]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
Merge remote-tracking branches 'spi/fix/spidev' and 'spi/fix/xtfpga' into spi-linus
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 blk_queue_split(q, &bio, q->bio_split);
261
262 if (mddev == NULL || mddev->pers == NULL
263 || !mddev->ready) {
264 bio_io_error(bio);
265 return;
266 }
267 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 if (bio_sectors(bio) != 0)
269 bio->bi_error = -EROFS;
270 bio_endio(bio);
271 return;
272 }
273 smp_rmb(); /* Ensure implications of 'active' are visible */
274 rcu_read_lock();
275 if (mddev->suspended) {
276 DEFINE_WAIT(__wait);
277 for (;;) {
278 prepare_to_wait(&mddev->sb_wait, &__wait,
279 TASK_UNINTERRUPTIBLE);
280 if (!mddev->suspended)
281 break;
282 rcu_read_unlock();
283 schedule();
284 rcu_read_lock();
285 }
286 finish_wait(&mddev->sb_wait, &__wait);
287 }
288 atomic_inc(&mddev->active_io);
289 rcu_read_unlock();
290
291 /*
292 * save the sectors now since our bio can
293 * go away inside make_request
294 */
295 sectors = bio_sectors(bio);
296 mddev->pers->make_request(mddev, bio);
297
298 cpu = part_stat_lock();
299 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 part_stat_unlock();
302
303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 wake_up(&mddev->sb_wait);
305 }
306
307 /* mddev_suspend makes sure no new requests are submitted
308 * to the device, and that any requests that have been submitted
309 * are completely handled.
310 * Once mddev_detach() is called and completes, the module will be
311 * completely unused.
312 */
313 void mddev_suspend(struct mddev *mddev)
314 {
315 BUG_ON(mddev->suspended);
316 mddev->suspended = 1;
317 synchronize_rcu();
318 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319 mddev->pers->quiesce(mddev, 1);
320
321 del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324
325 void mddev_resume(struct mddev *mddev)
326 {
327 mddev->suspended = 0;
328 wake_up(&mddev->sb_wait);
329 mddev->pers->quiesce(mddev, 0);
330
331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332 md_wakeup_thread(mddev->thread);
333 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339 struct md_personality *pers = mddev->pers;
340 int ret = 0;
341
342 rcu_read_lock();
343 if (mddev->suspended)
344 ret = 1;
345 else if (pers && pers->congested)
346 ret = pers->congested(mddev, bits);
347 rcu_read_unlock();
348 return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353 struct mddev *mddev = data;
354 return mddev_congested(mddev, bits);
355 }
356
357 /*
358 * Generic flush handling for md
359 */
360
361 static void md_end_flush(struct bio *bio)
362 {
363 struct md_rdev *rdev = bio->bi_private;
364 struct mddev *mddev = rdev->mddev;
365
366 rdev_dec_pending(rdev, mddev);
367
368 if (atomic_dec_and_test(&mddev->flush_pending)) {
369 /* The pre-request flush has finished */
370 queue_work(md_wq, &mddev->flush_work);
371 }
372 bio_put(bio);
373 }
374
375 static void md_submit_flush_data(struct work_struct *ws);
376
377 static void submit_flushes(struct work_struct *ws)
378 {
379 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380 struct md_rdev *rdev;
381
382 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383 atomic_set(&mddev->flush_pending, 1);
384 rcu_read_lock();
385 rdev_for_each_rcu(rdev, mddev)
386 if (rdev->raid_disk >= 0 &&
387 !test_bit(Faulty, &rdev->flags)) {
388 /* Take two references, one is dropped
389 * when request finishes, one after
390 * we reclaim rcu_read_lock
391 */
392 struct bio *bi;
393 atomic_inc(&rdev->nr_pending);
394 atomic_inc(&rdev->nr_pending);
395 rcu_read_unlock();
396 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397 bi->bi_end_io = md_end_flush;
398 bi->bi_private = rdev;
399 bi->bi_bdev = rdev->bdev;
400 atomic_inc(&mddev->flush_pending);
401 submit_bio(WRITE_FLUSH, bi);
402 rcu_read_lock();
403 rdev_dec_pending(rdev, mddev);
404 }
405 rcu_read_unlock();
406 if (atomic_dec_and_test(&mddev->flush_pending))
407 queue_work(md_wq, &mddev->flush_work);
408 }
409
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413 struct bio *bio = mddev->flush_bio;
414
415 if (bio->bi_iter.bi_size == 0)
416 /* an empty barrier - all done */
417 bio_endio(bio);
418 else {
419 bio->bi_rw &= ~REQ_FLUSH;
420 mddev->pers->make_request(mddev, bio);
421 }
422
423 mddev->flush_bio = NULL;
424 wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429 spin_lock_irq(&mddev->lock);
430 wait_event_lock_irq(mddev->sb_wait,
431 !mddev->flush_bio,
432 mddev->lock);
433 mddev->flush_bio = bio;
434 spin_unlock_irq(&mddev->lock);
435
436 INIT_WORK(&mddev->flush_work, submit_flushes);
437 queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443 struct mddev *mddev = cb->data;
444 md_wakeup_thread(mddev->thread);
445 kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451 atomic_inc(&mddev->active);
452 return mddev;
453 }
454
455 static void mddev_delayed_delete(struct work_struct *ws);
456
457 static void mddev_put(struct mddev *mddev)
458 {
459 struct bio_set *bs = NULL;
460
461 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462 return;
463 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464 mddev->ctime == 0 && !mddev->hold_active) {
465 /* Array is not configured at all, and not held active,
466 * so destroy it */
467 list_del_init(&mddev->all_mddevs);
468 bs = mddev->bio_set;
469 mddev->bio_set = NULL;
470 if (mddev->gendisk) {
471 /* We did a probe so need to clean up. Call
472 * queue_work inside the spinlock so that
473 * flush_workqueue() after mddev_find will
474 * succeed in waiting for the work to be done.
475 */
476 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477 queue_work(md_misc_wq, &mddev->del_work);
478 } else
479 kfree(mddev);
480 }
481 spin_unlock(&all_mddevs_lock);
482 if (bs)
483 bioset_free(bs);
484 }
485
486 static void md_safemode_timeout(unsigned long data);
487
488 void mddev_init(struct mddev *mddev)
489 {
490 mutex_init(&mddev->open_mutex);
491 mutex_init(&mddev->reconfig_mutex);
492 mutex_init(&mddev->bitmap_info.mutex);
493 INIT_LIST_HEAD(&mddev->disks);
494 INIT_LIST_HEAD(&mddev->all_mddevs);
495 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496 (unsigned long) mddev);
497 atomic_set(&mddev->active, 1);
498 atomic_set(&mddev->openers, 0);
499 atomic_set(&mddev->active_io, 0);
500 spin_lock_init(&mddev->lock);
501 atomic_set(&mddev->flush_pending, 0);
502 init_waitqueue_head(&mddev->sb_wait);
503 init_waitqueue_head(&mddev->recovery_wait);
504 mddev->reshape_position = MaxSector;
505 mddev->reshape_backwards = 0;
506 mddev->last_sync_action = "none";
507 mddev->resync_min = 0;
508 mddev->resync_max = MaxSector;
509 mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512
513 static struct mddev *mddev_find(dev_t unit)
514 {
515 struct mddev *mddev, *new = NULL;
516
517 if (unit && MAJOR(unit) != MD_MAJOR)
518 unit &= ~((1<<MdpMinorShift)-1);
519
520 retry:
521 spin_lock(&all_mddevs_lock);
522
523 if (unit) {
524 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525 if (mddev->unit == unit) {
526 mddev_get(mddev);
527 spin_unlock(&all_mddevs_lock);
528 kfree(new);
529 return mddev;
530 }
531
532 if (new) {
533 list_add(&new->all_mddevs, &all_mddevs);
534 spin_unlock(&all_mddevs_lock);
535 new->hold_active = UNTIL_IOCTL;
536 return new;
537 }
538 } else if (new) {
539 /* find an unused unit number */
540 static int next_minor = 512;
541 int start = next_minor;
542 int is_free = 0;
543 int dev = 0;
544 while (!is_free) {
545 dev = MKDEV(MD_MAJOR, next_minor);
546 next_minor++;
547 if (next_minor > MINORMASK)
548 next_minor = 0;
549 if (next_minor == start) {
550 /* Oh dear, all in use. */
551 spin_unlock(&all_mddevs_lock);
552 kfree(new);
553 return NULL;
554 }
555
556 is_free = 1;
557 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558 if (mddev->unit == dev) {
559 is_free = 0;
560 break;
561 }
562 }
563 new->unit = dev;
564 new->md_minor = MINOR(dev);
565 new->hold_active = UNTIL_STOP;
566 list_add(&new->all_mddevs, &all_mddevs);
567 spin_unlock(&all_mddevs_lock);
568 return new;
569 }
570 spin_unlock(&all_mddevs_lock);
571
572 new = kzalloc(sizeof(*new), GFP_KERNEL);
573 if (!new)
574 return NULL;
575
576 new->unit = unit;
577 if (MAJOR(unit) == MD_MAJOR)
578 new->md_minor = MINOR(unit);
579 else
580 new->md_minor = MINOR(unit) >> MdpMinorShift;
581
582 mddev_init(new);
583
584 goto retry;
585 }
586
587 static struct attribute_group md_redundancy_group;
588
589 void mddev_unlock(struct mddev *mddev)
590 {
591 if (mddev->to_remove) {
592 /* These cannot be removed under reconfig_mutex as
593 * an access to the files will try to take reconfig_mutex
594 * while holding the file unremovable, which leads to
595 * a deadlock.
596 * So hold set sysfs_active while the remove in happeing,
597 * and anything else which might set ->to_remove or my
598 * otherwise change the sysfs namespace will fail with
599 * -EBUSY if sysfs_active is still set.
600 * We set sysfs_active under reconfig_mutex and elsewhere
601 * test it under the same mutex to ensure its correct value
602 * is seen.
603 */
604 struct attribute_group *to_remove = mddev->to_remove;
605 mddev->to_remove = NULL;
606 mddev->sysfs_active = 1;
607 mutex_unlock(&mddev->reconfig_mutex);
608
609 if (mddev->kobj.sd) {
610 if (to_remove != &md_redundancy_group)
611 sysfs_remove_group(&mddev->kobj, to_remove);
612 if (mddev->pers == NULL ||
613 mddev->pers->sync_request == NULL) {
614 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615 if (mddev->sysfs_action)
616 sysfs_put(mddev->sysfs_action);
617 mddev->sysfs_action = NULL;
618 }
619 }
620 mddev->sysfs_active = 0;
621 } else
622 mutex_unlock(&mddev->reconfig_mutex);
623
624 /* As we've dropped the mutex we need a spinlock to
625 * make sure the thread doesn't disappear
626 */
627 spin_lock(&pers_lock);
628 md_wakeup_thread(mddev->thread);
629 spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each_rcu(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647 struct md_rdev *rdev;
648
649 rdev_for_each(rdev, mddev)
650 if (rdev->bdev->bd_dev == dev)
651 return rdev;
652
653 return NULL;
654 }
655
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each_rcu(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665 }
666
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669 struct md_personality *pers;
670 list_for_each_entry(pers, &pers_list, list) {
671 if (level != LEVEL_NONE && pers->level == level)
672 return pers;
673 if (strcmp(pers->name, clevel)==0)
674 return pers;
675 }
676 return NULL;
677 }
678
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683 return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688 rdev->sb_page = alloc_page(GFP_KERNEL);
689 if (!rdev->sb_page) {
690 printk(KERN_ALERT "md: out of memory.\n");
691 return -ENOMEM;
692 }
693
694 return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699 if (rdev->sb_page) {
700 put_page(rdev->sb_page);
701 rdev->sb_loaded = 0;
702 rdev->sb_page = NULL;
703 rdev->sb_start = 0;
704 rdev->sectors = 0;
705 }
706 if (rdev->bb_page) {
707 put_page(rdev->bb_page);
708 rdev->bb_page = NULL;
709 }
710 kfree(rdev->badblocks.page);
711 rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio)
716 {
717 struct md_rdev *rdev = bio->bi_private;
718 struct mddev *mddev = rdev->mddev;
719
720 if (bio->bi_error) {
721 printk("md: super_written gets error=%d\n", bio->bi_error);
722 md_error(mddev, rdev);
723 }
724
725 if (atomic_dec_and_test(&mddev->pending_writes))
726 wake_up(&mddev->sb_wait);
727 bio_put(bio);
728 }
729
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731 sector_t sector, int size, struct page *page)
732 {
733 /* write first size bytes of page to sector of rdev
734 * Increment mddev->pending_writes before returning
735 * and decrement it on completion, waking up sb_wait
736 * if zero is reached.
737 * If an error occurred, call md_error
738 */
739 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740
741 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 bio->bi_iter.bi_sector = sector;
743 bio_add_page(bio, page, size, 0);
744 bio->bi_private = rdev;
745 bio->bi_end_io = super_written;
746
747 atomic_inc(&mddev->pending_writes);
748 submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750
751 void md_super_wait(struct mddev *mddev)
752 {
753 /* wait for all superblock writes that were scheduled to complete */
754 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758 struct page *page, int rw, bool metadata_op)
759 {
760 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761 int ret;
762
763 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764 rdev->meta_bdev : rdev->bdev;
765 if (metadata_op)
766 bio->bi_iter.bi_sector = sector + rdev->sb_start;
767 else if (rdev->mddev->reshape_position != MaxSector &&
768 (rdev->mddev->reshape_backwards ==
769 (sector >= rdev->mddev->reshape_position)))
770 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771 else
772 bio->bi_iter.bi_sector = sector + rdev->data_offset;
773 bio_add_page(bio, page, size, 0);
774 submit_bio_wait(rw, bio);
775
776 ret = !bio->bi_error;
777 bio_put(bio);
778 return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784 char b[BDEVNAME_SIZE];
785
786 if (rdev->sb_loaded)
787 return 0;
788
789 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790 goto fail;
791 rdev->sb_loaded = 1;
792 return 0;
793
794 fail:
795 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796 bdevname(rdev->bdev,b));
797 return -EINVAL;
798 }
799
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802 return sb1->set_uuid0 == sb2->set_uuid0 &&
803 sb1->set_uuid1 == sb2->set_uuid1 &&
804 sb1->set_uuid2 == sb2->set_uuid2 &&
805 sb1->set_uuid3 == sb2->set_uuid3;
806 }
807
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810 int ret;
811 mdp_super_t *tmp1, *tmp2;
812
813 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815
816 if (!tmp1 || !tmp2) {
817 ret = 0;
818 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819 goto abort;
820 }
821
822 *tmp1 = *sb1;
823 *tmp2 = *sb2;
824
825 /*
826 * nr_disks is not constant
827 */
828 tmp1->nr_disks = 0;
829 tmp2->nr_disks = 0;
830
831 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833 kfree(tmp1);
834 kfree(tmp2);
835 return ret;
836 }
837
838 static u32 md_csum_fold(u32 csum)
839 {
840 csum = (csum & 0xffff) + (csum >> 16);
841 return (csum & 0xffff) + (csum >> 16);
842 }
843
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846 u64 newcsum = 0;
847 u32 *sb32 = (u32*)sb;
848 int i;
849 unsigned int disk_csum, csum;
850
851 disk_csum = sb->sb_csum;
852 sb->sb_csum = 0;
853
854 for (i = 0; i < MD_SB_BYTES/4 ; i++)
855 newcsum += sb32[i];
856 csum = (newcsum & 0xffffffff) + (newcsum>>32);
857
858 #ifdef CONFIG_ALPHA
859 /* This used to use csum_partial, which was wrong for several
860 * reasons including that different results are returned on
861 * different architectures. It isn't critical that we get exactly
862 * the same return value as before (we always csum_fold before
863 * testing, and that removes any differences). However as we
864 * know that csum_partial always returned a 16bit value on
865 * alphas, do a fold to maximise conformity to previous behaviour.
866 */
867 sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869 sb->sb_csum = disk_csum;
870 #endif
871 return csum;
872 }
873
874 /*
875 * Handle superblock details.
876 * We want to be able to handle multiple superblock formats
877 * so we have a common interface to them all, and an array of
878 * different handlers.
879 * We rely on user-space to write the initial superblock, and support
880 * reading and updating of superblocks.
881 * Interface methods are:
882 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883 * loads and validates a superblock on dev.
884 * if refdev != NULL, compare superblocks on both devices
885 * Return:
886 * 0 - dev has a superblock that is compatible with refdev
887 * 1 - dev has a superblock that is compatible and newer than refdev
888 * so dev should be used as the refdev in future
889 * -EINVAL superblock incompatible or invalid
890 * -othererror e.g. -EIO
891 *
892 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
893 * Verify that dev is acceptable into mddev.
894 * The first time, mddev->raid_disks will be 0, and data from
895 * dev should be merged in. Subsequent calls check that dev
896 * is new enough. Return 0 or -EINVAL
897 *
898 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
899 * Update the superblock for rdev with data in mddev
900 * This does not write to disc.
901 *
902 */
903
904 struct super_type {
905 char *name;
906 struct module *owner;
907 int (*load_super)(struct md_rdev *rdev,
908 struct md_rdev *refdev,
909 int minor_version);
910 int (*validate_super)(struct mddev *mddev,
911 struct md_rdev *rdev);
912 void (*sync_super)(struct mddev *mddev,
913 struct md_rdev *rdev);
914 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
915 sector_t num_sectors);
916 int (*allow_new_offset)(struct md_rdev *rdev,
917 unsigned long long new_offset);
918 };
919
920 /*
921 * Check that the given mddev has no bitmap.
922 *
923 * This function is called from the run method of all personalities that do not
924 * support bitmaps. It prints an error message and returns non-zero if mddev
925 * has a bitmap. Otherwise, it returns 0.
926 *
927 */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931 return 0;
932 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933 mdname(mddev), mddev->pers->name);
934 return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937
938 /*
939 * load_super for 0.90.0
940 */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944 mdp_super_t *sb;
945 int ret;
946
947 /*
948 * Calculate the position of the superblock (512byte sectors),
949 * it's at the end of the disk.
950 *
951 * It also happens to be a multiple of 4Kb.
952 */
953 rdev->sb_start = calc_dev_sboffset(rdev);
954
955 ret = read_disk_sb(rdev, MD_SB_BYTES);
956 if (ret) return ret;
957
958 ret = -EINVAL;
959
960 bdevname(rdev->bdev, b);
961 sb = page_address(rdev->sb_page);
962
963 if (sb->md_magic != MD_SB_MAGIC) {
964 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965 b);
966 goto abort;
967 }
968
969 if (sb->major_version != 0 ||
970 sb->minor_version < 90 ||
971 sb->minor_version > 91) {
972 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973 sb->major_version, sb->minor_version,
974 b);
975 goto abort;
976 }
977
978 if (sb->raid_disks <= 0)
979 goto abort;
980
981 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983 b);
984 goto abort;
985 }
986
987 rdev->preferred_minor = sb->md_minor;
988 rdev->data_offset = 0;
989 rdev->new_data_offset = 0;
990 rdev->sb_size = MD_SB_BYTES;
991 rdev->badblocks.shift = -1;
992
993 if (sb->level == LEVEL_MULTIPATH)
994 rdev->desc_nr = -1;
995 else
996 rdev->desc_nr = sb->this_disk.number;
997
998 if (!refdev) {
999 ret = 1;
1000 } else {
1001 __u64 ev1, ev2;
1002 mdp_super_t *refsb = page_address(refdev->sb_page);
1003 if (!uuid_equal(refsb, sb)) {
1004 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005 b, bdevname(refdev->bdev,b2));
1006 goto abort;
1007 }
1008 if (!sb_equal(refsb, sb)) {
1009 printk(KERN_WARNING "md: %s has same UUID"
1010 " but different superblock to %s\n",
1011 b, bdevname(refdev->bdev, b2));
1012 goto abort;
1013 }
1014 ev1 = md_event(sb);
1015 ev2 = md_event(refsb);
1016 if (ev1 > ev2)
1017 ret = 1;
1018 else
1019 ret = 0;
1020 }
1021 rdev->sectors = rdev->sb_start;
1022 /* Limit to 4TB as metadata cannot record more than that.
1023 * (not needed for Linear and RAID0 as metadata doesn't
1024 * record this size)
1025 */
1026 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027 rdev->sectors = (2ULL << 32) - 2;
1028
1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 /* "this cannot possibly happen" ... */
1031 ret = -EINVAL;
1032
1033 abort:
1034 return ret;
1035 }
1036
1037 /*
1038 * validate_super for 0.90.0
1039 */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 mdp_disk_t *desc;
1043 mdp_super_t *sb = page_address(rdev->sb_page);
1044 __u64 ev1 = md_event(sb);
1045
1046 rdev->raid_disk = -1;
1047 clear_bit(Faulty, &rdev->flags);
1048 clear_bit(In_sync, &rdev->flags);
1049 clear_bit(Bitmap_sync, &rdev->flags);
1050 clear_bit(WriteMostly, &rdev->flags);
1051
1052 if (mddev->raid_disks == 0) {
1053 mddev->major_version = 0;
1054 mddev->minor_version = sb->minor_version;
1055 mddev->patch_version = sb->patch_version;
1056 mddev->external = 0;
1057 mddev->chunk_sectors = sb->chunk_size >> 9;
1058 mddev->ctime = sb->ctime;
1059 mddev->utime = sb->utime;
1060 mddev->level = sb->level;
1061 mddev->clevel[0] = 0;
1062 mddev->layout = sb->layout;
1063 mddev->raid_disks = sb->raid_disks;
1064 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 mddev->events = ev1;
1066 mddev->bitmap_info.offset = 0;
1067 mddev->bitmap_info.space = 0;
1068 /* bitmap can use 60 K after the 4K superblocks */
1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 mddev->reshape_backwards = 0;
1072
1073 if (mddev->minor_version >= 91) {
1074 mddev->reshape_position = sb->reshape_position;
1075 mddev->delta_disks = sb->delta_disks;
1076 mddev->new_level = sb->new_level;
1077 mddev->new_layout = sb->new_layout;
1078 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 if (mddev->delta_disks < 0)
1080 mddev->reshape_backwards = 1;
1081 } else {
1082 mddev->reshape_position = MaxSector;
1083 mddev->delta_disks = 0;
1084 mddev->new_level = mddev->level;
1085 mddev->new_layout = mddev->layout;
1086 mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 }
1088
1089 if (sb->state & (1<<MD_SB_CLEAN))
1090 mddev->recovery_cp = MaxSector;
1091 else {
1092 if (sb->events_hi == sb->cp_events_hi &&
1093 sb->events_lo == sb->cp_events_lo) {
1094 mddev->recovery_cp = sb->recovery_cp;
1095 } else
1096 mddev->recovery_cp = 0;
1097 }
1098
1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104 mddev->max_disks = MD_SB_DISKS;
1105
1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 mddev->bitmap_info.file == NULL) {
1108 mddev->bitmap_info.offset =
1109 mddev->bitmap_info.default_offset;
1110 mddev->bitmap_info.space =
1111 mddev->bitmap_info.default_space;
1112 }
1113
1114 } else if (mddev->pers == NULL) {
1115 /* Insist on good event counter while assembling, except
1116 * for spares (which don't need an event count) */
1117 ++ev1;
1118 if (sb->disks[rdev->desc_nr].state & (
1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 if (ev1 < mddev->events)
1121 return -EINVAL;
1122 } else if (mddev->bitmap) {
1123 /* if adding to array with a bitmap, then we can accept an
1124 * older device ... but not too old.
1125 */
1126 if (ev1 < mddev->bitmap->events_cleared)
1127 return 0;
1128 if (ev1 < mddev->events)
1129 set_bit(Bitmap_sync, &rdev->flags);
1130 } else {
1131 if (ev1 < mddev->events)
1132 /* just a hot-add of a new device, leave raid_disk at -1 */
1133 return 0;
1134 }
1135
1136 if (mddev->level != LEVEL_MULTIPATH) {
1137 desc = sb->disks + rdev->desc_nr;
1138
1139 if (desc->state & (1<<MD_DISK_FAULTY))
1140 set_bit(Faulty, &rdev->flags);
1141 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 desc->raid_disk < mddev->raid_disks */) {
1143 set_bit(In_sync, &rdev->flags);
1144 rdev->raid_disk = desc->raid_disk;
1145 rdev->saved_raid_disk = desc->raid_disk;
1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 /* active but not in sync implies recovery up to
1148 * reshape position. We don't know exactly where
1149 * that is, so set to zero for now */
1150 if (mddev->minor_version >= 91) {
1151 rdev->recovery_offset = 0;
1152 rdev->raid_disk = desc->raid_disk;
1153 }
1154 }
1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 set_bit(WriteMostly, &rdev->flags);
1157 } else /* MULTIPATH are always insync */
1158 set_bit(In_sync, &rdev->flags);
1159 return 0;
1160 }
1161
1162 /*
1163 * sync_super for 0.90.0
1164 */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 mdp_super_t *sb;
1168 struct md_rdev *rdev2;
1169 int next_spare = mddev->raid_disks;
1170
1171 /* make rdev->sb match mddev data..
1172 *
1173 * 1/ zero out disks
1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 * 3/ any empty disks < next_spare become removed
1176 *
1177 * disks[0] gets initialised to REMOVED because
1178 * we cannot be sure from other fields if it has
1179 * been initialised or not.
1180 */
1181 int i;
1182 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184 rdev->sb_size = MD_SB_BYTES;
1185
1186 sb = page_address(rdev->sb_page);
1187
1188 memset(sb, 0, sizeof(*sb));
1189
1190 sb->md_magic = MD_SB_MAGIC;
1191 sb->major_version = mddev->major_version;
1192 sb->patch_version = mddev->patch_version;
1193 sb->gvalid_words = 0; /* ignored */
1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199 sb->ctime = mddev->ctime;
1200 sb->level = mddev->level;
1201 sb->size = mddev->dev_sectors / 2;
1202 sb->raid_disks = mddev->raid_disks;
1203 sb->md_minor = mddev->md_minor;
1204 sb->not_persistent = 0;
1205 sb->utime = mddev->utime;
1206 sb->state = 0;
1207 sb->events_hi = (mddev->events>>32);
1208 sb->events_lo = (u32)mddev->events;
1209
1210 if (mddev->reshape_position == MaxSector)
1211 sb->minor_version = 90;
1212 else {
1213 sb->minor_version = 91;
1214 sb->reshape_position = mddev->reshape_position;
1215 sb->new_level = mddev->new_level;
1216 sb->delta_disks = mddev->delta_disks;
1217 sb->new_layout = mddev->new_layout;
1218 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 }
1220 mddev->minor_version = sb->minor_version;
1221 if (mddev->in_sync)
1222 {
1223 sb->recovery_cp = mddev->recovery_cp;
1224 sb->cp_events_hi = (mddev->events>>32);
1225 sb->cp_events_lo = (u32)mddev->events;
1226 if (mddev->recovery_cp == MaxSector)
1227 sb->state = (1<< MD_SB_CLEAN);
1228 } else
1229 sb->recovery_cp = 0;
1230
1231 sb->layout = mddev->layout;
1232 sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 rdev_for_each(rdev2, mddev) {
1239 mdp_disk_t *d;
1240 int desc_nr;
1241 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243 if (rdev2->raid_disk >= 0 &&
1244 sb->minor_version >= 91)
1245 /* we have nowhere to store the recovery_offset,
1246 * but if it is not below the reshape_position,
1247 * we can piggy-back on that.
1248 */
1249 is_active = 1;
1250 if (rdev2->raid_disk < 0 ||
1251 test_bit(Faulty, &rdev2->flags))
1252 is_active = 0;
1253 if (is_active)
1254 desc_nr = rdev2->raid_disk;
1255 else
1256 desc_nr = next_spare++;
1257 rdev2->desc_nr = desc_nr;
1258 d = &sb->disks[rdev2->desc_nr];
1259 nr_disks++;
1260 d->number = rdev2->desc_nr;
1261 d->major = MAJOR(rdev2->bdev->bd_dev);
1262 d->minor = MINOR(rdev2->bdev->bd_dev);
1263 if (is_active)
1264 d->raid_disk = rdev2->raid_disk;
1265 else
1266 d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 if (test_bit(Faulty, &rdev2->flags))
1268 d->state = (1<<MD_DISK_FAULTY);
1269 else if (is_active) {
1270 d->state = (1<<MD_DISK_ACTIVE);
1271 if (test_bit(In_sync, &rdev2->flags))
1272 d->state |= (1<<MD_DISK_SYNC);
1273 active++;
1274 working++;
1275 } else {
1276 d->state = 0;
1277 spare++;
1278 working++;
1279 }
1280 if (test_bit(WriteMostly, &rdev2->flags))
1281 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 }
1283 /* now set the "removed" and "faulty" bits on any missing devices */
1284 for (i=0 ; i < mddev->raid_disks ; i++) {
1285 mdp_disk_t *d = &sb->disks[i];
1286 if (d->state == 0 && d->number == 0) {
1287 d->number = i;
1288 d->raid_disk = i;
1289 d->state = (1<<MD_DISK_REMOVED);
1290 d->state |= (1<<MD_DISK_FAULTY);
1291 failed++;
1292 }
1293 }
1294 sb->nr_disks = nr_disks;
1295 sb->active_disks = active;
1296 sb->working_disks = working;
1297 sb->failed_disks = failed;
1298 sb->spare_disks = spare;
1299
1300 sb->this_disk = sb->disks[rdev->desc_nr];
1301 sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305 * rdev_size_change for 0.90.0
1306 */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 return 0; /* component must fit device */
1312 if (rdev->mddev->bitmap_info.offset)
1313 return 0; /* can't move bitmap */
1314 rdev->sb_start = calc_dev_sboffset(rdev);
1315 if (!num_sectors || num_sectors > rdev->sb_start)
1316 num_sectors = rdev->sb_start;
1317 /* Limit to 4TB as metadata cannot record more than that.
1318 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 */
1320 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321 num_sectors = (2ULL << 32) - 2;
1322 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323 rdev->sb_page);
1324 md_super_wait(rdev->mddev);
1325 return num_sectors;
1326 }
1327
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331 /* non-zero offset changes not possible with v0.90 */
1332 return new_offset == 0;
1333 }
1334
1335 /*
1336 * version 1 superblock
1337 */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341 __le32 disk_csum;
1342 u32 csum;
1343 unsigned long long newcsum;
1344 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345 __le32 *isuper = (__le32*)sb;
1346
1347 disk_csum = sb->sb_csum;
1348 sb->sb_csum = 0;
1349 newcsum = 0;
1350 for (; size >= 4; size -= 4)
1351 newcsum += le32_to_cpu(*isuper++);
1352
1353 if (size == 2)
1354 newcsum += le16_to_cpu(*(__le16*) isuper);
1355
1356 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357 sb->sb_csum = disk_csum;
1358 return cpu_to_le32(csum);
1359 }
1360
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362 int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365 struct mdp_superblock_1 *sb;
1366 int ret;
1367 sector_t sb_start;
1368 sector_t sectors;
1369 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 int bmask;
1371
1372 /*
1373 * Calculate the position of the superblock in 512byte sectors.
1374 * It is always aligned to a 4K boundary and
1375 * depeding on minor_version, it can be:
1376 * 0: At least 8K, but less than 12K, from end of device
1377 * 1: At start of device
1378 * 2: 4K from start of device.
1379 */
1380 switch(minor_version) {
1381 case 0:
1382 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383 sb_start -= 8*2;
1384 sb_start &= ~(sector_t)(4*2-1);
1385 break;
1386 case 1:
1387 sb_start = 0;
1388 break;
1389 case 2:
1390 sb_start = 8;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 rdev->sb_start = sb_start;
1396
1397 /* superblock is rarely larger than 1K, but it can be larger,
1398 * and it is safe to read 4k, so we do that
1399 */
1400 ret = read_disk_sb(rdev, 4096);
1401 if (ret) return ret;
1402
1403 sb = page_address(rdev->sb_page);
1404
1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 sb->major_version != cpu_to_le32(1) ||
1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 return -EINVAL;
1411
1412 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 printk("md: invalid superblock checksum on %s\n",
1414 bdevname(rdev->bdev,b));
1415 return -EINVAL;
1416 }
1417 if (le64_to_cpu(sb->data_size) < 10) {
1418 printk("md: data_size too small on %s\n",
1419 bdevname(rdev->bdev,b));
1420 return -EINVAL;
1421 }
1422 if (sb->pad0 ||
1423 sb->pad3[0] ||
1424 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425 /* Some padding is non-zero, might be a new feature */
1426 return -EINVAL;
1427
1428 rdev->preferred_minor = 0xffff;
1429 rdev->data_offset = le64_to_cpu(sb->data_offset);
1430 rdev->new_data_offset = rdev->data_offset;
1431 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435
1436 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438 if (rdev->sb_size & bmask)
1439 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440
1441 if (minor_version
1442 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443 return -EINVAL;
1444 if (minor_version
1445 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446 return -EINVAL;
1447
1448 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449 rdev->desc_nr = -1;
1450 else
1451 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452
1453 if (!rdev->bb_page) {
1454 rdev->bb_page = alloc_page(GFP_KERNEL);
1455 if (!rdev->bb_page)
1456 return -ENOMEM;
1457 }
1458 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459 rdev->badblocks.count == 0) {
1460 /* need to load the bad block list.
1461 * Currently we limit it to one page.
