]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
block: Add badblock management for gendisks
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 blk_queue_split(q, &bio, q->bio_split);
261
262 if (mddev == NULL || mddev->pers == NULL
263 || !mddev->ready) {
264 bio_io_error(bio);
265 return BLK_QC_T_NONE;
266 }
267 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 if (bio_sectors(bio) != 0)
269 bio->bi_error = -EROFS;
270 bio_endio(bio);
271 return BLK_QC_T_NONE;
272 }
273 smp_rmb(); /* Ensure implications of 'active' are visible */
274 rcu_read_lock();
275 if (mddev->suspended) {
276 DEFINE_WAIT(__wait);
277 for (;;) {
278 prepare_to_wait(&mddev->sb_wait, &__wait,
279 TASK_UNINTERRUPTIBLE);
280 if (!mddev->suspended)
281 break;
282 rcu_read_unlock();
283 schedule();
284 rcu_read_lock();
285 }
286 finish_wait(&mddev->sb_wait, &__wait);
287 }
288 atomic_inc(&mddev->active_io);
289 rcu_read_unlock();
290
291 /*
292 * save the sectors now since our bio can
293 * go away inside make_request
294 */
295 sectors = bio_sectors(bio);
296 mddev->pers->make_request(mddev, bio);
297
298 cpu = part_stat_lock();
299 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 part_stat_unlock();
302
303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 wake_up(&mddev->sb_wait);
305
306 return BLK_QC_T_NONE;
307 }
308
309 /* mddev_suspend makes sure no new requests are submitted
310 * to the device, and that any requests that have been submitted
311 * are completely handled.
312 * Once mddev_detach() is called and completes, the module will be
313 * completely unused.
314 */
315 void mddev_suspend(struct mddev *mddev)
316 {
317 BUG_ON(mddev->suspended);
318 mddev->suspended = 1;
319 synchronize_rcu();
320 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321 mddev->pers->quiesce(mddev, 1);
322
323 del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326
327 void mddev_resume(struct mddev *mddev)
328 {
329 mddev->suspended = 0;
330 wake_up(&mddev->sb_wait);
331 mddev->pers->quiesce(mddev, 0);
332
333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
334 md_wakeup_thread(mddev->thread);
335 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
336 }
337 EXPORT_SYMBOL_GPL(mddev_resume);
338
339 int mddev_congested(struct mddev *mddev, int bits)
340 {
341 struct md_personality *pers = mddev->pers;
342 int ret = 0;
343
344 rcu_read_lock();
345 if (mddev->suspended)
346 ret = 1;
347 else if (pers && pers->congested)
348 ret = pers->congested(mddev, bits);
349 rcu_read_unlock();
350 return ret;
351 }
352 EXPORT_SYMBOL_GPL(mddev_congested);
353 static int md_congested(void *data, int bits)
354 {
355 struct mddev *mddev = data;
356 return mddev_congested(mddev, bits);
357 }
358
359 /*
360 * Generic flush handling for md
361 */
362
363 static void md_end_flush(struct bio *bio)
364 {
365 struct md_rdev *rdev = bio->bi_private;
366 struct mddev *mddev = rdev->mddev;
367
368 rdev_dec_pending(rdev, mddev);
369
370 if (atomic_dec_and_test(&mddev->flush_pending)) {
371 /* The pre-request flush has finished */
372 queue_work(md_wq, &mddev->flush_work);
373 }
374 bio_put(bio);
375 }
376
377 static void md_submit_flush_data(struct work_struct *ws);
378
379 static void submit_flushes(struct work_struct *ws)
380 {
381 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
382 struct md_rdev *rdev;
383
384 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
385 atomic_set(&mddev->flush_pending, 1);
386 rcu_read_lock();
387 rdev_for_each_rcu(rdev, mddev)
388 if (rdev->raid_disk >= 0 &&
389 !test_bit(Faulty, &rdev->flags)) {
390 /* Take two references, one is dropped
391 * when request finishes, one after
392 * we reclaim rcu_read_lock
393 */
394 struct bio *bi;
395 atomic_inc(&rdev->nr_pending);
396 atomic_inc(&rdev->nr_pending);
397 rcu_read_unlock();
398 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
399 bi->bi_end_io = md_end_flush;
400 bi->bi_private = rdev;
401 bi->bi_bdev = rdev->bdev;
402 atomic_inc(&mddev->flush_pending);
403 submit_bio(WRITE_FLUSH, bi);
404 rcu_read_lock();
405 rdev_dec_pending(rdev, mddev);
406 }
407 rcu_read_unlock();
408 if (atomic_dec_and_test(&mddev->flush_pending))
409 queue_work(md_wq, &mddev->flush_work);
410 }
411
412 static void md_submit_flush_data(struct work_struct *ws)
413 {
414 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
415 struct bio *bio = mddev->flush_bio;
416
417 if (bio->bi_iter.bi_size == 0)
418 /* an empty barrier - all done */
419 bio_endio(bio);
420 else {
421 bio->bi_rw &= ~REQ_FLUSH;
422 mddev->pers->make_request(mddev, bio);
423 }
424
425 mddev->flush_bio = NULL;
426 wake_up(&mddev->sb_wait);
427 }
428
429 void md_flush_request(struct mddev *mddev, struct bio *bio)
430 {
431 spin_lock_irq(&mddev->lock);
432 wait_event_lock_irq(mddev->sb_wait,
433 !mddev->flush_bio,
434 mddev->lock);
435 mddev->flush_bio = bio;
436 spin_unlock_irq(&mddev->lock);
437
438 INIT_WORK(&mddev->flush_work, submit_flushes);
439 queue_work(md_wq, &mddev->flush_work);
440 }
441 EXPORT_SYMBOL(md_flush_request);
442
443 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
444 {
445 struct mddev *mddev = cb->data;
446 md_wakeup_thread(mddev->thread);
447 kfree(cb);
448 }
449 EXPORT_SYMBOL(md_unplug);
450
451 static inline struct mddev *mddev_get(struct mddev *mddev)
452 {
453 atomic_inc(&mddev->active);
454 return mddev;
455 }
456
457 static void mddev_delayed_delete(struct work_struct *ws);
458
459 static void mddev_put(struct mddev *mddev)
460 {
461 struct bio_set *bs = NULL;
462
463 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
464 return;
465 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
466 mddev->ctime == 0 && !mddev->hold_active) {
467 /* Array is not configured at all, and not held active,
468 * so destroy it */
469 list_del_init(&mddev->all_mddevs);
470 bs = mddev->bio_set;
471 mddev->bio_set = NULL;
472 if (mddev->gendisk) {
473 /* We did a probe so need to clean up. Call
474 * queue_work inside the spinlock so that
475 * flush_workqueue() after mddev_find will
476 * succeed in waiting for the work to be done.
477 */
478 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
479 queue_work(md_misc_wq, &mddev->del_work);
480 } else
481 kfree(mddev);
482 }
483 spin_unlock(&all_mddevs_lock);
484 if (bs)
485 bioset_free(bs);
486 }
487
488 static void md_safemode_timeout(unsigned long data);
489
490 void mddev_init(struct mddev *mddev)
491 {
492 mutex_init(&mddev->open_mutex);
493 mutex_init(&mddev->reconfig_mutex);
494 mutex_init(&mddev->bitmap_info.mutex);
495 INIT_LIST_HEAD(&mddev->disks);
496 INIT_LIST_HEAD(&mddev->all_mddevs);
497 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
498 (unsigned long) mddev);
499 atomic_set(&mddev->active, 1);
500 atomic_set(&mddev->openers, 0);
501 atomic_set(&mddev->active_io, 0);
502 spin_lock_init(&mddev->lock);
503 atomic_set(&mddev->flush_pending, 0);
504 init_waitqueue_head(&mddev->sb_wait);
505 init_waitqueue_head(&mddev->recovery_wait);
506 mddev->reshape_position = MaxSector;
507 mddev->reshape_backwards = 0;
508 mddev->last_sync_action = "none";
509 mddev->resync_min = 0;
510 mddev->resync_max = MaxSector;
511 mddev->level = LEVEL_NONE;
512 }
513 EXPORT_SYMBOL_GPL(mddev_init);
514
515 static struct mddev *mddev_find(dev_t unit)
516 {
517 struct mddev *mddev, *new = NULL;
518
519 if (unit && MAJOR(unit) != MD_MAJOR)
520 unit &= ~((1<<MdpMinorShift)-1);
521
522 retry:
523 spin_lock(&all_mddevs_lock);
524
525 if (unit) {
526 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
527 if (mddev->unit == unit) {
528 mddev_get(mddev);
529 spin_unlock(&all_mddevs_lock);
530 kfree(new);
531 return mddev;
532 }
533
534 if (new) {
535 list_add(&new->all_mddevs, &all_mddevs);
536 spin_unlock(&all_mddevs_lock);
537 new->hold_active = UNTIL_IOCTL;
538 return new;
539 }
540 } else if (new) {
541 /* find an unused unit number */
542 static int next_minor = 512;
543 int start = next_minor;
544 int is_free = 0;
545 int dev = 0;
546 while (!is_free) {
547 dev = MKDEV(MD_MAJOR, next_minor);
548 next_minor++;
549 if (next_minor > MINORMASK)
550 next_minor = 0;
551 if (next_minor == start) {
552 /* Oh dear, all in use. */
553 spin_unlock(&all_mddevs_lock);
554 kfree(new);
555 return NULL;
556 }
557
558 is_free = 1;
559 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
560 if (mddev->unit == dev) {
561 is_free = 0;
562 break;
563 }
564 }
565 new->unit = dev;
566 new->md_minor = MINOR(dev);
567 new->hold_active = UNTIL_STOP;
568 list_add(&new->all_mddevs, &all_mddevs);
569 spin_unlock(&all_mddevs_lock);
570 return new;
571 }
572 spin_unlock(&all_mddevs_lock);
573
574 new = kzalloc(sizeof(*new), GFP_KERNEL);
575 if (!new)
576 return NULL;
577
578 new->unit = unit;
579 if (MAJOR(unit) == MD_MAJOR)
580 new->md_minor = MINOR(unit);
581 else
582 new->md_minor = MINOR(unit) >> MdpMinorShift;
583
584 mddev_init(new);
585
586 goto retry;
587 }
588
589 static struct attribute_group md_redundancy_group;
590
591 void mddev_unlock(struct mddev *mddev)
592 {
593 if (mddev->to_remove) {
594 /* These cannot be removed under reconfig_mutex as
595 * an access to the files will try to take reconfig_mutex
596 * while holding the file unremovable, which leads to
597 * a deadlock.
598 * So hold set sysfs_active while the remove in happeing,
599 * and anything else which might set ->to_remove or my
600 * otherwise change the sysfs namespace will fail with
601 * -EBUSY if sysfs_active is still set.
602 * We set sysfs_active under reconfig_mutex and elsewhere
603 * test it under the same mutex to ensure its correct value
604 * is seen.
605 */
606 struct attribute_group *to_remove = mddev->to_remove;
607 mddev->to_remove = NULL;
608 mddev->sysfs_active = 1;
609 mutex_unlock(&mddev->reconfig_mutex);
610
611 if (mddev->kobj.sd) {
612 if (to_remove != &md_redundancy_group)
613 sysfs_remove_group(&mddev->kobj, to_remove);
614 if (mddev->pers == NULL ||
615 mddev->pers->sync_request == NULL) {
616 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
617 if (mddev->sysfs_action)
618 sysfs_put(mddev->sysfs_action);
619 mddev->sysfs_action = NULL;
620 }
621 }
622 mddev->sysfs_active = 0;
623 } else
624 mutex_unlock(&mddev->reconfig_mutex);
625
626 /* As we've dropped the mutex we need a spinlock to
627 * make sure the thread doesn't disappear
628 */
629 spin_lock(&pers_lock);
630 md_wakeup_thread(mddev->thread);
631 spin_unlock(&pers_lock);
632 }
633 EXPORT_SYMBOL_GPL(mddev_unlock);
634
635 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
636 {
637 struct md_rdev *rdev;
638
639 rdev_for_each_rcu(rdev, mddev)
640 if (rdev->desc_nr == nr)
641 return rdev;
642
643 return NULL;
644 }
645 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
646
647 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
648 {
649 struct md_rdev *rdev;
650
651 rdev_for_each(rdev, mddev)
652 if (rdev->bdev->bd_dev == dev)
653 return rdev;
654
655 return NULL;
656 }
657
658 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
659 {
660 struct md_rdev *rdev;
661
662 rdev_for_each_rcu(rdev, mddev)
663 if (rdev->bdev->bd_dev == dev)
664 return rdev;
665
666 return NULL;
667 }
668
669 static struct md_personality *find_pers(int level, char *clevel)
670 {
671 struct md_personality *pers;
672 list_for_each_entry(pers, &pers_list, list) {
673 if (level != LEVEL_NONE && pers->level == level)
674 return pers;
675 if (strcmp(pers->name, clevel)==0)
676 return pers;
677 }
678 return NULL;
679 }
680
681 /* return the offset of the super block in 512byte sectors */
682 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
683 {
684 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
685 return MD_NEW_SIZE_SECTORS(num_sectors);
686 }
687
688 static int alloc_disk_sb(struct md_rdev *rdev)
689 {
690 rdev->sb_page = alloc_page(GFP_KERNEL);
691 if (!rdev->sb_page) {
692 printk(KERN_ALERT "md: out of memory.\n");
693 return -ENOMEM;
694 }
695
696 return 0;
697 }
698
699 void md_rdev_clear(struct md_rdev *rdev)
700 {
701 if (rdev->sb_page) {
702 put_page(rdev->sb_page);
703 rdev->sb_loaded = 0;
704 rdev->sb_page = NULL;
705 rdev->sb_start = 0;
706 rdev->sectors = 0;
707 }
708 if (rdev->bb_page) {
709 put_page(rdev->bb_page);
710 rdev->bb_page = NULL;
711 }
712 kfree(rdev->badblocks.page);
713 rdev->badblocks.page = NULL;
714 }
715 EXPORT_SYMBOL_GPL(md_rdev_clear);
716
717 static void super_written(struct bio *bio)
718 {
719 struct md_rdev *rdev = bio->bi_private;
720 struct mddev *mddev = rdev->mddev;
721
722 if (bio->bi_error) {
723 printk("md: super_written gets error=%d\n", bio->bi_error);
724 md_error(mddev, rdev);
725 }
726
727 if (atomic_dec_and_test(&mddev->pending_writes))
728 wake_up(&mddev->sb_wait);
729 bio_put(bio);
730 }
731
732 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
733 sector_t sector, int size, struct page *page)
734 {
735 /* write first size bytes of page to sector of rdev
736 * Increment mddev->pending_writes before returning
737 * and decrement it on completion, waking up sb_wait
738 * if zero is reached.
739 * If an error occurred, call md_error
740 */
741 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
742
743 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
744 bio->bi_iter.bi_sector = sector;
745 bio_add_page(bio, page, size, 0);
746 bio->bi_private = rdev;
747 bio->bi_end_io = super_written;
748
749 atomic_inc(&mddev->pending_writes);
750 submit_bio(WRITE_FLUSH_FUA, bio);
751 }
752
753 void md_super_wait(struct mddev *mddev)
754 {
755 /* wait for all superblock writes that were scheduled to complete */
756 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
757 }
758
759 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
760 struct page *page, int rw, bool metadata_op)
761 {
762 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
763 int ret;
764
765 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
766 rdev->meta_bdev : rdev->bdev;
767 if (metadata_op)
768 bio->bi_iter.bi_sector = sector + rdev->sb_start;
769 else if (rdev->mddev->reshape_position != MaxSector &&
770 (rdev->mddev->reshape_backwards ==
771 (sector >= rdev->mddev->reshape_position)))
772 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773 else
774 bio->bi_iter.bi_sector = sector + rdev->data_offset;
775 bio_add_page(bio, page, size, 0);
776 submit_bio_wait(rw, bio);
777
778 ret = !bio->bi_error;
779 bio_put(bio);
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(sync_page_io);
783
784 static int read_disk_sb(struct md_rdev *rdev, int size)
785 {
786 char b[BDEVNAME_SIZE];
787
788 if (rdev->sb_loaded)
789 return 0;
790
791 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
792 goto fail;
793 rdev->sb_loaded = 1;
794 return 0;
795
796 fail:
797 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
798 bdevname(rdev->bdev,b));
799 return -EINVAL;
800 }
801
802 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
803 {
804 return sb1->set_uuid0 == sb2->set_uuid0 &&
805 sb1->set_uuid1 == sb2->set_uuid1 &&
806 sb1->set_uuid2 == sb2->set_uuid2 &&
807 sb1->set_uuid3 == sb2->set_uuid3;
808 }
809
810 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
811 {
812 int ret;
813 mdp_super_t *tmp1, *tmp2;
814
815 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
816 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
817
818 if (!tmp1 || !tmp2) {
819 ret = 0;
820 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
821 goto abort;
822 }
823
824 *tmp1 = *sb1;
825 *tmp2 = *sb2;
826
827 /*
828 * nr_disks is not constant
829 */
830 tmp1->nr_disks = 0;
831 tmp2->nr_disks = 0;
832
833 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
834 abort:
835 kfree(tmp1);
836 kfree(tmp2);
837 return ret;
838 }
839
840 static u32 md_csum_fold(u32 csum)
841 {
842 csum = (csum & 0xffff) + (csum >> 16);
843 return (csum & 0xffff) + (csum >> 16);
844 }
845
846 static unsigned int calc_sb_csum(mdp_super_t *sb)
847 {
848 u64 newcsum = 0;
849 u32 *sb32 = (u32*)sb;
850 int i;
851 unsigned int disk_csum, csum;
852
853 disk_csum = sb->sb_csum;
854 sb->sb_csum = 0;
855
856 for (i = 0; i < MD_SB_BYTES/4 ; i++)
857 newcsum += sb32[i];
858 csum = (newcsum & 0xffffffff) + (newcsum>>32);
859
860 #ifdef CONFIG_ALPHA
861 /* This used to use csum_partial, which was wrong for several
862 * reasons including that different results are returned on
863 * different architectures. It isn't critical that we get exactly
864 * the same return value as before (we always csum_fold before
865 * testing, and that removes any differences). However as we
866 * know that csum_partial always returned a 16bit value on
867 * alphas, do a fold to maximise conformity to previous behaviour.
868 */
869 sb->sb_csum = md_csum_fold(disk_csum);
870 #else
871 sb->sb_csum = disk_csum;
872 #endif
873 return csum;
874 }
875
876 /*
877 * Handle superblock details.
878 * We want to be able to handle multiple superblock formats
879 * so we have a common interface to them all, and an array of
880 * different handlers.
881 * We rely on user-space to write the initial superblock, and support
882 * reading and updating of superblocks.
883 * Interface methods are:
884 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
885 * loads and validates a superblock on dev.
886 * if refdev != NULL, compare superblocks on both devices
887 * Return:
888 * 0 - dev has a superblock that is compatible with refdev
889 * 1 - dev has a superblock that is compatible and newer than refdev
890 * so dev should be used as the refdev in future
891 * -EINVAL superblock incompatible or invalid
892 * -othererror e.g. -EIO
893 *
894 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
895 * Verify that dev is acceptable into mddev.
896 * The first time, mddev->raid_disks will be 0, and data from
897 * dev should be merged in. Subsequent calls check that dev
898 * is new enough. Return 0 or -EINVAL
899 *
900 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
901 * Update the superblock for rdev with data in mddev
902 * This does not write to disc.
903 *
904 */
905
906 struct super_type {
907 char *name;
908 struct module *owner;
909 int (*load_super)(struct md_rdev *rdev,
910 struct md_rdev *refdev,
911 int minor_version);
912 int (*validate_super)(struct mddev *mddev,
913 struct md_rdev *rdev);
914 void (*sync_super)(struct mddev *mddev,
915 struct md_rdev *rdev);
916 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
917 sector_t num_sectors);
918 int (*allow_new_offset)(struct md_rdev *rdev,
919 unsigned long long new_offset);
920 };
921
922 /*
923 * Check that the given mddev has no bitmap.
924 *
925 * This function is called from the run method of all personalities that do not
926 * support bitmaps. It prints an error message and returns non-zero if mddev
927 * has a bitmap. Otherwise, it returns 0.
928 *
929 */
930 int md_check_no_bitmap(struct mddev *mddev)
931 {
932 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
933 return 0;
934 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
935 mdname(mddev), mddev->pers->name);
936 return 1;
937 }
938 EXPORT_SYMBOL(md_check_no_bitmap);
939
940 /*
941 * load_super for 0.90.0
942 */
943 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
944 {
945 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
946 mdp_super_t *sb;
947 int ret;
948
949 /*
950 * Calculate the position of the superblock (512byte sectors),
951 * it's at the end of the disk.
952 *
953 * It also happens to be a multiple of 4Kb.
954 */
955 rdev->sb_start = calc_dev_sboffset(rdev);
956
957 ret = read_disk_sb(rdev, MD_SB_BYTES);
958 if (ret) return ret;
959
960 ret = -EINVAL;
961
962 bdevname(rdev->bdev, b);
963 sb = page_address(rdev->sb_page);
964
965 if (sb->md_magic != MD_SB_MAGIC) {
966 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
967 b);
968 goto abort;
969 }
970
971 if (sb->major_version != 0 ||
972 sb->minor_version < 90 ||
973 sb->minor_version > 91) {
974 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
975 sb->major_version, sb->minor_version,
976 b);
977 goto abort;
978 }
979
980 if (sb->raid_disks <= 0)
981 goto abort;
982
983 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
984 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
985 b);
986 goto abort;
987 }
988
989 rdev->preferred_minor = sb->md_minor;
990 rdev->data_offset = 0;
991 rdev->new_data_offset = 0;
992 rdev->sb_size = MD_SB_BYTES;
993 rdev->badblocks.shift = -1;
994
995 if (sb->level == LEVEL_MULTIPATH)
996 rdev->desc_nr = -1;
997 else
998 rdev->desc_nr = sb->this_disk.number;
999
1000 if (!refdev) {
1001 ret = 1;
1002 } else {
1003 __u64 ev1, ev2;
1004 mdp_super_t *refsb = page_address(refdev->sb_page);
1005 if (!uuid_equal(refsb, sb)) {
1006 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1007 b, bdevname(refdev->bdev,b2));
1008 goto abort;
1009 }
1010 if (!sb_equal(refsb, sb)) {
1011 printk(KERN_WARNING "md: %s has same UUID"
1012 " but different superblock to %s\n",
1013 b, bdevname(refdev->bdev, b2));
1014 goto abort;
1015 }
1016 ev1 = md_event(sb);
1017 ev2 = md_event(refsb);
1018 if (ev1 > ev2)
1019 ret = 1;
1020 else
1021 ret = 0;
1022 }
1023 rdev->sectors = rdev->sb_start;
1024 /* Limit to 4TB as metadata cannot record more than that.
1025 * (not needed for Linear and RAID0 as metadata doesn't
1026 * record this size)
1027 */
1028 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1029 rdev->sectors = (2ULL << 32) - 2;
1030
1031 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1032 /* "this cannot possibly happen" ... */
1033 ret = -EINVAL;
1034
1035 abort:
1036 return ret;
1037 }
1038
1039 /*
1040 * validate_super for 0.90.0
1041 */
1042 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1043 {
1044 mdp_disk_t *desc;
1045 mdp_super_t *sb = page_address(rdev->sb_page);
1046 __u64 ev1 = md_event(sb);
1047
1048 rdev->raid_disk = -1;
1049 clear_bit(Faulty, &rdev->flags);
1050 clear_bit(In_sync, &rdev->flags);
1051 clear_bit(Bitmap_sync, &rdev->flags);
1052 clear_bit(WriteMostly, &rdev->flags);
1053
1054 if (mddev->raid_disks == 0) {
1055 mddev->major_version = 0;
1056 mddev->minor_version = sb->minor_version;
1057 mddev->patch_version = sb->patch_version;
1058 mddev->external = 0;
1059 mddev->chunk_sectors = sb->chunk_size >> 9;
1060 mddev->ctime = sb->ctime;
1061 mddev->utime = sb->utime;
1062 mddev->level = sb->level;
1063 mddev->clevel[0] = 0;
1064 mddev->layout = sb->layout;
1065 mddev->raid_disks = sb->raid_disks;
1066 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1067 mddev->events = ev1;
1068 mddev->bitmap_info.offset = 0;
1069 mddev->bitmap_info.space = 0;
1070 /* bitmap can use 60 K after the 4K superblocks */
1071 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1072 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1073 mddev->reshape_backwards = 0;
1074
1075 if (mddev->minor_version >= 91) {
1076 mddev->reshape_position = sb->reshape_position;
1077 mddev->delta_disks = sb->delta_disks;
1078 mddev->new_level = sb->new_level;
1079 mddev->new_layout = sb->new_layout;
1080 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1081 if (mddev->delta_disks < 0)
1082 mddev->reshape_backwards = 1;
1083 } else {
1084 mddev->reshape_position = MaxSector;
1085 mddev->delta_disks = 0;
1086 mddev->new_level = mddev->level;
1087 mddev->new_layout = mddev->layout;
1088 mddev->new_chunk_sectors = mddev->chunk_sectors;
1089 }
1090
1091 if (sb->state & (1<<MD_SB_CLEAN))
1092 mddev->recovery_cp = MaxSector;
1093 else {
1094 if (sb->events_hi == sb->cp_events_hi &&
1095 sb->events_lo == sb->cp_events_lo) {
1096 mddev->recovery_cp = sb->recovery_cp;
1097 } else
1098 mddev->recovery_cp = 0;
1099 }
1100
1101 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1102 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1103 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1104 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1105
1106 mddev->max_disks = MD_SB_DISKS;
1107
1108 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1109 mddev->bitmap_info.file == NULL) {
1110 mddev->bitmap_info.offset =
1111 mddev->bitmap_info.default_offset;
1112 mddev->bitmap_info.space =
1113 mddev->bitmap_info.default_space;
1114 }
1115
1116 } else if (mddev->pers == NULL) {
1117 /* Insist on good event counter while assembling, except
1118 * for spares (which don't need an event count) */
1119 ++ev1;
1120 if (sb->disks[rdev->desc_nr].state & (
1121 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1122 if (ev1 < mddev->events)
1123 return -EINVAL;
1124 } else if (mddev->bitmap) {
1125 /* if adding to array with a bitmap, then we can accept an
1126 * older device ... but not too old.
1127 */
1128 if (ev1 < mddev->bitmap->events_cleared)
1129 return 0;
1130 if (ev1 < mddev->events)
1131 set_bit(Bitmap_sync, &rdev->flags);
1132 } else {
1133 if (ev1 < mddev->events)
1134 /* just a hot-add of a new device, leave raid_disk at -1 */
1135 return 0;
1136 }
1137
1138 if (mddev->level != LEVEL_MULTIPATH) {
1139 desc = sb->disks + rdev->desc_nr;
1140
1141 if (desc->state & (1<<MD_DISK_FAULTY))
1142 set_bit(Faulty, &rdev->flags);
1143 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1144 desc->raid_disk < mddev->raid_disks */) {
1145 set_bit(In_sync, &rdev->flags);
1146 rdev->raid_disk = desc->raid_disk;
1147 rdev->saved_raid_disk = desc->raid_disk;
1148 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1149 /* active but not in sync implies recovery up to
1150 * reshape position. We don't know exactly where
1151 * that is, so set to zero for now */
1152 if (mddev->minor_version >= 91) {
1153 rdev->recovery_offset = 0;
1154 rdev->raid_disk = desc->raid_disk;
1155 }
1156 }
1157 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1158 set_bit(WriteMostly, &rdev->flags);
1159 } else /* MULTIPATH are always insync */
1160 set_bit(In_sync, &rdev->flags);
1161 return 0;
1162 }
1163
1164 /*
1165 * sync_super for 0.90.0
1166 */
1167 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1168 {
1169 mdp_super_t *sb;
1170 struct md_rdev *rdev2;
1171 int next_spare = mddev->raid_disks;
1172
1173 /* make rdev->sb match mddev data..
1174 *
1175 * 1/ zero out disks
1176 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1177 * 3/ any empty disks < next_spare become removed
1178 *
1179 * disks[0] gets initialised to REMOVED because
1180 * we cannot be sure from other fields if it has
1181 * been initialised or not.
1182 */
1183 int i;
1184 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1185
1186 rdev->sb_size = MD_SB_BYTES;
1187
1188 sb = page_address(rdev->sb_page);
1189
1190 memset(sb, 0, sizeof(*sb));
1191
1192 sb->md_magic = MD_SB_MAGIC;
1193 sb->major_version = mddev->major_version;
1194 sb->patch_version = mddev->patch_version;
1195 sb->gvalid_words = 0; /* ignored */
1196 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1197 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1198 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1199 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1200
1201 sb->ctime = mddev->ctime;
1202 sb->level = mddev->level;
1203 sb->size = mddev->dev_sectors / 2;
1204 sb->raid_disks = mddev->raid_disks;
1205 sb->md_minor = mddev->md_minor;
1206 sb->not_persistent = 0;
1207 sb->utime = mddev->utime;
1208 sb->state = 0;
1209 sb->events_hi = (mddev->events>>32);
1210 sb->events_lo = (u32)mddev->events;
1211
1212 if (mddev->reshape_position == MaxSector)
1213 sb->minor_version = 90;
1214 else {
1215 sb->minor_version = 91;
1216 sb->reshape_position = mddev->reshape_position;
1217 sb->new_level = mddev->new_level;
1218 sb->delta_disks = mddev->delta_disks;
1219 sb->new_layout = mddev->new_layout;
1220 sb->new_chunk = mddev->new_chunk_sectors << 9;
1221 }
1222 mddev->minor_version = sb->minor_version;
1223 if (mddev->in_sync)
1224 {
1225 sb->recovery_cp = mddev->recovery_cp;
1226 sb->cp_events_hi = (mddev->events>>32);
1227 sb->cp_events_lo = (u32)mddev->events;
1228 if (mddev->recovery_cp == MaxSector)
1229 sb->state = (1<< MD_SB_CLEAN);
1230 } else
1231 sb->recovery_cp = 0;
1232
1233 sb->layout = mddev->layout;
1234 sb->chunk_size = mddev->chunk_sectors << 9;
1235
1236 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1237 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1238
1239 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1240 rdev_for_each(rdev2, mddev) {
1241 mdp_disk_t *d;
1242 int desc_nr;
1243 int is_active = test_bit(In_sync, &rdev2->flags);
1244
1245 if (rdev2->raid_disk >= 0 &&
1246 sb->minor_version >= 91)
1247 /* we have nowhere to store the recovery_offset,
1248 * but if it is not below the reshape_position,
1249 * we can piggy-back on that.
1250 */
1251 is_active = 1;
1252 if (rdev2->raid_disk < 0 ||
1253 test_bit(Faulty, &rdev2->flags))
1254 is_active = 0;
1255 if (is_active)
1256 desc_nr = rdev2->raid_disk;
1257 else
1258 desc_nr = next_spare++;
1259 rdev2->desc_nr = desc_nr;
1260 d = &sb->disks[rdev2->desc_nr];
1261 nr_disks++;
1262 d->number = rdev2->desc_nr;
1263 d->major = MAJOR(rdev2->bdev->bd_dev);
1264 d->minor = MINOR(rdev2->bdev->bd_dev);
1265 if (is_active)
1266 d->raid_disk = rdev2->raid_disk;
1267 else
1268 d->raid_disk = rdev2->desc_nr; /* compatibility */
1269 if (test_bit(Faulty, &rdev2->flags))
1270 d->state = (1<<MD_DISK_FAULTY);
1271 else if (is_active) {
1272 d->state = (1<<MD_DISK_ACTIVE);
1273 if (test_bit(In_sync, &rdev2->flags))
1274 d->state |= (1<<MD_DISK_SYNC);
1275 active++;
1276 working++;
1277 } else {
1278 d->state = 0;
1279 spare++;
1280 working++;
1281 }
1282 if (test_bit(WriteMostly, &rdev2->flags))
1283 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1284 }
1285 /* now set the "removed" and "faulty" bits on any missing devices */
1286 for (i=0 ; i < mddev->raid_disks ; i++) {
1287 mdp_disk_t *d = &sb->disks[i];
1288 if (d->state == 0 && d->number == 0) {
1289 d->number = i;
1290 d->raid_disk = i;
1291 d->state = (1<<MD_DISK_REMOVED);
1292 d->state |= (1<<MD_DISK_FAULTY);
1293 failed++;
1294 }
1295 }
1296 sb->nr_disks = nr_disks;
1297 sb->active_disks = active;
1298 sb->working_disks = working;
1299 sb->failed_disks = failed;
1300 sb->spare_disks = spare;
1301
1302 sb->this_disk = sb->disks[rdev->desc_nr];
1303 sb->sb_csum = calc_sb_csum(sb);
1304 }
1305
1306 /*
1307 * rdev_size_change for 0.90.0
1308 */
1309 static unsigned long long
1310 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1311 {
1312 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1313 return 0; /* component must fit device */
1314 if (rdev->mddev->bitmap_info.offset)
1315 return 0; /* can't move bitmap */
1316 rdev->sb_start = calc_dev_sboffset(rdev);
1317 if (!num_sectors || num_sectors > rdev->sb_start)
1318 num_sectors = rdev->sb_start;
1319 /* Limit to 4TB as metadata cannot record more than that.
1320 * 4TB == 2^32 KB, or 2*2^32 sectors.
1321 */
1322 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1323 num_sectors = (2ULL << 32) - 2;
1324 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1325 rdev->sb_page);
1326 md_super_wait(rdev->mddev);
1327 return num_sectors;
1328 }
1329
1330 static int
1331 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1332 {
1333 /* non-zero offset changes not possible with v0.90 */
1334 return new_offset == 0;
1335 }
1336
1337 /*
1338 * version 1 superblock
1339 */
1340
1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1342 {
1343 __le32 disk_csum;
1344 u32 csum;
1345 unsigned long long newcsum;
1346 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1347 __le32 *isuper = (__le32*)sb;
1348
1349 disk_csum = sb->sb_csum;
1350 sb->sb_csum = 0;
1351 newcsum = 0;
1352 for (; size >= 4; size -= 4)
1353 newcsum += le32_to_cpu(*isuper++);
1354
1355 if (size == 2)
1356 newcsum += le16_to_cpu(*(__le16*) isuper);
1357
1358 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 sb->sb_csum = disk_csum;
1360 return cpu_to_le32(csum);
1361 }
1362
1363 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1364 int acknowledged);
1365 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1366 {
1367 struct mdp_superblock_1 *sb;
1368 int ret;
1369 sector_t sb_start;
1370 sector_t sectors;
1371 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1372 int bmask;
1373
1374 /*
1375 * Calculate the position of the superblock in 512byte sectors.
1376 * It is always aligned to a 4K boundary and
1377 * depeding on minor_version, it can be:
1378 * 0: At least 8K, but less than 12K, from end of device
1379 * 1: At start of device
1380 * 2: 4K from start of device.
