]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/md.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
190 * count increases.
191 *
192 * Events are:
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
195 */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
207 */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
212 }
213
214 /*
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
217 */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223 * iterates through all used mddevs in the system.
224 * We take care to grab the all_mddevs_lock whenever navigating
225 * the list, and to always hold a refcount when unlocked.
226 * Any code which breaks out of this loop while own
227 * a reference to the current mddev and must mddev_put it.
228 */
229 #define for_each_mddev(_mddev,_tmp) \
230 \
231 for (({ spin_lock(&all_mddevs_lock); \
232 _tmp = all_mddevs.next; \
233 _mddev = NULL;}); \
234 ({ if (_tmp != &all_mddevs) \
235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 spin_unlock(&all_mddevs_lock); \
237 if (_mddev) mddev_put(_mddev); \
238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
239 _tmp != &all_mddevs;}); \
240 ({ spin_lock(&all_mddevs_lock); \
241 _tmp = _tmp->next;}) \
242 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
251 */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
256 int cpu;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 cpu = part_stat_lock();
294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 part_stat_unlock();
297
298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once ->stop is called and completes, the module will be completely
306 * unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 BUG_ON(mddev->suspended);
311 mddev->suspended = 1;
312 synchronize_rcu();
313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 mddev->pers->quiesce(mddev, 1);
315
316 del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322 mddev->suspended = 0;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
325
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339 * Generic flush handling for md
340 */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 struct md_rdev *rdev = bio->bi_private;
345 struct mddev *mddev = rdev->mddev;
346
347 rdev_dec_pending(rdev, mddev);
348
349 if (atomic_dec_and_test(&mddev->flush_pending)) {
350 /* The pre-request flush has finished */
351 queue_work(md_wq, &mddev->flush_work);
352 }
353 bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 struct md_rdev *rdev;
362
363 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 atomic_set(&mddev->flush_pending, 1);
365 rcu_read_lock();
366 rdev_for_each_rcu(rdev, mddev)
367 if (rdev->raid_disk >= 0 &&
368 !test_bit(Faulty, &rdev->flags)) {
369 /* Take two references, one is dropped
370 * when request finishes, one after
371 * we reclaim rcu_read_lock
372 */
373 struct bio *bi;
374 atomic_inc(&rdev->nr_pending);
375 atomic_inc(&rdev->nr_pending);
376 rcu_read_unlock();
377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 bi->bi_end_io = md_end_flush;
379 bi->bi_private = rdev;
380 bi->bi_bdev = rdev->bdev;
381 atomic_inc(&mddev->flush_pending);
382 submit_bio(WRITE_FLUSH, bi);
383 rcu_read_lock();
384 rdev_dec_pending(rdev, mddev);
385 }
386 rcu_read_unlock();
387 if (atomic_dec_and_test(&mddev->flush_pending))
388 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct bio *bio = mddev->flush_bio;
395
396 if (bio->bi_iter.bi_size == 0)
397 /* an empty barrier - all done */
398 bio_endio(bio, 0);
399 else {
400 bio->bi_rw &= ~REQ_FLUSH;
401 mddev->pers->make_request(mddev, bio);
402 }
403
404 mddev->flush_bio = NULL;
405 wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 spin_lock_irq(&mddev->write_lock);
411 wait_event_lock_irq(mddev->sb_wait,
412 !mddev->flush_bio,
413 mddev->write_lock);
414 mddev->flush_bio = bio;
415 spin_unlock_irq(&mddev->write_lock);
416
417 INIT_WORK(&mddev->flush_work, submit_flushes);
418 queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 struct mddev *mddev = cb->data;
425 md_wakeup_thread(mddev->thread);
426 kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 atomic_inc(&mddev->active);
433 return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440 struct bio_set *bs = NULL;
441
442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 return;
444 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 mddev->ctime == 0 && !mddev->hold_active) {
446 /* Array is not configured at all, and not held active,
447 * so destroy it */
448 list_del_init(&mddev->all_mddevs);
449 bs = mddev->bio_set;
450 mddev->bio_set = NULL;
451 if (mddev->gendisk) {
452 /* We did a probe so need to clean up. Call
453 * queue_work inside the spinlock so that
454 * flush_workqueue() after mddev_find will
455 * succeed in waiting for the work to be done.
456 */
457 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 queue_work(md_misc_wq, &mddev->del_work);
459 } else
460 kfree(mddev);
461 }
462 spin_unlock(&all_mddevs_lock);
463 if (bs)
464 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->reshape_backwards = 0;
484 mddev->last_sync_action = "none";
485 mddev->resync_min = 0;
486 mddev->resync_max = MaxSector;
487 mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 struct mddev *mddev, *new = NULL;
494
495 if (unit && MAJOR(unit) != MD_MAJOR)
496 unit &= ~((1<<MdpMinorShift)-1);
497
498 retry:
499 spin_lock(&all_mddevs_lock);
500
501 if (unit) {
502 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 if (mddev->unit == unit) {
504 mddev_get(mddev);
505 spin_unlock(&all_mddevs_lock);
506 kfree(new);
507 return mddev;
508 }
509
510 if (new) {
511 list_add(&new->all_mddevs, &all_mddevs);
512 spin_unlock(&all_mddevs_lock);
513 new->hold_active = UNTIL_IOCTL;
514 return new;
515 }
516 } else if (new) {
517 /* find an unused unit number */
518 static int next_minor = 512;
519 int start = next_minor;
520 int is_free = 0;
521 int dev = 0;
522 while (!is_free) {
523 dev = MKDEV(MD_MAJOR, next_minor);
524 next_minor++;
525 if (next_minor > MINORMASK)
526 next_minor = 0;
527 if (next_minor == start) {
528 /* Oh dear, all in use. */
529 spin_unlock(&all_mddevs_lock);
530 kfree(new);
531 return NULL;
532 }
533
534 is_free = 1;
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == dev) {
537 is_free = 0;
538 break;
539 }
540 }
541 new->unit = dev;
542 new->md_minor = MINOR(dev);
543 new->hold_active = UNTIL_STOP;
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 return new;
547 }
548 spin_unlock(&all_mddevs_lock);
549
550 new = kzalloc(sizeof(*new), GFP_KERNEL);
551 if (!new)
552 return NULL;
553
554 new->unit = unit;
555 if (MAJOR(unit) == MD_MAJOR)
556 new->md_minor = MINOR(unit);
557 else
558 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560 mddev_init(new);
561
562 goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571 * failure due to interrupts is not acceptable.
572 */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 if (mddev->to_remove) {
593 /* These cannot be removed under reconfig_mutex as
594 * an access to the files will try to take reconfig_mutex
595 * while holding the file unremovable, which leads to
596 * a deadlock.
597 * So hold set sysfs_active while the remove in happeing,
598 * and anything else which might set ->to_remove or my
599 * otherwise change the sysfs namespace will fail with
600 * -EBUSY if sysfs_active is still set.
601 * We set sysfs_active under reconfig_mutex and elsewhere
602 * test it under the same mutex to ensure its correct value
603 * is seen.
604 */
605 struct attribute_group *to_remove = mddev->to_remove;
606 mddev->to_remove = NULL;
607 mddev->sysfs_active = 1;
608 mutex_unlock(&mddev->reconfig_mutex);
609
610 if (mddev->kobj.sd) {
611 if (to_remove != &md_redundancy_group)
612 sysfs_remove_group(&mddev->kobj, to_remove);
613 if (mddev->pers == NULL ||
614 mddev->pers->sync_request == NULL) {
615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 if (mddev->sysfs_action)
617 sysfs_put(mddev->sysfs_action);
618 mddev->sysfs_action = NULL;
619 }
620 }
621 mddev->sysfs_active = 0;
622 } else
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 /* As we've dropped the mutex we need a spinlock to
626 * make sure the thread doesn't disappear
627 */
628 spin_lock(&pers_lock);
629 md_wakeup_thread(mddev->thread);
630 spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 struct md_rdev *rdev;
658
659 rdev_for_each(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
661 return rdev;
662
663 return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 struct md_rdev *rdev;
669
670 rdev_for_each_rcu(rdev, mddev)
671 if (rdev->bdev->bd_dev == dev)
672 return rdev;
673
674 return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 struct md_personality *pers;
680 list_for_each_entry(pers, &pers_list, list) {
681 if (level != LEVEL_NONE && pers->level == level)
682 return pers;
683 if (strcmp(pers->name, clevel)==0)
684 return pers;
685 }
686 return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698 if (rdev->sb_page)
699 MD_BUG();
700
701 rdev->sb_page = alloc_page(GFP_KERNEL);
702 if (!rdev->sb_page) {
703 printk(KERN_ALERT "md: out of memory.\n");
704 return -ENOMEM;
705 }
706
707 return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712 if (rdev->sb_page) {
713 put_page(rdev->sb_page);
714 rdev->sb_loaded = 0;
715 rdev->sb_page = NULL;
716 rdev->sb_start = 0;
717 rdev->sectors = 0;
718 }
719 if (rdev->bb_page) {
720 put_page(rdev->bb_page);
721 rdev->bb_page = NULL;
722 }
723 kfree(rdev->badblocks.page);
724 rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730 struct md_rdev *rdev = bio->bi_private;
731 struct mddev *mddev = rdev->mddev;
732
733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 printk("md: super_written gets error=%d, uptodate=%d\n",
735 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 md_error(mddev, rdev);
738 }
739
740 if (atomic_dec_and_test(&mddev->pending_writes))
741 wake_up(&mddev->sb_wait);
742 bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 sector_t sector, int size, struct page *page)
747 {
748 /* write first size bytes of page to sector of rdev
749 * Increment mddev->pending_writes before returning
750 * and decrement it on completion, waking up sb_wait
751 * if zero is reached.
752 * If an error occurred, call md_error
753 */
754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 bio->bi_iter.bi_sector = sector;
758 bio_add_page(bio, page, size, 0);
759 bio->bi_private = rdev;
760 bio->bi_end_io = super_written;
761
762 atomic_inc(&mddev->pending_writes);
763 submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768 /* wait for all superblock writes that were scheduled to complete */
769 DEFINE_WAIT(wq);
770 for(;;) {
771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 if (atomic_read(&mddev->pending_writes)==0)
773 break;
774 schedule();
775 }
776 finish_wait(&mddev->sb_wait, &wq);
777 }
778
779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
780 struct page *page, int rw, bool metadata_op)
781 {
782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
783 int ret;
784
785 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
786 rdev->meta_bdev : rdev->bdev;
787 if (metadata_op)
788 bio->bi_iter.bi_sector = sector + rdev->sb_start;
789 else if (rdev->mddev->reshape_position != MaxSector &&
790 (rdev->mddev->reshape_backwards ==
791 (sector >= rdev->mddev->reshape_position)))
792 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
793 else
794 bio->bi_iter.bi_sector = sector + rdev->data_offset;
795 bio_add_page(bio, page, size, 0);
796 submit_bio_wait(rw, bio);
797
798 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
799 bio_put(bio);
800 return ret;
801 }
802 EXPORT_SYMBOL_GPL(sync_page_io);
803
804 static int read_disk_sb(struct md_rdev * rdev, int size)
805 {
806 char b[BDEVNAME_SIZE];
807 if (!rdev->sb_page) {
808 MD_BUG();
809 return -EINVAL;
810 }
811 if (rdev->sb_loaded)
812 return 0;
813
814
815 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
816 goto fail;
817 rdev->sb_loaded = 1;
818 return 0;
819
820 fail:
821 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
822 bdevname(rdev->bdev,b));
823 return -EINVAL;
824 }
825
826 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 return sb1->set_uuid0 == sb2->set_uuid0 &&
829 sb1->set_uuid1 == sb2->set_uuid1 &&
830 sb1->set_uuid2 == sb2->set_uuid2 &&
831 sb1->set_uuid3 == sb2->set_uuid3;
832 }
833
834 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
835 {
836 int ret;
837 mdp_super_t *tmp1, *tmp2;
838
839 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
840 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
841
842 if (!tmp1 || !tmp2) {
843 ret = 0;
844 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
845 goto abort;
846 }
847
848 *tmp1 = *sb1;
849 *tmp2 = *sb2;
850
851 /*
852 * nr_disks is not constant
853 */
854 tmp1->nr_disks = 0;
855 tmp2->nr_disks = 0;
856
857 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
858 abort:
859 kfree(tmp1);
860 kfree(tmp2);
861 return ret;
862 }
863
864
865 static u32 md_csum_fold(u32 csum)
866 {
867 csum = (csum & 0xffff) + (csum >> 16);
868 return (csum & 0xffff) + (csum >> 16);
869 }
870
871 static unsigned int calc_sb_csum(mdp_super_t * sb)
872 {
873 u64 newcsum = 0;
874 u32 *sb32 = (u32*)sb;
875 int i;
876 unsigned int disk_csum, csum;
877
878 disk_csum = sb->sb_csum;
879 sb->sb_csum = 0;
880
881 for (i = 0; i < MD_SB_BYTES/4 ; i++)
882 newcsum += sb32[i];
883 csum = (newcsum & 0xffffffff) + (newcsum>>32);
884
885
886 #ifdef CONFIG_ALPHA
887 /* This used to use csum_partial, which was wrong for several
888 * reasons including that different results are returned on
889 * different architectures. It isn't critical that we get exactly
890 * the same return value as before (we always csum_fold before
891 * testing, and that removes any differences). However as we
892 * know that csum_partial always returned a 16bit value on
893 * alphas, do a fold to maximise conformity to previous behaviour.
894 */
895 sb->sb_csum = md_csum_fold(disk_csum);
896 #else
897 sb->sb_csum = disk_csum;
898 #endif
899 return csum;
900 }
901
902
903 /*
904 * Handle superblock details.
905 * We want to be able to handle multiple superblock formats
906 * so we have a common interface to them all, and an array of
907 * different handlers.
908 * We rely on user-space to write the initial superblock, and support
909 * reading and updating of superblocks.
910 * Interface methods are:
911 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
912 * loads and validates a superblock on dev.
913 * if refdev != NULL, compare superblocks on both devices
914 * Return:
915 * 0 - dev has a superblock that is compatible with refdev
916 * 1 - dev has a superblock that is compatible and newer than refdev
917 * so dev should be used as the refdev in future
918 * -EINVAL superblock incompatible or invalid
919 * -othererror e.g. -EIO
920 *
921 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
922 * Verify that dev is acceptable into mddev.
923 * The first time, mddev->raid_disks will be 0, and data from
924 * dev should be merged in. Subsequent calls check that dev
925 * is new enough. Return 0 or -EINVAL
926 *
927 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
928 * Update the superblock for rdev with data in mddev
929 * This does not write to disc.
930 *
931 */
932
933 struct super_type {
934 char *name;
935 struct module *owner;
936 int (*load_super)(struct md_rdev *rdev,
937 struct md_rdev *refdev,
938 int minor_version);
939 int (*validate_super)(struct mddev *mddev,
940 struct md_rdev *rdev);
941 void (*sync_super)(struct mddev *mddev,
942 struct md_rdev *rdev);
943 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
944 sector_t num_sectors);
945 int (*allow_new_offset)(struct md_rdev *rdev,
946 unsigned long long new_offset);
947 };
948
949 /*
950 * Check that the given mddev has no bitmap.
951 *
952 * This function is called from the run method of all personalities that do not
953 * support bitmaps. It prints an error message and returns non-zero if mddev
954 * has a bitmap. Otherwise, it returns 0.
955 *
956 */
957 int md_check_no_bitmap(struct mddev *mddev)
958 {
959 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
960 return 0;
961 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
962 mdname(mddev), mddev->pers->name);
963 return 1;
964 }
965 EXPORT_SYMBOL(md_check_no_bitmap);
966
967 /*
968 * load_super for 0.90.0
969 */
970 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
971 {
972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
973 mdp_super_t *sb;
974 int ret;
975
976 /*
977 * Calculate the position of the superblock (512byte sectors),
978 * it's at the end of the disk.
979 *
980 * It also happens to be a multiple of 4Kb.