1462 */
1463 s32 offset;
1464 sector_t bb_sector;
1465 u64 *bbp;
1466 int i;
1467 int sectors = le16_to_cpu(sb->bblog_size);
1468 if (sectors > (PAGE_SIZE / 512))
1469 return -EINVAL;
1470 offset = le32_to_cpu(sb->bblog_offset);
1471 if (offset == 0)
1472 return -EINVAL;
1473 bb_sector = (long long)offset;
1474 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475 rdev->bb_page, READ, true))
1476 return -EIO;
1477 bbp = (u64 *)page_address(rdev->bb_page);
1478 rdev->badblocks.shift = sb->bblog_shift;
1479 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480 u64 bb = le64_to_cpu(*bbp);
1481 int count = bb & (0x3ff);
1482 u64 sector = bb >> 10;
1483 sector <<= sb->bblog_shift;
1484 count <<= sb->bblog_shift;
1485 if (bb + 1 == 0)
1486 break;
1487 if (md_set_badblocks(&rdev->badblocks,
1488 sector, count, 1) == 0)
1489 return -EINVAL;
1490 }
1491 } else if (sb->bblog_offset != 0)
1492 rdev->badblocks.shift = 0;
1493
1494 if (!refdev) {
1495 ret = 1;
1496 } else {
1497 __u64 ev1, ev2;
1498 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501 sb->level != refsb->level ||
1502 sb->layout != refsb->layout ||
1503 sb->chunksize != refsb->chunksize) {
1504 printk(KERN_WARNING "md: %s has strangely different"
1505 " superblock to %s\n",
1506 bdevname(rdev->bdev,b),
1507 bdevname(refdev->bdev,b2));
1508 return -EINVAL;
1509 }
1510 ev1 = le64_to_cpu(sb->events);
1511 ev2 = le64_to_cpu(refsb->events);
1512
1513 if (ev1 > ev2)
1514 ret = 1;
1515 else
1516 ret = 0;
1517 }
1518 if (minor_version) {
1519 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520 sectors -= rdev->data_offset;
1521 } else
1522 sectors = rdev->sb_start;
1523 if (sectors < le64_to_cpu(sb->data_size))
1524 return -EINVAL;
1525 rdev->sectors = le64_to_cpu(sb->data_size);
1526 return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532 __u64 ev1 = le64_to_cpu(sb->events);
1533
1534 rdev->raid_disk = -1;
1535 clear_bit(Faulty, &rdev->flags);
1536 clear_bit(In_sync, &rdev->flags);
1537 clear_bit(Bitmap_sync, &rdev->flags);
1538 clear_bit(WriteMostly, &rdev->flags);
1539
1540 if (mddev->raid_disks == 0) {
1541 mddev->major_version = 1;
1542 mddev->patch_version = 0;
1543 mddev->external = 0;
1544 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547 mddev->level = le32_to_cpu(sb->level);
1548 mddev->clevel[0] = 0;
1549 mddev->layout = le32_to_cpu(sb->layout);
1550 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551 mddev->dev_sectors = le64_to_cpu(sb->size);
1552 mddev->events = ev1;
1553 mddev->bitmap_info.offset = 0;
1554 mddev->bitmap_info.space = 0;
1555 /* Default location for bitmap is 1K after superblock
1556 * using 3K - total of 4K
1557 */
1558 mddev->bitmap_info.default_offset = 1024 >> 9;
1559 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560 mddev->reshape_backwards = 0;
1561
1562 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565 mddev->max_disks = (4096-256)/2;
1566
1567 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568 mddev->bitmap_info.file == NULL) {
1569 mddev->bitmap_info.offset =
1570 (__s32)le32_to_cpu(sb->bitmap_offset);
1571 /* Metadata doesn't record how much space is available.
1572 * For 1.0, we assume we can use up to the superblock
1573 * if before, else to 4K beyond superblock.
1574 * For others, assume no change is possible.
1575 */
1576 if (mddev->minor_version > 0)
1577 mddev->bitmap_info.space = 0;
1578 else if (mddev->bitmap_info.offset > 0)
1579 mddev->bitmap_info.space =
1580 8 - mddev->bitmap_info.offset;
1581 else
1582 mddev->bitmap_info.space =
1583 -mddev->bitmap_info.offset;
1584 }
1585
1586 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589 mddev->new_level = le32_to_cpu(sb->new_level);
1590 mddev->new_layout = le32_to_cpu(sb->new_layout);
1591 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592 if (mddev->delta_disks < 0 ||
1593 (mddev->delta_disks == 0 &&
1594 (le32_to_cpu(sb->feature_map)
1595 & MD_FEATURE_RESHAPE_BACKWARDS)))
1596 mddev->reshape_backwards = 1;
1597 } else {
1598 mddev->reshape_position = MaxSector;
1599 mddev->delta_disks = 0;
1600 mddev->new_level = mddev->level;
1601 mddev->new_layout = mddev->layout;
1602 mddev->new_chunk_sectors = mddev->chunk_sectors;
1603 }
1604
1605 } else if (mddev->pers == NULL) {
1606 /* Insist of good event counter while assembling, except for
1607 * spares (which don't need an event count) */
1608 ++ev1;
1609 if (rdev->desc_nr >= 0 &&
1610 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1612 if (ev1 < mddev->events)
1613 return -EINVAL;
1614 } else if (mddev->bitmap) {
1615 /* If adding to array with a bitmap, then we can accept an
1616 * older device, but not too old.
1617 */
1618 if (ev1 < mddev->bitmap->events_cleared)
1619 return 0;
1620 if (ev1 < mddev->events)
1621 set_bit(Bitmap_sync, &rdev->flags);
1622 } else {
1623 if (ev1 < mddev->events)
1624 /* just a hot-add of a new device, leave raid_disk at -1 */
1625 return 0;
1626 }
1627 if (mddev->level != LEVEL_MULTIPATH) {
1628 int role;
1629 if (rdev->desc_nr < 0 ||
1630 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1631 role = 0xffff;
1632 rdev->desc_nr = -1;
1633 } else
1634 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1635 switch(role) {
1636 case 0xffff: /* spare */
1637 break;
1638 case 0xfffe: /* faulty */
1639 set_bit(Faulty, &rdev->flags);
1640 break;
1641 default:
1642 rdev->saved_raid_disk = role;
1643 if ((le32_to_cpu(sb->feature_map) &
1644 MD_FEATURE_RECOVERY_OFFSET)) {
1645 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1646 if (!(le32_to_cpu(sb->feature_map) &
1647 MD_FEATURE_RECOVERY_BITMAP))
1648 rdev->saved_raid_disk = -1;
1649 } else
1650 set_bit(In_sync, &rdev->flags);
1651 rdev->raid_disk = role;
1652 break;
1653 }
1654 if (sb->devflags & WriteMostly1)
1655 set_bit(WriteMostly, &rdev->flags);
1656 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1657 set_bit(Replacement, &rdev->flags);
1658 } else /* MULTIPATH are always insync */
1659 set_bit(In_sync, &rdev->flags);
1660
1661 return 0;
1662 }
1663
1664 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666 struct mdp_superblock_1 *sb;
1667 struct md_rdev *rdev2;
1668 int max_dev, i;
1669 /* make rdev->sb match mddev and rdev data. */
1670
1671 sb = page_address(rdev->sb_page);
1672
1673 sb->feature_map = 0;
1674 sb->pad0 = 0;
1675 sb->recovery_offset = cpu_to_le64(0);
1676 memset(sb->pad3, 0, sizeof(sb->pad3));
1677
1678 sb->utime = cpu_to_le64((__u64)mddev->utime);
1679 sb->events = cpu_to_le64(mddev->events);
1680 if (mddev->in_sync)
1681 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1682 else
1683 sb->resync_offset = cpu_to_le64(0);
1684
1685 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1686
1687 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1688 sb->size = cpu_to_le64(mddev->dev_sectors);
1689 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1690 sb->level = cpu_to_le32(mddev->level);
1691 sb->layout = cpu_to_le32(mddev->layout);
1692
1693 if (test_bit(WriteMostly, &rdev->flags))
1694 sb->devflags |= WriteMostly1;
1695 else
1696 sb->devflags &= ~WriteMostly1;
1697 sb->data_offset = cpu_to_le64(rdev->data_offset);
1698 sb->data_size = cpu_to_le64(rdev->sectors);
1699
1700 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1701 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1702 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1703 }
1704
1705 if (rdev->raid_disk >= 0 &&
1706 !test_bit(In_sync, &rdev->flags)) {
1707 sb->feature_map |=
1708 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1709 sb->recovery_offset =
1710 cpu_to_le64(rdev->recovery_offset);
1711 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1712 sb->feature_map |=
1713 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1714 }
1715 if (test_bit(Replacement, &rdev->flags))
1716 sb->feature_map |=
1717 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1718
1719 if (mddev->reshape_position != MaxSector) {
1720 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1721 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1722 sb->new_layout = cpu_to_le32(mddev->new_layout);
1723 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1724 sb->new_level = cpu_to_le32(mddev->new_level);
1725 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1726 if (mddev->delta_disks == 0 &&
1727 mddev->reshape_backwards)
1728 sb->feature_map
1729 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1730 if (rdev->new_data_offset != rdev->data_offset) {
1731 sb->feature_map
1732 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1733 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1734 - rdev->data_offset));
1735 }
1736 }
1737
1738 if (rdev->badblocks.count == 0)
1739 /* Nothing to do for bad blocks*/ ;
1740 else if (sb->bblog_offset == 0)
1741 /* Cannot record bad blocks on this device */
1742 md_error(mddev, rdev);
1743 else {
1744 struct badblocks *bb = &rdev->badblocks;
1745 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1746 u64 *p = bb->page;
1747 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1748 if (bb->changed) {
1749 unsigned seq;
1750
1751 retry:
1752 seq = read_seqbegin(&bb->lock);
1753
1754 memset(bbp, 0xff, PAGE_SIZE);
1755
1756 for (i = 0 ; i < bb->count ; i++) {
1757 u64 internal_bb = p[i];
1758 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1759 | BB_LEN(internal_bb));
1760 bbp[i] = cpu_to_le64(store_bb);
1761 }
1762 bb->changed = 0;
1763 if (read_seqretry(&bb->lock, seq))
1764 goto retry;
1765
1766 bb->sector = (rdev->sb_start +
1767 (int)le32_to_cpu(sb->bblog_offset));
1768 bb->size = le16_to_cpu(sb->bblog_size);
1769 }
1770 }
1771
1772 max_dev = 0;
1773 rdev_for_each(rdev2, mddev)
1774 if (rdev2->desc_nr+1 > max_dev)
1775 max_dev = rdev2->desc_nr+1;
1776
1777 if (max_dev > le32_to_cpu(sb->max_dev)) {
1778 int bmask;
1779 sb->max_dev = cpu_to_le32(max_dev);
1780 rdev->sb_size = max_dev * 2 + 256;
1781 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1782 if (rdev->sb_size & bmask)
1783 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1784 } else
1785 max_dev = le32_to_cpu(sb->max_dev);
1786
1787 for (i=0; i<max_dev;i++)
1788 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1789
1790 rdev_for_each(rdev2, mddev) {
1791 i = rdev2->desc_nr;
1792 if (test_bit(Faulty, &rdev2->flags))
1793 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1794 else if (test_bit(In_sync, &rdev2->flags))
1795 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1796 else if (rdev2->raid_disk >= 0)
1797 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1798 else
1799 sb->dev_roles[i] = cpu_to_le16(0xffff);
1800 }
1801
1802 sb->sb_csum = calc_sb_1_csum(sb);
1803 }
1804
1805 static unsigned long long
1806 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1807 {
1808 struct mdp_superblock_1 *sb;
1809 sector_t max_sectors;
1810 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1811 return 0; /* component must fit device */
1812 if (rdev->data_offset != rdev->new_data_offset)
1813 return 0; /* too confusing */
1814 if (rdev->sb_start < rdev->data_offset) {
1815 /* minor versions 1 and 2; superblock before data */
1816 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1817 max_sectors -= rdev->data_offset;
1818 if (!num_sectors || num_sectors > max_sectors)
1819 num_sectors = max_sectors;
1820 } else if (rdev->mddev->bitmap_info.offset) {
1821 /* minor version 0 with bitmap we can't move */
1822 return 0;
1823 } else {
1824 /* minor version 0; superblock after data */
1825 sector_t sb_start;
1826 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1827 sb_start &= ~(sector_t)(4*2 - 1);
1828 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1829 if (!num_sectors || num_sectors > max_sectors)
1830 num_sectors = max_sectors;
1831 rdev->sb_start = sb_start;
1832 }
1833 sb = page_address(rdev->sb_page);
1834 sb->data_size = cpu_to_le64(num_sectors);
1835 sb->super_offset = rdev->sb_start;
1836 sb->sb_csum = calc_sb_1_csum(sb);
1837 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1838 rdev->sb_page);
1839 md_super_wait(rdev->mddev);
1840 return num_sectors;
1841
1842 }
1843
1844 static int
1845 super_1_allow_new_offset(struct md_rdev *rdev,
1846 unsigned long long new_offset)
1847 {
1848 /* All necessary checks on new >= old have been done */
1849 struct bitmap *bitmap;
1850 if (new_offset >= rdev->data_offset)
1851 return 1;
1852
1853 /* with 1.0 metadata, there is no metadata to tread on
1854 * so we can always move back */
1855 if (rdev->mddev->minor_version == 0)
1856 return 1;
1857
1858 /* otherwise we must be sure not to step on
1859 * any metadata, so stay:
1860 * 36K beyond start of superblock
1861 * beyond end of badblocks
1862 * beyond write-intent bitmap
1863 */
1864 if (rdev->sb_start + (32+4)*2 > new_offset)
1865 return 0;
1866 bitmap = rdev->mddev->bitmap;
1867 if (bitmap && !rdev->mddev->bitmap_info.file &&
1868 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1869 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1870 return 0;
1871 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1872 return 0;
1873
1874 return 1;
1875 }
1876
1877 static struct super_type super_types[] = {
1878 [0] = {
1879 .name = "0.90.0",
1880 .owner = THIS_MODULE,
1881 .load_super = super_90_load,
1882 .validate_super = super_90_validate,
1883 .sync_super = super_90_sync,
1884 .rdev_size_change = super_90_rdev_size_change,
1885 .allow_new_offset = super_90_allow_new_offset,
1886 },
1887 [1] = {
1888 .name = "md-1",
1889 .owner = THIS_MODULE,
1890 .load_super = super_1_load,
1891 .validate_super = super_1_validate,
1892 .sync_super = super_1_sync,
1893 .rdev_size_change = super_1_rdev_size_change,
1894 .allow_new_offset = super_1_allow_new_offset,
1895 },
1896 };
1897
1898 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900 if (mddev->sync_super) {
1901 mddev->sync_super(mddev, rdev);
1902 return;
1903 }
1904
1905 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1906
1907 super_types[mddev->major_version].sync_super(mddev, rdev);
1908 }
1909
1910 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1911 {
1912 struct md_rdev *rdev, *rdev2;
1913
1914 rcu_read_lock();
1915 rdev_for_each_rcu(rdev, mddev1)
1916 rdev_for_each_rcu(rdev2, mddev2)
1917 if (rdev->bdev->bd_contains ==
1918 rdev2->bdev->bd_contains) {
1919 rcu_read_unlock();
1920 return 1;
1921 }
1922 rcu_read_unlock();
1923 return 0;
1924 }
1925
1926 static LIST_HEAD(pending_raid_disks);
1927
1928 /*
1929 * Try to register data integrity profile for an mddev
1930 *
1931 * This is called when an array is started and after a disk has been kicked
1932 * from the array. It only succeeds if all working and active component devices
1933 * are integrity capable with matching profiles.
1934 */
1935 int md_integrity_register(struct mddev *mddev)
1936 {
1937 struct md_rdev *rdev, *reference = NULL;
1938
1939 if (list_empty(&mddev->disks))
1940 return 0; /* nothing to do */
1941 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1942 return 0; /* shouldn't register, or already is */
1943 rdev_for_each(rdev, mddev) {
1944 /* skip spares and non-functional disks */
1945 if (test_bit(Faulty, &rdev->flags))
1946 continue;
1947 if (rdev->raid_disk < 0)
1948 continue;
1949 if (!reference) {
1950 /* Use the first rdev as the reference */
1951 reference = rdev;
1952 continue;
1953 }
1954 /* does this rdev's profile match the reference profile? */
1955 if (blk_integrity_compare(reference->bdev->bd_disk,
1956 rdev->bdev->bd_disk) < 0)
1957 return -EINVAL;
1958 }
1959 if (!reference || !bdev_get_integrity(reference->bdev))
1960 return 0;
1961 /*
1962 * All component devices are integrity capable and have matching
1963 * profiles, register the common profile for the md device.
1964 */
1965 if (blk_integrity_register(mddev->gendisk,
1966 bdev_get_integrity(reference->bdev)) != 0) {
1967 printk(KERN_ERR "md: failed to register integrity for %s\n",
1968 mdname(mddev));
1969 return -EINVAL;
1970 }
1971 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1972 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1973 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1974 mdname(mddev));
1975 return -EINVAL;
1976 }
1977 return 0;
1978 }
1979 EXPORT_SYMBOL(md_integrity_register);
1980
1981 /* Disable data integrity if non-capable/non-matching disk is being added */
1982 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1983 {
1984 struct blk_integrity *bi_rdev;
1985 struct blk_integrity *bi_mddev;
1986
1987 if (!mddev->gendisk)
1988 return;
1989
1990 bi_rdev = bdev_get_integrity(rdev->bdev);
1991 bi_mddev = blk_get_integrity(mddev->gendisk);
1992
1993 if (!bi_mddev) /* nothing to do */
1994 return;
1995 if (rdev->raid_disk < 0) /* skip spares */
1996 return;
1997 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1998 rdev->bdev->bd_disk) >= 0)
1999 return;
2000 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2001 blk_integrity_unregister(mddev->gendisk);
2002 }
2003 EXPORT_SYMBOL(md_integrity_add_rdev);
2004
2005 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2006 {
2007 char b[BDEVNAME_SIZE];
2008 struct kobject *ko;
2009 int err;
2010
2011 /* prevent duplicates */
2012 if (find_rdev(mddev, rdev->bdev->bd_dev))
2013 return -EEXIST;
2014
2015 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2016 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2017 rdev->sectors < mddev->dev_sectors)) {
2018 if (mddev->pers) {
2019 /* Cannot change size, so fail
2020 * If mddev->level <= 0, then we don't care
2021 * about aligning sizes (e.g. linear)
2022 */
2023 if (mddev->level > 0)
2024 return -ENOSPC;
2025 } else
2026 mddev->dev_sectors = rdev->sectors;
2027 }
2028
2029 /* Verify rdev->desc_nr is unique.
2030 * If it is -1, assign a free number, else
2031 * check number is not in use
2032 */
2033 rcu_read_lock();
2034 if (rdev->desc_nr < 0) {
2035 int choice = 0;
2036 if (mddev->pers)
2037 choice = mddev->raid_disks;
2038 while (md_find_rdev_nr_rcu(mddev, choice))
2039 choice++;
2040 rdev->desc_nr = choice;
2041 } else {
2042 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2043 rcu_read_unlock();
2044 return -EBUSY;
2045 }
2046 }
2047 rcu_read_unlock();
2048 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2049 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2050 mdname(mddev), mddev->max_disks);
2051 return -EBUSY;
2052 }
2053 bdevname(rdev->bdev,b);
2054 strreplace(b, '/', '!');
2055
2056 rdev->mddev = mddev;
2057 printk(KERN_INFO "md: bind<%s>\n", b);
2058
2059 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060 goto fail;
2061
2062 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064 /* failure here is OK */;
2065 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066
2067 list_add_rcu(&rdev->same_set, &mddev->disks);
2068 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069
2070 /* May as well allow recovery to be retried once */
2071 mddev->recovery_disabled++;
2072
2073 return 0;
2074
2075 fail:
2076 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077 b, mdname(mddev));
2078 return err;
2079 }
2080
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084 kobject_del(&rdev->kobj);
2085 kobject_put(&rdev->kobj);
2086 }
2087
2088 static void unbind_rdev_from_array(struct md_rdev *rdev)
2089 {
2090 char b[BDEVNAME_SIZE];
2091
2092 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2093 list_del_rcu(&rdev->same_set);
2094 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2095 rdev->mddev = NULL;
2096 sysfs_remove_link(&rdev->kobj, "block");
2097 sysfs_put(rdev->sysfs_state);
2098 rdev->sysfs_state = NULL;
2099 rdev->badblocks.count = 0;
2100 /* We need to delay this, otherwise we can deadlock when
2101 * writing to 'remove' to "dev/state". We also need
2102 * to delay it due to rcu usage.
2103 */
2104 synchronize_rcu();
2105 INIT_WORK(&rdev->del_work, md_delayed_delete);
2106 kobject_get(&rdev->kobj);
2107 queue_work(md_misc_wq, &rdev->del_work);
2108 }
2109
2110 /*
2111 * prevent the device from being mounted, repartitioned or
2112 * otherwise reused by a RAID array (or any other kernel
2113 * subsystem), by bd_claiming the device.
2114 */
2115 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2116 {
2117 int err = 0;
2118 struct block_device *bdev;
2119 char b[BDEVNAME_SIZE];
2120
2121 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2122 shared ? (struct md_rdev *)lock_rdev : rdev);
2123 if (IS_ERR(bdev)) {
2124 printk(KERN_ERR "md: could not open %s.\n",
2125 __bdevname(dev, b));
2126 return PTR_ERR(bdev);
2127 }
2128 rdev->bdev = bdev;
2129 return err;
2130 }
2131
2132 static void unlock_rdev(struct md_rdev *rdev)
2133 {
2134 struct block_device *bdev = rdev->bdev;
2135 rdev->bdev = NULL;
2136 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2137 }
2138
2139 void md_autodetect_dev(dev_t dev);
2140
2141 static void export_rdev(struct md_rdev *rdev)
2142 {
2143 char b[BDEVNAME_SIZE];
2144
2145 printk(KERN_INFO "md: export_rdev(%s)\n",
2146 bdevname(rdev->bdev,b));
2147 md_rdev_clear(rdev);
2148 #ifndef MODULE
2149 if (test_bit(AutoDetected, &rdev->flags))
2150 md_autodetect_dev(rdev->bdev->bd_dev);
2151 #endif
2152 unlock_rdev(rdev);
2153 kobject_put(&rdev->kobj);
2154 }
2155
2156 void md_kick_rdev_from_array(struct md_rdev *rdev)
2157 {
2158 unbind_rdev_from_array(rdev);
2159 export_rdev(rdev);
2160 }
2161 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2162
2163 static void export_array(struct mddev *mddev)
2164 {
2165 struct md_rdev *rdev;
2166
2167 while (!list_empty(&mddev->disks)) {
2168 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2169 same_set);
2170 md_kick_rdev_from_array(rdev);
2171 }
2172 mddev->raid_disks = 0;
2173 mddev->major_version = 0;
2174 }
2175
2176 static void sync_sbs(struct mddev *mddev, int nospares)
2177 {
2178 /* Update each superblock (in-memory image), but
2179 * if we are allowed to, skip spares which already
2180 * have the right event counter, or have one earlier
2181 * (which would mean they aren't being marked as dirty
2182 * with the rest of the array)
2183 */
2184 struct md_rdev *rdev;
2185 rdev_for_each(rdev, mddev) {
2186 if (rdev->sb_events == mddev->events ||
2187 (nospares &&
2188 rdev->raid_disk < 0 &&
2189 rdev->sb_events+1 == mddev->events)) {
2190 /* Don't update this superblock */
2191 rdev->sb_loaded = 2;
2192 } else {
2193 sync_super(mddev, rdev);
2194 rdev->sb_loaded = 1;
2195 }
2196 }
2197 }
2198
2199 void md_update_sb(struct mddev *mddev, int force_change)
2200 {
2201 struct md_rdev *rdev;
2202 int sync_req;
2203 int nospares = 0;
2204 int any_badblocks_changed = 0;
2205
2206 if (mddev->ro) {
2207 if (force_change)
2208 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2209 return;
2210 }
2211 repeat:
2212 /* First make sure individual recovery_offsets are correct */
2213 rdev_for_each(rdev, mddev) {
2214 if (rdev->raid_disk >= 0 &&
2215 mddev->delta_disks >= 0 &&
2216 !test_bit(In_sync, &rdev->flags) &&
2217 mddev->curr_resync_completed > rdev->recovery_offset)
2218 rdev->recovery_offset = mddev->curr_resync_completed;
2219
2220 }
2221 if (!mddev->persistent) {
2222 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2223 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2224 if (!mddev->external) {
2225 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2226 rdev_for_each(rdev, mddev) {
2227 if (rdev->badblocks.changed) {
2228 rdev->badblocks.changed = 0;
2229 md_ack_all_badblocks(&rdev->badblocks);
2230 md_error(mddev, rdev);
2231 }
2232 clear_bit(Blocked, &rdev->flags);
2233 clear_bit(BlockedBadBlocks, &rdev->flags);
2234 wake_up(&rdev->blocked_wait);
2235 }
2236 }
2237 wake_up(&mddev->sb_wait);
2238 return;
2239 }
2240
2241 spin_lock(&mddev->lock);
2242
2243 mddev->utime = get_seconds();
2244
2245 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2246 force_change = 1;
2247 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2248 /* just a clean<-> dirty transition, possibly leave spares alone,
2249 * though if events isn't the right even/odd, we will have to do
2250 * spares after all
2251 */
2252 nospares = 1;
2253 if (force_change)
2254 nospares = 0;
2255 if (mddev->degraded)
2256 /* If the array is degraded, then skipping spares is both
2257 * dangerous and fairly pointless.
2258 * Dangerous because a device that was removed from the array
2259 * might have a event_count that still looks up-to-date,
2260 * so it can be re-added without a resync.
2261 * Pointless because if there are any spares to skip,
2262 * then a recovery will happen and soon that array won't
2263 * be degraded any more and the spare can go back to sleep then.
2264 */
2265 nospares = 0;
2266
2267 sync_req = mddev->in_sync;
2268
2269 /* If this is just a dirty<->clean transition, and the array is clean
2270 * and 'events' is odd, we can roll back to the previous clean state */
2271 if (nospares
2272 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2273 && mddev->can_decrease_events
2274 && mddev->events != 1) {
2275 mddev->events--;
2276 mddev->can_decrease_events = 0;
2277 } else {
2278 /* otherwise we have to go forward and ... */
2279 mddev->events ++;
2280 mddev->can_decrease_events = nospares;
2281 }
2282
2283 /*
2284 * This 64-bit counter should never wrap.
2285 * Either we are in around ~1 trillion A.C., assuming
2286 * 1 reboot per second, or we have a bug...
2287 */
2288 WARN_ON(mddev->events == 0);
2289
2290 rdev_for_each(rdev, mddev) {
2291 if (rdev->badblocks.changed)
2292 any_badblocks_changed++;
2293 if (test_bit(Faulty, &rdev->flags))
2294 set_bit(FaultRecorded, &rdev->flags);
2295 }
2296
2297 sync_sbs(mddev, nospares);
2298 spin_unlock(&mddev->lock);
2299
2300 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2301 mdname(mddev), mddev->in_sync);
2302
2303 bitmap_update_sb(mddev->bitmap);
2304 rdev_for_each(rdev, mddev) {
2305 char b[BDEVNAME_SIZE];
2306
2307 if (rdev->sb_loaded != 1)
2308 continue; /* no noise on spare devices */
2309
2310 if (!test_bit(Faulty, &rdev->flags)) {
2311 md_super_write(mddev,rdev,
2312 rdev->sb_start, rdev->sb_size,
2313 rdev->sb_page);
2314 pr_debug("md: (write) %s's sb offset: %llu\n",
2315 bdevname(rdev->bdev, b),
2316 (unsigned long long)rdev->sb_start);
2317 rdev->sb_events = mddev->events;
2318 if (rdev->badblocks.size) {
2319 md_super_write(mddev, rdev,
2320 rdev->badblocks.sector,
2321 rdev->badblocks.size << 9,
2322 rdev->bb_page);
2323 rdev->badblocks.size = 0;
2324 }
2325
2326 } else
2327 pr_debug("md: %s (skipping faulty)\n",
2328 bdevname(rdev->bdev, b));
2329
2330 if (mddev->level == LEVEL_MULTIPATH)
2331 /* only need to write one superblock... */
2332 break;
2333 }
2334 md_super_wait(mddev);
2335 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2336
2337 spin_lock(&mddev->lock);
2338 if (mddev->in_sync != sync_req ||
2339 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2340 /* have to write it out again */
2341 spin_unlock(&mddev->lock);
2342 goto repeat;
2343 }
2344 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2345 spin_unlock(&mddev->lock);
2346 wake_up(&mddev->sb_wait);
2347 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2348 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2349
2350 rdev_for_each(rdev, mddev) {
2351 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2352 clear_bit(Blocked, &rdev->flags);
2353
2354 if (any_badblocks_changed)
2355 md_ack_all_badblocks(&rdev->badblocks);
2356 clear_bit(BlockedBadBlocks, &rdev->flags);
2357 wake_up(&rdev->blocked_wait);
2358 }
2359 }
2360 EXPORT_SYMBOL(md_update_sb);
2361
2362 static int add_bound_rdev(struct md_rdev *rdev)
2363 {
2364 struct mddev *mddev = rdev->mddev;
2365 int err = 0;
2366
2367 if (!mddev->pers->hot_remove_disk) {
2368 /* If there is hot_add_disk but no hot_remove_disk
2369 * then added disks for geometry changes,
2370 * and should be added immediately.
2371 */
2372 super_types[mddev->major_version].
2373 validate_super(mddev, rdev);
2374 err = mddev->pers->hot_add_disk(mddev, rdev);
2375 if (err) {
2376 unbind_rdev_from_array(rdev);
2377 export_rdev(rdev);
2378 return err;
2379 }
2380 }
2381 sysfs_notify_dirent_safe(rdev->sysfs_state);
2382
2383 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2384 if (mddev->degraded)
2385 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2387 md_new_event(mddev);
2388 md_wakeup_thread(mddev->thread);
2389 return 0;
2390 }
2391
2392 /* words written to sysfs files may, or may not, be \n terminated.
2393 * We want to accept with case. For this we use cmd_match.
2394 */
2395 static int cmd_match(const char *cmd, const char *str)
2396 {
2397 /* See if cmd, written into a sysfs file, matches
2398 * str. They must either be the same, or cmd can
2399 * have a trailing newline
2400 */
2401 while (*cmd && *str && *cmd == *str) {
2402 cmd++;
2403 str++;
2404 }
2405 if (*cmd == '\n')
2406 cmd++;
2407 if (*str || *cmd)
2408 return 0;
2409 return 1;
2410 }
2411
2412 struct rdev_sysfs_entry {
2413 struct attribute attr;
2414 ssize_t (*show)(struct md_rdev *, char *);
2415 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2416 };
2417
2418 static ssize_t
2419 state_show(struct md_rdev *rdev, char *page)
2420 {
2421 char *sep = "";
2422 size_t len = 0;
2423 unsigned long flags = ACCESS_ONCE(rdev->flags);
2424
2425 if (test_bit(Faulty, &flags) ||
2426 rdev->badblocks.unacked_exist) {
2427 len+= sprintf(page+len, "%sfaulty",sep);
2428 sep = ",";
2429 }
2430 if (test_bit(In_sync, &flags)) {
2431 len += sprintf(page+len, "%sin_sync",sep);
2432 sep = ",";
2433 }
2434 if (test_bit(WriteMostly, &flags)) {
2435 len += sprintf(page+len, "%swrite_mostly",sep);
2436 sep = ",";
2437 }
2438 if (test_bit(Blocked, &flags) ||
2439 (rdev->badblocks.unacked_exist
2440 && !test_bit(Faulty, &flags))) {
2441 len += sprintf(page+len, "%sblocked", sep);
2442 sep = ",";
2443 }
2444 if (!test_bit(Faulty, &flags) &&
2445 !test_bit(In_sync, &flags)) {
2446 len += sprintf(page+len, "%sspare", sep);
2447 sep = ",";
2448 }
2449 if (test_bit(WriteErrorSeen, &flags)) {
2450 len += sprintf(page+len, "%swrite_error", sep);
2451 sep = ",";
2452 }
2453 if (test_bit(WantReplacement, &flags)) {
2454 len += sprintf(page+len, "%swant_replacement", sep);
2455 sep = ",";
2456 }
2457 if (test_bit(Replacement, &flags)) {
2458 len += sprintf(page+len, "%sreplacement", sep);
2459 sep = ",";
2460 }
2461
2462 return len+sprintf(page+len, "\n");
2463 }
2464
2465 static ssize_t
2466 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2467 {
2468 /* can write
2469 * faulty - simulates an error
2470 * remove - disconnects the device
2471 * writemostly - sets write_mostly
2472 * -writemostly - clears write_mostly
2473 * blocked - sets the Blocked flags
2474 * -blocked - clears the Blocked and possibly simulates an error
2475 * insync - sets Insync providing device isn't active
2476 * -insync - clear Insync for a device with a slot assigned,
2477 * so that it gets rebuilt based on bitmap
2478 * write_error - sets WriteErrorSeen
2479 * -write_error - clears WriteErrorSeen
2480 */
2481 int err = -EINVAL;
2482 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2483 md_error(rdev->mddev, rdev);
2484 if (test_bit(Faulty, &rdev->flags))
2485 err = 0;
2486 else
2487 err = -EBUSY;
2488 } else if (cmd_match(buf, "remove")) {
2489 if (rdev->raid_disk >= 0)
2490 err = -EBUSY;
2491 else {
2492 struct mddev *mddev = rdev->mddev;
2493 if (mddev_is_clustered(mddev))
2494 md_cluster_ops->remove_disk(mddev, rdev);
2495 md_kick_rdev_from_array(rdev);
2496 if (mddev_is_clustered(mddev))
2497 md_cluster_ops->metadata_update_start(mddev);
2498 if (mddev->pers)
2499 md_update_sb(mddev, 1);
2500 md_new_event(mddev);
2501 if (mddev_is_clustered(mddev))
2502 md_cluster_ops->metadata_update_finish(mddev);
2503 err = 0;
2504 }
2505 } else if (cmd_match(buf, "writemostly")) {
2506 set_bit(WriteMostly, &rdev->flags);
2507 err = 0;
2508 } else if (cmd_match(buf, "-writemostly")) {
2509 clear_bit(WriteMostly, &rdev->flags);
2510 err = 0;
2511 } else if (cmd_match(buf, "blocked")) {
2512 set_bit(Blocked, &rdev->flags);
2513 err = 0;
2514 } else if (cmd_match(buf, "-blocked")) {
2515 if (!test_bit(Faulty, &rdev->flags) &&
2516 rdev->badblocks.unacked_exist) {
2517 /* metadata handler doesn't understand badblocks,
2518 * so we need to fail the device
2519 */
2520 md_error(rdev->mddev, rdev);
2521 }
2522 clear_bit(Blocked, &rdev->flags);
2523 clear_bit(BlockedBadBlocks, &rdev->flags);
2524 wake_up(&rdev->blocked_wait);
2525 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2526 md_wakeup_thread(rdev->mddev->thread);
2527
2528 err = 0;
2529 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2530 set_bit(In_sync, &rdev->flags);
2531 err = 0;
2532 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2533 if (rdev->mddev->pers == NULL) {
2534 clear_bit(In_sync, &rdev->flags);
2535 rdev->saved_raid_disk = rdev->raid_disk;
2536 rdev->raid_disk = -1;
2537 err = 0;
2538 }
2539 } else if (cmd_match(buf, "write_error")) {
2540 set_bit(WriteErrorSeen, &rdev->flags);
2541 err = 0;
2542 } else if (cmd_match(buf, "-write_error")) {
2543 clear_bit(WriteErrorSeen, &rdev->flags);
2544 err = 0;
2545 } else if (cmd_match(buf, "want_replacement")) {
2546 /* Any non-spare device that is not a replacement can
2547 * become want_replacement at any time, but we then need to
2548 * check if recovery is needed.