1381 */
1382 switch(minor_version) {
1383 case 0:
1384 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1385 sb_start -= 8*2;
1386 sb_start &= ~(sector_t)(4*2-1);
1387 break;
1388 case 1:
1389 sb_start = 0;
1390 break;
1391 case 2:
1392 sb_start = 8;
1393 break;
1394 default:
1395 return -EINVAL;
1396 }
1397 rdev->sb_start = sb_start;
1398
1399 /* superblock is rarely larger than 1K, but it can be larger,
1400 * and it is safe to read 4k, so we do that
1401 */
1402 ret = read_disk_sb(rdev, 4096);
1403 if (ret) return ret;
1404
1405 sb = page_address(rdev->sb_page);
1406
1407 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1408 sb->major_version != cpu_to_le32(1) ||
1409 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1410 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1411 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1412 return -EINVAL;
1413
1414 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1415 printk("md: invalid superblock checksum on %s\n",
1416 bdevname(rdev->bdev,b));
1417 return -EINVAL;
1418 }
1419 if (le64_to_cpu(sb->data_size) < 10) {
1420 printk("md: data_size too small on %s\n",
1421 bdevname(rdev->bdev,b));
1422 return -EINVAL;
1423 }
1424 if (sb->pad0 ||
1425 sb->pad3[0] ||
1426 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1427 /* Some padding is non-zero, might be a new feature */
1428 return -EINVAL;
1429
1430 rdev->preferred_minor = 0xffff;
1431 rdev->data_offset = le64_to_cpu(sb->data_offset);
1432 rdev->new_data_offset = rdev->data_offset;
1433 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1434 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1435 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1436 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1437
1438 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1439 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1440 if (rdev->sb_size & bmask)
1441 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1442
1443 if (minor_version
1444 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1445 return -EINVAL;
1446 if (minor_version
1447 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1448 return -EINVAL;
1449
1450 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1451 rdev->desc_nr = -1;
1452 else
1453 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1454
1455 if (!rdev->bb_page) {
1456 rdev->bb_page = alloc_page(GFP_KERNEL);
1457 if (!rdev->bb_page)
1458 return -ENOMEM;
1459 }
1460 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1461 rdev->badblocks.count == 0) {
1462 /* need to load the bad block list.
1463 * Currently we limit it to one page.
1464 */
1465 s32 offset;
1466 sector_t bb_sector;
1467 u64 *bbp;
1468 int i;
1469 int sectors = le16_to_cpu(sb->bblog_size);
1470 if (sectors > (PAGE_SIZE / 512))
1471 return -EINVAL;
1472 offset = le32_to_cpu(sb->bblog_offset);
1473 if (offset == 0)
1474 return -EINVAL;
1475 bb_sector = (long long)offset;
1476 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1477 rdev->bb_page, READ, true))
1478 return -EIO;
1479 bbp = (u64 *)page_address(rdev->bb_page);
1480 rdev->badblocks.shift = sb->bblog_shift;
1481 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1482 u64 bb = le64_to_cpu(*bbp);
1483 int count = bb & (0x3ff);
1484 u64 sector = bb >> 10;
1485 sector <<= sb->bblog_shift;
1486 count <<= sb->bblog_shift;
1487 if (bb + 1 == 0)
1488 break;
1489 if (md_set_badblocks(&rdev->badblocks,
1490 sector, count, 1) == 0)
1491 return -EINVAL;
1492 }
1493 } else if (sb->bblog_offset != 0)
1494 rdev->badblocks.shift = 0;
1495
1496 if (!refdev) {
1497 ret = 1;
1498 } else {
1499 __u64 ev1, ev2;
1500 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1501
1502 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1503 sb->level != refsb->level ||
1504 sb->layout != refsb->layout ||
1505 sb->chunksize != refsb->chunksize) {
1506 printk(KERN_WARNING "md: %s has strangely different"
1507 " superblock to %s\n",
1508 bdevname(rdev->bdev,b),
1509 bdevname(refdev->bdev,b2));
1510 return -EINVAL;
1511 }
1512 ev1 = le64_to_cpu(sb->events);
1513 ev2 = le64_to_cpu(refsb->events);
1514
1515 if (ev1 > ev2)
1516 ret = 1;
1517 else
1518 ret = 0;
1519 }
1520 if (minor_version) {
1521 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1522 sectors -= rdev->data_offset;
1523 } else
1524 sectors = rdev->sb_start;
1525 if (sectors < le64_to_cpu(sb->data_size))
1526 return -EINVAL;
1527 rdev->sectors = le64_to_cpu(sb->data_size);
1528 return ret;
1529 }
1530
1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1532 {
1533 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1534 __u64 ev1 = le64_to_cpu(sb->events);
1535
1536 rdev->raid_disk = -1;
1537 clear_bit(Faulty, &rdev->flags);
1538 clear_bit(In_sync, &rdev->flags);
1539 clear_bit(Bitmap_sync, &rdev->flags);
1540 clear_bit(WriteMostly, &rdev->flags);
1541
1542 if (mddev->raid_disks == 0) {
1543 mddev->major_version = 1;
1544 mddev->patch_version = 0;
1545 mddev->external = 0;
1546 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1547 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1548 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1549 mddev->level = le32_to_cpu(sb->level);
1550 mddev->clevel[0] = 0;
1551 mddev->layout = le32_to_cpu(sb->layout);
1552 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1553 mddev->dev_sectors = le64_to_cpu(sb->size);
1554 mddev->events = ev1;
1555 mddev->bitmap_info.offset = 0;
1556 mddev->bitmap_info.space = 0;
1557 /* Default location for bitmap is 1K after superblock
1558 * using 3K - total of 4K
1559 */
1560 mddev->bitmap_info.default_offset = 1024 >> 9;
1561 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1562 mddev->reshape_backwards = 0;
1563
1564 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1565 memcpy(mddev->uuid, sb->set_uuid, 16);
1566
1567 mddev->max_disks = (4096-256)/2;
1568
1569 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1570 mddev->bitmap_info.file == NULL) {
1571 mddev->bitmap_info.offset =
1572 (__s32)le32_to_cpu(sb->bitmap_offset);
1573 /* Metadata doesn't record how much space is available.
1574 * For 1.0, we assume we can use up to the superblock
1575 * if before, else to 4K beyond superblock.
1576 * For others, assume no change is possible.
1577 */
1578 if (mddev->minor_version > 0)
1579 mddev->bitmap_info.space = 0;
1580 else if (mddev->bitmap_info.offset > 0)
1581 mddev->bitmap_info.space =
1582 8 - mddev->bitmap_info.offset;
1583 else
1584 mddev->bitmap_info.space =
1585 -mddev->bitmap_info.offset;
1586 }
1587
1588 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1589 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1590 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1591 mddev->new_level = le32_to_cpu(sb->new_level);
1592 mddev->new_layout = le32_to_cpu(sb->new_layout);
1593 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1594 if (mddev->delta_disks < 0 ||
1595 (mddev->delta_disks == 0 &&
1596 (le32_to_cpu(sb->feature_map)
1597 & MD_FEATURE_RESHAPE_BACKWARDS)))
1598 mddev->reshape_backwards = 1;
1599 } else {
1600 mddev->reshape_position = MaxSector;
1601 mddev->delta_disks = 0;
1602 mddev->new_level = mddev->level;
1603 mddev->new_layout = mddev->layout;
1604 mddev->new_chunk_sectors = mddev->chunk_sectors;
1605 }
1606
1607 } else if (mddev->pers == NULL) {
1608 /* Insist of good event counter while assembling, except for
1609 * spares (which don't need an event count) */
1610 ++ev1;
1611 if (rdev->desc_nr >= 0 &&
1612 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1613 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1614 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1615 if (ev1 < mddev->events)
1616 return -EINVAL;
1617 } else if (mddev->bitmap) {
1618 /* If adding to array with a bitmap, then we can accept an
1619 * older device, but not too old.
1620 */
1621 if (ev1 < mddev->bitmap->events_cleared)
1622 return 0;
1623 if (ev1 < mddev->events)
1624 set_bit(Bitmap_sync, &rdev->flags);
1625 } else {
1626 if (ev1 < mddev->events)
1627 /* just a hot-add of a new device, leave raid_disk at -1 */
1628 return 0;
1629 }
1630 if (mddev->level != LEVEL_MULTIPATH) {
1631 int role;
1632 if (rdev->desc_nr < 0 ||
1633 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1634 role = MD_DISK_ROLE_SPARE;
1635 rdev->desc_nr = -1;
1636 } else
1637 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1638 switch(role) {
1639 case MD_DISK_ROLE_SPARE: /* spare */
1640 break;
1641 case MD_DISK_ROLE_FAULTY: /* faulty */
1642 set_bit(Faulty, &rdev->flags);
1643 break;
1644 case MD_DISK_ROLE_JOURNAL: /* journal device */
1645 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1646 /* journal device without journal feature */
1647 printk(KERN_WARNING
1648 "md: journal device provided without journal feature, ignoring the device\n");
1649 return -EINVAL;
1650 }
1651 set_bit(Journal, &rdev->flags);
1652 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1653 if (mddev->recovery_cp == MaxSector)
1654 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1655 rdev->raid_disk = mddev->raid_disks;
1656 break;
1657 default:
1658 rdev->saved_raid_disk = role;
1659 if ((le32_to_cpu(sb->feature_map) &
1660 MD_FEATURE_RECOVERY_OFFSET)) {
1661 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1662 if (!(le32_to_cpu(sb->feature_map) &
1663 MD_FEATURE_RECOVERY_BITMAP))
1664 rdev->saved_raid_disk = -1;
1665 } else
1666 set_bit(In_sync, &rdev->flags);
1667 rdev->raid_disk = role;
1668 break;
1669 }
1670 if (sb->devflags & WriteMostly1)
1671 set_bit(WriteMostly, &rdev->flags);
1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1673 set_bit(Replacement, &rdev->flags);
1674 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1675 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1676 } else /* MULTIPATH are always insync */
1677 set_bit(In_sync, &rdev->flags);
1678
1679 return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct mdp_superblock_1 *sb;
1685 struct md_rdev *rdev2;
1686 int max_dev, i;
1687 /* make rdev->sb match mddev and rdev data. */
1688
1689 sb = page_address(rdev->sb_page);
1690
1691 sb->feature_map = 0;
1692 sb->pad0 = 0;
1693 sb->recovery_offset = cpu_to_le64(0);
1694 memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696 sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 sb->events = cpu_to_le64(mddev->events);
1698 if (mddev->in_sync)
1699 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1701 sb->resync_offset = cpu_to_le64(MaxSector);
1702 else
1703 sb->resync_offset = cpu_to_le64(0);
1704
1705 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1706
1707 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1708 sb->size = cpu_to_le64(mddev->dev_sectors);
1709 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1710 sb->level = cpu_to_le32(mddev->level);
1711 sb->layout = cpu_to_le32(mddev->layout);
1712
1713 if (test_bit(WriteMostly, &rdev->flags))
1714 sb->devflags |= WriteMostly1;
1715 else
1716 sb->devflags &= ~WriteMostly1;
1717 sb->data_offset = cpu_to_le64(rdev->data_offset);
1718 sb->data_size = cpu_to_le64(rdev->sectors);
1719
1720 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1721 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1722 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1723 }
1724
1725 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1726 !test_bit(In_sync, &rdev->flags)) {
1727 sb->feature_map |=
1728 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1729 sb->recovery_offset =
1730 cpu_to_le64(rdev->recovery_offset);
1731 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1732 sb->feature_map |=
1733 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1734 }
1735 /* Note: recovery_offset and journal_tail share space */
1736 if (test_bit(Journal, &rdev->flags))
1737 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1738 if (test_bit(Replacement, &rdev->flags))
1739 sb->feature_map |=
1740 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1741
1742 if (mddev->reshape_position != MaxSector) {
1743 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1744 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1745 sb->new_layout = cpu_to_le32(mddev->new_layout);
1746 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1747 sb->new_level = cpu_to_le32(mddev->new_level);
1748 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1749 if (mddev->delta_disks == 0 &&
1750 mddev->reshape_backwards)
1751 sb->feature_map
1752 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1753 if (rdev->new_data_offset != rdev->data_offset) {
1754 sb->feature_map
1755 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1756 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1757 - rdev->data_offset));
1758 }
1759 }
1760
1761 if (mddev_is_clustered(mddev))
1762 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1763
1764 if (rdev->badblocks.count == 0)
1765 /* Nothing to do for bad blocks*/ ;
1766 else if (sb->bblog_offset == 0)
1767 /* Cannot record bad blocks on this device */
1768 md_error(mddev, rdev);
1769 else {
1770 struct badblocks *bb = &rdev->badblocks;
1771 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1772 u64 *p = bb->page;
1773 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1774 if (bb->changed) {
1775 unsigned seq;
1776
1777 retry:
1778 seq = read_seqbegin(&bb->lock);
1779
1780 memset(bbp, 0xff, PAGE_SIZE);
1781
1782 for (i = 0 ; i < bb->count ; i++) {
1783 u64 internal_bb = p[i];
1784 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1785 | BB_LEN(internal_bb));
1786 bbp[i] = cpu_to_le64(store_bb);
1787 }
1788 bb->changed = 0;
1789 if (read_seqretry(&bb->lock, seq))
1790 goto retry;
1791
1792 bb->sector = (rdev->sb_start +
1793 (int)le32_to_cpu(sb->bblog_offset));
1794 bb->size = le16_to_cpu(sb->bblog_size);
1795 }
1796 }
1797
1798 max_dev = 0;
1799 rdev_for_each(rdev2, mddev)
1800 if (rdev2->desc_nr+1 > max_dev)
1801 max_dev = rdev2->desc_nr+1;
1802
1803 if (max_dev > le32_to_cpu(sb->max_dev)) {
1804 int bmask;
1805 sb->max_dev = cpu_to_le32(max_dev);
1806 rdev->sb_size = max_dev * 2 + 256;
1807 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1808 if (rdev->sb_size & bmask)
1809 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1810 } else
1811 max_dev = le32_to_cpu(sb->max_dev);
1812
1813 for (i=0; i<max_dev;i++)
1814 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1815
1816 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1817 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1818
1819 rdev_for_each(rdev2, mddev) {
1820 i = rdev2->desc_nr;
1821 if (test_bit(Faulty, &rdev2->flags))
1822 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1823 else if (test_bit(In_sync, &rdev2->flags))
1824 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1825 else if (test_bit(Journal, &rdev2->flags))
1826 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1827 else if (rdev2->raid_disk >= 0)
1828 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829 else
1830 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1831 }
1832
1833 sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835
1836 static unsigned long long
1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1838 {
1839 struct mdp_superblock_1 *sb;
1840 sector_t max_sectors;
1841 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842 return 0; /* component must fit device */
1843 if (rdev->data_offset != rdev->new_data_offset)
1844 return 0; /* too confusing */
1845 if (rdev->sb_start < rdev->data_offset) {
1846 /* minor versions 1 and 2; superblock before data */
1847 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1848 max_sectors -= rdev->data_offset;
1849 if (!num_sectors || num_sectors > max_sectors)
1850 num_sectors = max_sectors;
1851 } else if (rdev->mddev->bitmap_info.offset) {
1852 /* minor version 0 with bitmap we can't move */
1853 return 0;
1854 } else {
1855 /* minor version 0; superblock after data */
1856 sector_t sb_start;
1857 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1858 sb_start &= ~(sector_t)(4*2 - 1);
1859 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1860 if (!num_sectors || num_sectors > max_sectors)
1861 num_sectors = max_sectors;
1862 rdev->sb_start = sb_start;
1863 }
1864 sb = page_address(rdev->sb_page);
1865 sb->data_size = cpu_to_le64(num_sectors);
1866 sb->super_offset = rdev->sb_start;
1867 sb->sb_csum = calc_sb_1_csum(sb);
1868 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1869 rdev->sb_page);
1870 md_super_wait(rdev->mddev);
1871 return num_sectors;
1872
1873 }
1874
1875 static int
1876 super_1_allow_new_offset(struct md_rdev *rdev,
1877 unsigned long long new_offset)
1878 {
1879 /* All necessary checks on new >= old have been done */
1880 struct bitmap *bitmap;
1881 if (new_offset >= rdev->data_offset)
1882 return 1;
1883
1884 /* with 1.0 metadata, there is no metadata to tread on
1885 * so we can always move back */
1886 if (rdev->mddev->minor_version == 0)
1887 return 1;
1888
1889 /* otherwise we must be sure not to step on
1890 * any metadata, so stay:
1891 * 36K beyond start of superblock
1892 * beyond end of badblocks
1893 * beyond write-intent bitmap
1894 */
1895 if (rdev->sb_start + (32+4)*2 > new_offset)
1896 return 0;
1897 bitmap = rdev->mddev->bitmap;
1898 if (bitmap && !rdev->mddev->bitmap_info.file &&
1899 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1900 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1901 return 0;
1902 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1903 return 0;
1904
1905 return 1;
1906 }
1907
1908 static struct super_type super_types[] = {
1909 [0] = {
1910 .name = "0.90.0",
1911 .owner = THIS_MODULE,
1912 .load_super = super_90_load,
1913 .validate_super = super_90_validate,
1914 .sync_super = super_90_sync,
1915 .rdev_size_change = super_90_rdev_size_change,
1916 .allow_new_offset = super_90_allow_new_offset,
1917 },
1918 [1] = {
1919 .name = "md-1",
1920 .owner = THIS_MODULE,
1921 .load_super = super_1_load,
1922 .validate_super = super_1_validate,
1923 .sync_super = super_1_sync,
1924 .rdev_size_change = super_1_rdev_size_change,
1925 .allow_new_offset = super_1_allow_new_offset,
1926 },
1927 };
1928
1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1930 {
1931 if (mddev->sync_super) {
1932 mddev->sync_super(mddev, rdev);
1933 return;
1934 }
1935
1936 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1937
1938 super_types[mddev->major_version].sync_super(mddev, rdev);
1939 }
1940
1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1942 {
1943 struct md_rdev *rdev, *rdev2;
1944
1945 rcu_read_lock();
1946 rdev_for_each_rcu(rdev, mddev1) {
1947 if (test_bit(Faulty, &rdev->flags) ||
1948 test_bit(Journal, &rdev->flags) ||
1949 rdev->raid_disk == -1)
1950 continue;
1951 rdev_for_each_rcu(rdev2, mddev2) {
1952 if (test_bit(Faulty, &rdev2->flags) ||
1953 test_bit(Journal, &rdev2->flags) ||
1954 rdev2->raid_disk == -1)
1955 continue;
1956 if (rdev->bdev->bd_contains ==
1957 rdev2->bdev->bd_contains) {
1958 rcu_read_unlock();
1959 return 1;
1960 }
1961 }
1962 }
1963 rcu_read_unlock();
1964 return 0;
1965 }
1966
1967 static LIST_HEAD(pending_raid_disks);
1968
1969 /*
1970 * Try to register data integrity profile for an mddev
1971 *
1972 * This is called when an array is started and after a disk has been kicked
1973 * from the array. It only succeeds if all working and active component devices
1974 * are integrity capable with matching profiles.
1975 */
1976 int md_integrity_register(struct mddev *mddev)
1977 {
1978 struct md_rdev *rdev, *reference = NULL;
1979
1980 if (list_empty(&mddev->disks))
1981 return 0; /* nothing to do */
1982 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1983 return 0; /* shouldn't register, or already is */
1984 rdev_for_each(rdev, mddev) {
1985 /* skip spares and non-functional disks */
1986 if (test_bit(Faulty, &rdev->flags))
1987 continue;
1988 if (rdev->raid_disk < 0)
1989 continue;
1990 if (!reference) {
1991 /* Use the first rdev as the reference */
1992 reference = rdev;
1993 continue;
1994 }
1995 /* does this rdev's profile match the reference profile? */
1996 if (blk_integrity_compare(reference->bdev->bd_disk,
1997 rdev->bdev->bd_disk) < 0)
1998 return -EINVAL;
1999 }
2000 if (!reference || !bdev_get_integrity(reference->bdev))
2001 return 0;
2002 /*
2003 * All component devices are integrity capable and have matching
2004 * profiles, register the common profile for the md device.
2005 */
2006 blk_integrity_register(mddev->gendisk,
2007 bdev_get_integrity(reference->bdev));
2008
2009 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2010 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2011 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2012 mdname(mddev));
2013 return -EINVAL;
2014 }
2015 return 0;
2016 }
2017 EXPORT_SYMBOL(md_integrity_register);
2018
2019 /* Disable data integrity if non-capable/non-matching disk is being added */
2020 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 struct blk_integrity *bi_rdev;
2023 struct blk_integrity *bi_mddev;
2024
2025 if (!mddev->gendisk)
2026 return;
2027
2028 bi_rdev = bdev_get_integrity(rdev->bdev);
2029 bi_mddev = blk_get_integrity(mddev->gendisk);
2030
2031 if (!bi_mddev) /* nothing to do */
2032 return;
2033 if (rdev->raid_disk < 0) /* skip spares */
2034 return;
2035 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2036 rdev->bdev->bd_disk) >= 0)
2037 return;
2038 WARN_ON_ONCE(!mddev->suspended);
2039 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2040 blk_integrity_unregister(mddev->gendisk);
2041 }
2042 EXPORT_SYMBOL(md_integrity_add_rdev);
2043
2044 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2045 {
2046 char b[BDEVNAME_SIZE];
2047 struct kobject *ko;
2048 int err;
2049
2050 /* prevent duplicates */
2051 if (find_rdev(mddev, rdev->bdev->bd_dev))
2052 return -EEXIST;
2053
2054 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2055 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2056 rdev->sectors < mddev->dev_sectors)) {
2057 if (mddev->pers) {
2058 /* Cannot change size, so fail
2059 * If mddev->level <= 0, then we don't care
2060 * about aligning sizes (e.g. linear)
2061 */
2062 if (mddev->level > 0)
2063 return -ENOSPC;
2064 } else
2065 mddev->dev_sectors = rdev->sectors;
2066 }
2067
2068 /* Verify rdev->desc_nr is unique.
2069 * If it is -1, assign a free number, else
2070 * check number is not in use
2071 */
2072 rcu_read_lock();
2073 if (rdev->desc_nr < 0) {
2074 int choice = 0;
2075 if (mddev->pers)
2076 choice = mddev->raid_disks;
2077 while (md_find_rdev_nr_rcu(mddev, choice))
2078 choice++;
2079 rdev->desc_nr = choice;
2080 } else {
2081 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2082 rcu_read_unlock();
2083 return -EBUSY;
2084 }
2085 }
2086 rcu_read_unlock();
2087 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2088 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2089 mdname(mddev), mddev->max_disks);
2090 return -EBUSY;
2091 }
2092 bdevname(rdev->bdev,b);
2093 strreplace(b, '/', '!');
2094
2095 rdev->mddev = mddev;
2096 printk(KERN_INFO "md: bind<%s>\n", b);
2097
2098 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2099 goto fail;
2100
2101 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2102 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2103 /* failure here is OK */;
2104 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2105
2106 list_add_rcu(&rdev->same_set, &mddev->disks);
2107 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2108
2109 /* May as well allow recovery to be retried once */
2110 mddev->recovery_disabled++;
2111
2112 return 0;
2113
2114 fail:
2115 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2116 b, mdname(mddev));
2117 return err;
2118 }
2119
2120 static void md_delayed_delete(struct work_struct *ws)
2121 {
2122 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2123 kobject_del(&rdev->kobj);
2124 kobject_put(&rdev->kobj);
2125 }
2126
2127 static void unbind_rdev_from_array(struct md_rdev *rdev)
2128 {
2129 char b[BDEVNAME_SIZE];
2130
2131 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2132 list_del_rcu(&rdev->same_set);
2133 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2134 rdev->mddev = NULL;
2135 sysfs_remove_link(&rdev->kobj, "block");
2136 sysfs_put(rdev->sysfs_state);
2137 rdev->sysfs_state = NULL;
2138 rdev->badblocks.count = 0;
2139 /* We need to delay this, otherwise we can deadlock when
2140 * writing to 'remove' to "dev/state". We also need
2141 * to delay it due to rcu usage.
2142 */
2143 synchronize_rcu();
2144 INIT_WORK(&rdev->del_work, md_delayed_delete);
2145 kobject_get(&rdev->kobj);
2146 queue_work(md_misc_wq, &rdev->del_work);
2147 }
2148
2149 /*
2150 * prevent the device from being mounted, repartitioned or
2151 * otherwise reused by a RAID array (or any other kernel
2152 * subsystem), by bd_claiming the device.
2153 */
2154 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2155 {
2156 int err = 0;
2157 struct block_device *bdev;
2158 char b[BDEVNAME_SIZE];
2159
2160 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2161 shared ? (struct md_rdev *)lock_rdev : rdev);
2162 if (IS_ERR(bdev)) {
2163 printk(KERN_ERR "md: could not open %s.\n",
2164 __bdevname(dev, b));
2165 return PTR_ERR(bdev);
2166 }
2167 rdev->bdev = bdev;
2168 return err;
2169 }
2170
2171 static void unlock_rdev(struct md_rdev *rdev)
2172 {
2173 struct block_device *bdev = rdev->bdev;
2174 rdev->bdev = NULL;
2175 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2176 }
2177
2178 void md_autodetect_dev(dev_t dev);
2179
2180 static void export_rdev(struct md_rdev *rdev)
2181 {
2182 char b[BDEVNAME_SIZE];
2183
2184 printk(KERN_INFO "md: export_rdev(%s)\n",
2185 bdevname(rdev->bdev,b));
2186 md_rdev_clear(rdev);
2187 #ifndef MODULE
2188 if (test_bit(AutoDetected, &rdev->flags))
2189 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191 unlock_rdev(rdev);
2192 kobject_put(&rdev->kobj);
2193 }
2194
2195 void md_kick_rdev_from_array(struct md_rdev *rdev)
2196 {
2197 unbind_rdev_from_array(rdev);
2198 export_rdev(rdev);
2199 }
2200 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2201
2202 static void export_array(struct mddev *mddev)
2203 {
2204 struct md_rdev *rdev;
2205
2206 while (!list_empty(&mddev->disks)) {
2207 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2208 same_set);
2209 md_kick_rdev_from_array(rdev);
2210 }
2211 mddev->raid_disks = 0;
2212 mddev->major_version = 0;
2213 }
2214
2215 static void sync_sbs(struct mddev *mddev, int nospares)
2216 {
2217 /* Update each superblock (in-memory image), but
2218 * if we are allowed to, skip spares which already
2219 * have the right event counter, or have one earlier
2220 * (which would mean they aren't being marked as dirty
2221 * with the rest of the array)
2222 */
2223 struct md_rdev *rdev;
2224 rdev_for_each(rdev, mddev) {
2225 if (rdev->sb_events == mddev->events ||
2226 (nospares &&
2227 rdev->raid_disk < 0 &&
2228 rdev->sb_events+1 == mddev->events)) {
2229 /* Don't update this superblock */
2230 rdev->sb_loaded = 2;
2231 } else {
2232 sync_super(mddev, rdev);
2233 rdev->sb_loaded = 1;
2234 }
2235 }
2236 }
2237
2238 static bool does_sb_need_changing(struct mddev *mddev)
2239 {
2240 struct md_rdev *rdev;
2241 struct mdp_superblock_1 *sb;
2242 int role;
2243
2244 /* Find a good rdev */
2245 rdev_for_each(rdev, mddev)
2246 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2247 break;
2248
2249 /* No good device found. */
2250 if (!rdev)
2251 return false;
2252
2253 sb = page_address(rdev->sb_page);
2254 /* Check if a device has become faulty or a spare become active */
2255 rdev_for_each(rdev, mddev) {
2256 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2257 /* Device activated? */
2258 if (role == 0xffff && rdev->raid_disk >=0 &&
2259 !test_bit(Faulty, &rdev->flags))
2260 return true;
2261 /* Device turned faulty? */
2262 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2263 return true;
2264 }
2265
2266 /* Check if any mddev parameters have changed */
2267 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2268 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2269 (mddev->layout != le64_to_cpu(sb->layout)) ||
2270 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2271 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2272 return true;
2273
2274 return false;
2275 }
2276
2277 void md_update_sb(struct mddev *mddev, int force_change)
2278 {
2279 struct md_rdev *rdev;
2280 int sync_req;
2281 int nospares = 0;
2282 int any_badblocks_changed = 0;
2283 int ret = -1;
2284
2285 if (mddev->ro) {
2286 if (force_change)
2287 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2288 return;
2289 }
2290
2291 if (mddev_is_clustered(mddev)) {
2292 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2293 force_change = 1;
2294 ret = md_cluster_ops->metadata_update_start(mddev);
2295 /* Has someone else has updated the sb */
2296 if (!does_sb_need_changing(mddev)) {
2297 if (ret == 0)
2298 md_cluster_ops->metadata_update_cancel(mddev);
2299 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2300 return;
2301 }
2302 }
2303 repeat:
2304 /* First make sure individual recovery_offsets are correct */
2305 rdev_for_each(rdev, mddev) {
2306 if (rdev->raid_disk >= 0 &&
2307 mddev->delta_disks >= 0 &&
2308 !test_bit(Journal, &rdev->flags) &&
2309 !test_bit(In_sync, &rdev->flags) &&
2310 mddev->curr_resync_completed > rdev->recovery_offset)
2311 rdev->recovery_offset = mddev->curr_resync_completed;
2312
2313 }
2314 if (!mddev->persistent) {
2315 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2316 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2317 if (!mddev->external) {
2318 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2319 rdev_for_each(rdev, mddev) {
2320 if (rdev->badblocks.changed) {
2321 rdev->badblocks.changed = 0;
2322 md_ack_all_badblocks(&rdev->badblocks);
2323 md_error(mddev, rdev);
2324 }
2325 clear_bit(Blocked, &rdev->flags);
2326 clear_bit(BlockedBadBlocks, &rdev->flags);
2327 wake_up(&rdev->blocked_wait);
2328 }
2329 }
2330 wake_up(&mddev->sb_wait);
2331 return;
2332 }
2333
2334 spin_lock(&mddev->lock);
2335
2336 mddev->utime = get_seconds();
2337
2338 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2339 force_change = 1;
2340 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2341 /* just a clean<-> dirty transition, possibly leave spares alone,
2342 * though if events isn't the right even/odd, we will have to do
2343 * spares after all
2344 */
2345 nospares = 1;
2346 if (force_change)
2347 nospares = 0;
2348 if (mddev->degraded)
2349 /* If the array is degraded, then skipping spares is both
2350 * dangerous and fairly pointless.
2351 * Dangerous because a device that was removed from the array
2352 * might have a event_count that still looks up-to-date,
2353 * so it can be re-added without a resync.
2354 * Pointless because if there are any spares to skip,
2355 * then a recovery will happen and soon that array won't
2356 * be degraded any more and the spare can go back to sleep then.
2357 */
2358 nospares = 0;
2359
2360 sync_req = mddev->in_sync;
2361
2362 /* If this is just a dirty<->clean transition, and the array is clean
2363 * and 'events' is odd, we can roll back to the previous clean state */
2364 if (nospares
2365 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2366 && mddev->can_decrease_events
2367 && mddev->events != 1) {
2368 mddev->events--;
2369 mddev->can_decrease_events = 0;
2370 } else {
2371 /* otherwise we have to go forward and ... */
2372 mddev->events ++;
2373 mddev->can_decrease_events = nospares;
2374 }
2375
2376 /*
2377 * This 64-bit counter should never wrap.
2378 * Either we are in around ~1 trillion A.C., assuming
2379 * 1 reboot per second, or we have a bug...
2380 */
2381 WARN_ON(mddev->events == 0);
2382
2383 rdev_for_each(rdev, mddev) {
2384 if (rdev->badblocks.changed)
2385 any_badblocks_changed++;
2386 if (test_bit(Faulty, &rdev->flags))
2387 set_bit(FaultRecorded, &rdev->flags);
2388 }
2389
2390 sync_sbs(mddev, nospares);
2391 spin_unlock(&mddev->lock);
2392
2393 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2394 mdname(mddev), mddev->in_sync);
2395
2396 bitmap_update_sb(mddev->bitmap);
2397 rdev_for_each(rdev, mddev) {
2398 char b[BDEVNAME_SIZE];
2399
2400 if (rdev->sb_loaded != 1)
2401 continue; /* no noise on spare devices */
2402
2403 if (!test_bit(Faulty, &rdev->flags)) {
2404 md_super_write(mddev,rdev,
2405 rdev->sb_start, rdev->sb_size,
2406 rdev->sb_page);
2407 pr_debug("md: (write) %s's sb offset: %llu\n",
2408 bdevname(rdev->bdev, b),
2409 (unsigned long long)rdev->sb_start);
2410 rdev->sb_events = mddev->events;
2411 if (rdev->badblocks.size) {
2412 md_super_write(mddev, rdev,
2413 rdev->badblocks.sector,
2414 rdev->badblocks.size << 9,
2415 rdev->bb_page);
2416 rdev->badblocks.size = 0;
2417 }
2418
2419 } else
2420 pr_debug("md: %s (skipping faulty)\n",
2421 bdevname(rdev->bdev, b));
2422
2423 if (mddev->level == LEVEL_MULTIPATH)
2424 /* only need to write one superblock... */
2425 break;
2426 }
2427 md_super_wait(mddev);
2428 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2429
2430 spin_lock(&mddev->lock);
2431 if (mddev->in_sync != sync_req ||
2432 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2433 /* have to write it out again */
2434 spin_unlock(&mddev->lock);
2435 goto repeat;
2436 }
2437 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2438 spin_unlock(&mddev->lock);
2439 wake_up(&mddev->sb_wait);
2440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2441 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2442
2443 rdev_for_each(rdev, mddev) {
2444 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2445 clear_bit(Blocked, &rdev->flags);
2446
2447 if (any_badblocks_changed)
2448 md_ack_all_badblocks(&rdev->badblocks);
2449 clear_bit(BlockedBadBlocks, &rdev->flags);
2450 wake_up(&rdev->blocked_wait);
2451 }
2452
2453 if (mddev_is_clustered(mddev) && ret == 0)
2454 md_cluster_ops->metadata_update_finish(mddev);
2455 }
2456 EXPORT_SYMBOL(md_update_sb);
2457
2458 static int add_bound_rdev(struct md_rdev *rdev)
2459 {
2460 struct mddev *mddev = rdev->mddev;
2461 int err = 0;
2462
2463 if (!mddev->pers->hot_remove_disk) {
2464 /* If there is hot_add_disk but no hot_remove_disk
2465 * then added disks for geometry changes,
2466 * and should be added immediately.
2467 */
2468 super_types[mddev->major_version].
2469 validate_super(mddev, rdev);
2470 err = mddev->pers->hot_add_disk(mddev, rdev);
2471 if (err) {
2472 unbind_rdev_from_array(rdev);
2473 export_rdev(rdev);
2474 return err;
2475 }
2476 }
2477 sysfs_notify_dirent_safe(rdev->sysfs_state);
2478
2479 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2480 if (mddev->degraded)
2481 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2482 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2483 md_new_event(mddev);
2484 md_wakeup_thread(mddev->thread);
2485 return 0;
2486 }
2487
2488 /* words written to sysfs files may, or may not, be \n terminated.
2489 * We want to accept with case. For this we use cmd_match.
