829 for_each_mddev(mddev, tmp) {
2830 struct md_rdev *rdev2;
2831
2832 rdev_for_each(rdev2, mddev)
2833 if (rdev->bdev == rdev2->bdev &&
2834 rdev != rdev2 &&
2835 overlaps(rdev->data_offset, rdev->sectors,
2836 rdev2->data_offset,
2837 rdev2->sectors)) {
2838 overlap = 1;
2839 break;
2840 }
2841 if (overlap) {
2842 mddev_put(mddev);
2843 break;
2844 }
2845 }
2846 rcu_read_unlock();
2847 if (overlap) {
2848 /* Someone else could have slipped in a size
2849 * change here, but doing so is just silly.
2850 * We put oldsectors back because we *know* it is
2851 * safe, and trust userspace not to race with
2852 * itself
2853 */
2854 rdev->sectors = oldsectors;
2855 return -EBUSY;
2856 }
2857 }
2858 return len;
2859 }
2860
2861 static struct rdev_sysfs_entry rdev_size =
2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2863
2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2865 {
2866 unsigned long long recovery_start = rdev->recovery_offset;
2867
2868 if (test_bit(In_sync, &rdev->flags) ||
2869 recovery_start == MaxSector)
2870 return sprintf(page, "none\n");
2871
2872 return sprintf(page, "%llu\n", recovery_start);
2873 }
2874
2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 unsigned long long recovery_start;
2878
2879 if (cmd_match(buf, "none"))
2880 recovery_start = MaxSector;
2881 else if (kstrtoull(buf, 10, &recovery_start))
2882 return -EINVAL;
2883
2884 if (rdev->mddev->pers &&
2885 rdev->raid_disk >= 0)
2886 return -EBUSY;
2887
2888 rdev->recovery_offset = recovery_start;
2889 if (recovery_start == MaxSector)
2890 set_bit(In_sync, &rdev->flags);
2891 else
2892 clear_bit(In_sync, &rdev->flags);
2893 return len;
2894 }
2895
2896 static struct rdev_sysfs_entry rdev_recovery_start =
2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2898
2899 static ssize_t
2900 badblocks_show(struct badblocks *bb, char *page, int unack);
2901 static ssize_t
2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2903
2904 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2905 {
2906 return badblocks_show(&rdev->badblocks, page, 0);
2907 }
2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2909 {
2910 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2911 /* Maybe that ack was all we needed */
2912 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2913 wake_up(&rdev->blocked_wait);
2914 return rv;
2915 }
2916 static struct rdev_sysfs_entry rdev_bad_blocks =
2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2918
2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2920 {
2921 return badblocks_show(&rdev->badblocks, page, 1);
2922 }
2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2924 {
2925 return badblocks_store(&rdev->badblocks, page, len, 1);
2926 }
2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2929
2930 static struct attribute *rdev_default_attrs[] = {
2931 &rdev_state.attr,
2932 &rdev_errors.attr,
2933 &rdev_slot.attr,
2934 &rdev_offset.attr,
2935 &rdev_new_offset.attr,
2936 &rdev_size.attr,
2937 &rdev_recovery_start.attr,
2938 &rdev_bad_blocks.attr,
2939 &rdev_unack_bad_blocks.attr,
2940 NULL,
2941 };
2942 static ssize_t
2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2944 {
2945 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2946 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2947
2948 if (!entry->show)
2949 return -EIO;
2950 if (!rdev->mddev)
2951 return -EBUSY;
2952 return entry->show(rdev, page);
2953 }
2954
2955 static ssize_t
2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2957 const char *page, size_t length)
2958 {
2959 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2960 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2961 ssize_t rv;
2962 struct mddev *mddev = rdev->mddev;
2963
2964 if (!entry->store)
2965 return -EIO;
2966 if (!capable(CAP_SYS_ADMIN))
2967 return -EACCES;
2968 rv = mddev ? mddev_lock(mddev): -EBUSY;
2969 if (!rv) {
2970 if (rdev->mddev == NULL)
2971 rv = -EBUSY;
2972 else
2973 rv = entry->store(rdev, page, length);
2974 mddev_unlock(mddev);
2975 }
2976 return rv;
2977 }
2978
2979 static void rdev_free(struct kobject *ko)
2980 {
2981 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2982 kfree(rdev);
2983 }
2984 static const struct sysfs_ops rdev_sysfs_ops = {
2985 .show = rdev_attr_show,
2986 .store = rdev_attr_store,
2987 };
2988 static struct kobj_type rdev_ktype = {
2989 .release = rdev_free,
2990 .sysfs_ops = &rdev_sysfs_ops,
2991 .default_attrs = rdev_default_attrs,
2992 };
2993
2994 int md_rdev_init(struct md_rdev *rdev)
2995 {
2996 rdev->desc_nr = -1;
2997 rdev->saved_raid_disk = -1;
2998 rdev->raid_disk = -1;
2999 rdev->flags = 0;
3000 rdev->data_offset = 0;
3001 rdev->new_data_offset = 0;
3002 rdev->sb_events = 0;
3003 rdev->last_read_error.tv_sec = 0;
3004 rdev->last_read_error.tv_nsec = 0;
3005 rdev->sb_loaded = 0;
3006 rdev->bb_page = NULL;
3007 atomic_set(&rdev->nr_pending, 0);
3008 atomic_set(&rdev->read_errors, 0);
3009 atomic_set(&rdev->corrected_errors, 0);
3010
3011 INIT_LIST_HEAD(&rdev->same_set);
3012 init_waitqueue_head(&rdev->blocked_wait);
3013
3014 /* Add space to store bad block list.
3015 * This reserves the space even on arrays where it cannot
3016 * be used - I wonder if that matters
3017 */
3018 rdev->badblocks.count = 0;
3019 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3020 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3021 seqlock_init(&rdev->badblocks.lock);
3022 if (rdev->badblocks.page == NULL)
3023 return -ENOMEM;
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(md_rdev_init);
3028 /*
3029 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3030 *
3031 * mark the device faulty if:
3032 *
3033 * - the device is nonexistent (zero size)
3034 * - the device has no valid superblock
3035 *
3036 * a faulty rdev _never_ has rdev->sb set.
3037 */
3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3039 {
3040 char b[BDEVNAME_SIZE];
3041 int err;
3042 struct md_rdev *rdev;
3043 sector_t size;
3044
3045 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3046 if (!rdev) {
3047 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3048 return ERR_PTR(-ENOMEM);
3049 }
3050
3051 err = md_rdev_init(rdev);
3052 if (err)
3053 goto abort_free;
3054 err = alloc_disk_sb(rdev);
3055 if (err)
3056 goto abort_free;
3057
3058 err = lock_rdev(rdev, newdev, super_format == -2);
3059 if (err)
3060 goto abort_free;
3061
3062 kobject_init(&rdev->kobj, &rdev_ktype);
3063
3064 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3065 if (!size) {
3066 printk(KERN_WARNING
3067 "md: %s has zero or unknown size, marking faulty!\n",
3068 bdevname(rdev->bdev,b));
3069 err = -EINVAL;
3070 goto abort_free;
3071 }
3072
3073 if (super_format >= 0) {
3074 err = super_types[super_format].
3075 load_super(rdev, NULL, super_minor);
3076 if (err == -EINVAL) {
3077 printk(KERN_WARNING
3078 "md: %s does not have a valid v%d.%d "
3079 "superblock, not importing!\n",
3080 bdevname(rdev->bdev,b),
3081 super_format, super_minor);
3082 goto abort_free;
3083 }
3084 if (err < 0) {
3085 printk(KERN_WARNING
3086 "md: could not read %s's sb, not importing!\n",
3087 bdevname(rdev->bdev,b));
3088 goto abort_free;
3089 }
3090 }
3091
3092 return rdev;
3093
3094 abort_free:
3095 if (rdev->bdev)
3096 unlock_rdev(rdev);
3097 md_rdev_clear(rdev);
3098 kfree(rdev);
3099 return ERR_PTR(err);
3100 }
3101
3102 /*
3103 * Check a full RAID array for plausibility
3104 */
3105
3106 static void analyze_sbs(struct mddev *mddev)
3107 {
3108 int i;
3109 struct md_rdev *rdev, *freshest, *tmp;
3110 char b[BDEVNAME_SIZE];
3111
3112 freshest = NULL;
3113 rdev_for_each_safe(rdev, tmp, mddev)
3114 switch (super_types[mddev->major_version].
3115 load_super(rdev, freshest, mddev->minor_version)) {
3116 case 1:
3117 freshest = rdev;
3118 break;
3119 case 0:
3120 break;
3121 default:
3122 printk( KERN_ERR \
3123 "md: fatal superblock inconsistency in %s"
3124 " -- removing from array\n",
3125 bdevname(rdev->bdev,b));
3126 kick_rdev_from_array(rdev);
3127 }
3128
3129 super_types[mddev->major_version].
3130 validate_super(mddev, freshest);
3131
3132 i = 0;
3133 rdev_for_each_safe(rdev, tmp, mddev) {
3134 if (mddev->max_disks &&
3135 (rdev->desc_nr >= mddev->max_disks ||
3136 i > mddev->max_disks)) {
3137 printk(KERN_WARNING
3138 "md: %s: %s: only %d devices permitted\n",
3139 mdname(mddev), bdevname(rdev->bdev, b),
3140 mddev->max_disks);
3141 kick_rdev_from_array(rdev);
3142 continue;
3143 }
3144 if (rdev != freshest)
3145 if (super_types[mddev->major_version].
3146 validate_super(mddev, rdev)) {
3147 printk(KERN_WARNING "md: kicking non-fresh %s"
3148 " from array!\n",
3149 bdevname(rdev->bdev,b));
3150 kick_rdev_from_array(rdev);
3151 continue;
3152 }
3153 if (mddev->level == LEVEL_MULTIPATH) {
3154 rdev->desc_nr = i++;
3155 rdev->raid_disk = rdev->desc_nr;
3156 set_bit(In_sync, &rdev->flags);
3157 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3158 rdev->raid_disk = -1;
3159 clear_bit(In_sync, &rdev->flags);
3160 }
3161 }
3162 }
3163
3164 /* Read a fixed-point number.
3165 * Numbers in sysfs attributes should be in "standard" units where
3166 * possible, so time should be in seconds.
3167 * However we internally use a a much smaller unit such as
3168 * milliseconds or jiffies.
3169 * This function takes a decimal number with a possible fractional
3170 * component, and produces an integer which is the result of
3171 * multiplying that number by 10^'scale'.
3172 * all without any floating-point arithmetic.
3173 */
3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3175 {
3176 unsigned long result = 0;
3177 long decimals = -1;
3178 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3179 if (*cp == '.')
3180 decimals = 0;
3181 else if (decimals < scale) {
3182 unsigned int value;
3183 value = *cp - '0';
3184 result = result * 10 + value;
3185 if (decimals >= 0)
3186 decimals++;
3187 }
3188 cp++;
3189 }
3190 if (*cp == '\n')
3191 cp++;
3192 if (*cp)
3193 return -EINVAL;
3194 if (decimals < 0)
3195 decimals = 0;
3196 while (decimals < scale) {
3197 result *= 10;
3198 decimals ++;
3199 }
3200 *res = result;
3201 return 0;
3202 }
3203
3204 static void md_safemode_timeout(unsigned long data);
3205
3206 static ssize_t
3207 safe_delay_show(struct mddev *mddev, char *page)
3208 {
3209 int msec = (mddev->safemode_delay*1000)/HZ;
3210 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3211 }
3212 static ssize_t
3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3214 {
3215 unsigned long msec;
3216
3217 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3218 return -EINVAL;
3219 if (msec == 0)
3220 mddev->safemode_delay = 0;
3221 else {
3222 unsigned long old_delay = mddev->safemode_delay;
3223 unsigned long new_delay = (msec*HZ)/1000;
3224
3225 if (new_delay == 0)
3226 new_delay = 1;
3227 mddev->safemode_delay = new_delay;
3228 if (new_delay < old_delay || old_delay == 0)
3229 mod_timer(&mddev->safemode_timer, jiffies+1);
3230 }
3231 return len;
3232 }
3233 static struct md_sysfs_entry md_safe_delay =
3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3235
3236 static ssize_t
3237 level_show(struct mddev *mddev, char *page)
3238 {
3239 struct md_personality *p;
3240 int ret;
3241 spin_lock(&mddev->lock);
3242 p = mddev->pers;
3243 if (p)
3244 ret = sprintf(page, "%s\n", p->name);
3245 else if (mddev->clevel[0])
3246 ret = sprintf(page, "%s\n", mddev->clevel);
3247 else if (mddev->level != LEVEL_NONE)
3248 ret = sprintf(page, "%d\n", mddev->level);
3249 else
3250 ret = 0;
3251 spin_unlock(&mddev->lock);
3252 return ret;
3253 }
3254
3255 static ssize_t
3256 level_store(struct mddev *mddev, const char *buf, size_t len)
3257 {
3258 char clevel[16];
3259 ssize_t rv = len;
3260 struct md_personality *pers, *oldpers;
3261 long level;
3262 void *priv, *oldpriv;
3263 struct md_rdev *rdev;
3264
3265 if (mddev->pers == NULL) {
3266 if (len == 0)
3267 return 0;
3268 if (len >= sizeof(mddev->clevel))
3269 return -ENOSPC;
3270 strncpy(mddev->clevel, buf, len);
3271 if (mddev->clevel[len-1] == '\n')
3272 len--;
3273 mddev->clevel[len] = 0;
3274 mddev->level = LEVEL_NONE;
3275 return rv;
3276 }
3277 if (mddev->ro)
3278 return -EROFS;
3279
3280 /* request to change the personality. Need to ensure:
3281 * - array is not engaged in resync/recovery/reshape
3282 * - old personality can be suspended
3283 * - new personality will access other array.
3284 */
3285
3286 if (mddev->sync_thread ||
3287 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3288 mddev->reshape_position != MaxSector ||
3289 mddev->sysfs_active)
3290 return -EBUSY;
3291
3292 if (!mddev->pers->quiesce) {
3293 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3294 mdname(mddev), mddev->pers->name);
3295 return -EINVAL;
3296 }
3297
3298 /* Now find the new personality */
3299 if (len == 0 || len >= sizeof(clevel))
3300 return -EINVAL;
3301 strncpy(clevel, buf, len);
3302 if (clevel[len-1] == '\n')
3303 len--;
3304 clevel[len] = 0;
3305 if (kstrtol(clevel, 10, &level))
3306 level = LEVEL_NONE;
3307
3308 if (request_module("md-%s", clevel) != 0)
3309 request_module("md-level-%s", clevel);
3310 spin_lock(&pers_lock);
3311 pers = find_pers(level, clevel);
3312 if (!pers || !try_module_get(pers->owner)) {
3313 spin_unlock(&pers_lock);
3314 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3315 return -EINVAL;
3316 }
3317 spin_unlock(&pers_lock);
3318
3319 if (pers == mddev->pers) {
3320 /* Nothing to do! */
3321 module_put(pers->owner);
3322 return rv;
3323 }
3324 if (!pers->takeover) {
3325 module_put(pers->owner);
3326 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3327 mdname(mddev), clevel);
3328 return -EINVAL;
3329 }
3330
3331 rdev_for_each(rdev, mddev)
3332 rdev->new_raid_disk = rdev->raid_disk;
3333
3334 /* ->takeover must set new_* and/or delta_disks
3335 * if it succeeds, and may set them when it fails.
3336 */
3337 priv = pers->takeover(mddev);
3338 if (IS_ERR(priv)) {
3339 mddev->new_level = mddev->level;
3340 mddev->new_layout = mddev->layout;
3341 mddev->new_chunk_sectors = mddev->chunk_sectors;
3342 mddev->raid_disks -= mddev->delta_disks;
3343 mddev->delta_disks = 0;
3344 mddev->reshape_backwards = 0;
3345 module_put(pers->owner);
3346 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3347 mdname(mddev), clevel);
3348 return PTR_ERR(priv);
3349 }
3350
3351 /* Looks like we have a winner */
3352 mddev_suspend(mddev);
3353 mddev_detach(mddev);
3354
3355 spin_lock(&mddev->lock);
3356 oldpers = mddev->pers;
3357 oldpriv = mddev->private;
3358 mddev->pers = pers;
3359 mddev->private = priv;
3360 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3361 mddev->level = mddev->new_level;
3362 mddev->layout = mddev->new_layout;
3363 mddev->chunk_sectors = mddev->new_chunk_sectors;
3364 mddev->delta_disks = 0;
3365 mddev->reshape_backwards = 0;
3366 mddev->degraded = 0;
3367 spin_unlock(&mddev->lock);
3368
3369 if (oldpers->sync_request == NULL &&
3370 mddev->external) {
3371 /* We are converting from a no-redundancy array
3372 * to a redundancy array and metadata is managed
3373 * externally so we need to be sure that writes
3374 * won't block due to a need to transition
3375 * clean->dirty
3376 * until external management is started.
3377 */
3378 mddev->in_sync = 0;
3379 mddev->safemode_delay = 0;
3380 mddev->safemode = 0;
3381 }
3382
3383 oldpers->free(mddev, oldpriv);
3384
3385 if (oldpers->sync_request == NULL &&
3386 pers->sync_request != NULL) {
3387 /* need to add the md_redundancy_group */
3388 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3389 printk(KERN_WARNING
3390 "md: cannot register extra attributes for %s\n",
3391 mdname(mddev));
3392 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3393 }
3394 if (oldpers->sync_request != NULL &&
3395 pers->sync_request == NULL) {
3396 /* need to remove the md_redundancy_group */
3397 if (mddev->to_remove == NULL)
3398 mddev->to_remove = &md_redundancy_group;
3399 }
3400
3401 rdev_for_each(rdev, mddev) {
3402 if (rdev->raid_disk < 0)
3403 continue;
3404 if (rdev->new_raid_disk >= mddev->raid_disks)
3405 rdev->new_raid_disk = -1;
3406 if (rdev->new_raid_disk == rdev->raid_disk)
3407 continue;
3408 sysfs_unlink_rdev(mddev, rdev);
3409 }
3410 rdev_for_each(rdev, mddev) {
3411 if (rdev->raid_disk < 0)
3412 continue;
3413 if (rdev->new_raid_disk == rdev->raid_disk)
3414 continue;
3415 rdev->raid_disk = rdev->new_raid_disk;
3416 if (rdev->raid_disk < 0)
3417 clear_bit(In_sync, &rdev->flags);
3418 else {
3419 if (sysfs_link_rdev(mddev, rdev))
3420 printk(KERN_WARNING "md: cannot register rd%d"
3421 " for %s after level change\n",
3422 rdev->raid_disk, mdname(mddev));
3423 }
3424 }
3425
3426 if (pers->sync_request == NULL) {
3427 /* this is now an array without redundancy, so
3428 * it must always be in_sync
3429 */
3430 mddev->in_sync = 1;
3431 del_timer_sync(&mddev->safemode_timer);
3432 }
3433 blk_set_stacking_limits(&mddev->queue->limits);
3434 pers->run(mddev);
3435 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3436 mddev_resume(mddev);
3437 if (!mddev->thread)
3438 md_update_sb(mddev, 1);
3439 sysfs_notify(&mddev->kobj, NULL, "level");
3440 md_new_event(mddev);
3441 return rv;
3442 }
3443
3444 static struct md_sysfs_entry md_level =
3445 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3446
3447 static ssize_t
3448 layout_show(struct mddev *mddev, char *page)
3449 {
3450 /* just a number, not meaningful for all levels */
3451 if (mddev->reshape_position != MaxSector &&
3452 mddev->layout != mddev->new_layout)
3453 return sprintf(page, "%d (%d)\n",
3454 mddev->new_layout, mddev->layout);
3455 return sprintf(page, "%d\n", mddev->layout);
3456 }
3457
3458 static ssize_t
3459 layout_store(struct mddev *mddev, const char *buf, size_t len)
3460 {
3461 char *e;
3462 unsigned long n = simple_strtoul(buf, &e, 10);
3463
3464 if (!*buf || (*e && *e != '\n'))
3465 return -EINVAL;
3466
3467 if (mddev->pers) {
3468 int err;
3469 if (mddev->pers->check_reshape == NULL)
3470 return -EBUSY;
3471 if (mddev->ro)
3472 return -EROFS;
3473 mddev->new_layout = n;
3474 err = mddev->pers->check_reshape(mddev);
3475 if (err) {
3476 mddev->new_layout = mddev->layout;
3477 return err;
3478 }
3479 } else {
3480 mddev->new_layout = n;
3481 if (mddev->reshape_position == MaxSector)
3482 mddev->layout = n;
3483 }
3484 return len;
3485 }
3486 static struct md_sysfs_entry md_layout =
3487 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3488
3489 static ssize_t
3490 raid_disks_show(struct mddev *mddev, char *page)
3491 {
3492 if (mddev->raid_disks == 0)
3493 return 0;
3494 if (mddev->reshape_position != MaxSector &&
3495 mddev->delta_disks != 0)
3496 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3497 mddev->raid_disks - mddev->delta_disks);
3498 return sprintf(page, "%d\n", mddev->raid_disks);
3499 }
3500
3501 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3502
3503 static ssize_t
3504 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3505 {
3506 char *e;
3507 int rv = 0;
3508 unsigned long n = simple_strtoul(buf, &e, 10);
3509
3510 if (!*buf || (*e && *e != '\n'))
3511 return -EINVAL;
3512
3513 if (mddev->pers)
3514 rv = update_raid_disks(mddev, n);
3515 else if (mddev->reshape_position != MaxSector) {
3516 struct md_rdev *rdev;
3517 int olddisks = mddev->raid_disks - mddev->delta_disks;
3518
3519 rdev_for_each(rdev, mddev) {
3520 if (olddisks < n &&
3521 rdev->data_offset < rdev->new_data_offset)
3522 return -EINVAL;
3523 if (olddisks > n &&
3524 rdev->data_offset > rdev->new_data_offset)
3525 return -EINVAL;
3526 }
3527 mddev->delta_disks = n - olddisks;
3528 mddev->raid_disks = n;
3529 mddev->reshape_backwards = (mddev->delta_disks < 0);
3530 } else
3531 mddev->raid_disks = n;
3532 return rv ? rv : len;
3533 }
3534 static struct md_sysfs_entry md_raid_disks =
3535 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3536
3537 static ssize_t
3538 chunk_size_show(struct mddev *mddev, char *page)
3539 {
3540 if (mddev->reshape_position != MaxSector &&
3541 mddev->chunk_sectors != mddev->new_chunk_sectors)
3542 return sprintf(page, "%d (%d)\n",
3543 mddev->new_chunk_sectors << 9,
3544 mddev->chunk_sectors << 9);
3545 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3546 }
3547
3548 static ssize_t
3549 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3550 {
3551 char *e;
3552 unsigned long n = simple_strtoul(buf, &e, 10);
3553
3554 if (!*buf || (*e && *e != '\n'))
3555 return -EINVAL;
3556
3557 if (mddev->pers) {
3558 int err;
3559 if (mddev->pers->check_reshape == NULL)
3560 return -EBUSY;
3561 if (mddev->ro)
3562 return -EROFS;
3563 mddev->new_chunk_sectors = n >> 9;
3564 err = mddev->pers->check_reshape(mddev);
3565 if (err) {
3566 mddev->new_chunk_sectors = mddev->chunk_sectors;
3567 return err;
3568 }
3569 } else {
3570 mddev->new_chunk_sectors = n >> 9;
3571 if (mddev->reshape_position == MaxSector)
3572 mddev->chunk_sectors = n >> 9;
3573 }
3574 return len;
3575 }
3576 static struct md_sysfs_entry md_chunk_size =
3577 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3578
3579 static ssize_t
3580 resync_start_show(struct mddev *mddev, char *page)
3581 {
3582 if (mddev->recovery_cp == MaxSector)
3583 return sprintf(page, "none\n");
3584 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3585 }
3586
3587 static ssize_t
3588 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3589 {
3590 char *e;
3591 unsigned long long n = simple_strtoull(buf, &e, 10);
3592
3593 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3594 return -EBUSY;
3595 if (cmd_match(buf, "none"))
3596 n = MaxSector;
3597 else if (!*buf || (*e && *e != '\n'))
3598 return -EINVAL;
3599
3600 mddev->recovery_cp = n;
3601 if (mddev->pers)
3602 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3603 return len;
3604 }
3605 static struct md_sysfs_entry md_resync_start =
3606 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3607
3608 /*
3609 * The array state can be:
3610 *
3611 * clear
3612 * No devices, no size, no level
3613 * Equivalent to STOP_ARRAY ioctl
3614 * inactive
3615 * May have some settings, but array is not active
3616 * all IO results in error
3617 * When written, doesn't tear down array, but just stops it
3618 * suspended (not supported yet)
3619 * All IO requests will block. The array can be reconfigured.