2549 */
2550 if (rdev->raid_disk >= 0 &&
2551 !test_bit(Replacement, &rdev->flags))
2552 set_bit(WantReplacement, &rdev->flags);
2553 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2554 md_wakeup_thread(rdev->mddev->thread);
2555 err = 0;
2556 } else if (cmd_match(buf, "-want_replacement")) {
2557 /* Clearing 'want_replacement' is always allowed.
2558 * Once replacements starts it is too late though.
2559 */
2560 err = 0;
2561 clear_bit(WantReplacement, &rdev->flags);
2562 } else if (cmd_match(buf, "replacement")) {
2563 /* Can only set a device as a replacement when array has not
2564 * yet been started. Once running, replacement is automatic
2565 * from spares, or by assigning 'slot'.
2566 */
2567 if (rdev->mddev->pers)
2568 err = -EBUSY;
2569 else {
2570 set_bit(Replacement, &rdev->flags);
2571 err = 0;
2572 }
2573 } else if (cmd_match(buf, "-replacement")) {
2574 /* Similarly, can only clear Replacement before start */
2575 if (rdev->mddev->pers)
2576 err = -EBUSY;
2577 else {
2578 clear_bit(Replacement, &rdev->flags);
2579 err = 0;
2580 }
2581 } else if (cmd_match(buf, "re-add")) {
2582 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2583 /* clear_bit is performed _after_ all the devices
2584 * have their local Faulty bit cleared. If any writes
2585 * happen in the meantime in the local node, they
2586 * will land in the local bitmap, which will be synced
2587 * by this node eventually
2588 */
2589 if (!mddev_is_clustered(rdev->mddev) ||
2590 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2591 clear_bit(Faulty, &rdev->flags);
2592 err = add_bound_rdev(rdev);
2593 }
2594 } else
2595 err = -EBUSY;
2596 }
2597 if (!err)
2598 sysfs_notify_dirent_safe(rdev->sysfs_state);
2599 return err ? err : len;
2600 }
2601 static struct rdev_sysfs_entry rdev_state =
2602 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2603
2604 static ssize_t
2605 errors_show(struct md_rdev *rdev, char *page)
2606 {
2607 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2608 }
2609
2610 static ssize_t
2611 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2612 {
2613 unsigned int n;
2614 int rv;
2615
2616 rv = kstrtouint(buf, 10, &n);
2617 if (rv < 0)
2618 return rv;
2619 atomic_set(&rdev->corrected_errors, n);
2620 return len;
2621 }
2622 static struct rdev_sysfs_entry rdev_errors =
2623 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2624
2625 static ssize_t
2626 slot_show(struct md_rdev *rdev, char *page)
2627 {
2628 if (rdev->raid_disk < 0)
2629 return sprintf(page, "none\n");
2630 else
2631 return sprintf(page, "%d\n", rdev->raid_disk);
2632 }
2633
2634 static ssize_t
2635 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2636 {
2637 int slot;
2638 int err;
2639
2640 if (strncmp(buf, "none", 4)==0)
2641 slot = -1;
2642 else {
2643 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2644 if (err < 0)
2645 return err;
2646 }
2647 if (rdev->mddev->pers && slot == -1) {
2648 /* Setting 'slot' on an active array requires also
2649 * updating the 'rd%d' link, and communicating
2650 * with the personality with ->hot_*_disk.
2651 * For now we only support removing
2652 * failed/spare devices. This normally happens automatically,
2653 * but not when the metadata is externally managed.
2654 */
2655 if (rdev->raid_disk == -1)
2656 return -EEXIST;
2657 /* personality does all needed checks */
2658 if (rdev->mddev->pers->hot_remove_disk == NULL)
2659 return -EINVAL;
2660 clear_bit(Blocked, &rdev->flags);
2661 remove_and_add_spares(rdev->mddev, rdev);
2662 if (rdev->raid_disk >= 0)
2663 return -EBUSY;
2664 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2665 md_wakeup_thread(rdev->mddev->thread);
2666 } else if (rdev->mddev->pers) {
2667 /* Activating a spare .. or possibly reactivating
2668 * if we ever get bitmaps working here.
2669 */
2670
2671 if (rdev->raid_disk != -1)
2672 return -EBUSY;
2673
2674 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2675 return -EBUSY;
2676
2677 if (rdev->mddev->pers->hot_add_disk == NULL)
2678 return -EINVAL;
2679
2680 if (slot >= rdev->mddev->raid_disks &&
2681 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2682 return -ENOSPC;
2683
2684 rdev->raid_disk = slot;
2685 if (test_bit(In_sync, &rdev->flags))
2686 rdev->saved_raid_disk = slot;
2687 else
2688 rdev->saved_raid_disk = -1;
2689 clear_bit(In_sync, &rdev->flags);
2690 clear_bit(Bitmap_sync, &rdev->flags);
2691 err = rdev->mddev->pers->
2692 hot_add_disk(rdev->mddev, rdev);
2693 if (err) {
2694 rdev->raid_disk = -1;
2695 return err;
2696 } else
2697 sysfs_notify_dirent_safe(rdev->sysfs_state);
2698 if (sysfs_link_rdev(rdev->mddev, rdev))
2699 /* failure here is OK */;
2700 /* don't wakeup anyone, leave that to userspace. */
2701 } else {
2702 if (slot >= rdev->mddev->raid_disks &&
2703 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2704 return -ENOSPC;
2705 rdev->raid_disk = slot;
2706 /* assume it is working */
2707 clear_bit(Faulty, &rdev->flags);
2708 clear_bit(WriteMostly, &rdev->flags);
2709 set_bit(In_sync, &rdev->flags);
2710 sysfs_notify_dirent_safe(rdev->sysfs_state);
2711 }
2712 return len;
2713 }
2714
2715 static struct rdev_sysfs_entry rdev_slot =
2716 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2717
2718 static ssize_t
2719 offset_show(struct md_rdev *rdev, char *page)
2720 {
2721 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2722 }
2723
2724 static ssize_t
2725 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2726 {
2727 unsigned long long offset;
2728 if (kstrtoull(buf, 10, &offset) < 0)
2729 return -EINVAL;
2730 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2731 return -EBUSY;
2732 if (rdev->sectors && rdev->mddev->external)
2733 /* Must set offset before size, so overlap checks
2734 * can be sane */
2735 return -EBUSY;
2736 rdev->data_offset = offset;
2737 rdev->new_data_offset = offset;
2738 return len;
2739 }
2740
2741 static struct rdev_sysfs_entry rdev_offset =
2742 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2743
2744 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2745 {
2746 return sprintf(page, "%llu\n",
2747 (unsigned long long)rdev->new_data_offset);
2748 }
2749
2750 static ssize_t new_offset_store(struct md_rdev *rdev,
2751 const char *buf, size_t len)
2752 {
2753 unsigned long long new_offset;
2754 struct mddev *mddev = rdev->mddev;
2755
2756 if (kstrtoull(buf, 10, &new_offset) < 0)
2757 return -EINVAL;
2758
2759 if (mddev->sync_thread ||
2760 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2761 return -EBUSY;
2762 if (new_offset == rdev->data_offset)
2763 /* reset is always permitted */
2764 ;
2765 else if (new_offset > rdev->data_offset) {
2766 /* must not push array size beyond rdev_sectors */
2767 if (new_offset - rdev->data_offset
2768 + mddev->dev_sectors > rdev->sectors)
2769 return -E2BIG;
2770 }
2771 /* Metadata worries about other space details. */
2772
2773 /* decreasing the offset is inconsistent with a backwards
2774 * reshape.
2775 */
2776 if (new_offset < rdev->data_offset &&
2777 mddev->reshape_backwards)
2778 return -EINVAL;
2779 /* Increasing offset is inconsistent with forwards
2780 * reshape. reshape_direction should be set to
2781 * 'backwards' first.
2782 */
2783 if (new_offset > rdev->data_offset &&
2784 !mddev->reshape_backwards)
2785 return -EINVAL;
2786
2787 if (mddev->pers && mddev->persistent &&
2788 !super_types[mddev->major_version]
2789 .allow_new_offset(rdev, new_offset))
2790 return -E2BIG;
2791 rdev->new_data_offset = new_offset;
2792 if (new_offset > rdev->data_offset)
2793 mddev->reshape_backwards = 1;
2794 else if (new_offset < rdev->data_offset)
2795 mddev->reshape_backwards = 0;
2796
2797 return len;
2798 }
2799 static struct rdev_sysfs_entry rdev_new_offset =
2800 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2801
2802 static ssize_t
2803 rdev_size_show(struct md_rdev *rdev, char *page)
2804 {
2805 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2806 }
2807
2808 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2809 {
2810 /* check if two start/length pairs overlap */
2811 if (s1+l1 <= s2)
2812 return 0;
2813 if (s2+l2 <= s1)
2814 return 0;
2815 return 1;
2816 }
2817
2818 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2819 {
2820 unsigned long long blocks;
2821 sector_t new;
2822
2823 if (kstrtoull(buf, 10, &blocks) < 0)
2824 return -EINVAL;
2825
2826 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2827 return -EINVAL; /* sector conversion overflow */
2828
2829 new = blocks * 2;
2830 if (new != blocks * 2)
2831 return -EINVAL; /* unsigned long long to sector_t overflow */
2832
2833 *sectors = new;
2834 return 0;
2835 }
2836
2837 static ssize_t
2838 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2839 {
2840 struct mddev *my_mddev = rdev->mddev;
2841 sector_t oldsectors = rdev->sectors;
2842 sector_t sectors;
2843
2844 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2845 return -EINVAL;
2846 if (rdev->data_offset != rdev->new_data_offset)
2847 return -EINVAL; /* too confusing */
2848 if (my_mddev->pers && rdev->raid_disk >= 0) {
2849 if (my_mddev->persistent) {
2850 sectors = super_types[my_mddev->major_version].
2851 rdev_size_change(rdev, sectors);
2852 if (!sectors)
2853 return -EBUSY;
2854 } else if (!sectors)
2855 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2856 rdev->data_offset;
2857 if (!my_mddev->pers->resize)
2858 /* Cannot change size for RAID0 or Linear etc */
2859 return -EINVAL;
2860 }
2861 if (sectors < my_mddev->dev_sectors)
2862 return -EINVAL; /* component must fit device */
2863
2864 rdev->sectors = sectors;
2865 if (sectors > oldsectors && my_mddev->external) {
2866 /* Need to check that all other rdevs with the same
2867 * ->bdev do not overlap. 'rcu' is sufficient to walk
2868 * the rdev lists safely.
2869 * This check does not provide a hard guarantee, it
2870 * just helps avoid dangerous mistakes.
2871 */
2872 struct mddev *mddev;
2873 int overlap = 0;
2874 struct list_head *tmp;
2875
2876 rcu_read_lock();
2877 for_each_mddev(mddev, tmp) {
2878 struct md_rdev *rdev2;
2879
2880 rdev_for_each(rdev2, mddev)
2881 if (rdev->bdev == rdev2->bdev &&
2882 rdev != rdev2 &&
2883 overlaps(rdev->data_offset, rdev->sectors,
2884 rdev2->data_offset,
2885 rdev2->sectors)) {
2886 overlap = 1;
2887 break;
2888 }
2889 if (overlap) {
2890 mddev_put(mddev);
2891 break;
2892 }
2893 }
2894 rcu_read_unlock();
2895 if (overlap) {
2896 /* Someone else could have slipped in a size
2897 * change here, but doing so is just silly.
2898 * We put oldsectors back because we *know* it is
2899 * safe, and trust userspace not to race with
2900 * itself
2901 */
2902 rdev->sectors = oldsectors;
2903 return -EBUSY;
2904 }
2905 }
2906 return len;
2907 }
2908
2909 static struct rdev_sysfs_entry rdev_size =
2910 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2911
2912 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2913 {
2914 unsigned long long recovery_start = rdev->recovery_offset;
2915
2916 if (test_bit(In_sync, &rdev->flags) ||
2917 recovery_start == MaxSector)
2918 return sprintf(page, "none\n");
2919
2920 return sprintf(page, "%llu\n", recovery_start);
2921 }
2922
2923 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2924 {
2925 unsigned long long recovery_start;
2926
2927 if (cmd_match(buf, "none"))
2928 recovery_start = MaxSector;
2929 else if (kstrtoull(buf, 10, &recovery_start))
2930 return -EINVAL;
2931
2932 if (rdev->mddev->pers &&
2933 rdev->raid_disk >= 0)
2934 return -EBUSY;
2935
2936 rdev->recovery_offset = recovery_start;
2937 if (recovery_start == MaxSector)
2938 set_bit(In_sync, &rdev->flags);
2939 else
2940 clear_bit(In_sync, &rdev->flags);
2941 return len;
2942 }
2943
2944 static struct rdev_sysfs_entry rdev_recovery_start =
2945 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2946
2947 static ssize_t
2948 badblocks_show(struct badblocks *bb, char *page, int unack);
2949 static ssize_t
2950 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2951
2952 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2953 {
2954 return badblocks_show(&rdev->badblocks, page, 0);
2955 }
2956 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2957 {
2958 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2959 /* Maybe that ack was all we needed */
2960 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2961 wake_up(&rdev->blocked_wait);
2962 return rv;
2963 }
2964 static struct rdev_sysfs_entry rdev_bad_blocks =
2965 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2966
2967 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2968 {
2969 return badblocks_show(&rdev->badblocks, page, 1);
2970 }
2971 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2972 {
2973 return badblocks_store(&rdev->badblocks, page, len, 1);
2974 }
2975 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2976 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2977
2978 static struct attribute *rdev_default_attrs[] = {
2979 &rdev_state.attr,
2980 &rdev_errors.attr,
2981 &rdev_slot.attr,
2982 &rdev_offset.attr,
2983 &rdev_new_offset.attr,
2984 &rdev_size.attr,
2985 &rdev_recovery_start.attr,
2986 &rdev_bad_blocks.attr,
2987 &rdev_unack_bad_blocks.attr,
2988 NULL,
2989 };
2990 static ssize_t
2991 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2992 {
2993 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2994 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2995
2996 if (!entry->show)
2997 return -EIO;
2998 if (!rdev->mddev)
2999 return -EBUSY;
3000 return entry->show(rdev, page);
3001 }
3002
3003 static ssize_t
3004 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3005 const char *page, size_t length)
3006 {
3007 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3008 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3009 ssize_t rv;
3010 struct mddev *mddev = rdev->mddev;
3011
3012 if (!entry->store)
3013 return -EIO;
3014 if (!capable(CAP_SYS_ADMIN))
3015 return -EACCES;
3016 rv = mddev ? mddev_lock(mddev): -EBUSY;
3017 if (!rv) {
3018 if (rdev->mddev == NULL)
3019 rv = -EBUSY;
3020 else
3021 rv = entry->store(rdev, page, length);
3022 mddev_unlock(mddev);
3023 }
3024 return rv;
3025 }
3026
3027 static void rdev_free(struct kobject *ko)
3028 {
3029 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3030 kfree(rdev);
3031 }
3032 static const struct sysfs_ops rdev_sysfs_ops = {
3033 .show = rdev_attr_show,
3034 .store = rdev_attr_store,
3035 };
3036 static struct kobj_type rdev_ktype = {
3037 .release = rdev_free,
3038 .sysfs_ops = &rdev_sysfs_ops,
3039 .default_attrs = rdev_default_attrs,
3040 };
3041
3042 int md_rdev_init(struct md_rdev *rdev)
3043 {
3044 rdev->desc_nr = -1;
3045 rdev->saved_raid_disk = -1;
3046 rdev->raid_disk = -1;
3047 rdev->flags = 0;
3048 rdev->data_offset = 0;
3049 rdev->new_data_offset = 0;
3050 rdev->sb_events = 0;
3051 rdev->last_read_error.tv_sec = 0;
3052 rdev->last_read_error.tv_nsec = 0;
3053 rdev->sb_loaded = 0;
3054 rdev->bb_page = NULL;
3055 atomic_set(&rdev->nr_pending, 0);
3056 atomic_set(&rdev->read_errors, 0);
3057 atomic_set(&rdev->corrected_errors, 0);
3058
3059 INIT_LIST_HEAD(&rdev->same_set);
3060 init_waitqueue_head(&rdev->blocked_wait);
3061
3062 /* Add space to store bad block list.
3063 * This reserves the space even on arrays where it cannot
3064 * be used - I wonder if that matters
3065 */
3066 rdev->badblocks.count = 0;
3067 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3068 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3069 seqlock_init(&rdev->badblocks.lock);
3070 if (rdev->badblocks.page == NULL)
3071 return -ENOMEM;
3072
3073 return 0;
3074 }
3075 EXPORT_SYMBOL_GPL(md_rdev_init);
3076 /*
3077 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3078 *
3079 * mark the device faulty if:
3080 *
3081 * - the device is nonexistent (zero size)
3082 * - the device has no valid superblock
3083 *
3084 * a faulty rdev _never_ has rdev->sb set.
3085 */
3086 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3087 {
3088 char b[BDEVNAME_SIZE];
3089 int err;
3090 struct md_rdev *rdev;
3091 sector_t size;
3092
3093 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3094 if (!rdev) {
3095 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3096 return ERR_PTR(-ENOMEM);
3097 }
3098
3099 err = md_rdev_init(rdev);
3100 if (err)
3101 goto abort_free;
3102 err = alloc_disk_sb(rdev);
3103 if (err)
3104 goto abort_free;
3105
3106 err = lock_rdev(rdev, newdev, super_format == -2);
3107 if (err)
3108 goto abort_free;
3109
3110 kobject_init(&rdev->kobj, &rdev_ktype);
3111
3112 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3113 if (!size) {
3114 printk(KERN_WARNING
3115 "md: %s has zero or unknown size, marking faulty!\n",
3116 bdevname(rdev->bdev,b));
3117 err = -EINVAL;
3118 goto abort_free;
3119 }
3120
3121 if (super_format >= 0) {
3122 err = super_types[super_format].
3123 load_super(rdev, NULL, super_minor);
3124 if (err == -EINVAL) {
3125 printk(KERN_WARNING
3126 "md: %s does not have a valid v%d.%d "
3127 "superblock, not importing!\n",
3128 bdevname(rdev->bdev,b),
3129 super_format, super_minor);
3130 goto abort_free;
3131 }
3132 if (err < 0) {
3133 printk(KERN_WARNING
3134 "md: could not read %s's sb, not importing!\n",
3135 bdevname(rdev->bdev,b));
3136 goto abort_free;
3137 }
3138 }
3139
3140 return rdev;
3141
3142 abort_free:
3143 if (rdev->bdev)
3144 unlock_rdev(rdev);
3145 md_rdev_clear(rdev);
3146 kfree(rdev);
3147 return ERR_PTR(err);
3148 }
3149
3150 /*
3151 * Check a full RAID array for plausibility
3152 */
3153
3154 static void analyze_sbs(struct mddev *mddev)
3155 {
3156 int i;
3157 struct md_rdev *rdev, *freshest, *tmp;
3158 char b[BDEVNAME_SIZE];
3159
3160 freshest = NULL;
3161 rdev_for_each_safe(rdev, tmp, mddev)
3162 switch (super_types[mddev->major_version].
3163 load_super(rdev, freshest, mddev->minor_version)) {
3164 case 1:
3165 freshest = rdev;
3166 break;
3167 case 0:
3168 break;
3169 default:
3170 printk( KERN_ERR \
3171 "md: fatal superblock inconsistency in %s"
3172 " -- removing from array\n",
3173 bdevname(rdev->bdev,b));
3174 md_kick_rdev_from_array(rdev);
3175 }
3176
3177 super_types[mddev->major_version].
3178 validate_super(mddev, freshest);
3179
3180 i = 0;
3181 rdev_for_each_safe(rdev, tmp, mddev) {
3182 if (mddev->max_disks &&
3183 (rdev->desc_nr >= mddev->max_disks ||
3184 i > mddev->max_disks)) {
3185 printk(KERN_WARNING
3186 "md: %s: %s: only %d devices permitted\n",
3187 mdname(mddev), bdevname(rdev->bdev, b),
3188 mddev->max_disks);
3189 md_kick_rdev_from_array(rdev);
3190 continue;
3191 }
3192 if (rdev != freshest) {
3193 if (super_types[mddev->major_version].
3194 validate_super(mddev, rdev)) {
3195 printk(KERN_WARNING "md: kicking non-fresh %s"
3196 " from array!\n",
3197 bdevname(rdev->bdev,b));
3198 md_kick_rdev_from_array(rdev);
3199 continue;
3200 }
3201 /* No device should have a Candidate flag
3202 * when reading devices
3203 */
3204 if (test_bit(Candidate, &rdev->flags)) {
3205 pr_info("md: kicking Cluster Candidate %s from array!\n",
3206 bdevname(rdev->bdev, b));
3207 md_kick_rdev_from_array(rdev);
3208 }
3209 }
3210 if (mddev->level == LEVEL_MULTIPATH) {
3211 rdev->desc_nr = i++;
3212 rdev->raid_disk = rdev->desc_nr;
3213 set_bit(In_sync, &rdev->flags);
3214 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3215 rdev->raid_disk = -1;
3216 clear_bit(In_sync, &rdev->flags);
3217 }
3218 }
3219 }
3220
3221 /* Read a fixed-point number.
3222 * Numbers in sysfs attributes should be in "standard" units where
3223 * possible, so time should be in seconds.
3224 * However we internally use a a much smaller unit such as
3225 * milliseconds or jiffies.
3226 * This function takes a decimal number with a possible fractional
3227 * component, and produces an integer which is the result of
3228 * multiplying that number by 10^'scale'.
3229 * all without any floating-point arithmetic.
3230 */
3231 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3232 {
3233 unsigned long result = 0;
3234 long decimals = -1;
3235 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3236 if (*cp == '.')
3237 decimals = 0;
3238 else if (decimals < scale) {
3239 unsigned int value;
3240 value = *cp - '0';
3241 result = result * 10 + value;
3242 if (decimals >= 0)
3243 decimals++;
3244 }
3245 cp++;
3246 }
3247 if (*cp == '\n')
3248 cp++;
3249 if (*cp)
3250 return -EINVAL;
3251 if (decimals < 0)
3252 decimals = 0;
3253 while (decimals < scale) {
3254 result *= 10;
3255 decimals ++;
3256 }
3257 *res = result;
3258 return 0;
3259 }
3260
3261 static ssize_t
3262 safe_delay_show(struct mddev *mddev, char *page)
3263 {
3264 int msec = (mddev->safemode_delay*1000)/HZ;
3265 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3266 }
3267 static ssize_t
3268 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3269 {
3270 unsigned long msec;
3271
3272 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3273 return -EINVAL;
3274 if (msec == 0)
3275 mddev->safemode_delay = 0;
3276 else {
3277 unsigned long old_delay = mddev->safemode_delay;
3278 unsigned long new_delay = (msec*HZ)/1000;
3279
3280 if (new_delay == 0)
3281 new_delay = 1;
3282 mddev->safemode_delay = new_delay;
3283 if (new_delay < old_delay || old_delay == 0)
3284 mod_timer(&mddev->safemode_timer, jiffies+1);
3285 }
3286 return len;
3287 }
3288 static struct md_sysfs_entry md_safe_delay =
3289 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3290
3291 static ssize_t
3292 level_show(struct mddev *mddev, char *page)
3293 {
3294 struct md_personality *p;
3295 int ret;
3296 spin_lock(&mddev->lock);
3297 p = mddev->pers;
3298 if (p)
3299 ret = sprintf(page, "%s\n", p->name);
3300 else if (mddev->clevel[0])
3301 ret = sprintf(page, "%s\n", mddev->clevel);
3302 else if (mddev->level != LEVEL_NONE)
3303 ret = sprintf(page, "%d\n", mddev->level);
3304 else
3305 ret = 0;
3306 spin_unlock(&mddev->lock);
3307 return ret;
3308 }
3309
3310 static ssize_t
3311 level_store(struct mddev *mddev, const char *buf, size_t len)
3312 {
3313 char clevel[16];
3314 ssize_t rv;
3315 size_t slen = len;
3316 struct md_personality *pers, *oldpers;
3317 long level;
3318 void *priv, *oldpriv;
3319 struct md_rdev *rdev;
3320
3321 if (slen == 0 || slen >= sizeof(clevel))
3322 return -EINVAL;
3323
3324 rv = mddev_lock(mddev);
3325 if (rv)
3326 return rv;
3327
3328 if (mddev->pers == NULL) {
3329 strncpy(mddev->clevel, buf, slen);
3330 if (mddev->clevel[slen-1] == '\n')
3331 slen--;
3332 mddev->clevel[slen] = 0;
3333 mddev->level = LEVEL_NONE;
3334 rv = len;
3335 goto out_unlock;
3336 }
3337 rv = -EROFS;
3338 if (mddev->ro)
3339 goto out_unlock;
3340
3341 /* request to change the personality. Need to ensure:
3342 * - array is not engaged in resync/recovery/reshape
3343 * - old personality can be suspended
3344 * - new personality will access other array.
3345 */
3346
3347 rv = -EBUSY;
3348 if (mddev->sync_thread ||
3349 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3350 mddev->reshape_position != MaxSector ||
3351 mddev->sysfs_active)
3352 goto out_unlock;
3353
3354 rv = -EINVAL;
3355 if (!mddev->pers->quiesce) {
3356 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3357 mdname(mddev), mddev->pers->name);
3358 goto out_unlock;
3359 }
3360
3361 /* Now find the new personality */
3362 strncpy(clevel, buf, slen);
3363 if (clevel[slen-1] == '\n')
3364 slen--;
3365 clevel[slen] = 0;
3366 if (kstrtol(clevel, 10, &level))
3367 level = LEVEL_NONE;
3368
3369 if (request_module("md-%s", clevel) != 0)
3370 request_module("md-level-%s", clevel);
3371 spin_lock(&pers_lock);
3372 pers = find_pers(level, clevel);
3373 if (!pers || !try_module_get(pers->owner)) {
3374 spin_unlock(&pers_lock);
3375 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3376 rv = -EINVAL;
3377 goto out_unlock;
3378 }
3379 spin_unlock(&pers_lock);
3380
3381 if (pers == mddev->pers) {
3382 /* Nothing to do! */
3383 module_put(pers->owner);
3384 rv = len;
3385 goto out_unlock;
3386 }
3387 if (!pers->takeover) {
3388 module_put(pers->owner);
3389 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3390 mdname(mddev), clevel);
3391 rv = -EINVAL;
3392 goto out_unlock;
3393 }
3394
3395 rdev_for_each(rdev, mddev)
3396 rdev->new_raid_disk = rdev->raid_disk;
3397
3398 /* ->takeover must set new_* and/or delta_disks
3399 * if it succeeds, and may set them when it fails.
3400 */
3401 priv = pers->takeover(mddev);
3402 if (IS_ERR(priv)) {
3403 mddev->new_level = mddev->level;
3404 mddev->new_layout = mddev->layout;
3405 mddev->new_chunk_sectors = mddev->chunk_sectors;
3406 mddev->raid_disks -= mddev->delta_disks;
3407 mddev->delta_disks = 0;
3408 mddev->reshape_backwards = 0;
3409 module_put(pers->owner);
3410 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3411 mdname(mddev), clevel);
3412 rv = PTR_ERR(priv);
3413 goto out_unlock;
3414 }
3415
3416 /* Looks like we have a winner */
3417 mddev_suspend(mddev);
3418 mddev_detach(mddev);
3419
3420 spin_lock(&mddev->lock);
3421 oldpers = mddev->pers;
3422 oldpriv = mddev->private;
3423 mddev->pers = pers;
3424 mddev->private = priv;
3425 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3426 mddev->level = mddev->new_level;
3427 mddev->layout = mddev->new_layout;
3428 mddev->chunk_sectors = mddev->new_chunk_sectors;
3429 mddev->delta_disks = 0;
3430 mddev->reshape_backwards = 0;
3431 mddev->degraded = 0;
3432 spin_unlock(&mddev->lock);
3433
3434 if (oldpers->sync_request == NULL &&
3435 mddev->external) {
3436 /* We are converting from a no-redundancy array
3437 * to a redundancy array and metadata is managed
3438 * externally so we need to be sure that writes
3439 * won't block due to a need to transition
3440 * clean->dirty
3441 * until external management is started.