981 */
982 rdev->sb_start = calc_dev_sboffset(rdev);
983
984 ret = read_disk_sb(rdev, MD_SB_BYTES);
985 if (ret) return ret;
986
987 ret = -EINVAL;
988
989 bdevname(rdev->bdev, b);
990 sb = page_address(rdev->sb_page);
991
992 if (sb->md_magic != MD_SB_MAGIC) {
993 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
994 b);
995 goto abort;
996 }
997
998 if (sb->major_version != 0 ||
999 sb->minor_version < 90 ||
1000 sb->minor_version > 91) {
1001 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1002 sb->major_version, sb->minor_version,
1003 b);
1004 goto abort;
1005 }
1006
1007 if (sb->raid_disks <= 0)
1008 goto abort;
1009
1010 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1011 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1012 b);
1013 goto abort;
1014 }
1015
1016 rdev->preferred_minor = sb->md_minor;
1017 rdev->data_offset = 0;
1018 rdev->new_data_offset = 0;
1019 rdev->sb_size = MD_SB_BYTES;
1020 rdev->badblocks.shift = -1;
1021
1022 if (sb->level == LEVEL_MULTIPATH)
1023 rdev->desc_nr = -1;
1024 else
1025 rdev->desc_nr = sb->this_disk.number;
1026
1027 if (!refdev) {
1028 ret = 1;
1029 } else {
1030 __u64 ev1, ev2;
1031 mdp_super_t *refsb = page_address(refdev->sb_page);
1032 if (!uuid_equal(refsb, sb)) {
1033 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 b, bdevname(refdev->bdev,b2));
1035 goto abort;
1036 }
1037 if (!sb_equal(refsb, sb)) {
1038 printk(KERN_WARNING "md: %s has same UUID"
1039 " but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051 /* Limit to 4TB as metadata cannot record more than that.
1052 * (not needed for Linear and RAID0 as metadata doesn't
1053 * record this size)
1054 */
1055 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1056 rdev->sectors = (2ULL << 32) - 2;
1057
1058 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1059 /* "this cannot possibly happen" ... */
1060 ret = -EINVAL;
1061
1062 abort:
1063 return ret;
1064 }
1065
1066 /*
1067 * validate_super for 0.90.0
1068 */
1069 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1070 {
1071 mdp_disk_t *desc;
1072 mdp_super_t *sb = page_address(rdev->sb_page);
1073 __u64 ev1 = md_event(sb);
1074
1075 rdev->raid_disk = -1;
1076 clear_bit(Faulty, &rdev->flags);
1077 clear_bit(In_sync, &rdev->flags);
1078 clear_bit(Bitmap_sync, &rdev->flags);
1079 clear_bit(WriteMostly, &rdev->flags);
1080
1081 if (mddev->raid_disks == 0) {
1082 mddev->major_version = 0;
1083 mddev->minor_version = sb->minor_version;
1084 mddev->patch_version = sb->patch_version;
1085 mddev->external = 0;
1086 mddev->chunk_sectors = sb->chunk_size >> 9;
1087 mddev->ctime = sb->ctime;
1088 mddev->utime = sb->utime;
1089 mddev->level = sb->level;
1090 mddev->clevel[0] = 0;
1091 mddev->layout = sb->layout;
1092 mddev->raid_disks = sb->raid_disks;
1093 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1094 mddev->events = ev1;
1095 mddev->bitmap_info.offset = 0;
1096 mddev->bitmap_info.space = 0;
1097 /* bitmap can use 60 K after the 4K superblocks */
1098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1100 mddev->reshape_backwards = 0;
1101
1102 if (mddev->minor_version >= 91) {
1103 mddev->reshape_position = sb->reshape_position;
1104 mddev->delta_disks = sb->delta_disks;
1105 mddev->new_level = sb->new_level;
1106 mddev->new_layout = sb->new_layout;
1107 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1108 if (mddev->delta_disks < 0)
1109 mddev->reshape_backwards = 1;
1110 } else {
1111 mddev->reshape_position = MaxSector;
1112 mddev->delta_disks = 0;
1113 mddev->new_level = mddev->level;
1114 mddev->new_layout = mddev->layout;
1115 mddev->new_chunk_sectors = mddev->chunk_sectors;
1116 }
1117
1118 if (sb->state & (1<<MD_SB_CLEAN))
1119 mddev->recovery_cp = MaxSector;
1120 else {
1121 if (sb->events_hi == sb->cp_events_hi &&
1122 sb->events_lo == sb->cp_events_lo) {
1123 mddev->recovery_cp = sb->recovery_cp;
1124 } else
1125 mddev->recovery_cp = 0;
1126 }
1127
1128 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1129 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1130 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1131 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1132
1133 mddev->max_disks = MD_SB_DISKS;
1134
1135 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1136 mddev->bitmap_info.file == NULL) {
1137 mddev->bitmap_info.offset =
1138 mddev->bitmap_info.default_offset;
1139 mddev->bitmap_info.space =
1140 mddev->bitmap_info.default_space;
1141 }
1142
1143 } else if (mddev->pers == NULL) {
1144 /* Insist on good event counter while assembling, except
1145 * for spares (which don't need an event count) */
1146 ++ev1;
1147 if (sb->disks[rdev->desc_nr].state & (
1148 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1149 if (ev1 < mddev->events)
1150 return -EINVAL;
1151 } else if (mddev->bitmap) {
1152 /* if adding to array with a bitmap, then we can accept an
1153 * older device ... but not too old.
1154 */
1155 if (ev1 < mddev->bitmap->events_cleared)
1156 return 0;
1157 if (ev1 < mddev->events)
1158 set_bit(Bitmap_sync, &rdev->flags);
1159 } else {
1160 if (ev1 < mddev->events)
1161 /* just a hot-add of a new device, leave raid_disk at -1 */
1162 return 0;
1163 }
1164
1165 if (mddev->level != LEVEL_MULTIPATH) {
1166 desc = sb->disks + rdev->desc_nr;
1167
1168 if (desc->state & (1<<MD_DISK_FAULTY))
1169 set_bit(Faulty, &rdev->flags);
1170 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1171 desc->raid_disk < mddev->raid_disks */) {
1172 set_bit(In_sync, &rdev->flags);
1173 rdev->raid_disk = desc->raid_disk;
1174 rdev->saved_raid_disk = desc->raid_disk;
1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1176 /* active but not in sync implies recovery up to
1177 * reshape position. We don't know exactly where
1178 * that is, so set to zero for now */
1179 if (mddev->minor_version >= 91) {
1180 rdev->recovery_offset = 0;
1181 rdev->raid_disk = desc->raid_disk;
1182 }
1183 }
1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1185 set_bit(WriteMostly, &rdev->flags);
1186 } else /* MULTIPATH are always insync */
1187 set_bit(In_sync, &rdev->flags);
1188 return 0;
1189 }
1190
1191 /*
1192 * sync_super for 0.90.0
1193 */
1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1195 {
1196 mdp_super_t *sb;
1197 struct md_rdev *rdev2;
1198 int next_spare = mddev->raid_disks;
1199
1200
1201 /* make rdev->sb match mddev data..
1202 *
1203 * 1/ zero out disks
1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1205 * 3/ any empty disks < next_spare become removed
1206 *
1207 * disks[0] gets initialised to REMOVED because
1208 * we cannot be sure from other fields if it has
1209 * been initialised or not.
1210 */
1211 int i;
1212 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1213
1214 rdev->sb_size = MD_SB_BYTES;
1215
1216 sb = page_address(rdev->sb_page);
1217
1218 memset(sb, 0, sizeof(*sb));
1219
1220 sb->md_magic = MD_SB_MAGIC;
1221 sb->major_version = mddev->major_version;
1222 sb->patch_version = mddev->patch_version;
1223 sb->gvalid_words = 0; /* ignored */
1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1228
1229 sb->ctime = mddev->ctime;
1230 sb->level = mddev->level;
1231 sb->size = mddev->dev_sectors / 2;
1232 sb->raid_disks = mddev->raid_disks;
1233 sb->md_minor = mddev->md_minor;
1234 sb->not_persistent = 0;
1235 sb->utime = mddev->utime;
1236 sb->state = 0;
1237 sb->events_hi = (mddev->events>>32);
1238 sb->events_lo = (u32)mddev->events;
1239
1240 if (mddev->reshape_position == MaxSector)
1241 sb->minor_version = 90;
1242 else {
1243 sb->minor_version = 91;
1244 sb->reshape_position = mddev->reshape_position;
1245 sb->new_level = mddev->new_level;
1246 sb->delta_disks = mddev->delta_disks;
1247 sb->new_layout = mddev->new_layout;
1248 sb->new_chunk = mddev->new_chunk_sectors << 9;
1249 }
1250 mddev->minor_version = sb->minor_version;
1251 if (mddev->in_sync)
1252 {
1253 sb->recovery_cp = mddev->recovery_cp;
1254 sb->cp_events_hi = (mddev->events>>32);
1255 sb->cp_events_lo = (u32)mddev->events;
1256 if (mddev->recovery_cp == MaxSector)
1257 sb->state = (1<< MD_SB_CLEAN);
1258 } else
1259 sb->recovery_cp = 0;
1260
1261 sb->layout = mddev->layout;
1262 sb->chunk_size = mddev->chunk_sectors << 9;
1263
1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1266
1267 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1268 rdev_for_each(rdev2, mddev) {
1269 mdp_disk_t *d;
1270 int desc_nr;
1271 int is_active = test_bit(In_sync, &rdev2->flags);
1272
1273 if (rdev2->raid_disk >= 0 &&
1274 sb->minor_version >= 91)
1275 /* we have nowhere to store the recovery_offset,
1276 * but if it is not below the reshape_position,
1277 * we can piggy-back on that.
1278 */
1279 is_active = 1;
1280 if (rdev2->raid_disk < 0 ||
1281 test_bit(Faulty, &rdev2->flags))
1282 is_active = 0;
1283 if (is_active)
1284 desc_nr = rdev2->raid_disk;
1285 else
1286 desc_nr = next_spare++;
1287 rdev2->desc_nr = desc_nr;
1288 d = &sb->disks[rdev2->desc_nr];
1289 nr_disks++;
1290 d->number = rdev2->desc_nr;
1291 d->major = MAJOR(rdev2->bdev->bd_dev);
1292 d->minor = MINOR(rdev2->bdev->bd_dev);
1293 if (is_active)
1294 d->raid_disk = rdev2->raid_disk;
1295 else
1296 d->raid_disk = rdev2->desc_nr; /* compatibility */
1297 if (test_bit(Faulty, &rdev2->flags))
1298 d->state = (1<<MD_DISK_FAULTY);
1299 else if (is_active) {
1300 d->state = (1<<MD_DISK_ACTIVE);
1301 if (test_bit(In_sync, &rdev2->flags))
1302 d->state |= (1<<MD_DISK_SYNC);
1303 active++;
1304 working++;
1305 } else {
1306 d->state = 0;
1307 spare++;
1308 working++;
1309 }
1310 if (test_bit(WriteMostly, &rdev2->flags))
1311 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1312 }
1313 /* now set the "removed" and "faulty" bits on any missing devices */
1314 for (i=0 ; i < mddev->raid_disks ; i++) {
1315 mdp_disk_t *d = &sb->disks[i];
1316 if (d->state == 0 && d->number == 0) {
1317 d->number = i;
1318 d->raid_disk = i;
1319 d->state = (1<<MD_DISK_REMOVED);
1320 d->state |= (1<<MD_DISK_FAULTY);
1321 failed++;
1322 }
1323 }
1324 sb->nr_disks = nr_disks;
1325 sb->active_disks = active;
1326 sb->working_disks = working;
1327 sb->failed_disks = failed;
1328 sb->spare_disks = spare;
1329
1330 sb->this_disk = sb->disks[rdev->desc_nr];
1331 sb->sb_csum = calc_sb_csum(sb);
1332 }
1333
1334 /*
1335 * rdev_size_change for 0.90.0
1336 */
1337 static unsigned long long
1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1339 {
1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1341 return 0; /* component must fit device */
1342 if (rdev->mddev->bitmap_info.offset)
1343 return 0; /* can't move bitmap */
1344 rdev->sb_start = calc_dev_sboffset(rdev);
1345 if (!num_sectors || num_sectors > rdev->sb_start)
1346 num_sectors = rdev->sb_start;
1347 /* Limit to 4TB as metadata cannot record more than that.
1348 * 4TB == 2^32 KB, or 2*2^32 sectors.
1349 */
1350 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1351 num_sectors = (2ULL << 32) - 2;
1352 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1353 rdev->sb_page);
1354 md_super_wait(rdev->mddev);
1355 return num_sectors;
1356 }
1357
1358 static int
1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1360 {
1361 /* non-zero offset changes not possible with v0.90 */
1362 return new_offset == 0;
1363 }
1364
1365 /*
1366 * version 1 superblock
1367 */
1368
1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1370 {
1371 __le32 disk_csum;
1372 u32 csum;
1373 unsigned long long newcsum;
1374 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1375 __le32 *isuper = (__le32*)sb;
1376
1377 disk_csum = sb->sb_csum;
1378 sb->sb_csum = 0;
1379 newcsum = 0;
1380 for (; size >= 4; size -= 4)
1381 newcsum += le32_to_cpu(*isuper++);
1382
1383 if (size == 2)
1384 newcsum += le16_to_cpu(*(__le16*) isuper);
1385
1386 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1387 sb->sb_csum = disk_csum;
1388 return cpu_to_le32(csum);
1389 }
1390
1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1392 int acknowledged);
1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1394 {
1395 struct mdp_superblock_1 *sb;
1396 int ret;
1397 sector_t sb_start;
1398 sector_t sectors;
1399 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1400 int bmask;
1401
1402 /*
1403 * Calculate the position of the superblock in 512byte sectors.
1404 * It is always aligned to a 4K boundary and
1405 * depeding on minor_version, it can be:
1406 * 0: At least 8K, but less than 12K, from end of device
1407 * 1: At start of device
1408 * 2: 4K from start of device.
1409 */
1410 switch(minor_version) {
1411 case 0:
1412 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1413 sb_start -= 8*2;
1414 sb_start &= ~(sector_t)(4*2-1);
1415 break;
1416 case 1:
1417 sb_start = 0;
1418 break;
1419 case 2:
1420 sb_start = 8;
1421 break;
1422 default:
1423 return -EINVAL;
1424 }
1425 rdev->sb_start = sb_start;
1426
1427 /* superblock is rarely larger than 1K, but it can be larger,
1428 * and it is safe to read 4k, so we do that
1429 */
1430 ret = read_disk_sb(rdev, 4096);
1431 if (ret) return ret;
1432
1433
1434 sb = page_address(rdev->sb_page);
1435
1436 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1437 sb->major_version != cpu_to_le32(1) ||
1438 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1439 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1440 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1441 return -EINVAL;
1442
1443 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1444 printk("md: invalid superblock checksum on %s\n",
1445 bdevname(rdev->bdev,b));
1446 return -EINVAL;
1447 }
1448 if (le64_to_cpu(sb->data_size) < 10) {
1449 printk("md: data_size too small on %s\n",
1450 bdevname(rdev->bdev,b));
1451 return -EINVAL;
1452 }
1453 if (sb->pad0 ||
1454 sb->pad3[0] ||
1455 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1456 /* Some padding is non-zero, might be a new feature */
1457 return -EINVAL;
1458
1459 rdev->preferred_minor = 0xffff;
1460 rdev->data_offset = le64_to_cpu(sb->data_offset);
1461 rdev->new_data_offset = rdev->data_offset;
1462 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1463 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1464 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1465 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1466
1467 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1468 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1469 if (rdev->sb_size & bmask)
1470 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1471
1472 if (minor_version
1473 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1474 return -EINVAL;
1475 if (minor_version
1476 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1477 return -EINVAL;
1478
1479 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1480 rdev->desc_nr = -1;
1481 else
1482 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1483
1484 if (!rdev->bb_page) {
1485 rdev->bb_page = alloc_page(GFP_KERNEL);
1486 if (!rdev->bb_page)
1487 return -ENOMEM;
1488 }
1489 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1490 rdev->badblocks.count == 0) {
1491 /* need to load the bad block list.
1492 * Currently we limit it to one page.