3620 * Writing this, if accepted, will block until array is quiescent
3621 * readonly
3622 * no resync can happen. no superblocks get written.
3623 * write requests fail
3624 * read-auto
3625 * like readonly, but behaves like 'clean' on a write request.
3626 *
3627 * clean - no pending writes, but otherwise active.
3628 * When written to inactive array, starts without resync
3629 * If a write request arrives then
3630 * if metadata is known, mark 'dirty' and switch to 'active'.
3631 * if not known, block and switch to write-pending
3632 * If written to an active array that has pending writes, then fails.
3633 * active
3634 * fully active: IO and resync can be happening.
3635 * When written to inactive array, starts with resync
3636 *
3637 * write-pending
3638 * clean, but writes are blocked waiting for 'active' to be written.
3639 *
3640 * active-idle
3641 * like active, but no writes have been seen for a while (100msec).
3642 *
3643 */
3644 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3645 write_pending, active_idle, bad_word};
3646 static char *array_states[] = {
3647 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3648 "write-pending", "active-idle", NULL };
3649
3650 static int match_word(const char *word, char **list)
3651 {
3652 int n;
3653 for (n=0; list[n]; n++)
3654 if (cmd_match(word, list[n]))
3655 break;
3656 return n;
3657 }
3658
3659 static ssize_t
3660 array_state_show(struct mddev *mddev, char *page)
3661 {
3662 enum array_state st = inactive;
3663
3664 if (mddev->pers)
3665 switch(mddev->ro) {
3666 case 1:
3667 st = readonly;
3668 break;
3669 case 2:
3670 st = read_auto;
3671 break;
3672 case 0:
3673 if (mddev->in_sync)
3674 st = clean;
3675 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3676 st = write_pending;
3677 else if (mddev->safemode)
3678 st = active_idle;
3679 else
3680 st = active;
3681 }
3682 else {
3683 if (list_empty(&mddev->disks) &&
3684 mddev->raid_disks == 0 &&
3685 mddev->dev_sectors == 0)
3686 st = clear;
3687 else
3688 st = inactive;
3689 }
3690 return sprintf(page, "%s\n", array_states[st]);
3691 }
3692
3693 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3694 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3695 static int do_md_run(struct mddev *mddev);
3696 static int restart_array(struct mddev *mddev);
3697
3698 static ssize_t
3699 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3700 {
3701 int err = -EINVAL;
3702 enum array_state st = match_word(buf, array_states);
3703 switch(st) {
3704 case bad_word:
3705 break;
3706 case clear:
3707 /* stopping an active array */
3708 err = do_md_stop(mddev, 0, NULL);
3709 break;
3710 case inactive:
3711 /* stopping an active array */
3712 if (mddev->pers)
3713 err = do_md_stop(mddev, 2, NULL);
3714 else
3715 err = 0; /* already inactive */
3716 break;
3717 case suspended:
3718 break; /* not supported yet */
3719 case readonly:
3720 if (mddev->pers)
3721 err = md_set_readonly(mddev, NULL);
3722 else {
3723 mddev->ro = 1;
3724 set_disk_ro(mddev->gendisk, 1);
3725 err = do_md_run(mddev);
3726 }
3727 break;
3728 case read_auto:
3729 if (mddev->pers) {
3730 if (mddev->ro == 0)
3731 err = md_set_readonly(mddev, NULL);
3732 else if (mddev->ro == 1)
3733 err = restart_array(mddev);
3734 if (err == 0) {
3735 mddev->ro = 2;
3736 set_disk_ro(mddev->gendisk, 0);
3737 }
3738 } else {
3739 mddev->ro = 2;
3740 err = do_md_run(mddev);
3741 }
3742 break;
3743 case clean:
3744 if (mddev->pers) {
3745 restart_array(mddev);
3746 spin_lock(&mddev->lock);
3747 if (atomic_read(&mddev->writes_pending) == 0) {
3748 if (mddev->in_sync == 0) {
3749 mddev->in_sync = 1;
3750 if (mddev->safemode == 1)
3751 mddev->safemode = 0;
3752 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3753 }
3754 err = 0;
3755 } else
3756 err = -EBUSY;
3757 spin_unlock(&mddev->lock);
3758 } else
3759 err = -EINVAL;
3760 break;
3761 case active:
3762 if (mddev->pers) {
3763 restart_array(mddev);
3764 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3765 wake_up(&mddev->sb_wait);
3766 err = 0;
3767 } else {
3768 mddev->ro = 0;
3769 set_disk_ro(mddev->gendisk, 0);
3770 err = do_md_run(mddev);
3771 }
3772 break;
3773 case write_pending:
3774 case active_idle:
3775 /* these cannot be set */
3776 break;
3777 }
3778 if (err)
3779 return err;
3780 else {
3781 if (mddev->hold_active == UNTIL_IOCTL)
3782 mddev->hold_active = 0;
3783 sysfs_notify_dirent_safe(mddev->sysfs_state);
3784 return len;
3785 }
3786 }
3787 static struct md_sysfs_entry md_array_state =
3788 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3789
3790 static ssize_t
3791 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3792 return sprintf(page, "%d\n",
3793 atomic_read(&mddev->max_corr_read_errors));
3794 }
3795
3796 static ssize_t
3797 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3798 {
3799 char *e;
3800 unsigned long n = simple_strtoul(buf, &e, 10);
3801
3802 if (*buf && (*e == 0 || *e == '\n')) {
3803 atomic_set(&mddev->max_corr_read_errors, n);
3804 return len;
3805 }
3806 return -EINVAL;
3807 }
3808
3809 static struct md_sysfs_entry max_corr_read_errors =
3810 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3811 max_corrected_read_errors_store);
3812
3813 static ssize_t
3814 null_show(struct mddev *mddev, char *page)
3815 {
3816 return -EINVAL;
3817 }
3818
3819 static ssize_t
3820 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3821 {
3822 /* buf must be %d:%d\n? giving major and minor numbers */
3823 /* The new device is added to the array.
3824 * If the array has a persistent superblock, we read the
3825 * superblock to initialise info and check validity.
3826 * Otherwise, only checking done is that in bind_rdev_to_array,
3827 * which mainly checks size.
3828 */
3829 char *e;
3830 int major = simple_strtoul(buf, &e, 10);
3831 int minor;
3832 dev_t dev;
3833 struct md_rdev *rdev;
3834 int err;
3835
3836 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3837 return -EINVAL;
3838 minor = simple_strtoul(e+1, &e, 10);
3839 if (*e && *e != '\n')
3840 return -EINVAL;
3841 dev = MKDEV(major, minor);
3842 if (major != MAJOR(dev) ||
3843 minor != MINOR(dev))
3844 return -EOVERFLOW;
3845
3846 if (mddev->persistent) {
3847 rdev = md_import_device(dev, mddev->major_version,
3848 mddev->minor_version);
3849 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3850 struct md_rdev *rdev0
3851 = list_entry(mddev->disks.next,
3852 struct md_rdev, same_set);
3853 err = super_types[mddev->major_version]
3854 .load_super(rdev, rdev0, mddev->minor_version);
3855 if (err < 0)
3856 goto out;
3857 }
3858 } else if (mddev->external)
3859 rdev = md_import_device(dev, -2, -1);
3860 else
3861 rdev = md_import_device(dev, -1, -1);
3862
3863 if (IS_ERR(rdev))
3864 return PTR_ERR(rdev);
3865 err = bind_rdev_to_array(rdev, mddev);
3866 out:
3867 if (err)
3868 export_rdev(rdev);
3869 return err ? err : len;
3870 }
3871
3872 static struct md_sysfs_entry md_new_device =
3873 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3874
3875 static ssize_t
3876 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878 char *end;
3879 unsigned long chunk, end_chunk;
3880
3881 if (!mddev->bitmap)
3882 goto out;
3883 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3884 while (*buf) {
3885 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3886 if (buf == end) break;
3887 if (*end == '-') { /* range */
3888 buf = end + 1;
3889 end_chunk = simple_strtoul(buf, &end, 0);
3890 if (buf == end) break;
3891 }
3892 if (*end && !isspace(*end)) break;
3893 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3894 buf = skip_spaces(end);
3895 }
3896 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3897 out:
3898 return len;
3899 }
3900
3901 static struct md_sysfs_entry md_bitmap =
3902 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3903
3904 static ssize_t
3905 size_show(struct mddev *mddev, char *page)
3906 {
3907 return sprintf(page, "%llu\n",
3908 (unsigned long long)mddev->dev_sectors / 2);
3909 }
3910
3911 static int update_size(struct mddev *mddev, sector_t num_sectors);
3912
3913 static ssize_t
3914 size_store(struct mddev *mddev, const char *buf, size_t len)
3915 {
3916 /* If array is inactive, we can reduce the component size, but
3917 * not increase it (except from 0).
3918 * If array is active, we can try an on-line resize
3919 */
3920 sector_t sectors;
3921 int err = strict_blocks_to_sectors(buf, &sectors);
3922
3923 if (err < 0)
3924 return err;
3925 if (mddev->pers) {
3926 err = update_size(mddev, sectors);
3927 md_update_sb(mddev, 1);
3928 } else {
3929 if (mddev->dev_sectors == 0 ||
3930 mddev->dev_sectors > sectors)
3931 mddev->dev_sectors = sectors;
3932 else
3933 err = -ENOSPC;
3934 }
3935 return err ? err : len;
3936 }
3937
3938 static struct md_sysfs_entry md_size =
3939 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3940
3941 /* Metadata version.
3942 * This is one of
3943 * 'none' for arrays with no metadata (good luck...)
3944 * 'external' for arrays with externally managed metadata,
3945 * or N.M for internally known formats
3946 */
3947 static ssize_t
3948 metadata_show(struct mddev *mddev, char *page)
3949 {
3950 if (mddev->persistent)
3951 return sprintf(page, "%d.%d\n",
3952 mddev->major_version, mddev->minor_version);
3953 else if (mddev->external)
3954 return sprintf(page, "external:%s\n", mddev->metadata_type);
3955 else
3956 return sprintf(page, "none\n");
3957 }
3958
3959 static ssize_t
3960 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3961 {
3962 int major, minor;
3963 char *e;
3964 /* Changing the details of 'external' metadata is
3965 * always permitted. Otherwise there must be
3966 * no devices attached to the array.
3967 */
3968 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3969 ;
3970 else if (!list_empty(&mddev->disks))
3971 return -EBUSY;
3972
3973 if (cmd_match(buf, "none")) {
3974 mddev->persistent = 0;
3975 mddev->external = 0;
3976 mddev->major_version = 0;
3977 mddev->minor_version = 90;
3978 return len;
3979 }
3980 if (strncmp(buf, "external:", 9) == 0) {
3981 size_t namelen = len-9;
3982 if (namelen >= sizeof(mddev->metadata_type))
3983 namelen = sizeof(mddev->metadata_type)-1;
3984 strncpy(mddev->metadata_type, buf+9, namelen);
3985 mddev->metadata_type[namelen] = 0;
3986 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3987 mddev->metadata_type[--namelen] = 0;
3988 mddev->persistent = 0;
3989 mddev->external = 1;
3990 mddev->major_version = 0;
3991 mddev->minor_version = 90;
3992 return len;
3993 }
3994 major = simple_strtoul(buf, &e, 10);
3995 if (e==buf || *e != '.')
3996 return -EINVAL;
3997 buf = e+1;
3998 minor = simple_strtoul(buf, &e, 10);
3999 if (e==buf || (*e && *e != '\n') )
4000 return -EINVAL;
4001 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4002 return -ENOENT;
4003 mddev->major_version = major;
4004 mddev->minor_version = minor;
4005 mddev->persistent = 1;
4006 mddev->external = 0;
4007 return len;
4008 }
4009
4010 static struct md_sysfs_entry md_metadata =
4011 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4012
4013 static ssize_t
4014 action_show(struct mddev *mddev, char *page)
4015 {
4016 char *type = "idle";
4017 unsigned long recovery = mddev->recovery;
4018 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4019 type = "frozen";
4020 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4021 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4022 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4023 type = "reshape";
4024 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4025 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4026 type = "resync";
4027 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4028 type = "check";
4029 else
4030 type = "repair";
4031 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4032 type = "recover";
4033 }
4034 return sprintf(page, "%s\n", type);
4035 }
4036
4037 static ssize_t
4038 action_store(struct mddev *mddev, const char *page, size_t len)
4039 {
4040 if (!mddev->pers || !mddev->pers->sync_request)
4041 return -EINVAL;
4042
4043 if (cmd_match(page, "frozen"))
4044 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4045 else
4046 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4047
4048 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4049 flush_workqueue(md_misc_wq);
4050 if (mddev->sync_thread) {
4051 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4052 md_reap_sync_thread(mddev);
4053 }
4054 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4055 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4056 return -EBUSY;
4057 else if (cmd_match(page, "resync"))
4058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4059 else if (cmd_match(page, "recover")) {
4060 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4061 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4062 } else if (cmd_match(page, "reshape")) {
4063 int err;
4064 if (mddev->pers->start_reshape == NULL)
4065 return -EINVAL;
4066 err = mddev->pers->start_reshape(mddev);
4067 if (err)
4068 return err;
4069 sysfs_notify(&mddev->kobj, NULL, "degraded");
4070 } else {
4071 if (cmd_match(page, "check"))
4072 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4073 else if (!cmd_match(page, "repair"))
4074 return -EINVAL;
4075 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4076 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4077 }
4078 if (mddev->ro == 2) {
4079 /* A write to sync_action is enough to justify
4080 * canceling read-auto mode
4081 */
4082 mddev->ro = 0;
4083 md_wakeup_thread(mddev->sync_thread);
4084 }
4085 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4086 md_wakeup_thread(mddev->thread);
4087 sysfs_notify_dirent_safe(mddev->sysfs_action);
4088 return len;
4089 }
4090
4091 static struct md_sysfs_entry md_scan_mode =
4092 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4093
4094 static ssize_t
4095 last_sync_action_show(struct mddev *mddev, char *page)
4096 {
4097 return sprintf(page, "%s\n", mddev->last_sync_action);
4098 }
4099
4100 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4101
4102 static ssize_t
4103 mismatch_cnt_show(struct mddev *mddev, char *page)
4104 {
4105 return sprintf(page, "%llu\n",
4106 (unsigned long long)
4107 atomic64_read(&mddev->resync_mismatches));
4108 }
4109
4110 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4111
4112 static ssize_t
4113 sync_min_show(struct mddev *mddev, char *page)
4114 {
4115 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4116 mddev->sync_speed_min ? "local": "system");
4117 }
4118
4119 static ssize_t
4120 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4121 {
4122 int min;
4123 char *e;
4124 if (strncmp(buf, "system", 6)==0) {
4125 mddev->sync_speed_min = 0;
4126 return len;
4127 }
4128 min = simple_strtoul(buf, &e, 10);
4129 if (buf == e || (*e && *e != '\n') || min <= 0)
4130 return -EINVAL;
4131 mddev->sync_speed_min = min;
4132 return len;
4133 }
4134
4135 static struct md_sysfs_entry md_sync_min =
4136 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4137
4138 static ssize_t
4139 sync_max_show(struct mddev *mddev, char *page)
4140 {
4141 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4142 mddev->sync_speed_max ? "local": "system");
4143 }
4144
4145 static ssize_t
4146 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 int max;
4149 char *e;
4150 if (strncmp(buf, "system", 6)==0) {
4151 mddev->sync_speed_max = 0;
4152 return len;
4153 }
4154 max = simple_strtoul(buf, &e, 10);
4155 if (buf == e || (*e && *e != '\n') || max <= 0)
4156 return -EINVAL;
4157 mddev->sync_speed_max = max;
4158 return len;
4159 }
4160
4161 static struct md_sysfs_entry md_sync_max =
4162 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4163
4164 static ssize_t
4165 degraded_show(struct mddev *mddev, char *page)
4166 {
4167 return sprintf(page, "%d\n", mddev->degraded);
4168 }
4169 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4170
4171 static ssize_t
4172 sync_force_parallel_show(struct mddev *mddev, char *page)
4173 {
4174 return sprintf(page, "%d\n", mddev->parallel_resync);
4175 }
4176
4177 static ssize_t
4178 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4179 {
4180 long n;
4181
4182 if (kstrtol(buf, 10, &n))
4183 return -EINVAL;
4184
4185 if (n != 0 && n != 1)
4186 return -EINVAL;
4187
4188 mddev->parallel_resync = n;
4189
4190 if (mddev->sync_thread)
4191 wake_up(&resync_wait);
4192
4193 return len;
4194 }
4195
4196 /* force parallel resync, even with shared block devices */
4197 static struct md_sysfs_entry md_sync_force_parallel =
4198 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4199 sync_force_parallel_show, sync_force_parallel_store);
4200
4201 static ssize_t
4202 sync_speed_show(struct mddev *mddev, char *page)
4203 {
4204 unsigned long resync, dt, db;
4205 if (mddev->curr_resync == 0)
4206 return sprintf(page, "none\n");
4207 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4208 dt = (jiffies - mddev->resync_mark) / HZ;
4209 if (!dt) dt++;
4210 db = resync - mddev->resync_mark_cnt;
4211 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4212 }
4213
4214 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4215
4216 static ssize_t
4217 sync_completed_show(struct mddev *mddev, char *page)
4218 {
4219 unsigned long long max_sectors, resync;
4220
4221 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222 return sprintf(page, "none\n");
4223
4224 if (mddev->curr_resync == 1 ||
4225 mddev->curr_resync == 2)
4226 return sprintf(page, "delayed\n");
4227
4228 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4229 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4230 max_sectors = mddev->resync_max_sectors;
4231 else
4232 max_sectors = mddev->dev_sectors;
4233
4234 resync = mddev->curr_resync_completed;
4235 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4236 }
4237
4238 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4239
4240 static ssize_t
4241 min_sync_show(struct mddev *mddev, char *page)
4242 {
4243 return sprintf(page, "%llu\n",
4244 (unsigned long long)mddev->resync_min);
4245 }
4246 static ssize_t
4247 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4248 {
4249 unsigned long long min;
4250 int err;
4251 int chunk;
4252
4253 if (kstrtoull(buf, 10, &min))
4254 return -EINVAL;
4255
4256 spin_lock(&mddev->lock);
4257 err = -EINVAL;
4258 if (min > mddev->resync_max)
4259 goto out_unlock;
4260
4261 err = -EBUSY;
4262 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4263 goto out_unlock;
4264
4265 /* Must be a multiple of chunk_size */
4266 chunk = mddev->chunk_sectors;
4267 if (chunk) {
4268 sector_t temp = min;
4269
4270 err = -EINVAL;
4271 if (sector_div(temp, chunk))
4272 goto out_unlock;
4273 }
4274 mddev->resync_min = min;
4275 err = 0;
4276
4277 out_unlock:
4278 spin_unlock(&mddev->lock);
4279 return err ?: len;
4280 }
4281
4282 static struct md_sysfs_entry md_min_sync =
4283 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4284
4285 static ssize_t
4286 max_sync_show(struct mddev *mddev, char *page)
4287 {
4288 if (mddev->resync_max == MaxSector)
4289 return sprintf(page, "max\n");
4290 else
4291 return sprintf(page, "%llu\n",
4292 (unsigned long long)mddev->resync_max);
4293 }
4294 static ssize_t
4295 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4296 {
4297 int err;
4298 spin_lock(&mddev->lock);
4299 if (strncmp(buf, "max", 3) == 0)
4300 mddev->resync_max = MaxSector;
4301 else {
4302 unsigned long long max;
4303 int chunk;
4304
4305 err = -EINVAL;
4306 if (kstrtoull(buf, 10, &max))
4307 goto out_unlock;
4308 if (max < mddev->resync_min)
4309 goto out_unlock;
4310
4311 err = -EBUSY;
4312 if (max < mddev->resync_max &&
4313 mddev->ro == 0 &&
4314 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4315 goto out_unlock;
4316
4317 /* Must be a multiple of chunk_size */
4318 chunk = mddev->chunk_sectors;
4319 if (chunk) {
4320 sector_t temp = max;
4321
4322 err = -EINVAL;
4323 if (sector_div(temp, chunk))
4324 goto out_unlock;
4325 }
4326 mddev->resync_max = max;
4327 }
4328 wake_up(&mddev->recovery_wait);
4329 err = 0;
4330 out_unlock:
4331 spin_unlock(&mddev->lock);
4332 return err ?: len;
4333 }
4334
4335 static struct md_sysfs_entry md_max_sync =
4336 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4337
4338 static ssize_t
4339 suspend_lo_show(struct mddev *mddev, char *page)
4340 {
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4342 }
4343
4344 static ssize_t
4345 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4346 {
4347 char *e;
4348 unsigned long long new = simple_strtoull(buf, &e, 10);
4349 unsigned long long old = mddev->suspend_lo;
4350
4351 if (mddev->pers == NULL ||
4352 mddev->pers->quiesce == NULL)
4353 return -EINVAL;
4354 if (buf == e || (*e && *e != '\n'))
4355 return -EINVAL;
4356
4357 mddev->suspend_lo = new;
4358 if (new >= old)
4359 /* Shrinking suspended region */
4360 mddev->pers->quiesce(mddev, 2);
4361 else {
4362 /* Expanding suspended region - need to wait */
4363 mddev->pers->quiesce(mddev, 1);
4364 mddev->pers->quiesce(mddev, 0);
4365 }
4366 return len;
4367 }
4368 static struct md_sysfs_entry md_suspend_lo =
4369 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4370
4371 static ssize_t
4372 suspend_hi_show(struct mddev *mddev, char *page)
4373 {
4374 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4375 }
4376
4377 static ssize_t
4378 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4379 {
4380 char *e;
4381 unsigned long long new = simple_strtoull(buf, &e, 10);
4382 unsigned long long old = mddev->suspend_hi;
4383
4384 if (mddev->pers == NULL ||
4385 mddev->pers->quiesce == NULL)
4386 return -EINVAL;
4387 if (buf == e || (*e && *e != '\n'))
4388 return -EINVAL;
4389
4390 mddev->suspend_hi = new;
4391 if (new <= old)
4392 /* Shrinking suspended region */
4393 mddev->pers->quiesce(mddev, 2);
4394 else {