3442 */
3443 mddev->in_sync = 0;
3444 mddev->safemode_delay = 0;
3445 mddev->safemode = 0;
3446 }
3447
3448 oldpers->free(mddev, oldpriv);
3449
3450 if (oldpers->sync_request == NULL &&
3451 pers->sync_request != NULL) {
3452 /* need to add the md_redundancy_group */
3453 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3454 printk(KERN_WARNING
3455 "md: cannot register extra attributes for %s\n",
3456 mdname(mddev));
3457 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3458 }
3459 if (oldpers->sync_request != NULL &&
3460 pers->sync_request == NULL) {
3461 /* need to remove the md_redundancy_group */
3462 if (mddev->to_remove == NULL)
3463 mddev->to_remove = &md_redundancy_group;
3464 }
3465
3466 rdev_for_each(rdev, mddev) {
3467 if (rdev->raid_disk < 0)
3468 continue;
3469 if (rdev->new_raid_disk >= mddev->raid_disks)
3470 rdev->new_raid_disk = -1;
3471 if (rdev->new_raid_disk == rdev->raid_disk)
3472 continue;
3473 sysfs_unlink_rdev(mddev, rdev);
3474 }
3475 rdev_for_each(rdev, mddev) {
3476 if (rdev->raid_disk < 0)
3477 continue;
3478 if (rdev->new_raid_disk == rdev->raid_disk)
3479 continue;
3480 rdev->raid_disk = rdev->new_raid_disk;
3481 if (rdev->raid_disk < 0)
3482 clear_bit(In_sync, &rdev->flags);
3483 else {
3484 if (sysfs_link_rdev(mddev, rdev))
3485 printk(KERN_WARNING "md: cannot register rd%d"
3486 " for %s after level change\n",
3487 rdev->raid_disk, mdname(mddev));
3488 }
3489 }
3490
3491 if (pers->sync_request == NULL) {
3492 /* this is now an array without redundancy, so
3493 * it must always be in_sync
3494 */
3495 mddev->in_sync = 1;
3496 del_timer_sync(&mddev->safemode_timer);
3497 }
3498 blk_set_stacking_limits(&mddev->queue->limits);
3499 pers->run(mddev);
3500 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3501 mddev_resume(mddev);
3502 if (!mddev->thread)
3503 md_update_sb(mddev, 1);
3504 sysfs_notify(&mddev->kobj, NULL, "level");
3505 md_new_event(mddev);
3506 rv = len;
3507 out_unlock:
3508 mddev_unlock(mddev);
3509 return rv;
3510 }
3511
3512 static struct md_sysfs_entry md_level =
3513 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3514
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518 /* just a number, not meaningful for all levels */
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->layout != mddev->new_layout)
3521 return sprintf(page, "%d (%d)\n",
3522 mddev->new_layout, mddev->layout);
3523 return sprintf(page, "%d\n", mddev->layout);
3524 }
3525
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529 unsigned int n;
3530 int err;
3531
3532 err = kstrtouint(buf, 10, &n);
3533 if (err < 0)
3534 return err;
3535 err = mddev_lock(mddev);
3536 if (err)
3537 return err;
3538
3539 if (mddev->pers) {
3540 if (mddev->pers->check_reshape == NULL)
3541 err = -EBUSY;
3542 else if (mddev->ro)
3543 err = -EROFS;
3544 else {
3545 mddev->new_layout = n;
3546 err = mddev->pers->check_reshape(mddev);
3547 if (err)
3548 mddev->new_layout = mddev->layout;
3549 }
3550 } else {
3551 mddev->new_layout = n;
3552 if (mddev->reshape_position == MaxSector)
3553 mddev->layout = n;
3554 }
3555 mddev_unlock(mddev);
3556 return err ?: len;
3557 }
3558 static struct md_sysfs_entry md_layout =
3559 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3560
3561 static ssize_t
3562 raid_disks_show(struct mddev *mddev, char *page)
3563 {
3564 if (mddev->raid_disks == 0)
3565 return 0;
3566 if (mddev->reshape_position != MaxSector &&
3567 mddev->delta_disks != 0)
3568 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3569 mddev->raid_disks - mddev->delta_disks);
3570 return sprintf(page, "%d\n", mddev->raid_disks);
3571 }
3572
3573 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3574
3575 static ssize_t
3576 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3577 {
3578 unsigned int n;
3579 int err;
3580
3581 err = kstrtouint(buf, 10, &n);
3582 if (err < 0)
3583 return err;
3584
3585 err = mddev_lock(mddev);
3586 if (err)
3587 return err;
3588 if (mddev->pers)
3589 err = update_raid_disks(mddev, n);
3590 else if (mddev->reshape_position != MaxSector) {
3591 struct md_rdev *rdev;
3592 int olddisks = mddev->raid_disks - mddev->delta_disks;
3593
3594 err = -EINVAL;
3595 rdev_for_each(rdev, mddev) {
3596 if (olddisks < n &&
3597 rdev->data_offset < rdev->new_data_offset)
3598 goto out_unlock;
3599 if (olddisks > n &&
3600 rdev->data_offset > rdev->new_data_offset)
3601 goto out_unlock;
3602 }
3603 err = 0;
3604 mddev->delta_disks = n - olddisks;
3605 mddev->raid_disks = n;
3606 mddev->reshape_backwards = (mddev->delta_disks < 0);
3607 } else
3608 mddev->raid_disks = n;
3609 out_unlock:
3610 mddev_unlock(mddev);
3611 return err ? err : len;
3612 }
3613 static struct md_sysfs_entry md_raid_disks =
3614 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3615
3616 static ssize_t
3617 chunk_size_show(struct mddev *mddev, char *page)
3618 {
3619 if (mddev->reshape_position != MaxSector &&
3620 mddev->chunk_sectors != mddev->new_chunk_sectors)
3621 return sprintf(page, "%d (%d)\n",
3622 mddev->new_chunk_sectors << 9,
3623 mddev->chunk_sectors << 9);
3624 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3625 }
3626
3627 static ssize_t
3628 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630 unsigned long n;
3631 int err;
3632
3633 err = kstrtoul(buf, 10, &n);
3634 if (err < 0)
3635 return err;
3636
3637 err = mddev_lock(mddev);
3638 if (err)
3639 return err;
3640 if (mddev->pers) {
3641 if (mddev->pers->check_reshape == NULL)
3642 err = -EBUSY;
3643 else if (mddev->ro)
3644 err = -EROFS;
3645 else {
3646 mddev->new_chunk_sectors = n >> 9;
3647 err = mddev->pers->check_reshape(mddev);
3648 if (err)
3649 mddev->new_chunk_sectors = mddev->chunk_sectors;
3650 }
3651 } else {
3652 mddev->new_chunk_sectors = n >> 9;
3653 if (mddev->reshape_position == MaxSector)
3654 mddev->chunk_sectors = n >> 9;
3655 }
3656 mddev_unlock(mddev);
3657 return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_chunk_size =
3660 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3661
3662 static ssize_t
3663 resync_start_show(struct mddev *mddev, char *page)
3664 {
3665 if (mddev->recovery_cp == MaxSector)
3666 return sprintf(page, "none\n");
3667 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3668 }
3669
3670 static ssize_t
3671 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3672 {
3673 unsigned long long n;
3674 int err;
3675
3676 if (cmd_match(buf, "none"))
3677 n = MaxSector;
3678 else {
3679 err = kstrtoull(buf, 10, &n);
3680 if (err < 0)
3681 return err;
3682 if (n != (sector_t)n)
3683 return -EINVAL;
3684 }
3685
3686 err = mddev_lock(mddev);
3687 if (err)
3688 return err;
3689 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3690 err = -EBUSY;
3691
3692 if (!err) {
3693 mddev->recovery_cp = n;
3694 if (mddev->pers)
3695 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3696 }
3697 mddev_unlock(mddev);
3698 return err ?: len;
3699 }
3700 static struct md_sysfs_entry md_resync_start =
3701 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3702 resync_start_show, resync_start_store);
3703
3704 /*
3705 * The array state can be:
3706 *
3707 * clear
3708 * No devices, no size, no level
3709 * Equivalent to STOP_ARRAY ioctl
3710 * inactive
3711 * May have some settings, but array is not active
3712 * all IO results in error
3713 * When written, doesn't tear down array, but just stops it
3714 * suspended (not supported yet)
3715 * All IO requests will block. The array can be reconfigured.
3716 * Writing this, if accepted, will block until array is quiescent
3717 * readonly
3718 * no resync can happen. no superblocks get written.
3719 * write requests fail
3720 * read-auto
3721 * like readonly, but behaves like 'clean' on a write request.
3722 *
3723 * clean - no pending writes, but otherwise active.
3724 * When written to inactive array, starts without resync
3725 * If a write request arrives then
3726 * if metadata is known, mark 'dirty' and switch to 'active'.
3727 * if not known, block and switch to write-pending
3728 * If written to an active array that has pending writes, then fails.
3729 * active
3730 * fully active: IO and resync can be happening.
3731 * When written to inactive array, starts with resync
3732 *
3733 * write-pending
3734 * clean, but writes are blocked waiting for 'active' to be written.
3735 *
3736 * active-idle
3737 * like active, but no writes have been seen for a while (100msec).
3738 *
3739 */
3740 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3741 write_pending, active_idle, bad_word};
3742 static char *array_states[] = {
3743 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3744 "write-pending", "active-idle", NULL };
3745
3746 static int match_word(const char *word, char **list)
3747 {
3748 int n;
3749 for (n=0; list[n]; n++)
3750 if (cmd_match(word, list[n]))
3751 break;
3752 return n;
3753 }
3754
3755 static ssize_t
3756 array_state_show(struct mddev *mddev, char *page)
3757 {
3758 enum array_state st = inactive;
3759
3760 if (mddev->pers)
3761 switch(mddev->ro) {
3762 case 1:
3763 st = readonly;
3764 break;
3765 case 2:
3766 st = read_auto;
3767 break;
3768 case 0:
3769 if (mddev->in_sync)
3770 st = clean;
3771 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3772 st = write_pending;
3773 else if (mddev->safemode)
3774 st = active_idle;
3775 else
3776 st = active;
3777 }
3778 else {
3779 if (list_empty(&mddev->disks) &&
3780 mddev->raid_disks == 0 &&
3781 mddev->dev_sectors == 0)
3782 st = clear;
3783 else
3784 st = inactive;
3785 }
3786 return sprintf(page, "%s\n", array_states[st]);
3787 }
3788
3789 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3790 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3791 static int do_md_run(struct mddev *mddev);
3792 static int restart_array(struct mddev *mddev);
3793
3794 static ssize_t
3795 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3796 {
3797 int err;
3798 enum array_state st = match_word(buf, array_states);
3799
3800 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3801 /* don't take reconfig_mutex when toggling between
3802 * clean and active
3803 */
3804 spin_lock(&mddev->lock);
3805 if (st == active) {
3806 restart_array(mddev);
3807 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3808 wake_up(&mddev->sb_wait);
3809 err = 0;
3810 } else /* st == clean */ {
3811 restart_array(mddev);
3812 if (atomic_read(&mddev->writes_pending) == 0) {
3813 if (mddev->in_sync == 0) {
3814 mddev->in_sync = 1;
3815 if (mddev->safemode == 1)
3816 mddev->safemode = 0;
3817 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3818 }
3819 err = 0;
3820 } else
3821 err = -EBUSY;
3822 }
3823 spin_unlock(&mddev->lock);
3824 return err ?: len;
3825 }
3826 err = mddev_lock(mddev);
3827 if (err)
3828 return err;
3829 err = -EINVAL;
3830 switch(st) {
3831 case bad_word:
3832 break;
3833 case clear:
3834 /* stopping an active array */
3835 err = do_md_stop(mddev, 0, NULL);
3836 break;
3837 case inactive:
3838 /* stopping an active array */
3839 if (mddev->pers)
3840 err = do_md_stop(mddev, 2, NULL);
3841 else
3842 err = 0; /* already inactive */
3843 break;
3844 case suspended:
3845 break; /* not supported yet */
3846 case readonly:
3847 if (mddev->pers)
3848 err = md_set_readonly(mddev, NULL);
3849 else {
3850 mddev->ro = 1;
3851 set_disk_ro(mddev->gendisk, 1);
3852 err = do_md_run(mddev);
3853 }
3854 break;
3855 case read_auto:
3856 if (mddev->pers) {
3857 if (mddev->ro == 0)
3858 err = md_set_readonly(mddev, NULL);
3859 else if (mddev->ro == 1)
3860 err = restart_array(mddev);
3861 if (err == 0) {
3862 mddev->ro = 2;
3863 set_disk_ro(mddev->gendisk, 0);
3864 }
3865 } else {
3866 mddev->ro = 2;
3867 err = do_md_run(mddev);
3868 }
3869 break;
3870 case clean:
3871 if (mddev->pers) {
3872 restart_array(mddev);
3873 spin_lock(&mddev->lock);
3874 if (atomic_read(&mddev->writes_pending) == 0) {
3875 if (mddev->in_sync == 0) {
3876 mddev->in_sync = 1;
3877 if (mddev->safemode == 1)
3878 mddev->safemode = 0;
3879 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3880 }
3881 err = 0;
3882 } else
3883 err = -EBUSY;
3884 spin_unlock(&mddev->lock);
3885 } else
3886 err = -EINVAL;
3887 break;
3888 case active:
3889 if (mddev->pers) {
3890 restart_array(mddev);
3891 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3892 wake_up(&mddev->sb_wait);
3893 err = 0;
3894 } else {
3895 mddev->ro = 0;
3896 set_disk_ro(mddev->gendisk, 0);
3897 err = do_md_run(mddev);
3898 }
3899 break;
3900 case write_pending:
3901 case active_idle:
3902 /* these cannot be set */
3903 break;
3904 }
3905
3906 if (!err) {
3907 if (mddev->hold_active == UNTIL_IOCTL)
3908 mddev->hold_active = 0;
3909 sysfs_notify_dirent_safe(mddev->sysfs_state);
3910 }
3911 mddev_unlock(mddev);
3912 return err ?: len;
3913 }
3914 static struct md_sysfs_entry md_array_state =
3915 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3916
3917 static ssize_t
3918 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3919 return sprintf(page, "%d\n",
3920 atomic_read(&mddev->max_corr_read_errors));
3921 }
3922
3923 static ssize_t
3924 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3925 {
3926 unsigned int n;
3927 int rv;
3928
3929 rv = kstrtouint(buf, 10, &n);
3930 if (rv < 0)
3931 return rv;
3932 atomic_set(&mddev->max_corr_read_errors, n);
3933 return len;
3934 }
3935
3936 static struct md_sysfs_entry max_corr_read_errors =
3937 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3938 max_corrected_read_errors_store);
3939
3940 static ssize_t
3941 null_show(struct mddev *mddev, char *page)
3942 {
3943 return -EINVAL;
3944 }
3945
3946 static ssize_t
3947 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3948 {
3949 /* buf must be %d:%d\n? giving major and minor numbers */
3950 /* The new device is added to the array.
3951 * If the array has a persistent superblock, we read the
3952 * superblock to initialise info and check validity.
3953 * Otherwise, only checking done is that in bind_rdev_to_array,
3954 * which mainly checks size.
3955 */
3956 char *e;
3957 int major = simple_strtoul(buf, &e, 10);
3958 int minor;
3959 dev_t dev;
3960 struct md_rdev *rdev;
3961 int err;
3962
3963 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3964 return -EINVAL;
3965 minor = simple_strtoul(e+1, &e, 10);
3966 if (*e && *e != '\n')
3967 return -EINVAL;
3968 dev = MKDEV(major, minor);
3969 if (major != MAJOR(dev) ||
3970 minor != MINOR(dev))
3971 return -EOVERFLOW;
3972
3973 flush_workqueue(md_misc_wq);
3974
3975 err = mddev_lock(mddev);
3976 if (err)
3977 return err;
3978 if (mddev->persistent) {
3979 rdev = md_import_device(dev, mddev->major_version,
3980 mddev->minor_version);
3981 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3982 struct md_rdev *rdev0
3983 = list_entry(mddev->disks.next,
3984 struct md_rdev, same_set);
3985 err = super_types[mddev->major_version]
3986 .load_super(rdev, rdev0, mddev->minor_version);
3987 if (err < 0)
3988 goto out;
3989 }
3990 } else if (mddev->external)
3991 rdev = md_import_device(dev, -2, -1);
3992 else
3993 rdev = md_import_device(dev, -1, -1);
3994
3995 if (IS_ERR(rdev)) {
3996 mddev_unlock(mddev);
3997 return PTR_ERR(rdev);
3998 }
3999 err = bind_rdev_to_array(rdev, mddev);
4000 out:
4001 if (err)
4002 export_rdev(rdev);
4003 mddev_unlock(mddev);
4004 return err ? err : len;
4005 }
4006
4007 static struct md_sysfs_entry md_new_device =
4008 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4009
4010 static ssize_t
4011 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013 char *end;
4014 unsigned long chunk, end_chunk;
4015 int err;
4016
4017 err = mddev_lock(mddev);
4018 if (err)
4019 return err;
4020 if (!mddev->bitmap)
4021 goto out;
4022 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4023 while (*buf) {
4024 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4025 if (buf == end) break;
4026 if (*end == '-') { /* range */
4027 buf = end + 1;
4028 end_chunk = simple_strtoul(buf, &end, 0);
4029 if (buf == end) break;
4030 }
4031 if (*end && !isspace(*end)) break;
4032 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4033 buf = skip_spaces(end);
4034 }
4035 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4036 out:
4037 mddev_unlock(mddev);
4038 return len;
4039 }
4040
4041 static struct md_sysfs_entry md_bitmap =
4042 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4043
4044 static ssize_t
4045 size_show(struct mddev *mddev, char *page)
4046 {
4047 return sprintf(page, "%llu\n",
4048 (unsigned long long)mddev->dev_sectors / 2);
4049 }
4050
4051 static int update_size(struct mddev *mddev, sector_t num_sectors);
4052
4053 static ssize_t
4054 size_store(struct mddev *mddev, const char *buf, size_t len)
4055 {
4056 /* If array is inactive, we can reduce the component size, but
4057 * not increase it (except from 0).
4058 * If array is active, we can try an on-line resize
4059 */
4060 sector_t sectors;
4061 int err = strict_blocks_to_sectors(buf, &sectors);
4062
4063 if (err < 0)
4064 return err;
4065 err = mddev_lock(mddev);
4066 if (err)
4067 return err;
4068 if (mddev->pers) {
4069 if (mddev_is_clustered(mddev))
4070 md_cluster_ops->metadata_update_start(mddev);
4071 err = update_size(mddev, sectors);
4072 md_update_sb(mddev, 1);
4073 if (mddev_is_clustered(mddev))
4074 md_cluster_ops->metadata_update_finish(mddev);
4075 } else {
4076 if (mddev->dev_sectors == 0 ||
4077 mddev->dev_sectors > sectors)
4078 mddev->dev_sectors = sectors;
4079 else
4080 err = -ENOSPC;
4081 }
4082 mddev_unlock(mddev);
4083 return err ? err : len;
4084 }
4085
4086 static struct md_sysfs_entry md_size =
4087 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4088
4089 /* Metadata version.
4090 * This is one of
4091 * 'none' for arrays with no metadata (good luck...)
4092 * 'external' for arrays with externally managed metadata,
4093 * or N.M for internally known formats
4094 */
4095 static ssize_t
4096 metadata_show(struct mddev *mddev, char *page)
4097 {
4098 if (mddev->persistent)
4099 return sprintf(page, "%d.%d\n",
4100 mddev->major_version, mddev->minor_version);
4101 else if (mddev->external)
4102 return sprintf(page, "external:%s\n", mddev->metadata_type);
4103 else
4104 return sprintf(page, "none\n");
4105 }
4106
4107 static ssize_t
4108 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4109 {
4110 int major, minor;
4111 char *e;
4112 int err;
4113 /* Changing the details of 'external' metadata is
4114 * always permitted. Otherwise there must be
4115 * no devices attached to the array.
4116 */
4117
4118 err = mddev_lock(mddev);
4119 if (err)
4120 return err;
4121 err = -EBUSY;
4122 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4123 ;
4124 else if (!list_empty(&mddev->disks))
4125 goto out_unlock;
4126
4127 err = 0;
4128 if (cmd_match(buf, "none")) {
4129 mddev->persistent = 0;
4130 mddev->external = 0;
4131 mddev->major_version = 0;
4132 mddev->minor_version = 90;
4133 goto out_unlock;
4134 }
4135 if (strncmp(buf, "external:", 9) == 0) {
4136 size_t namelen = len-9;
4137 if (namelen >= sizeof(mddev->metadata_type))
4138 namelen = sizeof(mddev->metadata_type)-1;
4139 strncpy(mddev->metadata_type, buf+9, namelen);
4140 mddev->metadata_type[namelen] = 0;
4141 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4142 mddev->metadata_type[--namelen] = 0;
4143 mddev->persistent = 0;
4144 mddev->external = 1;
4145 mddev->major_version = 0;
4146 mddev->minor_version = 90;
4147 goto out_unlock;
4148 }
4149 major = simple_strtoul(buf, &e, 10);
4150 err = -EINVAL;
4151 if (e==buf || *e != '.')
4152 goto out_unlock;
4153 buf = e+1;
4154 minor = simple_strtoul(buf, &e, 10);
4155 if (e==buf || (*e && *e != '\n') )
4156 goto out_unlock;
4157 err = -ENOENT;
4158 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4159 goto out_unlock;
4160 mddev->major_version = major;
4161 mddev->minor_version = minor;
4162 mddev->persistent = 1;
4163 mddev->external = 0;
4164 err = 0;
4165 out_unlock:
4166 mddev_unlock(mddev);
4167 return err ?: len;
4168 }
4169
4170 static struct md_sysfs_entry md_metadata =
4171 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4172
4173 static ssize_t
4174 action_show(struct mddev *mddev, char *page)
4175 {
4176 char *type = "idle";
4177 unsigned long recovery = mddev->recovery;
4178 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4179 type = "frozen";
4180 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4181 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4182 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4183 type = "reshape";
4184 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4185 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4186 type = "resync";
4187 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4188 type = "check";
4189 else
4190 type = "repair";
4191 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4192 type = "recover";
4193 else if (mddev->reshape_position != MaxSector)
4194 type = "reshape";
4195 }
4196 return sprintf(page, "%s\n", type);
4197 }
4198
4199 static ssize_t
4200 action_store(struct mddev *mddev, const char *page, size_t len)
4201 {
4202 if (!mddev->pers || !mddev->pers->sync_request)
4203 return -EINVAL;
4204
4205
4206 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4207 if (cmd_match(page, "frozen"))
4208 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4209 else
4210 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4211 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4212 mddev_lock(mddev) == 0) {
4213 flush_workqueue(md_misc_wq);
4214 if (mddev->sync_thread) {
4215 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4216 md_reap_sync_thread(mddev);
4217 }
4218 mddev_unlock(mddev);
4219 }
4220 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4221 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4222 return -EBUSY;
4223 else if (cmd_match(page, "resync"))
4224 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4225 else if (cmd_match(page, "recover")) {
4226 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4227 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4228 } else if (cmd_match(page, "reshape")) {
4229 int err;
4230 if (mddev->pers->start_reshape == NULL)
4231 return -EINVAL;
4232 err = mddev_lock(mddev);
4233 if (!err) {
4234 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4235 err = mddev->pers->start_reshape(mddev);
4236 mddev_unlock(mddev);
4237 }
4238 if (err)
4239 return err;
4240 sysfs_notify(&mddev->kobj, NULL, "degraded");
4241 } else {
4242 if (cmd_match(page, "check"))
4243 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4244 else if (!cmd_match(page, "repair"))
4245 return -EINVAL;
4246 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4247 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4248 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4249 }
4250 if (mddev->ro == 2) {
4251 /* A write to sync_action is enough to justify
4252 * canceling read-auto mode
4253 */
4254 mddev->ro = 0;
4255 md_wakeup_thread(mddev->sync_thread);
4256 }
4257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4258 md_wakeup_thread(mddev->thread);
4259 sysfs_notify_dirent_safe(mddev->sysfs_action);
4260 return len;
4261 }
4262
4263 static struct md_sysfs_entry md_scan_mode =
4264 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4265
4266 static ssize_t
4267 last_sync_action_show(struct mddev *mddev, char *page)
4268 {
4269 return sprintf(page, "%s\n", mddev->last_sync_action);
4270 }
4271
4272 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4273
4274 static ssize_t
4275 mismatch_cnt_show(struct mddev *mddev, char *page)
4276 {
4277 return sprintf(page, "%llu\n",
4278 (unsigned long long)
4279 atomic64_read(&mddev->resync_mismatches));
4280 }
4281
4282 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4283
4284 static ssize_t
4285 sync_min_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4288 mddev->sync_speed_min ? "local": "system");
4289 }
4290
4291 static ssize_t
4292 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4293 {
4294 unsigned int min;
4295 int rv;
4296
4297 if (strncmp(buf, "system", 6)==0) {
4298 min = 0;
4299 } else {
4300 rv = kstrtouint(buf, 10, &min);
4301 if (rv < 0)
4302 return rv;
4303 if (min == 0)
4304 return -EINVAL;
4305 }
4306 mddev->sync_speed_min = min;
4307 return len;
4308 }
4309
4310 static struct md_sysfs_entry md_sync_min =
4311 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4312
4313 static ssize_t
4314 sync_max_show(struct mddev *mddev, char *page)
4315 {
4316 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4317 mddev->sync_speed_max ? "local": "system");
4318 }
4319
4320 static ssize_t
4321 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323 unsigned int max;
4324 int rv;
4325
4326 if (strncmp(buf, "system", 6)==0) {
4327 max = 0;
4328 } else {
4329 rv = kstrtouint(buf, 10, &max);
4330 if (rv < 0)
4331 return rv;
4332 if (max == 0)
4333 return -EINVAL;
4334 }
4335 mddev->sync_speed_max = max;
4336 return len;
4337 }
4338
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345 return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352 return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 long n;
4359
4360 if (kstrtol(buf, 10, &n))
4361 return -EINVAL;
4362
4363 if (n != 0 && n != 1)
4364 return -EINVAL;
4365
4366 mddev->parallel_resync = n;
4367
4368 if (mddev->sync_thread)
4369 wake_up(&resync_wait);
4370
4371 return len;
4372 }
4373
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377 sync_force_parallel_show, sync_force_parallel_store);
4378
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382 unsigned long resync, dt, db;
4383 if (mddev->curr_resync == 0)
4384 return sprintf(page, "none\n");
4385 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386 dt = (jiffies - mddev->resync_mark) / HZ;
4387 if (!dt) dt++;
4388 db = resync - mddev->resync_mark_cnt;
4389 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397 unsigned long long max_sectors, resync;
4398
4399 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 return sprintf(page, "none\n");
4401
4402 if (mddev->curr_resync == 1 ||
4403 mddev->curr_resync == 2)
4404 return sprintf(page, "delayed\n");
4405
4406 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408 max_sectors = mddev->resync_max_sectors;
4409 else
4410 max_sectors = mddev->dev_sectors;
4411
4412 resync = mddev->curr_resync_completed;
4413 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415
4416 static struct md_sysfs_entry md_sync_completed =
4417 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4418
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422 return sprintf(page, "%llu\n",
4423 (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 unsigned long long min;
4429 int err;
4430
4431 if (kstrtoull(buf, 10, &min))
4432 return -EINVAL;
4433
4434 spin_lock(&mddev->lock);
4435 err = -EINVAL;
4436 if (min > mddev->resync_max)
4437 goto out_unlock;
4438
4439 err = -EBUSY;
4440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 goto out_unlock;
4442
4443 /* Round down to multiple of 4K for safety */
4444 mddev->resync_min = round_down(min, 8);
4445 err = 0;
4446
4447 out_unlock:
4448 spin_unlock(&mddev->lock);
4449 return err ?: len;
4450 }
4451
4452 static struct md_sysfs_entry md_min_sync =
4453 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4454
4455 static ssize_t
4456 max_sync_show(struct mddev *mddev, char *page)
4457 {
4458 if (mddev->resync_max == MaxSector)
4459 return sprintf(page, "max\n");
4460 else
4461 return sprintf(page, "%llu\n",
4462 (unsigned long long)mddev->resync_max);
4463 }
4464 static ssize_t
4465 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4466 {
4467 int err;
4468 spin_lock(&mddev->lock);
4469 if (strncmp(buf, "max", 3) == 0)
4470 mddev->resync_max = MaxSector;
4471 else {
4472 unsigned long long max;
4473 int chunk;
4474
4475 err = -EINVAL;
4476 if (kstrtoull(buf, 10, &max))
4477 goto out_unlock;
4478 if (max < mddev->resync_min)
4479 goto out_unlock;
4480
4481 err = -EBUSY;
4482 if (max < mddev->resync_max &&
4483 mddev->ro == 0 &&
4484 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4485 goto out_unlock;
4486
4487 /* Must be a multiple of chunk_size */
4488 chunk = mddev->chunk_sectors;
4489 if (chunk) {
4490 sector_t temp = max;
4491
4492 err = -EINVAL;
4493 if (sector_div(temp, chunk))
4494 goto out_unlock;
4495 }
4496 mddev->resync_max = max;
4497 }
4498 wake_up(&mddev->recovery_wait);
4499 err = 0;
4500 out_unlock:
4501 spin_unlock(&mddev->lock);
4502 return err ?: len;
4503 }
4504
4505 static struct md_sysfs_entry md_max_sync =
4506 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4507
4508 static ssize_t
4509 suspend_lo_show(struct mddev *mddev, char *page)
4510 {
4511 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4512 }
4513
4514 static ssize_t
4515 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4516 {
4517 unsigned long long old, new;
4518 int err;
4519
4520 err = kstrtoull(buf, 10, &new);
4521 if (err < 0)
4522 return err;
4523 if (new != (sector_t)new)
4524 return -EINVAL;
4525
4526 err = mddev_lock(mddev);
4527 if (err)
4528 return err;
4529 err = -EINVAL;
4530 if (mddev->pers == NULL ||
4531 mddev->pers->quiesce == NULL)
4532 goto unlock;
4533 old = mddev->suspend_lo;
4534 mddev->suspend_lo = new;
4535 if (new >= old)
4536 /* Shrinking suspended region */
4537 mddev->pers->quiesce(mddev, 2);
4538 else {
4539 /* Expanding suspended region - need to wait */
4540 mddev->pers->quiesce(mddev, 1);
4541 mddev->pers->quiesce(mddev, 0);
4542 }
4543 err = 0;
4544 unlock:
4545 mddev_unlock(mddev);
4546 return err ?: len;
4547 }
4548 static struct md_sysfs_entry md_suspend_lo =
4549 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4550
4551 static ssize_t
4552 suspend_hi_show(struct mddev *mddev, char *page)
4553 {
4554 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4555 }
4556
4557 static ssize_t
4558 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 unsigned long long old, new;
4561 int err;
4562
4563 err = kstrtoull(buf, 10, &new);
4564 if (err < 0)
4565 return err;
4566 if (new != (sector_t)new)
4567 return -EINVAL;
4568
4569 err = mddev_lock(mddev);
4570 if (err)
4571 return err;
4572 err = -EINVAL;
4573 if (mddev->pers == NULL ||
4574 mddev->pers->quiesce == NULL)
4575 goto unlock;
4576 old = mddev->suspend_hi;
4577 mddev->suspend_hi = new;
4578 if (new <= old)
4579 /* Shrinking suspended region */
4580 mddev->pers->quiesce(mddev, 2);
4581 else {
4582 /* Expanding suspended region - need to wait */
4583 mddev->pers->quiesce(mddev, 1);
4584 mddev->pers->quiesce(mddev, 0);
4585 }
4586 err = 0;
4587 unlock:
4588 mddev_unlock(mddev);
4589 return err ?: len;
4590 }
4591 static struct md_sysfs_entry md_suspend_hi =
4592 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4593
4594 static ssize_t
4595 reshape_position_show(struct mddev *mddev, char *page)
4596 {
4597 if (mddev->reshape_position != MaxSector)
4598 return sprintf(page, "%llu\n",
4599 (unsigned long long)mddev->reshape_position);
4600 strcpy(page, "none\n");
4601 return 5;
4602 }
4603
4604 static ssize_t
4605 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4606 {
4607 struct md_rdev *rdev;
4608 unsigned long long new;
4609 int err;
4610
4611 err = kstrtoull(buf, 10, &new);
4612 if (err < 0)
4613 return err;
4614 if (new != (sector_t)new)
4615 return -EINVAL;
4616 err = mddev_lock(mddev);
4617 if (err)
4618 return err;
4619 err = -EBUSY;
4620 if (mddev->pers)
4621 goto unlock;
4622 mddev->reshape_position = new;
4623 mddev->delta_disks = 0;
4624 mddev->reshape_backwards = 0;
4625 mddev->new_level = mddev->level;
4626 mddev->new_layout = mddev->layout;
4627 mddev->new_chunk_sectors = mddev->chunk_sectors;
4628 rdev_for_each(rdev, mddev)
4629 rdev->new_data_offset = rdev->data_offset;
4630 err = 0;
4631 unlock:
4632 mddev_unlock(mddev);
4633 return err ?: len;
4634 }
4635
4636 static struct md_sysfs_entry md_reshape_position =
4637 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4638 reshape_position_store);
4639
4640 static ssize_t
4641 reshape_direction_show(struct mddev *mddev, char *page)
4642 {
4643 return sprintf(page, "%s\n",
4644 mddev->reshape_backwards ? "backwards" : "forwards");
4645 }
4646
4647 static ssize_t
4648 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4649 {
4650 int backwards = 0;
4651 int err;
4652
4653 if (cmd_match(buf, "forwards"))
4654 backwards = 0;
4655 else if (cmd_match(buf, "backwards"))
4656 backwards = 1;
4657 else
4658 return -EINVAL;
4659 if (mddev->reshape_backwards == backwards)
4660 return len;
4661
4662 err = mddev_lock(mddev);
4663 if (err)
4664 return err;
4665 /* check if we are allowed to change */
4666 if (mddev->delta_disks)
4667 err = -EBUSY;
4668 else if (mddev->persistent &&
4669 mddev->major_version == 0)
4670 err = -EINVAL;
4671 else
4672 mddev->reshape_backwards = backwards;
4673 mddev_unlock(mddev);
4674 return err ?: len;
4675 }
4676
4677 static struct md_sysfs_entry md_reshape_direction =
4678 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4679 reshape_direction_store);
4680
4681 static ssize_t
4682 array_size_show(struct mddev *mddev, char *page)
4683 {
4684 if (mddev->external_size)
4685 return sprintf(page, "%llu\n",
4686 (unsigned long long)mddev->array_sectors/2);
4687 else
4688 return sprintf(page, "default\n");
4689 }
4690
4691 static ssize_t
4692 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4693 {
4694 sector_t sectors;
4695 int err;
4696
4697 err = mddev_lock(mddev);
4698 if (err)
4699 return err;
4700
4701 if (strncmp(buf, "default", 7) == 0) {
4702 if (mddev->pers)
4703 sectors = mddev->pers->size(mddev, 0, 0);
4704 else
4705 sectors = mddev->array_sectors;
4706
4707 mddev->external_size = 0;
4708 } else {
4709 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4710 err = -EINVAL;
4711 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4712 err = -E2BIG;
4713 else
4714 mddev->external_size = 1;
4715 }
4716
4717 if (!err) {
4718 mddev->array_sectors = sectors;
4719 if (mddev->pers) {
4720 set_capacity(mddev->gendisk, mddev->array_sectors);
4721 revalidate_disk(mddev->gendisk);
4722 }
4723 }
4724 mddev_unlock(mddev);
4725 return err ?: len;
4726 }
4727
4728 static struct md_sysfs_entry md_array_size =
4729 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4730 array_size_store);
4731
4732 static struct attribute *md_default_attrs[] = {
4733 &md_level.attr,
4734 &md_layout.attr,
4735 &md_raid_disks.attr,
4736 &md_chunk_size.attr,
4737 &md_size.attr,
4738 &md_resync_start.attr,
4739 &md_metadata.attr,
4740 &md_new_device.attr,
4741 &md_safe_delay.attr,
4742 &md_array_state.attr,
4743 &md_reshape_position.attr,
4744 &md_reshape_direction.attr,
4745 &md_array_size.attr,
4746 &max_corr_read_errors.attr,
4747 NULL,
4748 };
4749
4750 static struct attribute *md_redundancy_attrs[] = {
4751 &md_scan_mode.attr,
4752 &md_last_scan_mode.attr,
4753 &md_mismatches.attr,
4754 &md_sync_min.attr,
4755 &md_sync_max.attr,
4756 &md_sync_speed.attr,
4757 &md_sync_force_parallel.attr,
4758 &md_sync_completed.attr,
4759 &md_min_sync.attr,
4760 &md_max_sync.attr,
4761 &md_suspend_lo.attr,
4762 &md_suspend_hi.attr,
4763 &md_bitmap.attr,
4764 &md_degraded.attr,
4765 NULL,
4766 };
4767 static struct attribute_group md_redundancy_group = {
4768 .name = NULL,
4769 .attrs = md_redundancy_attrs,
4770 };
4771
4772 static ssize_t
4773 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4774 {
4775 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4776 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4777 ssize_t rv;
4778
4779 if (!entry->show)
4780 return -EIO;
4781 spin_lock(&all_mddevs_lock);
4782 if (list_empty(&mddev->all_mddevs)) {
4783 spin_unlock(&all_mddevs_lock);
4784 return -EBUSY;
4785 }
4786 mddev_get(mddev);
4787 spin_unlock(&all_mddevs_lock);
4788
4789 rv = entry->show(mddev, page);
4790 mddev_put(mddev);
4791 return rv;
4792 }
4793
4794 static ssize_t
4795 md_attr_store(struct kobject *kobj, struct attribute *attr,
4796 const char *page, size_t length)
4797 {
4798 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4799 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4800 ssize_t rv;
4801
4802 if (!entry->store)
4803 return -EIO;
4804 if (!capable(CAP_SYS_ADMIN))
4805 return -EACCES;
4806 spin_lock(&all_mddevs_lock);
4807 if (list_empty(&mddev->all_mddevs)) {
4808 spin_unlock(&all_mddevs_lock);
4809 return -EBUSY;
4810 }
4811 mddev_get(mddev);
4812 spin_unlock(&all_mddevs_lock);
4813 rv = entry->store(mddev, page, length);
4814 mddev_put(mddev);
4815 return rv;
4816 }
4817
4818 static void md_free(struct kobject *ko)
4819 {
4820 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4821
4822 if (mddev->sysfs_state)
4823 sysfs_put(mddev->sysfs_state);
4824
4825 if (mddev->queue)
4826 blk_cleanup_queue(mddev->queue);
4827 if (mddev->gendisk) {
4828 del_gendisk(mddev->gendisk);
4829 put_disk(mddev->gendisk);
4830 }
4831
4832 kfree(mddev);
4833 }
4834
4835 static const struct sysfs_ops md_sysfs_ops = {
4836 .show = md_attr_show,
4837 .store = md_attr_store,
4838 };
4839 static struct kobj_type md_ktype = {
4840 .release = md_free,
4841 .sysfs_ops = &md_sysfs_ops,
4842 .default_attrs = md_default_attrs,
4843 };
4844
4845 int mdp_major = 0;
4846
4847 static void mddev_delayed_delete(struct work_struct *ws)
4848 {
4849 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4850
4851 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4852 kobject_del(&mddev->kobj);
4853 kobject_put(&mddev->kobj);
4854 }
4855
4856 static int md_alloc(dev_t dev, char *name)
4857 {
4858 static DEFINE_MUTEX(disks_mutex);
4859 struct mddev *mddev = mddev_find(dev);
4860 struct gendisk *disk;
4861 int partitioned;
4862 int shift;
4863 int unit;
4864 int error;
4865
4866 if (!mddev)
4867 return -ENODEV;
4868
4869 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4870 shift = partitioned ? MdpMinorShift : 0;
4871 unit = MINOR(mddev->unit) >> shift;
4872
4873 /* wait for any previous instance of this device to be
4874 * completely removed (mddev_delayed_delete).