1493 */
1494 s32 offset;
1495 sector_t bb_sector;
1496 u64 *bbp;
1497 int i;
1498 int sectors = le16_to_cpu(sb->bblog_size);
1499 if (sectors > (PAGE_SIZE / 512))
1500 return -EINVAL;
1501 offset = le32_to_cpu(sb->bblog_offset);
1502 if (offset == 0)
1503 return -EINVAL;
1504 bb_sector = (long long)offset;
1505 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1506 rdev->bb_page, READ, true))
1507 return -EIO;
1508 bbp = (u64 *)page_address(rdev->bb_page);
1509 rdev->badblocks.shift = sb->bblog_shift;
1510 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1511 u64 bb = le64_to_cpu(*bbp);
1512 int count = bb & (0x3ff);
1513 u64 sector = bb >> 10;
1514 sector <<= sb->bblog_shift;
1515 count <<= sb->bblog_shift;
1516 if (bb + 1 == 0)
1517 break;
1518 if (md_set_badblocks(&rdev->badblocks,
1519 sector, count, 1) == 0)
1520 return -EINVAL;
1521 }
1522 } else if (sb->bblog_offset != 0)
1523 rdev->badblocks.shift = 0;
1524
1525 if (!refdev) {
1526 ret = 1;
1527 } else {
1528 __u64 ev1, ev2;
1529 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1530
1531 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1532 sb->level != refsb->level ||
1533 sb->layout != refsb->layout ||
1534 sb->chunksize != refsb->chunksize) {
1535 printk(KERN_WARNING "md: %s has strangely different"
1536 " superblock to %s\n",
1537 bdevname(rdev->bdev,b),
1538 bdevname(refdev->bdev,b2));
1539 return -EINVAL;
1540 }
1541 ev1 = le64_to_cpu(sb->events);
1542 ev2 = le64_to_cpu(refsb->events);
1543
1544 if (ev1 > ev2)
1545 ret = 1;
1546 else
1547 ret = 0;
1548 }
1549 if (minor_version) {
1550 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1551 sectors -= rdev->data_offset;
1552 } else
1553 sectors = rdev->sb_start;
1554 if (sectors < le64_to_cpu(sb->data_size))
1555 return -EINVAL;
1556 rdev->sectors = le64_to_cpu(sb->data_size);
1557 return ret;
1558 }
1559
1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1561 {
1562 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1563 __u64 ev1 = le64_to_cpu(sb->events);
1564
1565 rdev->raid_disk = -1;
1566 clear_bit(Faulty, &rdev->flags);
1567 clear_bit(In_sync, &rdev->flags);
1568 clear_bit(Bitmap_sync, &rdev->flags);
1569 clear_bit(WriteMostly, &rdev->flags);
1570
1571 if (mddev->raid_disks == 0) {
1572 mddev->major_version = 1;
1573 mddev->patch_version = 0;
1574 mddev->external = 0;
1575 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1576 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1577 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1578 mddev->level = le32_to_cpu(sb->level);
1579 mddev->clevel[0] = 0;
1580 mddev->layout = le32_to_cpu(sb->layout);
1581 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1582 mddev->dev_sectors = le64_to_cpu(sb->size);
1583 mddev->events = ev1;
1584 mddev->bitmap_info.offset = 0;
1585 mddev->bitmap_info.space = 0;
1586 /* Default location for bitmap is 1K after superblock
1587 * using 3K - total of 4K
1588 */
1589 mddev->bitmap_info.default_offset = 1024 >> 9;
1590 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1591 mddev->reshape_backwards = 0;
1592
1593 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1594 memcpy(mddev->uuid, sb->set_uuid, 16);
1595
1596 mddev->max_disks = (4096-256)/2;
1597
1598 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1599 mddev->bitmap_info.file == NULL) {
1600 mddev->bitmap_info.offset =
1601 (__s32)le32_to_cpu(sb->bitmap_offset);
1602 /* Metadata doesn't record how much space is available.
1603 * For 1.0, we assume we can use up to the superblock
1604 * if before, else to 4K beyond superblock.
1605 * For others, assume no change is possible.
1606 */
1607 if (mddev->minor_version > 0)
1608 mddev->bitmap_info.space = 0;
1609 else if (mddev->bitmap_info.offset > 0)
1610 mddev->bitmap_info.space =
1611 8 - mddev->bitmap_info.offset;
1612 else
1613 mddev->bitmap_info.space =
1614 -mddev->bitmap_info.offset;
1615 }
1616
1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1618 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1619 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1620 mddev->new_level = le32_to_cpu(sb->new_level);
1621 mddev->new_layout = le32_to_cpu(sb->new_layout);
1622 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1623 if (mddev->delta_disks < 0 ||
1624 (mddev->delta_disks == 0 &&
1625 (le32_to_cpu(sb->feature_map)
1626 & MD_FEATURE_RESHAPE_BACKWARDS)))
1627 mddev->reshape_backwards = 1;
1628 } else {
1629 mddev->reshape_position = MaxSector;
1630 mddev->delta_disks = 0;
1631 mddev->new_level = mddev->level;
1632 mddev->new_layout = mddev->layout;
1633 mddev->new_chunk_sectors = mddev->chunk_sectors;
1634 }
1635
1636 } else if (mddev->pers == NULL) {
1637 /* Insist of good event counter while assembling, except for
1638 * spares (which don't need an event count) */
1639 ++ev1;
1640 if (rdev->desc_nr >= 0 &&
1641 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1642 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1643 if (ev1 < mddev->events)
1644 return -EINVAL;
1645 } else if (mddev->bitmap) {
1646 /* If adding to array with a bitmap, then we can accept an
1647 * older device, but not too old.
1648 */
1649 if (ev1 < mddev->bitmap->events_cleared)
1650 return 0;
1651 if (ev1 < mddev->events)
1652 set_bit(Bitmap_sync, &rdev->flags);
1653 } else {
1654 if (ev1 < mddev->events)
1655 /* just a hot-add of a new device, leave raid_disk at -1 */
1656 return 0;
1657 }
1658 if (mddev->level != LEVEL_MULTIPATH) {
1659 int role;
1660 if (rdev->desc_nr < 0 ||
1661 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1662 role = 0xffff;
1663 rdev->desc_nr = -1;
1664 } else
1665 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1666 switch(role) {
1667 case 0xffff: /* spare */
1668 break;
1669 case 0xfffe: /* faulty */
1670 set_bit(Faulty, &rdev->flags);
1671 break;
1672 default:
1673 rdev->saved_raid_disk = role;
1674 if ((le32_to_cpu(sb->feature_map) &
1675 MD_FEATURE_RECOVERY_OFFSET)) {
1676 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1677 if (!(le32_to_cpu(sb->feature_map) &
1678 MD_FEATURE_RECOVERY_BITMAP))
1679 rdev->saved_raid_disk = -1;
1680 } else
1681 set_bit(In_sync, &rdev->flags);
1682 rdev->raid_disk = role;
1683 break;
1684 }
1685 if (sb->devflags & WriteMostly1)
1686 set_bit(WriteMostly, &rdev->flags);
1687 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1688 set_bit(Replacement, &rdev->flags);
1689 } else /* MULTIPATH are always insync */
1690 set_bit(In_sync, &rdev->flags);
1691
1692 return 0;
1693 }
1694
1695 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1696 {
1697 struct mdp_superblock_1 *sb;
1698 struct md_rdev *rdev2;
1699 int max_dev, i;
1700 /* make rdev->sb match mddev and rdev data. */
1701
1702 sb = page_address(rdev->sb_page);
1703
1704 sb->feature_map = 0;
1705 sb->pad0 = 0;
1706 sb->recovery_offset = cpu_to_le64(0);
1707 memset(sb->pad3, 0, sizeof(sb->pad3));
1708
1709 sb->utime = cpu_to_le64((__u64)mddev->utime);
1710 sb->events = cpu_to_le64(mddev->events);
1711 if (mddev->in_sync)
1712 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1713 else
1714 sb->resync_offset = cpu_to_le64(0);
1715
1716 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1717
1718 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1719 sb->size = cpu_to_le64(mddev->dev_sectors);
1720 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1721 sb->level = cpu_to_le32(mddev->level);
1722 sb->layout = cpu_to_le32(mddev->layout);
1723
1724 if (test_bit(WriteMostly, &rdev->flags))
1725 sb->devflags |= WriteMostly1;
1726 else
1727 sb->devflags &= ~WriteMostly1;
1728 sb->data_offset = cpu_to_le64(rdev->data_offset);
1729 sb->data_size = cpu_to_le64(rdev->sectors);
1730
1731 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1732 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1733 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1734 }
1735
1736 if (rdev->raid_disk >= 0 &&
1737 !test_bit(In_sync, &rdev->flags)) {
1738 sb->feature_map |=
1739 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1740 sb->recovery_offset =
1741 cpu_to_le64(rdev->recovery_offset);
1742 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1743 sb->feature_map |=
1744 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1745 }
1746 if (test_bit(Replacement, &rdev->flags))
1747 sb->feature_map |=
1748 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1749
1750 if (mddev->reshape_position != MaxSector) {
1751 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1752 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1753 sb->new_layout = cpu_to_le32(mddev->new_layout);
1754 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1755 sb->new_level = cpu_to_le32(mddev->new_level);
1756 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1757 if (mddev->delta_disks == 0 &&
1758 mddev->reshape_backwards)
1759 sb->feature_map
1760 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1761 if (rdev->new_data_offset != rdev->data_offset) {
1762 sb->feature_map
1763 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1764 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1765 - rdev->data_offset));
1766 }
1767 }
1768
1769 if (rdev->badblocks.count == 0)
1770 /* Nothing to do for bad blocks*/ ;
1771 else if (sb->bblog_offset == 0)
1772 /* Cannot record bad blocks on this device */
1773 md_error(mddev, rdev);
1774 else {
1775 struct badblocks *bb = &rdev->badblocks;
1776 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1777 u64 *p = bb->page;
1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1779 if (bb->changed) {
1780 unsigned seq;
1781
1782 retry:
1783 seq = read_seqbegin(&bb->lock);
1784
1785 memset(bbp, 0xff, PAGE_SIZE);
1786
1787 for (i = 0 ; i < bb->count ; i++) {
1788 u64 internal_bb = p[i];
1789 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1790 | BB_LEN(internal_bb));
1791 bbp[i] = cpu_to_le64(store_bb);
1792 }
1793 bb->changed = 0;
1794 if (read_seqretry(&bb->lock, seq))
1795 goto retry;
1796
1797 bb->sector = (rdev->sb_start +
1798 (int)le32_to_cpu(sb->bblog_offset));
1799 bb->size = le16_to_cpu(sb->bblog_size);
1800 }
1801 }
1802
1803 max_dev = 0;
1804 rdev_for_each(rdev2, mddev)
1805 if (rdev2->desc_nr+1 > max_dev)
1806 max_dev = rdev2->desc_nr+1;
1807
1808 if (max_dev > le32_to_cpu(sb->max_dev)) {
1809 int bmask;
1810 sb->max_dev = cpu_to_le32(max_dev);
1811 rdev->sb_size = max_dev * 2 + 256;
1812 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1813 if (rdev->sb_size & bmask)
1814 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1815 } else
1816 max_dev = le32_to_cpu(sb->max_dev);
1817
1818 for (i=0; i<max_dev;i++)
1819 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1820
1821 rdev_for_each(rdev2, mddev) {
1822 i = rdev2->desc_nr;
1823 if (test_bit(Faulty, &rdev2->flags))
1824 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1825 else if (test_bit(In_sync, &rdev2->flags))
1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 else if (rdev2->raid_disk >= 0)
1828 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829 else
1830 sb->dev_roles[i] = cpu_to_le16(0xffff);
1831 }
1832
1833 sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835
1836 static unsigned long long
1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1838 {
1839 struct mdp_superblock_1 *sb;
1840 sector_t max_sectors;
1841 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842 return 0; /* component must fit device */
1843 if (rdev->data_offset != rdev->new_data_offset)
1844 return 0; /* too confusing */
1845 if (rdev->sb_start < rdev->data_offset) {
1846 /* minor versions 1 and 2; superblock before data */
1847 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1848 max_sectors -= rdev->data_offset;
1849 if (!num_sectors || num_sectors > max_sectors)
1850 num_sectors = max_sectors;
1851 } else if (rdev->mddev->bitmap_info.offset) {
1852 /* minor version 0 with bitmap we can't move */
1853 return 0;
1854 } else {
1855 /* minor version 0; superblock after data */
1856 sector_t sb_start;
1857 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1858 sb_start &= ~(sector_t)(4*2 - 1);
1859 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1860 if (!num_sectors || num_sectors > max_sectors)
1861 num_sectors = max_sectors;
1862 rdev->sb_start = sb_start;
1863 }
1864 sb = page_address(rdev->sb_page);
1865 sb->data_size = cpu_to_le64(num_sectors);
1866 sb->super_offset = rdev->sb_start;
1867 sb->sb_csum = calc_sb_1_csum(sb);
1868 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1869 rdev->sb_page);
1870 md_super_wait(rdev->mddev);
1871 return num_sectors;
1872
1873 }
1874
1875 static int
1876 super_1_allow_new_offset(struct md_rdev *rdev,
1877 unsigned long long new_offset)
1878 {
1879 /* All necessary checks on new >= old have been done */
1880 struct bitmap *bitmap;
1881 if (new_offset >= rdev->data_offset)
1882 return 1;
1883
1884 /* with 1.0 metadata, there is no metadata to tread on
1885 * so we can always move back */
1886 if (rdev->mddev->minor_version == 0)
1887 return 1;
1888
1889 /* otherwise we must be sure not to step on
1890 * any metadata, so stay:
1891 * 36K beyond start of superblock
1892 * beyond end of badblocks
1893 * beyond write-intent bitmap
1894 */
1895 if (rdev->sb_start + (32+4)*2 > new_offset)
1896 return 0;
1897 bitmap = rdev->mddev->bitmap;
1898 if (bitmap && !rdev->mddev->bitmap_info.file &&
1899 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1900 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1901 return 0;
1902 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1903 return 0;
1904
1905 return 1;
1906 }
1907
1908 static struct super_type super_types[] = {
1909 [0] = {
1910 .name = "0.90.0",
1911 .owner = THIS_MODULE,
1912 .load_super = super_90_load,
1913 .validate_super = super_90_validate,
1914 .sync_super = super_90_sync,
1915 .rdev_size_change = super_90_rdev_size_change,
1916 .allow_new_offset = super_90_allow_new_offset,
1917 },
1918 [1] = {
1919 .name = "md-1",
1920 .owner = THIS_MODULE,
1921 .load_super = super_1_load,
1922 .validate_super = super_1_validate,
1923 .sync_super = super_1_sync,
1924 .rdev_size_change = super_1_rdev_size_change,
1925 .allow_new_offset = super_1_allow_new_offset,
1926 },
1927 };
1928
1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1930 {
1931 if (mddev->sync_super) {
1932 mddev->sync_super(mddev, rdev);
1933 return;
1934 }
1935
1936 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1937
1938 super_types[mddev->major_version].sync_super(mddev, rdev);
1939 }
1940
1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1942 {
1943 struct md_rdev *rdev, *rdev2;
1944
1945 rcu_read_lock();
1946 rdev_for_each_rcu(rdev, mddev1)
1947 rdev_for_each_rcu(rdev2, mddev2)
1948 if (rdev->bdev->bd_contains ==
1949 rdev2->bdev->bd_contains) {
1950 rcu_read_unlock();
1951 return 1;
1952 }
1953 rcu_read_unlock();
1954 return 0;
1955 }
1956
1957 static LIST_HEAD(pending_raid_disks);
1958
1959 /*
1960 * Try to register data integrity profile for an mddev
1961 *
1962 * This is called when an array is started and after a disk has been kicked
1963 * from the array. It only succeeds if all working and active component devices
1964 * are integrity capable with matching profiles.
1965 */
1966 int md_integrity_register(struct mddev *mddev)
1967 {
1968 struct md_rdev *rdev, *reference = NULL;
1969
1970 if (list_empty(&mddev->disks))
1971 return 0; /* nothing to do */
1972 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1973 return 0; /* shouldn't register, or already is */
1974 rdev_for_each(rdev, mddev) {
1975 /* skip spares and non-functional disks */
1976 if (test_bit(Faulty, &rdev->flags))
1977 continue;
1978 if (rdev->raid_disk < 0)
1979 continue;
1980 if (!reference) {
1981 /* Use the first rdev as the reference */
1982 reference = rdev;
1983 continue;
1984 }
1985 /* does this rdev's profile match the reference profile? */
1986 if (blk_integrity_compare(reference->bdev->bd_disk,
1987 rdev->bdev->bd_disk) < 0)
1988 return -EINVAL;
1989 }
1990 if (!reference || !bdev_get_integrity(reference->bdev))
1991 return 0;
1992 /*
1993 * All component devices are integrity capable and have matching
1994 * profiles, register the common profile for the md device.