4395 /* Expanding suspended region - need to wait */
4396 mddev->pers->quiesce(mddev, 1);
4397 mddev->pers->quiesce(mddev, 0);
4398 }
4399 return len;
4400 }
4401 static struct md_sysfs_entry md_suspend_hi =
4402 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4403
4404 static ssize_t
4405 reshape_position_show(struct mddev *mddev, char *page)
4406 {
4407 if (mddev->reshape_position != MaxSector)
4408 return sprintf(page, "%llu\n",
4409 (unsigned long long)mddev->reshape_position);
4410 strcpy(page, "none\n");
4411 return 5;
4412 }
4413
4414 static ssize_t
4415 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4416 {
4417 struct md_rdev *rdev;
4418 char *e;
4419 unsigned long long new = simple_strtoull(buf, &e, 10);
4420 if (mddev->pers)
4421 return -EBUSY;
4422 if (buf == e || (*e && *e != '\n'))
4423 return -EINVAL;
4424 mddev->reshape_position = new;
4425 mddev->delta_disks = 0;
4426 mddev->reshape_backwards = 0;
4427 mddev->new_level = mddev->level;
4428 mddev->new_layout = mddev->layout;
4429 mddev->new_chunk_sectors = mddev->chunk_sectors;
4430 rdev_for_each(rdev, mddev)
4431 rdev->new_data_offset = rdev->data_offset;
4432 return len;
4433 }
4434
4435 static struct md_sysfs_entry md_reshape_position =
4436 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4437 reshape_position_store);
4438
4439 static ssize_t
4440 reshape_direction_show(struct mddev *mddev, char *page)
4441 {
4442 return sprintf(page, "%s\n",
4443 mddev->reshape_backwards ? "backwards" : "forwards");
4444 }
4445
4446 static ssize_t
4447 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4448 {
4449 int backwards = 0;
4450 if (cmd_match(buf, "forwards"))
4451 backwards = 0;
4452 else if (cmd_match(buf, "backwards"))
4453 backwards = 1;
4454 else
4455 return -EINVAL;
4456 if (mddev->reshape_backwards == backwards)
4457 return len;
4458
4459 /* check if we are allowed to change */
4460 if (mddev->delta_disks)
4461 return -EBUSY;
4462
4463 if (mddev->persistent &&
4464 mddev->major_version == 0)
4465 return -EINVAL;
4466
4467 mddev->reshape_backwards = backwards;
4468 return len;
4469 }
4470
4471 static struct md_sysfs_entry md_reshape_direction =
4472 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4473 reshape_direction_store);
4474
4475 static ssize_t
4476 array_size_show(struct mddev *mddev, char *page)
4477 {
4478 if (mddev->external_size)
4479 return sprintf(page, "%llu\n",
4480 (unsigned long long)mddev->array_sectors/2);
4481 else
4482 return sprintf(page, "default\n");
4483 }
4484
4485 static ssize_t
4486 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4487 {
4488 sector_t sectors;
4489
4490 if (strncmp(buf, "default", 7) == 0) {
4491 if (mddev->pers)
4492 sectors = mddev->pers->size(mddev, 0, 0);
4493 else
4494 sectors = mddev->array_sectors;
4495
4496 mddev->external_size = 0;
4497 } else {
4498 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4499 return -EINVAL;
4500 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4501 return -E2BIG;
4502
4503 mddev->external_size = 1;
4504 }
4505
4506 mddev->array_sectors = sectors;
4507 if (mddev->pers) {
4508 set_capacity(mddev->gendisk, mddev->array_sectors);
4509 revalidate_disk(mddev->gendisk);
4510 }
4511 return len;
4512 }
4513
4514 static struct md_sysfs_entry md_array_size =
4515 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4516 array_size_store);
4517
4518 static struct attribute *md_default_attrs[] = {
4519 &md_level.attr,
4520 &md_layout.attr,
4521 &md_raid_disks.attr,
4522 &md_chunk_size.attr,
4523 &md_size.attr,
4524 &md_resync_start.attr,
4525 &md_metadata.attr,
4526 &md_new_device.attr,
4527 &md_safe_delay.attr,
4528 &md_array_state.attr,
4529 &md_reshape_position.attr,
4530 &md_reshape_direction.attr,
4531 &md_array_size.attr,
4532 &max_corr_read_errors.attr,
4533 NULL,
4534 };
4535
4536 static struct attribute *md_redundancy_attrs[] = {
4537 &md_scan_mode.attr,
4538 &md_last_scan_mode.attr,
4539 &md_mismatches.attr,
4540 &md_sync_min.attr,
4541 &md_sync_max.attr,
4542 &md_sync_speed.attr,
4543 &md_sync_force_parallel.attr,
4544 &md_sync_completed.attr,
4545 &md_min_sync.attr,
4546 &md_max_sync.attr,
4547 &md_suspend_lo.attr,
4548 &md_suspend_hi.attr,
4549 &md_bitmap.attr,
4550 &md_degraded.attr,
4551 NULL,
4552 };
4553 static struct attribute_group md_redundancy_group = {
4554 .name = NULL,
4555 .attrs = md_redundancy_attrs,
4556 };
4557
4558 static ssize_t
4559 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4560 {
4561 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4562 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4563 ssize_t rv;
4564
4565 if (!entry->show)
4566 return -EIO;
4567 spin_lock(&all_mddevs_lock);
4568 if (list_empty(&mddev->all_mddevs)) {
4569 spin_unlock(&all_mddevs_lock);
4570 return -EBUSY;
4571 }
4572 mddev_get(mddev);
4573 spin_unlock(&all_mddevs_lock);
4574
4575 rv = entry->show(mddev, page);
4576 mddev_put(mddev);
4577 return rv;
4578 }
4579
4580 static ssize_t
4581 md_attr_store(struct kobject *kobj, struct attribute *attr,
4582 const char *page, size_t length)
4583 {
4584 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4585 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4586 ssize_t rv;
4587
4588 if (!entry->store)
4589 return -EIO;
4590 if (!capable(CAP_SYS_ADMIN))
4591 return -EACCES;
4592 spin_lock(&all_mddevs_lock);
4593 if (list_empty(&mddev->all_mddevs)) {
4594 spin_unlock(&all_mddevs_lock);
4595 return -EBUSY;
4596 }
4597 mddev_get(mddev);
4598 spin_unlock(&all_mddevs_lock);
4599 if (entry->store == new_dev_store)
4600 flush_workqueue(md_misc_wq);
4601 rv = mddev_lock(mddev);
4602 if (!rv) {
4603 rv = entry->store(mddev, page, length);
4604 mddev_unlock(mddev);
4605 }
4606 mddev_put(mddev);
4607 return rv;
4608 }
4609
4610 static void md_free(struct kobject *ko)
4611 {
4612 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4613
4614 if (mddev->sysfs_state)
4615 sysfs_put(mddev->sysfs_state);
4616
4617 if (mddev->gendisk) {
4618 del_gendisk(mddev->gendisk);
4619 put_disk(mddev->gendisk);
4620 }
4621 if (mddev->queue)
4622 blk_cleanup_queue(mddev->queue);
4623
4624 kfree(mddev);
4625 }
4626
4627 static const struct sysfs_ops md_sysfs_ops = {
4628 .show = md_attr_show,
4629 .store = md_attr_store,
4630 };
4631 static struct kobj_type md_ktype = {
4632 .release = md_free,
4633 .sysfs_ops = &md_sysfs_ops,
4634 .default_attrs = md_default_attrs,
4635 };
4636
4637 int mdp_major = 0;
4638
4639 static void mddev_delayed_delete(struct work_struct *ws)
4640 {
4641 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4642
4643 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4644 kobject_del(&mddev->kobj);
4645 kobject_put(&mddev->kobj);
4646 }
4647
4648 static int md_alloc(dev_t dev, char *name)
4649 {
4650 static DEFINE_MUTEX(disks_mutex);
4651 struct mddev *mddev = mddev_find(dev);
4652 struct gendisk *disk;
4653 int partitioned;
4654 int shift;
4655 int unit;
4656 int error;
4657
4658 if (!mddev)
4659 return -ENODEV;
4660
4661 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4662 shift = partitioned ? MdpMinorShift : 0;
4663 unit = MINOR(mddev->unit) >> shift;
4664
4665 /* wait for any previous instance of this device to be
4666 * completely removed (mddev_delayed_delete).
4667 */
4668 flush_workqueue(md_misc_wq);
4669
4670 mutex_lock(&disks_mutex);
4671 error = -EEXIST;
4672 if (mddev->gendisk)
4673 goto abort;
4674
4675 if (name) {
4676 /* Need to ensure that 'name' is not a duplicate.
4677 */
4678 struct mddev *mddev2;
4679 spin_lock(&all_mddevs_lock);
4680
4681 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4682 if (mddev2->gendisk &&
4683 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4684 spin_unlock(&all_mddevs_lock);
4685 goto abort;
4686 }
4687 spin_unlock(&all_mddevs_lock);
4688 }
4689
4690 error = -ENOMEM;
4691 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4692 if (!mddev->queue)
4693 goto abort;
4694 mddev->queue->queuedata = mddev;
4695
4696 blk_queue_make_request(mddev->queue, md_make_request);
4697 blk_set_stacking_limits(&mddev->queue->limits);
4698
4699 disk = alloc_disk(1 << shift);
4700 if (!disk) {
4701 blk_cleanup_queue(mddev->queue);
4702 mddev->queue = NULL;
4703 goto abort;
4704 }
4705 disk->major = MAJOR(mddev->unit);
4706 disk->first_minor = unit << shift;
4707 if (name)
4708 strcpy(disk->disk_name, name);
4709 else if (partitioned)
4710 sprintf(disk->disk_name, "md_d%d", unit);
4711 else
4712 sprintf(disk->disk_name, "md%d", unit);
4713 disk->fops = &md_fops;
4714 disk->private_data = mddev;
4715 disk->queue = mddev->queue;
4716 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4717 /* Allow extended partitions. This makes the
4718 * 'mdp' device redundant, but we can't really
4719 * remove it now.
4720 */
4721 disk->flags |= GENHD_FL_EXT_DEVT;
4722 mddev->gendisk = disk;
4723 /* As soon as we call add_disk(), another thread could get
4724 * through to md_open, so make sure it doesn't get too far
4725 */
4726 mutex_lock(&mddev->open_mutex);
4727 add_disk(disk);
4728
4729 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4730 &disk_to_dev(disk)->kobj, "%s", "md");
4731 if (error) {
4732 /* This isn't possible, but as kobject_init_and_add is marked
4733 * __must_check, we must do something with the result
4734 */
4735 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4736 disk->disk_name);
4737 error = 0;
4738 }
4739 if (mddev->kobj.sd &&
4740 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4741 printk(KERN_DEBUG "pointless warning\n");
4742 mutex_unlock(&mddev->open_mutex);
4743 abort:
4744 mutex_unlock(&disks_mutex);
4745 if (!error && mddev->kobj.sd) {
4746 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4747 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4748 }
4749 mddev_put(mddev);
4750 return error;
4751 }
4752
4753 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4754 {
4755 md_alloc(dev, NULL);
4756 return NULL;
4757 }
4758
4759 static int add_named_array(const char *val, struct kernel_param *kp)
4760 {
4761 /* val must be "md_*" where * is not all digits.
4762 * We allocate an array with a large free minor number, and
4763 * set the name to val. val must not already be an active name.
4764 */
4765 int len = strlen(val);
4766 char buf[DISK_NAME_LEN];
4767
4768 while (len && val[len-1] == '\n')
4769 len--;
4770 if (len >= DISK_NAME_LEN)
4771 return -E2BIG;
4772 strlcpy(buf, val, len+1);
4773 if (strncmp(buf, "md_", 3) != 0)
4774 return -EINVAL;
4775 return md_alloc(0, buf);
4776 }
4777
4778 static void md_safemode_timeout(unsigned long data)
4779 {
4780 struct mddev *mddev = (struct mddev *) data;
4781
4782 if (!atomic_read(&mddev->writes_pending)) {
4783 mddev->safemode = 1;
4784 if (mddev->external)
4785 sysfs_notify_dirent_safe(mddev->sysfs_state);
4786 }
4787 md_wakeup_thread(mddev->thread);
4788 }
4789
4790 static int start_dirty_degraded;
4791
4792 int md_run(struct mddev *mddev)
4793 {
4794 int err;
4795 struct md_rdev *rdev;
4796 struct md_personality *pers;
4797
4798 if (list_empty(&mddev->disks))
4799 /* cannot run an array with no devices.. */
4800 return -EINVAL;
4801
4802 if (mddev->pers)
4803 return -EBUSY;
4804 /* Cannot run until previous stop completes properly */
4805 if (mddev->sysfs_active)
4806 return -EBUSY;
4807
4808 /*
4809 * Analyze all RAID superblock(s)
4810 */
4811 if (!mddev->raid_disks) {
4812 if (!mddev->persistent)
4813 return -EINVAL;
4814 analyze_sbs(mddev);
4815 }
4816
4817 if (mddev->level != LEVEL_NONE)
4818 request_module("md-level-%d", mddev->level);
4819 else if (mddev->clevel[0])
4820 request_module("md-%s", mddev->clevel);
4821
4822 /*
4823 * Drop all container device buffers, from now on
4824 * the only valid external interface is through the md
4825 * device.
4826 */
4827 rdev_for_each(rdev, mddev) {
4828 if (test_bit(Faulty, &rdev->flags))
4829 continue;
4830 sync_blockdev(rdev->bdev);
4831 invalidate_bdev(rdev->bdev);
4832
4833 /* perform some consistency tests on the device.
4834 * We don't want the data to overlap the metadata,
4835 * Internal Bitmap issues have been handled elsewhere.
4836 */
4837 if (rdev->meta_bdev) {
4838 /* Nothing to check */;
4839 } else if (rdev->data_offset < rdev->sb_start) {
4840 if (mddev->dev_sectors &&
4841 rdev->data_offset + mddev->dev_sectors
4842 > rdev->sb_start) {
4843 printk("md: %s: data overlaps metadata\n",
4844 mdname(mddev));
4845 return -EINVAL;
4846 }
4847 } else {
4848 if (rdev->sb_start + rdev->sb_size/512
4849 > rdev->data_offset) {
4850 printk("md: %s: metadata overlaps data\n",
4851 mdname(mddev));
4852 return -EINVAL;
4853 }
4854 }
4855 sysfs_notify_dirent_safe(rdev->sysfs_state);
4856 }
4857
4858 if (mddev->bio_set == NULL)
4859 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4860
4861 spin_lock(&pers_lock);
4862 pers = find_pers(mddev->level, mddev->clevel);
4863 if (!pers || !try_module_get(pers->owner)) {
4864 spin_unlock(&pers_lock);
4865 if (mddev->level != LEVEL_NONE)
4866 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4867 mddev->level);
4868 else
4869 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4870 mddev->clevel);
4871 return -EINVAL;
4872 }
4873 spin_unlock(&pers_lock);
4874 if (mddev->level != pers->level) {
4875 mddev->level = pers->level;
4876 mddev->new_level = pers->level;
4877 }
4878 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4879
4880 if (mddev->reshape_position != MaxSector &&
4881 pers->start_reshape == NULL) {
4882 /* This personality cannot handle reshaping... */
4883 module_put(pers->owner);
4884 return -EINVAL;
4885 }
4886
4887 if (pers->sync_request) {
4888 /* Warn if this is a potentially silly
4889 * configuration.
4890 */
4891 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4892 struct md_rdev *rdev2;
4893 int warned = 0;
4894
4895 rdev_for_each(rdev, mddev)
4896 rdev_for_each(rdev2, mddev) {
4897 if (rdev < rdev2 &&
4898 rdev->bdev->bd_contains ==
4899 rdev2->bdev->bd_contains) {
4900 printk(KERN_WARNING
4901 "%s: WARNING: %s appears to be"
4902 " on the same physical disk as"
4903 " %s.\n",
4904 mdname(mddev),
4905 bdevname(rdev->bdev,b),
4906 bdevname(rdev2->bdev,b2));
4907 warned = 1;
4908 }
4909 }
4910
4911 if (warned)
4912 printk(KERN_WARNING
4913 "True protection against single-disk"
4914 " failure might be compromised.\n");
4915 }
4916
4917 mddev->recovery = 0;
4918 /* may be over-ridden by personality */
4919 mddev->resync_max_sectors = mddev->dev_sectors;
4920
4921 mddev->ok_start_degraded = start_dirty_degraded;
4922
4923 if (start_readonly && mddev->ro == 0)
4924 mddev->ro = 2; /* read-only, but switch on first write */
4925
4926 err = pers->run(mddev);
4927 if (err)
4928 printk(KERN_ERR "md: pers->run() failed ...\n");
4929 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
4930 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4931 " but 'external_size' not in effect?\n", __func__);
4932 printk(KERN_ERR
4933 "md: invalid array_size %llu > default size %llu\n",
4934 (unsigned long long)mddev->array_sectors / 2,
4935 (unsigned long long)pers->size(mddev, 0, 0) / 2);
4936 err = -EINVAL;
4937 }
4938 if (err == 0 && pers->sync_request &&
4939 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4940 err = bitmap_create(mddev);
4941 if (err)
4942 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4943 mdname(mddev), err);
4944 }
4945 if (err) {
4946 mddev_detach(mddev);
4947 pers->free(mddev, mddev->private);
4948 module_put(pers->owner);
4949 bitmap_destroy(mddev);
4950 return err;
4951 }
4952 if (mddev->queue) {
4953 mddev->queue->backing_dev_info.congested_data = mddev;
4954 mddev->queue->backing_dev_info.congested_fn = md_congested;
4955 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
4956 }
4957 if (pers->sync_request) {
4958 if (mddev->kobj.sd &&
4959 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4960 printk(KERN_WARNING
4961 "md: cannot register extra attributes for %s\n",
4962 mdname(mddev));
4963 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4964 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4965 mddev->ro = 0;
4966
4967 atomic_set(&mddev->writes_pending,0);
4968 atomic_set(&mddev->max_corr_read_errors,
4969 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4970 mddev->safemode = 0;
4971 mddev->safemode_timer.function = md_safemode_timeout;
4972 mddev->safemode_timer.data = (unsigned long) mddev;
4973 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4974 mddev->in_sync = 1;
4975 smp_wmb();
4976 spin_lock(&mddev->lock);
4977 mddev->pers = pers;
4978 mddev->ready = 1;
4979 spin_unlock(&mddev->lock);
4980 rdev_for_each(rdev, mddev)
4981 if (rdev->raid_disk >= 0)
4982 if (sysfs_link_rdev(mddev, rdev))
4983 /* failure here is OK */;
4984
4985 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4986
4987 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4988 md_update_sb(mddev, 0);
4989
4990 md_new_event(mddev);
4991 sysfs_notify_dirent_safe(mddev->sysfs_state);
4992 sysfs_notify_dirent_safe(mddev->sysfs_action);
4993 sysfs_notify(&mddev->kobj, NULL, "degraded");
4994 return 0;
4995 }
4996 EXPORT_SYMBOL_GPL(md_run);
4997
4998 static int do_md_run(struct mddev *mddev)
4999 {
5000 int err;
5001
5002 err = md_run(mddev);
5003 if (err)
5004 goto out;
5005 err = bitmap_load(mddev);
5006 if (err) {
5007 bitmap_destroy(mddev);
5008 goto out;
5009 }
5010
5011 md_wakeup_thread(mddev->thread);
5012 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5013
5014 set_capacity(mddev->gendisk, mddev->array_sectors);
5015 revalidate_disk(mddev->gendisk);
5016 mddev->changed = 1;
5017 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5018 out:
5019 return err;
5020 }
5021
5022 static int restart_array(struct mddev *mddev)
5023 {
5024 struct gendisk *disk = mddev->gendisk;
5025
5026 /* Complain if it has no devices */
5027 if (list_empty(&mddev->disks))
5028 return -ENXIO;
5029 if (!mddev->pers)
5030 return -EINVAL;
5031 if (!mddev->ro)
5032 return -EBUSY;
5033 mddev->safemode = 0;
5034 mddev->ro = 0;
5035 set_disk_ro(disk, 0);
5036 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5037 mdname(mddev));
5038 /* Kick recovery or resync if necessary */
5039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5040 md_wakeup_thread(mddev->thread);
5041 md_wakeup_thread(mddev->sync_thread);
5042 sysfs_notify_dirent_safe(mddev->sysfs_state);
5043 return 0;
5044 }
5045
5046 static void md_clean(struct mddev *mddev)
5047 {
5048 mddev->array_sectors = 0;
5049 mddev->external_size = 0;
5050 mddev->dev_sectors = 0;
5051 mddev->raid_disks = 0;
5052 mddev->recovery_cp = 0;
5053 mddev->resync_min = 0;
5054 mddev->resync_max = MaxSector;
5055 mddev->reshape_position = MaxSector;
5056 mddev->external = 0;
5057 mddev->persistent = 0;
5058 mddev->level = LEVEL_NONE;
5059 mddev->clevel[0] = 0;
5060 mddev->flags = 0;
5061 mddev->ro = 0;
5062 mddev->metadata_type[0] = 0;
5063 mddev->chunk_sectors = 0;
5064 mddev->ctime = mddev->utime = 0;
5065 mddev->layout = 0;
5066 mddev->max_disks = 0;
5067 mddev->events = 0;
5068 mddev->can_decrease_events = 0;
5069 mddev->delta_disks = 0;
5070 mddev->reshape_backwards = 0;
5071 mddev->new_level = LEVEL_NONE;
5072 mddev->new_layout = 0;
5073 mddev->new_chunk_sectors = 0;
5074 mddev->curr_resync = 0;
5075 atomic64_set(&mddev->resync_mismatches, 0);
5076 mddev->suspend_lo = mddev->suspend_hi = 0;
5077 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5078 mddev->recovery = 0;
5079 mddev->in_sync = 0;
5080 mddev->changed = 0;
5081 mddev->degraded = 0;
5082 mddev->safemode = 0;
5083 mddev->merge_check_needed = 0;
5084 mddev->bitmap_info.offset = 0;
5085 mddev->bitmap_info.default_offset = 0;
5086 mddev->bitmap_info.default_space = 0;
5087 mddev->bitmap_info.chunksize = 0;
5088 mddev->bitmap_info.daemon_sleep = 0;
5089 mddev->bitmap_info.max_write_behind = 0;
5090 }
5091
5092 static void __md_stop_writes(struct mddev *mddev)
5093 {
5094 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5095 flush_workqueue(md_misc_wq);
5096 if (mddev->sync_thread) {
5097 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5098 md_reap_sync_thread(mddev);
5099 }
5100
5101 del_timer_sync(&mddev->safemode_timer);
5102
5103 bitmap_flush(mddev);
5104 md_super_wait(mddev);
5105
5106 if (mddev->ro == 0 &&
5107 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5108 /* mark array as shutdown cleanly */
5109 mddev->in_sync = 1;
5110 md_update_sb(mddev, 1);
5111 }
5112 }
5113
5114 void md_stop_writes(struct mddev *mddev)
5115 {
5116 mddev_lock_nointr(mddev);
5117 __md_stop_writes(mddev);
5118 mddev_unlock(mddev);
5119 }
5120 EXPORT_SYMBOL_GPL(md_stop_writes);
5121
5122 static void mddev_detach(struct mddev *mddev)
5123 {
5124 struct bitmap *bitmap = mddev->bitmap;
5125 /* wait for behind writes to complete */
5126 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5127 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5128 mdname(mddev));
5129 /* need to kick something here to make sure I/O goes? */
5130 wait_event(bitmap->behind_wait,
5131 atomic_read(&bitmap->behind_writes) == 0);
5132 }
5133 if (mddev->pers && mddev->pers->quiesce) {
5134 mddev->pers->quiesce(mddev, 1);
5135 mddev->pers->quiesce(mddev, 0);
5136 }
5137 md_unregister_thread(&mddev->thread);
5138 if (mddev->queue)
5139 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5140 }
5141
5142 static void __md_stop(struct mddev *mddev)
5143 {
5144 struct md_personality *pers = mddev->pers;
5145 mddev_detach(mddev);
5146 spin_lock(&mddev->lock);
5147 mddev->ready = 0;
5148 mddev->pers = NULL;
5149 spin_unlock(&mddev->lock);
5150 pers->free(mddev, mddev->private);
5151 if (pers->sync_request && mddev->to_remove == NULL)
5152 mddev->to_remove = &md_redundancy_group;
5153 module_put(pers->owner);
5154 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5155 }
5156
5157 void md_stop(struct mddev *mddev)
5158 {
5159 /* stop the array and free an attached data structures.