4875 */
4876 flush_workqueue(md_misc_wq);
4877
4878 mutex_lock(&disks_mutex);
4879 error = -EEXIST;
4880 if (mddev->gendisk)
4881 goto abort;
4882
4883 if (name) {
4884 /* Need to ensure that 'name' is not a duplicate.
4885 */
4886 struct mddev *mddev2;
4887 spin_lock(&all_mddevs_lock);
4888
4889 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4890 if (mddev2->gendisk &&
4891 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4892 spin_unlock(&all_mddevs_lock);
4893 goto abort;
4894 }
4895 spin_unlock(&all_mddevs_lock);
4896 }
4897
4898 error = -ENOMEM;
4899 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4900 if (!mddev->queue)
4901 goto abort;
4902 mddev->queue->queuedata = mddev;
4903
4904 blk_queue_make_request(mddev->queue, md_make_request);
4905 blk_set_stacking_limits(&mddev->queue->limits);
4906
4907 disk = alloc_disk(1 << shift);
4908 if (!disk) {
4909 blk_cleanup_queue(mddev->queue);
4910 mddev->queue = NULL;
4911 goto abort;
4912 }
4913 disk->major = MAJOR(mddev->unit);
4914 disk->first_minor = unit << shift;
4915 if (name)
4916 strcpy(disk->disk_name, name);
4917 else if (partitioned)
4918 sprintf(disk->disk_name, "md_d%d", unit);
4919 else
4920 sprintf(disk->disk_name, "md%d", unit);
4921 disk->fops = &md_fops;
4922 disk->private_data = mddev;
4923 disk->queue = mddev->queue;
4924 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4925 /* Allow extended partitions. This makes the
4926 * 'mdp' device redundant, but we can't really
4927 * remove it now.
4928 */
4929 disk->flags |= GENHD_FL_EXT_DEVT;
4930 mddev->gendisk = disk;
4931 /* As soon as we call add_disk(), another thread could get
4932 * through to md_open, so make sure it doesn't get too far
4933 */
4934 mutex_lock(&mddev->open_mutex);
4935 add_disk(disk);
4936
4937 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4938 &disk_to_dev(disk)->kobj, "%s", "md");
4939 if (error) {
4940 /* This isn't possible, but as kobject_init_and_add is marked
4941 * __must_check, we must do something with the result
4942 */
4943 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4944 disk->disk_name);
4945 error = 0;
4946 }
4947 if (mddev->kobj.sd &&
4948 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4949 printk(KERN_DEBUG "pointless warning\n");
4950 mutex_unlock(&mddev->open_mutex);
4951 abort:
4952 mutex_unlock(&disks_mutex);
4953 if (!error && mddev->kobj.sd) {
4954 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4955 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4956 }
4957 mddev_put(mddev);
4958 return error;
4959 }
4960
4961 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4962 {
4963 md_alloc(dev, NULL);
4964 return NULL;
4965 }
4966
4967 static int add_named_array(const char *val, struct kernel_param *kp)
4968 {
4969 /* val must be "md_*" where * is not all digits.
4970 * We allocate an array with a large free minor number, and
4971 * set the name to val. val must not already be an active name.
4972 */
4973 int len = strlen(val);
4974 char buf[DISK_NAME_LEN];
4975
4976 while (len && val[len-1] == '\n')
4977 len--;
4978 if (len >= DISK_NAME_LEN)
4979 return -E2BIG;
4980 strlcpy(buf, val, len+1);
4981 if (strncmp(buf, "md_", 3) != 0)
4982 return -EINVAL;
4983 return md_alloc(0, buf);
4984 }
4985
4986 static void md_safemode_timeout(unsigned long data)
4987 {
4988 struct mddev *mddev = (struct mddev *) data;
4989
4990 if (!atomic_read(&mddev->writes_pending)) {
4991 mddev->safemode = 1;
4992 if (mddev->external)
4993 sysfs_notify_dirent_safe(mddev->sysfs_state);
4994 }
4995 md_wakeup_thread(mddev->thread);
4996 }
4997
4998 static int start_dirty_degraded;
4999
5000 int md_run(struct mddev *mddev)
5001 {
5002 int err;
5003 struct md_rdev *rdev;
5004 struct md_personality *pers;
5005
5006 if (list_empty(&mddev->disks))
5007 /* cannot run an array with no devices.. */
5008 return -EINVAL;
5009
5010 if (mddev->pers)
5011 return -EBUSY;
5012 /* Cannot run until previous stop completes properly */
5013 if (mddev->sysfs_active)
5014 return -EBUSY;
5015
5016 /*
5017 * Analyze all RAID superblock(s)
5018 */
5019 if (!mddev->raid_disks) {
5020 if (!mddev->persistent)
5021 return -EINVAL;
5022 analyze_sbs(mddev);
5023 }
5024
5025 if (mddev->level != LEVEL_NONE)
5026 request_module("md-level-%d", mddev->level);
5027 else if (mddev->clevel[0])
5028 request_module("md-%s", mddev->clevel);
5029
5030 /*
5031 * Drop all container device buffers, from now on
5032 * the only valid external interface is through the md
5033 * device.
5034 */
5035 rdev_for_each(rdev, mddev) {
5036 if (test_bit(Faulty, &rdev->flags))
5037 continue;
5038 sync_blockdev(rdev->bdev);
5039 invalidate_bdev(rdev->bdev);
5040
5041 /* perform some consistency tests on the device.
5042 * We don't want the data to overlap the metadata,
5043 * Internal Bitmap issues have been handled elsewhere.
5044 */
5045 if (rdev->meta_bdev) {
5046 /* Nothing to check */;
5047 } else if (rdev->data_offset < rdev->sb_start) {
5048 if (mddev->dev_sectors &&
5049 rdev->data_offset + mddev->dev_sectors
5050 > rdev->sb_start) {
5051 printk("md: %s: data overlaps metadata\n",
5052 mdname(mddev));
5053 return -EINVAL;
5054 }
5055 } else {
5056 if (rdev->sb_start + rdev->sb_size/512
5057 > rdev->data_offset) {
5058 printk("md: %s: metadata overlaps data\n",
5059 mdname(mddev));
5060 return -EINVAL;
5061 }
5062 }
5063 sysfs_notify_dirent_safe(rdev->sysfs_state);
5064 }
5065
5066 if (mddev->bio_set == NULL)
5067 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5068
5069 spin_lock(&pers_lock);
5070 pers = find_pers(mddev->level, mddev->clevel);
5071 if (!pers || !try_module_get(pers->owner)) {
5072 spin_unlock(&pers_lock);
5073 if (mddev->level != LEVEL_NONE)
5074 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5075 mddev->level);
5076 else
5077 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5078 mddev->clevel);
5079 return -EINVAL;
5080 }
5081 spin_unlock(&pers_lock);
5082 if (mddev->level != pers->level) {
5083 mddev->level = pers->level;
5084 mddev->new_level = pers->level;
5085 }
5086 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5087
5088 if (mddev->reshape_position != MaxSector &&
5089 pers->start_reshape == NULL) {
5090 /* This personality cannot handle reshaping... */
5091 module_put(pers->owner);
5092 return -EINVAL;
5093 }
5094
5095 if (pers->sync_request) {
5096 /* Warn if this is a potentially silly
5097 * configuration.
5098 */
5099 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5100 struct md_rdev *rdev2;
5101 int warned = 0;
5102
5103 rdev_for_each(rdev, mddev)
5104 rdev_for_each(rdev2, mddev) {
5105 if (rdev < rdev2 &&
5106 rdev->bdev->bd_contains ==
5107 rdev2->bdev->bd_contains) {
5108 printk(KERN_WARNING
5109 "%s: WARNING: %s appears to be"
5110 " on the same physical disk as"
5111 " %s.\n",
5112 mdname(mddev),
5113 bdevname(rdev->bdev,b),
5114 bdevname(rdev2->bdev,b2));
5115 warned = 1;
5116 }
5117 }
5118
5119 if (warned)
5120 printk(KERN_WARNING
5121 "True protection against single-disk"
5122 " failure might be compromised.\n");
5123 }
5124
5125 mddev->recovery = 0;
5126 /* may be over-ridden by personality */
5127 mddev->resync_max_sectors = mddev->dev_sectors;
5128
5129 mddev->ok_start_degraded = start_dirty_degraded;
5130
5131 if (start_readonly && mddev->ro == 0)
5132 mddev->ro = 2; /* read-only, but switch on first write */
5133
5134 err = pers->run(mddev);
5135 if (err)
5136 printk(KERN_ERR "md: pers->run() failed ...\n");
5137 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5138 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5139 " but 'external_size' not in effect?\n", __func__);
5140 printk(KERN_ERR
5141 "md: invalid array_size %llu > default size %llu\n",
5142 (unsigned long long)mddev->array_sectors / 2,
5143 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5144 err = -EINVAL;
5145 }
5146 if (err == 0 && pers->sync_request &&
5147 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5148 struct bitmap *bitmap;
5149
5150 bitmap = bitmap_create(mddev, -1);
5151 if (IS_ERR(bitmap)) {
5152 err = PTR_ERR(bitmap);
5153 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5154 mdname(mddev), err);
5155 } else
5156 mddev->bitmap = bitmap;
5157
5158 }
5159 if (err) {
5160 mddev_detach(mddev);
5161 if (mddev->private)
5162 pers->free(mddev, mddev->private);
5163 mddev->private = NULL;
5164 module_put(pers->owner);
5165 bitmap_destroy(mddev);
5166 return err;
5167 }
5168 if (mddev->queue) {
5169 mddev->queue->backing_dev_info.congested_data = mddev;
5170 mddev->queue->backing_dev_info.congested_fn = md_congested;
5171 }
5172 if (pers->sync_request) {
5173 if (mddev->kobj.sd &&
5174 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5175 printk(KERN_WARNING
5176 "md: cannot register extra attributes for %s\n",
5177 mdname(mddev));
5178 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5179 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5180 mddev->ro = 0;
5181
5182 atomic_set(&mddev->writes_pending,0);
5183 atomic_set(&mddev->max_corr_read_errors,
5184 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5185 mddev->safemode = 0;
5186 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5187 mddev->in_sync = 1;
5188 smp_wmb();
5189 spin_lock(&mddev->lock);
5190 mddev->pers = pers;
5191 mddev->ready = 1;
5192 spin_unlock(&mddev->lock);
5193 rdev_for_each(rdev, mddev)
5194 if (rdev->raid_disk >= 0)
5195 if (sysfs_link_rdev(mddev, rdev))
5196 /* failure here is OK */;
5197
5198 if (mddev->degraded && !mddev->ro)
5199 /* This ensures that recovering status is reported immediately
5200 * via sysfs - until a lack of spares is confirmed.
5201 */
5202 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5203 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5204
5205 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5206 md_update_sb(mddev, 0);
5207
5208 md_new_event(mddev);
5209 sysfs_notify_dirent_safe(mddev->sysfs_state);
5210 sysfs_notify_dirent_safe(mddev->sysfs_action);
5211 sysfs_notify(&mddev->kobj, NULL, "degraded");
5212 return 0;
5213 }
5214 EXPORT_SYMBOL_GPL(md_run);
5215
5216 static int do_md_run(struct mddev *mddev)
5217 {
5218 int err;
5219
5220 err = md_run(mddev);
5221 if (err)
5222 goto out;
5223 err = bitmap_load(mddev);
5224 if (err) {
5225 bitmap_destroy(mddev);
5226 goto out;
5227 }
5228
5229 md_wakeup_thread(mddev->thread);
5230 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5231
5232 set_capacity(mddev->gendisk, mddev->array_sectors);
5233 revalidate_disk(mddev->gendisk);
5234 mddev->changed = 1;
5235 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5236 out:
5237 return err;
5238 }
5239
5240 static int restart_array(struct mddev *mddev)
5241 {
5242 struct gendisk *disk = mddev->gendisk;
5243
5244 /* Complain if it has no devices */
5245 if (list_empty(&mddev->disks))
5246 return -ENXIO;
5247 if (!mddev->pers)
5248 return -EINVAL;
5249 if (!mddev->ro)
5250 return -EBUSY;
5251 mddev->safemode = 0;
5252 mddev->ro = 0;
5253 set_disk_ro(disk, 0);
5254 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5255 mdname(mddev));
5256 /* Kick recovery or resync if necessary */
5257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5258 md_wakeup_thread(mddev->thread);
5259 md_wakeup_thread(mddev->sync_thread);
5260 sysfs_notify_dirent_safe(mddev->sysfs_state);
5261 return 0;
5262 }
5263
5264 static void md_clean(struct mddev *mddev)
5265 {
5266 mddev->array_sectors = 0;
5267 mddev->external_size = 0;
5268 mddev->dev_sectors = 0;
5269 mddev->raid_disks = 0;
5270 mddev->recovery_cp = 0;
5271 mddev->resync_min = 0;
5272 mddev->resync_max = MaxSector;
5273 mddev->reshape_position = MaxSector;
5274 mddev->external = 0;
5275 mddev->persistent = 0;
5276 mddev->level = LEVEL_NONE;
5277 mddev->clevel[0] = 0;
5278 mddev->flags = 0;
5279 mddev->ro = 0;
5280 mddev->metadata_type[0] = 0;
5281 mddev->chunk_sectors = 0;
5282 mddev->ctime = mddev->utime = 0;
5283 mddev->layout = 0;
5284 mddev->max_disks = 0;
5285 mddev->events = 0;
5286 mddev->can_decrease_events = 0;
5287 mddev->delta_disks = 0;
5288 mddev->reshape_backwards = 0;
5289 mddev->new_level = LEVEL_NONE;
5290 mddev->new_layout = 0;
5291 mddev->new_chunk_sectors = 0;
5292 mddev->curr_resync = 0;
5293 atomic64_set(&mddev->resync_mismatches, 0);
5294 mddev->suspend_lo = mddev->suspend_hi = 0;
5295 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5296 mddev->recovery = 0;
5297 mddev->in_sync = 0;
5298 mddev->changed = 0;
5299 mddev->degraded = 0;
5300 mddev->safemode = 0;
5301 mddev->private = NULL;
5302 mddev->bitmap_info.offset = 0;
5303 mddev->bitmap_info.default_offset = 0;
5304 mddev->bitmap_info.default_space = 0;
5305 mddev->bitmap_info.chunksize = 0;
5306 mddev->bitmap_info.daemon_sleep = 0;
5307 mddev->bitmap_info.max_write_behind = 0;
5308 }
5309
5310 static void __md_stop_writes(struct mddev *mddev)
5311 {
5312 if (mddev_is_clustered(mddev))
5313 md_cluster_ops->metadata_update_start(mddev);
5314 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315 flush_workqueue(md_misc_wq);
5316 if (mddev->sync_thread) {
5317 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318 md_reap_sync_thread(mddev);
5319 }
5320
5321 del_timer_sync(&mddev->safemode_timer);
5322
5323 bitmap_flush(mddev);
5324 md_super_wait(mddev);
5325
5326 if (mddev->ro == 0 &&
5327 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5328 /* mark array as shutdown cleanly */
5329 mddev->in_sync = 1;
5330 md_update_sb(mddev, 1);
5331 }
5332 if (mddev_is_clustered(mddev))
5333 md_cluster_ops->metadata_update_finish(mddev);
5334 }
5335
5336 void md_stop_writes(struct mddev *mddev)
5337 {
5338 mddev_lock_nointr(mddev);
5339 __md_stop_writes(mddev);
5340 mddev_unlock(mddev);
5341 }
5342 EXPORT_SYMBOL_GPL(md_stop_writes);
5343
5344 static void mddev_detach(struct mddev *mddev)
5345 {
5346 struct bitmap *bitmap = mddev->bitmap;
5347 /* wait for behind writes to complete */
5348 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5349 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5350 mdname(mddev));
5351 /* need to kick something here to make sure I/O goes? */
5352 wait_event(bitmap->behind_wait,
5353 atomic_read(&bitmap->behind_writes) == 0);
5354 }
5355 if (mddev->pers && mddev->pers->quiesce) {
5356 mddev->pers->quiesce(mddev, 1);
5357 mddev->pers->quiesce(mddev, 0);
5358 }
5359 md_unregister_thread(&mddev->thread);
5360 if (mddev->queue)
5361 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5362 }
5363
5364 static void __md_stop(struct mddev *mddev)
5365 {
5366 struct md_personality *pers = mddev->pers;
5367 mddev_detach(mddev);
5368 /* Ensure ->event_work is done */
5369 flush_workqueue(md_misc_wq);
5370 spin_lock(&mddev->lock);
5371 mddev->ready = 0;
5372 mddev->pers = NULL;
5373 spin_unlock(&mddev->lock);
5374 pers->free(mddev, mddev->private);
5375 mddev->private = NULL;
5376 if (pers->sync_request && mddev->to_remove == NULL)
5377 mddev->to_remove = &md_redundancy_group;
5378 module_put(pers->owner);
5379 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5380 }
5381
5382 void md_stop(struct mddev *mddev)
5383 {
5384 /* stop the array and free an attached data structures.
5385 * This is called from dm-raid
5386 */
5387 __md_stop(mddev);
5388 bitmap_destroy(mddev);
5389 if (mddev->bio_set)
5390 bioset_free(mddev->bio_set);
5391 }
5392
5393 EXPORT_SYMBOL_GPL(md_stop);
5394
5395 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5396 {
5397 int err = 0;
5398 int did_freeze = 0;
5399
5400 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5401 did_freeze = 1;
5402 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403 md_wakeup_thread(mddev->thread);
5404 }
5405 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5406 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5407 if (mddev->sync_thread)
5408 /* Thread might be blocked waiting for metadata update
5409 * which will now never happen */
5410 wake_up_process(mddev->sync_thread->tsk);
5411
5412 mddev_unlock(mddev);
5413 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5414 &mddev->recovery));
5415 mddev_lock_nointr(mddev);
5416
5417 mutex_lock(&mddev->open_mutex);
5418 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5419 mddev->sync_thread ||
5420 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5421 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5422 printk("md: %s still in use.\n",mdname(mddev));
5423 if (did_freeze) {
5424 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5425 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5426 md_wakeup_thread(mddev->thread);
5427 }
5428 err = -EBUSY;
5429 goto out;
5430 }
5431 if (mddev->pers) {
5432 __md_stop_writes(mddev);
5433
5434 err = -ENXIO;
5435 if (mddev->ro==1)
5436 goto out;
5437 mddev->ro = 1;
5438 set_disk_ro(mddev->gendisk, 1);
5439 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5440 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5441 md_wakeup_thread(mddev->thread);
5442 sysfs_notify_dirent_safe(mddev->sysfs_state);
5443 err = 0;
5444 }
5445 out:
5446 mutex_unlock(&mddev->open_mutex);
5447 return err;
5448 }
5449
5450 /* mode:
5451 * 0 - completely stop and dis-assemble array
5452 * 2 - stop but do not disassemble array
5453 */
5454 static int do_md_stop(struct mddev *mddev, int mode,
5455 struct block_device *bdev)
5456 {
5457 struct gendisk *disk = mddev->gendisk;
5458 struct md_rdev *rdev;
5459 int did_freeze = 0;
5460
5461 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5462 did_freeze = 1;
5463 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5464 md_wakeup_thread(mddev->thread);
5465 }
5466 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5467 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5468 if (mddev->sync_thread)
5469 /* Thread might be blocked waiting for metadata update
5470 * which will now never happen */
5471 wake_up_process(mddev->sync_thread->tsk);
5472
5473 mddev_unlock(mddev);
5474 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5475 !test_bit(MD_RECOVERY_RUNNING,
5476 &mddev->recovery)));
5477 mddev_lock_nointr(mddev);
5478
5479 mutex_lock(&mddev->open_mutex);
5480 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5481 mddev->sysfs_active ||
5482 mddev->sync_thread ||
5483 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5484 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5485 printk("md: %s still in use.\n",mdname(mddev));
5486 mutex_unlock(&mddev->open_mutex);
5487 if (did_freeze) {
5488 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5489 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5490 md_wakeup_thread(mddev->thread);
5491 }
5492 return -EBUSY;
5493 }
5494 if (mddev->pers) {
5495 if (mddev->ro)
5496 set_disk_ro(disk, 0);
5497
5498 __md_stop_writes(mddev);
5499 __md_stop(mddev);
5500 mddev->queue->backing_dev_info.congested_fn = NULL;
5501
5502 /* tell userspace to handle 'inactive' */
5503 sysfs_notify_dirent_safe(mddev->sysfs_state);
5504
5505 rdev_for_each(rdev, mddev)
5506 if (rdev->raid_disk >= 0)
5507 sysfs_unlink_rdev(mddev, rdev);
5508
5509 set_capacity(disk, 0);
5510 mutex_unlock(&mddev->open_mutex);
5511 mddev->changed = 1;
5512 revalidate_disk(disk);
5513
5514 if (mddev->ro)
5515 mddev->ro = 0;
5516 } else
5517 mutex_unlock(&mddev->open_mutex);
5518 /*
5519 * Free resources if final stop
5520 */
5521 if (mode == 0) {
5522 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5523
5524 bitmap_destroy(mddev);
5525 if (mddev->bitmap_info.file) {
5526 struct file *f = mddev->bitmap_info.file;
5527 spin_lock(&mddev->lock);
5528 mddev->bitmap_info.file = NULL;
5529 spin_unlock(&mddev->lock);
5530 fput(f);
5531 }
5532 mddev->bitmap_info.offset = 0;
5533
5534 export_array(mddev);
5535
5536 md_clean(mddev);
5537 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5538 if (mddev->hold_active == UNTIL_STOP)
5539 mddev->hold_active = 0;
5540 }
5541 blk_integrity_unregister(disk);
5542 md_new_event(mddev);
5543 sysfs_notify_dirent_safe(mddev->sysfs_state);
5544 return 0;
5545 }
5546
5547 #ifndef MODULE
5548 static void autorun_array(struct mddev *mddev)
5549 {
5550 struct md_rdev *rdev;
5551 int err;
5552
5553 if (list_empty(&mddev->disks))
5554 return;
5555
5556 printk(KERN_INFO "md: running: ");
5557
5558 rdev_for_each(rdev, mddev) {
5559 char b[BDEVNAME_SIZE];
5560 printk("<%s>", bdevname(rdev->bdev,b));
5561 }
5562 printk("\n");
5563
5564 err = do_md_run(mddev);
5565 if (err) {
5566 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5567 do_md_stop(mddev, 0, NULL);
5568 }
5569 }
5570
5571 /*
5572 * lets try to run arrays based on all disks that have arrived
5573 * until now. (those are in pending_raid_disks)
5574 *
5575 * the method: pick the first pending disk, collect all disks with
5576 * the same UUID, remove all from the pending list and put them into
5577 * the 'same_array' list. Then order this list based on superblock
5578 * update time (freshest comes first), kick out 'old' disks and
5579 * compare superblocks. If everything's fine then run it.
5580 *
5581 * If "unit" is allocated, then bump its reference count
5582 */
5583 static void autorun_devices(int part)
5584 {
5585 struct md_rdev *rdev0, *rdev, *tmp;
5586 struct mddev *mddev;
5587 char b[BDEVNAME_SIZE];
5588
5589 printk(KERN_INFO "md: autorun ...\n");
5590 while (!list_empty(&pending_raid_disks)) {
5591 int unit;
5592 dev_t dev;
5593 LIST_HEAD(candidates);
5594 rdev0 = list_entry(pending_raid_disks.next,
5595 struct md_rdev, same_set);
5596
5597 printk(KERN_INFO "md: considering %s ...\n",
5598 bdevname(rdev0->bdev,b));
5599 INIT_LIST_HEAD(&candidates);
5600 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5601 if (super_90_load(rdev, rdev0, 0) >= 0) {
5602 printk(KERN_INFO "md: adding %s ...\n",
5603 bdevname(rdev->bdev,b));
5604 list_move(&rdev->same_set, &candidates);
5605 }
5606 /*
5607 * now we have a set of devices, with all of them having
5608 * mostly sane superblocks. It's time to allocate the
5609 * mddev.
5610 */
5611 if (part) {
5612 dev = MKDEV(mdp_major,
5613 rdev0->preferred_minor << MdpMinorShift);
5614 unit = MINOR(dev) >> MdpMinorShift;
5615 } else {
5616 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5617 unit = MINOR(dev);
5618 }
5619 if (rdev0->preferred_minor != unit) {
5620 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5621 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5622 break;
5623 }
5624
5625 md_probe(dev, NULL, NULL);
5626 mddev = mddev_find(dev);
5627 if (!mddev || !mddev->gendisk) {
5628 if (mddev)
5629 mddev_put(mddev);
5630 printk(KERN_ERR
5631 "md: cannot allocate memory for md drive.\n");
5632 break;
5633 }
5634 if (mddev_lock(mddev))
5635 printk(KERN_WARNING "md: %s locked, cannot run\n",
5636 mdname(mddev));
5637 else if (mddev->raid_disks || mddev->major_version
5638 || !list_empty(&mddev->disks)) {
5639 printk(KERN_WARNING
5640 "md: %s already running, cannot run %s\n",
5641 mdname(mddev), bdevname(rdev0->bdev,b));
5642 mddev_unlock(mddev);
5643 } else {
5644 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5645 mddev->persistent = 1;
5646 rdev_for_each_list(rdev, tmp, &candidates) {
5647 list_del_init(&rdev->same_set);
5648 if (bind_rdev_to_array(rdev, mddev))
5649 export_rdev(rdev);
5650 }
5651 autorun_array(mddev);
5652 mddev_unlock(mddev);
5653 }
5654 /* on success, candidates will be empty, on error
5655 * it won't...
5656 */
5657 rdev_for_each_list(rdev, tmp, &candidates) {
5658 list_del_init(&rdev->same_set);
5659 export_rdev(rdev);
5660 }
5661 mddev_put(mddev);
5662 }
5663 printk(KERN_INFO "md: ... autorun DONE.\n");
5664 }
5665 #endif /* !MODULE */
5666
5667 static int get_version(void __user *arg)
5668 {
5669 mdu_version_t ver;
5670
5671 ver.major = MD_MAJOR_VERSION;
5672 ver.minor = MD_MINOR_VERSION;
5673 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5674
5675 if (copy_to_user(arg, &ver, sizeof(ver)))
5676 return -EFAULT;
5677
5678 return 0;
5679 }
5680
5681 static int get_array_info(struct mddev *mddev, void __user *arg)
5682 {
5683 mdu_array_info_t info;
5684 int nr,working,insync,failed,spare;
5685 struct md_rdev *rdev;
5686
5687 nr = working = insync = failed = spare = 0;
5688 rcu_read_lock();
5689 rdev_for_each_rcu(rdev, mddev) {
5690 nr++;
5691 if (test_bit(Faulty, &rdev->flags))
5692 failed++;
5693 else {
5694 working++;
5695 if (test_bit(In_sync, &rdev->flags))
5696 insync++;
5697 else
5698 spare++;
5699 }
5700 }
5701 rcu_read_unlock();
5702
5703 info.major_version = mddev->major_version;
5704 info.minor_version = mddev->minor_version;
5705 info.patch_version = MD_PATCHLEVEL_VERSION;
5706 info.ctime = mddev->ctime;
5707 info.level = mddev->level;
5708 info.size = mddev->dev_sectors / 2;
5709 if (info.size != mddev->dev_sectors / 2) /* overflow */
5710 info.size = -1;
5711 info.nr_disks = nr;
5712 info.raid_disks = mddev->raid_disks;
5713 info.md_minor = mddev->md_minor;
5714 info.not_persistent= !mddev->persistent;
5715
5716 info.utime = mddev->utime;
5717 info.state = 0;
5718 if (mddev->in_sync)
5719 info.state = (1<<MD_SB_CLEAN);
5720 if (mddev->bitmap && mddev->bitmap_info.offset)
5721 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5722 if (mddev_is_clustered(mddev))
5723 info.state |= (1<<MD_SB_CLUSTERED);
5724 info.active_disks = insync;
5725 info.working_disks = working;
5726 info.failed_disks = failed;
5727 info.spare_disks = spare;
5728
5729 info.layout = mddev->layout;
5730 info.chunk_size = mddev->chunk_sectors << 9;
5731
5732 if (copy_to_user(arg, &info, sizeof(info)))
5733 return -EFAULT;
5734
5735 return 0;
5736 }
5737
5738 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5739 {
5740 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5741 char *ptr;
5742 int err;
5743
5744 file = kzalloc(sizeof(*file), GFP_NOIO);
5745 if (!file)
5746 return -ENOMEM;
5747
5748 err = 0;
5749 spin_lock(&mddev->lock);
5750 /* bitmap enabled */
5751 if (mddev->bitmap_info.file) {
5752 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5753 sizeof(file->pathname));
5754 if (IS_ERR(ptr))
5755 err = PTR_ERR(ptr);
5756 else
5757 memmove(file->pathname, ptr,
5758 sizeof(file->pathname)-(ptr-file->pathname));
5759 }
5760 spin_unlock(&mddev->lock);
5761
5762 if (err == 0 &&
5763 copy_to_user(arg, file, sizeof(*file)))
5764 err = -EFAULT;
5765
5766 kfree(file);
5767 return err;
5768 }
5769
5770 static int get_disk_info(struct mddev *mddev, void __user * arg)
5771 {
5772 mdu_disk_info_t info;
5773 struct md_rdev *rdev;
5774
5775 if (copy_from_user(&info, arg, sizeof(info)))
5776 return -EFAULT;
5777
5778 rcu_read_lock();
5779 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5780 if (rdev) {
5781 info.major = MAJOR(rdev->bdev->bd_dev);
5782 info.minor = MINOR(rdev->bdev->bd_dev);
5783 info.raid_disk = rdev->raid_disk;
5784 info.state = 0;
5785 if (test_bit(Faulty, &rdev->flags))
5786 info.state |= (1<<MD_DISK_FAULTY);
5787 else if (test_bit(In_sync, &rdev->flags)) {
5788 info.state |= (1<<MD_DISK_ACTIVE);
5789 info.state |= (1<<MD_DISK_SYNC);
5790 }
5791 if (test_bit(WriteMostly, &rdev->flags))
5792 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5793 } else {
5794 info.major = info.minor = 0;
5795 info.raid_disk = -1;
5796 info.state = (1<<MD_DISK_REMOVED);
5797 }
5798 rcu_read_unlock();
5799
5800 if (copy_to_user(arg, &info, sizeof(info)))
5801 return -EFAULT;
5802
5803 return 0;
5804 }
5805
5806 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5807 {
5808 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5809 struct md_rdev *rdev;
5810 dev_t dev = MKDEV(info->major,info->minor);
5811
5812 if (mddev_is_clustered(mddev) &&
5813 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5814 pr_err("%s: Cannot add to clustered mddev.\n",
5815 mdname(mddev));
5816 return -EINVAL;
5817 }
5818
5819 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5820 return -EOVERFLOW;
5821
5822 if (!mddev->raid_disks) {
5823 int err;
5824 /* expecting a device which has a superblock */
5825 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5826 if (IS_ERR(rdev)) {
5827 printk(KERN_WARNING
5828 "md: md_import_device returned %ld\n",
5829 PTR_ERR(rdev));
5830 return PTR_ERR(rdev);
5831 }
5832 if (!list_empty(&mddev->disks)) {
5833 struct md_rdev *rdev0
5834 = list_entry(mddev->disks.next,
5835 struct md_rdev, same_set);
5836 err = super_types[mddev->major_version]
5837 .load_super(rdev, rdev0, mddev->minor_version);
5838 if (err < 0) {
5839 printk(KERN_WARNING
5840 "md: %s has different UUID to %s\n",
5841 bdevname(rdev->bdev,b),
5842 bdevname(rdev0->bdev,b2));
5843 export_rdev(rdev);
5844 return -EINVAL;
5845 }
5846 }
5847 err = bind_rdev_to_array(rdev, mddev);
5848 if (err)
5849 export_rdev(rdev);
5850 return err;
5851 }
5852
5853 /*
5854 * add_new_disk can be used once the array is assembled
5855 * to add "hot spares". They must already have a superblock
5856 * written
5857 */
5858 if (mddev->pers) {
5859 int err;
5860 if (!mddev->pers->hot_add_disk) {
5861 printk(KERN_WARNING
5862 "%s: personality does not support diskops!\n",
5863 mdname(mddev));
5864 return -EINVAL;
5865 }
5866 if (mddev->persistent)
5867 rdev = md_import_device(dev, mddev->major_version,
5868 mddev->minor_version);
5869 else
5870 rdev = md_import_device(dev, -1, -1);
5871 if (IS_ERR(rdev)) {
5872 printk(KERN_WARNING
5873 "md: md_import_device returned %ld\n",
5874 PTR_ERR(rdev));
5875 return PTR_ERR(rdev);
5876 }
5877 /* set saved_raid_disk if appropriate */
5878 if (!mddev->persistent) {
5879 if (info->state & (1<<MD_DISK_SYNC) &&
5880 info->raid_disk < mddev->raid_disks) {
5881 rdev->raid_disk = info->raid_disk;
5882 set_bit(In_sync, &rdev->flags);
5883 clear_bit(Bitmap_sync, &rdev->flags);
5884 } else
5885 rdev->raid_disk = -1;
5886 rdev->saved_raid_disk = rdev->raid_disk;
5887 } else
5888 super_types[mddev->major_version].