2490 */
2491 static int cmd_match(const char *cmd, const char *str)
2492 {
2493 /* See if cmd, written into a sysfs file, matches
2494 * str. They must either be the same, or cmd can
2495 * have a trailing newline
2496 */
2497 while (*cmd && *str && *cmd == *str) {
2498 cmd++;
2499 str++;
2500 }
2501 if (*cmd == '\n')
2502 cmd++;
2503 if (*str || *cmd)
2504 return 0;
2505 return 1;
2506 }
2507
2508 struct rdev_sysfs_entry {
2509 struct attribute attr;
2510 ssize_t (*show)(struct md_rdev *, char *);
2511 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2512 };
2513
2514 static ssize_t
2515 state_show(struct md_rdev *rdev, char *page)
2516 {
2517 char *sep = "";
2518 size_t len = 0;
2519 unsigned long flags = ACCESS_ONCE(rdev->flags);
2520
2521 if (test_bit(Faulty, &flags) ||
2522 rdev->badblocks.unacked_exist) {
2523 len+= sprintf(page+len, "%sfaulty",sep);
2524 sep = ",";
2525 }
2526 if (test_bit(In_sync, &flags)) {
2527 len += sprintf(page+len, "%sin_sync",sep);
2528 sep = ",";
2529 }
2530 if (test_bit(Journal, &flags)) {
2531 len += sprintf(page+len, "%sjournal",sep);
2532 sep = ",";
2533 }
2534 if (test_bit(WriteMostly, &flags)) {
2535 len += sprintf(page+len, "%swrite_mostly",sep);
2536 sep = ",";
2537 }
2538 if (test_bit(Blocked, &flags) ||
2539 (rdev->badblocks.unacked_exist
2540 && !test_bit(Faulty, &flags))) {
2541 len += sprintf(page+len, "%sblocked", sep);
2542 sep = ",";
2543 }
2544 if (!test_bit(Faulty, &flags) &&
2545 !test_bit(Journal, &flags) &&
2546 !test_bit(In_sync, &flags)) {
2547 len += sprintf(page+len, "%sspare", sep);
2548 sep = ",";
2549 }
2550 if (test_bit(WriteErrorSeen, &flags)) {
2551 len += sprintf(page+len, "%swrite_error", sep);
2552 sep = ",";
2553 }
2554 if (test_bit(WantReplacement, &flags)) {
2555 len += sprintf(page+len, "%swant_replacement", sep);
2556 sep = ",";
2557 }
2558 if (test_bit(Replacement, &flags)) {
2559 len += sprintf(page+len, "%sreplacement", sep);
2560 sep = ",";
2561 }
2562
2563 return len+sprintf(page+len, "\n");
2564 }
2565
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 /* can write
2570 * faulty - simulates an error
2571 * remove - disconnects the device
2572 * writemostly - sets write_mostly
2573 * -writemostly - clears write_mostly
2574 * blocked - sets the Blocked flags
2575 * -blocked - clears the Blocked and possibly simulates an error
2576 * insync - sets Insync providing device isn't active
2577 * -insync - clear Insync for a device with a slot assigned,
2578 * so that it gets rebuilt based on bitmap
2579 * write_error - sets WriteErrorSeen
2580 * -write_error - clears WriteErrorSeen
2581 */
2582 int err = -EINVAL;
2583 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2584 md_error(rdev->mddev, rdev);
2585 if (test_bit(Faulty, &rdev->flags))
2586 err = 0;
2587 else
2588 err = -EBUSY;
2589 } else if (cmd_match(buf, "remove")) {
2590 if (rdev->raid_disk >= 0)
2591 err = -EBUSY;
2592 else {
2593 struct mddev *mddev = rdev->mddev;
2594 err = 0;
2595 if (mddev_is_clustered(mddev))
2596 err = md_cluster_ops->remove_disk(mddev, rdev);
2597
2598 if (err == 0) {
2599 md_kick_rdev_from_array(rdev);
2600 if (mddev->pers)
2601 md_update_sb(mddev, 1);
2602 md_new_event(mddev);
2603 }
2604 }
2605 } else if (cmd_match(buf, "writemostly")) {
2606 set_bit(WriteMostly, &rdev->flags);
2607 err = 0;
2608 } else if (cmd_match(buf, "-writemostly")) {
2609 clear_bit(WriteMostly, &rdev->flags);
2610 err = 0;
2611 } else if (cmd_match(buf, "blocked")) {
2612 set_bit(Blocked, &rdev->flags);
2613 err = 0;
2614 } else if (cmd_match(buf, "-blocked")) {
2615 if (!test_bit(Faulty, &rdev->flags) &&
2616 rdev->badblocks.unacked_exist) {
2617 /* metadata handler doesn't understand badblocks,
2618 * so we need to fail the device
2619 */
2620 md_error(rdev->mddev, rdev);
2621 }
2622 clear_bit(Blocked, &rdev->flags);
2623 clear_bit(BlockedBadBlocks, &rdev->flags);
2624 wake_up(&rdev->blocked_wait);
2625 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2626 md_wakeup_thread(rdev->mddev->thread);
2627
2628 err = 0;
2629 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2630 set_bit(In_sync, &rdev->flags);
2631 err = 0;
2632 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2633 !test_bit(Journal, &rdev->flags)) {
2634 if (rdev->mddev->pers == NULL) {
2635 clear_bit(In_sync, &rdev->flags);
2636 rdev->saved_raid_disk = rdev->raid_disk;
2637 rdev->raid_disk = -1;
2638 err = 0;
2639 }
2640 } else if (cmd_match(buf, "write_error")) {
2641 set_bit(WriteErrorSeen, &rdev->flags);
2642 err = 0;
2643 } else if (cmd_match(buf, "-write_error")) {
2644 clear_bit(WriteErrorSeen, &rdev->flags);
2645 err = 0;
2646 } else if (cmd_match(buf, "want_replacement")) {
2647 /* Any non-spare device that is not a replacement can
2648 * become want_replacement at any time, but we then need to
2649 * check if recovery is needed.
2650 */
2651 if (rdev->raid_disk >= 0 &&
2652 !test_bit(Journal, &rdev->flags) &&
2653 !test_bit(Replacement, &rdev->flags))
2654 set_bit(WantReplacement, &rdev->flags);
2655 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656 md_wakeup_thread(rdev->mddev->thread);
2657 err = 0;
2658 } else if (cmd_match(buf, "-want_replacement")) {
2659 /* Clearing 'want_replacement' is always allowed.
2660 * Once replacements starts it is too late though.
2661 */
2662 err = 0;
2663 clear_bit(WantReplacement, &rdev->flags);
2664 } else if (cmd_match(buf, "replacement")) {
2665 /* Can only set a device as a replacement when array has not
2666 * yet been started. Once running, replacement is automatic
2667 * from spares, or by assigning 'slot'.
2668 */
2669 if (rdev->mddev->pers)
2670 err = -EBUSY;
2671 else {
2672 set_bit(Replacement, &rdev->flags);
2673 err = 0;
2674 }
2675 } else if (cmd_match(buf, "-replacement")) {
2676 /* Similarly, can only clear Replacement before start */
2677 if (rdev->mddev->pers)
2678 err = -EBUSY;
2679 else {
2680 clear_bit(Replacement, &rdev->flags);
2681 err = 0;
2682 }
2683 } else if (cmd_match(buf, "re-add")) {
2684 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2685 /* clear_bit is performed _after_ all the devices
2686 * have their local Faulty bit cleared. If any writes
2687 * happen in the meantime in the local node, they
2688 * will land in the local bitmap, which will be synced
2689 * by this node eventually
2690 */
2691 if (!mddev_is_clustered(rdev->mddev) ||
2692 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2693 clear_bit(Faulty, &rdev->flags);
2694 err = add_bound_rdev(rdev);
2695 }
2696 } else
2697 err = -EBUSY;
2698 }
2699 if (!err)
2700 sysfs_notify_dirent_safe(rdev->sysfs_state);
2701 return err ? err : len;
2702 }
2703 static struct rdev_sysfs_entry rdev_state =
2704 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2705
2706 static ssize_t
2707 errors_show(struct md_rdev *rdev, char *page)
2708 {
2709 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2710 }
2711
2712 static ssize_t
2713 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2714 {
2715 unsigned int n;
2716 int rv;
2717
2718 rv = kstrtouint(buf, 10, &n);
2719 if (rv < 0)
2720 return rv;
2721 atomic_set(&rdev->corrected_errors, n);
2722 return len;
2723 }
2724 static struct rdev_sysfs_entry rdev_errors =
2725 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2726
2727 static ssize_t
2728 slot_show(struct md_rdev *rdev, char *page)
2729 {
2730 if (test_bit(Journal, &rdev->flags))
2731 return sprintf(page, "journal\n");
2732 else if (rdev->raid_disk < 0)
2733 return sprintf(page, "none\n");
2734 else
2735 return sprintf(page, "%d\n", rdev->raid_disk);
2736 }
2737
2738 static ssize_t
2739 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741 int slot;
2742 int err;
2743
2744 if (test_bit(Journal, &rdev->flags))
2745 return -EBUSY;
2746 if (strncmp(buf, "none", 4)==0)
2747 slot = -1;
2748 else {
2749 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2750 if (err < 0)
2751 return err;
2752 }
2753 if (rdev->mddev->pers && slot == -1) {
2754 /* Setting 'slot' on an active array requires also
2755 * updating the 'rd%d' link, and communicating
2756 * with the personality with ->hot_*_disk.
2757 * For now we only support removing
2758 * failed/spare devices. This normally happens automatically,
2759 * but not when the metadata is externally managed.
2760 */
2761 if (rdev->raid_disk == -1)
2762 return -EEXIST;
2763 /* personality does all needed checks */
2764 if (rdev->mddev->pers->hot_remove_disk == NULL)
2765 return -EINVAL;
2766 clear_bit(Blocked, &rdev->flags);
2767 remove_and_add_spares(rdev->mddev, rdev);
2768 if (rdev->raid_disk >= 0)
2769 return -EBUSY;
2770 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2771 md_wakeup_thread(rdev->mddev->thread);
2772 } else if (rdev->mddev->pers) {
2773 /* Activating a spare .. or possibly reactivating
2774 * if we ever get bitmaps working here.
2775 */
2776
2777 if (rdev->raid_disk != -1)
2778 return -EBUSY;
2779
2780 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2781 return -EBUSY;
2782
2783 if (rdev->mddev->pers->hot_add_disk == NULL)
2784 return -EINVAL;
2785
2786 if (slot >= rdev->mddev->raid_disks &&
2787 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788 return -ENOSPC;
2789
2790 rdev->raid_disk = slot;
2791 if (test_bit(In_sync, &rdev->flags))
2792 rdev->saved_raid_disk = slot;
2793 else
2794 rdev->saved_raid_disk = -1;
2795 clear_bit(In_sync, &rdev->flags);
2796 clear_bit(Bitmap_sync, &rdev->flags);
2797 remove_and_add_spares(rdev->mddev, rdev);
2798 if (rdev->raid_disk == -1)
2799 return -EBUSY;
2800 /* don't wakeup anyone, leave that to userspace. */
2801 } else {
2802 if (slot >= rdev->mddev->raid_disks &&
2803 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2804 return -ENOSPC;
2805 rdev->raid_disk = slot;
2806 /* assume it is working */
2807 clear_bit(Faulty, &rdev->flags);
2808 clear_bit(WriteMostly, &rdev->flags);
2809 set_bit(In_sync, &rdev->flags);
2810 sysfs_notify_dirent_safe(rdev->sysfs_state);
2811 }
2812 return len;
2813 }
2814
2815 static struct rdev_sysfs_entry rdev_slot =
2816 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2817
2818 static ssize_t
2819 offset_show(struct md_rdev *rdev, char *page)
2820 {
2821 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2822 }
2823
2824 static ssize_t
2825 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2826 {
2827 unsigned long long offset;
2828 if (kstrtoull(buf, 10, &offset) < 0)
2829 return -EINVAL;
2830 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2831 return -EBUSY;
2832 if (rdev->sectors && rdev->mddev->external)
2833 /* Must set offset before size, so overlap checks
2834 * can be sane */
2835 return -EBUSY;
2836 rdev->data_offset = offset;
2837 rdev->new_data_offset = offset;
2838 return len;
2839 }
2840
2841 static struct rdev_sysfs_entry rdev_offset =
2842 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2843
2844 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2845 {
2846 return sprintf(page, "%llu\n",
2847 (unsigned long long)rdev->new_data_offset);
2848 }
2849
2850 static ssize_t new_offset_store(struct md_rdev *rdev,
2851 const char *buf, size_t len)
2852 {
2853 unsigned long long new_offset;
2854 struct mddev *mddev = rdev->mddev;
2855
2856 if (kstrtoull(buf, 10, &new_offset) < 0)
2857 return -EINVAL;
2858
2859 if (mddev->sync_thread ||
2860 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2861 return -EBUSY;
2862 if (new_offset == rdev->data_offset)
2863 /* reset is always permitted */
2864 ;
2865 else if (new_offset > rdev->data_offset) {
2866 /* must not push array size beyond rdev_sectors */
2867 if (new_offset - rdev->data_offset
2868 + mddev->dev_sectors > rdev->sectors)
2869 return -E2BIG;
2870 }
2871 /* Metadata worries about other space details. */
2872
2873 /* decreasing the offset is inconsistent with a backwards
2874 * reshape.
2875 */
2876 if (new_offset < rdev->data_offset &&
2877 mddev->reshape_backwards)
2878 return -EINVAL;
2879 /* Increasing offset is inconsistent with forwards
2880 * reshape. reshape_direction should be set to
2881 * 'backwards' first.
2882 */
2883 if (new_offset > rdev->data_offset &&
2884 !mddev->reshape_backwards)
2885 return -EINVAL;
2886
2887 if (mddev->pers && mddev->persistent &&
2888 !super_types[mddev->major_version]
2889 .allow_new_offset(rdev, new_offset))
2890 return -E2BIG;
2891 rdev->new_data_offset = new_offset;
2892 if (new_offset > rdev->data_offset)
2893 mddev->reshape_backwards = 1;
2894 else if (new_offset < rdev->data_offset)
2895 mddev->reshape_backwards = 0;
2896
2897 return len;
2898 }
2899 static struct rdev_sysfs_entry rdev_new_offset =
2900 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2901
2902 static ssize_t
2903 rdev_size_show(struct md_rdev *rdev, char *page)
2904 {
2905 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2906 }
2907
2908 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2909 {
2910 /* check if two start/length pairs overlap */
2911 if (s1+l1 <= s2)
2912 return 0;
2913 if (s2+l2 <= s1)
2914 return 0;
2915 return 1;
2916 }
2917
2918 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2919 {
2920 unsigned long long blocks;
2921 sector_t new;
2922
2923 if (kstrtoull(buf, 10, &blocks) < 0)
2924 return -EINVAL;
2925
2926 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2927 return -EINVAL; /* sector conversion overflow */
2928
2929 new = blocks * 2;
2930 if (new != blocks * 2)
2931 return -EINVAL; /* unsigned long long to sector_t overflow */
2932
2933 *sectors = new;
2934 return 0;
2935 }
2936
2937 static ssize_t
2938 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2939 {
2940 struct mddev *my_mddev = rdev->mddev;
2941 sector_t oldsectors = rdev->sectors;
2942 sector_t sectors;
2943
2944 if (test_bit(Journal, &rdev->flags))
2945 return -EBUSY;
2946 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2947 return -EINVAL;
2948 if (rdev->data_offset != rdev->new_data_offset)
2949 return -EINVAL; /* too confusing */
2950 if (my_mddev->pers && rdev->raid_disk >= 0) {
2951 if (my_mddev->persistent) {
2952 sectors = super_types[my_mddev->major_version].
2953 rdev_size_change(rdev, sectors);
2954 if (!sectors)
2955 return -EBUSY;
2956 } else if (!sectors)
2957 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2958 rdev->data_offset;
2959 if (!my_mddev->pers->resize)
2960 /* Cannot change size for RAID0 or Linear etc */
2961 return -EINVAL;
2962 }
2963 if (sectors < my_mddev->dev_sectors)
2964 return -EINVAL; /* component must fit device */
2965
2966 rdev->sectors = sectors;
2967 if (sectors > oldsectors && my_mddev->external) {
2968 /* Need to check that all other rdevs with the same
2969 * ->bdev do not overlap. 'rcu' is sufficient to walk
2970 * the rdev lists safely.
2971 * This check does not provide a hard guarantee, it
2972 * just helps avoid dangerous mistakes.
2973 */
2974 struct mddev *mddev;
2975 int overlap = 0;
2976 struct list_head *tmp;
2977
2978 rcu_read_lock();
2979 for_each_mddev(mddev, tmp) {
2980 struct md_rdev *rdev2;
2981
2982 rdev_for_each(rdev2, mddev)
2983 if (rdev->bdev == rdev2->bdev &&
2984 rdev != rdev2 &&
2985 overlaps(rdev->data_offset, rdev->sectors,
2986 rdev2->data_offset,
2987 rdev2->sectors)) {
2988 overlap = 1;
2989 break;
2990 }
2991 if (overlap) {
2992 mddev_put(mddev);
2993 break;
2994 }
2995 }
2996 rcu_read_unlock();
2997 if (overlap) {
2998 /* Someone else could have slipped in a size
2999 * change here, but doing so is just silly.
3000 * We put oldsectors back because we *know* it is
3001 * safe, and trust userspace not to race with
3002 * itself
3003 */
3004 rdev->sectors = oldsectors;
3005 return -EBUSY;
3006 }
3007 }
3008 return len;
3009 }
3010
3011 static struct rdev_sysfs_entry rdev_size =
3012 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3013
3014 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3015 {
3016 unsigned long long recovery_start = rdev->recovery_offset;
3017
3018 if (test_bit(In_sync, &rdev->flags) ||
3019 recovery_start == MaxSector)
3020 return sprintf(page, "none\n");
3021
3022 return sprintf(page, "%llu\n", recovery_start);
3023 }
3024
3025 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3026 {
3027 unsigned long long recovery_start;
3028
3029 if (cmd_match(buf, "none"))
3030 recovery_start = MaxSector;
3031 else if (kstrtoull(buf, 10, &recovery_start))
3032 return -EINVAL;
3033
3034 if (rdev->mddev->pers &&
3035 rdev->raid_disk >= 0)
3036 return -EBUSY;
3037
3038 rdev->recovery_offset = recovery_start;
3039 if (recovery_start == MaxSector)
3040 set_bit(In_sync, &rdev->flags);
3041 else
3042 clear_bit(In_sync, &rdev->flags);
3043 return len;
3044 }
3045
3046 static struct rdev_sysfs_entry rdev_recovery_start =
3047 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3048
3049 static ssize_t
3050 badblocks_show(struct badblocks *bb, char *page, int unack);
3051 static ssize_t
3052 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3053
3054 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3055 {
3056 return badblocks_show(&rdev->badblocks, page, 0);
3057 }
3058 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3059 {
3060 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3061 /* Maybe that ack was all we needed */
3062 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3063 wake_up(&rdev->blocked_wait);
3064 return rv;
3065 }
3066 static struct rdev_sysfs_entry rdev_bad_blocks =
3067 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3068
3069 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3070 {
3071 return badblocks_show(&rdev->badblocks, page, 1);
3072 }
3073 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3074 {
3075 return badblocks_store(&rdev->badblocks, page, len, 1);
3076 }
3077 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3078 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3079
3080 static struct attribute *rdev_default_attrs[] = {
3081 &rdev_state.attr,
3082 &rdev_errors.attr,
3083 &rdev_slot.attr,
3084 &rdev_offset.attr,
3085 &rdev_new_offset.attr,
3086 &rdev_size.attr,
3087 &rdev_recovery_start.attr,
3088 &rdev_bad_blocks.attr,
3089 &rdev_unack_bad_blocks.attr,
3090 NULL,
3091 };
3092 static ssize_t
3093 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3094 {
3095 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3096 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3097
3098 if (!entry->show)
3099 return -EIO;
3100 if (!rdev->mddev)
3101 return -EBUSY;
3102 return entry->show(rdev, page);
3103 }
3104
3105 static ssize_t
3106 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3107 const char *page, size_t length)
3108 {
3109 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3110 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3111 ssize_t rv;
3112 struct mddev *mddev = rdev->mddev;
3113
3114 if (!entry->store)
3115 return -EIO;
3116 if (!capable(CAP_SYS_ADMIN))
3117 return -EACCES;
3118 rv = mddev ? mddev_lock(mddev): -EBUSY;
3119 if (!rv) {
3120 if (rdev->mddev == NULL)
3121 rv = -EBUSY;
3122 else
3123 rv = entry->store(rdev, page, length);
3124 mddev_unlock(mddev);
3125 }
3126 return rv;
3127 }
3128
3129 static void rdev_free(struct kobject *ko)
3130 {
3131 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3132 kfree(rdev);
3133 }
3134 static const struct sysfs_ops rdev_sysfs_ops = {
3135 .show = rdev_attr_show,
3136 .store = rdev_attr_store,
3137 };
3138 static struct kobj_type rdev_ktype = {
3139 .release = rdev_free,
3140 .sysfs_ops = &rdev_sysfs_ops,
3141 .default_attrs = rdev_default_attrs,
3142 };
3143
3144 int md_rdev_init(struct md_rdev *rdev)
3145 {
3146 rdev->desc_nr = -1;
3147 rdev->saved_raid_disk = -1;
3148 rdev->raid_disk = -1;
3149 rdev->flags = 0;
3150 rdev->data_offset = 0;
3151 rdev->new_data_offset = 0;
3152 rdev->sb_events = 0;
3153 rdev->last_read_error.tv_sec = 0;
3154 rdev->last_read_error.tv_nsec = 0;
3155 rdev->sb_loaded = 0;
3156 rdev->bb_page = NULL;
3157 atomic_set(&rdev->nr_pending, 0);
3158 atomic_set(&rdev->read_errors, 0);
3159 atomic_set(&rdev->corrected_errors, 0);
3160
3161 INIT_LIST_HEAD(&rdev->same_set);
3162 init_waitqueue_head(&rdev->blocked_wait);
3163
3164 /* Add space to store bad block list.
3165 * This reserves the space even on arrays where it cannot
3166 * be used - I wonder if that matters
3167 */
3168 rdev->badblocks.count = 0;
3169 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3170 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3171 seqlock_init(&rdev->badblocks.lock);
3172 if (rdev->badblocks.page == NULL)
3173 return -ENOMEM;
3174
3175 return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(md_rdev_init);
3178 /*
3179 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3180 *
3181 * mark the device faulty if:
3182 *
3183 * - the device is nonexistent (zero size)
3184 * - the device has no valid superblock
3185 *
3186 * a faulty rdev _never_ has rdev->sb set.
3187 */
3188 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3189 {
3190 char b[BDEVNAME_SIZE];
3191 int err;
3192 struct md_rdev *rdev;
3193 sector_t size;
3194
3195 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3196 if (!rdev) {
3197 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3198 return ERR_PTR(-ENOMEM);
3199 }
3200
3201 err = md_rdev_init(rdev);
3202 if (err)
3203 goto abort_free;
3204 err = alloc_disk_sb(rdev);
3205 if (err)
3206 goto abort_free;
3207
3208 err = lock_rdev(rdev, newdev, super_format == -2);
3209 if (err)
3210 goto abort_free;
3211
3212 kobject_init(&rdev->kobj, &rdev_ktype);
3213
3214 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3215 if (!size) {
3216 printk(KERN_WARNING
3217 "md: %s has zero or unknown size, marking faulty!\n",
3218 bdevname(rdev->bdev,b));
3219 err = -EINVAL;
3220 goto abort_free;
3221 }
3222
3223 if (super_format >= 0) {
3224 err = super_types[super_format].
3225 load_super(rdev, NULL, super_minor);
3226 if (err == -EINVAL) {
3227 printk(KERN_WARNING
3228 "md: %s does not have a valid v%d.%d "
3229 "superblock, not importing!\n",
3230 bdevname(rdev->bdev,b),
3231 super_format, super_minor);
3232 goto abort_free;
3233 }
3234 if (err < 0) {
3235 printk(KERN_WARNING
3236 "md: could not read %s's sb, not importing!\n",
3237 bdevname(rdev->bdev,b));
3238 goto abort_free;
3239 }
3240 }
3241
3242 return rdev;
3243
3244 abort_free:
3245 if (rdev->bdev)
3246 unlock_rdev(rdev);
3247 md_rdev_clear(rdev);
3248 kfree(rdev);
3249 return ERR_PTR(err);
3250 }
3251
3252 /*
3253 * Check a full RAID array for plausibility
3254 */
3255
3256 static void analyze_sbs(struct mddev *mddev)
3257 {
3258 int i;
3259 struct md_rdev *rdev, *freshest, *tmp;
3260 char b[BDEVNAME_SIZE];
3261
3262 freshest = NULL;
3263 rdev_for_each_safe(rdev, tmp, mddev)
3264 switch (super_types[mddev->major_version].
3265 load_super(rdev, freshest, mddev->minor_version)) {
3266 case 1:
3267 freshest = rdev;
3268 break;
3269 case 0:
3270 break;
3271 default:
3272 printk( KERN_ERR \
3273 "md: fatal superblock inconsistency in %s"
3274 " -- removing from array\n",
3275 bdevname(rdev->bdev,b));
3276 md_kick_rdev_from_array(rdev);
3277 }
3278
3279 super_types[mddev->major_version].
3280 validate_super(mddev, freshest);
3281
3282 i = 0;
3283 rdev_for_each_safe(rdev, tmp, mddev) {
3284 if (mddev->max_disks &&
3285 (rdev->desc_nr >= mddev->max_disks ||
3286 i > mddev->max_disks)) {
3287 printk(KERN_WARNING
3288 "md: %s: %s: only %d devices permitted\n",
3289 mdname(mddev), bdevname(rdev->bdev, b),
3290 mddev->max_disks);
3291 md_kick_rdev_from_array(rdev);
3292 continue;
3293 }
3294 if (rdev != freshest) {
3295 if (super_types[mddev->major_version].
3296 validate_super(mddev, rdev)) {
3297 printk(KERN_WARNING "md: kicking non-fresh %s"
3298 " from array!\n",
3299 bdevname(rdev->bdev,b));
3300 md_kick_rdev_from_array(rdev);
3301 continue;
3302 }
3303 }
3304 if (mddev->level == LEVEL_MULTIPATH) {
3305 rdev->desc_nr = i++;
3306 rdev->raid_disk = rdev->desc_nr;
3307 set_bit(In_sync, &rdev->flags);
3308 } else if (rdev->raid_disk >=
3309 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3310 !test_bit(Journal, &rdev->flags)) {
3311 rdev->raid_disk = -1;
3312 clear_bit(In_sync, &rdev->flags);
3313 }
3314 }
3315 }
3316
3317 /* Read a fixed-point number.
3318 * Numbers in sysfs attributes should be in "standard" units where
3319 * possible, so time should be in seconds.
3320 * However we internally use a a much smaller unit such as
3321 * milliseconds or jiffies.
3322 * This function takes a decimal number with a possible fractional
3323 * component, and produces an integer which is the result of
3324 * multiplying that number by 10^'scale'.
3325 * all without any floating-point arithmetic.
3326 */
3327 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3328 {
3329 unsigned long result = 0;
3330 long decimals = -1;
3331 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3332 if (*cp == '.')
3333 decimals = 0;
3334 else if (decimals < scale) {
3335 unsigned int value;
3336 value = *cp - '0';
3337 result = result * 10 + value;
3338 if (decimals >= 0)
3339 decimals++;
3340 }
3341 cp++;
3342 }
3343 if (*cp == '\n')
3344 cp++;
3345 if (*cp)
3346 return -EINVAL;
3347 if (decimals < 0)
3348 decimals = 0;
3349 while (decimals < scale) {
3350 result *= 10;
3351 decimals ++;
3352 }
3353 *res = result;
3354 return 0;
3355 }
3356
3357 static ssize_t
3358 safe_delay_show(struct mddev *mddev, char *page)
3359 {
3360 int msec = (mddev->safemode_delay*1000)/HZ;
3361 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3362 }
3363 static ssize_t
3364 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3365 {
3366 unsigned long msec;
3367
3368 if (mddev_is_clustered(mddev)) {
3369 pr_info("md: Safemode is disabled for clustered mode\n");
3370 return -EINVAL;
3371 }
3372
3373 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3374 return -EINVAL;
3375 if (msec == 0)
3376 mddev->safemode_delay = 0;
3377 else {
3378 unsigned long old_delay = mddev->safemode_delay;
3379 unsigned long new_delay = (msec*HZ)/1000;
3380
3381 if (new_delay == 0)
3382 new_delay = 1;
3383 mddev->safemode_delay = new_delay;
3384 if (new_delay < old_delay || old_delay == 0)
3385 mod_timer(&mddev->safemode_timer, jiffies+1);
3386 }
3387 return len;
3388 }
3389 static struct md_sysfs_entry md_safe_delay =
3390 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3391
3392 static ssize_t
3393 level_show(struct mddev *mddev, char *page)
3394 {
3395 struct md_personality *p;
3396 int ret;
3397 spin_lock(&mddev->lock);
3398 p = mddev->pers;
3399 if (p)
3400 ret = sprintf(page, "%s\n", p->name);
3401 else if (mddev->clevel[0])
3402 ret = sprintf(page, "%s\n", mddev->clevel);
3403 else if (mddev->level != LEVEL_NONE)
3404 ret = sprintf(page, "%d\n", mddev->level);
3405 else
3406 ret = 0;
3407 spin_unlock(&mddev->lock);
3408 return ret;
3409 }
3410
3411 static ssize_t
3412 level_store(struct mddev *mddev, const char *buf, size_t len)
3413 {
3414 char clevel[16];
3415 ssize_t rv;
3416 size_t slen = len;
3417 struct md_personality *pers, *oldpers;
3418 long level;
3419 void *priv, *oldpriv;
3420 struct md_rdev *rdev;
3421
3422 if (slen == 0 || slen >= sizeof(clevel))
3423 return -EINVAL;
3424
3425 rv = mddev_lock(mddev);
3426 if (rv)
3427 return rv;
3428
3429 if (mddev->pers == NULL) {
3430 strncpy(mddev->clevel, buf, slen);
3431 if (mddev->clevel[slen-1] == '\n')
3432 slen--;
3433 mddev->clevel[slen] = 0;
3434 mddev->level = LEVEL_NONE;
3435 rv = len;
3436 goto out_unlock;
3437 }
3438 rv = -EROFS;
3439 if (mddev->ro)
3440 goto out_unlock;
3441
3442 /* request to change the personality. Need to ensure:
3443 * - array is not engaged in resync/recovery/reshape
3444 * - old personality can be suspended
3445 * - new personality will access other array.
3446 */
3447
3448 rv = -EBUSY;
3449 if (mddev->sync_thread ||
3450 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3451 mddev->reshape_position != MaxSector ||
3452 mddev->sysfs_active)
3453 goto out_unlock;
3454
3455 rv = -EINVAL;
3456 if (!mddev->pers->quiesce) {
3457 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3458 mdname(mddev), mddev->pers->name);
3459 goto out_unlock;
3460 }
3461
3462 /* Now find the new personality */
3463 strncpy(clevel, buf, slen);
3464 if (clevel[slen-1] == '\n')
3465 slen--;
3466 clevel[slen] = 0;
3467 if (kstrtol(clevel, 10, &level))
3468 level = LEVEL_NONE;
3469
3470 if (request_module("md-%s", clevel) != 0)
3471 request_module("md-level-%s", clevel);
3472 spin_lock(&pers_lock);
3473 pers = find_pers(level, clevel);
3474 if (!pers || !try_module_get(pers->owner)) {
3475 spin_unlock(&pers_lock);
3476 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3477 rv = -EINVAL;
3478 goto out_unlock;
3479 }
3480 spin_unlock(&pers_lock);
3481
3482 if (pers == mddev->pers) {
3483 /* Nothing to do! */
3484 module_put(pers->owner);
3485 rv = len;
3486 goto out_unlock;
3487 }
3488 if (!pers->takeover) {
3489 module_put(pers->owner);
3490 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3491 mdname(mddev), clevel);
3492 rv = -EINVAL;
3493 goto out_unlock;
3494 }
3495
3496 rdev_for_each(rdev, mddev)
3497 rdev->new_raid_disk = rdev->raid_disk;
3498
3499 /* ->takeover must set new_* and/or delta_disks
3500 * if it succeeds, and may set them when it fails.
3501 */
3502 priv = pers->takeover(mddev);
3503 if (IS_ERR(priv)) {
3504 mddev->new_level = mddev->level;
3505 mddev->new_layout = mddev->layout;
3506 mddev->new_chunk_sectors = mddev->chunk_sectors;
3507 mddev->raid_disks -= mddev->delta_disks;
3508 mddev->delta_disks = 0;
3509 mddev->reshape_backwards = 0;
3510 module_put(pers->owner);
3511 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3512 mdname(mddev), clevel);
3513 rv = PTR_ERR(priv);
3514 goto out_unlock;
3515 }
3516
3517 /* Looks like we have a winner */
3518 mddev_suspend(mddev);
3519 mddev_detach(mddev);
3520
3521 spin_lock(&mddev->lock);
3522 oldpers = mddev->pers;
3523 oldpriv = mddev->private;
3524 mddev->pers = pers;
3525 mddev->private = priv;
3526 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3527 mddev->level = mddev->new_level;
3528 mddev->layout = mddev->new_layout;
3529 mddev->chunk_sectors = mddev->new_chunk_sectors;
3530 mddev->delta_disks = 0;
3531 mddev->reshape_backwards = 0;
3532 mddev->degraded = 0;
3533 spin_unlock(&mddev->lock);
3534
3535 if (oldpers->sync_request == NULL &&
3536 mddev->external) {
3537 /* We are converting from a no-redundancy array
3538 * to a redundancy array and metadata is managed
3539 * externally so we need to be sure that writes
3540 * won't block due to a need to transition
3541 * clean->dirty
3542 * until external management is started.