5160 * This is called from dm-raid
5161 */
5162 __md_stop(mddev);
5163 bitmap_destroy(mddev);
5164 if (mddev->bio_set)
5165 bioset_free(mddev->bio_set);
5166 }
5167
5168 EXPORT_SYMBOL_GPL(md_stop);
5169
5170 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5171 {
5172 int err = 0;
5173 int did_freeze = 0;
5174
5175 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5176 did_freeze = 1;
5177 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5178 md_wakeup_thread(mddev->thread);
5179 }
5180 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5181 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5182 if (mddev->sync_thread)
5183 /* Thread might be blocked waiting for metadata update
5184 * which will now never happen */
5185 wake_up_process(mddev->sync_thread->tsk);
5186
5187 mddev_unlock(mddev);
5188 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5189 &mddev->recovery));
5190 mddev_lock_nointr(mddev);
5191
5192 mutex_lock(&mddev->open_mutex);
5193 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5194 mddev->sync_thread ||
5195 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5196 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5197 printk("md: %s still in use.\n",mdname(mddev));
5198 if (did_freeze) {
5199 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5201 md_wakeup_thread(mddev->thread);
5202 }
5203 err = -EBUSY;
5204 goto out;
5205 }
5206 if (mddev->pers) {
5207 __md_stop_writes(mddev);
5208
5209 err = -ENXIO;
5210 if (mddev->ro==1)
5211 goto out;
5212 mddev->ro = 1;
5213 set_disk_ro(mddev->gendisk, 1);
5214 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5216 md_wakeup_thread(mddev->thread);
5217 sysfs_notify_dirent_safe(mddev->sysfs_state);
5218 err = 0;
5219 }
5220 out:
5221 mutex_unlock(&mddev->open_mutex);
5222 return err;
5223 }
5224
5225 /* mode:
5226 * 0 - completely stop and dis-assemble array
5227 * 2 - stop but do not disassemble array
5228 */
5229 static int do_md_stop(struct mddev *mddev, int mode,
5230 struct block_device *bdev)
5231 {
5232 struct gendisk *disk = mddev->gendisk;
5233 struct md_rdev *rdev;
5234 int did_freeze = 0;
5235
5236 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5237 did_freeze = 1;
5238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5239 md_wakeup_thread(mddev->thread);
5240 }
5241 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5242 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5243 if (mddev->sync_thread)
5244 /* Thread might be blocked waiting for metadata update
5245 * which will now never happen */
5246 wake_up_process(mddev->sync_thread->tsk);
5247
5248 mddev_unlock(mddev);
5249 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5250 !test_bit(MD_RECOVERY_RUNNING,
5251 &mddev->recovery)));
5252 mddev_lock_nointr(mddev);
5253
5254 mutex_lock(&mddev->open_mutex);
5255 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5256 mddev->sysfs_active ||
5257 mddev->sync_thread ||
5258 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5259 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5260 printk("md: %s still in use.\n",mdname(mddev));
5261 mutex_unlock(&mddev->open_mutex);
5262 if (did_freeze) {
5263 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5264 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5265 md_wakeup_thread(mddev->thread);
5266 }
5267 return -EBUSY;
5268 }
5269 if (mddev->pers) {
5270 if (mddev->ro)
5271 set_disk_ro(disk, 0);
5272
5273 __md_stop_writes(mddev);
5274 __md_stop(mddev);
5275 mddev->queue->merge_bvec_fn = NULL;
5276 mddev->queue->backing_dev_info.congested_fn = NULL;
5277
5278 /* tell userspace to handle 'inactive' */
5279 sysfs_notify_dirent_safe(mddev->sysfs_state);
5280
5281 rdev_for_each(rdev, mddev)
5282 if (rdev->raid_disk >= 0)
5283 sysfs_unlink_rdev(mddev, rdev);
5284
5285 set_capacity(disk, 0);
5286 mutex_unlock(&mddev->open_mutex);
5287 mddev->changed = 1;
5288 revalidate_disk(disk);
5289
5290 if (mddev->ro)
5291 mddev->ro = 0;
5292 } else
5293 mutex_unlock(&mddev->open_mutex);
5294 /*
5295 * Free resources if final stop
5296 */
5297 if (mode == 0) {
5298 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5299
5300 bitmap_destroy(mddev);
5301 if (mddev->bitmap_info.file) {
5302 struct file *f = mddev->bitmap_info.file;
5303 spin_lock(&mddev->lock);
5304 mddev->bitmap_info.file = NULL;
5305 spin_unlock(&mddev->lock);
5306 fput(f);
5307 }
5308 mddev->bitmap_info.offset = 0;
5309
5310 export_array(mddev);
5311
5312 md_clean(mddev);
5313 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5314 if (mddev->hold_active == UNTIL_STOP)
5315 mddev->hold_active = 0;
5316 }
5317 blk_integrity_unregister(disk);
5318 md_new_event(mddev);
5319 sysfs_notify_dirent_safe(mddev->sysfs_state);
5320 return 0;
5321 }
5322
5323 #ifndef MODULE
5324 static void autorun_array(struct mddev *mddev)
5325 {
5326 struct md_rdev *rdev;
5327 int err;
5328
5329 if (list_empty(&mddev->disks))
5330 return;
5331
5332 printk(KERN_INFO "md: running: ");
5333
5334 rdev_for_each(rdev, mddev) {
5335 char b[BDEVNAME_SIZE];
5336 printk("<%s>", bdevname(rdev->bdev,b));
5337 }
5338 printk("\n");
5339
5340 err = do_md_run(mddev);
5341 if (err) {
5342 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5343 do_md_stop(mddev, 0, NULL);
5344 }
5345 }
5346
5347 /*
5348 * lets try to run arrays based on all disks that have arrived
5349 * until now. (those are in pending_raid_disks)
5350 *
5351 * the method: pick the first pending disk, collect all disks with
5352 * the same UUID, remove all from the pending list and put them into
5353 * the 'same_array' list. Then order this list based on superblock
5354 * update time (freshest comes first), kick out 'old' disks and
5355 * compare superblocks. If everything's fine then run it.
5356 *
5357 * If "unit" is allocated, then bump its reference count
5358 */
5359 static void autorun_devices(int part)
5360 {
5361 struct md_rdev *rdev0, *rdev, *tmp;
5362 struct mddev *mddev;
5363 char b[BDEVNAME_SIZE];
5364
5365 printk(KERN_INFO "md: autorun ...\n");
5366 while (!list_empty(&pending_raid_disks)) {
5367 int unit;
5368 dev_t dev;
5369 LIST_HEAD(candidates);
5370 rdev0 = list_entry(pending_raid_disks.next,
5371 struct md_rdev, same_set);
5372
5373 printk(KERN_INFO "md: considering %s ...\n",
5374 bdevname(rdev0->bdev,b));
5375 INIT_LIST_HEAD(&candidates);
5376 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5377 if (super_90_load(rdev, rdev0, 0) >= 0) {
5378 printk(KERN_INFO "md: adding %s ...\n",
5379 bdevname(rdev->bdev,b));
5380 list_move(&rdev->same_set, &candidates);
5381 }
5382 /*
5383 * now we have a set of devices, with all of them having
5384 * mostly sane superblocks. It's time to allocate the
5385 * mddev.
5386 */
5387 if (part) {
5388 dev = MKDEV(mdp_major,
5389 rdev0->preferred_minor << MdpMinorShift);
5390 unit = MINOR(dev) >> MdpMinorShift;
5391 } else {
5392 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5393 unit = MINOR(dev);
5394 }
5395 if (rdev0->preferred_minor != unit) {
5396 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5397 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5398 break;
5399 }
5400
5401 md_probe(dev, NULL, NULL);
5402 mddev = mddev_find(dev);
5403 if (!mddev || !mddev->gendisk) {
5404 if (mddev)
5405 mddev_put(mddev);
5406 printk(KERN_ERR
5407 "md: cannot allocate memory for md drive.\n");
5408 break;
5409 }
5410 if (mddev_lock(mddev))
5411 printk(KERN_WARNING "md: %s locked, cannot run\n",
5412 mdname(mddev));
5413 else if (mddev->raid_disks || mddev->major_version
5414 || !list_empty(&mddev->disks)) {
5415 printk(KERN_WARNING
5416 "md: %s already running, cannot run %s\n",
5417 mdname(mddev), bdevname(rdev0->bdev,b));
5418 mddev_unlock(mddev);
5419 } else {
5420 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5421 mddev->persistent = 1;
5422 rdev_for_each_list(rdev, tmp, &candidates) {
5423 list_del_init(&rdev->same_set);
5424 if (bind_rdev_to_array(rdev, mddev))
5425 export_rdev(rdev);
5426 }
5427 autorun_array(mddev);
5428 mddev_unlock(mddev);
5429 }
5430 /* on success, candidates will be empty, on error
5431 * it won't...
5432 */
5433 rdev_for_each_list(rdev, tmp, &candidates) {
5434 list_del_init(&rdev->same_set);
5435 export_rdev(rdev);
5436 }
5437 mddev_put(mddev);
5438 }
5439 printk(KERN_INFO "md: ... autorun DONE.\n");
5440 }
5441 #endif /* !MODULE */
5442
5443 static int get_version(void __user *arg)
5444 {
5445 mdu_version_t ver;
5446
5447 ver.major = MD_MAJOR_VERSION;
5448 ver.minor = MD_MINOR_VERSION;
5449 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5450
5451 if (copy_to_user(arg, &ver, sizeof(ver)))
5452 return -EFAULT;
5453
5454 return 0;
5455 }
5456
5457 static int get_array_info(struct mddev *mddev, void __user *arg)
5458 {
5459 mdu_array_info_t info;
5460 int nr,working,insync,failed,spare;
5461 struct md_rdev *rdev;
5462
5463 nr = working = insync = failed = spare = 0;
5464 rcu_read_lock();
5465 rdev_for_each_rcu(rdev, mddev) {
5466 nr++;
5467 if (test_bit(Faulty, &rdev->flags))
5468 failed++;
5469 else {
5470 working++;
5471 if (test_bit(In_sync, &rdev->flags))
5472 insync++;
5473 else
5474 spare++;
5475 }
5476 }
5477 rcu_read_unlock();
5478
5479 info.major_version = mddev->major_version;
5480 info.minor_version = mddev->minor_version;
5481 info.patch_version = MD_PATCHLEVEL_VERSION;
5482 info.ctime = mddev->ctime;
5483 info.level = mddev->level;
5484 info.size = mddev->dev_sectors / 2;
5485 if (info.size != mddev->dev_sectors / 2) /* overflow */
5486 info.size = -1;
5487 info.nr_disks = nr;
5488 info.raid_disks = mddev->raid_disks;
5489 info.md_minor = mddev->md_minor;
5490 info.not_persistent= !mddev->persistent;
5491
5492 info.utime = mddev->utime;
5493 info.state = 0;
5494 if (mddev->in_sync)
5495 info.state = (1<<MD_SB_CLEAN);
5496 if (mddev->bitmap && mddev->bitmap_info.offset)
5497 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5498 info.active_disks = insync;
5499 info.working_disks = working;
5500 info.failed_disks = failed;
5501 info.spare_disks = spare;
5502
5503 info.layout = mddev->layout;
5504 info.chunk_size = mddev->chunk_sectors << 9;
5505
5506 if (copy_to_user(arg, &info, sizeof(info)))
5507 return -EFAULT;
5508
5509 return 0;
5510 }
5511
5512 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5513 {
5514 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5515 char *ptr;
5516 int err;
5517
5518 file = kmalloc(sizeof(*file), GFP_NOIO);
5519 if (!file)
5520 return -ENOMEM;
5521
5522 err = 0;
5523 spin_lock(&mddev->lock);
5524 /* bitmap disabled, zero the first byte and copy out */
5525 if (!mddev->bitmap_info.file)
5526 file->pathname[0] = '\0';
5527 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5528 file->pathname, sizeof(file->pathname))),
5529 IS_ERR(ptr))
5530 err = PTR_ERR(ptr);
5531 else
5532 memmove(file->pathname, ptr,
5533 sizeof(file->pathname)-(ptr-file->pathname));
5534 spin_unlock(&mddev->lock);
5535
5536 if (err == 0 &&
5537 copy_to_user(arg, file, sizeof(*file)))
5538 err = -EFAULT;
5539
5540 kfree(file);
5541 return err;
5542 }
5543
5544 static int get_disk_info(struct mddev *mddev, void __user * arg)
5545 {
5546 mdu_disk_info_t info;
5547 struct md_rdev *rdev;
5548
5549 if (copy_from_user(&info, arg, sizeof(info)))
5550 return -EFAULT;
5551
5552 rcu_read_lock();
5553 rdev = find_rdev_nr_rcu(mddev, info.number);
5554 if (rdev) {
5555 info.major = MAJOR(rdev->bdev->bd_dev);
5556 info.minor = MINOR(rdev->bdev->bd_dev);
5557 info.raid_disk = rdev->raid_disk;
5558 info.state = 0;
5559 if (test_bit(Faulty, &rdev->flags))
5560 info.state |= (1<<MD_DISK_FAULTY);
5561 else if (test_bit(In_sync, &rdev->flags)) {
5562 info.state |= (1<<MD_DISK_ACTIVE);
5563 info.state |= (1<<MD_DISK_SYNC);
5564 }
5565 if (test_bit(WriteMostly, &rdev->flags))
5566 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5567 } else {
5568 info.major = info.minor = 0;
5569 info.raid_disk = -1;
5570 info.state = (1<<MD_DISK_REMOVED);
5571 }
5572 rcu_read_unlock();
5573
5574 if (copy_to_user(arg, &info, sizeof(info)))
5575 return -EFAULT;
5576
5577 return 0;
5578 }
5579
5580 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5581 {
5582 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5583 struct md_rdev *rdev;
5584 dev_t dev = MKDEV(info->major,info->minor);
5585
5586 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5587 return -EOVERFLOW;
5588
5589 if (!mddev->raid_disks) {
5590 int err;
5591 /* expecting a device which has a superblock */
5592 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5593 if (IS_ERR(rdev)) {
5594 printk(KERN_WARNING
5595 "md: md_import_device returned %ld\n",
5596 PTR_ERR(rdev));
5597 return PTR_ERR(rdev);
5598 }
5599 if (!list_empty(&mddev->disks)) {
5600 struct md_rdev *rdev0
5601 = list_entry(mddev->disks.next,
5602 struct md_rdev, same_set);
5603 err = super_types[mddev->major_version]
5604 .load_super(rdev, rdev0, mddev->minor_version);
5605 if (err < 0) {
5606 printk(KERN_WARNING
5607 "md: %s has different UUID to %s\n",
5608 bdevname(rdev->bdev,b),
5609 bdevname(rdev0->bdev,b2));
5610 export_rdev(rdev);
5611 return -EINVAL;
5612 }
5613 }
5614 err = bind_rdev_to_array(rdev, mddev);
5615 if (err)
5616 export_rdev(rdev);
5617 return err;
5618 }
5619
5620 /*
5621 * add_new_disk can be used once the array is assembled
5622 * to add "hot spares". They must already have a superblock
5623 * written
5624 */
5625 if (mddev->pers) {
5626 int err;
5627 if (!mddev->pers->hot_add_disk) {
5628 printk(KERN_WARNING
5629 "%s: personality does not support diskops!\n",
5630 mdname(mddev));
5631 return -EINVAL;
5632 }
5633 if (mddev->persistent)
5634 rdev = md_import_device(dev, mddev->major_version,
5635 mddev->minor_version);
5636 else
5637 rdev = md_import_device(dev, -1, -1);
5638 if (IS_ERR(rdev)) {
5639 printk(KERN_WARNING
5640 "md: md_import_device returned %ld\n",
5641 PTR_ERR(rdev));
5642 return PTR_ERR(rdev);
5643 }
5644 /* set saved_raid_disk if appropriate */
5645 if (!mddev->persistent) {
5646 if (info->state & (1<<MD_DISK_SYNC) &&
5647 info->raid_disk < mddev->raid_disks) {
5648 rdev->raid_disk = info->raid_disk;
5649 set_bit(In_sync, &rdev->flags);
5650 clear_bit(Bitmap_sync, &rdev->flags);
5651 } else
5652 rdev->raid_disk = -1;
5653 rdev->saved_raid_disk = rdev->raid_disk;
5654 } else
5655 super_types[mddev->major_version].
5656 validate_super(mddev, rdev);
5657 if ((info->state & (1<<MD_DISK_SYNC)) &&
5658 rdev->raid_disk != info->raid_disk) {
5659 /* This was a hot-add request, but events doesn't
5660 * match, so reject it.
5661 */
5662 export_rdev(rdev);
5663 return -EINVAL;
5664 }
5665
5666 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5667 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5668 set_bit(WriteMostly, &rdev->flags);
5669 else
5670 clear_bit(WriteMostly, &rdev->flags);
5671
5672 rdev->raid_disk = -1;
5673 err = bind_rdev_to_array(rdev, mddev);
5674 if (!err && !mddev->pers->hot_remove_disk) {
5675 /* If there is hot_add_disk but no hot_remove_disk
5676 * then added disks for geometry changes,
5677 * and should be added immediately.
5678 */
5679 super_types[mddev->major_version].