5889 validate_super(mddev, rdev);
5890 if ((info->state & (1<<MD_DISK_SYNC)) &&
5891 rdev->raid_disk != info->raid_disk) {
5892 /* This was a hot-add request, but events doesn't
5893 * match, so reject it.
5894 */
5895 export_rdev(rdev);
5896 return -EINVAL;
5897 }
5898
5899 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5900 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5901 set_bit(WriteMostly, &rdev->flags);
5902 else
5903 clear_bit(WriteMostly, &rdev->flags);
5904
5905 /*
5906 * check whether the device shows up in other nodes
5907 */
5908 if (mddev_is_clustered(mddev)) {
5909 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5910 /* Through --cluster-confirm */
5911 set_bit(Candidate, &rdev->flags);
5912 err = md_cluster_ops->new_disk_ack(mddev, true);
5913 if (err) {
5914 export_rdev(rdev);
5915 return err;
5916 }
5917 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5918 /* --add initiated by this node */
5919 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5920 if (err) {
5921 md_cluster_ops->add_new_disk_finish(mddev);
5922 export_rdev(rdev);
5923 return err;
5924 }
5925 }
5926 }
5927
5928 rdev->raid_disk = -1;
5929 err = bind_rdev_to_array(rdev, mddev);
5930 if (err)
5931 export_rdev(rdev);
5932 else
5933 err = add_bound_rdev(rdev);
5934 if (mddev_is_clustered(mddev) &&
5935 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5936 md_cluster_ops->add_new_disk_finish(mddev);
5937 return err;
5938 }
5939
5940 /* otherwise, add_new_disk is only allowed
5941 * for major_version==0 superblocks
5942 */
5943 if (mddev->major_version != 0) {
5944 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5945 mdname(mddev));
5946 return -EINVAL;
5947 }
5948
5949 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5950 int err;
5951 rdev = md_import_device(dev, -1, 0);
5952 if (IS_ERR(rdev)) {
5953 printk(KERN_WARNING
5954 "md: error, md_import_device() returned %ld\n",
5955 PTR_ERR(rdev));
5956 return PTR_ERR(rdev);
5957 }
5958 rdev->desc_nr = info->number;
5959 if (info->raid_disk < mddev->raid_disks)
5960 rdev->raid_disk = info->raid_disk;
5961 else
5962 rdev->raid_disk = -1;
5963
5964 if (rdev->raid_disk < mddev->raid_disks)
5965 if (info->state & (1<<MD_DISK_SYNC))
5966 set_bit(In_sync, &rdev->flags);
5967
5968 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5969 set_bit(WriteMostly, &rdev->flags);
5970
5971 if (!mddev->persistent) {
5972 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5973 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5974 } else
5975 rdev->sb_start = calc_dev_sboffset(rdev);
5976 rdev->sectors = rdev->sb_start;
5977
5978 err = bind_rdev_to_array(rdev, mddev);
5979 if (err) {
5980 export_rdev(rdev);
5981 return err;
5982 }
5983 }
5984
5985 return 0;
5986 }
5987
5988 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5989 {
5990 char b[BDEVNAME_SIZE];
5991 struct md_rdev *rdev;
5992
5993 rdev = find_rdev(mddev, dev);
5994 if (!rdev)
5995 return -ENXIO;
5996
5997 if (mddev_is_clustered(mddev))
5998 md_cluster_ops->metadata_update_start(mddev);
5999
6000 clear_bit(Blocked, &rdev->flags);
6001 remove_and_add_spares(mddev, rdev);
6002
6003 if (rdev->raid_disk >= 0)
6004 goto busy;
6005
6006 if (mddev_is_clustered(mddev))
6007 md_cluster_ops->remove_disk(mddev, rdev);
6008
6009 md_kick_rdev_from_array(rdev);
6010 md_update_sb(mddev, 1);
6011 md_new_event(mddev);
6012
6013 if (mddev_is_clustered(mddev))
6014 md_cluster_ops->metadata_update_finish(mddev);
6015
6016 return 0;
6017 busy:
6018 if (mddev_is_clustered(mddev))
6019 md_cluster_ops->metadata_update_cancel(mddev);
6020 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6021 bdevname(rdev->bdev,b), mdname(mddev));
6022 return -EBUSY;
6023 }
6024
6025 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6026 {
6027 char b[BDEVNAME_SIZE];
6028 int err;
6029 struct md_rdev *rdev;
6030
6031 if (!mddev->pers)
6032 return -ENODEV;
6033
6034 if (mddev->major_version != 0) {
6035 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6036 " version-0 superblocks.\n",
6037 mdname(mddev));
6038 return -EINVAL;
6039 }
6040 if (!mddev->pers->hot_add_disk) {
6041 printk(KERN_WARNING
6042 "%s: personality does not support diskops!\n",
6043 mdname(mddev));
6044 return -EINVAL;
6045 }
6046
6047 rdev = md_import_device(dev, -1, 0);
6048 if (IS_ERR(rdev)) {
6049 printk(KERN_WARNING
6050 "md: error, md_import_device() returned %ld\n",
6051 PTR_ERR(rdev));
6052 return -EINVAL;
6053 }
6054
6055 if (mddev->persistent)
6056 rdev->sb_start = calc_dev_sboffset(rdev);
6057 else
6058 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6059
6060 rdev->sectors = rdev->sb_start;
6061
6062 if (test_bit(Faulty, &rdev->flags)) {
6063 printk(KERN_WARNING
6064 "md: can not hot-add faulty %s disk to %s!\n",
6065 bdevname(rdev->bdev,b), mdname(mddev));
6066 err = -EINVAL;
6067 goto abort_export;
6068 }
6069
6070 if (mddev_is_clustered(mddev))
6071 md_cluster_ops->metadata_update_start(mddev);
6072 clear_bit(In_sync, &rdev->flags);
6073 rdev->desc_nr = -1;
6074 rdev->saved_raid_disk = -1;
6075 err = bind_rdev_to_array(rdev, mddev);
6076 if (err)
6077 goto abort_clustered;
6078
6079 /*
6080 * The rest should better be atomic, we can have disk failures
6081 * noticed in interrupt contexts ...
6082 */
6083
6084 rdev->raid_disk = -1;
6085
6086 md_update_sb(mddev, 1);
6087
6088 if (mddev_is_clustered(mddev))
6089 md_cluster_ops->metadata_update_finish(mddev);
6090 /*
6091 * Kick recovery, maybe this spare has to be added to the
6092 * array immediately.
6093 */
6094 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6095 md_wakeup_thread(mddev->thread);
6096 md_new_event(mddev);
6097 return 0;
6098
6099 abort_clustered:
6100 if (mddev_is_clustered(mddev))
6101 md_cluster_ops->metadata_update_cancel(mddev);
6102 abort_export:
6103 export_rdev(rdev);
6104 return err;
6105 }
6106
6107 static int set_bitmap_file(struct mddev *mddev, int fd)
6108 {
6109 int err = 0;
6110
6111 if (mddev->pers) {
6112 if (!mddev->pers->quiesce || !mddev->thread)
6113 return -EBUSY;
6114 if (mddev->recovery || mddev->sync_thread)
6115 return -EBUSY;
6116 /* we should be able to change the bitmap.. */
6117 }
6118
6119 if (fd >= 0) {
6120 struct inode *inode;
6121 struct file *f;
6122
6123 if (mddev->bitmap || mddev->bitmap_info.file)
6124 return -EEXIST; /* cannot add when bitmap is present */
6125 f = fget(fd);
6126
6127 if (f == NULL) {
6128 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6129 mdname(mddev));
6130 return -EBADF;
6131 }
6132
6133 inode = f->f_mapping->host;
6134 if (!S_ISREG(inode->i_mode)) {
6135 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6136 mdname(mddev));
6137 err = -EBADF;
6138 } else if (!(f->f_mode & FMODE_WRITE)) {
6139 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6140 mdname(mddev));
6141 err = -EBADF;
6142 } else if (atomic_read(&inode->i_writecount) != 1) {
6143 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6144 mdname(mddev));
6145 err = -EBUSY;
6146 }
6147 if (err) {
6148 fput(f);
6149 return err;
6150 }
6151 mddev->bitmap_info.file = f;
6152 mddev->bitmap_info.offset = 0; /* file overrides offset */
6153 } else if (mddev->bitmap == NULL)
6154 return -ENOENT; /* cannot remove what isn't there */
6155 err = 0;
6156 if (mddev->pers) {
6157 mddev->pers->quiesce(mddev, 1);
6158 if (fd >= 0) {
6159 struct bitmap *bitmap;
6160
6161 bitmap = bitmap_create(mddev, -1);
6162 if (!IS_ERR(bitmap)) {
6163 mddev->bitmap = bitmap;
6164 err = bitmap_load(mddev);
6165 } else
6166 err = PTR_ERR(bitmap);
6167 }
6168 if (fd < 0 || err) {
6169 bitmap_destroy(mddev);
6170 fd = -1; /* make sure to put the file */
6171 }
6172 mddev->pers->quiesce(mddev, 0);
6173 }
6174 if (fd < 0) {
6175 struct file *f = mddev->bitmap_info.file;
6176 if (f) {
6177 spin_lock(&mddev->lock);
6178 mddev->bitmap_info.file = NULL;
6179 spin_unlock(&mddev->lock);
6180 fput(f);
6181 }
6182 }
6183
6184 return err;
6185 }
6186
6187 /*
6188 * set_array_info is used two different ways
6189 * The original usage is when creating a new array.
6190 * In this usage, raid_disks is > 0 and it together with
6191 * level, size, not_persistent,layout,chunksize determine the
6192 * shape of the array.
6193 * This will always create an array with a type-0.90.0 superblock.
6194 * The newer usage is when assembling an array.
6195 * In this case raid_disks will be 0, and the major_version field is
6196 * use to determine which style super-blocks are to be found on the devices.
6197 * The minor and patch _version numbers are also kept incase the
6198 * super_block handler wishes to interpret them.
6199 */
6200 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6201 {
6202
6203 if (info->raid_disks == 0) {
6204 /* just setting version number for superblock loading */
6205 if (info->major_version < 0 ||
6206 info->major_version >= ARRAY_SIZE(super_types) ||
6207 super_types[info->major_version].name == NULL) {
6208 /* maybe try to auto-load a module? */
6209 printk(KERN_INFO
6210 "md: superblock version %d not known\n",
6211 info->major_version);
6212 return -EINVAL;
6213 }
6214 mddev->major_version = info->major_version;
6215 mddev->minor_version = info->minor_version;
6216 mddev->patch_version = info->patch_version;
6217 mddev->persistent = !info->not_persistent;
6218 /* ensure mddev_put doesn't delete this now that there
6219 * is some minimal configuration.
6220 */
6221 mddev->ctime = get_seconds();
6222 return 0;
6223 }
6224 mddev->major_version = MD_MAJOR_VERSION;
6225 mddev->minor_version = MD_MINOR_VERSION;
6226 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6227 mddev->ctime = get_seconds();
6228
6229 mddev->level = info->level;
6230 mddev->clevel[0] = 0;
6231 mddev->dev_sectors = 2 * (sector_t)info->size;
6232 mddev->raid_disks = info->raid_disks;
6233 /* don't set md_minor, it is determined by which /dev/md* was
6234 * openned
6235 */
6236 if (info->state & (1<<MD_SB_CLEAN))
6237 mddev->recovery_cp = MaxSector;
6238 else
6239 mddev->recovery_cp = 0;
6240 mddev->persistent = ! info->not_persistent;
6241 mddev->external = 0;
6242
6243 mddev->layout = info->layout;
6244 mddev->chunk_sectors = info->chunk_size >> 9;
6245
6246 mddev->max_disks = MD_SB_DISKS;
6247
6248 if (mddev->persistent)
6249 mddev->flags = 0;
6250 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6251
6252 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6253 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6254 mddev->bitmap_info.offset = 0;
6255
6256 mddev->reshape_position = MaxSector;
6257
6258 /*
6259 * Generate a 128 bit UUID
6260 */
6261 get_random_bytes(mddev->uuid, 16);
6262
6263 mddev->new_level = mddev->level;
6264 mddev->new_chunk_sectors = mddev->chunk_sectors;
6265 mddev->new_layout = mddev->layout;
6266 mddev->delta_disks = 0;
6267 mddev->reshape_backwards = 0;
6268
6269 return 0;
6270 }
6271
6272 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6273 {
6274 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6275
6276 if (mddev->external_size)
6277 return;
6278
6279 mddev->array_sectors = array_sectors;
6280 }
6281 EXPORT_SYMBOL(md_set_array_sectors);
6282
6283 static int update_size(struct mddev *mddev, sector_t num_sectors)
6284 {
6285 struct md_rdev *rdev;
6286 int rv;
6287 int fit = (num_sectors == 0);
6288
6289 if (mddev->pers->resize == NULL)
6290 return -EINVAL;
6291 /* The "num_sectors" is the number of sectors of each device that
6292 * is used. This can only make sense for arrays with redundancy.
6293 * linear and raid0 always use whatever space is available. We can only
6294 * consider changing this number if no resync or reconstruction is
6295 * happening, and if the new size is acceptable. It must fit before the
6296 * sb_start or, if that is <data_offset, it must fit before the size
6297 * of each device. If num_sectors is zero, we find the largest size
6298 * that fits.
6299 */
6300 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6301 mddev->sync_thread)
6302 return -EBUSY;
6303 if (mddev->ro)
6304 return -EROFS;
6305
6306 rdev_for_each(rdev, mddev) {
6307 sector_t avail = rdev->sectors;
6308
6309 if (fit && (num_sectors == 0 || num_sectors > avail))
6310 num_sectors = avail;
6311 if (avail < num_sectors)
6312 return -ENOSPC;
6313 }
6314 rv = mddev->pers->resize(mddev, num_sectors);
6315 if (!rv)
6316 revalidate_disk(mddev->gendisk);
6317 return rv;
6318 }
6319
6320 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6321 {
6322 int rv;
6323 struct md_rdev *rdev;
6324 /* change the number of raid disks */
6325 if (mddev->pers->check_reshape == NULL)
6326 return -EINVAL;
6327 if (mddev->ro)
6328 return -EROFS;
6329 if (raid_disks <= 0 ||
6330 (mddev->max_disks && raid_disks >= mddev->max_disks))
6331 return -EINVAL;
6332 if (mddev->sync_thread ||
6333 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6334 mddev->reshape_position != MaxSector)
6335 return -EBUSY;
6336
6337 rdev_for_each(rdev, mddev) {
6338 if (mddev->raid_disks < raid_disks &&
6339 rdev->data_offset < rdev->new_data_offset)
6340 return -EINVAL;
6341 if (mddev->raid_disks > raid_disks &&
6342 rdev->data_offset > rdev->new_data_offset)
6343 return -EINVAL;
6344 }
6345
6346 mddev->delta_disks = raid_disks - mddev->raid_disks;
6347 if (mddev->delta_disks < 0)
6348 mddev->reshape_backwards = 1;
6349 else if (mddev->delta_disks > 0)
6350 mddev->reshape_backwards = 0;
6351
6352 rv = mddev->pers->check_reshape(mddev);
6353 if (rv < 0) {
6354 mddev->delta_disks = 0;
6355 mddev->reshape_backwards = 0;
6356 }
6357 return rv;
6358 }
6359
6360 /*
6361 * update_array_info is used to change the configuration of an
6362 * on-line array.
6363 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6364 * fields in the info are checked against the array.
6365 * Any differences that cannot be handled will cause an error.
6366 * Normally, only one change can be managed at a time.
6367 */
6368 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6369 {
6370 int rv = 0;
6371 int cnt = 0;
6372 int state = 0;
6373
6374 /* calculate expected state,ignoring low bits */
6375 if (mddev->bitmap && mddev->bitmap_info.offset)
6376 state |= (1 << MD_SB_BITMAP_PRESENT);
6377
6378 if (mddev->major_version != info->major_version ||
6379 mddev->minor_version != info->minor_version ||
6380 /* mddev->patch_version != info->patch_version || */
6381 mddev->ctime != info->ctime ||
6382 mddev->level != info->level ||
6383 /* mddev->layout != info->layout || */
6384 mddev->persistent != !info->not_persistent ||
6385 mddev->chunk_sectors != info->chunk_size >> 9 ||
6386 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6387 ((state^info->state) & 0xfffffe00)
6388 )
6389 return -EINVAL;
6390 /* Check there is only one change */
6391 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6392 cnt++;
6393 if (mddev->raid_disks != info->raid_disks)
6394 cnt++;
6395 if (mddev->layout != info->layout)
6396 cnt++;
6397 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6398 cnt++;
6399 if (cnt == 0)
6400 return 0;
6401 if (cnt > 1)
6402 return -EINVAL;
6403
6404 if (mddev->layout != info->layout) {
6405 /* Change layout
6406 * we don't need to do anything at the md level, the
6407 * personality will take care of it all.
6408 */
6409 if (mddev->pers->check_reshape == NULL)
6410 return -EINVAL;
6411 else {
6412 mddev->new_layout = info->layout;
6413 rv = mddev->pers->check_reshape(mddev);
6414 if (rv)
6415 mddev->new_layout = mddev->layout;
6416 return rv;
6417 }
6418 }
6419 if (mddev_is_clustered(mddev))
6420 md_cluster_ops->metadata_update_start(mddev);
6421 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6422 rv = update_size(mddev, (sector_t)info->size * 2);
6423
6424 if (mddev->raid_disks != info->raid_disks)
6425 rv = update_raid_disks(mddev, info->raid_disks);
6426
6427 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6428 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6429 rv = -EINVAL;
6430 goto err;
6431 }
6432 if (mddev->recovery || mddev->sync_thread) {
6433 rv = -EBUSY;
6434 goto err;
6435 }
6436 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6437 struct bitmap *bitmap;
6438 /* add the bitmap */
6439 if (mddev->bitmap) {
6440 rv = -EEXIST;
6441 goto err;
6442 }
6443 if (mddev->bitmap_info.default_offset == 0) {
6444 rv = -EINVAL;
6445 goto err;
6446 }
6447 mddev->bitmap_info.offset =
6448 mddev->bitmap_info.default_offset;
6449 mddev->bitmap_info.space =
6450 mddev->bitmap_info.default_space;
6451 mddev->pers->quiesce(mddev, 1);
6452 bitmap = bitmap_create(mddev, -1);
6453 if (!IS_ERR(bitmap)) {
6454 mddev->bitmap = bitmap;
6455 rv = bitmap_load(mddev);
6456 } else
6457 rv = PTR_ERR(bitmap);
6458 if (rv)
6459 bitmap_destroy(mddev);
6460 mddev->pers->quiesce(mddev, 0);
6461 } else {
6462 /* remove the bitmap */
6463 if (!mddev->bitmap) {
6464 rv = -ENOENT;
6465 goto err;
6466 }
6467 if (mddev->bitmap->storage.file) {
6468 rv = -EINVAL;
6469 goto err;
6470 }
6471 mddev->pers->quiesce(mddev, 1);
6472 bitmap_destroy(mddev);
6473 mddev->pers->quiesce(mddev, 0);
6474 mddev->bitmap_info.offset = 0;
6475 }
6476 }
6477 md_update_sb(mddev, 1);
6478 if (mddev_is_clustered(mddev))
6479 md_cluster_ops->metadata_update_finish(mddev);
6480 return rv;
6481 err:
6482 if (mddev_is_clustered(mddev))
6483 md_cluster_ops->metadata_update_cancel(mddev);
6484 return rv;
6485 }
6486
6487 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6488 {
6489 struct md_rdev *rdev;
6490 int err = 0;
6491
6492 if (mddev->pers == NULL)
6493 return -ENODEV;
6494
6495 rcu_read_lock();
6496 rdev = find_rdev_rcu(mddev, dev);
6497 if (!rdev)
6498 err = -ENODEV;
6499 else {
6500 md_error(mddev, rdev);
6501 if (!test_bit(Faulty, &rdev->flags))
6502 err = -EBUSY;
6503 }
6504 rcu_read_unlock();
6505 return err;
6506 }
6507
6508 /*
6509 * We have a problem here : there is no easy way to give a CHS
6510 * virtual geometry. We currently pretend that we have a 2 heads
6511 * 4 sectors (with a BIG number of cylinders...). This drives
6512 * dosfs just mad... ;-)
6513 */
6514 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6515 {
6516 struct mddev *mddev = bdev->bd_disk->private_data;
6517
6518 geo->heads = 2;
6519 geo->sectors = 4;
6520 geo->cylinders = mddev->array_sectors / 8;
6521 return 0;
6522 }
6523
6524 static inline bool md_ioctl_valid(unsigned int cmd)
6525 {
6526 switch (cmd) {
6527 case ADD_NEW_DISK:
6528 case BLKROSET:
6529 case GET_ARRAY_INFO:
6530 case GET_BITMAP_FILE:
6531 case GET_DISK_INFO:
6532 case HOT_ADD_DISK:
6533 case HOT_REMOVE_DISK:
6534 case RAID_AUTORUN:
6535 case RAID_VERSION:
6536 case RESTART_ARRAY_RW:
6537 case RUN_ARRAY:
6538 case SET_ARRAY_INFO:
6539 case SET_BITMAP_FILE:
6540 case SET_DISK_FAULTY:
6541 case STOP_ARRAY:
6542 case STOP_ARRAY_RO:
6543 case CLUSTERED_DISK_NACK:
6544 return true;
6545 default:
6546 return false;
6547 }
6548 }
6549
6550 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6551 unsigned int cmd, unsigned long arg)
6552 {
6553 int err = 0;
6554 void __user *argp = (void __user *)arg;
6555 struct mddev *mddev = NULL;
6556 int ro;
6557
6558 if (!md_ioctl_valid(cmd))
6559 return -ENOTTY;
6560
6561 switch (cmd) {
6562 case RAID_VERSION:
6563 case GET_ARRAY_INFO:
6564 case GET_DISK_INFO:
6565 break;
6566 default:
6567 if (!capable(CAP_SYS_ADMIN))
6568 return -EACCES;
6569 }
6570
6571 /*
6572 * Commands dealing with the RAID driver but not any
6573 * particular array:
6574 */
6575 switch (cmd) {
6576 case RAID_VERSION:
6577 err = get_version(argp);
6578 goto out;
6579
6580 #ifndef MODULE
6581 case RAID_AUTORUN:
6582 err = 0;
6583 autostart_arrays(arg);
6584 goto out;
6585 #endif
6586 default:;
6587 }
6588
6589 /*
6590 * Commands creating/starting a new array:
6591 */
6592
6593 mddev = bdev->bd_disk->private_data;
6594
6595 if (!mddev) {
6596 BUG();
6597 goto out;
6598 }
6599
6600 /* Some actions do not requires the mutex */
6601 switch (cmd) {
6602 case GET_ARRAY_INFO:
6603 if (!mddev->raid_disks && !mddev->external)
6604 err = -ENODEV;
6605 else
6606 err = get_array_info(mddev, argp);
6607 goto out;
6608
6609 case GET_DISK_INFO:
6610 if (!mddev->raid_disks && !mddev->external)
6611 err = -ENODEV;
6612 else
6613 err = get_disk_info(mddev, argp);
6614 goto out;
6615
6616 case SET_DISK_FAULTY:
6617 err = set_disk_faulty(mddev, new_decode_dev(arg));
6618 goto out;
6619
6620 case GET_BITMAP_FILE:
6621 err = get_bitmap_file(mddev, argp);
6622 goto out;
6623
6624 }
6625
6626 if (cmd == ADD_NEW_DISK)
6627 /* need to ensure md_delayed_delete() has completed */
6628 flush_workqueue(md_misc_wq);
6629
6630 if (cmd == HOT_REMOVE_DISK)
6631 /* need to ensure recovery thread has run */
6632 wait_event_interruptible_timeout(mddev->sb_wait,
6633 !test_bit(MD_RECOVERY_NEEDED,
6634 &mddev->flags),
6635 msecs_to_jiffies(5000));
6636 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6637 /* Need to flush page cache, and ensure no-one else opens
6638 * and writes
6639 */
6640 mutex_lock(&mddev->open_mutex);
6641 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6642 mutex_unlock(&mddev->open_mutex);
6643 err = -EBUSY;
6644 goto out;
6645 }
6646 set_bit(MD_STILL_CLOSED, &mddev->flags);
6647 mutex_unlock(&mddev->open_mutex);
6648 sync_blockdev(bdev);
6649 }
6650 err = mddev_lock(mddev);
6651 if (err) {
6652 printk(KERN_INFO
6653 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6654 err, cmd);
6655 goto out;
6656 }
6657
6658 if (cmd == SET_ARRAY_INFO) {
6659 mdu_array_info_t info;
6660 if (!arg)
6661 memset(&info, 0, sizeof(info));
6662 else if (copy_from_user(&info, argp, sizeof(info))) {
6663 err = -EFAULT;
6664 goto unlock;
6665 }
6666 if (mddev->pers) {
6667 err = update_array_info(mddev, &info);
6668 if (err) {
6669 printk(KERN_WARNING "md: couldn't update"
6670 " array info. %d\n", err);
6671 goto unlock;
6672 }
6673 goto unlock;
6674 }
6675 if (!list_empty(&mddev->disks)) {
6676 printk(KERN_WARNING
6677 "md: array %s already has disks!\n",
6678 mdname(mddev));
6679 err = -EBUSY;
6680 goto unlock;
6681 }
6682 if (mddev->raid_disks) {
6683 printk(KERN_WARNING
6684 "md: array %s already initialised!\n",
6685 mdname(mddev));
6686 err = -EBUSY;
6687 goto unlock;
6688 }
6689 err = set_array_info(mddev, &info);
6690 if (err) {
6691 printk(KERN_WARNING "md: couldn't set"
6692 " array info. %d\n", err);
6693 goto unlock;
6694 }
6695 goto unlock;
6696 }
6697
6698 /*
6699 * Commands querying/configuring an existing array:
6700 */
6701 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6702 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6703 if ((!mddev->raid_disks && !mddev->external)
6704 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6705 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6706 && cmd != GET_BITMAP_FILE) {
6707 err = -ENODEV;
6708 goto unlock;
6709 }
6710
6711 /*
6712 * Commands even a read-only array can execute:
6713 */
6714 switch (cmd) {
6715 case RESTART_ARRAY_RW:
6716 err = restart_array(mddev);
6717 goto unlock;
6718
6719 case STOP_ARRAY:
6720 err = do_md_stop(mddev, 0, bdev);
6721 goto unlock;
6722
6723 case STOP_ARRAY_RO:
6724 err = md_set_readonly(mddev, bdev);
6725 goto unlock;
6726
6727 case HOT_REMOVE_DISK:
6728 err = hot_remove_disk(mddev, new_decode_dev(arg));
6729 goto unlock;
6730
6731 case ADD_NEW_DISK:
6732 /* We can support ADD_NEW_DISK on read-only arrays
6733 * on if we are re-adding a preexisting device.
6734 * So require mddev->pers and MD_DISK_SYNC.
6735 */
6736 if (mddev->pers) {
6737 mdu_disk_info_t info;
6738 if (copy_from_user(&info, argp, sizeof(info)))
6739 err = -EFAULT;
6740 else if (!(info.state & (1<<MD_DISK_SYNC)))
6741 /* Need to clear read-only for this */
6742 break;
6743 else
6744 err = add_new_disk(mddev, &info);
6745 goto unlock;
6746 }
6747 break;
6748
6749 case BLKROSET:
6750 if (get_user(ro, (int __user *)(arg))) {
6751 err = -EFAULT;
6752 goto unlock;
6753 }
6754 err = -EINVAL;
6755
6756 /* if the bdev is going readonly the value of mddev->ro
6757 * does not matter, no writes are coming
6758 */
6759 if (ro)
6760 goto unlock;
6761
6762 /* are we are already prepared for writes? */
6763 if (mddev->ro != 1)
6764 goto unlock;
6765
6766 /* transitioning to readauto need only happen for
6767 * arrays that call md_write_start
6768 */
6769 if (mddev->pers) {
6770 err = restart_array(mddev);
6771 if (err == 0) {
6772 mddev->ro = 2;
6773 set_disk_ro(mddev->gendisk, 0);
6774 }
6775 }
6776 goto unlock;
6777 }
6778
6779 /*
6780 * The remaining ioctls are changing the state of the
6781 * superblock, so we do not allow them on read-only arrays.
6782 */
6783 if (mddev->ro && mddev->pers) {
6784 if (mddev->ro == 2) {
6785 mddev->ro = 0;
6786 sysfs_notify_dirent_safe(mddev->sysfs_state);
6787 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6788 /* mddev_unlock will wake thread */
6789 /* If a device failed while we were read-only, we
6790 * need to make sure the metadata is updated now.
6791 */
6792 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6793 mddev_unlock(mddev);
6794 wait_event(mddev->sb_wait,
6795 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6796 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6797 mddev_lock_nointr(mddev);
6798 }
6799 } else {
6800 err = -EROFS;
6801 goto unlock;
6802 }
6803 }
6804
6805 switch (cmd) {
6806 case ADD_NEW_DISK:
6807 {
6808 mdu_disk_info_t info;
6809 if (copy_from_user(&info, argp, sizeof(info)))
6810 err = -EFAULT;
6811 else
6812 err = add_new_disk(mddev, &info);
6813 goto unlock;
6814 }
6815
6816 case CLUSTERED_DISK_NACK:
6817 if (mddev_is_clustered(mddev))
6818 md_cluster_ops->new_disk_ack(mddev, false);
6819 else
6820 err = -EINVAL;
6821 goto unlock;
6822
6823 case HOT_ADD_DISK:
6824 err = hot_add_disk(mddev, new_decode_dev(arg));
6825 goto unlock;
6826
6827 case RUN_ARRAY:
6828 err = do_md_run(mddev);
6829 goto unlock;
6830
6831 case SET_BITMAP_FILE:
6832 err = set_bitmap_file(mddev, (int)arg);
6833 goto unlock;
6834
6835 default:
6836 err = -EINVAL;
6837 goto unlock;
6838 }
6839
6840 unlock:
6841 if (mddev->hold_active == UNTIL_IOCTL &&
6842 err != -EINVAL)
6843 mddev->hold_active = 0;
6844 mddev_unlock(mddev);
6845 out:
6846 return err;
6847 }
6848 #ifdef CONFIG_COMPAT
6849 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6850 unsigned int cmd, unsigned long arg)
6851 {
6852 switch (cmd) {
6853 case HOT_REMOVE_DISK:
6854 case HOT_ADD_DISK:
6855 case SET_DISK_FAULTY:
6856 case SET_BITMAP_FILE:
6857 /* These take in integer arg, do not convert */
6858 break;
6859 default:
6860 arg = (unsigned long)compat_ptr(arg);
6861 break;
6862 }
6863
6864 return md_ioctl(bdev, mode, cmd, arg);
6865 }
6866 #endif /* CONFIG_COMPAT */
6867
6868 static int md_open(struct block_device *bdev, fmode_t mode)
6869 {
6870 /*
6871 * Succeed if we can lock the mddev, which confirms that
6872 * it isn't being stopped right now.
6873 */
6874 struct mddev *mddev = mddev_find(bdev->bd_dev);
6875 int err;
6876
6877 if (!mddev)
6878 return -ENODEV;
6879
6880 if (mddev->gendisk != bdev->bd_disk) {
6881 /* we are racing with mddev_put which is discarding this
6882 * bd_disk.