3543 */
3544 mddev->in_sync = 0;
3545 mddev->safemode_delay = 0;
3546 mddev->safemode = 0;
3547 }
3548
3549 oldpers->free(mddev, oldpriv);
3550
3551 if (oldpers->sync_request == NULL &&
3552 pers->sync_request != NULL) {
3553 /* need to add the md_redundancy_group */
3554 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555 printk(KERN_WARNING
3556 "md: cannot register extra attributes for %s\n",
3557 mdname(mddev));
3558 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3559 }
3560 if (oldpers->sync_request != NULL &&
3561 pers->sync_request == NULL) {
3562 /* need to remove the md_redundancy_group */
3563 if (mddev->to_remove == NULL)
3564 mddev->to_remove = &md_redundancy_group;
3565 }
3566
3567 rdev_for_each(rdev, mddev) {
3568 if (rdev->raid_disk < 0)
3569 continue;
3570 if (rdev->new_raid_disk >= mddev->raid_disks)
3571 rdev->new_raid_disk = -1;
3572 if (rdev->new_raid_disk == rdev->raid_disk)
3573 continue;
3574 sysfs_unlink_rdev(mddev, rdev);
3575 }
3576 rdev_for_each(rdev, mddev) {
3577 if (rdev->raid_disk < 0)
3578 continue;
3579 if (rdev->new_raid_disk == rdev->raid_disk)
3580 continue;
3581 rdev->raid_disk = rdev->new_raid_disk;
3582 if (rdev->raid_disk < 0)
3583 clear_bit(In_sync, &rdev->flags);
3584 else {
3585 if (sysfs_link_rdev(mddev, rdev))
3586 printk(KERN_WARNING "md: cannot register rd%d"
3587 " for %s after level change\n",
3588 rdev->raid_disk, mdname(mddev));
3589 }
3590 }
3591
3592 if (pers->sync_request == NULL) {
3593 /* this is now an array without redundancy, so
3594 * it must always be in_sync
3595 */
3596 mddev->in_sync = 1;
3597 del_timer_sync(&mddev->safemode_timer);
3598 }
3599 blk_set_stacking_limits(&mddev->queue->limits);
3600 pers->run(mddev);
3601 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3602 mddev_resume(mddev);
3603 if (!mddev->thread)
3604 md_update_sb(mddev, 1);
3605 sysfs_notify(&mddev->kobj, NULL, "level");
3606 md_new_event(mddev);
3607 rv = len;
3608 out_unlock:
3609 mddev_unlock(mddev);
3610 return rv;
3611 }
3612
3613 static struct md_sysfs_entry md_level =
3614 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3615
3616 static ssize_t
3617 layout_show(struct mddev *mddev, char *page)
3618 {
3619 /* just a number, not meaningful for all levels */
3620 if (mddev->reshape_position != MaxSector &&
3621 mddev->layout != mddev->new_layout)
3622 return sprintf(page, "%d (%d)\n",
3623 mddev->new_layout, mddev->layout);
3624 return sprintf(page, "%d\n", mddev->layout);
3625 }
3626
3627 static ssize_t
3628 layout_store(struct mddev *mddev, const char *buf, size_t len)
3629 {
3630 unsigned int n;
3631 int err;
3632
3633 err = kstrtouint(buf, 10, &n);
3634 if (err < 0)
3635 return err;
3636 err = mddev_lock(mddev);
3637 if (err)
3638 return err;
3639
3640 if (mddev->pers) {
3641 if (mddev->pers->check_reshape == NULL)
3642 err = -EBUSY;
3643 else if (mddev->ro)
3644 err = -EROFS;
3645 else {
3646 mddev->new_layout = n;
3647 err = mddev->pers->check_reshape(mddev);
3648 if (err)
3649 mddev->new_layout = mddev->layout;
3650 }
3651 } else {
3652 mddev->new_layout = n;
3653 if (mddev->reshape_position == MaxSector)
3654 mddev->layout = n;
3655 }
3656 mddev_unlock(mddev);
3657 return err ?: len;
3658 }
3659 static struct md_sysfs_entry md_layout =
3660 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3661
3662 static ssize_t
3663 raid_disks_show(struct mddev *mddev, char *page)
3664 {
3665 if (mddev->raid_disks == 0)
3666 return 0;
3667 if (mddev->reshape_position != MaxSector &&
3668 mddev->delta_disks != 0)
3669 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3670 mddev->raid_disks - mddev->delta_disks);
3671 return sprintf(page, "%d\n", mddev->raid_disks);
3672 }
3673
3674 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3675
3676 static ssize_t
3677 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3678 {
3679 unsigned int n;
3680 int err;
3681
3682 err = kstrtouint(buf, 10, &n);
3683 if (err < 0)
3684 return err;
3685
3686 err = mddev_lock(mddev);
3687 if (err)
3688 return err;
3689 if (mddev->pers)
3690 err = update_raid_disks(mddev, n);
3691 else if (mddev->reshape_position != MaxSector) {
3692 struct md_rdev *rdev;
3693 int olddisks = mddev->raid_disks - mddev->delta_disks;
3694
3695 err = -EINVAL;
3696 rdev_for_each(rdev, mddev) {
3697 if (olddisks < n &&
3698 rdev->data_offset < rdev->new_data_offset)
3699 goto out_unlock;
3700 if (olddisks > n &&
3701 rdev->data_offset > rdev->new_data_offset)
3702 goto out_unlock;
3703 }
3704 err = 0;
3705 mddev->delta_disks = n - olddisks;
3706 mddev->raid_disks = n;
3707 mddev->reshape_backwards = (mddev->delta_disks < 0);
3708 } else
3709 mddev->raid_disks = n;
3710 out_unlock:
3711 mddev_unlock(mddev);
3712 return err ? err : len;
3713 }
3714 static struct md_sysfs_entry md_raid_disks =
3715 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3716
3717 static ssize_t
3718 chunk_size_show(struct mddev *mddev, char *page)
3719 {
3720 if (mddev->reshape_position != MaxSector &&
3721 mddev->chunk_sectors != mddev->new_chunk_sectors)
3722 return sprintf(page, "%d (%d)\n",
3723 mddev->new_chunk_sectors << 9,
3724 mddev->chunk_sectors << 9);
3725 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3726 }
3727
3728 static ssize_t
3729 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3730 {
3731 unsigned long n;
3732 int err;
3733
3734 err = kstrtoul(buf, 10, &n);
3735 if (err < 0)
3736 return err;
3737
3738 err = mddev_lock(mddev);
3739 if (err)
3740 return err;
3741 if (mddev->pers) {
3742 if (mddev->pers->check_reshape == NULL)
3743 err = -EBUSY;
3744 else if (mddev->ro)
3745 err = -EROFS;
3746 else {
3747 mddev->new_chunk_sectors = n >> 9;
3748 err = mddev->pers->check_reshape(mddev);
3749 if (err)
3750 mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 }
3752 } else {
3753 mddev->new_chunk_sectors = n >> 9;
3754 if (mddev->reshape_position == MaxSector)
3755 mddev->chunk_sectors = n >> 9;
3756 }
3757 mddev_unlock(mddev);
3758 return err ?: len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 if (mddev->recovery_cp == MaxSector)
3767 return sprintf(page, "none\n");
3768 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 unsigned long long n;
3775 int err;
3776
3777 if (cmd_match(buf, "none"))
3778 n = MaxSector;
3779 else {
3780 err = kstrtoull(buf, 10, &n);
3781 if (err < 0)
3782 return err;
3783 if (n != (sector_t)n)
3784 return -EINVAL;
3785 }
3786
3787 err = mddev_lock(mddev);
3788 if (err)
3789 return err;
3790 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3791 err = -EBUSY;
3792
3793 if (!err) {
3794 mddev->recovery_cp = n;
3795 if (mddev->pers)
3796 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3797 }
3798 mddev_unlock(mddev);
3799 return err ?: len;
3800 }
3801 static struct md_sysfs_entry md_resync_start =
3802 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3803 resync_start_show, resync_start_store);
3804
3805 /*
3806 * The array state can be:
3807 *
3808 * clear
3809 * No devices, no size, no level
3810 * Equivalent to STOP_ARRAY ioctl
3811 * inactive
3812 * May have some settings, but array is not active
3813 * all IO results in error
3814 * When written, doesn't tear down array, but just stops it
3815 * suspended (not supported yet)
3816 * All IO requests will block. The array can be reconfigured.
3817 * Writing this, if accepted, will block until array is quiescent
3818 * readonly
3819 * no resync can happen. no superblocks get written.
3820 * write requests fail
3821 * read-auto
3822 * like readonly, but behaves like 'clean' on a write request.
3823 *
3824 * clean - no pending writes, but otherwise active.
3825 * When written to inactive array, starts without resync
3826 * If a write request arrives then
3827 * if metadata is known, mark 'dirty' and switch to 'active'.
3828 * if not known, block and switch to write-pending
3829 * If written to an active array that has pending writes, then fails.
3830 * active
3831 * fully active: IO and resync can be happening.
3832 * When written to inactive array, starts with resync
3833 *
3834 * write-pending
3835 * clean, but writes are blocked waiting for 'active' to be written.
3836 *
3837 * active-idle
3838 * like active, but no writes have been seen for a while (100msec).
3839 *
3840 */
3841 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3842 write_pending, active_idle, bad_word};
3843 static char *array_states[] = {
3844 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3845 "write-pending", "active-idle", NULL };
3846
3847 static int match_word(const char *word, char **list)
3848 {
3849 int n;
3850 for (n=0; list[n]; n++)
3851 if (cmd_match(word, list[n]))
3852 break;
3853 return n;
3854 }
3855
3856 static ssize_t
3857 array_state_show(struct mddev *mddev, char *page)
3858 {
3859 enum array_state st = inactive;
3860
3861 if (mddev->pers)
3862 switch(mddev->ro) {
3863 case 1:
3864 st = readonly;
3865 break;
3866 case 2:
3867 st = read_auto;
3868 break;
3869 case 0:
3870 if (mddev->in_sync)
3871 st = clean;
3872 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3873 st = write_pending;
3874 else if (mddev->safemode)
3875 st = active_idle;
3876 else
3877 st = active;
3878 }
3879 else {
3880 if (list_empty(&mddev->disks) &&
3881 mddev->raid_disks == 0 &&
3882 mddev->dev_sectors == 0)
3883 st = clear;
3884 else
3885 st = inactive;
3886 }
3887 return sprintf(page, "%s\n", array_states[st]);
3888 }
3889
3890 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3891 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3892 static int do_md_run(struct mddev *mddev);
3893 static int restart_array(struct mddev *mddev);
3894
3895 static ssize_t
3896 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3897 {
3898 int err;
3899 enum array_state st = match_word(buf, array_states);
3900
3901 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3902 /* don't take reconfig_mutex when toggling between
3903 * clean and active
3904 */
3905 spin_lock(&mddev->lock);
3906 if (st == active) {
3907 restart_array(mddev);
3908 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3909 wake_up(&mddev->sb_wait);
3910 err = 0;
3911 } else /* st == clean */ {
3912 restart_array(mddev);
3913 if (atomic_read(&mddev->writes_pending) == 0) {
3914 if (mddev->in_sync == 0) {
3915 mddev->in_sync = 1;
3916 if (mddev->safemode == 1)
3917 mddev->safemode = 0;
3918 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3919 }
3920 err = 0;
3921 } else
3922 err = -EBUSY;
3923 }
3924 spin_unlock(&mddev->lock);
3925 return err ?: len;
3926 }
3927 err = mddev_lock(mddev);
3928 if (err)
3929 return err;
3930 err = -EINVAL;
3931 switch(st) {
3932 case bad_word:
3933 break;
3934 case clear:
3935 /* stopping an active array */
3936 err = do_md_stop(mddev, 0, NULL);
3937 break;
3938 case inactive:
3939 /* stopping an active array */
3940 if (mddev->pers)
3941 err = do_md_stop(mddev, 2, NULL);
3942 else
3943 err = 0; /* already inactive */
3944 break;
3945 case suspended:
3946 break; /* not supported yet */
3947 case readonly:
3948 if (mddev->pers)
3949 err = md_set_readonly(mddev, NULL);
3950 else {
3951 mddev->ro = 1;
3952 set_disk_ro(mddev->gendisk, 1);
3953 err = do_md_run(mddev);
3954 }
3955 break;
3956 case read_auto:
3957 if (mddev->pers) {
3958 if (mddev->ro == 0)
3959 err = md_set_readonly(mddev, NULL);
3960 else if (mddev->ro == 1)
3961 err = restart_array(mddev);
3962 if (err == 0) {
3963 mddev->ro = 2;
3964 set_disk_ro(mddev->gendisk, 0);
3965 }
3966 } else {
3967 mddev->ro = 2;
3968 err = do_md_run(mddev);
3969 }
3970 break;
3971 case clean:
3972 if (mddev->pers) {
3973 err = restart_array(mddev);
3974 if (err)
3975 break;
3976 spin_lock(&mddev->lock);
3977 if (atomic_read(&mddev->writes_pending) == 0) {
3978 if (mddev->in_sync == 0) {
3979 mddev->in_sync = 1;
3980 if (mddev->safemode == 1)
3981 mddev->safemode = 0;
3982 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3983 }
3984 err = 0;
3985 } else
3986 err = -EBUSY;
3987 spin_unlock(&mddev->lock);
3988 } else
3989 err = -EINVAL;
3990 break;
3991 case active:
3992 if (mddev->pers) {
3993 err = restart_array(mddev);
3994 if (err)
3995 break;
3996 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3997 wake_up(&mddev->sb_wait);
3998 err = 0;
3999 } else {
4000 mddev->ro = 0;
4001 set_disk_ro(mddev->gendisk, 0);
4002 err = do_md_run(mddev);
4003 }
4004 break;
4005 case write_pending:
4006 case active_idle:
4007 /* these cannot be set */
4008 break;
4009 }
4010
4011 if (!err) {
4012 if (mddev->hold_active == UNTIL_IOCTL)
4013 mddev->hold_active = 0;
4014 sysfs_notify_dirent_safe(mddev->sysfs_state);
4015 }
4016 mddev_unlock(mddev);
4017 return err ?: len;
4018 }
4019 static struct md_sysfs_entry md_array_state =
4020 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4021
4022 static ssize_t
4023 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4024 return sprintf(page, "%d\n",
4025 atomic_read(&mddev->max_corr_read_errors));
4026 }
4027
4028 static ssize_t
4029 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4030 {
4031 unsigned int n;
4032 int rv;
4033
4034 rv = kstrtouint(buf, 10, &n);
4035 if (rv < 0)
4036 return rv;
4037 atomic_set(&mddev->max_corr_read_errors, n);
4038 return len;
4039 }
4040
4041 static struct md_sysfs_entry max_corr_read_errors =
4042 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4043 max_corrected_read_errors_store);
4044
4045 static ssize_t
4046 null_show(struct mddev *mddev, char *page)
4047 {
4048 return -EINVAL;
4049 }
4050
4051 static ssize_t
4052 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4053 {
4054 /* buf must be %d:%d\n? giving major and minor numbers */
4055 /* The new device is added to the array.
4056 * If the array has a persistent superblock, we read the
4057 * superblock to initialise info and check validity.
4058 * Otherwise, only checking done is that in bind_rdev_to_array,
4059 * which mainly checks size.
4060 */
4061 char *e;
4062 int major = simple_strtoul(buf, &e, 10);
4063 int minor;
4064 dev_t dev;
4065 struct md_rdev *rdev;
4066 int err;
4067
4068 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4069 return -EINVAL;
4070 minor = simple_strtoul(e+1, &e, 10);
4071 if (*e && *e != '\n')
4072 return -EINVAL;
4073 dev = MKDEV(major, minor);
4074 if (major != MAJOR(dev) ||
4075 minor != MINOR(dev))
4076 return -EOVERFLOW;
4077
4078 flush_workqueue(md_misc_wq);
4079
4080 err = mddev_lock(mddev);
4081 if (err)
4082 return err;
4083 if (mddev->persistent) {
4084 rdev = md_import_device(dev, mddev->major_version,
4085 mddev->minor_version);
4086 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4087 struct md_rdev *rdev0
4088 = list_entry(mddev->disks.next,
4089 struct md_rdev, same_set);
4090 err = super_types[mddev->major_version]
4091 .load_super(rdev, rdev0, mddev->minor_version);
4092 if (err < 0)
4093 goto out;
4094 }
4095 } else if (mddev->external)
4096 rdev = md_import_device(dev, -2, -1);
4097 else
4098 rdev = md_import_device(dev, -1, -1);
4099
4100 if (IS_ERR(rdev)) {
4101 mddev_unlock(mddev);
4102 return PTR_ERR(rdev);
4103 }
4104 err = bind_rdev_to_array(rdev, mddev);
4105 out:
4106 if (err)
4107 export_rdev(rdev);
4108 mddev_unlock(mddev);
4109 return err ? err : len;
4110 }
4111
4112 static struct md_sysfs_entry md_new_device =
4113 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4114
4115 static ssize_t
4116 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4117 {
4118 char *end;
4119 unsigned long chunk, end_chunk;
4120 int err;
4121
4122 err = mddev_lock(mddev);
4123 if (err)
4124 return err;
4125 if (!mddev->bitmap)
4126 goto out;
4127 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4128 while (*buf) {
4129 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4130 if (buf == end) break;
4131 if (*end == '-') { /* range */
4132 buf = end + 1;
4133 end_chunk = simple_strtoul(buf, &end, 0);
4134 if (buf == end) break;
4135 }
4136 if (*end && !isspace(*end)) break;
4137 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4138 buf = skip_spaces(end);
4139 }
4140 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4141 out:
4142 mddev_unlock(mddev);
4143 return len;
4144 }
4145
4146 static struct md_sysfs_entry md_bitmap =
4147 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4148
4149 static ssize_t
4150 size_show(struct mddev *mddev, char *page)
4151 {
4152 return sprintf(page, "%llu\n",
4153 (unsigned long long)mddev->dev_sectors / 2);
4154 }
4155
4156 static int update_size(struct mddev *mddev, sector_t num_sectors);
4157
4158 static ssize_t
4159 size_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161 /* If array is inactive, we can reduce the component size, but
4162 * not increase it (except from 0).
4163 * If array is active, we can try an on-line resize
4164 */
4165 sector_t sectors;
4166 int err = strict_blocks_to_sectors(buf, &sectors);
4167
4168 if (err < 0)
4169 return err;
4170 err = mddev_lock(mddev);
4171 if (err)
4172 return err;
4173 if (mddev->pers) {
4174 err = update_size(mddev, sectors);
4175 md_update_sb(mddev, 1);
4176 } else {
4177 if (mddev->dev_sectors == 0 ||
4178 mddev->dev_sectors > sectors)
4179 mddev->dev_sectors = sectors;
4180 else
4181 err = -ENOSPC;
4182 }
4183 mddev_unlock(mddev);
4184 return err ? err : len;
4185 }
4186
4187 static struct md_sysfs_entry md_size =
4188 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4189
4190 /* Metadata version.
4191 * This is one of
4192 * 'none' for arrays with no metadata (good luck...)
4193 * 'external' for arrays with externally managed metadata,
4194 * or N.M for internally known formats
4195 */
4196 static ssize_t
4197 metadata_show(struct mddev *mddev, char *page)
4198 {
4199 if (mddev->persistent)
4200 return sprintf(page, "%d.%d\n",
4201 mddev->major_version, mddev->minor_version);
4202 else if (mddev->external)
4203 return sprintf(page, "external:%s\n", mddev->metadata_type);
4204 else
4205 return sprintf(page, "none\n");
4206 }
4207
4208 static ssize_t
4209 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4210 {
4211 int major, minor;
4212 char *e;
4213 int err;
4214 /* Changing the details of 'external' metadata is
4215 * always permitted. Otherwise there must be
4216 * no devices attached to the array.
4217 */
4218
4219 err = mddev_lock(mddev);
4220 if (err)
4221 return err;
4222 err = -EBUSY;
4223 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4224 ;
4225 else if (!list_empty(&mddev->disks))
4226 goto out_unlock;
4227
4228 err = 0;
4229 if (cmd_match(buf, "none")) {
4230 mddev->persistent = 0;
4231 mddev->external = 0;
4232 mddev->major_version = 0;
4233 mddev->minor_version = 90;
4234 goto out_unlock;
4235 }
4236 if (strncmp(buf, "external:", 9) == 0) {
4237 size_t namelen = len-9;
4238 if (namelen >= sizeof(mddev->metadata_type))
4239 namelen = sizeof(mddev->metadata_type)-1;
4240 strncpy(mddev->metadata_type, buf+9, namelen);
4241 mddev->metadata_type[namelen] = 0;
4242 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4243 mddev->metadata_type[--namelen] = 0;
4244 mddev->persistent = 0;
4245 mddev->external = 1;
4246 mddev->major_version = 0;
4247 mddev->minor_version = 90;
4248 goto out_unlock;
4249 }
4250 major = simple_strtoul(buf, &e, 10);
4251 err = -EINVAL;
4252 if (e==buf || *e != '.')
4253 goto out_unlock;
4254 buf = e+1;
4255 minor = simple_strtoul(buf, &e, 10);
4256 if (e==buf || (*e && *e != '\n') )
4257 goto out_unlock;
4258 err = -ENOENT;
4259 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4260 goto out_unlock;
4261 mddev->major_version = major;
4262 mddev->minor_version = minor;
4263 mddev->persistent = 1;
4264 mddev->external = 0;
4265 err = 0;
4266 out_unlock:
4267 mddev_unlock(mddev);
4268 return err ?: len;
4269 }
4270
4271 static struct md_sysfs_entry md_metadata =
4272 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4273
4274 static ssize_t
4275 action_show(struct mddev *mddev, char *page)
4276 {
4277 char *type = "idle";
4278 unsigned long recovery = mddev->recovery;
4279 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4280 type = "frozen";
4281 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4282 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4283 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4284 type = "reshape";
4285 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4286 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4287 type = "resync";
4288 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4289 type = "check";
4290 else
4291 type = "repair";
4292 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4293 type = "recover";
4294 else if (mddev->reshape_position != MaxSector)
4295 type = "reshape";
4296 }
4297 return sprintf(page, "%s\n", type);
4298 }
4299
4300 static ssize_t
4301 action_store(struct mddev *mddev, const char *page, size_t len)
4302 {
4303 if (!mddev->pers || !mddev->pers->sync_request)
4304 return -EINVAL;
4305
4306
4307 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4308 if (cmd_match(page, "frozen"))
4309 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310 else
4311 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4312 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4313 mddev_lock(mddev) == 0) {
4314 flush_workqueue(md_misc_wq);
4315 if (mddev->sync_thread) {
4316 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4317 md_reap_sync_thread(mddev);
4318 }
4319 mddev_unlock(mddev);
4320 }
4321 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4322 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4323 return -EBUSY;
4324 else if (cmd_match(page, "resync"))
4325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 else if (cmd_match(page, "recover")) {
4327 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4329 } else if (cmd_match(page, "reshape")) {
4330 int err;
4331 if (mddev->pers->start_reshape == NULL)
4332 return -EINVAL;
4333 err = mddev_lock(mddev);
4334 if (!err) {
4335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 err = mddev->pers->start_reshape(mddev);
4337 mddev_unlock(mddev);
4338 }
4339 if (err)
4340 return err;
4341 sysfs_notify(&mddev->kobj, NULL, "degraded");
4342 } else {
4343 if (cmd_match(page, "check"))
4344 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4345 else if (!cmd_match(page, "repair"))
4346 return -EINVAL;
4347 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4348 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4349 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4350 }
4351 if (mddev->ro == 2) {
4352 /* A write to sync_action is enough to justify
4353 * canceling read-auto mode
4354 */
4355 mddev->ro = 0;
4356 md_wakeup_thread(mddev->sync_thread);
4357 }
4358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4359 md_wakeup_thread(mddev->thread);
4360 sysfs_notify_dirent_safe(mddev->sysfs_action);
4361 return len;
4362 }
4363
4364 static struct md_sysfs_entry md_scan_mode =
4365 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4366
4367 static ssize_t
4368 last_sync_action_show(struct mddev *mddev, char *page)
4369 {
4370 return sprintf(page, "%s\n", mddev->last_sync_action);
4371 }
4372
4373 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4374
4375 static ssize_t
4376 mismatch_cnt_show(struct mddev *mddev, char *page)
4377 {
4378 return sprintf(page, "%llu\n",
4379 (unsigned long long)
4380 atomic64_read(&mddev->resync_mismatches));
4381 }
4382
4383 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4384
4385 static ssize_t
4386 sync_min_show(struct mddev *mddev, char *page)
4387 {
4388 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4389 mddev->sync_speed_min ? "local": "system");
4390 }
4391
4392 static ssize_t
4393 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4394 {
4395 unsigned int min;
4396 int rv;
4397
4398 if (strncmp(buf, "system", 6)==0) {
4399 min = 0;
4400 } else {
4401 rv = kstrtouint(buf, 10, &min);
4402 if (rv < 0)
4403 return rv;
4404 if (min == 0)
4405 return -EINVAL;
4406 }
4407 mddev->sync_speed_min = min;
4408 return len;
4409 }
4410
4411 static struct md_sysfs_entry md_sync_min =
4412 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4413
4414 static ssize_t
4415 sync_max_show(struct mddev *mddev, char *page)
4416 {
4417 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4418 mddev->sync_speed_max ? "local": "system");
4419 }
4420
4421 static ssize_t
4422 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4423 {
4424 unsigned int max;
4425 int rv;
4426
4427 if (strncmp(buf, "system", 6)==0) {
4428 max = 0;
4429 } else {
4430 rv = kstrtouint(buf, 10, &max);
4431 if (rv < 0)
4432 return rv;
4433 if (max == 0)
4434 return -EINVAL;
4435 }
4436 mddev->sync_speed_max = max;
4437 return len;
4438 }
4439
4440 static struct md_sysfs_entry md_sync_max =
4441 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4442
4443 static ssize_t
4444 degraded_show(struct mddev *mddev, char *page)
4445 {
4446 return sprintf(page, "%d\n", mddev->degraded);
4447 }
4448 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4449
4450 static ssize_t
4451 sync_force_parallel_show(struct mddev *mddev, char *page)
4452 {
4453 return sprintf(page, "%d\n", mddev->parallel_resync);
4454 }
4455
4456 static ssize_t
4457 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 long n;
4460
4461 if (kstrtol(buf, 10, &n))
4462 return -EINVAL;
4463
4464 if (n != 0 && n != 1)
4465 return -EINVAL;
4466
4467 mddev->parallel_resync = n;
4468
4469 if (mddev->sync_thread)
4470 wake_up(&resync_wait);
4471
4472 return len;
4473 }
4474
4475 /* force parallel resync, even with shared block devices */
4476 static struct md_sysfs_entry md_sync_force_parallel =
4477 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4478 sync_force_parallel_show, sync_force_parallel_store);
4479
4480 static ssize_t
4481 sync_speed_show(struct mddev *mddev, char *page)
4482 {
4483 unsigned long resync, dt, db;
4484 if (mddev->curr_resync == 0)
4485 return sprintf(page, "none\n");
4486 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4487 dt = (jiffies - mddev->resync_mark) / HZ;
4488 if (!dt) dt++;
4489 db = resync - mddev->resync_mark_cnt;
4490 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4491 }
4492
4493 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4494
4495 static ssize_t
4496 sync_completed_show(struct mddev *mddev, char *page)
4497 {
4498 unsigned long long max_sectors, resync;
4499
4500 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501 return sprintf(page, "none\n");
4502
4503 if (mddev->curr_resync == 1 ||
4504 mddev->curr_resync == 2)
4505 return sprintf(page, "delayed\n");
4506
4507 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4508 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4509 max_sectors = mddev->resync_max_sectors;
4510 else
4511 max_sectors = mddev->dev_sectors;
4512
4513 resync = mddev->curr_resync_completed;
4514 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4515 }
4516
4517 static struct md_sysfs_entry md_sync_completed =
4518 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4519
4520 static ssize_t
4521 min_sync_show(struct mddev *mddev, char *page)
4522 {
4523 return sprintf(page, "%llu\n",
4524 (unsigned long long)mddev->resync_min);
4525 }
4526 static ssize_t
4527 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4528 {
4529 unsigned long long min;
4530 int err;
4531
4532 if (kstrtoull(buf, 10, &min))
4533 return -EINVAL;
4534
4535 spin_lock(&mddev->lock);
4536 err = -EINVAL;
4537 if (min > mddev->resync_max)
4538 goto out_unlock;
4539
4540 err = -EBUSY;
4541 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4542 goto out_unlock;
4543
4544 /* Round down to multiple of 4K for safety */
4545 mddev->resync_min = round_down(min, 8);
4546 err = 0;
4547
4548 out_unlock:
4549 spin_unlock(&mddev->lock);
4550 return err ?: len;
4551 }
4552
4553 static struct md_sysfs_entry md_min_sync =
4554 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4555
4556 static ssize_t
4557 max_sync_show(struct mddev *mddev, char *page)
4558 {
4559 if (mddev->resync_max == MaxSector)
4560 return sprintf(page, "max\n");
4561 else
4562 return sprintf(page, "%llu\n",
4563 (unsigned long long)mddev->resync_max);
4564 }
4565 static ssize_t
4566 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 int err;
4569 spin_lock(&mddev->lock);
4570 if (strncmp(buf, "max", 3) == 0)
4571 mddev->resync_max = MaxSector;
4572 else {
4573 unsigned long long max;
4574 int chunk;
4575
4576 err = -EINVAL;
4577 if (kstrtoull(buf, 10, &max))
4578 goto out_unlock;
4579 if (max < mddev->resync_min)
4580 goto out_unlock;
4581
4582 err = -EBUSY;
4583 if (max < mddev->resync_max &&
4584 mddev->ro == 0 &&
4585 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4586 goto out_unlock;
4587
4588 /* Must be a multiple of chunk_size */
4589 chunk = mddev->chunk_sectors;
4590 if (chunk) {
4591 sector_t temp = max;
4592
4593 err = -EINVAL;
4594 if (sector_div(temp, chunk))
4595 goto out_unlock;
4596 }
4597 mddev->resync_max = max;
4598 }
4599 wake_up(&mddev->recovery_wait);
4600 err = 0;
4601 out_unlock:
4602 spin_unlock(&mddev->lock);
4603 return err ?: len;
4604 }
4605
4606 static struct md_sysfs_entry md_max_sync =
4607 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4608
4609 static ssize_t
4610 suspend_lo_show(struct mddev *mddev, char *page)
4611 {
4612 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4613 }
4614
4615 static ssize_t
4616 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4617 {
4618 unsigned long long old, new;
4619 int err;
4620
4621 err = kstrtoull(buf, 10, &new);
4622 if (err < 0)
4623 return err;
4624 if (new != (sector_t)new)
4625 return -EINVAL;
4626
4627 err = mddev_lock(mddev);
4628 if (err)
4629 return err;
4630 err = -EINVAL;
4631 if (mddev->pers == NULL ||
4632 mddev->pers->quiesce == NULL)
4633 goto unlock;
4634 old = mddev->suspend_lo;
4635 mddev->suspend_lo = new;
4636 if (new >= old)
4637 /* Shrinking suspended region */
4638 mddev->pers->quiesce(mddev, 2);
4639 else {
4640 /* Expanding suspended region - need to wait */
4641 mddev->pers->quiesce(mddev, 1);
4642 mddev->pers->quiesce(mddev, 0);
4643 }
4644 err = 0;
4645 unlock:
4646 mddev_unlock(mddev);
4647 return err ?: len;
4648 }
4649 static struct md_sysfs_entry md_suspend_lo =
4650 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4651
4652 static ssize_t
4653 suspend_hi_show(struct mddev *mddev, char *page)
4654 {
4655 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4656 }
4657
4658 static ssize_t
4659 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661 unsigned long long old, new;
4662 int err;
4663
4664 err = kstrtoull(buf, 10, &new);
4665 if (err < 0)
4666 return err;
4667 if (new != (sector_t)new)
4668 return -EINVAL;
4669
4670 err = mddev_lock(mddev);
4671 if (err)
4672 return err;
4673 err = -EINVAL;
4674 if (mddev->pers == NULL ||
4675 mddev->pers->quiesce == NULL)
4676 goto unlock;
4677 old = mddev->suspend_hi;
4678 mddev->suspend_hi = new;
4679 if (new <= old)
4680 /* Shrinking suspended region */
4681 mddev->pers->quiesce(mddev, 2);
4682 else {
4683 /* Expanding suspended region - need to wait */
4684 mddev->pers->quiesce(mddev, 1);
4685 mddev->pers->quiesce(mddev, 0);
4686 }
4687 err = 0;
4688 unlock:
4689 mddev_unlock(mddev);
4690 return err ?: len;
4691 }
4692 static struct md_sysfs_entry md_suspend_hi =
4693 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4694
4695 static ssize_t
4696 reshape_position_show(struct mddev *mddev, char *page)
4697 {
4698 if (mddev->reshape_position != MaxSector)
4699 return sprintf(page, "%llu\n",
4700 (unsigned long long)mddev->reshape_position);
4701 strcpy(page, "none\n");
4702 return 5;
4703 }
4704
4705 static ssize_t
4706 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4707 {
4708 struct md_rdev *rdev;
4709 unsigned long long new;
4710 int err;
4711
4712 err = kstrtoull(buf, 10, &new);
4713 if (err < 0)
4714 return err;
4715 if (new != (sector_t)new)
4716 return -EINVAL;
4717 err = mddev_lock(mddev);
4718 if (err)
4719 return err;
4720 err = -EBUSY;
4721 if (mddev->pers)
4722 goto unlock;
4723 mddev->reshape_position = new;
4724 mddev->delta_disks = 0;
4725 mddev->reshape_backwards = 0;
4726 mddev->new_level = mddev->level;
4727 mddev->new_layout = mddev->layout;
4728 mddev->new_chunk_sectors = mddev->chunk_sectors;
4729 rdev_for_each(rdev, mddev)
4730 rdev->new_data_offset = rdev->data_offset;
4731 err = 0;
4732 unlock:
4733 mddev_unlock(mddev);
4734 return err ?: len;
4735 }
4736
4737 static struct md_sysfs_entry md_reshape_position =
4738 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4739 reshape_position_store);
4740
4741 static ssize_t
4742 reshape_direction_show(struct mddev *mddev, char *page)
4743 {
4744 return sprintf(page, "%s\n",
4745 mddev->reshape_backwards ? "backwards" : "forwards");
4746 }
4747
4748 static ssize_t
4749 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751 int backwards = 0;
4752 int err;
4753
4754 if (cmd_match(buf, "forwards"))
4755 backwards = 0;
4756 else if (cmd_match(buf, "backwards"))
4757 backwards = 1;
4758 else
4759 return -EINVAL;
4760 if (mddev->reshape_backwards == backwards)
4761 return len;
4762
4763 err = mddev_lock(mddev);
4764 if (err)
4765 return err;
4766 /* check if we are allowed to change */
4767 if (mddev->delta_disks)
4768 err = -EBUSY;
4769 else if (mddev->persistent &&
4770 mddev->major_version == 0)
4771 err = -EINVAL;
4772 else
4773 mddev->reshape_backwards = backwards;
4774 mddev_unlock(mddev);
4775 return err ?: len;
4776 }
4777
4778 static struct md_sysfs_entry md_reshape_direction =
4779 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4780 reshape_direction_store);
4781
4782 static ssize_t
4783 array_size_show(struct mddev *mddev, char *page)
4784 {
4785 if (mddev->external_size)
4786 return sprintf(page, "%llu\n",
4787 (unsigned long long)mddev->array_sectors/2);
4788 else
4789 return sprintf(page, "default\n");
4790 }
4791
4792 static ssize_t
4793 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4794 {
4795 sector_t sectors;
4796 int err;
4797
4798 err = mddev_lock(mddev);
4799 if (err)
4800 return err;
4801
4802 if (strncmp(buf, "default", 7) == 0) {
4803 if (mddev->pers)
4804 sectors = mddev->pers->size(mddev, 0, 0);
4805 else
4806 sectors = mddev->array_sectors;
4807
4808 mddev->external_size = 0;
4809 } else {
4810 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4811 err = -EINVAL;
4812 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4813 err = -E2BIG;
4814 else
4815 mddev->external_size = 1;
4816 }
4817
4818 if (!err) {
4819 mddev->array_sectors = sectors;
4820 if (mddev->pers) {
4821 set_capacity(mddev->gendisk, mddev->array_sectors);
4822 revalidate_disk(mddev->gendisk);
4823 }
4824 }
4825 mddev_unlock(mddev);
4826 return err ?: len;
4827 }
4828
4829 static struct md_sysfs_entry md_array_size =
4830 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4831 array_size_store);
4832
4833 static struct attribute *md_default_attrs[] = {
4834 &md_level.attr,
4835 &md_layout.attr,
4836 &md_raid_disks.attr,
4837 &md_chunk_size.attr,
4838 &md_size.attr,
4839 &md_resync_start.attr,
4840 &md_metadata.attr,
4841 &md_new_device.attr,
4842 &md_safe_delay.attr,
4843 &md_array_state.attr,
4844 &md_reshape_position.attr,
4845 &md_reshape_direction.attr,
4846 &md_array_size.attr,
4847 &max_corr_read_errors.attr,
4848 NULL,
4849 };
4850
4851 static struct attribute *md_redundancy_attrs[] = {
4852 &md_scan_mode.attr,
4853 &md_last_scan_mode.attr,
4854 &md_mismatches.attr,
4855 &md_sync_min.attr,
4856 &md_sync_max.attr,
4857 &md_sync_speed.attr,
4858 &md_sync_force_parallel.attr,
4859 &md_sync_completed.attr,
4860 &md_min_sync.attr,
4861 &md_max_sync.attr,
4862 &md_suspend_lo.attr,
4863 &md_suspend_hi.attr,
4864 &md_bitmap.attr,
4865 &md_degraded.attr,
4866 NULL,
4867 };
4868 static struct attribute_group md_redundancy_group = {
4869 .name = NULL,
4870 .attrs = md_redundancy_attrs,
4871 };
4872
4873 static ssize_t
4874 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4875 {
4876 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4877 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4878 ssize_t rv;
4879
4880 if (!entry->show)
4881 return -EIO;
4882 spin_lock(&all_mddevs_lock);
4883 if (list_empty(&mddev->all_mddevs)) {
4884 spin_unlock(&all_mddevs_lock);
4885 return -EBUSY;
4886 }
4887 mddev_get(mddev);
4888 spin_unlock(&all_mddevs_lock);
4889
4890 rv = entry->show(mddev, page);
4891 mddev_put(mddev);
4892 return rv;
4893 }
4894
4895 static ssize_t
4896 md_attr_store(struct kobject *kobj, struct attribute *attr,
4897 const char *page, size_t length)
4898 {
4899 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4900 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4901 ssize_t rv;
4902
4903 if (!entry->store)
4904 return -EIO;
4905 if (!capable(CAP_SYS_ADMIN))
4906 return -EACCES;
4907 spin_lock(&all_mddevs_lock);
4908 if (list_empty(&mddev->all_mddevs)) {
4909 spin_unlock(&all_mddevs_lock);
4910 return -EBUSY;
4911 }
4912 mddev_get(mddev);
4913 spin_unlock(&all_mddevs_lock);
4914 rv = entry->store(mddev, page, length);
4915 mddev_put(mddev);
4916 return rv;
4917 }
4918
4919 static void md_free(struct kobject *ko)
4920 {
4921 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4922
4923 if (mddev->sysfs_state)
4924 sysfs_put(mddev->sysfs_state);
4925
4926 if (mddev->queue)
4927 blk_cleanup_queue(mddev->queue);
4928 if (mddev->gendisk) {
4929 del_gendisk(mddev->gendisk);
4930 put_disk(mddev->gendisk);
4931 }
4932
4933 kfree(mddev);
4934 }
4935
4936 static const struct sysfs_ops md_sysfs_ops = {
4937 .show = md_attr_show,
4938 .store = md_attr_store,
4939 };
4940 static struct kobj_type md_ktype = {
4941 .release = md_free,
4942 .sysfs_ops = &md_sysfs_ops,
4943 .default_attrs = md_default_attrs,
4944 };
4945
4946 int mdp_major = 0;
4947
4948 static void mddev_delayed_delete(struct work_struct *ws)
4949 {
4950 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4951
4952 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4953 kobject_del(&mddev->kobj);
4954 kobject_put(&mddev->kobj);
4955 }
4956
4957 static int md_alloc(dev_t dev, char *name)
4958 {
4959 static DEFINE_MUTEX(disks_mutex);
4960 struct mddev *mddev = mddev_find(dev);
4961 struct gendisk *disk;
4962 int partitioned;
4963 int shift;
4964 int unit;
4965 int error;
4966
4967 if (!mddev)
4968 return -ENODEV;
4969
4970 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4971 shift = partitioned ? MdpMinorShift : 0;
4972 unit = MINOR(mddev->unit) >> shift;
4973
4974 /* wait for any previous instance of this device to be
4975 * completely removed (mddev_delayed_delete).