5680 validate_super(mddev, rdev);
5681 err = mddev->pers->hot_add_disk(mddev, rdev);
5682 if (err)
5683 unbind_rdev_from_array(rdev);
5684 }
5685 if (err)
5686 export_rdev(rdev);
5687 else
5688 sysfs_notify_dirent_safe(rdev->sysfs_state);
5689
5690 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5691 if (mddev->degraded)
5692 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5693 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5694 if (!err)
5695 md_new_event(mddev);
5696 md_wakeup_thread(mddev->thread);
5697 return err;
5698 }
5699
5700 /* otherwise, add_new_disk is only allowed
5701 * for major_version==0 superblocks
5702 */
5703 if (mddev->major_version != 0) {
5704 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5705 mdname(mddev));
5706 return -EINVAL;
5707 }
5708
5709 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5710 int err;
5711 rdev = md_import_device(dev, -1, 0);
5712 if (IS_ERR(rdev)) {
5713 printk(KERN_WARNING
5714 "md: error, md_import_device() returned %ld\n",
5715 PTR_ERR(rdev));
5716 return PTR_ERR(rdev);
5717 }
5718 rdev->desc_nr = info->number;
5719 if (info->raid_disk < mddev->raid_disks)
5720 rdev->raid_disk = info->raid_disk;
5721 else
5722 rdev->raid_disk = -1;
5723
5724 if (rdev->raid_disk < mddev->raid_disks)
5725 if (info->state & (1<<MD_DISK_SYNC))
5726 set_bit(In_sync, &rdev->flags);
5727
5728 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5729 set_bit(WriteMostly, &rdev->flags);
5730
5731 if (!mddev->persistent) {
5732 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5733 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5734 } else
5735 rdev->sb_start = calc_dev_sboffset(rdev);
5736 rdev->sectors = rdev->sb_start;
5737
5738 err = bind_rdev_to_array(rdev, mddev);
5739 if (err) {
5740 export_rdev(rdev);
5741 return err;
5742 }
5743 }
5744
5745 return 0;
5746 }
5747
5748 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5749 {
5750 char b[BDEVNAME_SIZE];
5751 struct md_rdev *rdev;
5752
5753 rdev = find_rdev(mddev, dev);
5754 if (!rdev)
5755 return -ENXIO;
5756
5757 clear_bit(Blocked, &rdev->flags);
5758 remove_and_add_spares(mddev, rdev);
5759
5760 if (rdev->raid_disk >= 0)
5761 goto busy;
5762
5763 kick_rdev_from_array(rdev);
5764 md_update_sb(mddev, 1);
5765 md_new_event(mddev);
5766
5767 return 0;
5768 busy:
5769 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5770 bdevname(rdev->bdev,b), mdname(mddev));
5771 return -EBUSY;
5772 }
5773
5774 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5775 {
5776 char b[BDEVNAME_SIZE];
5777 int err;
5778 struct md_rdev *rdev;
5779
5780 if (!mddev->pers)
5781 return -ENODEV;
5782
5783 if (mddev->major_version != 0) {
5784 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5785 " version-0 superblocks.\n",
5786 mdname(mddev));
5787 return -EINVAL;
5788 }
5789 if (!mddev->pers->hot_add_disk) {
5790 printk(KERN_WARNING
5791 "%s: personality does not support diskops!\n",
5792 mdname(mddev));
5793 return -EINVAL;
5794 }
5795
5796 rdev = md_import_device(dev, -1, 0);
5797 if (IS_ERR(rdev)) {
5798 printk(KERN_WARNING
5799 "md: error, md_import_device() returned %ld\n",
5800 PTR_ERR(rdev));
5801 return -EINVAL;
5802 }
5803
5804 if (mddev->persistent)
5805 rdev->sb_start = calc_dev_sboffset(rdev);
5806 else
5807 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5808
5809 rdev->sectors = rdev->sb_start;
5810
5811 if (test_bit(Faulty, &rdev->flags)) {
5812 printk(KERN_WARNING
5813 "md: can not hot-add faulty %s disk to %s!\n",
5814 bdevname(rdev->bdev,b), mdname(mddev));
5815 err = -EINVAL;
5816 goto abort_export;
5817 }
5818 clear_bit(In_sync, &rdev->flags);
5819 rdev->desc_nr = -1;
5820 rdev->saved_raid_disk = -1;
5821 err = bind_rdev_to_array(rdev, mddev);
5822 if (err)
5823 goto abort_export;
5824
5825 /*
5826 * The rest should better be atomic, we can have disk failures
5827 * noticed in interrupt contexts ...
5828 */
5829
5830 rdev->raid_disk = -1;
5831
5832 md_update_sb(mddev, 1);
5833
5834 /*
5835 * Kick recovery, maybe this spare has to be added to the
5836 * array immediately.
5837 */
5838 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5839 md_wakeup_thread(mddev->thread);
5840 md_new_event(mddev);
5841 return 0;
5842
5843 abort_export:
5844 export_rdev(rdev);
5845 return err;
5846 }
5847
5848 static int set_bitmap_file(struct mddev *mddev, int fd)
5849 {
5850 int err = 0;
5851
5852 if (mddev->pers) {
5853 if (!mddev->pers->quiesce || !mddev->thread)
5854 return -EBUSY;
5855 if (mddev->recovery || mddev->sync_thread)
5856 return -EBUSY;
5857 /* we should be able to change the bitmap.. */
5858 }
5859
5860 if (fd >= 0) {
5861 struct inode *inode;
5862 struct file *f;
5863
5864 if (mddev->bitmap || mddev->bitmap_info.file)
5865 return -EEXIST; /* cannot add when bitmap is present */
5866 f = fget(fd);
5867
5868 if (f == NULL) {
5869 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5870 mdname(mddev));
5871 return -EBADF;
5872 }
5873
5874 inode = f->f_mapping->host;
5875 if (!S_ISREG(inode->i_mode)) {
5876 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5877 mdname(mddev));
5878 err = -EBADF;
5879 } else if (!(f->f_mode & FMODE_WRITE)) {
5880 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5881 mdname(mddev));
5882 err = -EBADF;
5883 } else if (atomic_read(&inode->i_writecount) != 1) {
5884 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5885 mdname(mddev));
5886 err = -EBUSY;
5887 }
5888 if (err) {
5889 fput(f);
5890 return err;
5891 }
5892 mddev->bitmap_info.file = f;
5893 mddev->bitmap_info.offset = 0; /* file overrides offset */
5894 } else if (mddev->bitmap == NULL)
5895 return -ENOENT; /* cannot remove what isn't there */
5896 err = 0;
5897 if (mddev->pers) {
5898 mddev->pers->quiesce(mddev, 1);
5899 if (fd >= 0) {
5900 err = bitmap_create(mddev);
5901 if (!err)
5902 err = bitmap_load(mddev);
5903 }
5904 if (fd < 0 || err) {
5905 bitmap_destroy(mddev);
5906 fd = -1; /* make sure to put the file */
5907 }
5908 mddev->pers->quiesce(mddev, 0);
5909 }
5910 if (fd < 0) {
5911 struct file *f = mddev->bitmap_info.file;
5912 if (f) {
5913 spin_lock(&mddev->lock);
5914 mddev->bitmap_info.file = NULL;
5915 spin_unlock(&mddev->lock);
5916 fput(f);
5917 }
5918 }
5919
5920 return err;
5921 }
5922
5923 /*
5924 * set_array_info is used two different ways
5925 * The original usage is when creating a new array.
5926 * In this usage, raid_disks is > 0 and it together with
5927 * level, size, not_persistent,layout,chunksize determine the
5928 * shape of the array.
5929 * This will always create an array with a type-0.90.0 superblock.
5930 * The newer usage is when assembling an array.
5931 * In this case raid_disks will be 0, and the major_version field is
5932 * use to determine which style super-blocks are to be found on the devices.
5933 * The minor and patch _version numbers are also kept incase the
5934 * super_block handler wishes to interpret them.
5935 */
5936 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5937 {
5938
5939 if (info->raid_disks == 0) {
5940 /* just setting version number for superblock loading */
5941 if (info->major_version < 0 ||
5942 info->major_version >= ARRAY_SIZE(super_types) ||
5943 super_types[info->major_version].name == NULL) {
5944 /* maybe try to auto-load a module? */
5945 printk(KERN_INFO
5946 "md: superblock version %d not known\n",
5947 info->major_version);
5948 return -EINVAL;
5949 }
5950 mddev->major_version = info->major_version;
5951 mddev->minor_version = info->minor_version;
5952 mddev->patch_version = info->patch_version;
5953 mddev->persistent = !info->not_persistent;
5954 /* ensure mddev_put doesn't delete this now that there
5955 * is some minimal configuration.
5956 */
5957 mddev->ctime = get_seconds();
5958 return 0;
5959 }
5960 mddev->major_version = MD_MAJOR_VERSION;
5961 mddev->minor_version = MD_MINOR_VERSION;
5962 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5963 mddev->ctime = get_seconds();
5964
5965 mddev->level = info->level;
5966 mddev->clevel[0] = 0;
5967 mddev->dev_sectors = 2 * (sector_t)info->size;
5968 mddev->raid_disks = info->raid_disks;
5969 /* don't set md_minor, it is determined by which /dev/md* was
5970 * openned
5971 */
5972 if (info->state & (1<<MD_SB_CLEAN))
5973 mddev->recovery_cp = MaxSector;
5974 else
5975 mddev->recovery_cp = 0;
5976 mddev->persistent = ! info->not_persistent;
5977 mddev->external = 0;
5978
5979 mddev->layout = info->layout;
5980 mddev->chunk_sectors = info->chunk_size >> 9;
5981
5982 mddev->max_disks = MD_SB_DISKS;
5983
5984 if (mddev->persistent)
5985 mddev->flags = 0;
5986 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5987
5988 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5989 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5990 mddev->bitmap_info.offset = 0;
5991
5992 mddev->reshape_position = MaxSector;
5993
5994 /*
5995 * Generate a 128 bit UUID
5996 */
5997 get_random_bytes(mddev->uuid, 16);
5998
5999 mddev->new_level = mddev->level;
6000 mddev->new_chunk_sectors = mddev->chunk_sectors;
6001 mddev->new_layout = mddev->layout;
6002 mddev->delta_disks = 0;
6003 mddev->reshape_backwards = 0;
6004
6005 return 0;
6006 }
6007
6008 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6009 {
6010 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6011
6012 if (mddev->external_size)
6013 return;
6014
6015 mddev->array_sectors = array_sectors;
6016 }
6017 EXPORT_SYMBOL(md_set_array_sectors);
6018
6019 static int update_size(struct mddev *mddev, sector_t num_sectors)
6020 {
6021 struct md_rdev *rdev;
6022 int rv;
6023 int fit = (num_sectors == 0);
6024
6025 if (mddev->pers->resize == NULL)
6026 return -EINVAL;
6027 /* The "num_sectors" is the number of sectors of each device that
6028 * is used. This can only make sense for arrays with redundancy.
6029 * linear and raid0 always use whatever space is available. We can only
6030 * consider changing this number if no resync or reconstruction is
6031 * happening, and if the new size is acceptable. It must fit before the
6032 * sb_start or, if that is <data_offset, it must fit before the size
6033 * of each device. If num_sectors is zero, we find the largest size
6034 * that fits.
6035 */
6036 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6037 mddev->sync_thread)
6038 return -EBUSY;
6039 if (mddev->ro)
6040 return -EROFS;
6041
6042 rdev_for_each(rdev, mddev) {
6043 sector_t avail = rdev->sectors;
6044
6045 if (fit && (num_sectors == 0 || num_sectors > avail))
6046 num_sectors = avail;
6047 if (avail < num_sectors)
6048 return -ENOSPC;
6049 }
6050 rv = mddev->pers->resize(mddev, num_sectors);
6051 if (!rv)
6052 revalidate_disk(mddev->gendisk);
6053 return rv;
6054 }
6055
6056 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6057 {
6058 int rv;
6059 struct md_rdev *rdev;
6060 /* change the number of raid disks */
6061 if (mddev->pers->check_reshape == NULL)
6062 return -EINVAL;
6063 if (mddev->ro)
6064 return -EROFS;
6065 if (raid_disks <= 0 ||
6066 (mddev->max_disks && raid_disks >= mddev->max_disks))
6067 return -EINVAL;
6068 if (mddev->sync_thread ||
6069 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6070 mddev->reshape_position != MaxSector)
6071 return -EBUSY;
6072
6073 rdev_for_each(rdev, mddev) {
6074 if (mddev->raid_disks < raid_disks &&
6075 rdev->data_offset < rdev->new_data_offset)
6076 return -EINVAL;
6077 if (mddev->raid_disks > raid_disks &&
6078 rdev->data_offset > rdev->new_data_offset)
6079 return -EINVAL;
6080 }
6081
6082 mddev->delta_disks = raid_disks - mddev->raid_disks;
6083 if (mddev->delta_disks < 0)
6084 mddev->reshape_backwards = 1;
6085 else if (mddev->delta_disks > 0)
6086 mddev->reshape_backwards = 0;
6087
6088 rv = mddev->pers->check_reshape(mddev);
6089 if (rv < 0) {
6090 mddev->delta_disks = 0;
6091 mddev->reshape_backwards = 0;
6092 }
6093 return rv;
6094 }
6095
6096 /*
6097 * update_array_info is used to change the configuration of an
6098 * on-line array.
6099 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6100 * fields in the info are checked against the array.
6101 * Any differences that cannot be handled will cause an error.
6102 * Normally, only one change can be managed at a time.
6103 */
6104 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6105 {
6106 int rv = 0;
6107 int cnt = 0;
6108 int state = 0;
6109
6110 /* calculate expected state,ignoring low bits */
6111 if (mddev->bitmap && mddev->bitmap_info.offset)
6112 state |= (1 << MD_SB_BITMAP_PRESENT);
6113
6114 if (mddev->major_version != info->major_version ||
6115 mddev->minor_version != info->minor_version ||
6116 /* mddev->patch_version != info->patch_version || */
6117 mddev->ctime != info->ctime ||
6118 mddev->level != info->level ||
6119 /* mddev->layout != info->layout || */
6120 !mddev->persistent != info->not_persistent||
6121 mddev->chunk_sectors != info->chunk_size >> 9 ||
6122 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6123 ((state^info->state) & 0xfffffe00)
6124 )
6125 return -EINVAL;
6126 /* Check there is only one change */
6127 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6128 cnt++;
6129 if (mddev->raid_disks != info->raid_disks)
6130 cnt++;
6131 if (mddev->layout != info->layout)
6132 cnt++;
6133 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6134 cnt++;
6135 if (cnt == 0)
6136 return 0;
6137 if (cnt > 1)
6138 return -EINVAL;
6139
6140 if (mddev->layout != info->layout) {
6141 /* Change layout
6142 * we don't need to do anything at the md level, the
6143 * personality will take care of it all.
6144 */
6145 if (mddev->pers->check_reshape == NULL)
6146 return -EINVAL;
6147 else {
6148 mddev->new_layout = info->layout;
6149 rv = mddev->pers->check_reshape(mddev);
6150 if (rv)
6151 mddev->new_layout = mddev->layout;
6152 return rv;
6153 }
6154 }
6155 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6156 rv = update_size(mddev, (sector_t)info->size * 2);
6157
6158 if (mddev->raid_disks != info->raid_disks)
6159 rv = update_raid_disks(mddev, info->raid_disks);
6160
6161 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6162 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6163 return -EINVAL;
6164 if (mddev->recovery || mddev->sync_thread)
6165 return -EBUSY;
6166 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6167 /* add the bitmap */
6168 if (mddev->bitmap)
6169 return -EEXIST;
6170 if (mddev->bitmap_info.default_offset == 0)
6171 return -EINVAL;
6172 mddev->bitmap_info.offset =
6173 mddev->bitmap_info.default_offset;
6174 mddev->bitmap_info.space =
6175 mddev->bitmap_info.default_space;
6176 mddev->pers->quiesce(mddev, 1);
6177 rv = bitmap_create(mddev);
6178 if (!rv)
6179 rv = bitmap_load(mddev);
6180 if (rv)
6181 bitmap_destroy(mddev);
6182 mddev->pers->quiesce(mddev, 0);
6183 } else {
6184 /* remove the bitmap */
6185 if (!mddev->bitmap)
6186 return -ENOENT;
6187 if (mddev->bitmap->storage.file)
6188 return -EINVAL;
6189 mddev->pers->quiesce(mddev, 1);
6190 bitmap_destroy(mddev);
6191 mddev->pers->quiesce(mddev, 0);
6192 mddev->bitmap_info.offset = 0;
6193 }
6194 }
6195 md_update_sb(mddev, 1);
6196 return rv;
6197 }
6198
6199 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6200 {
6201 struct md_rdev *rdev;
6202 int err = 0;
6203
6204 if (mddev->pers == NULL)
6205 return -ENODEV;
6206
6207 rcu_read_lock();
6208 rdev = find_rdev_rcu(mddev, dev);
6209 if (!rdev)
6210 err = -ENODEV;
6211 else {
6212 md_error(mddev, rdev);
6213 if (!test_bit(Faulty, &rdev->flags))
6214 err = -EBUSY;
6215 }
6216 rcu_read_unlock();
6217 return err;
6218 }
6219
6220 /*
6221 * We have a problem here : there is no easy way to give a CHS
6222 * virtual geometry. We currently pretend that we have a 2 heads
6223 * 4 sectors (with a BIG number of cylinders...). This drives
6224 * dosfs just mad... ;-)
6225 */
6226 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6227 {
6228 struct mddev *mddev = bdev->bd_disk->private_data;
6229
6230 geo->heads = 2;
6231 geo->sectors = 4;
6232 geo->cylinders = mddev->array_sectors / 8;
6233 return 0;
6234 }
6235
6236 static inline bool md_ioctl_valid(unsigned int cmd)
6237 {
6238 switch (cmd) {
6239 case ADD_NEW_DISK:
6240 case BLKROSET:
6241 case GET_ARRAY_INFO:
6242 case GET_BITMAP_FILE:
6243 case GET_DISK_INFO:
6244 case HOT_ADD_DISK:
6245 case HOT_REMOVE_DISK:
6246 case RAID_AUTORUN:
6247 case RAID_VERSION:
6248 case RESTART_ARRAY_RW:
6249 case RUN_ARRAY:
6250 case SET_ARRAY_INFO:
6251 case SET_BITMAP_FILE:
6252 case SET_DISK_FAULTY:
6253 case STOP_ARRAY:
6254 case STOP_ARRAY_RO:
6255 return true;
6256 default:
6257 return false;
6258 }
6259 }
6260
6261 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6262 unsigned int cmd, unsigned long arg)
6263 {
6264 int err = 0;
6265 void __user *argp = (void __user *)arg;
6266 struct mddev *mddev = NULL;
6267 int ro;
6268
6269 if (!md_ioctl_valid(cmd))
6270 return -ENOTTY;
6271
6272 switch (cmd) {
6273 case RAID_VERSION:
6274 case GET_ARRAY_INFO:
6275 case GET_DISK_INFO:
6276 break;
6277 default:
6278 if (!capable(CAP_SYS_ADMIN))
6279 return -EACCES;
6280 }
6281
6282 /*
6283 * Commands dealing with the RAID driver but not any
6284 * particular array:
6285 */
6286 switch (cmd) {
6287 case RAID_VERSION:
6288 err = get_version(argp);
6289 goto out;
6290
6291 #ifndef MODULE
6292 case RAID_AUTORUN:
6293 err = 0;
6294 autostart_arrays(arg);
6295 goto out;
6296 #endif
6297 default:;
6298 }
6299
6300 /*
6301 * Commands creating/starting a new array:
6302 */
6303
6304 mddev = bdev->bd_disk->private_data;
6305
6306 if (!mddev) {
6307 BUG();
6308 goto out;
6309 }
6310
6311 /* Some actions do not requires the mutex */
6312 switch (cmd) {
6313 case GET_ARRAY_INFO:
6314 if (!mddev->raid_disks && !mddev->external)
6315 err = -ENODEV;
6316 else
6317 err = get_array_info(mddev, argp);
6318 goto out;
6319
6320 case GET_DISK_INFO:
6321 if (!mddev->raid_disks && !mddev->external)
6322 err = -ENODEV;
6323 else
6324 err = get_disk_info(mddev, argp);
6325 goto out;
6326
6327 case SET_DISK_FAULTY:
6328 err = set_disk_faulty(mddev, new_decode_dev(arg));
6329 goto out;
6330
6331 case GET_BITMAP_FILE:
6332 err = get_bitmap_file(mddev, argp);
6333 goto out;
6334
6335 }
6336
6337 if (cmd == ADD_NEW_DISK)
6338 /* need to ensure md_delayed_delete() has completed */
6339 flush_workqueue(md_misc_wq);
6340
6341 if (cmd == HOT_REMOVE_DISK)
6342 /* need to ensure recovery thread has run */
6343 wait_event_interruptible_timeout(mddev->sb_wait,
6344 !test_bit(MD_RECOVERY_NEEDED,
6345 &mddev->flags),
6346 msecs_to_jiffies(5000));
6347 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6348 /* Need to flush page cache, and ensure no-one else opens
6349 * and writes
6350 */
6351 mutex_lock(&mddev->open_mutex);
6352 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6353 mutex_unlock(&mddev->open_mutex);
6354 err = -EBUSY;
6355 goto out;
6356 }
6357 set_bit(MD_STILL_CLOSED, &mddev->flags);
6358 mutex_unlock(&mddev->open_mutex);
6359 sync_blockdev(bdev);
6360 }
6361 err = mddev_lock(mddev);
6362 if (err) {
6363 printk(KERN_INFO
6364 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6365 err, cmd);
6366 goto out;
6367 }
6368
6369 if (cmd == SET_ARRAY_INFO) {
6370 mdu_array_info_t info;
6371 if (!arg)
6372 memset(&info, 0, sizeof(info));
6373 else if (copy_from_user(&info, argp, sizeof(info))) {
6374 err = -EFAULT;
6375 goto unlock;
6376 }
6377 if (mddev->pers) {
6378 err = update_array_info(mddev, &info);
6379 if (err) {
6380 printk(KERN_WARNING "md: couldn't update"
6381 " array info. %d\n", err);
6382 goto unlock;
6383 }
6384 goto unlock;
6385 }
6386 if (!list_empty(&mddev->disks)) {
6387 printk(KERN_WARNING
6388 "md: array %s already has disks!\n",
6389 mdname(mddev));
6390 err = -EBUSY;
6391 goto unlock;
6392 }
6393 if (mddev->raid_disks) {
6394 printk(KERN_WARNING
6395 "md: array %s already initialised!\n",
6396 mdname(mddev));
6397 err = -EBUSY;
6398 goto unlock;
6399 }
6400 err = set_array_info(mddev, &info);
6401 if (err) {
6402 printk(KERN_WARNING "md: couldn't set"
6403 " array info. %d\n", err);
6404 goto unlock;
6405 }
6406 goto unlock;
6407 }
6408
6409 /*
6410 * Commands querying/configuring an existing array:
6411 */
6412 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6413 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6414 if ((!mddev->raid_disks && !mddev->external)
6415 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6416 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6417 && cmd != GET_BITMAP_FILE) {
6418 err = -ENODEV;
6419 goto unlock;
6420 }
6421
6422 /*
6423 * Commands even a read-only array can execute:
6424 */
6425 switch (cmd) {
6426 case RESTART_ARRAY_RW:
6427 err = restart_array(mddev);
6428 goto unlock;
6429
6430 case STOP_ARRAY:
6431 err = do_md_stop(mddev, 0, bdev);
6432 goto unlock;
6433
6434 case STOP_ARRAY_RO:
6435 err = md_set_readonly(mddev, bdev);
6436 goto unlock;
6437
6438 case HOT_REMOVE_DISK:
6439 err = hot_remove_disk(mddev, new_decode_dev(arg));
6440 goto unlock;
6441
6442 case ADD_NEW_DISK:
6443 /* We can support ADD_NEW_DISK on read-only arrays
6444 * on if we are re-adding a preexisting device.
6445 * So require mddev->pers and MD_DISK_SYNC.