6883 */
6884 mddev_put(mddev);
6885 /* Wait until bdev->bd_disk is definitely gone */
6886 flush_workqueue(md_misc_wq);
6887 /* Then retry the open from the top */
6888 return -ERESTARTSYS;
6889 }
6890 BUG_ON(mddev != bdev->bd_disk->private_data);
6891
6892 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6893 goto out;
6894
6895 err = 0;
6896 atomic_inc(&mddev->openers);
6897 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6898 mutex_unlock(&mddev->open_mutex);
6899
6900 check_disk_change(bdev);
6901 out:
6902 return err;
6903 }
6904
6905 static void md_release(struct gendisk *disk, fmode_t mode)
6906 {
6907 struct mddev *mddev = disk->private_data;
6908
6909 BUG_ON(!mddev);
6910 atomic_dec(&mddev->openers);
6911 mddev_put(mddev);
6912 }
6913
6914 static int md_media_changed(struct gendisk *disk)
6915 {
6916 struct mddev *mddev = disk->private_data;
6917
6918 return mddev->changed;
6919 }
6920
6921 static int md_revalidate(struct gendisk *disk)
6922 {
6923 struct mddev *mddev = disk->private_data;
6924
6925 mddev->changed = 0;
6926 return 0;
6927 }
6928 static const struct block_device_operations md_fops =
6929 {
6930 .owner = THIS_MODULE,
6931 .open = md_open,
6932 .release = md_release,
6933 .ioctl = md_ioctl,
6934 #ifdef CONFIG_COMPAT
6935 .compat_ioctl = md_compat_ioctl,
6936 #endif
6937 .getgeo = md_getgeo,
6938 .media_changed = md_media_changed,
6939 .revalidate_disk= md_revalidate,
6940 };
6941
6942 static int md_thread(void *arg)
6943 {
6944 struct md_thread *thread = arg;
6945
6946 /*
6947 * md_thread is a 'system-thread', it's priority should be very
6948 * high. We avoid resource deadlocks individually in each
6949 * raid personality. (RAID5 does preallocation) We also use RR and
6950 * the very same RT priority as kswapd, thus we will never get
6951 * into a priority inversion deadlock.
6952 *
6953 * we definitely have to have equal or higher priority than
6954 * bdflush, otherwise bdflush will deadlock if there are too
6955 * many dirty RAID5 blocks.
6956 */
6957
6958 allow_signal(SIGKILL);
6959 while (!kthread_should_stop()) {
6960
6961 /* We need to wait INTERRUPTIBLE so that
6962 * we don't add to the load-average.
6963 * That means we need to be sure no signals are
6964 * pending
6965 */
6966 if (signal_pending(current))
6967 flush_signals(current);
6968
6969 wait_event_interruptible_timeout
6970 (thread->wqueue,
6971 test_bit(THREAD_WAKEUP, &thread->flags)
6972 || kthread_should_stop(),
6973 thread->timeout);
6974
6975 clear_bit(THREAD_WAKEUP, &thread->flags);
6976 if (!kthread_should_stop())
6977 thread->run(thread);
6978 }
6979
6980 return 0;
6981 }
6982
6983 void md_wakeup_thread(struct md_thread *thread)
6984 {
6985 if (thread) {
6986 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6987 set_bit(THREAD_WAKEUP, &thread->flags);
6988 wake_up(&thread->wqueue);
6989 }
6990 }
6991 EXPORT_SYMBOL(md_wakeup_thread);
6992
6993 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6994 struct mddev *mddev, const char *name)
6995 {
6996 struct md_thread *thread;
6997
6998 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6999 if (!thread)
7000 return NULL;
7001
7002 init_waitqueue_head(&thread->wqueue);
7003
7004 thread->run = run;
7005 thread->mddev = mddev;
7006 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7007 thread->tsk = kthread_run(md_thread, thread,
7008 "%s_%s",
7009 mdname(thread->mddev),
7010 name);
7011 if (IS_ERR(thread->tsk)) {
7012 kfree(thread);
7013 return NULL;
7014 }
7015 return thread;
7016 }
7017 EXPORT_SYMBOL(md_register_thread);
7018
7019 void md_unregister_thread(struct md_thread **threadp)
7020 {
7021 struct md_thread *thread = *threadp;
7022 if (!thread)
7023 return;
7024 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7025 /* Locking ensures that mddev_unlock does not wake_up a
7026 * non-existent thread
7027 */
7028 spin_lock(&pers_lock);
7029 *threadp = NULL;
7030 spin_unlock(&pers_lock);
7031
7032 kthread_stop(thread->tsk);
7033 kfree(thread);
7034 }
7035 EXPORT_SYMBOL(md_unregister_thread);
7036
7037 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7038 {
7039 if (!rdev || test_bit(Faulty, &rdev->flags))
7040 return;
7041
7042 if (!mddev->pers || !mddev->pers->error_handler)
7043 return;
7044 mddev->pers->error_handler(mddev,rdev);
7045 if (mddev->degraded)
7046 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7047 sysfs_notify_dirent_safe(rdev->sysfs_state);
7048 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7049 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7050 md_wakeup_thread(mddev->thread);
7051 if (mddev->event_work.func)
7052 queue_work(md_misc_wq, &mddev->event_work);
7053 md_new_event_inintr(mddev);
7054 }
7055 EXPORT_SYMBOL(md_error);
7056
7057 /* seq_file implementation /proc/mdstat */
7058
7059 static void status_unused(struct seq_file *seq)
7060 {
7061 int i = 0;
7062 struct md_rdev *rdev;
7063
7064 seq_printf(seq, "unused devices: ");
7065
7066 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7067 char b[BDEVNAME_SIZE];
7068 i++;
7069 seq_printf(seq, "%s ",
7070 bdevname(rdev->bdev,b));
7071 }
7072 if (!i)
7073 seq_printf(seq, "<none>");
7074
7075 seq_printf(seq, "\n");
7076 }
7077
7078 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7079 {
7080 sector_t max_sectors, resync, res;
7081 unsigned long dt, db;
7082 sector_t rt;
7083 int scale;
7084 unsigned int per_milli;
7085
7086 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7087 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7088 max_sectors = mddev->resync_max_sectors;
7089 else
7090 max_sectors = mddev->dev_sectors;
7091
7092 resync = mddev->curr_resync;
7093 if (resync <= 3) {
7094 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7095 /* Still cleaning up */
7096 resync = max_sectors;
7097 } else
7098 resync -= atomic_read(&mddev->recovery_active);
7099
7100 if (resync == 0) {
7101 if (mddev->recovery_cp < MaxSector) {
7102 seq_printf(seq, "\tresync=PENDING");
7103 return 1;
7104 }
7105 return 0;
7106 }
7107 if (resync < 3) {
7108 seq_printf(seq, "\tresync=DELAYED");
7109 return 1;
7110 }
7111
7112 WARN_ON(max_sectors == 0);
7113 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7114 * in a sector_t, and (max_sectors>>scale) will fit in a
7115 * u32, as those are the requirements for sector_div.
7116 * Thus 'scale' must be at least 10
7117 */
7118 scale = 10;
7119 if (sizeof(sector_t) > sizeof(unsigned long)) {
7120 while ( max_sectors/2 > (1ULL<<(scale+32)))
7121 scale++;
7122 }
7123 res = (resync>>scale)*1000;
7124 sector_div(res, (u32)((max_sectors>>scale)+1));
7125
7126 per_milli = res;
7127 {
7128 int i, x = per_milli/50, y = 20-x;
7129 seq_printf(seq, "[");
7130 for (i = 0; i < x; i++)
7131 seq_printf(seq, "=");
7132 seq_printf(seq, ">");
7133 for (i = 0; i < y; i++)
7134 seq_printf(seq, ".");
7135 seq_printf(seq, "] ");
7136 }
7137 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7138 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7139 "reshape" :
7140 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7141 "check" :
7142 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7143 "resync" : "recovery"))),
7144 per_milli/10, per_milli % 10,
7145 (unsigned long long) resync/2,
7146 (unsigned long long) max_sectors/2);
7147
7148 /*
7149 * dt: time from mark until now
7150 * db: blocks written from mark until now
7151 * rt: remaining time
7152 *
7153 * rt is a sector_t, so could be 32bit or 64bit.
7154 * So we divide before multiply in case it is 32bit and close
7155 * to the limit.
7156 * We scale the divisor (db) by 32 to avoid losing precision
7157 * near the end of resync when the number of remaining sectors
7158 * is close to 'db'.
7159 * We then divide rt by 32 after multiplying by db to compensate.
7160 * The '+1' avoids division by zero if db is very small.
7161 */
7162 dt = ((jiffies - mddev->resync_mark) / HZ);
7163 if (!dt) dt++;
7164 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7165 - mddev->resync_mark_cnt;
7166
7167 rt = max_sectors - resync; /* number of remaining sectors */
7168 sector_div(rt, db/32+1);
7169 rt *= dt;
7170 rt >>= 5;
7171
7172 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7173 ((unsigned long)rt % 60)/6);
7174
7175 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7176 return 1;
7177 }
7178
7179 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7180 {
7181 struct list_head *tmp;
7182 loff_t l = *pos;
7183 struct mddev *mddev;
7184
7185 if (l >= 0x10000)
7186 return NULL;
7187 if (!l--)
7188 /* header */
7189 return (void*)1;
7190
7191 spin_lock(&all_mddevs_lock);
7192 list_for_each(tmp,&all_mddevs)
7193 if (!l--) {
7194 mddev = list_entry(tmp, struct mddev, all_mddevs);
7195 mddev_get(mddev);
7196 spin_unlock(&all_mddevs_lock);
7197 return mddev;
7198 }
7199 spin_unlock(&all_mddevs_lock);
7200 if (!l--)
7201 return (void*)2;/* tail */
7202 return NULL;
7203 }
7204
7205 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7206 {
7207 struct list_head *tmp;
7208 struct mddev *next_mddev, *mddev = v;
7209
7210 ++*pos;
7211 if (v == (void*)2)
7212 return NULL;
7213
7214 spin_lock(&all_mddevs_lock);
7215 if (v == (void*)1)
7216 tmp = all_mddevs.next;
7217 else
7218 tmp = mddev->all_mddevs.next;
7219 if (tmp != &all_mddevs)
7220 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7221 else {
7222 next_mddev = (void*)2;
7223 *pos = 0x10000;
7224 }
7225 spin_unlock(&all_mddevs_lock);
7226
7227 if (v != (void*)1)
7228 mddev_put(mddev);
7229 return next_mddev;
7230
7231 }
7232
7233 static void md_seq_stop(struct seq_file *seq, void *v)
7234 {
7235 struct mddev *mddev = v;
7236
7237 if (mddev && v != (void*)1 && v != (void*)2)
7238 mddev_put(mddev);
7239 }
7240
7241 static int md_seq_show(struct seq_file *seq, void *v)
7242 {
7243 struct mddev *mddev = v;
7244 sector_t sectors;
7245 struct md_rdev *rdev;
7246
7247 if (v == (void*)1) {
7248 struct md_personality *pers;
7249 seq_printf(seq, "Personalities : ");
7250 spin_lock(&pers_lock);
7251 list_for_each_entry(pers, &pers_list, list)
7252 seq_printf(seq, "[%s] ", pers->name);
7253
7254 spin_unlock(&pers_lock);
7255 seq_printf(seq, "\n");
7256 seq->poll_event = atomic_read(&md_event_count);
7257 return 0;
7258 }
7259 if (v == (void*)2) {
7260 status_unused(seq);
7261 return 0;
7262 }
7263
7264 spin_lock(&mddev->lock);
7265 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7266 seq_printf(seq, "%s : %sactive", mdname(mddev),
7267 mddev->pers ? "" : "in");
7268 if (mddev->pers) {
7269 if (mddev->ro==1)
7270 seq_printf(seq, " (read-only)");
7271 if (mddev->ro==2)
7272 seq_printf(seq, " (auto-read-only)");
7273 seq_printf(seq, " %s", mddev->pers->name);
7274 }
7275
7276 sectors = 0;
7277 rcu_read_lock();
7278 rdev_for_each_rcu(rdev, mddev) {
7279 char b[BDEVNAME_SIZE];
7280 seq_printf(seq, " %s[%d]",
7281 bdevname(rdev->bdev,b), rdev->desc_nr);
7282 if (test_bit(WriteMostly, &rdev->flags))
7283 seq_printf(seq, "(W)");
7284 if (test_bit(Faulty, &rdev->flags)) {
7285 seq_printf(seq, "(F)");
7286 continue;
7287 }
7288 if (rdev->raid_disk < 0)
7289 seq_printf(seq, "(S)"); /* spare */
7290 if (test_bit(Replacement, &rdev->flags))
7291 seq_printf(seq, "(R)");
7292 sectors += rdev->sectors;
7293 }
7294 rcu_read_unlock();
7295
7296 if (!list_empty(&mddev->disks)) {
7297 if (mddev->pers)
7298 seq_printf(seq, "\n %llu blocks",
7299 (unsigned long long)
7300 mddev->array_sectors / 2);
7301 else
7302 seq_printf(seq, "\n %llu blocks",
7303 (unsigned long long)sectors / 2);
7304 }
7305 if (mddev->persistent) {
7306 if (mddev->major_version != 0 ||
7307 mddev->minor_version != 90) {
7308 seq_printf(seq," super %d.%d",
7309 mddev->major_version,
7310 mddev->minor_version);
7311 }
7312 } else if (mddev->external)
7313 seq_printf(seq, " super external:%s",
7314 mddev->metadata_type);
7315 else
7316 seq_printf(seq, " super non-persistent");
7317
7318 if (mddev->pers) {
7319 mddev->pers->status(seq, mddev);
7320 seq_printf(seq, "\n ");
7321 if (mddev->pers->sync_request) {
7322 if (status_resync(seq, mddev))
7323 seq_printf(seq, "\n ");
7324 }
7325 } else
7326 seq_printf(seq, "\n ");
7327
7328 bitmap_status(seq, mddev->bitmap);
7329
7330 seq_printf(seq, "\n");
7331 }
7332 spin_unlock(&mddev->lock);
7333
7334 return 0;
7335 }
7336
7337 static const struct seq_operations md_seq_ops = {
7338 .start = md_seq_start,
7339 .next = md_seq_next,
7340 .stop = md_seq_stop,
7341 .show = md_seq_show,
7342 };
7343
7344 static int md_seq_open(struct inode *inode, struct file *file)
7345 {
7346 struct seq_file *seq;
7347 int error;
7348
7349 error = seq_open(file, &md_seq_ops);
7350 if (error)
7351 return error;
7352
7353 seq = file->private_data;
7354 seq->poll_event = atomic_read(&md_event_count);
7355 return error;
7356 }
7357
7358 static int md_unloading;
7359 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7360 {
7361 struct seq_file *seq = filp->private_data;
7362 int mask;
7363
7364 if (md_unloading)
7365 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7366 poll_wait(filp, &md_event_waiters, wait);
7367
7368 /* always allow read */
7369 mask = POLLIN | POLLRDNORM;
7370
7371 if (seq->poll_event != atomic_read(&md_event_count))
7372 mask |= POLLERR | POLLPRI;
7373 return mask;
7374 }
7375
7376 static const struct file_operations md_seq_fops = {
7377 .owner = THIS_MODULE,
7378 .open = md_seq_open,
7379 .read = seq_read,
7380 .llseek = seq_lseek,
7381 .release = seq_release_private,
7382 .poll = mdstat_poll,
7383 };
7384
7385 int register_md_personality(struct md_personality *p)
7386 {
7387 printk(KERN_INFO "md: %s personality registered for level %d\n",
7388 p->name, p->level);
7389 spin_lock(&pers_lock);
7390 list_add_tail(&p->list, &pers_list);
7391 spin_unlock(&pers_lock);
7392 return 0;
7393 }
7394 EXPORT_SYMBOL(register_md_personality);
7395
7396 int unregister_md_personality(struct md_personality *p)
7397 {
7398 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7399 spin_lock(&pers_lock);
7400 list_del_init(&p->list);
7401 spin_unlock(&pers_lock);
7402 return 0;
7403 }
7404 EXPORT_SYMBOL(unregister_md_personality);
7405
7406 int register_md_cluster_operations(struct md_cluster_operations *ops,
7407 struct module *module)
7408 {
7409 int ret = 0;
7410 spin_lock(&pers_lock);
7411 if (md_cluster_ops != NULL)
7412 ret = -EALREADY;
7413 else {
7414 md_cluster_ops = ops;
7415 md_cluster_mod = module;
7416 }
7417 spin_unlock(&pers_lock);
7418 return ret;
7419 }
7420 EXPORT_SYMBOL(register_md_cluster_operations);
7421
7422 int unregister_md_cluster_operations(void)
7423 {
7424 spin_lock(&pers_lock);
7425 md_cluster_ops = NULL;
7426 spin_unlock(&pers_lock);
7427 return 0;
7428 }
7429 EXPORT_SYMBOL(unregister_md_cluster_operations);
7430
7431 int md_setup_cluster(struct mddev *mddev, int nodes)
7432 {
7433 int err;
7434
7435 err = request_module("md-cluster");
7436 if (err) {
7437 pr_err("md-cluster module not found.\n");
7438 return -ENOENT;
7439 }
7440
7441 spin_lock(&pers_lock);
7442 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7443 spin_unlock(&pers_lock);
7444 return -ENOENT;
7445 }
7446 spin_unlock(&pers_lock);
7447
7448 return md_cluster_ops->join(mddev, nodes);
7449 }
7450
7451 void md_cluster_stop(struct mddev *mddev)
7452 {
7453 if (!md_cluster_ops)
7454 return;
7455 md_cluster_ops->leave(mddev);
7456 module_put(md_cluster_mod);
7457 }
7458
7459 static int is_mddev_idle(struct mddev *mddev, int init)
7460 {
7461 struct md_rdev *rdev;
7462 int idle;
7463 int curr_events;
7464
7465 idle = 1;
7466 rcu_read_lock();
7467 rdev_for_each_rcu(rdev, mddev) {
7468 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7469 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7470 (int)part_stat_read(&disk->part0, sectors[1]) -
7471 atomic_read(&disk->sync_io);
7472 /* sync IO will cause sync_io to increase before the disk_stats
7473 * as sync_io is counted when a request starts, and
7474 * disk_stats is counted when it completes.
7475 * So resync activity will cause curr_events to be smaller than
7476 * when there was no such activity.
7477 * non-sync IO will cause disk_stat to increase without
7478 * increasing sync_io so curr_events will (eventually)
7479 * be larger than it was before. Once it becomes
7480 * substantially larger, the test below will cause
7481 * the array to appear non-idle, and resync will slow
7482 * down.
7483 * If there is a lot of outstanding resync activity when
7484 * we set last_event to curr_events, then all that activity
7485 * completing might cause the array to appear non-idle
7486 * and resync will be slowed down even though there might
7487 * not have been non-resync activity. This will only
7488 * happen once though. 'last_events' will soon reflect
7489 * the state where there is little or no outstanding
7490 * resync requests, and further resync activity will
7491 * always make curr_events less than last_events.
7492 *
7493 */
7494 if (init || curr_events - rdev->last_events > 64) {
7495 rdev->last_events = curr_events;
7496 idle = 0;
7497 }
7498 }
7499 rcu_read_unlock();
7500 return idle;
7501 }
7502
7503 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7504 {
7505 /* another "blocks" (512byte) blocks have been synced */
7506 atomic_sub(blocks, &mddev->recovery_active);
7507 wake_up(&mddev->recovery_wait);
7508 if (!ok) {
7509 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7510 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7511 md_wakeup_thread(mddev->thread);
7512 // stop recovery, signal do_sync ....
7513 }
7514 }
7515 EXPORT_SYMBOL(md_done_sync);
7516
7517 /* md_write_start(mddev, bi)
7518 * If we need to update some array metadata (e.g. 'active' flag
7519 * in superblock) before writing, schedule a superblock update
7520 * and wait for it to complete.
7521 */
7522 void md_write_start(struct mddev *mddev, struct bio *bi)
7523 {
7524 int did_change = 0;
7525 if (bio_data_dir(bi) != WRITE)
7526 return;
7527
7528 BUG_ON(mddev->ro == 1);
7529 if (mddev->ro == 2) {
7530 /* need to switch to read/write */
7531 mddev->ro = 0;
7532 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7533 md_wakeup_thread(mddev->thread);
7534 md_wakeup_thread(mddev->sync_thread);
7535 did_change = 1;
7536 }
7537 atomic_inc(&mddev->writes_pending);
7538 if (mddev->safemode == 1)
7539 mddev->safemode = 0;
7540 if (mddev->in_sync) {
7541 spin_lock(&mddev->lock);
7542 if (mddev->in_sync) {
7543 mddev->in_sync = 0;
7544 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7545 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7546 md_wakeup_thread(mddev->thread);
7547 did_change = 1;
7548 }
7549 spin_unlock(&mddev->lock);
7550 }
7551 if (did_change)
7552 sysfs_notify_dirent_safe(mddev->sysfs_state);
7553 wait_event(mddev->sb_wait,
7554 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7555 }
7556 EXPORT_SYMBOL(md_write_start);
7557
7558 void md_write_end(struct mddev *mddev)
7559 {
7560 if (atomic_dec_and_test(&mddev->writes_pending)) {
7561 if (mddev->safemode == 2)
7562 md_wakeup_thread(mddev->thread);
7563 else if (mddev->safemode_delay)
7564 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7565 }
7566 }
7567 EXPORT_SYMBOL(md_write_end);
7568
7569 /* md_allow_write(mddev)
7570 * Calling this ensures that the array is marked 'active' so that writes
7571 * may proceed without blocking. It is important to call this before
7572 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7573 * Must be called with mddev_lock held.
7574 *
7575 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7576 * is dropped, so return -EAGAIN after notifying userspace.
7577 */
7578 int md_allow_write(struct mddev *mddev)
7579 {
7580 if (!mddev->pers)
7581 return 0;
7582 if (mddev->ro)
7583 return 0;
7584 if (!mddev->pers->sync_request)
7585 return 0;
7586
7587 spin_lock(&mddev->lock);
7588 if (mddev->in_sync) {
7589 mddev->in_sync = 0;
7590 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7591 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7592 if (mddev->safemode_delay &&
7593 mddev->safemode == 0)
7594 mddev->safemode = 1;
7595 spin_unlock(&mddev->lock);
7596 if (mddev_is_clustered(mddev))
7597 md_cluster_ops->metadata_update_start(mddev);
7598 md_update_sb(mddev, 0);
7599 if (mddev_is_clustered(mddev))
7600 md_cluster_ops->metadata_update_finish(mddev);
7601 sysfs_notify_dirent_safe(mddev->sysfs_state);
7602 } else
7603 spin_unlock(&mddev->lock);
7604
7605 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7606 return -EAGAIN;
7607 else
7608 return 0;
7609 }
7610 EXPORT_SYMBOL_GPL(md_allow_write);
7611
7612 #define SYNC_MARKS 10
7613 #define SYNC_MARK_STEP (3*HZ)
7614 #define UPDATE_FREQUENCY (5*60*HZ)
7615 void md_do_sync(struct md_thread *thread)
7616 {
7617 struct mddev *mddev = thread->mddev;
7618 struct mddev *mddev2;
7619 unsigned int currspeed = 0,
7620 window;
7621 sector_t max_sectors,j, io_sectors, recovery_done;
7622 unsigned long mark[SYNC_MARKS];
7623 unsigned long update_time;
7624 sector_t mark_cnt[SYNC_MARKS];
7625 int last_mark,m;
7626 struct list_head *tmp;
7627 sector_t last_check;
7628 int skipped = 0;
7629 struct md_rdev *rdev;
7630 char *desc, *action = NULL;
7631 struct blk_plug plug;
7632
7633 /* just incase thread restarts... */
7634 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7635 return;
7636 if (mddev->ro) {/* never try to sync a read-only array */
7637 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7638 return;
7639 }
7640
7641 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7642 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7643 desc = "data-check";
7644 action = "check";
7645 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7646 desc = "requested-resync";
7647 action = "repair";
7648 } else
7649 desc = "resync";
7650 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7651 desc = "reshape";
7652 else
7653 desc = "recovery";
7654
7655 mddev->last_sync_action = action ?: desc;
7656
7657 /* we overload curr_resync somewhat here.
7658 * 0 == not engaged in resync at all
7659 * 2 == checking that there is no conflict with another sync
7660 * 1 == like 2, but have yielded to allow conflicting resync to
7661 * commense
7662 * other == active in resync - this many blocks
7663 *
7664 * Before starting a resync we must have set curr_resync to
7665 * 2, and then checked that every "conflicting" array has curr_resync
7666 * less than ours. When we find one that is the same or higher
7667 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7668 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7669 * This will mean we have to start checking from the beginning again.
7670 *
7671 */
7672
7673 do {
7674 mddev->curr_resync = 2;
7675
7676 try_again:
7677 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7678 goto skip;
7679 for_each_mddev(mddev2, tmp) {
7680 if (mddev2 == mddev)
7681 continue;
7682 if (!mddev->parallel_resync
7683 && mddev2->curr_resync
7684 && match_mddev_units(mddev, mddev2)) {
7685 DEFINE_WAIT(wq);
7686 if (mddev < mddev2 && mddev->curr_resync == 2) {
7687 /* arbitrarily yield */
7688 mddev->curr_resync = 1;
7689 wake_up(&resync_wait);
7690 }
7691 if (mddev > mddev2 && mddev->curr_resync == 1)
7692 /* no need to wait here, we can wait the next
7693 * time 'round when curr_resync == 2
7694 */
7695 continue;
7696 /* We need to wait 'interruptible' so as not to
7697 * contribute to the load average, and not to
7698 * be caught by 'softlockup'
7699 */
7700 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7701 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7702 mddev2->curr_resync >= mddev->curr_resync) {
7703 printk(KERN_INFO "md: delaying %s of %s"
7704 " until %s has finished (they"
7705 " share one or more physical units)\n",
7706 desc, mdname(mddev), mdname(mddev2));
7707 mddev_put(mddev2);
7708 if (signal_pending(current))
7709 flush_signals(current);
7710 schedule();
7711 finish_wait(&resync_wait, &wq);
7712 goto try_again;
7713 }
7714 finish_wait(&resync_wait, &wq);
7715 }
7716 }
7717 } while (mddev->curr_resync < 2);
7718
7719 j = 0;
7720 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7721 /* resync follows the size requested by the personality,
7722 * which defaults to physical size, but can be virtual size
7723 */
7724 max_sectors = mddev->resync_max_sectors;
7725 atomic64_set(&mddev->resync_mismatches, 0);
7726 /* we don't use the checkpoint if there's a bitmap */
7727 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7728 j = mddev->resync_min;
7729 else if (!mddev->bitmap)
7730 j = mddev->recovery_cp;
7731
7732 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7733 max_sectors = mddev->resync_max_sectors;
7734 else {
7735 /* recovery follows the physical size of devices */
7736 max_sectors = mddev->dev_sectors;
7737 j = MaxSector;
7738 rcu_read_lock();
7739 rdev_for_each_rcu(rdev, mddev)
7740 if (rdev->raid_disk >= 0 &&
7741 !test_bit(Faulty, &rdev->flags) &&
7742 !test_bit(In_sync, &rdev->flags) &&
7743 rdev->recovery_offset < j)
7744 j = rdev->recovery_offset;
7745 rcu_read_unlock();
7746
7747 /* If there is a bitmap, we need to make sure all
7748 * writes that started before we added a spare
7749 * complete before we start doing a recovery.
7750 * Otherwise the write might complete and (via
7751 * bitmap_endwrite) set a bit in the bitmap after the
7752 * recovery has checked that bit and skipped that
7753 * region.
7754 */
7755 if (mddev->bitmap) {
7756 mddev->pers->quiesce(mddev, 1);
7757 mddev->pers->quiesce(mddev, 0);
7758 }
7759 }
7760
7761 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7762 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7763 " %d KB/sec/disk.\n", speed_min(mddev));
7764 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7765 "(but not more than %d KB/sec) for %s.\n",
7766 speed_max(mddev), desc);
7767
7768 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7769
7770 io_sectors = 0;
7771 for (m = 0; m < SYNC_MARKS; m++) {
7772 mark[m] = jiffies;
7773 mark_cnt[m] = io_sectors;
7774 }
7775 last_mark = 0;
7776 mddev->resync_mark = mark[last_mark];
7777 mddev->resync_mark_cnt = mark_cnt[last_mark];
7778
7779 /*
7780 * Tune reconstruction:
7781 */
7782 window = 32*(PAGE_SIZE/512);
7783 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7784 window/2, (unsigned long long)max_sectors/2);
7785
7786 atomic_set(&mddev->recovery_active, 0);
7787 last_check = 0;
7788
7789 if (j>2) {
7790 printk(KERN_INFO
7791 "md: resuming %s of %s from checkpoint.\n",
7792 desc, mdname(mddev));
7793 mddev->curr_resync = j;
7794 } else
7795 mddev->curr_resync = 3; /* no longer delayed */
7796 mddev->curr_resync_completed = j;
7797 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7798 md_new_event(mddev);
7799 update_time = jiffies;
7800
7801 if (mddev_is_clustered(mddev))
7802 md_cluster_ops->resync_start(mddev, j, max_sectors);
7803
7804 blk_start_plug(&plug);
7805 while (j < max_sectors) {
7806 sector_t sectors;
7807
7808 skipped = 0;
7809
7810 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7811 ((mddev->curr_resync > mddev->curr_resync_completed &&
7812 (mddev->curr_resync - mddev->curr_resync_completed)
7813 > (max_sectors >> 4)) ||
7814 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7815 (j - mddev->curr_resync_completed)*2
7816 >= mddev->resync_max - mddev->curr_resync_completed ||
7817 mddev->curr_resync_completed > mddev->resync_max
7818 )) {
7819 /* time to update curr_resync_completed */
7820 wait_event(mddev->recovery_wait,
7821 atomic_read(&mddev->recovery_active) == 0);
7822 mddev->curr_resync_completed = j;
7823 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7824 j > mddev->recovery_cp)
7825 mddev->recovery_cp = j;
7826 update_time = jiffies;
7827 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7828 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7829 }
7830
7831 while (j >= mddev->resync_max &&
7832 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7833 /* As this condition is controlled by user-space,
7834 * we can block indefinitely, so use '_interruptible'
7835 * to avoid triggering warnings.
7836 */
7837 flush_signals(current); /* just in case */
7838 wait_event_interruptible(mddev->recovery_wait,
7839 mddev->resync_max > j
7840 || test_bit(MD_RECOVERY_INTR,
7841 &mddev->recovery));
7842 }
7843
7844 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7845 break;
7846
7847 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7848 if (sectors == 0) {
7849 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7850 break;
7851 }
7852
7853 if (!skipped) { /* actual IO requested */
7854 io_sectors += sectors;
7855 atomic_add(sectors, &mddev->recovery_active);
7856 }
7857
7858 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7859 break;
7860
7861 j += sectors;
7862 if (j > max_sectors)
7863 /* when skipping, extra large numbers can be returned. */
7864 j = max_sectors;
7865 if (j > 2)
7866 mddev->curr_resync = j;
7867 if (mddev_is_clustered(mddev))
7868 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7869 mddev->curr_mark_cnt = io_sectors;
7870 if (last_check == 0)
7871 /* this is the earliest that rebuild will be
7872 * visible in /proc/mdstat
7873 */
7874 md_new_event(mddev);
7875
7876 if (last_check + window > io_sectors || j == max_sectors)
7877 continue;
7878
7879 last_check = io_sectors;
7880 repeat:
7881 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7882 /* step marks */
7883 int next = (last_mark+1) % SYNC_MARKS;
7884
7885 mddev->resync_mark = mark[next];
7886 mddev->resync_mark_cnt = mark_cnt[next];
7887 mark[next] = jiffies;
7888 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7889 last_mark = next;
7890 }
7891
7892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7893 break;
7894
7895 /*
7896 * this loop exits only if either when we are slower than
7897 * the 'hard' speed limit, or the system was IO-idle for
7898 * a jiffy.
7899 * the system might be non-idle CPU-wise, but we only care
7900 * about not overloading the IO subsystem. (things like an
7901 * e2fsck being done on the RAID array should execute fast)
7902 */
7903 cond_resched();
7904
7905 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7906 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7907 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7908
7909 if (currspeed > speed_min(mddev)) {
7910 if (currspeed > speed_max(mddev)) {
7911 msleep(500);
7912 goto repeat;
7913 }
7914 if (!is_mddev_idle(mddev, 0)) {
7915 /*
7916 * Give other IO more of a chance.
7917 * The faster the devices, the less we wait.