1995 */
1996 if (blk_integrity_register(mddev->gendisk,
1997 bdev_get_integrity(reference->bdev)) != 0) {
1998 printk(KERN_ERR "md: failed to register integrity for %s\n",
1999 mdname(mddev));
2000 return -EINVAL;
2001 }
2002 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2003 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2004 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2005 mdname(mddev));
2006 return -EINVAL;
2007 }
2008 return 0;
2009 }
2010 EXPORT_SYMBOL(md_integrity_register);
2011
2012 /* Disable data integrity if non-capable/non-matching disk is being added */
2013 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2014 {
2015 struct blk_integrity *bi_rdev;
2016 struct blk_integrity *bi_mddev;
2017
2018 if (!mddev->gendisk)
2019 return;
2020
2021 bi_rdev = bdev_get_integrity(rdev->bdev);
2022 bi_mddev = blk_get_integrity(mddev->gendisk);
2023
2024 if (!bi_mddev) /* nothing to do */
2025 return;
2026 if (rdev->raid_disk < 0) /* skip spares */
2027 return;
2028 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2029 rdev->bdev->bd_disk) >= 0)
2030 return;
2031 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2032 blk_integrity_unregister(mddev->gendisk);
2033 }
2034 EXPORT_SYMBOL(md_integrity_add_rdev);
2035
2036 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2037 {
2038 char b[BDEVNAME_SIZE];
2039 struct kobject *ko;
2040 char *s;
2041 int err;
2042
2043 if (rdev->mddev) {
2044 MD_BUG();
2045 return -EINVAL;
2046 }
2047
2048 /* prevent duplicates */
2049 if (find_rdev(mddev, rdev->bdev->bd_dev))
2050 return -EEXIST;
2051
2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2053 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2054 rdev->sectors < mddev->dev_sectors)) {
2055 if (mddev->pers) {
2056 /* Cannot change size, so fail
2057 * If mddev->level <= 0, then we don't care
2058 * about aligning sizes (e.g. linear)
2059 */
2060 if (mddev->level > 0)
2061 return -ENOSPC;
2062 } else
2063 mddev->dev_sectors = rdev->sectors;
2064 }
2065
2066 /* Verify rdev->desc_nr is unique.
2067 * If it is -1, assign a free number, else
2068 * check number is not in use
2069 */
2070 if (rdev->desc_nr < 0) {
2071 int choice = 0;
2072 if (mddev->pers) choice = mddev->raid_disks;
2073 while (find_rdev_nr(mddev, choice))
2074 choice++;
2075 rdev->desc_nr = choice;
2076 } else {
2077 if (find_rdev_nr(mddev, rdev->desc_nr))
2078 return -EBUSY;
2079 }
2080 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2081 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2082 mdname(mddev), mddev->max_disks);
2083 return -EBUSY;
2084 }
2085 bdevname(rdev->bdev,b);
2086 while ( (s=strchr(b, '/')) != NULL)
2087 *s = '!';
2088
2089 rdev->mddev = mddev;
2090 printk(KERN_INFO "md: bind<%s>\n", b);
2091
2092 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2093 goto fail;
2094
2095 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2096 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2097 /* failure here is OK */;
2098 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2099
2100 list_add_rcu(&rdev->same_set, &mddev->disks);
2101 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2102
2103 /* May as well allow recovery to be retried once */
2104 mddev->recovery_disabled++;
2105
2106 return 0;
2107
2108 fail:
2109 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2110 b, mdname(mddev));
2111 return err;
2112 }
2113
2114 static void md_delayed_delete(struct work_struct *ws)
2115 {
2116 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2117 kobject_del(&rdev->kobj);
2118 kobject_put(&rdev->kobj);
2119 }
2120
2121 static void unbind_rdev_from_array(struct md_rdev * rdev)
2122 {
2123 char b[BDEVNAME_SIZE];
2124 if (!rdev->mddev) {
2125 MD_BUG();
2126 return;
2127 }
2128 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2129 list_del_rcu(&rdev->same_set);
2130 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2131 rdev->mddev = NULL;
2132 sysfs_remove_link(&rdev->kobj, "block");
2133 sysfs_put(rdev->sysfs_state);
2134 rdev->sysfs_state = NULL;
2135 rdev->badblocks.count = 0;
2136 /* We need to delay this, otherwise we can deadlock when
2137 * writing to 'remove' to "dev/state". We also need
2138 * to delay it due to rcu usage.
2139 */
2140 synchronize_rcu();
2141 INIT_WORK(&rdev->del_work, md_delayed_delete);
2142 kobject_get(&rdev->kobj);
2143 queue_work(md_misc_wq, &rdev->del_work);
2144 }
2145
2146 /*
2147 * prevent the device from being mounted, repartitioned or
2148 * otherwise reused by a RAID array (or any other kernel
2149 * subsystem), by bd_claiming the device.
2150 */
2151 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2152 {
2153 int err = 0;
2154 struct block_device *bdev;
2155 char b[BDEVNAME_SIZE];
2156
2157 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2158 shared ? (struct md_rdev *)lock_rdev : rdev);
2159 if (IS_ERR(bdev)) {
2160 printk(KERN_ERR "md: could not open %s.\n",
2161 __bdevname(dev, b));
2162 return PTR_ERR(bdev);
2163 }
2164 rdev->bdev = bdev;
2165 return err;
2166 }
2167
2168 static void unlock_rdev(struct md_rdev *rdev)
2169 {
2170 struct block_device *bdev = rdev->bdev;
2171 rdev->bdev = NULL;
2172 if (!bdev)
2173 MD_BUG();
2174 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2175 }
2176
2177 void md_autodetect_dev(dev_t dev);
2178
2179 static void export_rdev(struct md_rdev * rdev)
2180 {
2181 char b[BDEVNAME_SIZE];
2182 printk(KERN_INFO "md: export_rdev(%s)\n",
2183 bdevname(rdev->bdev,b));
2184 if (rdev->mddev)
2185 MD_BUG();
2186 md_rdev_clear(rdev);
2187 #ifndef MODULE
2188 if (test_bit(AutoDetected, &rdev->flags))
2189 md_autodetect_dev(rdev->bdev->bd_dev);
2190 #endif
2191 unlock_rdev(rdev);
2192 kobject_put(&rdev->kobj);
2193 }
2194
2195 static void kick_rdev_from_array(struct md_rdev * rdev)
2196 {
2197 unbind_rdev_from_array(rdev);
2198 export_rdev(rdev);
2199 }
2200
2201 static void export_array(struct mddev *mddev)
2202 {
2203 struct md_rdev *rdev, *tmp;
2204
2205 rdev_for_each_safe(rdev, tmp, mddev) {
2206 if (!rdev->mddev) {
2207 MD_BUG();
2208 continue;
2209 }
2210 kick_rdev_from_array(rdev);
2211 }
2212 if (!list_empty(&mddev->disks))
2213 MD_BUG();
2214 mddev->raid_disks = 0;
2215 mddev->major_version = 0;
2216 }
2217
2218 static void print_desc(mdp_disk_t *desc)
2219 {
2220 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2221 desc->major,desc->minor,desc->raid_disk,desc->state);
2222 }
2223
2224 static void print_sb_90(mdp_super_t *sb)
2225 {
2226 int i;
2227
2228 printk(KERN_INFO
2229 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2230 sb->major_version, sb->minor_version, sb->patch_version,
2231 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2232 sb->ctime);
2233 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2234 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2235 sb->md_minor, sb->layout, sb->chunk_size);
2236 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2237 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2238 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2239 sb->failed_disks, sb->spare_disks,
2240 sb->sb_csum, (unsigned long)sb->events_lo);
2241
2242 printk(KERN_INFO);
2243 for (i = 0; i < MD_SB_DISKS; i++) {
2244 mdp_disk_t *desc;
2245
2246 desc = sb->disks + i;
2247 if (desc->number || desc->major || desc->minor ||
2248 desc->raid_disk || (desc->state && (desc->state != 4))) {
2249 printk(" D %2d: ", i);
2250 print_desc(desc);
2251 }
2252 }
2253 printk(KERN_INFO "md: THIS: ");
2254 print_desc(&sb->this_disk);
2255 }
2256
2257 static void print_sb_1(struct mdp_superblock_1 *sb)
2258 {
2259 __u8 *uuid;
2260
2261 uuid = sb->set_uuid;
2262 printk(KERN_INFO
2263 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2264 "md: Name: \"%s\" CT:%llu\n",
2265 le32_to_cpu(sb->major_version),
2266 le32_to_cpu(sb->feature_map),
2267 uuid,
2268 sb->set_name,
2269 (unsigned long long)le64_to_cpu(sb->ctime)
2270 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2271
2272 uuid = sb->device_uuid;
2273 printk(KERN_INFO
2274 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2275 " RO:%llu\n"
2276 "md: Dev:%08x UUID: %pU\n"
2277 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2278 "md: (MaxDev:%u) \n",
2279 le32_to_cpu(sb->level),
2280 (unsigned long long)le64_to_cpu(sb->size),
2281 le32_to_cpu(sb->raid_disks),
2282 le32_to_cpu(sb->layout),
2283 le32_to_cpu(sb->chunksize),
2284 (unsigned long long)le64_to_cpu(sb->data_offset),
2285 (unsigned long long)le64_to_cpu(sb->data_size),
2286 (unsigned long long)le64_to_cpu(sb->super_offset),
2287 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2288 le32_to_cpu(sb->dev_number),
2289 uuid,
2290 sb->devflags,
2291 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2292 (unsigned long long)le64_to_cpu(sb->events),
2293 (unsigned long long)le64_to_cpu(sb->resync_offset),
2294 le32_to_cpu(sb->sb_csum),
2295 le32_to_cpu(sb->max_dev)
2296 );
2297 }
2298
2299 static void print_rdev(struct md_rdev *rdev, int major_version)
2300 {
2301 char b[BDEVNAME_SIZE];
2302 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2303 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2304 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2305 rdev->desc_nr);
2306 if (rdev->sb_loaded) {
2307 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2308 switch (major_version) {
2309 case 0:
2310 print_sb_90(page_address(rdev->sb_page));
2311 break;
2312 case 1:
2313 print_sb_1(page_address(rdev->sb_page));
2314 break;
2315 }
2316 } else
2317 printk(KERN_INFO "md: no rdev superblock!\n");
2318 }
2319
2320 static void md_print_devices(void)
2321 {
2322 struct list_head *tmp;
2323 struct md_rdev *rdev;
2324 struct mddev *mddev;
2325 char b[BDEVNAME_SIZE];
2326
2327 printk("\n");
2328 printk("md: **********************************\n");
2329 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2330 printk("md: **********************************\n");
2331 for_each_mddev(mddev, tmp) {
2332
2333 if (mddev->bitmap)
2334 bitmap_print_sb(mddev->bitmap);
2335 else
2336 printk("%s: ", mdname(mddev));
2337 rdev_for_each(rdev, mddev)
2338 printk("<%s>", bdevname(rdev->bdev,b));
2339 printk("\n");
2340
2341 rdev_for_each(rdev, mddev)
2342 print_rdev(rdev, mddev->major_version);
2343 }
2344 printk("md: **********************************\n");
2345 printk("\n");
2346 }
2347
2348
2349 static void sync_sbs(struct mddev * mddev, int nospares)
2350 {
2351 /* Update each superblock (in-memory image), but
2352 * if we are allowed to, skip spares which already
2353 * have the right event counter, or have one earlier
2354 * (which would mean they aren't being marked as dirty
2355 * with the rest of the array)
2356 */
2357 struct md_rdev *rdev;
2358 rdev_for_each(rdev, mddev) {
2359 if (rdev->sb_events == mddev->events ||
2360 (nospares &&
2361 rdev->raid_disk < 0 &&
2362 rdev->sb_events+1 == mddev->events)) {
2363 /* Don't update this superblock */
2364 rdev->sb_loaded = 2;
2365 } else {
2366 sync_super(mddev, rdev);
2367 rdev->sb_loaded = 1;
2368 }
2369 }
2370 }
2371
2372 static void md_update_sb(struct mddev * mddev, int force_change)
2373 {
2374 struct md_rdev *rdev;
2375 int sync_req;
2376 int nospares = 0;
2377 int any_badblocks_changed = 0;
2378
2379 if (mddev->ro) {
2380 if (force_change)
2381 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2382 return;
2383 }
2384 repeat:
2385 /* First make sure individual recovery_offsets are correct */
2386 rdev_for_each(rdev, mddev) {
2387 if (rdev->raid_disk >= 0 &&
2388 mddev->delta_disks >= 0 &&
2389 !test_bit(In_sync, &rdev->flags) &&
2390 mddev->curr_resync_completed > rdev->recovery_offset)
2391 rdev->recovery_offset = mddev->curr_resync_completed;
2392
2393 }
2394 if (!mddev->persistent) {
2395 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2396 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2397 if (!mddev->external) {
2398 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2399 rdev_for_each(rdev, mddev) {
2400 if (rdev->badblocks.changed) {
2401 rdev->badblocks.changed = 0;
2402 md_ack_all_badblocks(&rdev->badblocks);
2403 md_error(mddev, rdev);
2404 }
2405 clear_bit(Blocked, &rdev->flags);
2406 clear_bit(BlockedBadBlocks, &rdev->flags);
2407 wake_up(&rdev->blocked_wait);
2408 }
2409 }
2410 wake_up(&mddev->sb_wait);
2411 return;
2412 }
2413
2414 spin_lock_irq(&mddev->write_lock);
2415
2416 mddev->utime = get_seconds();
2417
2418 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2419 force_change = 1;
2420 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2421 /* just a clean<-> dirty transition, possibly leave spares alone,
2422 * though if events isn't the right even/odd, we will have to do
2423 * spares after all
2424 */
2425 nospares = 1;
2426 if (force_change)
2427 nospares = 0;
2428 if (mddev->degraded)
2429 /* If the array is degraded, then skipping spares is both
2430 * dangerous and fairly pointless.
2431 * Dangerous because a device that was removed from the array
2432 * might have a event_count that still looks up-to-date,
2433 * so it can be re-added without a resync.
2434 * Pointless because if there are any spares to skip,
2435 * then a recovery will happen and soon that array won't
2436 * be degraded any more and the spare can go back to sleep then.
2437 */
2438 nospares = 0;
2439
2440 sync_req = mddev->in_sync;
2441
2442 /* If this is just a dirty<->clean transition, and the array is clean
2443 * and 'events' is odd, we can roll back to the previous clean state */
2444 if (nospares
2445 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2446 && mddev->can_decrease_events
2447 && mddev->events != 1) {
2448 mddev->events--;
2449 mddev->can_decrease_events = 0;
2450 } else {
2451 /* otherwise we have to go forward and ... */
2452 mddev->events ++;
2453 mddev->can_decrease_events = nospares;
2454 }
2455
2456 if (!mddev->events) {
2457 /*
2458 * oops, this 64-bit counter should never wrap.
2459 * Either we are in around ~1 trillion A.C., assuming
2460 * 1 reboot per second, or we have a bug:
2461 */
2462 MD_BUG();
2463 mddev->events --;
2464 }
2465
2466 rdev_for_each(rdev, mddev) {
2467 if (rdev->badblocks.changed)
2468 any_badblocks_changed++;
2469 if (test_bit(Faulty, &rdev->flags))
2470 set_bit(FaultRecorded, &rdev->flags);
2471 }
2472
2473 sync_sbs(mddev, nospares);
2474 spin_unlock_irq(&mddev->write_lock);
2475
2476 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2477 mdname(mddev), mddev->in_sync);
2478
2479 bitmap_update_sb(mddev->bitmap);
2480 rdev_for_each(rdev, mddev) {
2481 char b[BDEVNAME_SIZE];
2482
2483 if (rdev->sb_loaded != 1)
2484 continue; /* no noise on spare devices */
2485
2486 if (!test_bit(Faulty, &rdev->flags)) {
2487 md_super_write(mddev,rdev,
2488 rdev->sb_start, rdev->sb_size,
2489 rdev->sb_page);
2490 pr_debug("md: (write) %s's sb offset: %llu\n",
2491 bdevname(rdev->bdev, b),
2492 (unsigned long long)rdev->sb_start);
2493 rdev->sb_events = mddev->events;
2494 if (rdev->badblocks.size) {
2495 md_super_write(mddev, rdev,
2496 rdev->badblocks.sector,
2497 rdev->badblocks.size << 9,
2498 rdev->bb_page);
2499 rdev->badblocks.size = 0;
2500 }
2501
2502 } else
2503 pr_debug("md: %s (skipping faulty)\n",
2504 bdevname(rdev->bdev, b));
2505
2506 if (mddev->level == LEVEL_MULTIPATH)
2507 /* only need to write one superblock... */
2508 break;
2509 }
2510 md_super_wait(mddev);
2511 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2512
2513 spin_lock_irq(&mddev->write_lock);
2514 if (mddev->in_sync != sync_req ||
2515 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2516 /* have to write it out again */
2517 spin_unlock_irq(&mddev->write_lock);
2518 goto repeat;
2519 }
2520 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2521 spin_unlock_irq(&mddev->write_lock);
2522 wake_up(&mddev->sb_wait);
2523 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2524 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2525
2526 rdev_for_each(rdev, mddev) {
2527 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2528 clear_bit(Blocked, &rdev->flags);
2529
2530 if (any_badblocks_changed)
2531 md_ack_all_badblocks(&rdev->badblocks);
2532 clear_bit(BlockedBadBlocks, &rdev->flags);
2533 wake_up(&rdev->blocked_wait);
2534 }
2535 }
2536
2537 /* words written to sysfs files may, or may not, be \n terminated.