6446 */
6447 if (mddev->pers) {
6448 mdu_disk_info_t info;
6449 if (copy_from_user(&info, argp, sizeof(info)))
6450 err = -EFAULT;
6451 else if (!(info.state & (1<<MD_DISK_SYNC)))
6452 /* Need to clear read-only for this */
6453 break;
6454 else
6455 err = add_new_disk(mddev, &info);
6456 goto unlock;
6457 }
6458 break;
6459
6460 case BLKROSET:
6461 if (get_user(ro, (int __user *)(arg))) {
6462 err = -EFAULT;
6463 goto unlock;
6464 }
6465 err = -EINVAL;
6466
6467 /* if the bdev is going readonly the value of mddev->ro
6468 * does not matter, no writes are coming
6469 */
6470 if (ro)
6471 goto unlock;
6472
6473 /* are we are already prepared for writes? */
6474 if (mddev->ro != 1)
6475 goto unlock;
6476
6477 /* transitioning to readauto need only happen for
6478 * arrays that call md_write_start
6479 */
6480 if (mddev->pers) {
6481 err = restart_array(mddev);
6482 if (err == 0) {
6483 mddev->ro = 2;
6484 set_disk_ro(mddev->gendisk, 0);
6485 }
6486 }
6487 goto unlock;
6488 }
6489
6490 /*
6491 * The remaining ioctls are changing the state of the
6492 * superblock, so we do not allow them on read-only arrays.
6493 */
6494 if (mddev->ro && mddev->pers) {
6495 if (mddev->ro == 2) {
6496 mddev->ro = 0;
6497 sysfs_notify_dirent_safe(mddev->sysfs_state);
6498 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6499 /* mddev_unlock will wake thread */
6500 /* If a device failed while we were read-only, we
6501 * need to make sure the metadata is updated now.
6502 */
6503 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6504 mddev_unlock(mddev);
6505 wait_event(mddev->sb_wait,
6506 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6507 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6508 mddev_lock_nointr(mddev);
6509 }
6510 } else {
6511 err = -EROFS;
6512 goto unlock;
6513 }
6514 }
6515
6516 switch (cmd) {
6517 case ADD_NEW_DISK:
6518 {
6519 mdu_disk_info_t info;
6520 if (copy_from_user(&info, argp, sizeof(info)))
6521 err = -EFAULT;
6522 else
6523 err = add_new_disk(mddev, &info);
6524 goto unlock;
6525 }
6526
6527 case HOT_ADD_DISK:
6528 err = hot_add_disk(mddev, new_decode_dev(arg));
6529 goto unlock;
6530
6531 case RUN_ARRAY:
6532 err = do_md_run(mddev);
6533 goto unlock;
6534
6535 case SET_BITMAP_FILE:
6536 err = set_bitmap_file(mddev, (int)arg);
6537 goto unlock;
6538
6539 default:
6540 err = -EINVAL;
6541 goto unlock;
6542 }
6543
6544 unlock:
6545 if (mddev->hold_active == UNTIL_IOCTL &&
6546 err != -EINVAL)
6547 mddev->hold_active = 0;
6548 mddev_unlock(mddev);
6549 out:
6550 return err;
6551 }
6552 #ifdef CONFIG_COMPAT
6553 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6554 unsigned int cmd, unsigned long arg)
6555 {
6556 switch (cmd) {
6557 case HOT_REMOVE_DISK:
6558 case HOT_ADD_DISK:
6559 case SET_DISK_FAULTY:
6560 case SET_BITMAP_FILE:
6561 /* These take in integer arg, do not convert */
6562 break;
6563 default:
6564 arg = (unsigned long)compat_ptr(arg);
6565 break;
6566 }
6567
6568 return md_ioctl(bdev, mode, cmd, arg);
6569 }
6570 #endif /* CONFIG_COMPAT */
6571
6572 static int md_open(struct block_device *bdev, fmode_t mode)
6573 {
6574 /*
6575 * Succeed if we can lock the mddev, which confirms that
6576 * it isn't being stopped right now.
6577 */
6578 struct mddev *mddev = mddev_find(bdev->bd_dev);
6579 int err;
6580
6581 if (!mddev)
6582 return -ENODEV;
6583
6584 if (mddev->gendisk != bdev->bd_disk) {
6585 /* we are racing with mddev_put which is discarding this
6586 * bd_disk.
6587 */
6588 mddev_put(mddev);
6589 /* Wait until bdev->bd_disk is definitely gone */
6590 flush_workqueue(md_misc_wq);
6591 /* Then retry the open from the top */
6592 return -ERESTARTSYS;
6593 }
6594 BUG_ON(mddev != bdev->bd_disk->private_data);
6595
6596 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6597 goto out;
6598
6599 err = 0;
6600 atomic_inc(&mddev->openers);
6601 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6602 mutex_unlock(&mddev->open_mutex);
6603
6604 check_disk_change(bdev);
6605 out:
6606 return err;
6607 }
6608
6609 static void md_release(struct gendisk *disk, fmode_t mode)
6610 {
6611 struct mddev *mddev = disk->private_data;
6612
6613 BUG_ON(!mddev);
6614 atomic_dec(&mddev->openers);
6615 mddev_put(mddev);
6616 }
6617
6618 static int md_media_changed(struct gendisk *disk)
6619 {
6620 struct mddev *mddev = disk->private_data;
6621
6622 return mddev->changed;
6623 }
6624
6625 static int md_revalidate(struct gendisk *disk)
6626 {
6627 struct mddev *mddev = disk->private_data;
6628
6629 mddev->changed = 0;
6630 return 0;
6631 }
6632 static const struct block_device_operations md_fops =
6633 {
6634 .owner = THIS_MODULE,
6635 .open = md_open,
6636 .release = md_release,
6637 .ioctl = md_ioctl,
6638 #ifdef CONFIG_COMPAT
6639 .compat_ioctl = md_compat_ioctl,
6640 #endif
6641 .getgeo = md_getgeo,
6642 .media_changed = md_media_changed,
6643 .revalidate_disk= md_revalidate,
6644 };
6645
6646 static int md_thread(void *arg)
6647 {
6648 struct md_thread *thread = arg;
6649
6650 /*
6651 * md_thread is a 'system-thread', it's priority should be very
6652 * high. We avoid resource deadlocks individually in each
6653 * raid personality. (RAID5 does preallocation) We also use RR and
6654 * the very same RT priority as kswapd, thus we will never get
6655 * into a priority inversion deadlock.
6656 *
6657 * we definitely have to have equal or higher priority than
6658 * bdflush, otherwise bdflush will deadlock if there are too
6659 * many dirty RAID5 blocks.
6660 */
6661
6662 allow_signal(SIGKILL);
6663 while (!kthread_should_stop()) {
6664
6665 /* We need to wait INTERRUPTIBLE so that
6666 * we don't add to the load-average.
6667 * That means we need to be sure no signals are
6668 * pending
6669 */
6670 if (signal_pending(current))
6671 flush_signals(current);
6672
6673 wait_event_interruptible_timeout
6674 (thread->wqueue,
6675 test_bit(THREAD_WAKEUP, &thread->flags)
6676 || kthread_should_stop(),
6677 thread->timeout);
6678
6679 clear_bit(THREAD_WAKEUP, &thread->flags);
6680 if (!kthread_should_stop())
6681 thread->run(thread);
6682 }
6683
6684 return 0;
6685 }
6686
6687 void md_wakeup_thread(struct md_thread *thread)
6688 {
6689 if (thread) {
6690 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6691 set_bit(THREAD_WAKEUP, &thread->flags);
6692 wake_up(&thread->wqueue);
6693 }
6694 }
6695 EXPORT_SYMBOL(md_wakeup_thread);
6696
6697 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6698 struct mddev *mddev, const char *name)
6699 {
6700 struct md_thread *thread;
6701
6702 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6703 if (!thread)
6704 return NULL;
6705
6706 init_waitqueue_head(&thread->wqueue);
6707
6708 thread->run = run;
6709 thread->mddev = mddev;
6710 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6711 thread->tsk = kthread_run(md_thread, thread,
6712 "%s_%s",
6713 mdname(thread->mddev),
6714 name);
6715 if (IS_ERR(thread->tsk)) {
6716 kfree(thread);
6717 return NULL;
6718 }
6719 return thread;
6720 }
6721 EXPORT_SYMBOL(md_register_thread);
6722
6723 void md_unregister_thread(struct md_thread **threadp)
6724 {
6725 struct md_thread *thread = *threadp;
6726 if (!thread)
6727 return;
6728 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6729 /* Locking ensures that mddev_unlock does not wake_up a
6730 * non-existent thread
6731 */
6732 spin_lock(&pers_lock);
6733 *threadp = NULL;
6734 spin_unlock(&pers_lock);
6735
6736 kthread_stop(thread->tsk);
6737 kfree(thread);
6738 }
6739 EXPORT_SYMBOL(md_unregister_thread);
6740
6741 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6742 {
6743 if (!rdev || test_bit(Faulty, &rdev->flags))
6744 return;
6745
6746 if (!mddev->pers || !mddev->pers->error_handler)
6747 return;
6748 mddev->pers->error_handler(mddev,rdev);
6749 if (mddev->degraded)
6750 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6751 sysfs_notify_dirent_safe(rdev->sysfs_state);
6752 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6753 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6754 md_wakeup_thread(mddev->thread);
6755 if (mddev->event_work.func)
6756 queue_work(md_misc_wq, &mddev->event_work);
6757 md_new_event_inintr(mddev);
6758 }
6759 EXPORT_SYMBOL(md_error);
6760
6761 /* seq_file implementation /proc/mdstat */
6762
6763 static void status_unused(struct seq_file *seq)
6764 {
6765 int i = 0;
6766 struct md_rdev *rdev;
6767
6768 seq_printf(seq, "unused devices: ");
6769
6770 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6771 char b[BDEVNAME_SIZE];
6772 i++;
6773 seq_printf(seq, "%s ",
6774 bdevname(rdev->bdev,b));
6775 }
6776 if (!i)
6777 seq_printf(seq, "<none>");
6778
6779 seq_printf(seq, "\n");
6780 }
6781
6782 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6783 {
6784 sector_t max_sectors, resync, res;
6785 unsigned long dt, db;
6786 sector_t rt;
6787 int scale;
6788 unsigned int per_milli;
6789
6790 if (mddev->curr_resync <= 3)
6791 resync = 0;
6792 else
6793 resync = mddev->curr_resync
6794 - atomic_read(&mddev->recovery_active);
6795
6796 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6797 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6798 max_sectors = mddev->resync_max_sectors;
6799 else
6800 max_sectors = mddev->dev_sectors;
6801
6802 WARN_ON(max_sectors == 0);
6803 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6804 * in a sector_t, and (max_sectors>>scale) will fit in a
6805 * u32, as those are the requirements for sector_div.
6806 * Thus 'scale' must be at least 10
6807 */
6808 scale = 10;
6809 if (sizeof(sector_t) > sizeof(unsigned long)) {
6810 while ( max_sectors/2 > (1ULL<<(scale+32)))
6811 scale++;
6812 }
6813 res = (resync>>scale)*1000;
6814 sector_div(res, (u32)((max_sectors>>scale)+1));
6815
6816 per_milli = res;
6817 {
6818 int i, x = per_milli/50, y = 20-x;
6819 seq_printf(seq, "[");
6820 for (i = 0; i < x; i++)
6821 seq_printf(seq, "=");
6822 seq_printf(seq, ">");
6823 for (i = 0; i < y; i++)
6824 seq_printf(seq, ".");
6825 seq_printf(seq, "] ");
6826 }
6827 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6828 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6829 "reshape" :
6830 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6831 "check" :
6832 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6833 "resync" : "recovery"))),
6834 per_milli/10, per_milli % 10,
6835 (unsigned long long) resync/2,
6836 (unsigned long long) max_sectors/2);
6837
6838 /*
6839 * dt: time from mark until now
6840 * db: blocks written from mark until now
6841 * rt: remaining time
6842 *
6843 * rt is a sector_t, so could be 32bit or 64bit.
6844 * So we divide before multiply in case it is 32bit and close
6845 * to the limit.
6846 * We scale the divisor (db) by 32 to avoid losing precision
6847 * near the end of resync when the number of remaining sectors
6848 * is close to 'db'.
6849 * We then divide rt by 32 after multiplying by db to compensate.
6850 * The '+1' avoids division by zero if db is very small.
6851 */
6852 dt = ((jiffies - mddev->resync_mark) / HZ);
6853 if (!dt) dt++;
6854 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6855 - mddev->resync_mark_cnt;
6856
6857 rt = max_sectors - resync; /* number of remaining sectors */
6858 sector_div(rt, db/32+1);
6859 rt *= dt;
6860 rt >>= 5;
6861
6862 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6863 ((unsigned long)rt % 60)/6);
6864
6865 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6866 }
6867
6868 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6869 {
6870 struct list_head *tmp;
6871 loff_t l = *pos;
6872 struct mddev *mddev;
6873
6874 if (l >= 0x10000)
6875 return NULL;
6876 if (!l--)
6877 /* header */
6878 return (void*)1;
6879
6880 spin_lock(&all_mddevs_lock);
6881 list_for_each(tmp,&all_mddevs)
6882 if (!l--) {
6883 mddev = list_entry(tmp, struct mddev, all_mddevs);
6884 mddev_get(mddev);
6885 spin_unlock(&all_mddevs_lock);
6886 return mddev;
6887 }
6888 spin_unlock(&all_mddevs_lock);
6889 if (!l--)
6890 return (void*)2;/* tail */
6891 return NULL;
6892 }
6893
6894 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6895 {
6896 struct list_head *tmp;
6897 struct mddev *next_mddev, *mddev = v;
6898
6899 ++*pos;
6900 if (v == (void*)2)
6901 return NULL;
6902
6903 spin_lock(&all_mddevs_lock);
6904 if (v == (void*)1)
6905 tmp = all_mddevs.next;
6906 else
6907 tmp = mddev->all_mddevs.next;
6908 if (tmp != &all_mddevs)
6909 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6910 else {
6911 next_mddev = (void*)2;
6912 *pos = 0x10000;
6913 }
6914 spin_unlock(&all_mddevs_lock);
6915
6916 if (v != (void*)1)
6917 mddev_put(mddev);
6918 return next_mddev;
6919
6920 }
6921
6922 static void md_seq_stop(struct seq_file *seq, void *v)
6923 {
6924 struct mddev *mddev = v;
6925
6926 if (mddev && v != (void*)1 && v != (void*)2)
6927 mddev_put(mddev);
6928 }
6929
6930 static int md_seq_show(struct seq_file *seq, void *v)
6931 {
6932 struct mddev *mddev = v;
6933 sector_t sectors;
6934 struct md_rdev *rdev;
6935
6936 if (v == (void*)1) {
6937 struct md_personality *pers;
6938 seq_printf(seq, "Personalities : ");
6939 spin_lock(&pers_lock);
6940 list_for_each_entry(pers, &pers_list, list)
6941 seq_printf(seq, "[%s] ", pers->name);
6942
6943 spin_unlock(&pers_lock);
6944 seq_printf(seq, "\n");
6945 seq->poll_event = atomic_read(&md_event_count);
6946 return 0;
6947 }
6948 if (v == (void*)2) {
6949 status_unused(seq);
6950 return 0;
6951 }
6952
6953 spin_lock(&mddev->lock);
6954 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6955 seq_printf(seq, "%s : %sactive", mdname(mddev),
6956 mddev->pers ? "" : "in");
6957 if (mddev->pers) {
6958 if (mddev->ro==1)
6959 seq_printf(seq, " (read-only)");
6960 if (mddev->ro==2)
6961 seq_printf(seq, " (auto-read-only)");
6962 seq_printf(seq, " %s", mddev->pers->name);
6963 }
6964
6965 sectors = 0;
6966 rcu_read_lock();
6967 rdev_for_each_rcu(rdev, mddev) {
6968 char b[BDEVNAME_SIZE];
6969 seq_printf(seq, " %s[%d]",
6970 bdevname(rdev->bdev,b), rdev->desc_nr);
6971 if (test_bit(WriteMostly, &rdev->flags))
6972 seq_printf(seq, "(W)");
6973 if (test_bit(Faulty, &rdev->flags)) {
6974 seq_printf(seq, "(F)");
6975 continue;
6976 }
6977 if (rdev->raid_disk < 0)
6978 seq_printf(seq, "(S)"); /* spare */
6979 if (test_bit(Replacement, &rdev->flags))
6980 seq_printf(seq, "(R)");
6981 sectors += rdev->sectors;
6982 }
6983 rcu_read_unlock();
6984
6985 if (!list_empty(&mddev->disks)) {
6986 if (mddev->pers)
6987 seq_printf(seq, "\n %llu blocks",
6988 (unsigned long long)
6989 mddev->array_sectors / 2);
6990 else
6991 seq_printf(seq, "\n %llu blocks",
6992 (unsigned long long)sectors / 2);
6993 }
6994 if (mddev->persistent) {
6995 if (mddev->major_version != 0 ||
6996 mddev->minor_version != 90) {
6997 seq_printf(seq," super %d.%d",
6998 mddev->major_version,
6999 mddev->minor_version);
7000 }
7001 } else if (mddev->external)
7002 seq_printf(seq, " super external:%s",
7003 mddev->metadata_type);
7004 else
7005 seq_printf(seq, " super non-persistent");
7006
7007 if (mddev->pers) {
7008 mddev->pers->status(seq, mddev);
7009 seq_printf(seq, "\n ");
7010 if (mddev->pers->sync_request) {
7011 if (mddev->curr_resync > 2) {
7012 status_resync(seq, mddev);
7013 seq_printf(seq, "\n ");
7014 } else if (mddev->curr_resync >= 1)
7015 seq_printf(seq, "\tresync=DELAYED\n ");
7016 else if (mddev->recovery_cp < MaxSector)
7017 seq_printf(seq, "\tresync=PENDING\n ");
7018 }
7019 } else
7020 seq_printf(seq, "\n ");
7021
7022 bitmap_status(seq, mddev->bitmap);
7023
7024 seq_printf(seq, "\n");
7025 }
7026 spin_unlock(&mddev->lock);
7027
7028 return 0;
7029 }
7030
7031 static const struct seq_operations md_seq_ops = {
7032 .start = md_seq_start,
7033 .next = md_seq_next,
7034 .stop = md_seq_stop,
7035 .show = md_seq_show,
7036 };
7037
7038 static int md_seq_open(struct inode *inode, struct file *file)
7039 {
7040 struct seq_file *seq;
7041 int error;
7042
7043 error = seq_open(file, &md_seq_ops);
7044 if (error)
7045 return error;
7046
7047 seq = file->private_data;
7048 seq->poll_event = atomic_read(&md_event_count);
7049 return error;
7050 }
7051
7052 static int md_unloading;
7053 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7054 {
7055 struct seq_file *seq = filp->private_data;
7056 int mask;
7057
7058 if (md_unloading)
7059 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7060 poll_wait(filp, &md_event_waiters, wait);
7061
7062 /* always allow read */
7063 mask = POLLIN | POLLRDNORM;
7064
7065 if (seq->poll_event != atomic_read(&md_event_count))
7066 mask |= POLLERR | POLLPRI;
7067 return mask;
7068 }
7069
7070 static const struct file_operations md_seq_fops = {
7071 .owner = THIS_MODULE,
7072 .open = md_seq_open,
7073 .read = seq_read,
7074 .llseek = seq_lseek,
7075 .release = seq_release_private,
7076 .poll = mdstat_poll,
7077 };
7078
7079 int register_md_personality(struct md_personality *p)
7080 {
7081 printk(KERN_INFO "md: %s personality registered for level %d\n",
7082 p->name, p->level);
7083 spin_lock(&pers_lock);
7084 list_add_tail(&p->list, &pers_list);
7085 spin_unlock(&pers_lock);
7086 return 0;
7087 }
7088 EXPORT_SYMBOL(register_md_personality);
7089
7090 int unregister_md_personality(struct md_personality *p)
7091 {
7092 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7093 spin_lock(&pers_lock);
7094 list_del_init(&p->list);
7095 spin_unlock(&pers_lock);
7096 return 0;
7097 }
7098 EXPORT_SYMBOL(unregister_md_personality);
7099
7100 static int is_mddev_idle(struct mddev *mddev, int init)
7101 {
7102 struct md_rdev *rdev;
7103 int idle;
7104 int curr_events;
7105
7106 idle = 1;
7107 rcu_read_lock();
7108 rdev_for_each_rcu(rdev, mddev) {
7109 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7110 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7111 (int)part_stat_read(&disk->part0, sectors[1]) -
7112 atomic_read(&disk->sync_io);
7113 /* sync IO will cause sync_io to increase before the disk_stats
7114 * as sync_io is counted when a request starts, and
7115 * disk_stats is counted when it completes.
7116 * So resync activity will cause curr_events to be smaller than
7117 * when there was no such activity.
7118 * non-sync IO will cause disk_stat to increase without
7119 * increasing sync_io so curr_events will (eventually)
7120 * be larger than it was before. Once it becomes
7121 * substantially larger, the test below will cause
7122 * the array to appear non-idle, and resync will slow
7123 * down.
7124 * If there is a lot of outstanding resync activity when
7125 * we set last_event to curr_events, then all that activity
7126 * completing might cause the array to appear non-idle
7127 * and resync will be slowed down even though there might
7128 * not have been non-resync activity. This will only
7129 * happen once though. 'last_events' will soon reflect
7130 * the state where there is little or no outstanding
7131 * resync requests, and further resync activity will
7132 * always make curr_events less than last_events.
7133 *
7134 */
7135 if (init || curr_events - rdev->last_events > 64) {
7136 rdev->last_events = curr_events;
7137 idle = 0;
7138 }
7139 }
7140 rcu_read_unlock();
7141 return idle;
7142 }
7143
7144 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7145 {
7146 /* another "blocks" (512byte) blocks have been synced */
7147 atomic_sub(blocks, &mddev->recovery_active);
7148 wake_up(&mddev->recovery_wait);
7149 if (!ok) {
7150 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7151 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7152 md_wakeup_thread(mddev->thread);
7153 // stop recovery, signal do_sync ....
7154 }
7155 }
7156 EXPORT_SYMBOL(md_done_sync);
7157
7158 /* md_write_start(mddev, bi)
7159 * If we need to update some array metadata (e.g. 'active' flag
7160 * in superblock) before writing, schedule a superblock update
7161 * and wait for it to complete.