4976 */
4977 flush_workqueue(md_misc_wq);
4978
4979 mutex_lock(&disks_mutex);
4980 error = -EEXIST;
4981 if (mddev->gendisk)
4982 goto abort;
4983
4984 if (name) {
4985 /* Need to ensure that 'name' is not a duplicate.
4986 */
4987 struct mddev *mddev2;
4988 spin_lock(&all_mddevs_lock);
4989
4990 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4991 if (mddev2->gendisk &&
4992 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4993 spin_unlock(&all_mddevs_lock);
4994 goto abort;
4995 }
4996 spin_unlock(&all_mddevs_lock);
4997 }
4998
4999 error = -ENOMEM;
5000 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5001 if (!mddev->queue)
5002 goto abort;
5003 mddev->queue->queuedata = mddev;
5004
5005 blk_queue_make_request(mddev->queue, md_make_request);
5006 blk_set_stacking_limits(&mddev->queue->limits);
5007
5008 disk = alloc_disk(1 << shift);
5009 if (!disk) {
5010 blk_cleanup_queue(mddev->queue);
5011 mddev->queue = NULL;
5012 goto abort;
5013 }
5014 disk->major = MAJOR(mddev->unit);
5015 disk->first_minor = unit << shift;
5016 if (name)
5017 strcpy(disk->disk_name, name);
5018 else if (partitioned)
5019 sprintf(disk->disk_name, "md_d%d", unit);
5020 else
5021 sprintf(disk->disk_name, "md%d", unit);
5022 disk->fops = &md_fops;
5023 disk->private_data = mddev;
5024 disk->queue = mddev->queue;
5025 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5026 /* Allow extended partitions. This makes the
5027 * 'mdp' device redundant, but we can't really
5028 * remove it now.
5029 */
5030 disk->flags |= GENHD_FL_EXT_DEVT;
5031 mddev->gendisk = disk;
5032 /* As soon as we call add_disk(), another thread could get
5033 * through to md_open, so make sure it doesn't get too far
5034 */
5035 mutex_lock(&mddev->open_mutex);
5036 add_disk(disk);
5037
5038 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5039 &disk_to_dev(disk)->kobj, "%s", "md");
5040 if (error) {
5041 /* This isn't possible, but as kobject_init_and_add is marked
5042 * __must_check, we must do something with the result
5043 */
5044 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5045 disk->disk_name);
5046 error = 0;
5047 }
5048 if (mddev->kobj.sd &&
5049 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5050 printk(KERN_DEBUG "pointless warning\n");
5051 mutex_unlock(&mddev->open_mutex);
5052 abort:
5053 mutex_unlock(&disks_mutex);
5054 if (!error && mddev->kobj.sd) {
5055 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5056 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5057 }
5058 mddev_put(mddev);
5059 return error;
5060 }
5061
5062 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5063 {
5064 md_alloc(dev, NULL);
5065 return NULL;
5066 }
5067
5068 static int add_named_array(const char *val, struct kernel_param *kp)
5069 {
5070 /* val must be "md_*" where * is not all digits.
5071 * We allocate an array with a large free minor number, and
5072 * set the name to val. val must not already be an active name.
5073 */
5074 int len = strlen(val);
5075 char buf[DISK_NAME_LEN];
5076
5077 while (len && val[len-1] == '\n')
5078 len--;
5079 if (len >= DISK_NAME_LEN)
5080 return -E2BIG;
5081 strlcpy(buf, val, len+1);
5082 if (strncmp(buf, "md_", 3) != 0)
5083 return -EINVAL;
5084 return md_alloc(0, buf);
5085 }
5086
5087 static void md_safemode_timeout(unsigned long data)
5088 {
5089 struct mddev *mddev = (struct mddev *) data;
5090
5091 if (!atomic_read(&mddev->writes_pending)) {
5092 mddev->safemode = 1;
5093 if (mddev->external)
5094 sysfs_notify_dirent_safe(mddev->sysfs_state);
5095 }
5096 md_wakeup_thread(mddev->thread);
5097 }
5098
5099 static int start_dirty_degraded;
5100
5101 int md_run(struct mddev *mddev)
5102 {
5103 int err;
5104 struct md_rdev *rdev;
5105 struct md_personality *pers;
5106
5107 if (list_empty(&mddev->disks))
5108 /* cannot run an array with no devices.. */
5109 return -EINVAL;
5110
5111 if (mddev->pers)
5112 return -EBUSY;
5113 /* Cannot run until previous stop completes properly */
5114 if (mddev->sysfs_active)
5115 return -EBUSY;
5116
5117 /*
5118 * Analyze all RAID superblock(s)
5119 */
5120 if (!mddev->raid_disks) {
5121 if (!mddev->persistent)
5122 return -EINVAL;
5123 analyze_sbs(mddev);
5124 }
5125
5126 if (mddev->level != LEVEL_NONE)
5127 request_module("md-level-%d", mddev->level);
5128 else if (mddev->clevel[0])
5129 request_module("md-%s", mddev->clevel);
5130
5131 /*
5132 * Drop all container device buffers, from now on
5133 * the only valid external interface is through the md
5134 * device.
5135 */
5136 rdev_for_each(rdev, mddev) {
5137 if (test_bit(Faulty, &rdev->flags))
5138 continue;
5139 sync_blockdev(rdev->bdev);
5140 invalidate_bdev(rdev->bdev);
5141
5142 /* perform some consistency tests on the device.
5143 * We don't want the data to overlap the metadata,
5144 * Internal Bitmap issues have been handled elsewhere.
5145 */
5146 if (rdev->meta_bdev) {
5147 /* Nothing to check */;
5148 } else if (rdev->data_offset < rdev->sb_start) {
5149 if (mddev->dev_sectors &&
5150 rdev->data_offset + mddev->dev_sectors
5151 > rdev->sb_start) {
5152 printk("md: %s: data overlaps metadata\n",
5153 mdname(mddev));
5154 return -EINVAL;
5155 }
5156 } else {
5157 if (rdev->sb_start + rdev->sb_size/512
5158 > rdev->data_offset) {
5159 printk("md: %s: metadata overlaps data\n",
5160 mdname(mddev));
5161 return -EINVAL;
5162 }
5163 }
5164 sysfs_notify_dirent_safe(rdev->sysfs_state);
5165 }
5166
5167 if (mddev->bio_set == NULL)
5168 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5169
5170 spin_lock(&pers_lock);
5171 pers = find_pers(mddev->level, mddev->clevel);
5172 if (!pers || !try_module_get(pers->owner)) {
5173 spin_unlock(&pers_lock);
5174 if (mddev->level != LEVEL_NONE)
5175 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5176 mddev->level);
5177 else
5178 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5179 mddev->clevel);
5180 return -EINVAL;
5181 }
5182 spin_unlock(&pers_lock);
5183 if (mddev->level != pers->level) {
5184 mddev->level = pers->level;
5185 mddev->new_level = pers->level;
5186 }
5187 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5188
5189 if (mddev->reshape_position != MaxSector &&
5190 pers->start_reshape == NULL) {
5191 /* This personality cannot handle reshaping... */
5192 module_put(pers->owner);
5193 return -EINVAL;
5194 }
5195
5196 if (pers->sync_request) {
5197 /* Warn if this is a potentially silly
5198 * configuration.
5199 */
5200 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5201 struct md_rdev *rdev2;
5202 int warned = 0;
5203
5204 rdev_for_each(rdev, mddev)
5205 rdev_for_each(rdev2, mddev) {
5206 if (rdev < rdev2 &&
5207 rdev->bdev->bd_contains ==
5208 rdev2->bdev->bd_contains) {
5209 printk(KERN_WARNING
5210 "%s: WARNING: %s appears to be"
5211 " on the same physical disk as"
5212 " %s.\n",
5213 mdname(mddev),
5214 bdevname(rdev->bdev,b),
5215 bdevname(rdev2->bdev,b2));
5216 warned = 1;
5217 }
5218 }
5219
5220 if (warned)
5221 printk(KERN_WARNING
5222 "True protection against single-disk"
5223 " failure might be compromised.\n");
5224 }
5225
5226 mddev->recovery = 0;
5227 /* may be over-ridden by personality */
5228 mddev->resync_max_sectors = mddev->dev_sectors;
5229
5230 mddev->ok_start_degraded = start_dirty_degraded;
5231
5232 if (start_readonly && mddev->ro == 0)
5233 mddev->ro = 2; /* read-only, but switch on first write */
5234
5235 err = pers->run(mddev);
5236 if (err)
5237 printk(KERN_ERR "md: pers->run() failed ...\n");
5238 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5239 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5240 " but 'external_size' not in effect?\n", __func__);
5241 printk(KERN_ERR
5242 "md: invalid array_size %llu > default size %llu\n",
5243 (unsigned long long)mddev->array_sectors / 2,
5244 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5245 err = -EINVAL;
5246 }
5247 if (err == 0 && pers->sync_request &&
5248 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5249 struct bitmap *bitmap;
5250
5251 bitmap = bitmap_create(mddev, -1);
5252 if (IS_ERR(bitmap)) {
5253 err = PTR_ERR(bitmap);
5254 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5255 mdname(mddev), err);
5256 } else
5257 mddev->bitmap = bitmap;
5258
5259 }
5260 if (err) {
5261 mddev_detach(mddev);
5262 if (mddev->private)
5263 pers->free(mddev, mddev->private);
5264 mddev->private = NULL;
5265 module_put(pers->owner);
5266 bitmap_destroy(mddev);
5267 return err;
5268 }
5269 if (mddev->queue) {
5270 mddev->queue->backing_dev_info.congested_data = mddev;
5271 mddev->queue->backing_dev_info.congested_fn = md_congested;
5272 }
5273 if (pers->sync_request) {
5274 if (mddev->kobj.sd &&
5275 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5276 printk(KERN_WARNING
5277 "md: cannot register extra attributes for %s\n",
5278 mdname(mddev));
5279 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5280 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5281 mddev->ro = 0;
5282
5283 atomic_set(&mddev->writes_pending,0);
5284 atomic_set(&mddev->max_corr_read_errors,
5285 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5286 mddev->safemode = 0;
5287 if (mddev_is_clustered(mddev))
5288 mddev->safemode_delay = 0;
5289 else
5290 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5291 mddev->in_sync = 1;
5292 smp_wmb();
5293 spin_lock(&mddev->lock);
5294 mddev->pers = pers;
5295 mddev->ready = 1;
5296 spin_unlock(&mddev->lock);
5297 rdev_for_each(rdev, mddev)
5298 if (rdev->raid_disk >= 0)
5299 if (sysfs_link_rdev(mddev, rdev))
5300 /* failure here is OK */;
5301
5302 if (mddev->degraded && !mddev->ro)
5303 /* This ensures that recovering status is reported immediately
5304 * via sysfs - until a lack of spares is confirmed.
5305 */
5306 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5307 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5308
5309 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5310 md_update_sb(mddev, 0);
5311
5312 md_new_event(mddev);
5313 sysfs_notify_dirent_safe(mddev->sysfs_state);
5314 sysfs_notify_dirent_safe(mddev->sysfs_action);
5315 sysfs_notify(&mddev->kobj, NULL, "degraded");
5316 return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(md_run);
5319
5320 static int do_md_run(struct mddev *mddev)
5321 {
5322 int err;
5323
5324 err = md_run(mddev);
5325 if (err)
5326 goto out;
5327 err = bitmap_load(mddev);
5328 if (err) {
5329 bitmap_destroy(mddev);
5330 goto out;
5331 }
5332
5333 if (mddev_is_clustered(mddev))
5334 md_allow_write(mddev);
5335
5336 md_wakeup_thread(mddev->thread);
5337 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5338
5339 set_capacity(mddev->gendisk, mddev->array_sectors);
5340 revalidate_disk(mddev->gendisk);
5341 mddev->changed = 1;
5342 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5343 out:
5344 return err;
5345 }
5346
5347 static int restart_array(struct mddev *mddev)
5348 {
5349 struct gendisk *disk = mddev->gendisk;
5350
5351 /* Complain if it has no devices */
5352 if (list_empty(&mddev->disks))
5353 return -ENXIO;
5354 if (!mddev->pers)
5355 return -EINVAL;
5356 if (!mddev->ro)
5357 return -EBUSY;
5358 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5359 struct md_rdev *rdev;
5360 bool has_journal = false;
5361
5362 rcu_read_lock();
5363 rdev_for_each_rcu(rdev, mddev) {
5364 if (test_bit(Journal, &rdev->flags) &&
5365 !test_bit(Faulty, &rdev->flags)) {
5366 has_journal = true;
5367 break;
5368 }
5369 }
5370 rcu_read_unlock();
5371
5372 /* Don't restart rw with journal missing/faulty */
5373 if (!has_journal)
5374 return -EINVAL;
5375 }
5376
5377 mddev->safemode = 0;
5378 mddev->ro = 0;
5379 set_disk_ro(disk, 0);
5380 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5381 mdname(mddev));
5382 /* Kick recovery or resync if necessary */
5383 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5384 md_wakeup_thread(mddev->thread);
5385 md_wakeup_thread(mddev->sync_thread);
5386 sysfs_notify_dirent_safe(mddev->sysfs_state);
5387 return 0;
5388 }
5389
5390 static void md_clean(struct mddev *mddev)
5391 {
5392 mddev->array_sectors = 0;
5393 mddev->external_size = 0;
5394 mddev->dev_sectors = 0;
5395 mddev->raid_disks = 0;
5396 mddev->recovery_cp = 0;
5397 mddev->resync_min = 0;
5398 mddev->resync_max = MaxSector;
5399 mddev->reshape_position = MaxSector;
5400 mddev->external = 0;
5401 mddev->persistent = 0;
5402 mddev->level = LEVEL_NONE;
5403 mddev->clevel[0] = 0;
5404 mddev->flags = 0;
5405 mddev->ro = 0;
5406 mddev->metadata_type[0] = 0;
5407 mddev->chunk_sectors = 0;
5408 mddev->ctime = mddev->utime = 0;
5409 mddev->layout = 0;
5410 mddev->max_disks = 0;
5411 mddev->events = 0;
5412 mddev->can_decrease_events = 0;
5413 mddev->delta_disks = 0;
5414 mddev->reshape_backwards = 0;
5415 mddev->new_level = LEVEL_NONE;
5416 mddev->new_layout = 0;
5417 mddev->new_chunk_sectors = 0;
5418 mddev->curr_resync = 0;
5419 atomic64_set(&mddev->resync_mismatches, 0);
5420 mddev->suspend_lo = mddev->suspend_hi = 0;
5421 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5422 mddev->recovery = 0;
5423 mddev->in_sync = 0;
5424 mddev->changed = 0;
5425 mddev->degraded = 0;
5426 mddev->safemode = 0;
5427 mddev->private = NULL;
5428 mddev->bitmap_info.offset = 0;
5429 mddev->bitmap_info.default_offset = 0;
5430 mddev->bitmap_info.default_space = 0;
5431 mddev->bitmap_info.chunksize = 0;
5432 mddev->bitmap_info.daemon_sleep = 0;
5433 mddev->bitmap_info.max_write_behind = 0;
5434 }
5435
5436 static void __md_stop_writes(struct mddev *mddev)
5437 {
5438 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5439 flush_workqueue(md_misc_wq);
5440 if (mddev->sync_thread) {
5441 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5442 md_reap_sync_thread(mddev);
5443 }
5444
5445 del_timer_sync(&mddev->safemode_timer);
5446
5447 bitmap_flush(mddev);
5448 md_super_wait(mddev);
5449
5450 if (mddev->ro == 0 &&
5451 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5452 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5453 /* mark array as shutdown cleanly */
5454 if (!mddev_is_clustered(mddev))
5455 mddev->in_sync = 1;
5456 md_update_sb(mddev, 1);
5457 }
5458 }
5459
5460 void md_stop_writes(struct mddev *mddev)
5461 {
5462 mddev_lock_nointr(mddev);
5463 __md_stop_writes(mddev);
5464 mddev_unlock(mddev);
5465 }
5466 EXPORT_SYMBOL_GPL(md_stop_writes);
5467
5468 static void mddev_detach(struct mddev *mddev)
5469 {
5470 struct bitmap *bitmap = mddev->bitmap;
5471 /* wait for behind writes to complete */
5472 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5473 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5474 mdname(mddev));
5475 /* need to kick something here to make sure I/O goes? */
5476 wait_event(bitmap->behind_wait,
5477 atomic_read(&bitmap->behind_writes) == 0);
5478 }
5479 if (mddev->pers && mddev->pers->quiesce) {
5480 mddev->pers->quiesce(mddev, 1);
5481 mddev->pers->quiesce(mddev, 0);
5482 }
5483 md_unregister_thread(&mddev->thread);
5484 if (mddev->queue)
5485 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5486 }
5487
5488 static void __md_stop(struct mddev *mddev)
5489 {
5490 struct md_personality *pers = mddev->pers;
5491 mddev_detach(mddev);
5492 /* Ensure ->event_work is done */
5493 flush_workqueue(md_misc_wq);
5494 spin_lock(&mddev->lock);
5495 mddev->ready = 0;
5496 mddev->pers = NULL;
5497 spin_unlock(&mddev->lock);
5498 pers->free(mddev, mddev->private);
5499 mddev->private = NULL;
5500 if (pers->sync_request && mddev->to_remove == NULL)
5501 mddev->to_remove = &md_redundancy_group;
5502 module_put(pers->owner);
5503 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 }
5505
5506 void md_stop(struct mddev *mddev)
5507 {
5508 /* stop the array and free an attached data structures.
5509 * This is called from dm-raid
5510 */
5511 __md_stop(mddev);
5512 bitmap_destroy(mddev);
5513 if (mddev->bio_set)
5514 bioset_free(mddev->bio_set);
5515 }
5516
5517 EXPORT_SYMBOL_GPL(md_stop);
5518
5519 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5520 {
5521 int err = 0;
5522 int did_freeze = 0;
5523
5524 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5525 did_freeze = 1;
5526 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5527 md_wakeup_thread(mddev->thread);
5528 }
5529 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5531 if (mddev->sync_thread)
5532 /* Thread might be blocked waiting for metadata update
5533 * which will now never happen */
5534 wake_up_process(mddev->sync_thread->tsk);
5535
5536 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5537 return -EBUSY;
5538 mddev_unlock(mddev);
5539 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5540 &mddev->recovery));
5541 wait_event(mddev->sb_wait,
5542 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5543 mddev_lock_nointr(mddev);
5544
5545 mutex_lock(&mddev->open_mutex);
5546 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5547 mddev->sync_thread ||
5548 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5549 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5550 printk("md: %s still in use.\n",mdname(mddev));
5551 if (did_freeze) {
5552 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5553 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5554 md_wakeup_thread(mddev->thread);
5555 }
5556 err = -EBUSY;
5557 goto out;
5558 }
5559 if (mddev->pers) {
5560 __md_stop_writes(mddev);
5561
5562 err = -ENXIO;
5563 if (mddev->ro==1)
5564 goto out;
5565 mddev->ro = 1;
5566 set_disk_ro(mddev->gendisk, 1);
5567 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5569 md_wakeup_thread(mddev->thread);
5570 sysfs_notify_dirent_safe(mddev->sysfs_state);
5571 err = 0;
5572 }
5573 out:
5574 mutex_unlock(&mddev->open_mutex);
5575 return err;
5576 }
5577
5578 /* mode:
5579 * 0 - completely stop and dis-assemble array
5580 * 2 - stop but do not disassemble array
5581 */
5582 static int do_md_stop(struct mddev *mddev, int mode,
5583 struct block_device *bdev)
5584 {
5585 struct gendisk *disk = mddev->gendisk;
5586 struct md_rdev *rdev;
5587 int did_freeze = 0;
5588
5589 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5590 did_freeze = 1;
5591 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5592 md_wakeup_thread(mddev->thread);
5593 }
5594 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5595 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5596 if (mddev->sync_thread)
5597 /* Thread might be blocked waiting for metadata update
5598 * which will now never happen */
5599 wake_up_process(mddev->sync_thread->tsk);
5600
5601 mddev_unlock(mddev);
5602 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5603 !test_bit(MD_RECOVERY_RUNNING,
5604 &mddev->recovery)));
5605 mddev_lock_nointr(mddev);
5606
5607 mutex_lock(&mddev->open_mutex);
5608 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5609 mddev->sysfs_active ||
5610 mddev->sync_thread ||
5611 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5612 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5613 printk("md: %s still in use.\n",mdname(mddev));
5614 mutex_unlock(&mddev->open_mutex);
5615 if (did_freeze) {
5616 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5618 md_wakeup_thread(mddev->thread);
5619 }
5620 return -EBUSY;
5621 }
5622 if (mddev->pers) {
5623 if (mddev->ro)
5624 set_disk_ro(disk, 0);
5625
5626 __md_stop_writes(mddev);
5627 __md_stop(mddev);
5628 mddev->queue->backing_dev_info.congested_fn = NULL;
5629
5630 /* tell userspace to handle 'inactive' */
5631 sysfs_notify_dirent_safe(mddev->sysfs_state);
5632
5633 rdev_for_each(rdev, mddev)
5634 if (rdev->raid_disk >= 0)
5635 sysfs_unlink_rdev(mddev, rdev);
5636
5637 set_capacity(disk, 0);
5638 mutex_unlock(&mddev->open_mutex);
5639 mddev->changed = 1;
5640 revalidate_disk(disk);
5641
5642 if (mddev->ro)
5643 mddev->ro = 0;
5644 } else
5645 mutex_unlock(&mddev->open_mutex);
5646 /*
5647 * Free resources if final stop
5648 */
5649 if (mode == 0) {
5650 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5651
5652 bitmap_destroy(mddev);
5653 if (mddev->bitmap_info.file) {
5654 struct file *f = mddev->bitmap_info.file;
5655 spin_lock(&mddev->lock);
5656 mddev->bitmap_info.file = NULL;
5657 spin_unlock(&mddev->lock);
5658 fput(f);
5659 }
5660 mddev->bitmap_info.offset = 0;
5661
5662 export_array(mddev);
5663
5664 md_clean(mddev);
5665 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5666 if (mddev->hold_active == UNTIL_STOP)
5667 mddev->hold_active = 0;
5668 }
5669 md_new_event(mddev);
5670 sysfs_notify_dirent_safe(mddev->sysfs_state);
5671 return 0;
5672 }
5673
5674 #ifndef MODULE
5675 static void autorun_array(struct mddev *mddev)
5676 {
5677 struct md_rdev *rdev;
5678 int err;
5679
5680 if (list_empty(&mddev->disks))
5681 return;
5682
5683 printk(KERN_INFO "md: running: ");
5684
5685 rdev_for_each(rdev, mddev) {
5686 char b[BDEVNAME_SIZE];
5687 printk("<%s>", bdevname(rdev->bdev,b));
5688 }
5689 printk("\n");
5690
5691 err = do_md_run(mddev);
5692 if (err) {
5693 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5694 do_md_stop(mddev, 0, NULL);
5695 }
5696 }
5697
5698 /*
5699 * lets try to run arrays based on all disks that have arrived
5700 * until now. (those are in pending_raid_disks)
5701 *
5702 * the method: pick the first pending disk, collect all disks with
5703 * the same UUID, remove all from the pending list and put them into
5704 * the 'same_array' list. Then order this list based on superblock
5705 * update time (freshest comes first), kick out 'old' disks and
5706 * compare superblocks. If everything's fine then run it.
5707 *
5708 * If "unit" is allocated, then bump its reference count
5709 */
5710 static void autorun_devices(int part)
5711 {
5712 struct md_rdev *rdev0, *rdev, *tmp;
5713 struct mddev *mddev;
5714 char b[BDEVNAME_SIZE];
5715
5716 printk(KERN_INFO "md: autorun ...\n");
5717 while (!list_empty(&pending_raid_disks)) {
5718 int unit;
5719 dev_t dev;
5720 LIST_HEAD(candidates);
5721 rdev0 = list_entry(pending_raid_disks.next,
5722 struct md_rdev, same_set);
5723
5724 printk(KERN_INFO "md: considering %s ...\n",
5725 bdevname(rdev0->bdev,b));
5726 INIT_LIST_HEAD(&candidates);
5727 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5728 if (super_90_load(rdev, rdev0, 0) >= 0) {
5729 printk(KERN_INFO "md: adding %s ...\n",
5730 bdevname(rdev->bdev,b));
5731 list_move(&rdev->same_set, &candidates);
5732 }
5733 /*
5734 * now we have a set of devices, with all of them having
5735 * mostly sane superblocks. It's time to allocate the
5736 * mddev.
5737 */
5738 if (part) {
5739 dev = MKDEV(mdp_major,
5740 rdev0->preferred_minor << MdpMinorShift);
5741 unit = MINOR(dev) >> MdpMinorShift;
5742 } else {
5743 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5744 unit = MINOR(dev);
5745 }
5746 if (rdev0->preferred_minor != unit) {
5747 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5748 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5749 break;
5750 }
5751
5752 md_probe(dev, NULL, NULL);
5753 mddev = mddev_find(dev);
5754 if (!mddev || !mddev->gendisk) {
5755 if (mddev)
5756 mddev_put(mddev);
5757 printk(KERN_ERR
5758 "md: cannot allocate memory for md drive.\n");
5759 break;
5760 }
5761 if (mddev_lock(mddev))
5762 printk(KERN_WARNING "md: %s locked, cannot run\n",
5763 mdname(mddev));
5764 else if (mddev->raid_disks || mddev->major_version
5765 || !list_empty(&mddev->disks)) {
5766 printk(KERN_WARNING
5767 "md: %s already running, cannot run %s\n",
5768 mdname(mddev), bdevname(rdev0->bdev,b));
5769 mddev_unlock(mddev);
5770 } else {
5771 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5772 mddev->persistent = 1;
5773 rdev_for_each_list(rdev, tmp, &candidates) {
5774 list_del_init(&rdev->same_set);
5775 if (bind_rdev_to_array(rdev, mddev))
5776 export_rdev(rdev);
5777 }
5778 autorun_array(mddev);
5779 mddev_unlock(mddev);
5780 }
5781 /* on success, candidates will be empty, on error
5782 * it won't...
5783 */
5784 rdev_for_each_list(rdev, tmp, &candidates) {
5785 list_del_init(&rdev->same_set);
5786 export_rdev(rdev);
5787 }
5788 mddev_put(mddev);
5789 }
5790 printk(KERN_INFO "md: ... autorun DONE.\n");
5791 }
5792 #endif /* !MODULE */
5793
5794 static int get_version(void __user *arg)
5795 {
5796 mdu_version_t ver;
5797
5798 ver.major = MD_MAJOR_VERSION;
5799 ver.minor = MD_MINOR_VERSION;
5800 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5801
5802 if (copy_to_user(arg, &ver, sizeof(ver)))
5803 return -EFAULT;
5804
5805 return 0;
5806 }
5807
5808 static int get_array_info(struct mddev *mddev, void __user *arg)
5809 {
5810 mdu_array_info_t info;
5811 int nr,working,insync,failed,spare;
5812 struct md_rdev *rdev;
5813
5814 nr = working = insync = failed = spare = 0;
5815 rcu_read_lock();
5816 rdev_for_each_rcu(rdev, mddev) {
5817 nr++;
5818 if (test_bit(Faulty, &rdev->flags))
5819 failed++;
5820 else {
5821 working++;
5822 if (test_bit(In_sync, &rdev->flags))
5823 insync++;
5824 else
5825 spare++;
5826 }
5827 }
5828 rcu_read_unlock();
5829
5830 info.major_version = mddev->major_version;
5831 info.minor_version = mddev->minor_version;
5832 info.patch_version = MD_PATCHLEVEL_VERSION;
5833 info.ctime = mddev->ctime;
5834 info.level = mddev->level;
5835 info.size = mddev->dev_sectors / 2;
5836 if (info.size != mddev->dev_sectors / 2) /* overflow */
5837 info.size = -1;
5838 info.nr_disks = nr;
5839 info.raid_disks = mddev->raid_disks;
5840 info.md_minor = mddev->md_minor;
5841 info.not_persistent= !mddev->persistent;
5842
5843 info.utime = mddev->utime;
5844 info.state = 0;
5845 if (mddev->in_sync)
5846 info.state = (1<<MD_SB_CLEAN);
5847 if (mddev->bitmap && mddev->bitmap_info.offset)
5848 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5849 if (mddev_is_clustered(mddev))
5850 info.state |= (1<<MD_SB_CLUSTERED);
5851 info.active_disks = insync;
5852 info.working_disks = working;
5853 info.failed_disks = failed;
5854 info.spare_disks = spare;
5855
5856 info.layout = mddev->layout;
5857 info.chunk_size = mddev->chunk_sectors << 9;
5858
5859 if (copy_to_user(arg, &info, sizeof(info)))
5860 return -EFAULT;
5861
5862 return 0;
5863 }
5864
5865 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5866 {
5867 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5868 char *ptr;
5869 int err;
5870
5871 file = kzalloc(sizeof(*file), GFP_NOIO);
5872 if (!file)
5873 return -ENOMEM;
5874
5875 err = 0;
5876 spin_lock(&mddev->lock);
5877 /* bitmap enabled */
5878 if (mddev->bitmap_info.file) {
5879 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5880 sizeof(file->pathname));
5881 if (IS_ERR(ptr))
5882 err = PTR_ERR(ptr);
5883 else
5884 memmove(file->pathname, ptr,
5885 sizeof(file->pathname)-(ptr-file->pathname));
5886 }
5887 spin_unlock(&mddev->lock);
5888
5889 if (err == 0 &&
5890 copy_to_user(arg, file, sizeof(*file)))
5891 err = -EFAULT;
5892
5893 kfree(file);
5894 return err;
5895 }
5896
5897 static int get_disk_info(struct mddev *mddev, void __user * arg)
5898 {
5899 mdu_disk_info_t info;
5900 struct md_rdev *rdev;
5901
5902 if (copy_from_user(&info, arg, sizeof(info)))
5903 return -EFAULT;
5904
5905 rcu_read_lock();
5906 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5907 if (rdev) {
5908 info.major = MAJOR(rdev->bdev->bd_dev);
5909 info.minor = MINOR(rdev->bdev->bd_dev);
5910 info.raid_disk = rdev->raid_disk;
5911 info.state = 0;
5912 if (test_bit(Faulty, &rdev->flags))
5913 info.state |= (1<<MD_DISK_FAULTY);
5914 else if (test_bit(In_sync, &rdev->flags)) {
5915 info.state |= (1<<MD_DISK_ACTIVE);
5916 info.state |= (1<<MD_DISK_SYNC);
5917 }
5918 if (test_bit(Journal, &rdev->flags))
5919 info.state |= (1<<MD_DISK_JOURNAL);
5920 if (test_bit(WriteMostly, &rdev->flags))
5921 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5922 } else {
5923 info.major = info.minor = 0;
5924 info.raid_disk = -1;
5925 info.state = (1<<MD_DISK_REMOVED);
5926 }
5927 rcu_read_unlock();
5928
5929 if (copy_to_user(arg, &info, sizeof(info)))
5930 return -EFAULT;
5931
5932 return 0;
5933 }
5934
5935 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5936 {
5937 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5938 struct md_rdev *rdev;
5939 dev_t dev = MKDEV(info->major,info->minor);
5940
5941 if (mddev_is_clustered(mddev) &&
5942 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5943 pr_err("%s: Cannot add to clustered mddev.\n",
5944 mdname(mddev));
5945 return -EINVAL;
5946 }
5947
5948 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5949 return -EOVERFLOW;
5950
5951 if (!mddev->raid_disks) {
5952 int err;
5953 /* expecting a device which has a superblock */
5954 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5955 if (IS_ERR(rdev)) {
5956 printk(KERN_WARNING
5957 "md: md_import_device returned %ld\n",
5958 PTR_ERR(rdev));
5959 return PTR_ERR(rdev);
5960 }
5961 if (!list_empty(&mddev->disks)) {
5962 struct md_rdev *rdev0
5963 = list_entry(mddev->disks.next,
5964 struct md_rdev, same_set);
5965 err = super_types[mddev->major_version]
5966 .load_super(rdev, rdev0, mddev->minor_version);
5967 if (err < 0) {
5968 printk(KERN_WARNING
5969 "md: %s has different UUID to %s\n",
5970 bdevname(rdev->bdev,b),
5971 bdevname(rdev0->bdev,b2));
5972 export_rdev(rdev);
5973 return -EINVAL;
5974 }
5975 }
5976 err = bind_rdev_to_array(rdev, mddev);
5977 if (err)
5978 export_rdev(rdev);
5979 return err;
5980 }
5981
5982 /*
5983 * add_new_disk can be used once the array is assembled
5984 * to add "hot spares". They must already have a superblock
5985 * written
5986 */
5987 if (mddev->pers) {
5988 int err;
5989 if (!mddev->pers->hot_add_disk) {
5990 printk(KERN_WARNING
5991 "%s: personality does not support diskops!\n",
5992 mdname(mddev));
5993 return -EINVAL;
5994 }
5995 if (mddev->persistent)
5996 rdev = md_import_device(dev, mddev->major_version,
5997 mddev->minor_version);
5998 else
5999 rdev = md_import_device(dev, -1, -1);
6000 if (IS_ERR(rdev)) {
6001 printk(KERN_WARNING
6002 "md: md_import_device returned %ld\n",
6003 PTR_ERR(rdev));
6004 return PTR_ERR(rdev);
6005 }
6006 /* set saved_raid_disk if appropriate */
6007 if (!mddev->persistent) {
6008 if (info->state & (1<<MD_DISK_SYNC) &&
6009 info->raid_disk < mddev->raid_disks) {
6010 rdev->raid_disk = info->raid_disk;
6011 set_bit(In_sync, &rdev->flags);
6012 clear_bit(Bitmap_sync, &rdev->flags);
6013 } else
6014 rdev->raid_disk = -1;
6015 rdev->saved_raid_disk = rdev->raid_disk;
6016 } else
6017 super_types[mddev->major_version].