2538 * We want to accept with case. For this we use cmd_match.
2539 */
2540 static int cmd_match(const char *cmd, const char *str)
2541 {
2542 /* See if cmd, written into a sysfs file, matches
2543 * str. They must either be the same, or cmd can
2544 * have a trailing newline
2545 */
2546 while (*cmd && *str && *cmd == *str) {
2547 cmd++;
2548 str++;
2549 }
2550 if (*cmd == '\n')
2551 cmd++;
2552 if (*str || *cmd)
2553 return 0;
2554 return 1;
2555 }
2556
2557 struct rdev_sysfs_entry {
2558 struct attribute attr;
2559 ssize_t (*show)(struct md_rdev *, char *);
2560 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2561 };
2562
2563 static ssize_t
2564 state_show(struct md_rdev *rdev, char *page)
2565 {
2566 char *sep = "";
2567 size_t len = 0;
2568
2569 if (test_bit(Faulty, &rdev->flags) ||
2570 rdev->badblocks.unacked_exist) {
2571 len+= sprintf(page+len, "%sfaulty",sep);
2572 sep = ",";
2573 }
2574 if (test_bit(In_sync, &rdev->flags)) {
2575 len += sprintf(page+len, "%sin_sync",sep);
2576 sep = ",";
2577 }
2578 if (test_bit(WriteMostly, &rdev->flags)) {
2579 len += sprintf(page+len, "%swrite_mostly",sep);
2580 sep = ",";
2581 }
2582 if (test_bit(Blocked, &rdev->flags) ||
2583 (rdev->badblocks.unacked_exist
2584 && !test_bit(Faulty, &rdev->flags))) {
2585 len += sprintf(page+len, "%sblocked", sep);
2586 sep = ",";
2587 }
2588 if (!test_bit(Faulty, &rdev->flags) &&
2589 !test_bit(In_sync, &rdev->flags)) {
2590 len += sprintf(page+len, "%sspare", sep);
2591 sep = ",";
2592 }
2593 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2594 len += sprintf(page+len, "%swrite_error", sep);
2595 sep = ",";
2596 }
2597 if (test_bit(WantReplacement, &rdev->flags)) {
2598 len += sprintf(page+len, "%swant_replacement", sep);
2599 sep = ",";
2600 }
2601 if (test_bit(Replacement, &rdev->flags)) {
2602 len += sprintf(page+len, "%sreplacement", sep);
2603 sep = ",";
2604 }
2605
2606 return len+sprintf(page+len, "\n");
2607 }
2608
2609 static ssize_t
2610 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2611 {
2612 /* can write
2613 * faulty - simulates an error
2614 * remove - disconnects the device
2615 * writemostly - sets write_mostly
2616 * -writemostly - clears write_mostly
2617 * blocked - sets the Blocked flags
2618 * -blocked - clears the Blocked and possibly simulates an error
2619 * insync - sets Insync providing device isn't active
2620 * -insync - clear Insync for a device with a slot assigned,
2621 * so that it gets rebuilt based on bitmap
2622 * write_error - sets WriteErrorSeen
2623 * -write_error - clears WriteErrorSeen
2624 */
2625 int err = -EINVAL;
2626 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2627 md_error(rdev->mddev, rdev);
2628 if (test_bit(Faulty, &rdev->flags))
2629 err = 0;
2630 else
2631 err = -EBUSY;
2632 } else if (cmd_match(buf, "remove")) {
2633 if (rdev->raid_disk >= 0)
2634 err = -EBUSY;
2635 else {
2636 struct mddev *mddev = rdev->mddev;
2637 kick_rdev_from_array(rdev);
2638 if (mddev->pers)
2639 md_update_sb(mddev, 1);
2640 md_new_event(mddev);
2641 err = 0;
2642 }
2643 } else if (cmd_match(buf, "writemostly")) {
2644 set_bit(WriteMostly, &rdev->flags);
2645 err = 0;
2646 } else if (cmd_match(buf, "-writemostly")) {
2647 clear_bit(WriteMostly, &rdev->flags);
2648 err = 0;
2649 } else if (cmd_match(buf, "blocked")) {
2650 set_bit(Blocked, &rdev->flags);
2651 err = 0;
2652 } else if (cmd_match(buf, "-blocked")) {
2653 if (!test_bit(Faulty, &rdev->flags) &&
2654 rdev->badblocks.unacked_exist) {
2655 /* metadata handler doesn't understand badblocks,
2656 * so we need to fail the device
2657 */
2658 md_error(rdev->mddev, rdev);
2659 }
2660 clear_bit(Blocked, &rdev->flags);
2661 clear_bit(BlockedBadBlocks, &rdev->flags);
2662 wake_up(&rdev->blocked_wait);
2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2664 md_wakeup_thread(rdev->mddev->thread);
2665
2666 err = 0;
2667 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2668 set_bit(In_sync, &rdev->flags);
2669 err = 0;
2670 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2671 clear_bit(In_sync, &rdev->flags);
2672 rdev->saved_raid_disk = rdev->raid_disk;
2673 rdev->raid_disk = -1;
2674 err = 0;
2675 } else if (cmd_match(buf, "write_error")) {
2676 set_bit(WriteErrorSeen, &rdev->flags);
2677 err = 0;
2678 } else if (cmd_match(buf, "-write_error")) {
2679 clear_bit(WriteErrorSeen, &rdev->flags);
2680 err = 0;
2681 } else if (cmd_match(buf, "want_replacement")) {
2682 /* Any non-spare device that is not a replacement can
2683 * become want_replacement at any time, but we then need to
2684 * check if recovery is needed.
2685 */
2686 if (rdev->raid_disk >= 0 &&
2687 !test_bit(Replacement, &rdev->flags))
2688 set_bit(WantReplacement, &rdev->flags);
2689 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2690 md_wakeup_thread(rdev->mddev->thread);
2691 err = 0;
2692 } else if (cmd_match(buf, "-want_replacement")) {
2693 /* Clearing 'want_replacement' is always allowed.
2694 * Once replacements starts it is too late though.
2695 */
2696 err = 0;
2697 clear_bit(WantReplacement, &rdev->flags);
2698 } else if (cmd_match(buf, "replacement")) {
2699 /* Can only set a device as a replacement when array has not
2700 * yet been started. Once running, replacement is automatic
2701 * from spares, or by assigning 'slot'.
2702 */
2703 if (rdev->mddev->pers)
2704 err = -EBUSY;
2705 else {
2706 set_bit(Replacement, &rdev->flags);
2707 err = 0;
2708 }
2709 } else if (cmd_match(buf, "-replacement")) {
2710 /* Similarly, can only clear Replacement before start */
2711 if (rdev->mddev->pers)
2712 err = -EBUSY;
2713 else {
2714 clear_bit(Replacement, &rdev->flags);
2715 err = 0;
2716 }
2717 }
2718 if (!err)
2719 sysfs_notify_dirent_safe(rdev->sysfs_state);
2720 return err ? err : len;
2721 }
2722 static struct rdev_sysfs_entry rdev_state =
2723 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2724
2725 static ssize_t
2726 errors_show(struct md_rdev *rdev, char *page)
2727 {
2728 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2729 }
2730
2731 static ssize_t
2732 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2733 {
2734 char *e;
2735 unsigned long n = simple_strtoul(buf, &e, 10);
2736 if (*buf && (*e == 0 || *e == '\n')) {
2737 atomic_set(&rdev->corrected_errors, n);
2738 return len;
2739 }
2740 return -EINVAL;
2741 }
2742 static struct rdev_sysfs_entry rdev_errors =
2743 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2744
2745 static ssize_t
2746 slot_show(struct md_rdev *rdev, char *page)
2747 {
2748 if (rdev->raid_disk < 0)
2749 return sprintf(page, "none\n");
2750 else
2751 return sprintf(page, "%d\n", rdev->raid_disk);
2752 }
2753
2754 static ssize_t
2755 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757 char *e;
2758 int err;
2759 int slot = simple_strtoul(buf, &e, 10);
2760 if (strncmp(buf, "none", 4)==0)
2761 slot = -1;
2762 else if (e==buf || (*e && *e!= '\n'))
2763 return -EINVAL;
2764 if (rdev->mddev->pers && slot == -1) {
2765 /* Setting 'slot' on an active array requires also
2766 * updating the 'rd%d' link, and communicating
2767 * with the personality with ->hot_*_disk.
2768 * For now we only support removing
2769 * failed/spare devices. This normally happens automatically,
2770 * but not when the metadata is externally managed.
2771 */
2772 if (rdev->raid_disk == -1)
2773 return -EEXIST;
2774 /* personality does all needed checks */
2775 if (rdev->mddev->pers->hot_remove_disk == NULL)
2776 return -EINVAL;
2777 clear_bit(Blocked, &rdev->flags);
2778 remove_and_add_spares(rdev->mddev, rdev);
2779 if (rdev->raid_disk >= 0)
2780 return -EBUSY;
2781 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2782 md_wakeup_thread(rdev->mddev->thread);
2783 } else if (rdev->mddev->pers) {
2784 /* Activating a spare .. or possibly reactivating
2785 * if we ever get bitmaps working here.
2786 */
2787
2788 if (rdev->raid_disk != -1)
2789 return -EBUSY;
2790
2791 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2792 return -EBUSY;
2793
2794 if (rdev->mddev->pers->hot_add_disk == NULL)
2795 return -EINVAL;
2796
2797 if (slot >= rdev->mddev->raid_disks &&
2798 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2799 return -ENOSPC;
2800
2801 rdev->raid_disk = slot;
2802 if (test_bit(In_sync, &rdev->flags))
2803 rdev->saved_raid_disk = slot;
2804 else
2805 rdev->saved_raid_disk = -1;
2806 clear_bit(In_sync, &rdev->flags);
2807 clear_bit(Bitmap_sync, &rdev->flags);
2808 err = rdev->mddev->pers->
2809 hot_add_disk(rdev->mddev, rdev);
2810 if (err) {
2811 rdev->raid_disk = -1;
2812 return err;
2813 } else
2814 sysfs_notify_dirent_safe(rdev->sysfs_state);
2815 if (sysfs_link_rdev(rdev->mddev, rdev))
2816 /* failure here is OK */;
2817 /* don't wakeup anyone, leave that to userspace. */
2818 } else {
2819 if (slot >= rdev->mddev->raid_disks &&
2820 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2821 return -ENOSPC;
2822 rdev->raid_disk = slot;
2823 /* assume it is working */
2824 clear_bit(Faulty, &rdev->flags);
2825 clear_bit(WriteMostly, &rdev->flags);
2826 set_bit(In_sync, &rdev->flags);
2827 sysfs_notify_dirent_safe(rdev->sysfs_state);
2828 }
2829 return len;
2830 }
2831
2832
2833 static struct rdev_sysfs_entry rdev_slot =
2834 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2835
2836 static ssize_t
2837 offset_show(struct md_rdev *rdev, char *page)
2838 {
2839 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2840 }
2841
2842 static ssize_t
2843 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2844 {
2845 unsigned long long offset;
2846 if (kstrtoull(buf, 10, &offset) < 0)
2847 return -EINVAL;
2848 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2849 return -EBUSY;
2850 if (rdev->sectors && rdev->mddev->external)
2851 /* Must set offset before size, so overlap checks
2852 * can be sane */
2853 return -EBUSY;
2854 rdev->data_offset = offset;
2855 rdev->new_data_offset = offset;
2856 return len;
2857 }
2858
2859 static struct rdev_sysfs_entry rdev_offset =
2860 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2861
2862 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2863 {
2864 return sprintf(page, "%llu\n",
2865 (unsigned long long)rdev->new_data_offset);
2866 }
2867
2868 static ssize_t new_offset_store(struct md_rdev *rdev,
2869 const char *buf, size_t len)
2870 {
2871 unsigned long long new_offset;
2872 struct mddev *mddev = rdev->mddev;
2873
2874 if (kstrtoull(buf, 10, &new_offset) < 0)
2875 return -EINVAL;
2876
2877 if (mddev->sync_thread)
2878 return -EBUSY;
2879 if (new_offset == rdev->data_offset)
2880 /* reset is always permitted */
2881 ;
2882 else if (new_offset > rdev->data_offset) {
2883 /* must not push array size beyond rdev_sectors */
2884 if (new_offset - rdev->data_offset
2885 + mddev->dev_sectors > rdev->sectors)
2886 return -E2BIG;
2887 }
2888 /* Metadata worries about other space details. */
2889
2890 /* decreasing the offset is inconsistent with a backwards
2891 * reshape.
2892 */
2893 if (new_offset < rdev->data_offset &&
2894 mddev->reshape_backwards)
2895 return -EINVAL;
2896 /* Increasing offset is inconsistent with forwards
2897 * reshape. reshape_direction should be set to
2898 * 'backwards' first.
2899 */
2900 if (new_offset > rdev->data_offset &&
2901 !mddev->reshape_backwards)
2902 return -EINVAL;
2903
2904 if (mddev->pers && mddev->persistent &&
2905 !super_types[mddev->major_version]
2906 .allow_new_offset(rdev, new_offset))
2907 return -E2BIG;
2908 rdev->new_data_offset = new_offset;
2909 if (new_offset > rdev->data_offset)
2910 mddev->reshape_backwards = 1;
2911 else if (new_offset < rdev->data_offset)
2912 mddev->reshape_backwards = 0;
2913
2914 return len;
2915 }
2916 static struct rdev_sysfs_entry rdev_new_offset =
2917 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2918
2919 static ssize_t
2920 rdev_size_show(struct md_rdev *rdev, char *page)
2921 {
2922 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2923 }
2924
2925 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2926 {
2927 /* check if two start/length pairs overlap */
2928 if (s1+l1 <= s2)
2929 return 0;
2930 if (s2+l2 <= s1)
2931 return 0;
2932 return 1;
2933 }
2934
2935 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2936 {
2937 unsigned long long blocks;
2938 sector_t new;
2939
2940 if (kstrtoull(buf, 10, &blocks) < 0)
2941 return -EINVAL;
2942
2943 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2944 return -EINVAL; /* sector conversion overflow */
2945
2946 new = blocks * 2;
2947 if (new != blocks * 2)
2948 return -EINVAL; /* unsigned long long to sector_t overflow */
2949
2950 *sectors = new;
2951 return 0;
2952 }
2953
2954 static ssize_t
2955 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2956 {
2957 struct mddev *my_mddev = rdev->mddev;
2958 sector_t oldsectors = rdev->sectors;
2959 sector_t sectors;
2960
2961 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2962 return -EINVAL;
2963 if (rdev->data_offset != rdev->new_data_offset)
2964 return -EINVAL; /* too confusing */
2965 if (my_mddev->pers && rdev->raid_disk >= 0) {
2966 if (my_mddev->persistent) {
2967 sectors = super_types[my_mddev->major_version].
2968 rdev_size_change(rdev, sectors);
2969 if (!sectors)
2970 return -EBUSY;
2971 } else if (!sectors)
2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2973 rdev->data_offset;
2974 if (!my_mddev->pers->resize)
2975 /* Cannot change size for RAID0 or Linear etc */
2976 return -EINVAL;
2977 }
2978 if (sectors < my_mddev->dev_sectors)
2979 return -EINVAL; /* component must fit device */
2980
2981 rdev->sectors = sectors;
2982 if (sectors > oldsectors && my_mddev->external) {
2983 /* need to check that all other rdevs with the same ->bdev
2984 * do not overlap. We need to unlock the mddev to avoid
2985 * a deadlock. We have already changed rdev->sectors, and if
2986 * we have to change it back, we will have the lock again.