7162 */
7163 void md_write_start(struct mddev *mddev, struct bio *bi)
7164 {
7165 int did_change = 0;
7166 if (bio_data_dir(bi) != WRITE)
7167 return;
7168
7169 BUG_ON(mddev->ro == 1);
7170 if (mddev->ro == 2) {
7171 /* need to switch to read/write */
7172 mddev->ro = 0;
7173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7174 md_wakeup_thread(mddev->thread);
7175 md_wakeup_thread(mddev->sync_thread);
7176 did_change = 1;
7177 }
7178 atomic_inc(&mddev->writes_pending);
7179 if (mddev->safemode == 1)
7180 mddev->safemode = 0;
7181 if (mddev->in_sync) {
7182 spin_lock(&mddev->lock);
7183 if (mddev->in_sync) {
7184 mddev->in_sync = 0;
7185 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7186 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7187 md_wakeup_thread(mddev->thread);
7188 did_change = 1;
7189 }
7190 spin_unlock(&mddev->lock);
7191 }
7192 if (did_change)
7193 sysfs_notify_dirent_safe(mddev->sysfs_state);
7194 wait_event(mddev->sb_wait,
7195 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7196 }
7197 EXPORT_SYMBOL(md_write_start);
7198
7199 void md_write_end(struct mddev *mddev)
7200 {
7201 if (atomic_dec_and_test(&mddev->writes_pending)) {
7202 if (mddev->safemode == 2)
7203 md_wakeup_thread(mddev->thread);
7204 else if (mddev->safemode_delay)
7205 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7206 }
7207 }
7208 EXPORT_SYMBOL(md_write_end);
7209
7210 /* md_allow_write(mddev)
7211 * Calling this ensures that the array is marked 'active' so that writes
7212 * may proceed without blocking. It is important to call this before
7213 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7214 * Must be called with mddev_lock held.
7215 *
7216 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7217 * is dropped, so return -EAGAIN after notifying userspace.
7218 */
7219 int md_allow_write(struct mddev *mddev)
7220 {
7221 if (!mddev->pers)
7222 return 0;
7223 if (mddev->ro)
7224 return 0;
7225 if (!mddev->pers->sync_request)
7226 return 0;
7227
7228 spin_lock(&mddev->lock);
7229 if (mddev->in_sync) {
7230 mddev->in_sync = 0;
7231 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7232 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7233 if (mddev->safemode_delay &&
7234 mddev->safemode == 0)
7235 mddev->safemode = 1;
7236 spin_unlock(&mddev->lock);
7237 md_update_sb(mddev, 0);
7238 sysfs_notify_dirent_safe(mddev->sysfs_state);
7239 } else
7240 spin_unlock(&mddev->lock);
7241
7242 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7243 return -EAGAIN;
7244 else
7245 return 0;
7246 }
7247 EXPORT_SYMBOL_GPL(md_allow_write);
7248
7249 #define SYNC_MARKS 10
7250 #define SYNC_MARK_STEP (3*HZ)
7251 #define UPDATE_FREQUENCY (5*60*HZ)
7252 void md_do_sync(struct md_thread *thread)
7253 {
7254 struct mddev *mddev = thread->mddev;
7255 struct mddev *mddev2;
7256 unsigned int currspeed = 0,
7257 window;
7258 sector_t max_sectors,j, io_sectors, recovery_done;
7259 unsigned long mark[SYNC_MARKS];
7260 unsigned long update_time;
7261 sector_t mark_cnt[SYNC_MARKS];
7262 int last_mark,m;
7263 struct list_head *tmp;
7264 sector_t last_check;
7265 int skipped = 0;
7266 struct md_rdev *rdev;
7267 char *desc, *action = NULL;
7268 struct blk_plug plug;
7269
7270 /* just incase thread restarts... */
7271 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7272 return;
7273 if (mddev->ro) {/* never try to sync a read-only array */
7274 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7275 return;
7276 }
7277
7278 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7279 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7280 desc = "data-check";
7281 action = "check";
7282 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7283 desc = "requested-resync";
7284 action = "repair";
7285 } else
7286 desc = "resync";
7287 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7288 desc = "reshape";
7289 else
7290 desc = "recovery";
7291
7292 mddev->last_sync_action = action ?: desc;
7293
7294 /* we overload curr_resync somewhat here.
7295 * 0 == not engaged in resync at all
7296 * 2 == checking that there is no conflict with another sync
7297 * 1 == like 2, but have yielded to allow conflicting resync to
7298 * commense
7299 * other == active in resync - this many blocks
7300 *
7301 * Before starting a resync we must have set curr_resync to
7302 * 2, and then checked that every "conflicting" array has curr_resync
7303 * less than ours. When we find one that is the same or higher
7304 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7305 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7306 * This will mean we have to start checking from the beginning again.
7307 *
7308 */
7309
7310 do {
7311 mddev->curr_resync = 2;
7312
7313 try_again:
7314 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7315 goto skip;
7316 for_each_mddev(mddev2, tmp) {
7317 if (mddev2 == mddev)
7318 continue;
7319 if (!mddev->parallel_resync
7320 && mddev2->curr_resync
7321 && match_mddev_units(mddev, mddev2)) {
7322 DEFINE_WAIT(wq);
7323 if (mddev < mddev2 && mddev->curr_resync == 2) {
7324 /* arbitrarily yield */
7325 mddev->curr_resync = 1;
7326 wake_up(&resync_wait);
7327 }
7328 if (mddev > mddev2 && mddev->curr_resync == 1)
7329 /* no need to wait here, we can wait the next
7330 * time 'round when curr_resync == 2
7331 */
7332 continue;
7333 /* We need to wait 'interruptible' so as not to
7334 * contribute to the load average, and not to
7335 * be caught by 'softlockup'
7336 */
7337 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7338 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7339 mddev2->curr_resync >= mddev->curr_resync) {
7340 printk(KERN_INFO "md: delaying %s of %s"
7341 " until %s has finished (they"
7342 " share one or more physical units)\n",
7343 desc, mdname(mddev), mdname(mddev2));
7344 mddev_put(mddev2);
7345 if (signal_pending(current))
7346 flush_signals(current);
7347 schedule();
7348 finish_wait(&resync_wait, &wq);
7349 goto try_again;
7350 }
7351 finish_wait(&resync_wait, &wq);
7352 }
7353 }
7354 } while (mddev->curr_resync < 2);
7355
7356 j = 0;
7357 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7358 /* resync follows the size requested by the personality,
7359 * which defaults to physical size, but can be virtual size
7360 */
7361 max_sectors = mddev->resync_max_sectors;
7362 atomic64_set(&mddev->resync_mismatches, 0);
7363 /* we don't use the checkpoint if there's a bitmap */
7364 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7365 j = mddev->resync_min;
7366 else if (!mddev->bitmap)
7367 j = mddev->recovery_cp;
7368
7369 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7370 max_sectors = mddev->resync_max_sectors;
7371 else {
7372 /* recovery follows the physical size of devices */
7373 max_sectors = mddev->dev_sectors;
7374 j = MaxSector;
7375 rcu_read_lock();
7376 rdev_for_each_rcu(rdev, mddev)
7377 if (rdev->raid_disk >= 0 &&
7378 !test_bit(Faulty, &rdev->flags) &&
7379 !test_bit(In_sync, &rdev->flags) &&
7380 rdev->recovery_offset < j)
7381 j = rdev->recovery_offset;
7382 rcu_read_unlock();
7383
7384 /* If there is a bitmap, we need to make sure all
7385 * writes that started before we added a spare
7386 * complete before we start doing a recovery.
7387 * Otherwise the write might complete and (via
7388 * bitmap_endwrite) set a bit in the bitmap after the
7389 * recovery has checked that bit and skipped that
7390 * region.
7391 */
7392 if (mddev->bitmap) {
7393 mddev->pers->quiesce(mddev, 1);
7394 mddev->pers->quiesce(mddev, 0);
7395 }
7396 }
7397
7398 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7399 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7400 " %d KB/sec/disk.\n", speed_min(mddev));
7401 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7402 "(but not more than %d KB/sec) for %s.\n",
7403 speed_max(mddev), desc);
7404
7405 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7406
7407 io_sectors = 0;
7408 for (m = 0; m < SYNC_MARKS; m++) {
7409 mark[m] = jiffies;
7410 mark_cnt[m] = io_sectors;
7411 }
7412 last_mark = 0;
7413 mddev->resync_mark = mark[last_mark];
7414 mddev->resync_mark_cnt = mark_cnt[last_mark];
7415
7416 /*
7417 * Tune reconstruction:
7418 */
7419 window = 32*(PAGE_SIZE/512);
7420 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7421 window/2, (unsigned long long)max_sectors/2);
7422
7423 atomic_set(&mddev->recovery_active, 0);
7424 last_check = 0;
7425
7426 if (j>2) {
7427 printk(KERN_INFO
7428 "md: resuming %s of %s from checkpoint.\n",
7429 desc, mdname(mddev));
7430 mddev->curr_resync = j;
7431 } else
7432 mddev->curr_resync = 3; /* no longer delayed */
7433 mddev->curr_resync_completed = j;
7434 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7435 md_new_event(mddev);
7436 update_time = jiffies;
7437
7438 blk_start_plug(&plug);
7439 while (j < max_sectors) {
7440 sector_t sectors;
7441
7442 skipped = 0;
7443
7444 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7445 ((mddev->curr_resync > mddev->curr_resync_completed &&
7446 (mddev->curr_resync - mddev->curr_resync_completed)
7447 > (max_sectors >> 4)) ||
7448 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7449 (j - mddev->curr_resync_completed)*2
7450 >= mddev->resync_max - mddev->curr_resync_completed
7451 )) {
7452 /* time to update curr_resync_completed */
7453 wait_event(mddev->recovery_wait,
7454 atomic_read(&mddev->recovery_active) == 0);
7455 mddev->curr_resync_completed = j;
7456 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7457 j > mddev->recovery_cp)
7458 mddev->recovery_cp = j;
7459 update_time = jiffies;
7460 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7461 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7462 }
7463
7464 while (j >= mddev->resync_max &&
7465 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7466 /* As this condition is controlled by user-space,
7467 * we can block indefinitely, so use '_interruptible'
7468 * to avoid triggering warnings.
7469 */
7470 flush_signals(current); /* just in case */
7471 wait_event_interruptible(mddev->recovery_wait,
7472 mddev->resync_max > j
7473 || test_bit(MD_RECOVERY_INTR,
7474 &mddev->recovery));
7475 }
7476
7477 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7478 break;
7479
7480 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7481 currspeed < speed_min(mddev));
7482 if (sectors == 0) {
7483 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7484 break;
7485 }
7486
7487 if (!skipped) { /* actual IO requested */
7488 io_sectors += sectors;
7489 atomic_add(sectors, &mddev->recovery_active);
7490 }
7491
7492 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7493 break;
7494
7495 j += sectors;
7496 if (j > 2)
7497 mddev->curr_resync = j;
7498 mddev->curr_mark_cnt = io_sectors;
7499 if (last_check == 0)
7500 /* this is the earliest that rebuild will be
7501 * visible in /proc/mdstat
7502 */
7503 md_new_event(mddev);
7504
7505 if (last_check + window > io_sectors || j == max_sectors)
7506 continue;
7507
7508 last_check = io_sectors;
7509 repeat:
7510 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7511 /* step marks */
7512 int next = (last_mark+1) % SYNC_MARKS;
7513
7514 mddev->resync_mark = mark[next];
7515 mddev->resync_mark_cnt = mark_cnt[next];
7516 mark[next] = jiffies;
7517 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7518 last_mark = next;
7519 }
7520
7521 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7522 break;
7523
7524 /*
7525 * this loop exits only if either when we are slower than
7526 * the 'hard' speed limit, or the system was IO-idle for
7527 * a jiffy.
7528 * the system might be non-idle CPU-wise, but we only care
7529 * about not overloading the IO subsystem. (things like an
7530 * e2fsck being done on the RAID array should execute fast)
7531 */
7532 cond_resched();
7533
7534 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7535 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7536 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7537
7538 if (currspeed > speed_min(mddev)) {
7539 if ((currspeed > speed_max(mddev)) ||
7540 !is_mddev_idle(mddev, 0)) {
7541 msleep(500);
7542 goto repeat;
7543 }
7544 }
7545 }
7546 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7547 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7548 ? "interrupted" : "done");
7549 /*
7550 * this also signals 'finished resyncing' to md_stop
7551 */
7552 blk_finish_plug(&plug);
7553 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7554
7555 /* tell personality that we are finished */
7556 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7557
7558 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7559 mddev->curr_resync > 2) {
7560 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7561 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7562 if (mddev->curr_resync >= mddev->recovery_cp) {
7563 printk(KERN_INFO
7564 "md: checkpointing %s of %s.\n",
7565 desc, mdname(mddev));
7566 if (test_bit(MD_RECOVERY_ERROR,
7567 &mddev->recovery))
7568 mddev->recovery_cp =
7569 mddev->curr_resync_completed;
7570 else
7571 mddev->recovery_cp =
7572 mddev->curr_resync;
7573 }
7574 } else
7575 mddev->recovery_cp = MaxSector;
7576 } else {
7577 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7578 mddev->curr_resync = MaxSector;
7579 rcu_read_lock();
7580 rdev_for_each_rcu(rdev, mddev)
7581 if (rdev->raid_disk >= 0 &&
7582 mddev->delta_disks >= 0 &&
7583 !test_bit(Faulty, &rdev->flags) &&
7584 !test_bit(In_sync, &rdev->flags) &&
7585 rdev->recovery_offset < mddev->curr_resync)
7586 rdev->recovery_offset = mddev->curr_resync;
7587 rcu_read_unlock();
7588 }
7589 }
7590 skip:
7591 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7592
7593 spin_lock(&mddev->lock);
7594 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7595 /* We completed so min/max setting can be forgotten if used. */
7596 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7597 mddev->resync_min = 0;
7598 mddev->resync_max = MaxSector;
7599 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7600 mddev->resync_min = mddev->curr_resync_completed;
7601 mddev->curr_resync = 0;
7602 spin_unlock(&mddev->lock);
7603
7604 wake_up(&resync_wait);
7605 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7606 md_wakeup_thread(mddev->thread);
7607 return;
7608 }
7609 EXPORT_SYMBOL_GPL(md_do_sync);
7610
7611 static int remove_and_add_spares(struct mddev *mddev,
7612 struct md_rdev *this)
7613 {
7614 struct md_rdev *rdev;
7615 int spares = 0;
7616 int removed = 0;
7617
7618 rdev_for_each(rdev, mddev)
7619 if ((this == NULL || rdev == this) &&
7620 rdev->raid_disk >= 0 &&
7621 !test_bit(Blocked, &rdev->flags) &&
7622 (test_bit(Faulty, &rdev->flags) ||
7623 ! test_bit(In_sync, &rdev->flags)) &&
7624 atomic_read(&rdev->nr_pending)==0) {
7625 if (mddev->pers->hot_remove_disk(
7626 mddev, rdev) == 0) {
7627 sysfs_unlink_rdev(mddev, rdev);
7628 rdev->raid_disk = -1;
7629 removed++;
7630 }
7631 }
7632 if (removed && mddev->kobj.sd)
7633 sysfs_notify(&mddev->kobj, NULL, "degraded");
7634
7635 if (this)
7636 goto no_add;
7637
7638 rdev_for_each(rdev, mddev) {
7639 if (rdev->raid_disk >= 0 &&
7640 !test_bit(In_sync, &rdev->flags) &&
7641 !test_bit(Faulty, &rdev->flags))
7642 spares++;
7643 if (rdev->raid_disk >= 0)
7644 continue;
7645 if (test_bit(Faulty, &rdev->flags))
7646 continue;
7647 if (mddev->ro &&
7648 ! (rdev->saved_raid_disk >= 0 &&
7649 !test_bit(Bitmap_sync, &rdev->flags)))
7650 continue;
7651
7652 if (rdev->saved_raid_disk < 0)
7653 rdev->recovery_offset = 0;
7654 if (mddev->pers->
7655 hot_add_disk(mddev, rdev) == 0) {
7656 if (sysfs_link_rdev(mddev, rdev))
7657 /* failure here is OK */;
7658 spares++;
7659 md_new_event(mddev);
7660 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7661 }
7662 }
7663 no_add:
7664 if (removed)
7665 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7666 return spares;
7667 }
7668
7669 static void md_start_sync(struct work_struct *ws)
7670 {
7671 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7672
7673 mddev->sync_thread = md_register_thread(md_do_sync,
7674 mddev,
7675 "resync");
7676 if (!mddev->sync_thread) {
7677 printk(KERN_ERR "%s: could not start resync"
7678 " thread...\n",
7679 mdname(mddev));
7680 /* leave the spares where they are, it shouldn't hurt */
7681 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7682 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7683 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7684 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7685 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7686 wake_up(&resync_wait);
7687 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7688 &mddev->recovery))
7689 if (mddev->sysfs_action)
7690 sysfs_notify_dirent_safe(mddev->sysfs_action);
7691 } else
7692 md_wakeup_thread(mddev->sync_thread);
7693 sysfs_notify_dirent_safe(mddev->sysfs_action);
7694 md_new_event(mddev);
7695 }
7696
7697 /*
7698 * This routine is regularly called by all per-raid-array threads to
7699 * deal with generic issues like resync and super-block update.
7700 * Raid personalities that don't have a thread (linear/raid0) do not
7701 * need this as they never do any recovery or update the superblock.
7702 *
7703 * It does not do any resync itself, but rather "forks" off other threads
7704 * to do that as needed.
7705 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7706 * "->recovery" and create a thread at ->sync_thread.
7707 * When the thread finishes it sets MD_RECOVERY_DONE
7708 * and wakeups up this thread which will reap the thread and finish up.
7709 * This thread also removes any faulty devices (with nr_pending == 0).
7710 *
7711 * The overall approach is:
7712 * 1/ if the superblock needs updating, update it.
7713 * 2/ If a recovery thread is running, don't do anything else.
7714 * 3/ If recovery has finished, clean up, possibly marking spares active.
7715 * 4/ If there are any faulty devices, remove them.
7716 * 5/ If array is degraded, try to add spares devices
7717 * 6/ If array has spares or is not in-sync, start a resync thread.
7718 */
7719 void md_check_recovery(struct mddev *mddev)
7720 {
7721 if (mddev->suspended)
7722 return;
7723
7724 if (mddev->bitmap)
7725 bitmap_daemon_work(mddev);
7726
7727 if (signal_pending(current)) {
7728 if (mddev->pers->sync_request && !mddev->external) {
7729 printk(KERN_INFO "md: %s in immediate safe mode\n",
7730 mdname(mddev));
7731 mddev->safemode = 2;
7732 }
7733 flush_signals(current);
7734 }
7735
7736 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7737 return;
7738 if ( ! (
7739 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7740 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7741 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7742 (mddev->external == 0 && mddev->safemode == 1) ||
7743 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7744 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7745 ))
7746 return;
7747
7748 if (mddev_trylock(mddev)) {
7749 int spares = 0;
7750
7751 if (mddev->ro) {
7752 /* On a read-only array we can:
7753 * - remove failed devices
7754 * - add already-in_sync devices if the array itself
7755 * is in-sync.
7756 * As we only add devices that are already in-sync,
7757 * we can activate the spares immediately.
7758 */
7759 remove_and_add_spares(mddev, NULL);
7760 /* There is no thread, but we need to call
7761 * ->spare_active and clear saved_raid_disk
7762 */
7763 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7764 md_reap_sync_thread(mddev);
7765 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7766 goto unlock;
7767 }
7768
7769 if (!mddev->external) {
7770 int did_change = 0;
7771 spin_lock(&mddev->lock);
7772 if (mddev->safemode &&
7773 !atomic_read(&mddev->writes_pending) &&
7774 !mddev->in_sync &&
7775 mddev->recovery_cp == MaxSector) {
7776 mddev->in_sync = 1;
7777 did_change = 1;
7778 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7779 }
7780 if (mddev->safemode == 1)
7781 mddev->safemode = 0;
7782 spin_unlock(&mddev->lock);
7783 if (did_change)
7784 sysfs_notify_dirent_safe(mddev->sysfs_state);
7785 }
7786
7787 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7788 md_update_sb(mddev, 0);
7789
7790 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7791 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7792 /* resync/recovery still happening */
7793 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7794 goto unlock;
7795 }
7796 if (mddev->sync_thread) {
7797 md_reap_sync_thread(mddev);
7798 goto unlock;
7799 }
7800 /* Set RUNNING before clearing NEEDED to avoid
7801 * any transients in the value of "sync_action".
7802 */
7803 mddev->curr_resync_completed = 0;
7804 spin_lock(&mddev->lock);
7805 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7806 spin_unlock(&mddev->lock);
7807 /* Clear some bits that don't mean anything, but
7808 * might be left set
7809 */
7810 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7811 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7812
7813 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7814 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7815 goto not_running;
7816 /* no recovery is running.
7817 * remove any failed drives, then
7818 * add spares if possible.
7819 * Spares are also removed and re-added, to allow
7820 * the personality to fail the re-add.
7821 */
7822
7823 if (mddev->reshape_position != MaxSector) {
7824 if (mddev->pers->check_reshape == NULL ||
7825 mddev->pers->check_reshape(mddev) != 0)
7826 /* Cannot proceed */
7827 goto not_running;
7828 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7829 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7830 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7831 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7832 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7833 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7835 } else if (mddev->recovery_cp < MaxSector) {
7836 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7837 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7838 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7839 /* nothing to be done ... */
7840 goto not_running;
7841
7842 if (mddev->pers->sync_request) {
7843 if (spares) {
7844 /* We are adding a device or devices to an array
7845 * which has the bitmap stored on all devices.
7846 * So make sure all bitmap pages get written
7847 */
7848 bitmap_write_all(mddev->bitmap);
7849 }
7850 INIT_WORK(&mddev->del_work, md_start_sync);
7851 queue_work(md_misc_wq, &mddev->del_work);
7852 goto unlock;
7853 }
7854 not_running:
7855 if (!mddev->sync_thread) {
7856 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7857 wake_up(&resync_wait);
7858 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7859 &mddev->recovery))
7860 if (mddev->sysfs_action)
7861 sysfs_notify_dirent_safe(mddev->sysfs_action);
7862 }
7863 unlock:
7864 wake_up(&mddev->sb_wait);
7865 mddev_unlock(mddev);
7866 }
7867 }
7868 EXPORT_SYMBOL(md_check_recovery);
7869
7870 void md_reap_sync_thread(struct mddev *mddev)
7871 {
7872 struct md_rdev *rdev;
7873
7874 /* resync has finished, collect result */
7875 md_unregister_thread(&mddev->sync_thread);
7876 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7877 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7878 /* success...*/
7879 /* activate any spares */
7880 if (mddev->pers->spare_active(mddev)) {
7881 sysfs_notify(&mddev->kobj, NULL,
7882 "degraded");
7883 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7884 }
7885 }
7886 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7887 mddev->pers->finish_reshape)
7888 mddev->pers->finish_reshape(mddev);
7889
7890 /* If array is no-longer degraded, then any saved_raid_disk
7891 * information must be scrapped.