6018 validate_super(mddev, rdev);
6019 if ((info->state & (1<<MD_DISK_SYNC)) &&
6020 rdev->raid_disk != info->raid_disk) {
6021 /* This was a hot-add request, but events doesn't
6022 * match, so reject it.
6023 */
6024 export_rdev(rdev);
6025 return -EINVAL;
6026 }
6027
6028 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6029 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6030 set_bit(WriteMostly, &rdev->flags);
6031 else
6032 clear_bit(WriteMostly, &rdev->flags);
6033
6034 if (info->state & (1<<MD_DISK_JOURNAL))
6035 set_bit(Journal, &rdev->flags);
6036 /*
6037 * check whether the device shows up in other nodes
6038 */
6039 if (mddev_is_clustered(mddev)) {
6040 if (info->state & (1 << MD_DISK_CANDIDATE))
6041 set_bit(Candidate, &rdev->flags);
6042 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6043 /* --add initiated by this node */
6044 err = md_cluster_ops->add_new_disk(mddev, rdev);
6045 if (err) {
6046 export_rdev(rdev);
6047 return err;
6048 }
6049 }
6050 }
6051
6052 rdev->raid_disk = -1;
6053 err = bind_rdev_to_array(rdev, mddev);
6054
6055 if (err)
6056 export_rdev(rdev);
6057
6058 if (mddev_is_clustered(mddev)) {
6059 if (info->state & (1 << MD_DISK_CANDIDATE))
6060 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6061 else {
6062 if (err)
6063 md_cluster_ops->add_new_disk_cancel(mddev);
6064 else
6065 err = add_bound_rdev(rdev);
6066 }
6067
6068 } else if (!err)
6069 err = add_bound_rdev(rdev);
6070
6071 return err;
6072 }
6073
6074 /* otherwise, add_new_disk is only allowed
6075 * for major_version==0 superblocks
6076 */
6077 if (mddev->major_version != 0) {
6078 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6079 mdname(mddev));
6080 return -EINVAL;
6081 }
6082
6083 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6084 int err;
6085 rdev = md_import_device(dev, -1, 0);
6086 if (IS_ERR(rdev)) {
6087 printk(KERN_WARNING
6088 "md: error, md_import_device() returned %ld\n",
6089 PTR_ERR(rdev));
6090 return PTR_ERR(rdev);
6091 }
6092 rdev->desc_nr = info->number;
6093 if (info->raid_disk < mddev->raid_disks)
6094 rdev->raid_disk = info->raid_disk;
6095 else
6096 rdev->raid_disk = -1;
6097
6098 if (rdev->raid_disk < mddev->raid_disks)
6099 if (info->state & (1<<MD_DISK_SYNC))
6100 set_bit(In_sync, &rdev->flags);
6101
6102 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6103 set_bit(WriteMostly, &rdev->flags);
6104
6105 if (!mddev->persistent) {
6106 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6107 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6108 } else
6109 rdev->sb_start = calc_dev_sboffset(rdev);
6110 rdev->sectors = rdev->sb_start;
6111
6112 err = bind_rdev_to_array(rdev, mddev);
6113 if (err) {
6114 export_rdev(rdev);
6115 return err;
6116 }
6117 }
6118
6119 return 0;
6120 }
6121
6122 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6123 {
6124 char b[BDEVNAME_SIZE];
6125 struct md_rdev *rdev;
6126 int ret = -1;
6127
6128 rdev = find_rdev(mddev, dev);
6129 if (!rdev)
6130 return -ENXIO;
6131
6132 if (mddev_is_clustered(mddev))
6133 ret = md_cluster_ops->metadata_update_start(mddev);
6134
6135 if (rdev->raid_disk < 0)
6136 goto kick_rdev;
6137
6138 clear_bit(Blocked, &rdev->flags);
6139 remove_and_add_spares(mddev, rdev);
6140
6141 if (rdev->raid_disk >= 0)
6142 goto busy;
6143
6144 kick_rdev:
6145 if (mddev_is_clustered(mddev) && ret == 0)
6146 md_cluster_ops->remove_disk(mddev, rdev);
6147
6148 md_kick_rdev_from_array(rdev);
6149 md_update_sb(mddev, 1);
6150 md_new_event(mddev);
6151
6152 return 0;
6153 busy:
6154 if (mddev_is_clustered(mddev) && ret == 0)
6155 md_cluster_ops->metadata_update_cancel(mddev);
6156
6157 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6158 bdevname(rdev->bdev,b), mdname(mddev));
6159 return -EBUSY;
6160 }
6161
6162 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6163 {
6164 char b[BDEVNAME_SIZE];
6165 int err;
6166 struct md_rdev *rdev;
6167
6168 if (!mddev->pers)
6169 return -ENODEV;
6170
6171 if (mddev->major_version != 0) {
6172 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6173 " version-0 superblocks.\n",
6174 mdname(mddev));
6175 return -EINVAL;
6176 }
6177 if (!mddev->pers->hot_add_disk) {
6178 printk(KERN_WARNING
6179 "%s: personality does not support diskops!\n",
6180 mdname(mddev));
6181 return -EINVAL;
6182 }
6183
6184 rdev = md_import_device(dev, -1, 0);
6185 if (IS_ERR(rdev)) {
6186 printk(KERN_WARNING
6187 "md: error, md_import_device() returned %ld\n",
6188 PTR_ERR(rdev));
6189 return -EINVAL;
6190 }
6191
6192 if (mddev->persistent)
6193 rdev->sb_start = calc_dev_sboffset(rdev);
6194 else
6195 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6196
6197 rdev->sectors = rdev->sb_start;
6198
6199 if (test_bit(Faulty, &rdev->flags)) {
6200 printk(KERN_WARNING
6201 "md: can not hot-add faulty %s disk to %s!\n",
6202 bdevname(rdev->bdev,b), mdname(mddev));
6203 err = -EINVAL;
6204 goto abort_export;
6205 }
6206
6207 clear_bit(In_sync, &rdev->flags);
6208 rdev->desc_nr = -1;
6209 rdev->saved_raid_disk = -1;
6210 err = bind_rdev_to_array(rdev, mddev);
6211 if (err)
6212 goto abort_export;
6213
6214 /*
6215 * The rest should better be atomic, we can have disk failures
6216 * noticed in interrupt contexts ...
6217 */
6218
6219 rdev->raid_disk = -1;
6220
6221 md_update_sb(mddev, 1);
6222 /*
6223 * Kick recovery, maybe this spare has to be added to the
6224 * array immediately.
6225 */
6226 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6227 md_wakeup_thread(mddev->thread);
6228 md_new_event(mddev);
6229 return 0;
6230
6231 abort_export:
6232 export_rdev(rdev);
6233 return err;
6234 }
6235
6236 static int set_bitmap_file(struct mddev *mddev, int fd)
6237 {
6238 int err = 0;
6239
6240 if (mddev->pers) {
6241 if (!mddev->pers->quiesce || !mddev->thread)
6242 return -EBUSY;
6243 if (mddev->recovery || mddev->sync_thread)
6244 return -EBUSY;
6245 /* we should be able to change the bitmap.. */
6246 }
6247
6248 if (fd >= 0) {
6249 struct inode *inode;
6250 struct file *f;
6251
6252 if (mddev->bitmap || mddev->bitmap_info.file)
6253 return -EEXIST; /* cannot add when bitmap is present */
6254 f = fget(fd);
6255
6256 if (f == NULL) {
6257 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6258 mdname(mddev));
6259 return -EBADF;
6260 }
6261
6262 inode = f->f_mapping->host;
6263 if (!S_ISREG(inode->i_mode)) {
6264 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6265 mdname(mddev));
6266 err = -EBADF;
6267 } else if (!(f->f_mode & FMODE_WRITE)) {
6268 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6269 mdname(mddev));
6270 err = -EBADF;
6271 } else if (atomic_read(&inode->i_writecount) != 1) {
6272 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6273 mdname(mddev));
6274 err = -EBUSY;
6275 }
6276 if (err) {
6277 fput(f);
6278 return err;
6279 }
6280 mddev->bitmap_info.file = f;
6281 mddev->bitmap_info.offset = 0; /* file overrides offset */
6282 } else if (mddev->bitmap == NULL)
6283 return -ENOENT; /* cannot remove what isn't there */
6284 err = 0;
6285 if (mddev->pers) {
6286 mddev->pers->quiesce(mddev, 1);
6287 if (fd >= 0) {
6288 struct bitmap *bitmap;
6289
6290 bitmap = bitmap_create(mddev, -1);
6291 if (!IS_ERR(bitmap)) {
6292 mddev->bitmap = bitmap;
6293 err = bitmap_load(mddev);
6294 } else
6295 err = PTR_ERR(bitmap);
6296 }
6297 if (fd < 0 || err) {
6298 bitmap_destroy(mddev);
6299 fd = -1; /* make sure to put the file */
6300 }
6301 mddev->pers->quiesce(mddev, 0);
6302 }
6303 if (fd < 0) {
6304 struct file *f = mddev->bitmap_info.file;
6305 if (f) {
6306 spin_lock(&mddev->lock);
6307 mddev->bitmap_info.file = NULL;
6308 spin_unlock(&mddev->lock);
6309 fput(f);
6310 }
6311 }
6312
6313 return err;
6314 }
6315
6316 /*
6317 * set_array_info is used two different ways
6318 * The original usage is when creating a new array.
6319 * In this usage, raid_disks is > 0 and it together with
6320 * level, size, not_persistent,layout,chunksize determine the
6321 * shape of the array.
6322 * This will always create an array with a type-0.90.0 superblock.
6323 * The newer usage is when assembling an array.
6324 * In this case raid_disks will be 0, and the major_version field is
6325 * use to determine which style super-blocks are to be found on the devices.
6326 * The minor and patch _version numbers are also kept incase the
6327 * super_block handler wishes to interpret them.
6328 */
6329 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6330 {
6331
6332 if (info->raid_disks == 0) {
6333 /* just setting version number for superblock loading */
6334 if (info->major_version < 0 ||
6335 info->major_version >= ARRAY_SIZE(super_types) ||
6336 super_types[info->major_version].name == NULL) {
6337 /* maybe try to auto-load a module? */
6338 printk(KERN_INFO
6339 "md: superblock version %d not known\n",
6340 info->major_version);
6341 return -EINVAL;
6342 }
6343 mddev->major_version = info->major_version;
6344 mddev->minor_version = info->minor_version;
6345 mddev->patch_version = info->patch_version;
6346 mddev->persistent = !info->not_persistent;
6347 /* ensure mddev_put doesn't delete this now that there
6348 * is some minimal configuration.
6349 */
6350 mddev->ctime = get_seconds();
6351 return 0;
6352 }
6353 mddev->major_version = MD_MAJOR_VERSION;
6354 mddev->minor_version = MD_MINOR_VERSION;
6355 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6356 mddev->ctime = get_seconds();
6357
6358 mddev->level = info->level;
6359 mddev->clevel[0] = 0;
6360 mddev->dev_sectors = 2 * (sector_t)info->size;
6361 mddev->raid_disks = info->raid_disks;
6362 /* don't set md_minor, it is determined by which /dev/md* was
6363 * openned
6364 */
6365 if (info->state & (1<<MD_SB_CLEAN))
6366 mddev->recovery_cp = MaxSector;
6367 else
6368 mddev->recovery_cp = 0;
6369 mddev->persistent = ! info->not_persistent;
6370 mddev->external = 0;
6371
6372 mddev->layout = info->layout;
6373 mddev->chunk_sectors = info->chunk_size >> 9;
6374
6375 mddev->max_disks = MD_SB_DISKS;
6376
6377 if (mddev->persistent)
6378 mddev->flags = 0;
6379 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6380
6381 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6382 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6383 mddev->bitmap_info.offset = 0;
6384
6385 mddev->reshape_position = MaxSector;
6386
6387 /*
6388 * Generate a 128 bit UUID
6389 */
6390 get_random_bytes(mddev->uuid, 16);
6391
6392 mddev->new_level = mddev->level;
6393 mddev->new_chunk_sectors = mddev->chunk_sectors;
6394 mddev->new_layout = mddev->layout;
6395 mddev->delta_disks = 0;
6396 mddev->reshape_backwards = 0;
6397
6398 return 0;
6399 }
6400
6401 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6402 {
6403 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6404
6405 if (mddev->external_size)
6406 return;
6407
6408 mddev->array_sectors = array_sectors;
6409 }
6410 EXPORT_SYMBOL(md_set_array_sectors);
6411
6412 static int update_size(struct mddev *mddev, sector_t num_sectors)
6413 {
6414 struct md_rdev *rdev;
6415 int rv;
6416 int fit = (num_sectors == 0);
6417
6418 if (mddev->pers->resize == NULL)
6419 return -EINVAL;
6420 /* The "num_sectors" is the number of sectors of each device that
6421 * is used. This can only make sense for arrays with redundancy.
6422 * linear and raid0 always use whatever space is available. We can only
6423 * consider changing this number if no resync or reconstruction is
6424 * happening, and if the new size is acceptable. It must fit before the
6425 * sb_start or, if that is <data_offset, it must fit before the size
6426 * of each device. If num_sectors is zero, we find the largest size
6427 * that fits.
6428 */
6429 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6430 mddev->sync_thread)
6431 return -EBUSY;
6432 if (mddev->ro)
6433 return -EROFS;
6434
6435 rdev_for_each(rdev, mddev) {
6436 sector_t avail = rdev->sectors;
6437
6438 if (fit && (num_sectors == 0 || num_sectors > avail))
6439 num_sectors = avail;
6440 if (avail < num_sectors)
6441 return -ENOSPC;
6442 }
6443 rv = mddev->pers->resize(mddev, num_sectors);
6444 if (!rv)
6445 revalidate_disk(mddev->gendisk);
6446 return rv;
6447 }
6448
6449 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6450 {
6451 int rv;
6452 struct md_rdev *rdev;
6453 /* change the number of raid disks */
6454 if (mddev->pers->check_reshape == NULL)
6455 return -EINVAL;
6456 if (mddev->ro)
6457 return -EROFS;
6458 if (raid_disks <= 0 ||
6459 (mddev->max_disks && raid_disks >= mddev->max_disks))
6460 return -EINVAL;
6461 if (mddev->sync_thread ||
6462 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6463 mddev->reshape_position != MaxSector)
6464 return -EBUSY;
6465
6466 rdev_for_each(rdev, mddev) {
6467 if (mddev->raid_disks < raid_disks &&
6468 rdev->data_offset < rdev->new_data_offset)
6469 return -EINVAL;
6470 if (mddev->raid_disks > raid_disks &&
6471 rdev->data_offset > rdev->new_data_offset)
6472 return -EINVAL;
6473 }
6474
6475 mddev->delta_disks = raid_disks - mddev->raid_disks;
6476 if (mddev->delta_disks < 0)
6477 mddev->reshape_backwards = 1;
6478 else if (mddev->delta_disks > 0)
6479 mddev->reshape_backwards = 0;
6480
6481 rv = mddev->pers->check_reshape(mddev);
6482 if (rv < 0) {
6483 mddev->delta_disks = 0;
6484 mddev->reshape_backwards = 0;
6485 }
6486 return rv;
6487 }
6488
6489 /*
6490 * update_array_info is used to change the configuration of an
6491 * on-line array.
6492 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6493 * fields in the info are checked against the array.
6494 * Any differences that cannot be handled will cause an error.
6495 * Normally, only one change can be managed at a time.
6496 */
6497 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6498 {
6499 int rv = 0;
6500 int cnt = 0;
6501 int state = 0;
6502
6503 /* calculate expected state,ignoring low bits */
6504 if (mddev->bitmap && mddev->bitmap_info.offset)
6505 state |= (1 << MD_SB_BITMAP_PRESENT);
6506
6507 if (mddev->major_version != info->major_version ||
6508 mddev->minor_version != info->minor_version ||
6509 /* mddev->patch_version != info->patch_version || */
6510 mddev->ctime != info->ctime ||
6511 mddev->level != info->level ||
6512 /* mddev->layout != info->layout || */
6513 mddev->persistent != !info->not_persistent ||
6514 mddev->chunk_sectors != info->chunk_size >> 9 ||
6515 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6516 ((state^info->state) & 0xfffffe00)
6517 )
6518 return -EINVAL;
6519 /* Check there is only one change */
6520 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6521 cnt++;
6522 if (mddev->raid_disks != info->raid_disks)
6523 cnt++;
6524 if (mddev->layout != info->layout)
6525 cnt++;
6526 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6527 cnt++;
6528 if (cnt == 0)
6529 return 0;
6530 if (cnt > 1)
6531 return -EINVAL;
6532
6533 if (mddev->layout != info->layout) {
6534 /* Change layout
6535 * we don't need to do anything at the md level, the
6536 * personality will take care of it all.
6537 */
6538 if (mddev->pers->check_reshape == NULL)
6539 return -EINVAL;
6540 else {
6541 mddev->new_layout = info->layout;
6542 rv = mddev->pers->check_reshape(mddev);
6543 if (rv)
6544 mddev->new_layout = mddev->layout;
6545 return rv;
6546 }
6547 }
6548 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6549 rv = update_size(mddev, (sector_t)info->size * 2);
6550
6551 if (mddev->raid_disks != info->raid_disks)
6552 rv = update_raid_disks(mddev, info->raid_disks);
6553
6554 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6555 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6556 rv = -EINVAL;
6557 goto err;
6558 }
6559 if (mddev->recovery || mddev->sync_thread) {
6560 rv = -EBUSY;
6561 goto err;
6562 }
6563 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6564 struct bitmap *bitmap;
6565 /* add the bitmap */
6566 if (mddev->bitmap) {
6567 rv = -EEXIST;
6568 goto err;
6569 }
6570 if (mddev->bitmap_info.default_offset == 0) {
6571 rv = -EINVAL;
6572 goto err;
6573 }
6574 mddev->bitmap_info.offset =
6575 mddev->bitmap_info.default_offset;
6576 mddev->bitmap_info.space =
6577 mddev->bitmap_info.default_space;
6578 mddev->pers->quiesce(mddev, 1);
6579 bitmap = bitmap_create(mddev, -1);
6580 if (!IS_ERR(bitmap)) {
6581 mddev->bitmap = bitmap;
6582 rv = bitmap_load(mddev);
6583 } else
6584 rv = PTR_ERR(bitmap);
6585 if (rv)
6586 bitmap_destroy(mddev);
6587 mddev->pers->quiesce(mddev, 0);
6588 } else {
6589 /* remove the bitmap */
6590 if (!mddev->bitmap) {
6591 rv = -ENOENT;
6592 goto err;
6593 }
6594 if (mddev->bitmap->storage.file) {
6595 rv = -EINVAL;
6596 goto err;
6597 }
6598 mddev->pers->quiesce(mddev, 1);
6599 bitmap_destroy(mddev);
6600 mddev->pers->quiesce(mddev, 0);
6601 mddev->bitmap_info.offset = 0;
6602 }
6603 }
6604 md_update_sb(mddev, 1);
6605 return rv;
6606 err:
6607 return rv;
6608 }
6609
6610 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6611 {
6612 struct md_rdev *rdev;
6613 int err = 0;
6614
6615 if (mddev->pers == NULL)
6616 return -ENODEV;
6617
6618 rcu_read_lock();
6619 rdev = find_rdev_rcu(mddev, dev);
6620 if (!rdev)
6621 err = -ENODEV;
6622 else {
6623 md_error(mddev, rdev);
6624 if (!test_bit(Faulty, &rdev->flags))
6625 err = -EBUSY;
6626 }
6627 rcu_read_unlock();
6628 return err;
6629 }
6630
6631 /*
6632 * We have a problem here : there is no easy way to give a CHS
6633 * virtual geometry. We currently pretend that we have a 2 heads
6634 * 4 sectors (with a BIG number of cylinders...). This drives
6635 * dosfs just mad... ;-)
6636 */
6637 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6638 {
6639 struct mddev *mddev = bdev->bd_disk->private_data;
6640
6641 geo->heads = 2;
6642 geo->sectors = 4;
6643 geo->cylinders = mddev->array_sectors / 8;
6644 return 0;
6645 }
6646
6647 static inline bool md_ioctl_valid(unsigned int cmd)
6648 {
6649 switch (cmd) {
6650 case ADD_NEW_DISK:
6651 case BLKROSET:
6652 case GET_ARRAY_INFO:
6653 case GET_BITMAP_FILE:
6654 case GET_DISK_INFO:
6655 case HOT_ADD_DISK:
6656 case HOT_REMOVE_DISK:
6657 case RAID_AUTORUN:
6658 case RAID_VERSION:
6659 case RESTART_ARRAY_RW:
6660 case RUN_ARRAY:
6661 case SET_ARRAY_INFO:
6662 case SET_BITMAP_FILE:
6663 case SET_DISK_FAULTY:
6664 case STOP_ARRAY:
6665 case STOP_ARRAY_RO:
6666 case CLUSTERED_DISK_NACK:
6667 return true;
6668 default:
6669 return false;
6670 }
6671 }
6672
6673 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6674 unsigned int cmd, unsigned long arg)
6675 {
6676 int err = 0;
6677 void __user *argp = (void __user *)arg;
6678 struct mddev *mddev = NULL;
6679 int ro;
6680
6681 if (!md_ioctl_valid(cmd))
6682 return -ENOTTY;
6683
6684 switch (cmd) {
6685 case RAID_VERSION:
6686 case GET_ARRAY_INFO:
6687 case GET_DISK_INFO:
6688 break;
6689 default:
6690 if (!capable(CAP_SYS_ADMIN))
6691 return -EACCES;
6692 }
6693
6694 /*
6695 * Commands dealing with the RAID driver but not any
6696 * particular array:
6697 */
6698 switch (cmd) {
6699 case RAID_VERSION:
6700 err = get_version(argp);
6701 goto out;
6702
6703 #ifndef MODULE
6704 case RAID_AUTORUN:
6705 err = 0;
6706 autostart_arrays(arg);
6707 goto out;
6708 #endif
6709 default:;
6710 }
6711
6712 /*
6713 * Commands creating/starting a new array:
6714 */
6715
6716 mddev = bdev->bd_disk->private_data;
6717
6718 if (!mddev) {
6719 BUG();
6720 goto out;
6721 }
6722
6723 /* Some actions do not requires the mutex */
6724 switch (cmd) {
6725 case GET_ARRAY_INFO:
6726 if (!mddev->raid_disks && !mddev->external)
6727 err = -ENODEV;
6728 else
6729 err = get_array_info(mddev, argp);
6730 goto out;
6731
6732 case GET_DISK_INFO:
6733 if (!mddev->raid_disks && !mddev->external)
6734 err = -ENODEV;
6735 else
6736 err = get_disk_info(mddev, argp);
6737 goto out;
6738
6739 case SET_DISK_FAULTY:
6740 err = set_disk_faulty(mddev, new_decode_dev(arg));
6741 goto out;
6742
6743 case GET_BITMAP_FILE:
6744 err = get_bitmap_file(mddev, argp);
6745 goto out;
6746
6747 }
6748
6749 if (cmd == ADD_NEW_DISK)
6750 /* need to ensure md_delayed_delete() has completed */
6751 flush_workqueue(md_misc_wq);
6752
6753 if (cmd == HOT_REMOVE_DISK)
6754 /* need to ensure recovery thread has run */
6755 wait_event_interruptible_timeout(mddev->sb_wait,
6756 !test_bit(MD_RECOVERY_NEEDED,
6757 &mddev->flags),
6758 msecs_to_jiffies(5000));
6759 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6760 /* Need to flush page cache, and ensure no-one else opens
6761 * and writes
6762 */
6763 mutex_lock(&mddev->open_mutex);
6764 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6765 mutex_unlock(&mddev->open_mutex);
6766 err = -EBUSY;
6767 goto out;
6768 }
6769 set_bit(MD_STILL_CLOSED, &mddev->flags);
6770 mutex_unlock(&mddev->open_mutex);
6771 sync_blockdev(bdev);
6772 }
6773 err = mddev_lock(mddev);
6774 if (err) {
6775 printk(KERN_INFO
6776 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6777 err, cmd);
6778 goto out;
6779 }
6780
6781 if (cmd == SET_ARRAY_INFO) {
6782 mdu_array_info_t info;
6783 if (!arg)
6784 memset(&info, 0, sizeof(info));
6785 else if (copy_from_user(&info, argp, sizeof(info))) {
6786 err = -EFAULT;
6787 goto unlock;
6788 }
6789 if (mddev->pers) {
6790 err = update_array_info(mddev, &info);
6791 if (err) {
6792 printk(KERN_WARNING "md: couldn't update"
6793 " array info. %d\n", err);
6794 goto unlock;
6795 }
6796 goto unlock;
6797 }
6798 if (!list_empty(&mddev->disks)) {
6799 printk(KERN_WARNING
6800 "md: array %s already has disks!\n",
6801 mdname(mddev));
6802 err = -EBUSY;
6803 goto unlock;
6804 }
6805 if (mddev->raid_disks) {
6806 printk(KERN_WARNING
6807 "md: array %s already initialised!\n",
6808 mdname(mddev));
6809 err = -EBUSY;
6810 goto unlock;
6811 }
6812 err = set_array_info(mddev, &info);
6813 if (err) {
6814 printk(KERN_WARNING "md: couldn't set"
6815 " array info. %d\n", err);
6816 goto unlock;
6817 }
6818 goto unlock;
6819 }
6820
6821 /*
6822 * Commands querying/configuring an existing array:
6823 */
6824 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6825 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6826 if ((!mddev->raid_disks && !mddev->external)
6827 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6828 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6829 && cmd != GET_BITMAP_FILE) {
6830 err = -ENODEV;
6831 goto unlock;
6832 }
6833
6834 /*
6835 * Commands even a read-only array can execute:
6836 */
6837 switch (cmd) {
6838 case RESTART_ARRAY_RW:
6839 err = restart_array(mddev);
6840 goto unlock;
6841
6842 case STOP_ARRAY:
6843 err = do_md_stop(mddev, 0, bdev);
6844 goto unlock;
6845
6846 case STOP_ARRAY_RO:
6847 err = md_set_readonly(mddev, bdev);
6848 goto unlock;
6849
6850 case HOT_REMOVE_DISK:
6851 err = hot_remove_disk(mddev, new_decode_dev(arg));
6852 goto unlock;
6853
6854 case ADD_NEW_DISK:
6855 /* We can support ADD_NEW_DISK on read-only arrays
6856 * on if we are re-adding a preexisting device.
6857 * So require mddev->pers and MD_DISK_SYNC.
6858 */
6859 if (mddev->pers) {
6860 mdu_disk_info_t info;
6861 if (copy_from_user(&info, argp, sizeof(info)))
6862 err = -EFAULT;
6863 else if (!(info.state & (1<<MD_DISK_SYNC)))
6864 /* Need to clear read-only for this */
6865 break;
6866 else
6867 err = add_new_disk(mddev, &info);
6868 goto unlock;
6869 }
6870 break;
6871
6872 case BLKROSET:
6873 if (get_user(ro, (int __user *)(arg))) {
6874 err = -EFAULT;
6875 goto unlock;
6876 }
6877 err = -EINVAL;
6878
6879 /* if the bdev is going readonly the value of mddev->ro
6880 * does not matter, no writes are coming
6881 */
6882 if (ro)
6883 goto unlock;
6884
6885 /* are we are already prepared for writes? */
6886 if (mddev->ro != 1)
6887 goto unlock;
6888
6889 /* transitioning to readauto need only happen for
6890 * arrays that call md_write_start
6891 */
6892 if (mddev->pers) {
6893 err = restart_array(mddev);
6894 if (err == 0) {
6895 mddev->ro = 2;
6896 set_disk_ro(mddev->gendisk, 0);
6897 }
6898 }
6899 goto unlock;
6900 }
6901
6902 /*
6903 * The remaining ioctls are changing the state of the
6904 * superblock, so we do not allow them on read-only arrays.
6905 */
6906 if (mddev->ro && mddev->pers) {
6907 if (mddev->ro == 2) {
6908 mddev->ro = 0;
6909 sysfs_notify_dirent_safe(mddev->sysfs_state);
6910 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6911 /* mddev_unlock will wake thread */
6912 /* If a device failed while we were read-only, we
6913 * need to make sure the metadata is updated now.
6914 */
6915 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6916 mddev_unlock(mddev);
6917 wait_event(mddev->sb_wait,
6918 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6919 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6920 mddev_lock_nointr(mddev);
6921 }
6922 } else {
6923 err = -EROFS;
6924 goto unlock;
6925 }
6926 }
6927
6928 switch (cmd) {
6929 case ADD_NEW_DISK:
6930 {
6931 mdu_disk_info_t info;
6932 if (copy_from_user(&info, argp, sizeof(info)))
6933 err = -EFAULT;
6934 else
6935 err = add_new_disk(mddev, &info);
6936 goto unlock;
6937 }
6938
6939 case CLUSTERED_DISK_NACK:
6940 if (mddev_is_clustered(mddev))
6941 md_cluster_ops->new_disk_ack(mddev, false);
6942 else
6943 err = -EINVAL;
6944 goto unlock;
6945
6946 case HOT_ADD_DISK:
6947 err = hot_add_disk(mddev, new_decode_dev(arg));
6948 goto unlock;
6949
6950 case RUN_ARRAY:
6951 err = do_md_run(mddev);
6952 goto unlock;
6953
6954 case SET_BITMAP_FILE:
6955 err = set_bitmap_file(mddev, (int)arg);
6956 goto unlock;
6957
6958 default:
6959 err = -EINVAL;
6960 goto unlock;
6961 }
6962
6963 unlock:
6964 if (mddev->hold_active == UNTIL_IOCTL &&
6965 err != -EINVAL)
6966 mddev->hold_active = 0;
6967 mddev_unlock(mddev);
6968 out:
6969 return err;
6970 }
6971 #ifdef CONFIG_COMPAT
6972 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6973 unsigned int cmd, unsigned long arg)
6974 {
6975 switch (cmd) {
6976 case HOT_REMOVE_DISK:
6977 case HOT_ADD_DISK:
6978 case SET_DISK_FAULTY:
6979 case SET_BITMAP_FILE:
6980 /* These take in integer arg, do not convert */
6981 break;
6982 default:
6983 arg = (unsigned long)compat_ptr(arg);
6984 break;
6985 }
6986
6987 return md_ioctl(bdev, mode, cmd, arg);
6988 }
6989 #endif /* CONFIG_COMPAT */
6990
6991 static int md_open(struct block_device *bdev, fmode_t mode)
6992 {
6993 /*
6994 * Succeed if we can lock the mddev, which confirms that
6995 * it isn't being stopped right now.
6996 */
6997 struct mddev *mddev = mddev_find(bdev->bd_dev);
6998 int err;
6999
7000 if (!mddev)
7001 return -ENODEV;
7002
7003 if (mddev->gendisk != bdev->bd_disk) {
7004 /* we are racing with mddev_put which is discarding this
7005 * bd_disk.