7918 */
7919 wait_event(mddev->recovery_wait,
7920 !atomic_read(&mddev->recovery_active));
7921 }
7922 }
7923 }
7924 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7925 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7926 ? "interrupted" : "done");
7927 /*
7928 * this also signals 'finished resyncing' to md_stop
7929 */
7930 blk_finish_plug(&plug);
7931 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7932
7933 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7934 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7935 mddev->curr_resync > 2) {
7936 mddev->curr_resync_completed = mddev->curr_resync;
7937 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7938 }
7939 /* tell personality that we are finished */
7940 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7941
7942 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7943 mddev->curr_resync > 2) {
7944 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7945 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7946 if (mddev->curr_resync >= mddev->recovery_cp) {
7947 printk(KERN_INFO
7948 "md: checkpointing %s of %s.\n",
7949 desc, mdname(mddev));
7950 if (test_bit(MD_RECOVERY_ERROR,
7951 &mddev->recovery))
7952 mddev->recovery_cp =
7953 mddev->curr_resync_completed;
7954 else
7955 mddev->recovery_cp =
7956 mddev->curr_resync;
7957 }
7958 } else
7959 mddev->recovery_cp = MaxSector;
7960 } else {
7961 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7962 mddev->curr_resync = MaxSector;
7963 rcu_read_lock();
7964 rdev_for_each_rcu(rdev, mddev)
7965 if (rdev->raid_disk >= 0 &&
7966 mddev->delta_disks >= 0 &&
7967 !test_bit(Faulty, &rdev->flags) &&
7968 !test_bit(In_sync, &rdev->flags) &&
7969 rdev->recovery_offset < mddev->curr_resync)
7970 rdev->recovery_offset = mddev->curr_resync;
7971 rcu_read_unlock();
7972 }
7973 }
7974 skip:
7975 if (mddev_is_clustered(mddev))
7976 md_cluster_ops->resync_finish(mddev);
7977
7978 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7979
7980 spin_lock(&mddev->lock);
7981 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7982 /* We completed so min/max setting can be forgotten if used. */
7983 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7984 mddev->resync_min = 0;
7985 mddev->resync_max = MaxSector;
7986 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7987 mddev->resync_min = mddev->curr_resync_completed;
7988 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7989 mddev->curr_resync = 0;
7990 spin_unlock(&mddev->lock);
7991
7992 wake_up(&resync_wait);
7993 md_wakeup_thread(mddev->thread);
7994 return;
7995 }
7996 EXPORT_SYMBOL_GPL(md_do_sync);
7997
7998 static int remove_and_add_spares(struct mddev *mddev,
7999 struct md_rdev *this)
8000 {
8001 struct md_rdev *rdev;
8002 int spares = 0;
8003 int removed = 0;
8004
8005 rdev_for_each(rdev, mddev)
8006 if ((this == NULL || rdev == this) &&
8007 rdev->raid_disk >= 0 &&
8008 !test_bit(Blocked, &rdev->flags) &&
8009 (test_bit(Faulty, &rdev->flags) ||
8010 ! test_bit(In_sync, &rdev->flags)) &&
8011 atomic_read(&rdev->nr_pending)==0) {
8012 if (mddev->pers->hot_remove_disk(
8013 mddev, rdev) == 0) {
8014 sysfs_unlink_rdev(mddev, rdev);
8015 rdev->raid_disk = -1;
8016 removed++;
8017 }
8018 }
8019 if (removed && mddev->kobj.sd)
8020 sysfs_notify(&mddev->kobj, NULL, "degraded");
8021
8022 if (this)
8023 goto no_add;
8024
8025 rdev_for_each(rdev, mddev) {
8026 if (rdev->raid_disk >= 0 &&
8027 !test_bit(In_sync, &rdev->flags) &&
8028 !test_bit(Faulty, &rdev->flags))
8029 spares++;
8030 if (rdev->raid_disk >= 0)
8031 continue;
8032 if (test_bit(Faulty, &rdev->flags))
8033 continue;
8034 if (mddev->ro &&
8035 ! (rdev->saved_raid_disk >= 0 &&
8036 !test_bit(Bitmap_sync, &rdev->flags)))
8037 continue;
8038
8039 if (rdev->saved_raid_disk < 0)
8040 rdev->recovery_offset = 0;
8041 if (mddev->pers->
8042 hot_add_disk(mddev, rdev) == 0) {
8043 if (sysfs_link_rdev(mddev, rdev))
8044 /* failure here is OK */;
8045 spares++;
8046 md_new_event(mddev);
8047 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8048 }
8049 }
8050 no_add:
8051 if (removed)
8052 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8053 return spares;
8054 }
8055
8056 static void md_start_sync(struct work_struct *ws)
8057 {
8058 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8059
8060 mddev->sync_thread = md_register_thread(md_do_sync,
8061 mddev,
8062 "resync");
8063 if (!mddev->sync_thread) {
8064 printk(KERN_ERR "%s: could not start resync"
8065 " thread...\n",
8066 mdname(mddev));
8067 /* leave the spares where they are, it shouldn't hurt */
8068 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8069 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8070 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8071 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8072 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8073 wake_up(&resync_wait);
8074 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8075 &mddev->recovery))
8076 if (mddev->sysfs_action)
8077 sysfs_notify_dirent_safe(mddev->sysfs_action);
8078 } else
8079 md_wakeup_thread(mddev->sync_thread);
8080 sysfs_notify_dirent_safe(mddev->sysfs_action);
8081 md_new_event(mddev);
8082 }
8083
8084 /*
8085 * This routine is regularly called by all per-raid-array threads to
8086 * deal with generic issues like resync and super-block update.
8087 * Raid personalities that don't have a thread (linear/raid0) do not
8088 * need this as they never do any recovery or update the superblock.
8089 *
8090 * It does not do any resync itself, but rather "forks" off other threads
8091 * to do that as needed.
8092 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8093 * "->recovery" and create a thread at ->sync_thread.
8094 * When the thread finishes it sets MD_RECOVERY_DONE
8095 * and wakeups up this thread which will reap the thread and finish up.
8096 * This thread also removes any faulty devices (with nr_pending == 0).
8097 *
8098 * The overall approach is:
8099 * 1/ if the superblock needs updating, update it.
8100 * 2/ If a recovery thread is running, don't do anything else.
8101 * 3/ If recovery has finished, clean up, possibly marking spares active.
8102 * 4/ If there are any faulty devices, remove them.
8103 * 5/ If array is degraded, try to add spares devices
8104 * 6/ If array has spares or is not in-sync, start a resync thread.
8105 */
8106 void md_check_recovery(struct mddev *mddev)
8107 {
8108 if (mddev->suspended)
8109 return;
8110
8111 if (mddev->bitmap)
8112 bitmap_daemon_work(mddev);
8113
8114 if (signal_pending(current)) {
8115 if (mddev->pers->sync_request && !mddev->external) {
8116 printk(KERN_INFO "md: %s in immediate safe mode\n",
8117 mdname(mddev));
8118 mddev->safemode = 2;
8119 }
8120 flush_signals(current);
8121 }
8122
8123 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8124 return;
8125 if ( ! (
8126 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8127 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8128 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8129 (mddev->external == 0 && mddev->safemode == 1) ||
8130 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8131 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8132 ))
8133 return;
8134
8135 if (mddev_trylock(mddev)) {
8136 int spares = 0;
8137
8138 if (mddev->ro) {
8139 struct md_rdev *rdev;
8140 if (!mddev->external && mddev->in_sync)
8141 /* 'Blocked' flag not needed as failed devices
8142 * will be recorded if array switched to read/write.
8143 * Leaving it set will prevent the device
8144 * from being removed.
8145 */
8146 rdev_for_each(rdev, mddev)
8147 clear_bit(Blocked, &rdev->flags);
8148 /* On a read-only array we can:
8149 * - remove failed devices
8150 * - add already-in_sync devices if the array itself
8151 * is in-sync.
8152 * As we only add devices that are already in-sync,
8153 * we can activate the spares immediately.
8154 */
8155 remove_and_add_spares(mddev, NULL);
8156 /* There is no thread, but we need to call
8157 * ->spare_active and clear saved_raid_disk
8158 */
8159 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8160 md_reap_sync_thread(mddev);
8161 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8162 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8163 goto unlock;
8164 }
8165
8166 if (!mddev->external) {
8167 int did_change = 0;
8168 spin_lock(&mddev->lock);
8169 if (mddev->safemode &&
8170 !atomic_read(&mddev->writes_pending) &&
8171 !mddev->in_sync &&
8172 mddev->recovery_cp == MaxSector) {
8173 mddev->in_sync = 1;
8174 did_change = 1;
8175 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8176 }
8177 if (mddev->safemode == 1)
8178 mddev->safemode = 0;
8179 spin_unlock(&mddev->lock);
8180 if (did_change)
8181 sysfs_notify_dirent_safe(mddev->sysfs_state);
8182 }
8183
8184 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8185 if (mddev_is_clustered(mddev))
8186 md_cluster_ops->metadata_update_start(mddev);
8187 md_update_sb(mddev, 0);
8188 if (mddev_is_clustered(mddev))
8189 md_cluster_ops->metadata_update_finish(mddev);
8190 }
8191
8192 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8193 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8194 /* resync/recovery still happening */
8195 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8196 goto unlock;
8197 }
8198 if (mddev->sync_thread) {
8199 md_reap_sync_thread(mddev);
8200 goto unlock;
8201 }
8202 /* Set RUNNING before clearing NEEDED to avoid
8203 * any transients in the value of "sync_action".
8204 */
8205 mddev->curr_resync_completed = 0;
8206 spin_lock(&mddev->lock);
8207 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8208 spin_unlock(&mddev->lock);
8209 /* Clear some bits that don't mean anything, but
8210 * might be left set
8211 */
8212 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8213 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8214
8215 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8216 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8217 goto not_running;
8218 /* no recovery is running.
8219 * remove any failed drives, then
8220 * add spares if possible.
8221 * Spares are also removed and re-added, to allow
8222 * the personality to fail the re-add.
8223 */
8224
8225 if (mddev->reshape_position != MaxSector) {
8226 if (mddev->pers->check_reshape == NULL ||
8227 mddev->pers->check_reshape(mddev) != 0)
8228 /* Cannot proceed */
8229 goto not_running;
8230 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8231 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8232 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8233 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8234 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8235 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8236 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8237 } else if (mddev->recovery_cp < MaxSector) {
8238 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8239 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8240 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8241 /* nothing to be done ... */
8242 goto not_running;
8243
8244 if (mddev->pers->sync_request) {
8245 if (spares) {
8246 /* We are adding a device or devices to an array
8247 * which has the bitmap stored on all devices.
8248 * So make sure all bitmap pages get written
8249 */
8250 bitmap_write_all(mddev->bitmap);
8251 }
8252 INIT_WORK(&mddev->del_work, md_start_sync);
8253 queue_work(md_misc_wq, &mddev->del_work);
8254 goto unlock;
8255 }
8256 not_running:
8257 if (!mddev->sync_thread) {
8258 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8259 wake_up(&resync_wait);
8260 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8261 &mddev->recovery))
8262 if (mddev->sysfs_action)
8263 sysfs_notify_dirent_safe(mddev->sysfs_action);
8264 }
8265 unlock:
8266 wake_up(&mddev->sb_wait);
8267 mddev_unlock(mddev);
8268 }
8269 }
8270 EXPORT_SYMBOL(md_check_recovery);
8271
8272 void md_reap_sync_thread(struct mddev *mddev)
8273 {
8274 struct md_rdev *rdev;
8275
8276 /* resync has finished, collect result */
8277 md_unregister_thread(&mddev->sync_thread);
8278 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8279 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8280 /* success...*/
8281 /* activate any spares */
8282 if (mddev->pers->spare_active(mddev)) {
8283 sysfs_notify(&mddev->kobj, NULL,
8284 "degraded");
8285 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8286 }
8287 }
8288 if (mddev_is_clustered(mddev))
8289 md_cluster_ops->metadata_update_start(mddev);
8290 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8291 mddev->pers->finish_reshape)
8292 mddev->pers->finish_reshape(mddev);
8293
8294 /* If array is no-longer degraded, then any saved_raid_disk
8295 * information must be scrapped.
8296 */
8297 if (!mddev->degraded)
8298 rdev_for_each(rdev, mddev)
8299 rdev->saved_raid_disk = -1;
8300
8301 md_update_sb(mddev, 1);
8302 if (mddev_is_clustered(mddev))
8303 md_cluster_ops->metadata_update_finish(mddev);
8304 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8305 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8306 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8307 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8308 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8309 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8310 wake_up(&resync_wait);
8311 /* flag recovery needed just to double check */
8312 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8313 sysfs_notify_dirent_safe(mddev->sysfs_action);
8314 md_new_event(mddev);
8315 if (mddev->event_work.func)
8316 queue_work(md_misc_wq, &mddev->event_work);
8317 }
8318 EXPORT_SYMBOL(md_reap_sync_thread);
8319
8320 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8321 {
8322 sysfs_notify_dirent_safe(rdev->sysfs_state);
8323 wait_event_timeout(rdev->blocked_wait,
8324 !test_bit(Blocked, &rdev->flags) &&
8325 !test_bit(BlockedBadBlocks, &rdev->flags),
8326 msecs_to_jiffies(5000));
8327 rdev_dec_pending(rdev, mddev);
8328 }
8329 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8330
8331 void md_finish_reshape(struct mddev *mddev)
8332 {
8333 /* called be personality module when reshape completes. */
8334 struct md_rdev *rdev;
8335
8336 rdev_for_each(rdev, mddev) {
8337 if (rdev->data_offset > rdev->new_data_offset)
8338 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8339 else
8340 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8341 rdev->data_offset = rdev->new_data_offset;
8342 }
8343 }
8344 EXPORT_SYMBOL(md_finish_reshape);
8345
8346 /* Bad block management.
8347 * We can record which blocks on each device are 'bad' and so just
8348 * fail those blocks, or that stripe, rather than the whole device.
8349 * Entries in the bad-block table are 64bits wide. This comprises:
8350 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8351 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8352 * A 'shift' can be set so that larger blocks are tracked and
8353 * consequently larger devices can be covered.
8354 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8355 *
8356 * Locking of the bad-block table uses a seqlock so md_is_badblock
8357 * might need to retry if it is very unlucky.
8358 * We will sometimes want to check for bad blocks in a bi_end_io function,
8359 * so we use the write_seqlock_irq variant.
8360 *
8361 * When looking for a bad block we specify a range and want to
8362 * know if any block in the range is bad. So we binary-search
8363 * to the last range that starts at-or-before the given endpoint,
8364 * (or "before the sector after the target range")
8365 * then see if it ends after the given start.
8366 * We return
8367 * 0 if there are no known bad blocks in the range
8368 * 1 if there are known bad block which are all acknowledged
8369 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8370 * plus the start/length of the first bad section we overlap.
8371 */
8372 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8373 sector_t *first_bad, int *bad_sectors)
8374 {
8375 int hi;
8376 int lo;
8377 u64 *p = bb->page;
8378 int rv;
8379 sector_t target = s + sectors;
8380 unsigned seq;
8381
8382 if (bb->shift > 0) {
8383 /* round the start down, and the end up */
8384 s >>= bb->shift;
8385 target += (1<<bb->shift) - 1;
8386 target >>= bb->shift;
8387 sectors = target - s;
8388 }
8389 /* 'target' is now the first block after the bad range */
8390
8391 retry:
8392 seq = read_seqbegin(&bb->lock);
8393 lo = 0;
8394 rv = 0;
8395 hi = bb->count;
8396
8397 /* Binary search between lo and hi for 'target'
8398 * i.e. for the last range that starts before 'target'
8399 */
8400 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8401 * are known not to be the last range before target.
8402 * VARIANT: hi-lo is the number of possible
8403 * ranges, and decreases until it reaches 1
8404 */
8405 while (hi - lo > 1) {
8406 int mid = (lo + hi) / 2;
8407 sector_t a = BB_OFFSET(p[mid]);
8408 if (a < target)
8409 /* This could still be the one, earlier ranges
8410 * could not. */
8411 lo = mid;
8412 else
8413 /* This and later ranges are definitely out. */
8414 hi = mid;
8415 }
8416 /* 'lo' might be the last that started before target, but 'hi' isn't */
8417 if (hi > lo) {
8418 /* need to check all range that end after 's' to see if
8419 * any are unacknowledged.
8420 */
8421 while (lo >= 0 &&
8422 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8423 if (BB_OFFSET(p[lo]) < target) {
8424 /* starts before the end, and finishes after
8425 * the start, so they must overlap
8426 */
8427 if (rv != -1 && BB_ACK(p[lo]))
8428 rv = 1;
8429 else
8430 rv = -1;
8431 *first_bad = BB_OFFSET(p[lo]);
8432 *bad_sectors = BB_LEN(p[lo]);
8433 }
8434 lo--;
8435 }
8436 }
8437
8438 if (read_seqretry(&bb->lock, seq))
8439 goto retry;
8440
8441 return rv;
8442 }
8443 EXPORT_SYMBOL_GPL(md_is_badblock);
8444
8445 /*
8446 * Add a range of bad blocks to the table.
8447 * This might extend the table, or might contract it
8448 * if two adjacent ranges can be merged.
8449 * We binary-search to find the 'insertion' point, then
8450 * decide how best to handle it.
8451 */
8452 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8453 int acknowledged)
8454 {
8455 u64 *p;
8456 int lo, hi;
8457 int rv = 1;
8458 unsigned long flags;
8459
8460 if (bb->shift < 0)
8461 /* badblocks are disabled */
8462 return 0;
8463
8464 if (bb->shift) {
8465 /* round the start down, and the end up */
8466 sector_t next = s + sectors;
8467 s >>= bb->shift;
8468 next += (1<<bb->shift) - 1;
8469 next >>= bb->shift;
8470 sectors = next - s;
8471 }
8472
8473 write_seqlock_irqsave(&bb->lock, flags);
8474
8475 p = bb->page;
8476 lo = 0;
8477 hi = bb->count;
8478 /* Find the last range that starts at-or-before 's' */
8479 while (hi - lo > 1) {
8480 int mid = (lo + hi) / 2;
8481 sector_t a = BB_OFFSET(p[mid]);
8482 if (a <= s)
8483 lo = mid;
8484 else
8485 hi = mid;
8486 }
8487 if (hi > lo && BB_OFFSET(p[lo]) > s)
8488 hi = lo;
8489
8490 if (hi > lo) {
8491 /* we found a range that might merge with the start
8492 * of our new range
8493 */
8494 sector_t a = BB_OFFSET(p[lo]);
8495 sector_t e = a + BB_LEN(p[lo]);
8496 int ack = BB_ACK(p[lo]);
8497 if (e >= s) {
8498 /* Yes, we can merge with a previous range */
8499 if (s == a && s + sectors >= e)
8500 /* new range covers old */
8501 ack = acknowledged;
8502 else
8503 ack = ack && acknowledged;
8504
8505 if (e < s + sectors)
8506 e = s + sectors;
8507 if (e - a <= BB_MAX_LEN) {
8508 p[lo] = BB_MAKE(a, e-a, ack);
8509 s = e;
8510 } else {
8511 /* does not all fit in one range,
8512 * make p[lo] maximal
8513 */
8514 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8515 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8516 s = a + BB_MAX_LEN;
8517 }
8518 sectors = e - s;
8519 }
8520 }
8521 if (sectors && hi < bb->count) {
8522 /* 'hi' points to the first range that starts after 's'.
8523 * Maybe we can merge with the start of that range */
8524 sector_t a = BB_OFFSET(p[hi]);
8525 sector_t e = a + BB_LEN(p[hi]);
8526 int ack = BB_ACK(p[hi]);
8527 if (a <= s + sectors) {
8528 /* merging is possible */
8529 if (e <= s + sectors) {
8530 /* full overlap */
8531 e = s + sectors;
8532 ack = acknowledged;
8533 } else
8534 ack = ack && acknowledged;
8535
8536 a = s;
8537 if (e - a <= BB_MAX_LEN) {
8538 p[hi] = BB_MAKE(a, e-a, ack);
8539 s = e;
8540 } else {
8541 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8542 s = a + BB_MAX_LEN;
8543 }
8544 sectors = e - s;
8545 lo = hi;
8546 hi++;
8547 }
8548 }
8549 if (sectors == 0 && hi < bb->count) {
8550 /* we might be able to combine lo and hi */
8551 /* Note: 's' is at the end of 'lo' */
8552 sector_t a = BB_OFFSET(p[hi]);
8553 int lolen = BB_LEN(p[lo]);
8554 int hilen = BB_LEN(p[hi]);
8555 int newlen = lolen + hilen - (s - a);
8556 if (s >= a && newlen < BB_MAX_LEN) {
8557 /* yes, we can combine them */
8558 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8559 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8560 memmove(p + hi, p + hi + 1,
8561 (bb->count - hi - 1) * 8);
8562 bb->count--;
8563 }
8564 }
8565 while (sectors) {
8566 /* didn't merge (it all).
8567 * Need to add a range just before 'hi' */
8568 if (bb->count >= MD_MAX_BADBLOCKS) {
8569 /* No room for more */
8570 rv = 0;
8571 break;
8572 } else {
8573 int this_sectors = sectors;
8574 memmove(p + hi + 1, p + hi,
8575 (bb->count - hi) * 8);
8576 bb->count++;
8577
8578 if (this_sectors > BB_MAX_LEN)
8579 this_sectors = BB_MAX_LEN;
8580 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8581 sectors -= this_sectors;
8582 s += this_sectors;
8583 }
8584 }
8585
8586 bb->changed = 1;
8587 if (!acknowledged)
8588 bb->unacked_exist = 1;
8589 write_sequnlock_irqrestore(&bb->lock, flags);
8590
8591 return rv;
8592 }
8593
8594 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8595 int is_new)
8596 {
8597 int rv;
8598 if (is_new)
8599 s += rdev->new_data_offset;
8600 else
8601 s += rdev->data_offset;
8602 rv = md_set_badblocks(&rdev->badblocks,
8603 s, sectors, 0);
8604 if (rv) {
8605 /* Make sure they get written out promptly */
8606 sysfs_notify_dirent_safe(rdev->sysfs_state);
8607 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8608 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8609 md_wakeup_thread(rdev->mddev->thread);
8610 }
8611 return rv;
8612 }
8613 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8614
8615 /*
8616 * Remove a range of bad blocks from the table.
8617 * This may involve extending the table if we spilt a region,
8618 * but it must not fail. So if the table becomes full, we just
8619 * drop the remove request.
8620 */
8621 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8622 {
8623 u64 *p;
8624 int lo, hi;
8625 sector_t target = s + sectors;
8626 int rv = 0;
8627
8628 if (bb->shift > 0) {
8629 /* When clearing we round the start up and the end down.
8630 * This should not matter as the shift should align with
8631 * the block size and no rounding should ever be needed.
8632 * However it is better the think a block is bad when it
8633 * isn't than to think a block is not bad when it is.
8634 */
8635 s += (1<<bb->shift) - 1;
8636 s >>= bb->shift;
8637 target >>= bb->shift;
8638 sectors = target - s;
8639 }
8640
8641 write_seqlock_irq(&bb->lock);
8642
8643 p = bb->page;
8644 lo = 0;
8645 hi = bb->count;
8646 /* Find the last range that starts before 'target' */
8647 while (hi - lo > 1) {
8648 int mid = (lo + hi) / 2;
8649 sector_t a = BB_OFFSET(p[mid]);
8650 if (a < target)
8651 lo = mid;
8652 else
8653 hi = mid;
8654 }
8655 if (hi > lo) {
8656 /* p[lo] is the last range that could overlap the
8657 * current range. Earlier ranges could also overlap,
8658 * but only this one can overlap the end of the range.
8659 */
8660 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8661 /* Partial overlap, leave the tail of this range */
8662 int ack = BB_ACK(p[lo]);
8663 sector_t a = BB_OFFSET(p[lo]);
8664 sector_t end = a + BB_LEN(p[lo]);
8665
8666 if (a < s) {
8667 /* we need to split this range */
8668 if (bb->count >= MD_MAX_BADBLOCKS) {
8669 rv = -ENOSPC;
8670 goto out;
8671 }
8672 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8673 bb->count++;
8674 p[lo] = BB_MAKE(a, s-a, ack);
8675 lo++;
8676 }
8677 p[lo] = BB_MAKE(target, end - target, ack);
8678 /* there is no longer an overlap */
8679 hi = lo;
8680 lo--;
8681 }
8682 while (lo >= 0 &&
8683 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8684 /* This range does overlap */
8685 if (BB_OFFSET(p[lo]) < s) {
8686 /* Keep the early parts of this range. */
8687 int ack = BB_ACK(p[lo]);
8688 sector_t start = BB_OFFSET(p[lo]);
8689 p[lo] = BB_MAKE(start, s - start, ack);
8690 /* now low doesn't overlap, so.. */
8691 break;
8692 }
8693 lo--;
8694 }
8695 /* 'lo' is strictly before, 'hi' is strictly after,
8696 * anything between needs to be discarded
8697 */
8698 if (hi - lo > 1) {
8699 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8700 bb->count -= (hi - lo - 1);
8701 }
8702 }
8703
8704 bb->changed = 1;
8705 out:
8706 write_sequnlock_irq(&bb->lock);
8707 return rv;
8708 }
8709
8710 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8711 int is_new)
8712 {
8713 if (is_new)
8714 s += rdev->new_data_offset;
8715 else
8716 s += rdev->data_offset;
8717 return md_clear_badblocks(&rdev->badblocks,
8718 s, sectors);
8719 }
8720 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8721
8722 /*
8723 * Acknowledge all bad blocks in a list.
8724 * This only succeeds if ->changed is clear. It is used by
8725 * in-kernel metadata updates
8726 */
8727 void md_ack_all_badblocks(struct badblocks *bb)
8728 {
8729 if (bb->page == NULL || bb->changed)
8730 /* no point even trying */
8731 return;
8732 write_seqlock_irq(&bb->lock);
8733
8734 if (bb->changed == 0 && bb->unacked_exist) {
8735 u64 *p = bb->page;
8736 int i;
8737 for (i = 0; i < bb->count ; i++) {
8738 if (!BB_ACK(p[i])) {
8739 sector_t start = BB_OFFSET(p[i]);
8740 int len = BB_LEN(p[i]);
8741 p[i] = BB_MAKE(start, len, 1);
8742 }
8743 }
8744 bb->unacked_exist = 0;
8745 }
8746 write_sequnlock_irq(&bb->lock);
8747 }
8748 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8749
8750 /* sysfs access to bad-blocks list.
8751 * We present two files.
8752 * 'bad-blocks' lists sector numbers and lengths of ranges that
8753 * are recorded as bad. The list is truncated to fit within
8754 * the one-page limit of sysfs.
8755 * Writing "sector length" to this file adds an acknowledged
8756 * bad block list.
8757 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8758 * been acknowledged. Writing to this file adds bad blocks
8759 * without acknowledging them. This is largely for testing.
8760 */
8761
8762 static ssize_t
8763 badblocks_show(struct badblocks *bb, char *page, int unack)
8764 {
8765 size_t len;
8766 int i;
8767 u64 *p = bb->page;
8768 unsigned seq;
8769
8770 if (bb->shift < 0)
8771 return 0;
8772
8773 retry:
8774 seq = read_seqbegin(&bb->lock);
8775
8776 len = 0;
8777 i = 0;
8778
8779 while (len < PAGE_SIZE && i < bb->count) {
8780 sector_t s = BB_OFFSET(p[i]);
8781 unsigned int length = BB_LEN(p[i]);
8782 int ack = BB_ACK(p[i]);
8783 i++;
8784
8785 if (unack && ack)
8786 continue;
8787
8788 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8789 (unsigned long long)s << bb->shift,
8790 length << bb->shift);
8791 }
8792 if (unack && len == 0)
8793 bb->unacked_exist = 0;
8794
8795 if (read_seqretry(&bb->lock, seq))
8796 goto retry;
8797
8798 return len;
8799 }
8800
8801 #define DO_DEBUG 1
8802
8803 static ssize_t
8804 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8805 {
8806 unsigned long long sector;
8807 int length;
8808 char newline;
8809 #ifdef DO_DEBUG
8810 /* Allow clearing via sysfs *only* for testing/debugging.
8811 * Normally only a successful write may clear a badblock
8812 */
8813 int clear = 0;
8814 if (page[0] == '-') {
8815 clear = 1;
8816 page++;
8817 }
8818 #endif /* DO_DEBUG */
8819
8820 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8821 case 3:
8822 if (newline != '\n')
8823 return -EINVAL;
8824 case 2:
8825 if (length <= 0)
8826 return -EINVAL;
8827 break;
8828 default:
8829 return -EINVAL;
8830 }
8831
8832 #ifdef DO_DEBUG
8833 if (clear) {
8834 md_clear_badblocks(bb, sector, length);
8835 return len;
8836 }
8837 #endif /* DO_DEBUG */
8838 if (md_set_badblocks(bb, sector, length, !unack))
8839 return len;
8840 else
8841 return -ENOSPC;
8842 }
8843
8844 static int md_notify_reboot(struct notifier_block *this,
8845 unsigned long code, void *x)
8846 {
8847 struct list_head *tmp;
8848 struct mddev *mddev;
8849 int need_delay = 0;
8850
8851 for_each_mddev(mddev, tmp) {
8852 if (mddev_trylock(mddev)) {
8853 if (mddev->pers)
8854 __md_stop_writes(mddev);
8855 if (mddev->persistent)
8856 mddev->safemode = 2;
8857 mddev_unlock(mddev);
8858 }
8859 need_delay = 1;
8860 }
8861 /*
8862 * certain more exotic SCSI devices are known to be
8863 * volatile wrt too early system reboots. While the
8864 * right place to handle this issue is the given
8865 * driver, we do want to have a safe RAID driver ...
8866 */
8867 if (need_delay)
8868 mdelay(1000*1);
8869
8870 return NOTIFY_DONE;
8871 }
8872
8873 static struct notifier_block md_notifier = {
8874 .notifier_call = md_notify_reboot,
8875 .next = NULL,
8876 .priority = INT_MAX, /* before any real devices */
8877 };
8878
8879 static void md_geninit(void)
8880 {
8881 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8882
8883 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8884 }
8885
8886 static int __init md_init(void)
8887 {
8888 int ret = -ENOMEM;
8889
8890 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8891 if (!md_wq)
8892 goto err_wq;
8893
8894 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8895 if (!md_misc_wq)
8896 goto err_misc_wq;
8897
8898 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8899 goto err_md;
8900
8901 if ((ret = register_blkdev(0, "mdp")) < 0)
8902 goto err_mdp;
8903 mdp_major = ret;
8904
8905 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8906 md_probe, NULL, NULL);
8907 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8908 md_probe, NULL, NULL);
8909
8910 register_reboot_notifier(&md_notifier);
8911 raid_table_header = register_sysctl_table(raid_root_table);
8912
8913 md_geninit();
8914 return 0;
8915
8916 err_mdp:
8917 unregister_blkdev(MD_MAJOR, "md");
8918 err_md:
8919 destroy_workqueue(md_misc_wq);
8920 err_misc_wq:
8921 destroy_workqueue(md_wq);
8922 err_wq:
8923 return ret;
8924 }
8925
8926 void md_reload_sb(struct mddev *mddev)
8927 {
8928 struct md_rdev *rdev, *tmp;
8929
8930 rdev_for_each_safe(rdev, tmp, mddev) {
8931 rdev->sb_loaded = 0;
8932 ClearPageUptodate(rdev->sb_page);
8933 }
8934 mddev->raid_disks = 0;
8935 analyze_sbs(mddev);
8936 rdev_for_each_safe(rdev, tmp, mddev) {
8937 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8938 /* since we don't write to faulty devices, we figure out if the
8939 * disk is faulty by comparing events
8940 */
8941 if (mddev->events > sb->events)
8942 set_bit(Faulty, &rdev->flags);
8943 }
8944
8945 }
8946 EXPORT_SYMBOL(md_reload_sb);
8947
8948 #ifndef MODULE
8949
8950 /*
8951 * Searches all registered partitions for autorun RAID arrays
8952 * at boot time.
8953 */
8954
8955 static LIST_HEAD(all_detected_devices);
8956 struct detected_devices_node {
8957 struct list_head list;
8958 dev_t dev;
8959 };
8960
8961 void md_autodetect_dev(dev_t dev)
8962 {
8963 struct detected_devices_node *node_detected_dev;
8964
8965 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8966 if (node_detected_dev) {
8967 node_detected_dev->dev = dev;
8968 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8969 } else {
8970 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8971 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8972 }
8973 }
8974
8975 static void autostart_arrays(int part)
8976 {
8977 struct md_rdev *rdev;
8978 struct detected_devices_node *node_detected_dev;
8979 dev_t dev;
8980 int i_scanned, i_passed;
8981
8982 i_scanned = 0;
8983 i_passed = 0;
8984
8985 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8986
8987 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8988 i_scanned++;
8989 node_detected_dev = list_entry(all_detected_devices.next,
8990 struct detected_devices_node, list);
8991 list_del(&node_detected_dev->list);
8992 dev = node_detected_dev->dev;
8993 kfree(node_detected_dev);
8994 rdev = md_import_device(dev,0, 90);
8995 if (IS_ERR(rdev))
8996 continue;
8997
8998 if (test_bit(Faulty, &rdev->flags))
8999 continue;
9000
9001 set_bit(AutoDetected, &rdev->flags);
9002 list_add(&rdev->same_set, &pending_raid_disks);
9003 i_passed++;
9004 }
9005
9006 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9007 i_scanned, i_passed);
9008
9009 autorun_devices(part);
9010 }
9011
9012 #endif /* !MODULE */
9013
9014 static __exit void md_exit(void)
9015 {
9016 struct mddev *mddev;
9017 struct list_head *tmp;
9018 int delay = 1;
9019
9020 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9021 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9022
9023 unregister_blkdev(MD_MAJOR,"md");
9024 unregister_blkdev(mdp_major, "mdp");
9025 unregister_reboot_notifier(&md_notifier);
9026 unregister_sysctl_table(raid_table_header);
9027
9028 /* We cannot unload the modules while some process is
9029 * waiting for us in select() or poll() - wake them up
9030 */
9031 md_unloading = 1;
9032 while (waitqueue_active(&md_event_waiters)) {
9033 /* not safe to leave yet */
9034 wake_up(&md_event_waiters);
9035 msleep(delay);
9036 delay += delay;
9037 }
9038 remove_proc_entry("mdstat", NULL);
9039
9040 for_each_mddev(mddev, tmp) {
9041 export_array(mddev);
9042 mddev->hold_active = 0;
9043 }
9044 destroy_workqueue(md_misc_wq);
9045 destroy_workqueue(md_wq);
9046 }
9047
9048 subsys_initcall(md_init);
9049 module_exit(md_exit)
9050
9051 static int get_ro(char *buffer, struct kernel_param *kp)
9052 {
9053 return sprintf(buffer, "%d", start_readonly);
9054 }
9055 static int set_ro(const char *val, struct kernel_param *kp)
9056 {
9057 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9058 }
9059
9060 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9061 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9062 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9063
9064 MODULE_LICENSE("GPL");
9065 MODULE_DESCRIPTION("MD RAID framework");
9066 MODULE_ALIAS("md");
9067 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);