7892 */
7893 if (!mddev->degraded)
7894 rdev_for_each(rdev, mddev)
7895 rdev->saved_raid_disk = -1;
7896
7897 md_update_sb(mddev, 1);
7898 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7899 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7900 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7901 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7902 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7903 wake_up(&resync_wait);
7904 /* flag recovery needed just to double check */
7905 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7906 sysfs_notify_dirent_safe(mddev->sysfs_action);
7907 md_new_event(mddev);
7908 if (mddev->event_work.func)
7909 queue_work(md_misc_wq, &mddev->event_work);
7910 }
7911 EXPORT_SYMBOL(md_reap_sync_thread);
7912
7913 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7914 {
7915 sysfs_notify_dirent_safe(rdev->sysfs_state);
7916 wait_event_timeout(rdev->blocked_wait,
7917 !test_bit(Blocked, &rdev->flags) &&
7918 !test_bit(BlockedBadBlocks, &rdev->flags),
7919 msecs_to_jiffies(5000));
7920 rdev_dec_pending(rdev, mddev);
7921 }
7922 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7923
7924 void md_finish_reshape(struct mddev *mddev)
7925 {
7926 /* called be personality module when reshape completes. */
7927 struct md_rdev *rdev;
7928
7929 rdev_for_each(rdev, mddev) {
7930 if (rdev->data_offset > rdev->new_data_offset)
7931 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7932 else
7933 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7934 rdev->data_offset = rdev->new_data_offset;
7935 }
7936 }
7937 EXPORT_SYMBOL(md_finish_reshape);
7938
7939 /* Bad block management.
7940 * We can record which blocks on each device are 'bad' and so just
7941 * fail those blocks, or that stripe, rather than the whole device.
7942 * Entries in the bad-block table are 64bits wide. This comprises:
7943 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7944 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7945 * A 'shift' can be set so that larger blocks are tracked and
7946 * consequently larger devices can be covered.
7947 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7948 *
7949 * Locking of the bad-block table uses a seqlock so md_is_badblock
7950 * might need to retry if it is very unlucky.
7951 * We will sometimes want to check for bad blocks in a bi_end_io function,
7952 * so we use the write_seqlock_irq variant.
7953 *
7954 * When looking for a bad block we specify a range and want to
7955 * know if any block in the range is bad. So we binary-search
7956 * to the last range that starts at-or-before the given endpoint,
7957 * (or "before the sector after the target range")
7958 * then see if it ends after the given start.
7959 * We return
7960 * 0 if there are no known bad blocks in the range
7961 * 1 if there are known bad block which are all acknowledged
7962 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7963 * plus the start/length of the first bad section we overlap.
7964 */
7965 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7966 sector_t *first_bad, int *bad_sectors)
7967 {
7968 int hi;
7969 int lo;
7970 u64 *p = bb->page;
7971 int rv;
7972 sector_t target = s + sectors;
7973 unsigned seq;
7974
7975 if (bb->shift > 0) {
7976 /* round the start down, and the end up */
7977 s >>= bb->shift;
7978 target += (1<<bb->shift) - 1;
7979 target >>= bb->shift;
7980 sectors = target - s;
7981 }
7982 /* 'target' is now the first block after the bad range */
7983
7984 retry:
7985 seq = read_seqbegin(&bb->lock);
7986 lo = 0;
7987 rv = 0;
7988 hi = bb->count;
7989
7990 /* Binary search between lo and hi for 'target'
7991 * i.e. for the last range that starts before 'target'
7992 */
7993 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7994 * are known not to be the last range before target.
7995 * VARIANT: hi-lo is the number of possible
7996 * ranges, and decreases until it reaches 1
7997 */
7998 while (hi - lo > 1) {
7999 int mid = (lo + hi) / 2;
8000 sector_t a = BB_OFFSET(p[mid]);
8001 if (a < target)
8002 /* This could still be the one, earlier ranges
8003 * could not. */
8004 lo = mid;
8005 else
8006 /* This and later ranges are definitely out. */
8007 hi = mid;
8008 }
8009 /* 'lo' might be the last that started before target, but 'hi' isn't */
8010 if (hi > lo) {
8011 /* need to check all range that end after 's' to see if
8012 * any are unacknowledged.
8013 */
8014 while (lo >= 0 &&
8015 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8016 if (BB_OFFSET(p[lo]) < target) {
8017 /* starts before the end, and finishes after
8018 * the start, so they must overlap
8019 */
8020 if (rv != -1 && BB_ACK(p[lo]))
8021 rv = 1;
8022 else
8023 rv = -1;
8024 *first_bad = BB_OFFSET(p[lo]);
8025 *bad_sectors = BB_LEN(p[lo]);
8026 }
8027 lo--;
8028 }
8029 }
8030
8031 if (read_seqretry(&bb->lock, seq))
8032 goto retry;
8033
8034 return rv;
8035 }
8036 EXPORT_SYMBOL_GPL(md_is_badblock);
8037
8038 /*
8039 * Add a range of bad blocks to the table.
8040 * This might extend the table, or might contract it
8041 * if two adjacent ranges can be merged.
8042 * We binary-search to find the 'insertion' point, then
8043 * decide how best to handle it.
8044 */
8045 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8046 int acknowledged)
8047 {
8048 u64 *p;
8049 int lo, hi;
8050 int rv = 1;
8051 unsigned long flags;
8052
8053 if (bb->shift < 0)
8054 /* badblocks are disabled */
8055 return 0;
8056
8057 if (bb->shift) {
8058 /* round the start down, and the end up */
8059 sector_t next = s + sectors;
8060 s >>= bb->shift;
8061 next += (1<<bb->shift) - 1;
8062 next >>= bb->shift;
8063 sectors = next - s;
8064 }
8065
8066 write_seqlock_irqsave(&bb->lock, flags);
8067
8068 p = bb->page;
8069 lo = 0;
8070 hi = bb->count;
8071 /* Find the last range that starts at-or-before 's' */
8072 while (hi - lo > 1) {
8073 int mid = (lo + hi) / 2;
8074 sector_t a = BB_OFFSET(p[mid]);
8075 if (a <= s)
8076 lo = mid;
8077 else
8078 hi = mid;
8079 }
8080 if (hi > lo && BB_OFFSET(p[lo]) > s)
8081 hi = lo;
8082
8083 if (hi > lo) {
8084 /* we found a range that might merge with the start
8085 * of our new range
8086 */
8087 sector_t a = BB_OFFSET(p[lo]);
8088 sector_t e = a + BB_LEN(p[lo]);
8089 int ack = BB_ACK(p[lo]);
8090 if (e >= s) {
8091 /* Yes, we can merge with a previous range */
8092 if (s == a && s + sectors >= e)
8093 /* new range covers old */
8094 ack = acknowledged;
8095 else
8096 ack = ack && acknowledged;
8097
8098 if (e < s + sectors)
8099 e = s + sectors;
8100 if (e - a <= BB_MAX_LEN) {
8101 p[lo] = BB_MAKE(a, e-a, ack);
8102 s = e;
8103 } else {
8104 /* does not all fit in one range,
8105 * make p[lo] maximal
8106 */
8107 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8108 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8109 s = a + BB_MAX_LEN;
8110 }
8111 sectors = e - s;
8112 }
8113 }
8114 if (sectors && hi < bb->count) {
8115 /* 'hi' points to the first range that starts after 's'.
8116 * Maybe we can merge with the start of that range */
8117 sector_t a = BB_OFFSET(p[hi]);
8118 sector_t e = a + BB_LEN(p[hi]);
8119 int ack = BB_ACK(p[hi]);
8120 if (a <= s + sectors) {
8121 /* merging is possible */
8122 if (e <= s + sectors) {
8123 /* full overlap */
8124 e = s + sectors;
8125 ack = acknowledged;
8126 } else
8127 ack = ack && acknowledged;
8128
8129 a = s;
8130 if (e - a <= BB_MAX_LEN) {
8131 p[hi] = BB_MAKE(a, e-a, ack);
8132 s = e;
8133 } else {
8134 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8135 s = a + BB_MAX_LEN;
8136 }
8137 sectors = e - s;
8138 lo = hi;
8139 hi++;
8140 }
8141 }
8142 if (sectors == 0 && hi < bb->count) {
8143 /* we might be able to combine lo and hi */
8144 /* Note: 's' is at the end of 'lo' */
8145 sector_t a = BB_OFFSET(p[hi]);
8146 int lolen = BB_LEN(p[lo]);
8147 int hilen = BB_LEN(p[hi]);
8148 int newlen = lolen + hilen - (s - a);
8149 if (s >= a && newlen < BB_MAX_LEN) {
8150 /* yes, we can combine them */
8151 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8152 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8153 memmove(p + hi, p + hi + 1,
8154 (bb->count - hi - 1) * 8);
8155 bb->count--;
8156 }
8157 }
8158 while (sectors) {
8159 /* didn't merge (it all).
8160 * Need to add a range just before 'hi' */
8161 if (bb->count >= MD_MAX_BADBLOCKS) {
8162 /* No room for more */
8163 rv = 0;
8164 break;
8165 } else {
8166 int this_sectors = sectors;
8167 memmove(p + hi + 1, p + hi,
8168 (bb->count - hi) * 8);
8169 bb->count++;
8170
8171 if (this_sectors > BB_MAX_LEN)
8172 this_sectors = BB_MAX_LEN;
8173 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8174 sectors -= this_sectors;
8175 s += this_sectors;
8176 }
8177 }
8178
8179 bb->changed = 1;
8180 if (!acknowledged)
8181 bb->unacked_exist = 1;
8182 write_sequnlock_irqrestore(&bb->lock, flags);
8183
8184 return rv;
8185 }
8186
8187 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8188 int is_new)
8189 {
8190 int rv;
8191 if (is_new)
8192 s += rdev->new_data_offset;
8193 else
8194 s += rdev->data_offset;
8195 rv = md_set_badblocks(&rdev->badblocks,
8196 s, sectors, 0);
8197 if (rv) {
8198 /* Make sure they get written out promptly */
8199 sysfs_notify_dirent_safe(rdev->sysfs_state);
8200 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8201 md_wakeup_thread(rdev->mddev->thread);
8202 }
8203 return rv;
8204 }
8205 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8206
8207 /*
8208 * Remove a range of bad blocks from the table.
8209 * This may involve extending the table if we spilt a region,
8210 * but it must not fail. So if the table becomes full, we just
8211 * drop the remove request.
8212 */
8213 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8214 {
8215 u64 *p;
8216 int lo, hi;
8217 sector_t target = s + sectors;
8218 int rv = 0;
8219
8220 if (bb->shift > 0) {
8221 /* When clearing we round the start up and the end down.
8222 * This should not matter as the shift should align with
8223 * the block size and no rounding should ever be needed.
8224 * However it is better the think a block is bad when it
8225 * isn't than to think a block is not bad when it is.
8226 */
8227 s += (1<<bb->shift) - 1;
8228 s >>= bb->shift;
8229 target >>= bb->shift;
8230 sectors = target - s;
8231 }
8232
8233 write_seqlock_irq(&bb->lock);
8234
8235 p = bb->page;
8236 lo = 0;
8237 hi = bb->count;
8238 /* Find the last range that starts before 'target' */
8239 while (hi - lo > 1) {
8240 int mid = (lo + hi) / 2;
8241 sector_t a = BB_OFFSET(p[mid]);
8242 if (a < target)
8243 lo = mid;
8244 else
8245 hi = mid;
8246 }
8247 if (hi > lo) {
8248 /* p[lo] is the last range that could overlap the
8249 * current range. Earlier ranges could also overlap,
8250 * but only this one can overlap the end of the range.
8251 */
8252 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8253 /* Partial overlap, leave the tail of this range */
8254 int ack = BB_ACK(p[lo]);
8255 sector_t a = BB_OFFSET(p[lo]);
8256 sector_t end = a + BB_LEN(p[lo]);
8257
8258 if (a < s) {
8259 /* we need to split this range */
8260 if (bb->count >= MD_MAX_BADBLOCKS) {
8261 rv = -ENOSPC;
8262 goto out;
8263 }
8264 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8265 bb->count++;
8266 p[lo] = BB_MAKE(a, s-a, ack);
8267 lo++;
8268 }
8269 p[lo] = BB_MAKE(target, end - target, ack);
8270 /* there is no longer an overlap */
8271 hi = lo;
8272 lo--;
8273 }
8274 while (lo >= 0 &&
8275 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8276 /* This range does overlap */
8277 if (BB_OFFSET(p[lo]) < s) {
8278 /* Keep the early parts of this range. */
8279 int ack = BB_ACK(p[lo]);
8280 sector_t start = BB_OFFSET(p[lo]);
8281 p[lo] = BB_MAKE(start, s - start, ack);
8282 /* now low doesn't overlap, so.. */
8283 break;
8284 }
8285 lo--;
8286 }
8287 /* 'lo' is strictly before, 'hi' is strictly after,
8288 * anything between needs to be discarded
8289 */
8290 if (hi - lo > 1) {
8291 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8292 bb->count -= (hi - lo - 1);
8293 }
8294 }
8295
8296 bb->changed = 1;
8297 out:
8298 write_sequnlock_irq(&bb->lock);
8299 return rv;
8300 }
8301
8302 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8303 int is_new)
8304 {
8305 if (is_new)
8306 s += rdev->new_data_offset;
8307 else
8308 s += rdev->data_offset;
8309 return md_clear_badblocks(&rdev->badblocks,
8310 s, sectors);
8311 }
8312 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8313
8314 /*
8315 * Acknowledge all bad blocks in a list.
8316 * This only succeeds if ->changed is clear. It is used by
8317 * in-kernel metadata updates
8318 */
8319 void md_ack_all_badblocks(struct badblocks *bb)
8320 {
8321 if (bb->page == NULL || bb->changed)
8322 /* no point even trying */
8323 return;
8324 write_seqlock_irq(&bb->lock);
8325
8326 if (bb->changed == 0 && bb->unacked_exist) {
8327 u64 *p = bb->page;
8328 int i;
8329 for (i = 0; i < bb->count ; i++) {
8330 if (!BB_ACK(p[i])) {
8331 sector_t start = BB_OFFSET(p[i]);
8332 int len = BB_LEN(p[i]);
8333 p[i] = BB_MAKE(start, len, 1);
8334 }
8335 }
8336 bb->unacked_exist = 0;
8337 }
8338 write_sequnlock_irq(&bb->lock);
8339 }
8340 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8341
8342 /* sysfs access to bad-blocks list.
8343 * We present two files.
8344 * 'bad-blocks' lists sector numbers and lengths of ranges that
8345 * are recorded as bad. The list is truncated to fit within
8346 * the one-page limit of sysfs.
8347 * Writing "sector length" to this file adds an acknowledged
8348 * bad block list.
8349 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8350 * been acknowledged. Writing to this file adds bad blocks
8351 * without acknowledging them. This is largely for testing.
8352 */
8353
8354 static ssize_t
8355 badblocks_show(struct badblocks *bb, char *page, int unack)
8356 {
8357 size_t len;
8358 int i;
8359 u64 *p = bb->page;
8360 unsigned seq;
8361
8362 if (bb->shift < 0)
8363 return 0;
8364
8365 retry:
8366 seq = read_seqbegin(&bb->lock);
8367
8368 len = 0;
8369 i = 0;
8370
8371 while (len < PAGE_SIZE && i < bb->count) {
8372 sector_t s = BB_OFFSET(p[i]);
8373 unsigned int length = BB_LEN(p[i]);
8374 int ack = BB_ACK(p[i]);
8375 i++;
8376
8377 if (unack && ack)
8378 continue;
8379
8380 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8381 (unsigned long long)s << bb->shift,
8382 length << bb->shift);
8383 }
8384 if (unack && len == 0)
8385 bb->unacked_exist = 0;
8386
8387 if (read_seqretry(&bb->lock, seq))
8388 goto retry;
8389
8390 return len;
8391 }
8392
8393 #define DO_DEBUG 1
8394
8395 static ssize_t
8396 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8397 {
8398 unsigned long long sector;
8399 int length;
8400 char newline;
8401 #ifdef DO_DEBUG
8402 /* Allow clearing via sysfs *only* for testing/debugging.
8403 * Normally only a successful write may clear a badblock
8404 */
8405 int clear = 0;
8406 if (page[0] == '-') {
8407 clear = 1;
8408 page++;
8409 }
8410 #endif /* DO_DEBUG */
8411
8412 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8413 case 3:
8414 if (newline != '\n')
8415 return -EINVAL;
8416 case 2:
8417 if (length <= 0)
8418 return -EINVAL;
8419 break;
8420 default:
8421 return -EINVAL;
8422 }
8423
8424 #ifdef DO_DEBUG
8425 if (clear) {
8426 md_clear_badblocks(bb, sector, length);
8427 return len;
8428 }
8429 #endif /* DO_DEBUG */
8430 if (md_set_badblocks(bb, sector, length, !unack))
8431 return len;
8432 else
8433 return -ENOSPC;
8434 }
8435
8436 static int md_notify_reboot(struct notifier_block *this,
8437 unsigned long code, void *x)
8438 {
8439 struct list_head *tmp;
8440 struct mddev *mddev;
8441 int need_delay = 0;
8442
8443 for_each_mddev(mddev, tmp) {
8444 if (mddev_trylock(mddev)) {
8445 if (mddev->pers)
8446 __md_stop_writes(mddev);
8447 if (mddev->persistent)
8448 mddev->safemode = 2;
8449 mddev_unlock(mddev);
8450 }
8451 need_delay = 1;
8452 }
8453 /*
8454 * certain more exotic SCSI devices are known to be
8455 * volatile wrt too early system reboots. While the
8456 * right place to handle this issue is the given
8457 * driver, we do want to have a safe RAID driver ...
8458 */
8459 if (need_delay)
8460 mdelay(1000*1);
8461
8462 return NOTIFY_DONE;
8463 }
8464
8465 static struct notifier_block md_notifier = {
8466 .notifier_call = md_notify_reboot,
8467 .next = NULL,
8468 .priority = INT_MAX, /* before any real devices */
8469 };
8470
8471 static void md_geninit(void)
8472 {
8473 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8474
8475 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8476 }
8477
8478 static int __init md_init(void)
8479 {
8480 int ret = -ENOMEM;
8481
8482 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8483 if (!md_wq)
8484 goto err_wq;
8485
8486 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8487 if (!md_misc_wq)
8488 goto err_misc_wq;
8489
8490 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8491 goto err_md;
8492
8493 if ((ret = register_blkdev(0, "mdp")) < 0)
8494 goto err_mdp;
8495 mdp_major = ret;
8496
8497 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8498 md_probe, NULL, NULL);
8499 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8500 md_probe, NULL, NULL);
8501
8502 register_reboot_notifier(&md_notifier);
8503 raid_table_header = register_sysctl_table(raid_root_table);
8504
8505 md_geninit();
8506 return 0;
8507
8508 err_mdp:
8509 unregister_blkdev(MD_MAJOR, "md");
8510 err_md:
8511 destroy_workqueue(md_misc_wq);
8512 err_misc_wq:
8513 destroy_workqueue(md_wq);
8514 err_wq:
8515 return ret;
8516 }
8517
8518 #ifndef MODULE
8519
8520 /*
8521 * Searches all registered partitions for autorun RAID arrays
8522 * at boot time.
8523 */
8524
8525 static LIST_HEAD(all_detected_devices);
8526 struct detected_devices_node {
8527 struct list_head list;
8528 dev_t dev;
8529 };
8530
8531 void md_autodetect_dev(dev_t dev)
8532 {
8533 struct detected_devices_node *node_detected_dev;
8534
8535 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8536 if (node_detected_dev) {
8537 node_detected_dev->dev = dev;
8538 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8539 } else {
8540 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8541 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8542 }
8543 }
8544
8545 static void autostart_arrays(int part)
8546 {
8547 struct md_rdev *rdev;
8548 struct detected_devices_node *node_detected_dev;
8549 dev_t dev;
8550 int i_scanned, i_passed;
8551
8552 i_scanned = 0;
8553 i_passed = 0;
8554
8555 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8556
8557 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8558 i_scanned++;
8559 node_detected_dev = list_entry(all_detected_devices.next,
8560 struct detected_devices_node, list);
8561 list_del(&node_detected_dev->list);
8562 dev = node_detected_dev->dev;
8563 kfree(node_detected_dev);
8564 rdev = md_import_device(dev,0, 90);
8565 if (IS_ERR(rdev))
8566 continue;
8567
8568 if (test_bit(Faulty, &rdev->flags))
8569 continue;
8570
8571 set_bit(AutoDetected, &rdev->flags);
8572 list_add(&rdev->same_set, &pending_raid_disks);
8573 i_passed++;
8574 }
8575
8576 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8577 i_scanned, i_passed);
8578
8579 autorun_devices(part);
8580 }
8581
8582 #endif /* !MODULE */
8583
8584 static __exit void md_exit(void)
8585 {
8586 struct mddev *mddev;
8587 struct list_head *tmp;
8588 int delay = 1;
8589
8590 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8591 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8592
8593 unregister_blkdev(MD_MAJOR,"md");
8594 unregister_blkdev(mdp_major, "mdp");
8595 unregister_reboot_notifier(&md_notifier);
8596 unregister_sysctl_table(raid_table_header);
8597
8598 /* We cannot unload the modules while some process is
8599 * waiting for us in select() or poll() - wake them up
8600 */
8601 md_unloading = 1;
8602 while (waitqueue_active(&md_event_waiters)) {
8603 /* not safe to leave yet */
8604 wake_up(&md_event_waiters);
8605 msleep(delay);
8606 delay += delay;
8607 }
8608 remove_proc_entry("mdstat", NULL);
8609
8610 for_each_mddev(mddev, tmp) {
8611 export_array(mddev);
8612 mddev->hold_active = 0;
8613 }
8614 destroy_workqueue(md_misc_wq);
8615 destroy_workqueue(md_wq);
8616 }
8617
8618 subsys_initcall(md_init);
8619 module_exit(md_exit)
8620
8621 static int get_ro(char *buffer, struct kernel_param *kp)
8622 {
8623 return sprintf(buffer, "%d", start_readonly);
8624 }
8625 static int set_ro(const char *val, struct kernel_param *kp)
8626 {
8627 char *e;
8628 int num = simple_strtoul(val, &e, 10);
8629 if (*val && (*e == '\0' || *e == '\n')) {
8630 start_readonly = num;
8631 return 0;
8632 }
8633 return -EINVAL;
8634 }
8635
8636 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8637 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8638 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8639
8640 MODULE_LICENSE("GPL");
8641 MODULE_DESCRIPTION("MD RAID framework");
8642 MODULE_ALIAS("md");
8643 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);