2987 */
2988 struct mddev *mddev;
2989 int overlap = 0;
2990 struct list_head *tmp;
2991
2992 mddev_unlock(my_mddev);
2993 for_each_mddev(mddev, tmp) {
2994 struct md_rdev *rdev2;
2995
2996 mddev_lock_nointr(mddev);
2997 rdev_for_each(rdev2, mddev)
2998 if (rdev->bdev == rdev2->bdev &&
2999 rdev != rdev2 &&
3000 overlaps(rdev->data_offset, rdev->sectors,
3001 rdev2->data_offset,
3002 rdev2->sectors)) {
3003 overlap = 1;
3004 break;
3005 }
3006 mddev_unlock(mddev);
3007 if (overlap) {
3008 mddev_put(mddev);
3009 break;
3010 }
3011 }
3012 mddev_lock_nointr(my_mddev);
3013 if (overlap) {
3014 /* Someone else could have slipped in a size
3015 * change here, but doing so is just silly.
3016 * We put oldsectors back because we *know* it is
3017 * safe, and trust userspace not to race with
3018 * itself
3019 */
3020 rdev->sectors = oldsectors;
3021 return -EBUSY;
3022 }
3023 }
3024 return len;
3025 }
3026
3027 static struct rdev_sysfs_entry rdev_size =
3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3029
3030
3031 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3032 {
3033 unsigned long long recovery_start = rdev->recovery_offset;
3034
3035 if (test_bit(In_sync, &rdev->flags) ||
3036 recovery_start == MaxSector)
3037 return sprintf(page, "none\n");
3038
3039 return sprintf(page, "%llu\n", recovery_start);
3040 }
3041
3042 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3043 {
3044 unsigned long long recovery_start;
3045
3046 if (cmd_match(buf, "none"))
3047 recovery_start = MaxSector;
3048 else if (kstrtoull(buf, 10, &recovery_start))
3049 return -EINVAL;
3050
3051 if (rdev->mddev->pers &&
3052 rdev->raid_disk >= 0)
3053 return -EBUSY;
3054
3055 rdev->recovery_offset = recovery_start;
3056 if (recovery_start == MaxSector)
3057 set_bit(In_sync, &rdev->flags);
3058 else
3059 clear_bit(In_sync, &rdev->flags);
3060 return len;
3061 }
3062
3063 static struct rdev_sysfs_entry rdev_recovery_start =
3064 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3065
3066
3067 static ssize_t
3068 badblocks_show(struct badblocks *bb, char *page, int unack);
3069 static ssize_t
3070 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3071
3072 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3073 {
3074 return badblocks_show(&rdev->badblocks, page, 0);
3075 }
3076 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3077 {
3078 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3079 /* Maybe that ack was all we needed */
3080 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3081 wake_up(&rdev->blocked_wait);
3082 return rv;
3083 }
3084 static struct rdev_sysfs_entry rdev_bad_blocks =
3085 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3086
3087
3088 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3089 {
3090 return badblocks_show(&rdev->badblocks, page, 1);
3091 }
3092 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3093 {
3094 return badblocks_store(&rdev->badblocks, page, len, 1);
3095 }
3096 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3097 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3098
3099 static struct attribute *rdev_default_attrs[] = {
3100 &rdev_state.attr,
3101 &rdev_errors.attr,
3102 &rdev_slot.attr,
3103 &rdev_offset.attr,
3104 &rdev_new_offset.attr,
3105 &rdev_size.attr,
3106 &rdev_recovery_start.attr,
3107 &rdev_bad_blocks.attr,
3108 &rdev_unack_bad_blocks.attr,
3109 NULL,
3110 };
3111 static ssize_t
3112 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3113 {
3114 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3115 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3116 struct mddev *mddev = rdev->mddev;
3117 ssize_t rv;
3118
3119 if (!entry->show)
3120 return -EIO;
3121
3122 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3123 if (!rv) {
3124 if (rdev->mddev == NULL)
3125 rv = -EBUSY;
3126 else
3127 rv = entry->show(rdev, page);
3128 mddev_unlock(mddev);
3129 }
3130 return rv;
3131 }
3132
3133 static ssize_t
3134 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3135 const char *page, size_t length)
3136 {
3137 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3138 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3139 ssize_t rv;
3140 struct mddev *mddev = rdev->mddev;
3141
3142 if (!entry->store)
3143 return -EIO;
3144 if (!capable(CAP_SYS_ADMIN))
3145 return -EACCES;
3146 rv = mddev ? mddev_lock(mddev): -EBUSY;
3147 if (!rv) {
3148 if (rdev->mddev == NULL)
3149 rv = -EBUSY;
3150 else
3151 rv = entry->store(rdev, page, length);
3152 mddev_unlock(mddev);
3153 }
3154 return rv;
3155 }
3156
3157 static void rdev_free(struct kobject *ko)
3158 {
3159 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3160 kfree(rdev);
3161 }
3162 static const struct sysfs_ops rdev_sysfs_ops = {
3163 .show = rdev_attr_show,
3164 .store = rdev_attr_store,
3165 };
3166 static struct kobj_type rdev_ktype = {
3167 .release = rdev_free,
3168 .sysfs_ops = &rdev_sysfs_ops,
3169 .default_attrs = rdev_default_attrs,
3170 };
3171
3172 int md_rdev_init(struct md_rdev *rdev)
3173 {
3174 rdev->desc_nr = -1;
3175 rdev->saved_raid_disk = -1;
3176 rdev->raid_disk = -1;
3177 rdev->flags = 0;
3178 rdev->data_offset = 0;
3179 rdev->new_data_offset = 0;
3180 rdev->sb_events = 0;
3181 rdev->last_read_error.tv_sec = 0;
3182 rdev->last_read_error.tv_nsec = 0;
3183 rdev->sb_loaded = 0;
3184 rdev->bb_page = NULL;
3185 atomic_set(&rdev->nr_pending, 0);
3186 atomic_set(&rdev->read_errors, 0);
3187 atomic_set(&rdev->corrected_errors, 0);
3188
3189 INIT_LIST_HEAD(&rdev->same_set);
3190 init_waitqueue_head(&rdev->blocked_wait);
3191
3192 /* Add space to store bad block list.
3193 * This reserves the space even on arrays where it cannot
3194 * be used - I wonder if that matters
3195 */
3196 rdev->badblocks.count = 0;
3197 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3198 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3199 seqlock_init(&rdev->badblocks.lock);
3200 if (rdev->badblocks.page == NULL)
3201 return -ENOMEM;
3202
3203 return 0;
3204 }
3205 EXPORT_SYMBOL_GPL(md_rdev_init);
3206 /*
3207 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3208 *
3209 * mark the device faulty if:
3210 *
3211 * - the device is nonexistent (zero size)
3212 * - the device has no valid superblock
3213 *
3214 * a faulty rdev _never_ has rdev->sb set.
3215 */
3216 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3217 {
3218 char b[BDEVNAME_SIZE];
3219 int err;
3220 struct md_rdev *rdev;
3221 sector_t size;
3222
3223 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3224 if (!rdev) {
3225 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3226 return ERR_PTR(-ENOMEM);
3227 }
3228
3229 err = md_rdev_init(rdev);
3230 if (err)
3231 goto abort_free;
3232 err = alloc_disk_sb(rdev);
3233 if (err)
3234 goto abort_free;
3235
3236 err = lock_rdev(rdev, newdev, super_format == -2);
3237 if (err)
3238 goto abort_free;
3239
3240 kobject_init(&rdev->kobj, &rdev_ktype);
3241
3242 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3243 if (!size) {
3244 printk(KERN_WARNING
3245 "md: %s has zero or unknown size, marking faulty!\n",
3246 bdevname(rdev->bdev,b));
3247 err = -EINVAL;
3248 goto abort_free;
3249 }
3250
3251 if (super_format >= 0) {
3252 err = super_types[super_format].
3253 load_super(rdev, NULL, super_minor);
3254 if (err == -EINVAL) {
3255 printk(KERN_WARNING
3256 "md: %s does not have a valid v%d.%d "
3257 "superblock, not importing!\n",
3258 bdevname(rdev->bdev,b),
3259 super_format, super_minor);
3260 goto abort_free;
3261 }
3262 if (err < 0) {
3263 printk(KERN_WARNING
3264 "md: could not read %s's sb, not importing!\n",
3265 bdevname(rdev->bdev,b));
3266 goto abort_free;
3267 }
3268 }
3269
3270 return rdev;
3271
3272 abort_free:
3273 if (rdev->bdev)
3274 unlock_rdev(rdev);
3275 md_rdev_clear(rdev);
3276 kfree(rdev);
3277 return ERR_PTR(err);
3278 }
3279
3280 /*
3281 * Check a full RAID array for plausibility
3282 */
3283
3284
3285 static void analyze_sbs(struct mddev * mddev)
3286 {
3287 int i;
3288 struct md_rdev *rdev, *freshest, *tmp;
3289 char b[BDEVNAME_SIZE];
3290
3291 freshest = NULL;
3292 rdev_for_each_safe(rdev, tmp, mddev)
3293 switch (super_types[mddev->major_version].
3294 load_super(rdev, freshest, mddev->minor_version)) {
3295 case 1:
3296 freshest = rdev;
3297 break;
3298 case 0:
3299 break;
3300 default:
3301 printk( KERN_ERR \
3302 "md: fatal superblock inconsistency in %s"
3303 " -- removing from array\n",
3304 bdevname(rdev->bdev,b));
3305 kick_rdev_from_array(rdev);
3306 }
3307
3308
3309 super_types[mddev->major_version].
3310 validate_super(mddev, freshest);
3311
3312 i = 0;
3313 rdev_for_each_safe(rdev, tmp, mddev) {
3314 if (mddev->max_disks &&
3315 (rdev->desc_nr >= mddev->max_disks ||
3316 i > mddev->max_disks)) {
3317 printk(KERN_WARNING
3318 "md: %s: %s: only %d devices permitted\n",
3319 mdname(mddev), bdevname(rdev->bdev, b),
3320 mddev->max_disks);
3321 kick_rdev_from_array(rdev);
3322 continue;
3323 }
3324 if (rdev != freshest)
3325 if (super_types[mddev->major_version].
3326 validate_super(mddev, rdev)) {
3327 printk(KERN_WARNING "md: kicking non-fresh %s"
3328 " from array!\n",
3329 bdevname(rdev->bdev,b));
3330 kick_rdev_from_array(rdev);
3331 continue;
3332 }
3333 if (mddev->level == LEVEL_MULTIPATH) {
3334 rdev->desc_nr = i++;
3335 rdev->raid_disk = rdev->desc_nr;
3336 set_bit(In_sync, &rdev->flags);
3337 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3338 rdev->raid_disk = -1;
3339 clear_bit(In_sync, &rdev->flags);
3340 }
3341 }
3342 }
3343
3344 /* Read a fixed-point number.
3345 * Numbers in sysfs attributes should be in "standard" units where
3346 * possible, so time should be in seconds.
3347 * However we internally use a a much smaller unit such as
3348 * milliseconds or jiffies.
3349 * This function takes a decimal number with a possible fractional
3350 * component, and produces an integer which is the result of
3351 * multiplying that number by 10^'scale'.
3352 * all without any floating-point arithmetic.
3353 */
3354 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3355 {
3356 unsigned long result = 0;
3357 long decimals = -1;
3358 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3359 if (*cp == '.')
3360 decimals = 0;
3361 else if (decimals < scale) {
3362 unsigned int value;
3363 value = *cp - '0';
3364 result = result * 10 + value;
3365 if (decimals >= 0)
3366 decimals++;
3367 }
3368 cp++;
3369 }
3370 if (*cp == '\n')
3371 cp++;
3372 if (*cp)
3373 return -EINVAL;
3374 if (decimals < 0)
3375 decimals = 0;
3376 while (decimals < scale) {
3377 result *= 10;
3378 decimals ++;
3379 }
3380 *res = result;
3381 return 0;
3382 }
3383
3384
3385 static void md_safemode_timeout(unsigned long data);
3386
3387 static ssize_t
3388 safe_delay_show(struct mddev *mddev, char *page)
3389 {
3390 int msec = (mddev->safemode_delay*1000)/HZ;
3391 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3392 }
3393 static ssize_t
3394 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3395 {
3396 unsigned long msec;
3397
3398 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3399 return -EINVAL;
3400 if (msec == 0)
3401 mddev->safemode_delay = 0;
3402 else {
3403 unsigned long old_delay = mddev->safemode_delay;
3404 mddev->safemode_delay = (msec*HZ)/1000;
3405 if (mddev->safemode_delay == 0)
3406 mddev->safemode_delay = 1;
3407 if (mddev->safemode_delay < old_delay || old_delay == 0)
3408 md_safemode_timeout((unsigned long)mddev);
3409 }
3410 return len;
3411 }
3412 static struct md_sysfs_entry md_safe_delay =
3413 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3414
3415 static ssize_t
3416 level_show(struct mddev *mddev, char *page)
3417 {
3418 struct md_personality *p = mddev->pers;
3419 if (p)
3420 return sprintf(page, "%s\n", p->name);
3421 else if (mddev->clevel[0])
3422 return sprintf(page, "%s\n", mddev->clevel);
3423 else if (mddev->level != LEVEL_NONE)
3424 return sprintf(page, "%d\n", mddev->level);
3425 else
3426 return 0;
3427 }
3428
3429 static ssize_t
3430 level_store(struct mddev *mddev, const char *buf, size_t len)
3431 {
3432 char clevel[16];
3433 ssize_t rv = len;
3434 struct md_personality *pers;
3435 long level;
3436 void *priv;
3437 struct md_rdev *rdev;
3438
3439 if (mddev->pers == NULL) {
3440 if (len == 0)
3441 return 0;
3442 if (len >= sizeof(mddev->clevel))
3443 return -ENOSPC;
3444 strncpy(mddev->clevel, buf, len);
3445 if (mddev->clevel[len-1] == '\n')
3446 len--;
3447 mddev->clevel[len] = 0;
3448 mddev->level = LEVEL_NONE;
3449 return rv;
3450 }
3451 if (mddev->ro)
3452 return -EROFS;
3453
3454 /* request to change the personality. Need to ensure:
3455 * - array is not engaged in resync/recovery/reshape
3456 * - old personality can be suspended
3457 * - new personality will access other array.
3458 */
3459
3460 if (mddev->sync_thread ||
3461 mddev->reshape_position != MaxSector ||
3462 mddev->sysfs_active)
3463 return -EBUSY;
3464
3465 if (!mddev->pers->quiesce) {
3466 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3467 mdname(mddev), mddev->pers->name);
3468 return -EINVAL;
3469 }
3470
3471 /* Now find the new personality */
3472 if (len == 0 || len >= sizeof(clevel))
3473 return -EINVAL;
3474 strncpy(clevel, buf, len);
3475 if (clevel[len-1] == '\n')
3476 len--;
3477 clevel[len] = 0;
3478 if (kstrtol(clevel, 10, &level))
3479 level = LEVEL_NONE;
3480
3481 if (request_module("md-%s", clevel) != 0)
3482 request_module("md-level-%s", clevel);
3483 spin_lock(&pers_lock);
3484 pers = find_pers(level, clevel);
3485 if (!pers || !try_module_get(pers->owner)) {
3486 spin_unlock(&pers_lock);
3487 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3488 return -EINVAL;
3489 }
3490 spin_unlock(&pers_lock);
3491
3492 if (pers == mddev->pers) {
3493 /* Nothing to do! */
3494 module_put(pers->owner);
3495 return rv;
3496 }
3497 if (!pers->takeover) {
3498 module_put(pers->owner);
3499 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3500 mdname(mddev), clevel);
3501 return -EINVAL;
3502 }
3503
3504 rdev_for_each(rdev, mddev)
3505 rdev->new_raid_disk = rdev->raid_disk;
3506
3507 /* ->takeover must set new_* and/or delta_disks
3508 * if it succeeds, and may set them when it fails.