7006 */
7007 mddev_put(mddev);
7008 /* Wait until bdev->bd_disk is definitely gone */
7009 flush_workqueue(md_misc_wq);
7010 /* Then retry the open from the top */
7011 return -ERESTARTSYS;
7012 }
7013 BUG_ON(mddev != bdev->bd_disk->private_data);
7014
7015 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7016 goto out;
7017
7018 err = 0;
7019 atomic_inc(&mddev->openers);
7020 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7021 mutex_unlock(&mddev->open_mutex);
7022
7023 check_disk_change(bdev);
7024 out:
7025 return err;
7026 }
7027
7028 static void md_release(struct gendisk *disk, fmode_t mode)
7029 {
7030 struct mddev *mddev = disk->private_data;
7031
7032 BUG_ON(!mddev);
7033 atomic_dec(&mddev->openers);
7034 mddev_put(mddev);
7035 }
7036
7037 static int md_media_changed(struct gendisk *disk)
7038 {
7039 struct mddev *mddev = disk->private_data;
7040
7041 return mddev->changed;
7042 }
7043
7044 static int md_revalidate(struct gendisk *disk)
7045 {
7046 struct mddev *mddev = disk->private_data;
7047
7048 mddev->changed = 0;
7049 return 0;
7050 }
7051 static const struct block_device_operations md_fops =
7052 {
7053 .owner = THIS_MODULE,
7054 .open = md_open,
7055 .release = md_release,
7056 .ioctl = md_ioctl,
7057 #ifdef CONFIG_COMPAT
7058 .compat_ioctl = md_compat_ioctl,
7059 #endif
7060 .getgeo = md_getgeo,
7061 .media_changed = md_media_changed,
7062 .revalidate_disk= md_revalidate,
7063 };
7064
7065 static int md_thread(void *arg)
7066 {
7067 struct md_thread *thread = arg;
7068
7069 /*
7070 * md_thread is a 'system-thread', it's priority should be very
7071 * high. We avoid resource deadlocks individually in each
7072 * raid personality. (RAID5 does preallocation) We also use RR and
7073 * the very same RT priority as kswapd, thus we will never get
7074 * into a priority inversion deadlock.
7075 *
7076 * we definitely have to have equal or higher priority than
7077 * bdflush, otherwise bdflush will deadlock if there are too
7078 * many dirty RAID5 blocks.
7079 */
7080
7081 allow_signal(SIGKILL);
7082 while (!kthread_should_stop()) {
7083
7084 /* We need to wait INTERRUPTIBLE so that
7085 * we don't add to the load-average.
7086 * That means we need to be sure no signals are
7087 * pending
7088 */
7089 if (signal_pending(current))
7090 flush_signals(current);
7091
7092 wait_event_interruptible_timeout
7093 (thread->wqueue,
7094 test_bit(THREAD_WAKEUP, &thread->flags)
7095 || kthread_should_stop(),
7096 thread->timeout);
7097
7098 clear_bit(THREAD_WAKEUP, &thread->flags);
7099 if (!kthread_should_stop())
7100 thread->run(thread);
7101 }
7102
7103 return 0;
7104 }
7105
7106 void md_wakeup_thread(struct md_thread *thread)
7107 {
7108 if (thread) {
7109 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7110 set_bit(THREAD_WAKEUP, &thread->flags);
7111 wake_up(&thread->wqueue);
7112 }
7113 }
7114 EXPORT_SYMBOL(md_wakeup_thread);
7115
7116 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7117 struct mddev *mddev, const char *name)
7118 {
7119 struct md_thread *thread;
7120
7121 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7122 if (!thread)
7123 return NULL;
7124
7125 init_waitqueue_head(&thread->wqueue);
7126
7127 thread->run = run;
7128 thread->mddev = mddev;
7129 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7130 thread->tsk = kthread_run(md_thread, thread,
7131 "%s_%s",
7132 mdname(thread->mddev),
7133 name);
7134 if (IS_ERR(thread->tsk)) {
7135 kfree(thread);
7136 return NULL;
7137 }
7138 return thread;
7139 }
7140 EXPORT_SYMBOL(md_register_thread);
7141
7142 void md_unregister_thread(struct md_thread **threadp)
7143 {
7144 struct md_thread *thread = *threadp;
7145 if (!thread)
7146 return;
7147 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7148 /* Locking ensures that mddev_unlock does not wake_up a
7149 * non-existent thread
7150 */
7151 spin_lock(&pers_lock);
7152 *threadp = NULL;
7153 spin_unlock(&pers_lock);
7154
7155 kthread_stop(thread->tsk);
7156 kfree(thread);
7157 }
7158 EXPORT_SYMBOL(md_unregister_thread);
7159
7160 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7161 {
7162 if (!rdev || test_bit(Faulty, &rdev->flags))
7163 return;
7164
7165 if (!mddev->pers || !mddev->pers->error_handler)
7166 return;
7167 mddev->pers->error_handler(mddev,rdev);
7168 if (mddev->degraded)
7169 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7170 sysfs_notify_dirent_safe(rdev->sysfs_state);
7171 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7172 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7173 md_wakeup_thread(mddev->thread);
7174 if (mddev->event_work.func)
7175 queue_work(md_misc_wq, &mddev->event_work);
7176 md_new_event_inintr(mddev);
7177 }
7178 EXPORT_SYMBOL(md_error);
7179
7180 /* seq_file implementation /proc/mdstat */
7181
7182 static void status_unused(struct seq_file *seq)
7183 {
7184 int i = 0;
7185 struct md_rdev *rdev;
7186
7187 seq_printf(seq, "unused devices: ");
7188
7189 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7190 char b[BDEVNAME_SIZE];
7191 i++;
7192 seq_printf(seq, "%s ",
7193 bdevname(rdev->bdev,b));
7194 }
7195 if (!i)
7196 seq_printf(seq, "<none>");
7197
7198 seq_printf(seq, "\n");
7199 }
7200
7201 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7202 {
7203 sector_t max_sectors, resync, res;
7204 unsigned long dt, db;
7205 sector_t rt;
7206 int scale;
7207 unsigned int per_milli;
7208
7209 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7210 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7211 max_sectors = mddev->resync_max_sectors;
7212 else
7213 max_sectors = mddev->dev_sectors;
7214
7215 resync = mddev->curr_resync;
7216 if (resync <= 3) {
7217 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7218 /* Still cleaning up */
7219 resync = max_sectors;
7220 } else
7221 resync -= atomic_read(&mddev->recovery_active);
7222
7223 if (resync == 0) {
7224 if (mddev->recovery_cp < MaxSector) {
7225 seq_printf(seq, "\tresync=PENDING");
7226 return 1;
7227 }
7228 return 0;
7229 }
7230 if (resync < 3) {
7231 seq_printf(seq, "\tresync=DELAYED");
7232 return 1;
7233 }
7234
7235 WARN_ON(max_sectors == 0);
7236 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7237 * in a sector_t, and (max_sectors>>scale) will fit in a
7238 * u32, as those are the requirements for sector_div.
7239 * Thus 'scale' must be at least 10
7240 */
7241 scale = 10;
7242 if (sizeof(sector_t) > sizeof(unsigned long)) {
7243 while ( max_sectors/2 > (1ULL<<(scale+32)))
7244 scale++;
7245 }
7246 res = (resync>>scale)*1000;
7247 sector_div(res, (u32)((max_sectors>>scale)+1));
7248
7249 per_milli = res;
7250 {
7251 int i, x = per_milli/50, y = 20-x;
7252 seq_printf(seq, "[");
7253 for (i = 0; i < x; i++)
7254 seq_printf(seq, "=");
7255 seq_printf(seq, ">");
7256 for (i = 0; i < y; i++)
7257 seq_printf(seq, ".");
7258 seq_printf(seq, "] ");
7259 }
7260 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7261 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7262 "reshape" :
7263 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7264 "check" :
7265 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7266 "resync" : "recovery"))),
7267 per_milli/10, per_milli % 10,
7268 (unsigned long long) resync/2,
7269 (unsigned long long) max_sectors/2);
7270
7271 /*
7272 * dt: time from mark until now
7273 * db: blocks written from mark until now
7274 * rt: remaining time
7275 *
7276 * rt is a sector_t, so could be 32bit or 64bit.
7277 * So we divide before multiply in case it is 32bit and close
7278 * to the limit.
7279 * We scale the divisor (db) by 32 to avoid losing precision
7280 * near the end of resync when the number of remaining sectors
7281 * is close to 'db'.
7282 * We then divide rt by 32 after multiplying by db to compensate.
7283 * The '+1' avoids division by zero if db is very small.
7284 */
7285 dt = ((jiffies - mddev->resync_mark) / HZ);
7286 if (!dt) dt++;
7287 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7288 - mddev->resync_mark_cnt;
7289
7290 rt = max_sectors - resync; /* number of remaining sectors */
7291 sector_div(rt, db/32+1);
7292 rt *= dt;
7293 rt >>= 5;
7294
7295 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7296 ((unsigned long)rt % 60)/6);
7297
7298 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7299 return 1;
7300 }
7301
7302 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7303 {
7304 struct list_head *tmp;
7305 loff_t l = *pos;
7306 struct mddev *mddev;
7307
7308 if (l >= 0x10000)
7309 return NULL;
7310 if (!l--)
7311 /* header */
7312 return (void*)1;
7313
7314 spin_lock(&all_mddevs_lock);
7315 list_for_each(tmp,&all_mddevs)
7316 if (!l--) {
7317 mddev = list_entry(tmp, struct mddev, all_mddevs);
7318 mddev_get(mddev);
7319 spin_unlock(&all_mddevs_lock);
7320 return mddev;
7321 }
7322 spin_unlock(&all_mddevs_lock);
7323 if (!l--)
7324 return (void*)2;/* tail */
7325 return NULL;
7326 }
7327
7328 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7329 {
7330 struct list_head *tmp;
7331 struct mddev *next_mddev, *mddev = v;
7332
7333 ++*pos;
7334 if (v == (void*)2)
7335 return NULL;
7336
7337 spin_lock(&all_mddevs_lock);
7338 if (v == (void*)1)
7339 tmp = all_mddevs.next;
7340 else
7341 tmp = mddev->all_mddevs.next;
7342 if (tmp != &all_mddevs)
7343 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7344 else {
7345 next_mddev = (void*)2;
7346 *pos = 0x10000;
7347 }
7348 spin_unlock(&all_mddevs_lock);
7349
7350 if (v != (void*)1)
7351 mddev_put(mddev);
7352 return next_mddev;
7353
7354 }
7355
7356 static void md_seq_stop(struct seq_file *seq, void *v)
7357 {
7358 struct mddev *mddev = v;
7359
7360 if (mddev && v != (void*)1 && v != (void*)2)
7361 mddev_put(mddev);
7362 }
7363
7364 static int md_seq_show(struct seq_file *seq, void *v)
7365 {
7366 struct mddev *mddev = v;
7367 sector_t sectors;
7368 struct md_rdev *rdev;
7369
7370 if (v == (void*)1) {
7371 struct md_personality *pers;
7372 seq_printf(seq, "Personalities : ");
7373 spin_lock(&pers_lock);
7374 list_for_each_entry(pers, &pers_list, list)
7375 seq_printf(seq, "[%s] ", pers->name);
7376
7377 spin_unlock(&pers_lock);
7378 seq_printf(seq, "\n");
7379 seq->poll_event = atomic_read(&md_event_count);
7380 return 0;
7381 }
7382 if (v == (void*)2) {
7383 status_unused(seq);
7384 return 0;
7385 }
7386
7387 spin_lock(&mddev->lock);
7388 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7389 seq_printf(seq, "%s : %sactive", mdname(mddev),
7390 mddev->pers ? "" : "in");
7391 if (mddev->pers) {
7392 if (mddev->ro==1)
7393 seq_printf(seq, " (read-only)");
7394 if (mddev->ro==2)
7395 seq_printf(seq, " (auto-read-only)");
7396 seq_printf(seq, " %s", mddev->pers->name);
7397 }
7398
7399 sectors = 0;
7400 rcu_read_lock();
7401 rdev_for_each_rcu(rdev, mddev) {
7402 char b[BDEVNAME_SIZE];
7403 seq_printf(seq, " %s[%d]",
7404 bdevname(rdev->bdev,b), rdev->desc_nr);
7405 if (test_bit(WriteMostly, &rdev->flags))
7406 seq_printf(seq, "(W)");
7407 if (test_bit(Journal, &rdev->flags))
7408 seq_printf(seq, "(J)");
7409 if (test_bit(Faulty, &rdev->flags)) {
7410 seq_printf(seq, "(F)");
7411 continue;
7412 }
7413 if (rdev->raid_disk < 0)
7414 seq_printf(seq, "(S)"); /* spare */
7415 if (test_bit(Replacement, &rdev->flags))
7416 seq_printf(seq, "(R)");
7417 sectors += rdev->sectors;
7418 }
7419 rcu_read_unlock();
7420
7421 if (!list_empty(&mddev->disks)) {
7422 if (mddev->pers)
7423 seq_printf(seq, "\n %llu blocks",
7424 (unsigned long long)
7425 mddev->array_sectors / 2);
7426 else
7427 seq_printf(seq, "\n %llu blocks",
7428 (unsigned long long)sectors / 2);
7429 }
7430 if (mddev->persistent) {
7431 if (mddev->major_version != 0 ||
7432 mddev->minor_version != 90) {
7433 seq_printf(seq," super %d.%d",
7434 mddev->major_version,
7435 mddev->minor_version);
7436 }
7437 } else if (mddev->external)
7438 seq_printf(seq, " super external:%s",
7439 mddev->metadata_type);
7440 else
7441 seq_printf(seq, " super non-persistent");
7442
7443 if (mddev->pers) {
7444 mddev->pers->status(seq, mddev);
7445 seq_printf(seq, "\n ");
7446 if (mddev->pers->sync_request) {
7447 if (status_resync(seq, mddev))
7448 seq_printf(seq, "\n ");
7449 }
7450 } else
7451 seq_printf(seq, "\n ");
7452
7453 bitmap_status(seq, mddev->bitmap);
7454
7455 seq_printf(seq, "\n");
7456 }
7457 spin_unlock(&mddev->lock);
7458
7459 return 0;
7460 }
7461
7462 static const struct seq_operations md_seq_ops = {
7463 .start = md_seq_start,
7464 .next = md_seq_next,
7465 .stop = md_seq_stop,
7466 .show = md_seq_show,
7467 };
7468
7469 static int md_seq_open(struct inode *inode, struct file *file)
7470 {
7471 struct seq_file *seq;
7472 int error;
7473
7474 error = seq_open(file, &md_seq_ops);
7475 if (error)
7476 return error;
7477
7478 seq = file->private_data;
7479 seq->poll_event = atomic_read(&md_event_count);
7480 return error;
7481 }
7482
7483 static int md_unloading;
7484 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7485 {
7486 struct seq_file *seq = filp->private_data;
7487 int mask;
7488
7489 if (md_unloading)
7490 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7491 poll_wait(filp, &md_event_waiters, wait);
7492
7493 /* always allow read */
7494 mask = POLLIN | POLLRDNORM;
7495
7496 if (seq->poll_event != atomic_read(&md_event_count))
7497 mask |= POLLERR | POLLPRI;
7498 return mask;
7499 }
7500
7501 static const struct file_operations md_seq_fops = {
7502 .owner = THIS_MODULE,
7503 .open = md_seq_open,
7504 .read = seq_read,
7505 .llseek = seq_lseek,
7506 .release = seq_release_private,
7507 .poll = mdstat_poll,
7508 };
7509
7510 int register_md_personality(struct md_personality *p)
7511 {
7512 printk(KERN_INFO "md: %s personality registered for level %d\n",
7513 p->name, p->level);
7514 spin_lock(&pers_lock);
7515 list_add_tail(&p->list, &pers_list);
7516 spin_unlock(&pers_lock);
7517 return 0;
7518 }
7519 EXPORT_SYMBOL(register_md_personality);
7520
7521 int unregister_md_personality(struct md_personality *p)
7522 {
7523 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7524 spin_lock(&pers_lock);
7525 list_del_init(&p->list);
7526 spin_unlock(&pers_lock);
7527 return 0;
7528 }
7529 EXPORT_SYMBOL(unregister_md_personality);
7530
7531 int register_md_cluster_operations(struct md_cluster_operations *ops,
7532 struct module *module)
7533 {
7534 int ret = 0;
7535 spin_lock(&pers_lock);
7536 if (md_cluster_ops != NULL)
7537 ret = -EALREADY;
7538 else {
7539 md_cluster_ops = ops;
7540 md_cluster_mod = module;
7541 }
7542 spin_unlock(&pers_lock);
7543 return ret;
7544 }
7545 EXPORT_SYMBOL(register_md_cluster_operations);
7546
7547 int unregister_md_cluster_operations(void)
7548 {
7549 spin_lock(&pers_lock);
7550 md_cluster_ops = NULL;
7551 spin_unlock(&pers_lock);
7552 return 0;
7553 }
7554 EXPORT_SYMBOL(unregister_md_cluster_operations);
7555
7556 int md_setup_cluster(struct mddev *mddev, int nodes)
7557 {
7558 int err;
7559
7560 err = request_module("md-cluster");
7561 if (err) {
7562 pr_err("md-cluster module not found.\n");
7563 return -ENOENT;
7564 }
7565
7566 spin_lock(&pers_lock);
7567 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7568 spin_unlock(&pers_lock);
7569 return -ENOENT;
7570 }
7571 spin_unlock(&pers_lock);
7572
7573 return md_cluster_ops->join(mddev, nodes);
7574 }
7575
7576 void md_cluster_stop(struct mddev *mddev)
7577 {
7578 if (!md_cluster_ops)
7579 return;
7580 md_cluster_ops->leave(mddev);
7581 module_put(md_cluster_mod);
7582 }
7583
7584 static int is_mddev_idle(struct mddev *mddev, int init)
7585 {
7586 struct md_rdev *rdev;
7587 int idle;
7588 int curr_events;
7589
7590 idle = 1;
7591 rcu_read_lock();
7592 rdev_for_each_rcu(rdev, mddev) {
7593 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7594 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7595 (int)part_stat_read(&disk->part0, sectors[1]) -
7596 atomic_read(&disk->sync_io);
7597 /* sync IO will cause sync_io to increase before the disk_stats
7598 * as sync_io is counted when a request starts, and
7599 * disk_stats is counted when it completes.
7600 * So resync activity will cause curr_events to be smaller than
7601 * when there was no such activity.
7602 * non-sync IO will cause disk_stat to increase without
7603 * increasing sync_io so curr_events will (eventually)
7604 * be larger than it was before. Once it becomes
7605 * substantially larger, the test below will cause
7606 * the array to appear non-idle, and resync will slow
7607 * down.
7608 * If there is a lot of outstanding resync activity when
7609 * we set last_event to curr_events, then all that activity
7610 * completing might cause the array to appear non-idle
7611 * and resync will be slowed down even though there might
7612 * not have been non-resync activity. This will only
7613 * happen once though. 'last_events' will soon reflect
7614 * the state where there is little or no outstanding
7615 * resync requests, and further resync activity will
7616 * always make curr_events less than last_events.
7617 *
7618 */
7619 if (init || curr_events - rdev->last_events > 64) {
7620 rdev->last_events = curr_events;
7621 idle = 0;
7622 }
7623 }
7624 rcu_read_unlock();
7625 return idle;
7626 }
7627
7628 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7629 {
7630 /* another "blocks" (512byte) blocks have been synced */
7631 atomic_sub(blocks, &mddev->recovery_active);
7632 wake_up(&mddev->recovery_wait);
7633 if (!ok) {
7634 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7635 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7636 md_wakeup_thread(mddev->thread);
7637 // stop recovery, signal do_sync ....
7638 }
7639 }
7640 EXPORT_SYMBOL(md_done_sync);
7641
7642 /* md_write_start(mddev, bi)
7643 * If we need to update some array metadata (e.g. 'active' flag
7644 * in superblock) before writing, schedule a superblock update
7645 * and wait for it to complete.
7646 */
7647 void md_write_start(struct mddev *mddev, struct bio *bi)
7648 {
7649 int did_change = 0;
7650 if (bio_data_dir(bi) != WRITE)
7651 return;
7652
7653 BUG_ON(mddev->ro == 1);
7654 if (mddev->ro == 2) {
7655 /* need to switch to read/write */
7656 mddev->ro = 0;
7657 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7658 md_wakeup_thread(mddev->thread);
7659 md_wakeup_thread(mddev->sync_thread);
7660 did_change = 1;
7661 }
7662 atomic_inc(&mddev->writes_pending);
7663 if (mddev->safemode == 1)
7664 mddev->safemode = 0;
7665 if (mddev->in_sync) {
7666 spin_lock(&mddev->lock);
7667 if (mddev->in_sync) {
7668 mddev->in_sync = 0;
7669 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7670 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7671 md_wakeup_thread(mddev->thread);
7672 did_change = 1;
7673 }
7674 spin_unlock(&mddev->lock);
7675 }
7676 if (did_change)
7677 sysfs_notify_dirent_safe(mddev->sysfs_state);
7678 wait_event(mddev->sb_wait,
7679 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7680 }
7681 EXPORT_SYMBOL(md_write_start);
7682
7683 void md_write_end(struct mddev *mddev)
7684 {
7685 if (atomic_dec_and_test(&mddev->writes_pending)) {
7686 if (mddev->safemode == 2)
7687 md_wakeup_thread(mddev->thread);
7688 else if (mddev->safemode_delay)
7689 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7690 }
7691 }
7692 EXPORT_SYMBOL(md_write_end);
7693
7694 /* md_allow_write(mddev)
7695 * Calling this ensures that the array is marked 'active' so that writes
7696 * may proceed without blocking. It is important to call this before
7697 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7698 * Must be called with mddev_lock held.
7699 *
7700 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7701 * is dropped, so return -EAGAIN after notifying userspace.
7702 */
7703 int md_allow_write(struct mddev *mddev)
7704 {
7705 if (!mddev->pers)
7706 return 0;
7707 if (mddev->ro)
7708 return 0;
7709 if (!mddev->pers->sync_request)
7710 return 0;
7711
7712 spin_lock(&mddev->lock);
7713 if (mddev->in_sync) {
7714 mddev->in_sync = 0;
7715 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7716 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7717 if (mddev->safemode_delay &&
7718 mddev->safemode == 0)
7719 mddev->safemode = 1;
7720 spin_unlock(&mddev->lock);
7721 md_update_sb(mddev, 0);
7722 sysfs_notify_dirent_safe(mddev->sysfs_state);
7723 } else
7724 spin_unlock(&mddev->lock);
7725
7726 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7727 return -EAGAIN;
7728 else
7729 return 0;
7730 }
7731 EXPORT_SYMBOL_GPL(md_allow_write);
7732
7733 #define SYNC_MARKS 10
7734 #define SYNC_MARK_STEP (3*HZ)
7735 #define UPDATE_FREQUENCY (5*60*HZ)
7736 void md_do_sync(struct md_thread *thread)
7737 {
7738 struct mddev *mddev = thread->mddev;
7739 struct mddev *mddev2;
7740 unsigned int currspeed = 0,
7741 window;
7742 sector_t max_sectors,j, io_sectors, recovery_done;
7743 unsigned long mark[SYNC_MARKS];
7744 unsigned long update_time;
7745 sector_t mark_cnt[SYNC_MARKS];
7746 int last_mark,m;
7747 struct list_head *tmp;
7748 sector_t last_check;
7749 int skipped = 0;
7750 struct md_rdev *rdev;
7751 char *desc, *action = NULL;
7752 struct blk_plug plug;
7753 bool cluster_resync_finished = false;
7754
7755 /* just incase thread restarts... */
7756 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7757 return;
7758 if (mddev->ro) {/* never try to sync a read-only array */
7759 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7760 return;
7761 }
7762
7763 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7764 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7765 desc = "data-check";
7766 action = "check";
7767 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7768 desc = "requested-resync";
7769 action = "repair";
7770 } else
7771 desc = "resync";
7772 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7773 desc = "reshape";
7774 else
7775 desc = "recovery";
7776
7777 mddev->last_sync_action = action ?: desc;
7778
7779 /* we overload curr_resync somewhat here.
7780 * 0 == not engaged in resync at all
7781 * 2 == checking that there is no conflict with another sync
7782 * 1 == like 2, but have yielded to allow conflicting resync to
7783 * commense
7784 * other == active in resync - this many blocks
7785 *
7786 * Before starting a resync we must have set curr_resync to
7787 * 2, and then checked that every "conflicting" array has curr_resync
7788 * less than ours. When we find one that is the same or higher
7789 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7790 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7791 * This will mean we have to start checking from the beginning again.
7792 *
7793 */
7794
7795 do {
7796 mddev->curr_resync = 2;
7797
7798 try_again:
7799 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7800 goto skip;
7801 for_each_mddev(mddev2, tmp) {
7802 if (mddev2 == mddev)
7803 continue;
7804 if (!mddev->parallel_resync
7805 && mddev2->curr_resync
7806 && match_mddev_units(mddev, mddev2)) {
7807 DEFINE_WAIT(wq);
7808 if (mddev < mddev2 && mddev->curr_resync == 2) {
7809 /* arbitrarily yield */
7810 mddev->curr_resync = 1;
7811 wake_up(&resync_wait);
7812 }
7813 if (mddev > mddev2 && mddev->curr_resync == 1)
7814 /* no need to wait here, we can wait the next
7815 * time 'round when curr_resync == 2
7816 */
7817 continue;
7818 /* We need to wait 'interruptible' so as not to
7819 * contribute to the load average, and not to
7820 * be caught by 'softlockup'
7821 */
7822 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7823 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7824 mddev2->curr_resync >= mddev->curr_resync) {
7825 printk(KERN_INFO "md: delaying %s of %s"
7826 " until %s has finished (they"
7827 " share one or more physical units)\n",
7828 desc, mdname(mddev), mdname(mddev2));
7829 mddev_put(mddev2);
7830 if (signal_pending(current))
7831 flush_signals(current);
7832 schedule();
7833 finish_wait(&resync_wait, &wq);
7834 goto try_again;
7835 }
7836 finish_wait(&resync_wait, &wq);
7837 }
7838 }
7839 } while (mddev->curr_resync < 2);
7840
7841 j = 0;
7842 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7843 /* resync follows the size requested by the personality,
7844 * which defaults to physical size, but can be virtual size
7845 */
7846 max_sectors = mddev->resync_max_sectors;
7847 atomic64_set(&mddev->resync_mismatches, 0);
7848 /* we don't use the checkpoint if there's a bitmap */
7849 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7850 j = mddev->resync_min;
7851 else if (!mddev->bitmap)
7852 j = mddev->recovery_cp;
7853
7854 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7855 max_sectors = mddev->resync_max_sectors;
7856 else {
7857 /* recovery follows the physical size of devices */
7858 max_sectors = mddev->dev_sectors;
7859 j = MaxSector;
7860 rcu_read_lock();
7861 rdev_for_each_rcu(rdev, mddev)
7862 if (rdev->raid_disk >= 0 &&
7863 !test_bit(Journal, &rdev->flags) &&
7864 !test_bit(Faulty, &rdev->flags) &&
7865 !test_bit(In_sync, &rdev->flags) &&
7866 rdev->recovery_offset < j)
7867 j = rdev->recovery_offset;
7868 rcu_read_unlock();
7869
7870 /* If there is a bitmap, we need to make sure all
7871 * writes that started before we added a spare
7872 * complete before we start doing a recovery.
7873 * Otherwise the write might complete and (via
7874 * bitmap_endwrite) set a bit in the bitmap after the
7875 * recovery has checked that bit and skipped that
7876 * region.
7877 */
7878 if (mddev->bitmap) {
7879 mddev->pers->quiesce(mddev, 1);
7880 mddev->pers->quiesce(mddev, 0);
7881 }
7882 }
7883
7884 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7885 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7886 " %d KB/sec/disk.\n", speed_min(mddev));
7887 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7888 "(but not more than %d KB/sec) for %s.\n",
7889 speed_max(mddev), desc);
7890
7891 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7892
7893 io_sectors = 0;
7894 for (m = 0; m < SYNC_MARKS; m++) {
7895 mark[m] = jiffies;
7896 mark_cnt[m] = io_sectors;
7897 }
7898 last_mark = 0;
7899 mddev->resync_mark = mark[last_mark];
7900 mddev->resync_mark_cnt = mark_cnt[last_mark];
7901
7902 /*
7903 * Tune reconstruction:
7904 */
7905 window = 32*(PAGE_SIZE/512);
7906 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7907 window/2, (unsigned long long)max_sectors/2);
7908
7909 atomic_set(&mddev->recovery_active, 0);
7910 last_check = 0;
7911
7912 if (j>2) {
7913 printk(KERN_INFO
7914 "md: resuming %s of %s from checkpoint.\n",
7915 desc, mdname(mddev));
7916 mddev->curr_resync = j;
7917 } else
7918 mddev->curr_resync = 3; /* no longer delayed */
7919 mddev->curr_resync_completed = j;
7920 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7921 md_new_event(mddev);
7922 update_time = jiffies;
7923
7924 blk_start_plug(&plug);
7925 while (j < max_sectors) {
7926 sector_t sectors;
7927
7928 skipped = 0;
7929
7930 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7931 ((mddev->curr_resync > mddev->curr_resync_completed &&
7932 (mddev->curr_resync - mddev->curr_resync_completed)
7933 > (max_sectors >> 4)) ||
7934 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7935 (j - mddev->curr_resync_completed)*2
7936 >= mddev->resync_max - mddev->curr_resync_completed ||
7937 mddev->curr_resync_completed > mddev->resync_max
7938 )) {
7939 /* time to update curr_resync_completed */
7940 wait_event(mddev->recovery_wait,
7941 atomic_read(&mddev->recovery_active) == 0);
7942 mddev->curr_resync_completed = j;
7943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7944 j > mddev->recovery_cp)
7945 mddev->recovery_cp = j;
7946 update_time = jiffies;
7947 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7948 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7949 }
7950
7951 while (j >= mddev->resync_max &&
7952 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7953 /* As this condition is controlled by user-space,
7954 * we can block indefinitely, so use '_interruptible'
7955 * to avoid triggering warnings.
7956 */
7957 flush_signals(current); /* just in case */
7958 wait_event_interruptible(mddev->recovery_wait,
7959 mddev->resync_max > j
7960 || test_bit(MD_RECOVERY_INTR,
7961 &mddev->recovery));
7962 }
7963
7964 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7965 break;
7966
7967 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7968 if (sectors == 0) {
7969 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7970 break;
7971 }
7972
7973 if (!skipped) { /* actual IO requested */
7974 io_sectors += sectors;
7975 atomic_add(sectors, &mddev->recovery_active);
7976 }
7977
7978 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7979 break;
7980
7981 j += sectors;
7982 if (j > max_sectors)
7983 /* when skipping, extra large numbers can be returned. */
7984 j = max_sectors;
7985 if (j > 2)
7986 mddev->curr_resync = j;
7987 mddev->curr_mark_cnt = io_sectors;
7988 if (last_check == 0)
7989 /* this is the earliest that rebuild will be
7990 * visible in /proc/mdstat
7991 */
7992 md_new_event(mddev);
7993
7994 if (last_check + window > io_sectors || j == max_sectors)
7995 continue;
7996
7997 last_check = io_sectors;
7998 repeat:
7999 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8000 /* step marks */
8001 int next = (last_mark+1) % SYNC_MARKS;
8002
8003 mddev->resync_mark = mark[next];
8004 mddev->resync_mark_cnt = mark_cnt[next];
8005 mark[next] = jiffies;
8006 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8007 last_mark = next;
8008 }
8009
8010 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8011 break;
8012
8013 /*
8014 * this loop exits only if either when we are slower than
8015 * the 'hard' speed limit, or the system was IO-idle for
8016 * a jiffy.
8017 * the system might be non-idle CPU-wise, but we only care
8018 * about not overloading the IO subsystem. (things like an
8019 * e2fsck being done on the RAID array should execute fast)
8020 */
8021 cond_resched();
8022
8023 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8024 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8025 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8026
8027 if (currspeed > speed_min(mddev)) {
8028 if (currspeed > speed_max(mddev)) {
8029 msleep(500);
8030 goto repeat;
8031 }
8032 if (!is_mddev_idle(mddev, 0)) {
8033 /*
8034 * Give other IO more of a chance.
8035 * The faster the devices, the less we wait.
8036 */
8037 wait_event(mddev->recovery_wait,
8038 !atomic_read(&mddev->recovery_active));
8039 }
8040 }
8041 }
8042 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8043 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8044 ? "interrupted" : "done");
8045 /*
8046 * this also signals 'finished resyncing' to md_stop
8047 */
8048 blk_finish_plug(&plug);
8049 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8050
8051 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8052 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8053 mddev->curr_resync > 2) {
8054 mddev->curr_resync_completed = mddev->curr_resync;
8055 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8056 }
8057 /* tell personality and other nodes that we are finished */
8058 if (mddev_is_clustered(mddev)) {
8059 md_cluster_ops->resync_finish(mddev);
8060 cluster_resync_finished = true;
8061 }
8062 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8063
8064 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8065 mddev->curr_resync > 2) {
8066 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8067 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8068 if (mddev->curr_resync >= mddev->recovery_cp) {
8069 printk(KERN_INFO
8070 "md: checkpointing %s of %s.\n",
8071 desc, mdname(mddev));
8072 if (test_bit(MD_RECOVERY_ERROR,
8073 &mddev->recovery))
8074 mddev->recovery_cp =
8075 mddev->curr_resync_completed;
8076 else
8077 mddev->recovery_cp =
8078 mddev->curr_resync;
8079 }
8080 } else
8081 mddev->recovery_cp = MaxSector;
8082 } else {
8083 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8084 mddev->curr_resync = MaxSector;
8085 rcu_read_lock();
8086 rdev_for_each_rcu(rdev, mddev)
8087 if (rdev->raid_disk >= 0 &&
8088 mddev->delta_disks >= 0 &&
8089 !test_bit(Journal, &rdev->flags) &&
8090 !test_bit(Faulty, &rdev->flags) &&
8091 !test_bit(In_sync, &rdev->flags) &&
8092 rdev->recovery_offset < mddev->curr_resync)
8093 rdev->recovery_offset = mddev->curr_resync;
8094 rcu_read_unlock();
8095 }
8096 }
8097 skip:
8098 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8099
8100 if (mddev_is_clustered(mddev) &&
8101 test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8102 !cluster_resync_finished)
8103 md_cluster_ops->resync_finish(mddev);
8104
8105 spin_lock(&mddev->lock);
8106 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8107 /* We completed so min/max setting can be forgotten if used. */
8108 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8109 mddev->resync_min = 0;
8110 mddev->resync_max = MaxSector;
8111 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8112 mddev->resync_min = mddev->curr_resync_completed;
8113 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8114 mddev->curr_resync = 0;
8115 spin_unlock(&mddev->lock);
8116
8117 wake_up(&resync_wait);
8118 md_wakeup_thread(mddev->thread);
8119 return;
8120 }
8121 EXPORT_SYMBOL_GPL(md_do_sync);
8122
8123 static int remove_and_add_spares(struct mddev *mddev,
8124 struct md_rdev *this)
8125 {
8126 struct md_rdev *rdev;
8127 int spares = 0;
8128 int removed = 0;
8129
8130 rdev_for_each(rdev, mddev)
8131 if ((this == NULL || rdev == this) &&
8132 rdev->raid_disk >= 0 &&
8133 !test_bit(Blocked, &rdev->flags) &&
8134 (test_bit(Faulty, &rdev->flags) ||
8135 (!test_bit(In_sync, &rdev->flags) &&
8136 !test_bit(Journal, &rdev->flags))) &&
8137 atomic_read(&rdev->nr_pending)==0) {
8138 if (mddev->pers->hot_remove_disk(
8139 mddev, rdev) == 0) {
8140 sysfs_unlink_rdev(mddev, rdev);
8141 rdev->raid_disk = -1;
8142 removed++;
8143 }
8144 }
8145 if (removed && mddev->kobj.sd)
8146 sysfs_notify(&mddev->kobj, NULL, "degraded");
8147
8148 if (this && removed)
8149 goto no_add;
8150
8151 rdev_for_each(rdev, mddev) {
8152 if (this && this != rdev)
8153 continue;
8154 if (test_bit(Candidate, &rdev->flags))
8155 continue;
8156 if (rdev->raid_disk >= 0 &&
8157 !test_bit(In_sync, &rdev->flags) &&
8158 !test_bit(Journal, &rdev->flags) &&
8159 !test_bit(Faulty, &rdev->flags))
8160 spares++;
8161 if (rdev->raid_disk >= 0)
8162 continue;
8163 if (test_bit(Faulty, &rdev->flags))
8164 continue;
8165 if (test_bit(Journal, &rdev->flags))
8166 continue;
8167 if (mddev->ro &&
8168 ! (rdev->saved_raid_disk >= 0 &&
8169 !test_bit(Bitmap_sync, &rdev->flags)))
8170 continue;
8171
8172 rdev->recovery_offset = 0;
8173 if (mddev->pers->
8174 hot_add_disk(mddev, rdev) == 0) {
8175 if (sysfs_link_rdev(mddev, rdev))
8176 /* failure here is OK */;
8177 spares++;
8178 md_new_event(mddev);
8179 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8180 }
8181 }
8182 no_add:
8183 if (removed)
8184 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8185 return spares;
8186 }
8187
8188 static void md_start_sync(struct work_struct *ws)
8189 {
8190 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8191 int ret = 0;
8192
8193 if (mddev_is_clustered(mddev)) {
8194 ret = md_cluster_ops->resync_start(mddev);
8195 if (ret) {
8196 mddev->sync_thread = NULL;
8197 goto out;
8198 }
8199 }
8200
8201 mddev->sync_thread = md_register_thread(md_do_sync,
8202 mddev,
8203 "resync");
8204 out:
8205 if (!mddev->sync_thread) {
8206 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8207 printk(KERN_ERR "%s: could not start resync"
8208 " thread...\n",
8209 mdname(mddev));
8210 /* leave the spares where they are, it shouldn't hurt */
8211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8212 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8213 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8214 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8215 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8216 wake_up(&resync_wait);
8217 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8218 &mddev->recovery))
8219 if (mddev->sysfs_action)
8220 sysfs_notify_dirent_safe(mddev->sysfs_action);
8221 } else
8222 md_wakeup_thread(mddev->sync_thread);
8223 sysfs_notify_dirent_safe(mddev->sysfs_action);
8224 md_new_event(mddev);
8225 }
8226
8227 /*
8228 * This routine is regularly called by all per-raid-array threads to
8229 * deal with generic issues like resync and super-block update.