3509 */
3510 priv = pers->takeover(mddev);
3511 if (IS_ERR(priv)) {
3512 mddev->new_level = mddev->level;
3513 mddev->new_layout = mddev->layout;
3514 mddev->new_chunk_sectors = mddev->chunk_sectors;
3515 mddev->raid_disks -= mddev->delta_disks;
3516 mddev->delta_disks = 0;
3517 mddev->reshape_backwards = 0;
3518 module_put(pers->owner);
3519 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3520 mdname(mddev), clevel);
3521 return PTR_ERR(priv);
3522 }
3523
3524 /* Looks like we have a winner */
3525 mddev_suspend(mddev);
3526 mddev->pers->stop(mddev);
3527
3528 if (mddev->pers->sync_request == NULL &&
3529 pers->sync_request != NULL) {
3530 /* need to add the md_redundancy_group */
3531 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3532 printk(KERN_WARNING
3533 "md: cannot register extra attributes for %s\n",
3534 mdname(mddev));
3535 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3536 }
3537 if (mddev->pers->sync_request != NULL &&
3538 pers->sync_request == NULL) {
3539 /* need to remove the md_redundancy_group */
3540 if (mddev->to_remove == NULL)
3541 mddev->to_remove = &md_redundancy_group;
3542 }
3543
3544 if (mddev->pers->sync_request == NULL &&
3545 mddev->external) {
3546 /* We are converting from a no-redundancy array
3547 * to a redundancy array and metadata is managed
3548 * externally so we need to be sure that writes
3549 * won't block due to a need to transition
3550 * clean->dirty
3551 * until external management is started.
3552 */
3553 mddev->in_sync = 0;
3554 mddev->safemode_delay = 0;
3555 mddev->safemode = 0;
3556 }
3557
3558 rdev_for_each(rdev, mddev) {
3559 if (rdev->raid_disk < 0)
3560 continue;
3561 if (rdev->new_raid_disk >= mddev->raid_disks)
3562 rdev->new_raid_disk = -1;
3563 if (rdev->new_raid_disk == rdev->raid_disk)
3564 continue;
3565 sysfs_unlink_rdev(mddev, rdev);
3566 }
3567 rdev_for_each(rdev, mddev) {
3568 if (rdev->raid_disk < 0)
3569 continue;
3570 if (rdev->new_raid_disk == rdev->raid_disk)
3571 continue;
3572 rdev->raid_disk = rdev->new_raid_disk;
3573 if (rdev->raid_disk < 0)
3574 clear_bit(In_sync, &rdev->flags);
3575 else {
3576 if (sysfs_link_rdev(mddev, rdev))
3577 printk(KERN_WARNING "md: cannot register rd%d"
3578 " for %s after level change\n",
3579 rdev->raid_disk, mdname(mddev));
3580 }
3581 }
3582
3583 module_put(mddev->pers->owner);
3584 mddev->pers = pers;
3585 mddev->private = priv;
3586 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3587 mddev->level = mddev->new_level;
3588 mddev->layout = mddev->new_layout;
3589 mddev->chunk_sectors = mddev->new_chunk_sectors;
3590 mddev->delta_disks = 0;
3591 mddev->reshape_backwards = 0;
3592 mddev->degraded = 0;
3593 if (mddev->pers->sync_request == NULL) {
3594 /* this is now an array without redundancy, so
3595 * it must always be in_sync
3596 */
3597 mddev->in_sync = 1;
3598 del_timer_sync(&mddev->safemode_timer);
3599 }
3600 blk_set_stacking_limits(&mddev->queue->limits);
3601 pers->run(mddev);
3602 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3603 mddev_resume(mddev);
3604 if (!mddev->thread)
3605 md_update_sb(mddev, 1);
3606 sysfs_notify(&mddev->kobj, NULL, "level");
3607 md_new_event(mddev);
3608 return rv;
3609 }
3610
3611 static struct md_sysfs_entry md_level =
3612 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3613
3614
3615 static ssize_t
3616 layout_show(struct mddev *mddev, char *page)
3617 {
3618 /* just a number, not meaningful for all levels */
3619 if (mddev->reshape_position != MaxSector &&
3620 mddev->layout != mddev->new_layout)
3621 return sprintf(page, "%d (%d)\n",
3622 mddev->new_layout, mddev->layout);
3623 return sprintf(page, "%d\n", mddev->layout);
3624 }
3625
3626 static ssize_t
3627 layout_store(struct mddev *mddev, const char *buf, size_t len)
3628 {
3629 char *e;
3630 unsigned long n = simple_strtoul(buf, &e, 10);
3631
3632 if (!*buf || (*e && *e != '\n'))
3633 return -EINVAL;
3634
3635 if (mddev->pers) {
3636 int err;
3637 if (mddev->pers->check_reshape == NULL)
3638 return -EBUSY;
3639 if (mddev->ro)
3640 return -EROFS;
3641 mddev->new_layout = n;
3642 err = mddev->pers->check_reshape(mddev);
3643 if (err) {
3644 mddev->new_layout = mddev->layout;
3645 return err;
3646 }
3647 } else {
3648 mddev->new_layout = n;
3649 if (mddev->reshape_position == MaxSector)
3650 mddev->layout = n;
3651 }
3652 return len;
3653 }
3654 static struct md_sysfs_entry md_layout =
3655 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3656
3657
3658 static ssize_t
3659 raid_disks_show(struct mddev *mddev, char *page)
3660 {
3661 if (mddev->raid_disks == 0)
3662 return 0;
3663 if (mddev->reshape_position != MaxSector &&
3664 mddev->delta_disks != 0)
3665 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3666 mddev->raid_disks - mddev->delta_disks);
3667 return sprintf(page, "%d\n", mddev->raid_disks);
3668 }
3669
3670 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3671
3672 static ssize_t
3673 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3674 {
3675 char *e;
3676 int rv = 0;
3677 unsigned long n = simple_strtoul(buf, &e, 10);
3678
3679 if (!*buf || (*e && *e != '\n'))
3680 return -EINVAL;
3681
3682 if (mddev->pers)
3683 rv = update_raid_disks(mddev, n);
3684 else if (mddev->reshape_position != MaxSector) {
3685 struct md_rdev *rdev;
3686 int olddisks = mddev->raid_disks - mddev->delta_disks;
3687
3688 rdev_for_each(rdev, mddev) {
3689 if (olddisks < n &&
3690 rdev->data_offset < rdev->new_data_offset)
3691 return -EINVAL;
3692 if (olddisks > n &&
3693 rdev->data_offset > rdev->new_data_offset)
3694 return -EINVAL;
3695 }
3696 mddev->delta_disks = n - olddisks;
3697 mddev->raid_disks = n;
3698 mddev->reshape_backwards = (mddev->delta_disks < 0);
3699 } else
3700 mddev->raid_disks = n;
3701 return rv ? rv : len;
3702 }
3703 static struct md_sysfs_entry md_raid_disks =
3704 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3705
3706 static ssize_t
3707 chunk_size_show(struct mddev *mddev, char *page)
3708 {
3709 if (mddev->reshape_position != MaxSector &&
3710 mddev->chunk_sectors != mddev->new_chunk_sectors)
3711 return sprintf(page, "%d (%d)\n",
3712 mddev->new_chunk_sectors << 9,
3713 mddev->chunk_sectors << 9);
3714 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3715 }
3716
3717 static ssize_t
3718 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3719 {
3720 char *e;
3721 unsigned long n = simple_strtoul(buf, &e, 10);
3722
3723 if (!*buf || (*e && *e != '\n'))
3724 return -EINVAL;
3725
3726 if (mddev->pers) {
3727 int err;
3728 if (mddev->pers->check_reshape == NULL)
3729 return -EBUSY;
3730 if (mddev->ro)
3731 return -EROFS;
3732 mddev->new_chunk_sectors = n >> 9;
3733 err = mddev->pers->check_reshape(mddev);
3734 if (err) {
3735 mddev->new_chunk_sectors = mddev->chunk_sectors;
3736 return err;
3737 }
3738 } else {
3739 mddev->new_chunk_sectors = n >> 9;
3740 if (mddev->reshape_position == MaxSector)
3741 mddev->chunk_sectors = n >> 9;
3742 }
3743 return len;
3744 }
3745 static struct md_sysfs_entry md_chunk_size =
3746 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3747
3748 static ssize_t
3749 resync_start_show(struct mddev *mddev, char *page)
3750 {
3751 if (mddev->recovery_cp == MaxSector)
3752 return sprintf(page, "none\n");
3753 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3754 }
3755
3756 static ssize_t
3757 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3758 {
3759 char *e;
3760 unsigned long long n = simple_strtoull(buf, &e, 10);
3761
3762 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3763 return -EBUSY;
3764 if (cmd_match(buf, "none"))
3765 n = MaxSector;
3766 else if (!*buf || (*e && *e != '\n'))
3767 return -EINVAL;
3768
3769 mddev->recovery_cp = n;
3770 if (mddev->pers)
3771 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3772 return len;
3773 }
3774 static struct md_sysfs_entry md_resync_start =
3775 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3776
3777 /*
3778 * The array state can be:
3779 *
3780 * clear
3781 * No devices, no size, no level
3782 * Equivalent to STOP_ARRAY ioctl
3783 * inactive
3784 * May have some settings, but array is not active
3785 * all IO results in error
3786 * When written, doesn't tear down array, but just stops it
3787 * suspended (not supported yet)
3788 * All IO requests will block. The array can be reconfigured.
3789 * Writing this, if accepted, will block until array is quiescent
3790 * readonly
3791 * no resync can happen. no superblocks get written.
3792 * write requests fail
3793 * read-auto
3794 * like readonly, but behaves like 'clean' on a write request.
3795 *
3796 * clean - no pending writes, but otherwise active.
3797 * When written to inactive array, starts without resync
3798 * If a write request arrives then
3799 * if metadata is known, mark 'dirty' and switch to 'active'.
3800 * if not known, block and switch to write-pending
3801 * If written to an active array that has pending writes, then fails.
3802 * active
3803 * fully active: IO and resync can be happening.
3804 * When written to inactive array, starts with resync
3805 *
3806 * write-pending
3807 * clean, but writes are blocked waiting for 'active' to be written.
3808 *
3809 * active-idle
3810 * like active, but no writes have been seen for a while (100msec).
3811 *
3812 */
3813 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3814 write_pending, active_idle, bad_word};
3815 static char *array_states[] = {
3816 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3817 "write-pending", "active-idle", NULL };
3818
3819 static int match_word(const char *word, char **list)
3820 {
3821 int n;
3822 for (n=0; list[n]; n++)
3823 if (cmd_match(word, list[n]))
3824 break;
3825 return n;
3826 }
3827
3828 static ssize_t
3829 array_state_show(struct mddev *mddev, char *page)
3830 {
3831 enum array_state st = inactive;
3832
3833 if (mddev->pers)
3834 switch(mddev->ro) {
3835 case 1:
3836 st = readonly;
3837 break;
3838 case 2:
3839 st = read_auto;
3840 break;
3841 case 0:
3842 if (mddev->in_sync)
3843 st = clean;
3844 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3845 st = write_pending;
3846 else if (mddev->safemode)
3847 st = active_idle;
3848 else
3849 st = active;
3850 }
3851 else {
3852 if (list_empty(&mddev->disks) &&
3853 mddev->raid_disks == 0 &&
3854 mddev->dev_sectors == 0)
3855 st = clear;
3856 else
3857 st = inactive;
3858 }
3859 return sprintf(page, "%s\n", array_states[st]);
3860 }
3861
3862 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3863 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3864 static int do_md_run(struct mddev * mddev);
3865 static int restart_array(struct mddev *mddev);
3866
3867 static ssize_t
3868 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3869 {
3870 int err = -EINVAL;
3871 enum array_state st = match_word(buf, array_states);
3872 switch(st) {
3873 case bad_word:
3874 break;
3875 case clear:
3876 /* stopping an active array */
3877 err = do_md_stop(mddev, 0, NULL);
3878 break;
3879 case inactive:
3880 /* stopping an active array */
3881 if (mddev->pers)
3882 err = do_md_stop(mddev, 2, NULL);
3883 else
3884 err = 0; /* already inactive */
3885 break;
3886 case suspended:
3887 break; /* not supported yet */
3888 case readonly:
3889 if (mddev->pers)
3890 err = md_set_readonly(mddev, NULL);
3891 else {
3892 mddev->ro = 1;
3893 set_disk_ro(mddev->gendisk, 1);
3894 err = do_md_run(mddev);
3895 }
3896 break;
3897 case read_auto:
3898 if (mddev->pers) {
3899 if (mddev->ro == 0)
3900 err = md_set_readonly(mddev, NULL);
3901 else if (mddev->ro == 1)
3902 err = restart_array(mddev);
3903 if (err == 0) {
3904 mddev->ro = 2;
3905 set_disk_ro(mddev->gendisk, 0);
3906 }
3907 } else {
3908 mddev->ro = 2;
3909 err = do_md_run(mddev);
3910 }
3911 break;
3912 case clean:
3913 if (mddev->pers) {
3914 restart_array(mddev);
3915 spin_lock_irq(&mddev->write_lock);
3916 if (atomic_read(&mddev->writes_pending) == 0) {
3917 if (mddev->in_sync == 0) {
3918 mddev->in_sync = 1;
3919 if (mddev->safemode == 1)
3920 mddev->safemode = 0;
3921 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3922 }
3923 err = 0;
3924 } else
3925 err = -EBUSY;
3926 spin_unlock_irq(&mddev->write_lock);
3927 } else
3928 err = -EINVAL;
3929 break;
3930 case active:
3931 if (mddev->pers) {
3932 restart_array(mddev);
3933 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3934 wake_up(&mddev->sb_wait);
3935 err = 0;
3936 } else {
3937 mddev->ro = 0;
3938 set_disk_ro(mddev->gendisk, 0);
3939 err = do_md_run(mddev);
3940 }
3941 break;
3942 case write_pending:
3943 case active_idle:
3944 /* these cannot be set */
3945 break;
3946 }
3947 if (err)
3948 return err;
3949 else {
3950 if (mddev->hold_active == UNTIL_IOCTL)
3951 mddev->hold_active = 0;
3952 sysfs_notify_dirent_safe(mddev->sysfs_state);
3953 return len;
3954 }
3955 }
3956 static struct md_sysfs_entry md_array_state =
3957 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3958
3959 static ssize_t
3960 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3961 return sprintf(page, "%d\n",
3962 atomic_read(&mddev->max_corr_read_errors));
3963 }
3964
3965 static ssize_t
3966 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3967 {
3968 char *e;
3969 unsigned long n = simple_strtoul(buf, &e, 10);
3970
3971 if (*buf && (*e == 0 || *e == '\n')) {
3972 atomic_set(&mddev->max_corr_read_errors, n);
3973 return len;
3974 }
3975 return -EINVAL;
3976 }
3977
3978 static struct md_sysfs_entry max_corr_read_errors =
3979 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3980 max_corrected_read_errors_store);
3981
3982 static ssize_t
3983 null_show(struct mddev *mddev, char *page)
3984 {
3985 return -EINVAL;
3986 }
3987
3988 static ssize_t
3989 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3990 {
3991 /* buf must be %d:%d\n? giving major and minor numbers */
3992 /* The new device is added to the array.
3993 * If the array has a persistent superblock, we read the
3994 * superblock to initialise info and check validity.
3995 * Otherwise, only checking done is that in bind_rdev_to_array,
3996 * which mainly checks size.
3997 */
3998 char *e;
3999 int major = simple_strtoul(buf, &e, 10);
4000 int minor;
4001 dev_t dev;
4002 struct md_rdev *rdev;
4003 int err;
4004
4005 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4006 return -EINVAL;
4007 minor = simple_strtoul(e+1, &e, 10);
4008 if (*e && *e != '\n')
4009 return -EINVAL;
4010 dev = MKDEV(major, minor);
4011 if (major != MAJOR(dev) ||
4012 minor != MINOR(dev))
4013 return -EOVERFLOW;
4014
4015
4016 if (mddev->persistent) {
4017 rdev = md_import_device(dev, mddev->major_version,
4018 mddev->minor_version);
4019 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4020 struct md_rdev *rdev0
4021 = list_entry(mddev->disks.next,
4022 struct md_rdev, same_set);
4023 err = super_types[mddev->major_version]
4024 .load_super(rdev, rdev0, mddev->minor_version);
4025 if (err < 0)
4026 goto out;
4027 }
4028 } else if (mddev->external)
4029 rdev = md_import_device(dev, -2, -1);
4030 else
4031 rdev = md_import_device(dev, -1, -1);
4032
4033 if (IS_ERR(rdev))
4034 return PTR_ERR(rdev);
4035 err = bind_rdev_to_array(rdev, mddev);
4036 out:
4037 if (err)
4038 export_rdev(rdev);
4039 return err ? err : len;
4040 }
4041
4042 static struct md_sysfs_entry md_new_device =
4043 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4044
4045 static ssize_t
4046 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4047 {
4048 char *end;
4049 unsigned long chunk, end_chunk;
4050
4051 if (!mddev->bitmap)
4052 goto out;
4053 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4054 while (*buf) {
4055 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4056 if (buf == end) break;
4057 if (*end == '-') { /* range */
4058 buf = end + 1;
4059 end_chunk = simple_strtoul(buf, &end, 0);
4060 if (buf == end) break;
4061 }
4062 if (*end && !isspace(*end)) break;
4063 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4064 buf = skip_spaces(end);
4065 }
4066 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4067 out:
4068 return len;
4069 }
4070
4071 static struct md_sysfs_entry md_bitmap =
4072 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4073
4074 static ssize_t
4075 size_show(struct mddev *mddev, char *page)
4076 {
4077 return sprintf(page, "%llu\n",
4078 (unsigned long long)mddev->dev_sectors / 2);
4079 }
4080
4081 static int update_size(struct mddev *mddev, sector_t num_sectors);
4082
4083 static ssize_t
4084 size_store(struct mddev *mddev, const char *buf, size_t len)
4085 {
4086 /* If array is inactive, we can reduce the component size, but
4087 * not increase it (except from 0).