8230 * Raid personalities that don't have a thread (linear/raid0) do not
8231 * need this as they never do any recovery or update the superblock.
8232 *
8233 * It does not do any resync itself, but rather "forks" off other threads
8234 * to do that as needed.
8235 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8236 * "->recovery" and create a thread at ->sync_thread.
8237 * When the thread finishes it sets MD_RECOVERY_DONE
8238 * and wakeups up this thread which will reap the thread and finish up.
8239 * This thread also removes any faulty devices (with nr_pending == 0).
8240 *
8241 * The overall approach is:
8242 * 1/ if the superblock needs updating, update it.
8243 * 2/ If a recovery thread is running, don't do anything else.
8244 * 3/ If recovery has finished, clean up, possibly marking spares active.
8245 * 4/ If there are any faulty devices, remove them.
8246 * 5/ If array is degraded, try to add spares devices
8247 * 6/ If array has spares or is not in-sync, start a resync thread.
8248 */
8249 void md_check_recovery(struct mddev *mddev)
8250 {
8251 if (mddev->suspended)
8252 return;
8253
8254 if (mddev->bitmap)
8255 bitmap_daemon_work(mddev);
8256
8257 if (signal_pending(current)) {
8258 if (mddev->pers->sync_request && !mddev->external) {
8259 printk(KERN_INFO "md: %s in immediate safe mode\n",
8260 mdname(mddev));
8261 mddev->safemode = 2;
8262 }
8263 flush_signals(current);
8264 }
8265
8266 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8267 return;
8268 if ( ! (
8269 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8270 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8271 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8272 (mddev->external == 0 && mddev->safemode == 1) ||
8273 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8274 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8275 ))
8276 return;
8277
8278 if (mddev_trylock(mddev)) {
8279 int spares = 0;
8280
8281 if (mddev->ro) {
8282 struct md_rdev *rdev;
8283 if (!mddev->external && mddev->in_sync)
8284 /* 'Blocked' flag not needed as failed devices
8285 * will be recorded if array switched to read/write.
8286 * Leaving it set will prevent the device
8287 * from being removed.
8288 */
8289 rdev_for_each(rdev, mddev)
8290 clear_bit(Blocked, &rdev->flags);
8291 /* On a read-only array we can:
8292 * - remove failed devices
8293 * - add already-in_sync devices if the array itself
8294 * is in-sync.
8295 * As we only add devices that are already in-sync,
8296 * we can activate the spares immediately.
8297 */
8298 remove_and_add_spares(mddev, NULL);
8299 /* There is no thread, but we need to call
8300 * ->spare_active and clear saved_raid_disk
8301 */
8302 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8303 md_reap_sync_thread(mddev);
8304 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8305 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8306 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8307 goto unlock;
8308 }
8309
8310 if (!mddev->external) {
8311 int did_change = 0;
8312 spin_lock(&mddev->lock);
8313 if (mddev->safemode &&
8314 !atomic_read(&mddev->writes_pending) &&
8315 !mddev->in_sync &&
8316 mddev->recovery_cp == MaxSector) {
8317 mddev->in_sync = 1;
8318 did_change = 1;
8319 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8320 }
8321 if (mddev->safemode == 1)
8322 mddev->safemode = 0;
8323 spin_unlock(&mddev->lock);
8324 if (did_change)
8325 sysfs_notify_dirent_safe(mddev->sysfs_state);
8326 }
8327
8328 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8329 md_update_sb(mddev, 0);
8330
8331 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8332 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8333 /* resync/recovery still happening */
8334 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8335 goto unlock;
8336 }
8337 if (mddev->sync_thread) {
8338 md_reap_sync_thread(mddev);
8339 goto unlock;
8340 }
8341 /* Set RUNNING before clearing NEEDED to avoid
8342 * any transients in the value of "sync_action".
8343 */
8344 mddev->curr_resync_completed = 0;
8345 spin_lock(&mddev->lock);
8346 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8347 spin_unlock(&mddev->lock);
8348 /* Clear some bits that don't mean anything, but
8349 * might be left set
8350 */
8351 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8352 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8353
8354 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8355 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8356 goto not_running;
8357 /* no recovery is running.
8358 * remove any failed drives, then
8359 * add spares if possible.
8360 * Spares are also removed and re-added, to allow
8361 * the personality to fail the re-add.
8362 */
8363
8364 if (mddev->reshape_position != MaxSector) {
8365 if (mddev->pers->check_reshape == NULL ||
8366 mddev->pers->check_reshape(mddev) != 0)
8367 /* Cannot proceed */
8368 goto not_running;
8369 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8370 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8371 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8372 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8373 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8374 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8375 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8376 } else if (mddev->recovery_cp < MaxSector) {
8377 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8378 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8379 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8380 /* nothing to be done ... */
8381 goto not_running;
8382
8383 if (mddev->pers->sync_request) {
8384 if (spares) {
8385 /* We are adding a device or devices to an array
8386 * which has the bitmap stored on all devices.
8387 * So make sure all bitmap pages get written
8388 */
8389 bitmap_write_all(mddev->bitmap);
8390 }
8391 INIT_WORK(&mddev->del_work, md_start_sync);
8392 queue_work(md_misc_wq, &mddev->del_work);
8393 goto unlock;
8394 }
8395 not_running:
8396 if (!mddev->sync_thread) {
8397 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8398 wake_up(&resync_wait);
8399 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8400 &mddev->recovery))
8401 if (mddev->sysfs_action)
8402 sysfs_notify_dirent_safe(mddev->sysfs_action);
8403 }
8404 unlock:
8405 wake_up(&mddev->sb_wait);
8406 mddev_unlock(mddev);
8407 }
8408 }
8409 EXPORT_SYMBOL(md_check_recovery);
8410
8411 void md_reap_sync_thread(struct mddev *mddev)
8412 {
8413 struct md_rdev *rdev;
8414
8415 /* resync has finished, collect result */
8416 md_unregister_thread(&mddev->sync_thread);
8417 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8418 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8419 /* success...*/
8420 /* activate any spares */
8421 if (mddev->pers->spare_active(mddev)) {
8422 sysfs_notify(&mddev->kobj, NULL,
8423 "degraded");
8424 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8425 }
8426 }
8427 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8428 mddev->pers->finish_reshape)
8429 mddev->pers->finish_reshape(mddev);
8430
8431 /* If array is no-longer degraded, then any saved_raid_disk
8432 * information must be scrapped.
8433 */
8434 if (!mddev->degraded)
8435 rdev_for_each(rdev, mddev)
8436 rdev->saved_raid_disk = -1;
8437
8438 md_update_sb(mddev, 1);
8439 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8440 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8441 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8442 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8443 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8444 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8445 wake_up(&resync_wait);
8446 /* flag recovery needed just to double check */
8447 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8448 sysfs_notify_dirent_safe(mddev->sysfs_action);
8449 md_new_event(mddev);
8450 if (mddev->event_work.func)
8451 queue_work(md_misc_wq, &mddev->event_work);
8452 }
8453 EXPORT_SYMBOL(md_reap_sync_thread);
8454
8455 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8456 {
8457 sysfs_notify_dirent_safe(rdev->sysfs_state);
8458 wait_event_timeout(rdev->blocked_wait,
8459 !test_bit(Blocked, &rdev->flags) &&
8460 !test_bit(BlockedBadBlocks, &rdev->flags),
8461 msecs_to_jiffies(5000));
8462 rdev_dec_pending(rdev, mddev);
8463 }
8464 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8465
8466 void md_finish_reshape(struct mddev *mddev)
8467 {
8468 /* called be personality module when reshape completes. */
8469 struct md_rdev *rdev;
8470
8471 rdev_for_each(rdev, mddev) {
8472 if (rdev->data_offset > rdev->new_data_offset)
8473 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8474 else
8475 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8476 rdev->data_offset = rdev->new_data_offset;
8477 }
8478 }
8479 EXPORT_SYMBOL(md_finish_reshape);
8480
8481 /* Bad block management.
8482 * We can record which blocks on each device are 'bad' and so just
8483 * fail those blocks, or that stripe, rather than the whole device.
8484 * Entries in the bad-block table are 64bits wide. This comprises:
8485 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8486 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8487 * A 'shift' can be set so that larger blocks are tracked and
8488 * consequently larger devices can be covered.
8489 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8490 *
8491 * Locking of the bad-block table uses a seqlock so md_is_badblock
8492 * might need to retry if it is very unlucky.
8493 * We will sometimes want to check for bad blocks in a bi_end_io function,
8494 * so we use the write_seqlock_irq variant.
8495 *
8496 * When looking for a bad block we specify a range and want to
8497 * know if any block in the range is bad. So we binary-search
8498 * to the last range that starts at-or-before the given endpoint,
8499 * (or "before the sector after the target range")
8500 * then see if it ends after the given start.
8501 * We return
8502 * 0 if there are no known bad blocks in the range
8503 * 1 if there are known bad block which are all acknowledged
8504 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8505 * plus the start/length of the first bad section we overlap.
8506 */
8507 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8508 sector_t *first_bad, int *bad_sectors)
8509 {
8510 int hi;
8511 int lo;
8512 u64 *p = bb->page;
8513 int rv;
8514 sector_t target = s + sectors;
8515 unsigned seq;
8516
8517 if (bb->shift > 0) {
8518 /* round the start down, and the end up */
8519 s >>= bb->shift;
8520 target += (1<<bb->shift) - 1;
8521 target >>= bb->shift;
8522 sectors = target - s;
8523 }
8524 /* 'target' is now the first block after the bad range */
8525
8526 retry:
8527 seq = read_seqbegin(&bb->lock);
8528 lo = 0;
8529 rv = 0;
8530 hi = bb->count;
8531
8532 /* Binary search between lo and hi for 'target'
8533 * i.e. for the last range that starts before 'target'
8534 */
8535 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8536 * are known not to be the last range before target.
8537 * VARIANT: hi-lo is the number of possible
8538 * ranges, and decreases until it reaches 1
8539 */
8540 while (hi - lo > 1) {
8541 int mid = (lo + hi) / 2;
8542 sector_t a = BB_OFFSET(p[mid]);
8543 if (a < target)
8544 /* This could still be the one, earlier ranges
8545 * could not. */
8546 lo = mid;
8547 else
8548 /* This and later ranges are definitely out. */
8549 hi = mid;
8550 }
8551 /* 'lo' might be the last that started before target, but 'hi' isn't */
8552 if (hi > lo) {
8553 /* need to check all range that end after 's' to see if
8554 * any are unacknowledged.
8555 */
8556 while (lo >= 0 &&
8557 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8558 if (BB_OFFSET(p[lo]) < target) {
8559 /* starts before the end, and finishes after
8560 * the start, so they must overlap
8561 */
8562 if (rv != -1 && BB_ACK(p[lo]))
8563 rv = 1;
8564 else
8565 rv = -1;
8566 *first_bad = BB_OFFSET(p[lo]);
8567 *bad_sectors = BB_LEN(p[lo]);
8568 }
8569 lo--;
8570 }
8571 }
8572
8573 if (read_seqretry(&bb->lock, seq))
8574 goto retry;
8575
8576 return rv;
8577 }
8578 EXPORT_SYMBOL_GPL(md_is_badblock);
8579
8580 /*
8581 * Add a range of bad blocks to the table.
8582 * This might extend the table, or might contract it
8583 * if two adjacent ranges can be merged.
8584 * We binary-search to find the 'insertion' point, then
8585 * decide how best to handle it.
8586 */
8587 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8588 int acknowledged)
8589 {
8590 u64 *p;
8591 int lo, hi;
8592 int rv = 1;
8593 unsigned long flags;
8594
8595 if (bb->shift < 0)
8596 /* badblocks are disabled */
8597 return 0;
8598
8599 if (bb->shift) {
8600 /* round the start down, and the end up */
8601 sector_t next = s + sectors;
8602 s >>= bb->shift;
8603 next += (1<<bb->shift) - 1;
8604 next >>= bb->shift;
8605 sectors = next - s;
8606 }
8607
8608 write_seqlock_irqsave(&bb->lock, flags);
8609
8610 p = bb->page;
8611 lo = 0;
8612 hi = bb->count;
8613 /* Find the last range that starts at-or-before 's' */
8614 while (hi - lo > 1) {
8615 int mid = (lo + hi) / 2;
8616 sector_t a = BB_OFFSET(p[mid]);
8617 if (a <= s)
8618 lo = mid;
8619 else
8620 hi = mid;
8621 }
8622 if (hi > lo && BB_OFFSET(p[lo]) > s)
8623 hi = lo;
8624
8625 if (hi > lo) {
8626 /* we found a range that might merge with the start
8627 * of our new range
8628 */
8629 sector_t a = BB_OFFSET(p[lo]);
8630 sector_t e = a + BB_LEN(p[lo]);
8631 int ack = BB_ACK(p[lo]);
8632 if (e >= s) {
8633 /* Yes, we can merge with a previous range */
8634 if (s == a && s + sectors >= e)
8635 /* new range covers old */
8636 ack = acknowledged;
8637 else
8638 ack = ack && acknowledged;
8639
8640 if (e < s + sectors)
8641 e = s + sectors;
8642 if (e - a <= BB_MAX_LEN) {
8643 p[lo] = BB_MAKE(a, e-a, ack);
8644 s = e;
8645 } else {
8646 /* does not all fit in one range,
8647 * make p[lo] maximal
8648 */
8649 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8650 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8651 s = a + BB_MAX_LEN;
8652 }
8653 sectors = e - s;
8654 }
8655 }
8656 if (sectors && hi < bb->count) {
8657 /* 'hi' points to the first range that starts after 's'.
8658 * Maybe we can merge with the start of that range */
8659 sector_t a = BB_OFFSET(p[hi]);
8660 sector_t e = a + BB_LEN(p[hi]);
8661 int ack = BB_ACK(p[hi]);
8662 if (a <= s + sectors) {
8663 /* merging is possible */
8664 if (e <= s + sectors) {
8665 /* full overlap */
8666 e = s + sectors;
8667 ack = acknowledged;
8668 } else
8669 ack = ack && acknowledged;
8670
8671 a = s;
8672 if (e - a <= BB_MAX_LEN) {
8673 p[hi] = BB_MAKE(a, e-a, ack);
8674 s = e;
8675 } else {
8676 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8677 s = a + BB_MAX_LEN;
8678 }
8679 sectors = e - s;
8680 lo = hi;
8681 hi++;
8682 }
8683 }
8684 if (sectors == 0 && hi < bb->count) {
8685 /* we might be able to combine lo and hi */
8686 /* Note: 's' is at the end of 'lo' */
8687 sector_t a = BB_OFFSET(p[hi]);
8688 int lolen = BB_LEN(p[lo]);
8689 int hilen = BB_LEN(p[hi]);
8690 int newlen = lolen + hilen - (s - a);
8691 if (s >= a && newlen < BB_MAX_LEN) {
8692 /* yes, we can combine them */
8693 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8694 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8695 memmove(p + hi, p + hi + 1,
8696 (bb->count - hi - 1) * 8);
8697 bb->count--;
8698 }
8699 }
8700 while (sectors) {
8701 /* didn't merge (it all).
8702 * Need to add a range just before 'hi' */
8703 if (bb->count >= MD_MAX_BADBLOCKS) {
8704 /* No room for more */
8705 rv = 0;
8706 break;
8707 } else {
8708 int this_sectors = sectors;
8709 memmove(p + hi + 1, p + hi,
8710 (bb->count - hi) * 8);
8711 bb->count++;
8712
8713 if (this_sectors > BB_MAX_LEN)
8714 this_sectors = BB_MAX_LEN;
8715 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8716 sectors -= this_sectors;
8717 s += this_sectors;
8718 }
8719 }
8720
8721 bb->changed = 1;
8722 if (!acknowledged)
8723 bb->unacked_exist = 1;
8724 write_sequnlock_irqrestore(&bb->lock, flags);
8725
8726 return rv;
8727 }
8728
8729 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8730 int is_new)
8731 {
8732 int rv;
8733 if (is_new)
8734 s += rdev->new_data_offset;
8735 else
8736 s += rdev->data_offset;
8737 rv = md_set_badblocks(&rdev->badblocks,
8738 s, sectors, 0);
8739 if (rv) {
8740 /* Make sure they get written out promptly */
8741 sysfs_notify_dirent_safe(rdev->sysfs_state);
8742 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8743 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8744 md_wakeup_thread(rdev->mddev->thread);
8745 }
8746 return rv;
8747 }
8748 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8749
8750 /*
8751 * Remove a range of bad blocks from the table.
8752 * This may involve extending the table if we spilt a region,
8753 * but it must not fail. So if the table becomes full, we just
8754 * drop the remove request.
8755 */
8756 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8757 {
8758 u64 *p;
8759 int lo, hi;
8760 sector_t target = s + sectors;
8761 int rv = 0;
8762
8763 if (bb->shift > 0) {
8764 /* When clearing we round the start up and the end down.
8765 * This should not matter as the shift should align with
8766 * the block size and no rounding should ever be needed.
8767 * However it is better the think a block is bad when it
8768 * isn't than to think a block is not bad when it is.
8769 */
8770 s += (1<<bb->shift) - 1;
8771 s >>= bb->shift;
8772 target >>= bb->shift;
8773 sectors = target - s;
8774 }
8775
8776 write_seqlock_irq(&bb->lock);
8777
8778 p = bb->page;
8779 lo = 0;
8780 hi = bb->count;
8781 /* Find the last range that starts before 'target' */
8782 while (hi - lo > 1) {
8783 int mid = (lo + hi) / 2;
8784 sector_t a = BB_OFFSET(p[mid]);
8785 if (a < target)
8786 lo = mid;
8787 else
8788 hi = mid;
8789 }
8790 if (hi > lo) {
8791 /* p[lo] is the last range that could overlap the
8792 * current range. Earlier ranges could also overlap,
8793 * but only this one can overlap the end of the range.
8794 */
8795 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8796 /* Partial overlap, leave the tail of this range */
8797 int ack = BB_ACK(p[lo]);
8798 sector_t a = BB_OFFSET(p[lo]);
8799 sector_t end = a + BB_LEN(p[lo]);
8800
8801 if (a < s) {
8802 /* we need to split this range */
8803 if (bb->count >= MD_MAX_BADBLOCKS) {
8804 rv = -ENOSPC;
8805 goto out;
8806 }
8807 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8808 bb->count++;
8809 p[lo] = BB_MAKE(a, s-a, ack);
8810 lo++;
8811 }
8812 p[lo] = BB_MAKE(target, end - target, ack);
8813 /* there is no longer an overlap */
8814 hi = lo;
8815 lo--;
8816 }
8817 while (lo >= 0 &&
8818 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8819 /* This range does overlap */
8820 if (BB_OFFSET(p[lo]) < s) {
8821 /* Keep the early parts of this range. */
8822 int ack = BB_ACK(p[lo]);
8823 sector_t start = BB_OFFSET(p[lo]);
8824 p[lo] = BB_MAKE(start, s - start, ack);
8825 /* now low doesn't overlap, so.. */
8826 break;
8827 }
8828 lo--;
8829 }
8830 /* 'lo' is strictly before, 'hi' is strictly after,
8831 * anything between needs to be discarded
8832 */
8833 if (hi - lo > 1) {
8834 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8835 bb->count -= (hi - lo - 1);
8836 }
8837 }
8838
8839 bb->changed = 1;
8840 out:
8841 write_sequnlock_irq(&bb->lock);
8842 return rv;
8843 }
8844
8845 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8846 int is_new)
8847 {
8848 if (is_new)
8849 s += rdev->new_data_offset;
8850 else
8851 s += rdev->data_offset;
8852 return md_clear_badblocks(&rdev->badblocks,
8853 s, sectors);
8854 }
8855 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8856
8857 /*
8858 * Acknowledge all bad blocks in a list.
8859 * This only succeeds if ->changed is clear. It is used by
8860 * in-kernel metadata updates
8861 */
8862 void md_ack_all_badblocks(struct badblocks *bb)
8863 {
8864 if (bb->page == NULL || bb->changed)
8865 /* no point even trying */
8866 return;
8867 write_seqlock_irq(&bb->lock);
8868
8869 if (bb->changed == 0 && bb->unacked_exist) {
8870 u64 *p = bb->page;
8871 int i;
8872 for (i = 0; i < bb->count ; i++) {
8873 if (!BB_ACK(p[i])) {
8874 sector_t start = BB_OFFSET(p[i]);
8875 int len = BB_LEN(p[i]);
8876 p[i] = BB_MAKE(start, len, 1);
8877 }
8878 }
8879 bb->unacked_exist = 0;
8880 }
8881 write_sequnlock_irq(&bb->lock);
8882 }
8883 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8884
8885 /* sysfs access to bad-blocks list.
8886 * We present two files.
8887 * 'bad-blocks' lists sector numbers and lengths of ranges that
8888 * are recorded as bad. The list is truncated to fit within
8889 * the one-page limit of sysfs.
8890 * Writing "sector length" to this file adds an acknowledged
8891 * bad block list.
8892 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8893 * been acknowledged. Writing to this file adds bad blocks
8894 * without acknowledging them. This is largely for testing.
8895 */
8896
8897 static ssize_t
8898 badblocks_show(struct badblocks *bb, char *page, int unack)
8899 {
8900 size_t len;
8901 int i;
8902 u64 *p = bb->page;
8903 unsigned seq;
8904
8905 if (bb->shift < 0)
8906 return 0;
8907
8908 retry:
8909 seq = read_seqbegin(&bb->lock);
8910
8911 len = 0;
8912 i = 0;
8913
8914 while (len < PAGE_SIZE && i < bb->count) {
8915 sector_t s = BB_OFFSET(p[i]);
8916 unsigned int length = BB_LEN(p[i]);
8917 int ack = BB_ACK(p[i]);
8918 i++;
8919
8920 if (unack && ack)
8921 continue;
8922
8923 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8924 (unsigned long long)s << bb->shift,
8925 length << bb->shift);
8926 }
8927 if (unack && len == 0)
8928 bb->unacked_exist = 0;
8929
8930 if (read_seqretry(&bb->lock, seq))
8931 goto retry;
8932
8933 return len;
8934 }
8935
8936 #define DO_DEBUG 1
8937
8938 static ssize_t
8939 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8940 {
8941 unsigned long long sector;
8942 int length;
8943 char newline;
8944 #ifdef DO_DEBUG
8945 /* Allow clearing via sysfs *only* for testing/debugging.
8946 * Normally only a successful write may clear a badblock
8947 */
8948 int clear = 0;
8949 if (page[0] == '-') {
8950 clear = 1;
8951 page++;
8952 }
8953 #endif /* DO_DEBUG */
8954
8955 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8956 case 3:
8957 if (newline != '\n')
8958 return -EINVAL;
8959 case 2:
8960 if (length <= 0)
8961 return -EINVAL;
8962 break;
8963 default:
8964 return -EINVAL;
8965 }
8966
8967 #ifdef DO_DEBUG
8968 if (clear) {
8969 md_clear_badblocks(bb, sector, length);
8970 return len;
8971 }
8972 #endif /* DO_DEBUG */
8973 if (md_set_badblocks(bb, sector, length, !unack))
8974 return len;
8975 else
8976 return -ENOSPC;
8977 }
8978
8979 static int md_notify_reboot(struct notifier_block *this,
8980 unsigned long code, void *x)
8981 {
8982 struct list_head *tmp;
8983 struct mddev *mddev;
8984 int need_delay = 0;
8985
8986 for_each_mddev(mddev, tmp) {
8987 if (mddev_trylock(mddev)) {
8988 if (mddev->pers)
8989 __md_stop_writes(mddev);
8990 if (mddev->persistent)
8991 mddev->safemode = 2;
8992 mddev_unlock(mddev);
8993 }
8994 need_delay = 1;
8995 }
8996 /*
8997 * certain more exotic SCSI devices are known to be
8998 * volatile wrt too early system reboots. While the
8999 * right place to handle this issue is the given
9000 * driver, we do want to have a safe RAID driver ...
9001 */
9002 if (need_delay)
9003 mdelay(1000*1);
9004
9005 return NOTIFY_DONE;
9006 }
9007
9008 static struct notifier_block md_notifier = {
9009 .notifier_call = md_notify_reboot,
9010 .next = NULL,
9011 .priority = INT_MAX, /* before any real devices */
9012 };
9013
9014 static void md_geninit(void)
9015 {
9016 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9017
9018 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9019 }
9020
9021 static int __init md_init(void)
9022 {
9023 int ret = -ENOMEM;
9024
9025 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9026 if (!md_wq)
9027 goto err_wq;
9028
9029 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9030 if (!md_misc_wq)
9031 goto err_misc_wq;
9032
9033 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9034 goto err_md;
9035
9036 if ((ret = register_blkdev(0, "mdp")) < 0)
9037 goto err_mdp;
9038 mdp_major = ret;
9039
9040 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9041 md_probe, NULL, NULL);
9042 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9043 md_probe, NULL, NULL);
9044
9045 register_reboot_notifier(&md_notifier);
9046 raid_table_header = register_sysctl_table(raid_root_table);
9047
9048 md_geninit();
9049 return 0;
9050
9051 err_mdp:
9052 unregister_blkdev(MD_MAJOR, "md");
9053 err_md:
9054 destroy_workqueue(md_misc_wq);
9055 err_misc_wq:
9056 destroy_workqueue(md_wq);
9057 err_wq:
9058 return ret;
9059 }
9060
9061 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9062 {
9063 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9064 struct md_rdev *rdev2;
9065 int role, ret;
9066 char b[BDEVNAME_SIZE];
9067
9068 /* Check for change of roles in the active devices */
9069 rdev_for_each(rdev2, mddev) {
9070 if (test_bit(Faulty, &rdev2->flags))
9071 continue;
9072
9073 /* Check if the roles changed */
9074 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9075
9076 if (test_bit(Candidate, &rdev2->flags)) {
9077 if (role == 0xfffe) {
9078 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9079 md_kick_rdev_from_array(rdev2);
9080 continue;
9081 }
9082 else
9083 clear_bit(Candidate, &rdev2->flags);
9084 }
9085
9086 if (role != rdev2->raid_disk) {
9087 /* got activated */
9088 if (rdev2->raid_disk == -1 && role != 0xffff) {
9089 rdev2->saved_raid_disk = role;
9090 ret = remove_and_add_spares(mddev, rdev2);
9091 pr_info("Activated spare: %s\n",
9092 bdevname(rdev2->bdev,b));
9093 continue;
9094 }
9095 /* device faulty
9096 * We just want to do the minimum to mark the disk
9097 * as faulty. The recovery is performed by the
9098 * one who initiated the error.
9099 */
9100 if ((role == 0xfffe) || (role == 0xfffd)) {
9101 md_error(mddev, rdev2);
9102 clear_bit(Blocked, &rdev2->flags);
9103 }
9104 }
9105 }
9106
9107 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9108 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9109
9110 /* Finally set the event to be up to date */
9111 mddev->events = le64_to_cpu(sb->events);
9112 }
9113
9114 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9115 {
9116 int err;
9117 struct page *swapout = rdev->sb_page;
9118 struct mdp_superblock_1 *sb;
9119
9120 /* Store the sb page of the rdev in the swapout temporary
9121 * variable in case we err in the future
9122 */
9123 rdev->sb_page = NULL;
9124 alloc_disk_sb(rdev);
9125 ClearPageUptodate(rdev->sb_page);
9126 rdev->sb_loaded = 0;
9127 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9128
9129 if (err < 0) {
9130 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9131 __func__, __LINE__, rdev->desc_nr, err);
9132 put_page(rdev->sb_page);
9133 rdev->sb_page = swapout;
9134 rdev->sb_loaded = 1;
9135 return err;
9136 }
9137
9138 sb = page_address(rdev->sb_page);
9139 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9140 * is not set
9141 */
9142
9143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9144 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9145
9146 /* The other node finished recovery, call spare_active to set
9147 * device In_sync and mddev->degraded
9148 */
9149 if (rdev->recovery_offset == MaxSector &&
9150 !test_bit(In_sync, &rdev->flags) &&
9151 mddev->pers->spare_active(mddev))
9152 sysfs_notify(&mddev->kobj, NULL, "degraded");
9153
9154 put_page(swapout);
9155 return 0;
9156 }
9157
9158 void md_reload_sb(struct mddev *mddev, int nr)
9159 {
9160 struct md_rdev *rdev;
9161 int err;
9162
9163 /* Find the rdev */
9164 rdev_for_each_rcu(rdev, mddev) {
9165 if (rdev->desc_nr == nr)
9166 break;
9167 }
9168
9169 if (!rdev || rdev->desc_nr != nr) {
9170 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9171 return;
9172 }
9173
9174 err = read_rdev(mddev, rdev);
9175 if (err < 0)
9176 return;
9177
9178 check_sb_changes(mddev, rdev);
9179
9180 /* Read all rdev's to update recovery_offset */
9181 rdev_for_each_rcu(rdev, mddev)
9182 read_rdev(mddev, rdev);
9183 }
9184 EXPORT_SYMBOL(md_reload_sb);
9185
9186 #ifndef MODULE
9187
9188 /*
9189 * Searches all registered partitions for autorun RAID arrays
9190 * at boot time.
9191 */
9192
9193 static LIST_HEAD(all_detected_devices);
9194 struct detected_devices_node {
9195 struct list_head list;
9196 dev_t dev;
9197 };
9198
9199 void md_autodetect_dev(dev_t dev)
9200 {
9201 struct detected_devices_node *node_detected_dev;
9202
9203 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9204 if (node_detected_dev) {
9205 node_detected_dev->dev = dev;
9206 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9207 } else {
9208 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9209 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9210 }
9211 }
9212
9213 static void autostart_arrays(int part)
9214 {
9215 struct md_rdev *rdev;
9216 struct detected_devices_node *node_detected_dev;
9217 dev_t dev;
9218 int i_scanned, i_passed;
9219
9220 i_scanned = 0;
9221 i_passed = 0;
9222
9223 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9224
9225 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9226 i_scanned++;
9227 node_detected_dev = list_entry(all_detected_devices.next,
9228 struct detected_devices_node, list);
9229 list_del(&node_detected_dev->list);
9230 dev = node_detected_dev->dev;
9231 kfree(node_detected_dev);
9232 rdev = md_import_device(dev,0, 90);
9233 if (IS_ERR(rdev))
9234 continue;
9235
9236 if (test_bit(Faulty, &rdev->flags))
9237 continue;
9238
9239 set_bit(AutoDetected, &rdev->flags);
9240 list_add(&rdev->same_set, &pending_raid_disks);
9241 i_passed++;
9242 }
9243
9244 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9245 i_scanned, i_passed);
9246
9247 autorun_devices(part);
9248 }
9249
9250 #endif /* !MODULE */
9251
9252 static __exit void md_exit(void)
9253 {
9254 struct mddev *mddev;
9255 struct list_head *tmp;
9256 int delay = 1;
9257
9258 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9259 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9260
9261 unregister_blkdev(MD_MAJOR,"md");
9262 unregister_blkdev(mdp_major, "mdp");
9263 unregister_reboot_notifier(&md_notifier);
9264 unregister_sysctl_table(raid_table_header);
9265
9266 /* We cannot unload the modules while some process is
9267 * waiting for us in select() or poll() - wake them up
9268 */
9269 md_unloading = 1;
9270 while (waitqueue_active(&md_event_waiters)) {
9271 /* not safe to leave yet */
9272 wake_up(&md_event_waiters);
9273 msleep(delay);
9274 delay += delay;
9275 }
9276 remove_proc_entry("mdstat", NULL);
9277
9278 for_each_mddev(mddev, tmp) {
9279 export_array(mddev);
9280 mddev->hold_active = 0;
9281 }
9282 destroy_workqueue(md_misc_wq);
9283 destroy_workqueue(md_wq);
9284 }
9285
9286 subsys_initcall(md_init);
9287 module_exit(md_exit)
9288
9289 static int get_ro(char *buffer, struct kernel_param *kp)
9290 {
9291 return sprintf(buffer, "%d", start_readonly);
9292 }
9293 static int set_ro(const char *val, struct kernel_param *kp)
9294 {
9295 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9296 }
9297
9298 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9299 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9300 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9301
9302 MODULE_LICENSE("GPL");
9303 MODULE_DESCRIPTION("MD RAID framework");
9304 MODULE_ALIAS("md");
9305 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);