4088 * If array is active, we can try an on-line resize
4089 */
4090 sector_t sectors;
4091 int err = strict_blocks_to_sectors(buf, &sectors);
4092
4093 if (err < 0)
4094 return err;
4095 if (mddev->pers) {
4096 err = update_size(mddev, sectors);
4097 md_update_sb(mddev, 1);
4098 } else {
4099 if (mddev->dev_sectors == 0 ||
4100 mddev->dev_sectors > sectors)
4101 mddev->dev_sectors = sectors;
4102 else
4103 err = -ENOSPC;
4104 }
4105 return err ? err : len;
4106 }
4107
4108 static struct md_sysfs_entry md_size =
4109 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4110
4111
4112 /* Metadata version.
4113 * This is one of
4114 * 'none' for arrays with no metadata (good luck...)
4115 * 'external' for arrays with externally managed metadata,
4116 * or N.M for internally known formats
4117 */
4118 static ssize_t
4119 metadata_show(struct mddev *mddev, char *page)
4120 {
4121 if (mddev->persistent)
4122 return sprintf(page, "%d.%d\n",
4123 mddev->major_version, mddev->minor_version);
4124 else if (mddev->external)
4125 return sprintf(page, "external:%s\n", mddev->metadata_type);
4126 else
4127 return sprintf(page, "none\n");
4128 }
4129
4130 static ssize_t
4131 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 int major, minor;
4134 char *e;
4135 /* Changing the details of 'external' metadata is
4136 * always permitted. Otherwise there must be
4137 * no devices attached to the array.
4138 */
4139 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4140 ;
4141 else if (!list_empty(&mddev->disks))
4142 return -EBUSY;
4143
4144 if (cmd_match(buf, "none")) {
4145 mddev->persistent = 0;
4146 mddev->external = 0;
4147 mddev->major_version = 0;
4148 mddev->minor_version = 90;
4149 return len;
4150 }
4151 if (strncmp(buf, "external:", 9) == 0) {
4152 size_t namelen = len-9;
4153 if (namelen >= sizeof(mddev->metadata_type))
4154 namelen = sizeof(mddev->metadata_type)-1;
4155 strncpy(mddev->metadata_type, buf+9, namelen);
4156 mddev->metadata_type[namelen] = 0;
4157 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4158 mddev->metadata_type[--namelen] = 0;
4159 mddev->persistent = 0;
4160 mddev->external = 1;
4161 mddev->major_version = 0;
4162 mddev->minor_version = 90;
4163 return len;
4164 }
4165 major = simple_strtoul(buf, &e, 10);
4166 if (e==buf || *e != '.')
4167 return -EINVAL;
4168 buf = e+1;
4169 minor = simple_strtoul(buf, &e, 10);
4170 if (e==buf || (*e && *e != '\n') )
4171 return -EINVAL;
4172 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4173 return -ENOENT;
4174 mddev->major_version = major;
4175 mddev->minor_version = minor;
4176 mddev->persistent = 1;
4177 mddev->external = 0;
4178 return len;
4179 }
4180
4181 static struct md_sysfs_entry md_metadata =
4182 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4183
4184 static ssize_t
4185 action_show(struct mddev *mddev, char *page)
4186 {
4187 char *type = "idle";
4188 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4189 type = "frozen";
4190 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4191 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4192 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4193 type = "reshape";
4194 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4195 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4196 type = "resync";
4197 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4198 type = "check";
4199 else
4200 type = "repair";
4201 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4202 type = "recover";
4203 }
4204 return sprintf(page, "%s\n", type);
4205 }
4206
4207 static ssize_t
4208 action_store(struct mddev *mddev, const char *page, size_t len)
4209 {
4210 if (!mddev->pers || !mddev->pers->sync_request)
4211 return -EINVAL;
4212
4213 if (cmd_match(page, "frozen"))
4214 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4215 else
4216 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4217
4218 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4219 if (mddev->sync_thread) {
4220 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4221 md_reap_sync_thread(mddev);
4222 }
4223 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4224 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4225 return -EBUSY;
4226 else if (cmd_match(page, "resync"))
4227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4228 else if (cmd_match(page, "recover")) {
4229 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4230 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4231 } else if (cmd_match(page, "reshape")) {
4232 int err;
4233 if (mddev->pers->start_reshape == NULL)
4234 return -EINVAL;
4235 err = mddev->pers->start_reshape(mddev);
4236 if (err)
4237 return err;
4238 sysfs_notify(&mddev->kobj, NULL, "degraded");
4239 } else {
4240 if (cmd_match(page, "check"))
4241 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4242 else if (!cmd_match(page, "repair"))
4243 return -EINVAL;
4244 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4245 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4246 }
4247 if (mddev->ro == 2) {
4248 /* A write to sync_action is enough to justify
4249 * canceling read-auto mode
4250 */
4251 mddev->ro = 0;
4252 md_wakeup_thread(mddev->sync_thread);
4253 }
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 md_wakeup_thread(mddev->thread);
4256 sysfs_notify_dirent_safe(mddev->sysfs_action);
4257 return len;
4258 }
4259
4260 static struct md_sysfs_entry md_scan_mode =
4261 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4262
4263 static ssize_t
4264 last_sync_action_show(struct mddev *mddev, char *page)
4265 {
4266 return sprintf(page, "%s\n", mddev->last_sync_action);
4267 }
4268
4269 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4270
4271 static ssize_t
4272 mismatch_cnt_show(struct mddev *mddev, char *page)
4273 {
4274 return sprintf(page, "%llu\n",
4275 (unsigned long long)
4276 atomic64_read(&mddev->resync_mismatches));
4277 }
4278
4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4280
4281 static ssize_t
4282 sync_min_show(struct mddev *mddev, char *page)
4283 {
4284 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4285 mddev->sync_speed_min ? "local": "system");
4286 }
4287
4288 static ssize_t
4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4290 {
4291 int min;
4292 char *e;
4293 if (strncmp(buf, "system", 6)==0) {
4294 mddev->sync_speed_min = 0;
4295 return len;
4296 }
4297 min = simple_strtoul(buf, &e, 10);
4298 if (buf == e || (*e && *e != '\n') || min <= 0)
4299 return -EINVAL;
4300 mddev->sync_speed_min = min;
4301 return len;
4302 }
4303
4304 static struct md_sysfs_entry md_sync_min =
4305 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4306
4307 static ssize_t
4308 sync_max_show(struct mddev *mddev, char *page)
4309 {
4310 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4311 mddev->sync_speed_max ? "local": "system");
4312 }
4313
4314 static ssize_t
4315 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4316 {
4317 int max;
4318 char *e;
4319 if (strncmp(buf, "system", 6)==0) {
4320 mddev->sync_speed_max = 0;
4321 return len;
4322 }
4323 max = simple_strtoul(buf, &e, 10);
4324 if (buf == e || (*e && *e != '\n') || max <= 0)
4325 return -EINVAL;
4326 mddev->sync_speed_max = max;
4327 return len;
4328 }
4329
4330 static struct md_sysfs_entry md_sync_max =
4331 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4332
4333 static ssize_t
4334 degraded_show(struct mddev *mddev, char *page)
4335 {
4336 return sprintf(page, "%d\n", mddev->degraded);
4337 }
4338 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4339
4340 static ssize_t
4341 sync_force_parallel_show(struct mddev *mddev, char *page)
4342 {
4343 return sprintf(page, "%d\n", mddev->parallel_resync);
4344 }
4345
4346 static ssize_t
4347 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4348 {
4349 long n;
4350
4351 if (kstrtol(buf, 10, &n))
4352 return -EINVAL;
4353
4354 if (n != 0 && n != 1)
4355 return -EINVAL;
4356
4357 mddev->parallel_resync = n;
4358
4359 if (mddev->sync_thread)
4360 wake_up(&resync_wait);
4361
4362 return len;
4363 }
4364
4365 /* force parallel resync, even with shared block devices */
4366 static struct md_sysfs_entry md_sync_force_parallel =
4367 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4368 sync_force_parallel_show, sync_force_parallel_store);
4369
4370 static ssize_t
4371 sync_speed_show(struct mddev *mddev, char *page)
4372 {
4373 unsigned long resync, dt, db;
4374 if (mddev->curr_resync == 0)
4375 return sprintf(page, "none\n");
4376 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4377 dt = (jiffies - mddev->resync_mark) / HZ;
4378 if (!dt) dt++;
4379 db = resync - mddev->resync_mark_cnt;
4380 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4381 }
4382
4383 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4384
4385 static ssize_t
4386 sync_completed_show(struct mddev *mddev, char *page)
4387 {
4388 unsigned long long max_sectors, resync;
4389
4390 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4391 return sprintf(page, "none\n");
4392
4393 if (mddev->curr_resync == 1 ||
4394 mddev->curr_resync == 2)
4395 return sprintf(page, "delayed\n");
4396
4397 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4398 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4399 max_sectors = mddev->resync_max_sectors;
4400 else
4401 max_sectors = mddev->dev_sectors;
4402
4403 resync = mddev->curr_resync_completed;
4404 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4405 }
4406
4407 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4408
4409 static ssize_t
4410 min_sync_show(struct mddev *mddev, char *page)
4411 {
4412 return sprintf(page, "%llu\n",
4413 (unsigned long long)mddev->resync_min);
4414 }
4415 static ssize_t
4416 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4417 {
4418 unsigned long long min;
4419 if (kstrtoull(buf, 10, &min))
4420 return -EINVAL;
4421 if (min > mddev->resync_max)
4422 return -EINVAL;
4423 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4424 return -EBUSY;
4425
4426 /* Must be a multiple of chunk_size */
4427 if (mddev->chunk_sectors) {
4428 sector_t temp = min;
4429 if (sector_div(temp, mddev->chunk_sectors))
4430 return -EINVAL;
4431 }
4432 mddev->resync_min = min;
4433
4434 return len;
4435 }
4436
4437 static struct md_sysfs_entry md_min_sync =
4438 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4439
4440 static ssize_t
4441 max_sync_show(struct mddev *mddev, char *page)
4442 {
4443 if (mddev->resync_max == MaxSector)
4444 return sprintf(page, "max\n");
4445 else
4446 return sprintf(page, "%llu\n",
4447 (unsigned long long)mddev->resync_max);
4448 }
4449 static ssize_t
4450 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4451 {
4452 if (strncmp(buf, "max", 3) == 0)
4453 mddev->resync_max = MaxSector;
4454 else {
4455 unsigned long long max;
4456 if (kstrtoull(buf, 10, &max))
4457 return -EINVAL;
4458 if (max < mddev->resync_min)
4459 return -EINVAL;
4460 if (max < mddev->resync_max &&
4461 mddev->ro == 0 &&
4462 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4463 return -EBUSY;
4464
4465 /* Must be a multiple of chunk_size */
4466 if (mddev->chunk_sectors) {
4467 sector_t temp = max;
4468 if (sector_div(temp, mddev->chunk_sectors))
4469 return -EINVAL;
4470 }
4471 mddev->resync_max = max;
4472 }
4473 wake_up(&mddev->recovery_wait);
4474 return len;
4475 }
4476
4477 static struct md_sysfs_entry md_max_sync =
4478 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4479
4480 static ssize_t
4481 suspend_lo_show(struct mddev *mddev, char *page)
4482 {
4483 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4484 }
4485
4486 static ssize_t
4487 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4488 {
4489 char *e;
4490 unsigned long long new = simple_strtoull(buf, &e, 10);
4491 unsigned long long old = mddev->suspend_lo;
4492
4493 if (mddev->pers == NULL ||
4494 mddev->pers->quiesce == NULL)
4495 return -EINVAL;
4496 if (buf == e || (*e && *e != '\n'))
4497 return -EINVAL;
4498
4499 mddev->suspend_lo = new;
4500 if (new >= old)
4501 /* Shrinking suspended region */
4502 mddev->pers->quiesce(mddev, 2);
4503 else {
4504 /* Expanding suspended region - need to wait */
4505 mddev->pers->quiesce(mddev, 1);
4506 mddev->pers->quiesce(mddev, 0);
4507 }
4508 return len;
4509 }
4510 static struct md_sysfs_entry md_suspend_lo =
4511 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4512
4513
4514 static ssize_t
4515 suspend_hi_show(struct mddev *mddev, char *page)
4516 {
4517 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4518 }
4519
4520 static ssize_t
4521 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4522 {
4523 char *e;
4524 unsigned long long new = simple_strtoull(buf, &e, 10);
4525 unsigned long long old = mddev->suspend_hi;
4526
4527 if (mddev->pers == NULL ||
4528 mddev->pers->quiesce == NULL)
4529 return -EINVAL;
4530 if (buf == e || (*e && *e != '\n'))
4531 return -EINVAL;
4532
4533 mddev->suspend_hi = new;
4534 if (new <= old)
4535 /* Shrinking suspended region */
4536 mddev->pers->quiesce(mddev, 2);
4537 else {
4538 /* Expanding suspended region - need to wait */
4539 mddev->pers->quiesce(mddev, 1);
4540 mddev->pers->quiesce(mddev, 0);
4541 }
4542 return len;
4543 }
4544 static struct md_sysfs_entry md_suspend_hi =
4545 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4546
4547 static ssize_t
4548 reshape_position_show(struct mddev *mddev, char *page)
4549 {
4550 if (mddev->reshape_position != MaxSector)
4551 return sprintf(page, "%llu\n",
4552 (unsigned long long)mddev->reshape_position);
4553 strcpy(page, "none\n");
4554 return 5;
4555 }
4556
4557 static ssize_t
4558 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 struct md_rdev *rdev;
4561 char *e;
4562 unsigned long long new = simple_strtoull(buf, &e, 10);
4563 if (mddev->pers)
4564 return -EBUSY;
4565 if (buf == e || (*e && *e != '\n'))
4566 return -EINVAL;
4567 mddev->reshape_position = new;
4568 mddev->delta_disks = 0;
4569 mddev->reshape_backwards = 0;
4570 mddev->new_level = mddev->level;
4571 mddev->new_layout = mddev->layout;
4572 mddev->new_chunk_sectors = mddev->chunk_sectors;
4573 rdev_for_each(rdev, mddev)
4574 rdev->new_data_offset = rdev->data_offset;
4575 return len;
4576 }
4577
4578 static struct md_sysfs_entry md_reshape_position =
4579 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4580 reshape_position_store);
4581
4582 static ssize_t
4583 reshape_direction_show(struct mddev *mddev, char *page)
4584 {
4585 return sprintf(page, "%s\n",
4586 mddev->reshape_backwards ? "backwards" : "forwards");
4587 }
4588
4589 static ssize_t
4590 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4591 {
4592 int backwards = 0;
4593 if (cmd_match(buf, "forwards"))
4594 backwards = 0;
4595 else if (cmd_match(buf, "backwards"))
4596 backwards = 1;
4597 else
4598 return -EINVAL;
4599 if (mddev->reshape_backwards == backwards)
4600 return len;
4601
4602 /* check if we are allowed to change */
4603 if (mddev->delta_disks)
4604 return -EBUSY;
4605
4606 if (mddev->persistent &&
4607 mddev->major_version == 0)
4608 return -EINVAL;
4609
4610 mddev->reshape_backwards = backwards;
4611 return len;
4612 }
4613
4614 static struct md_sysfs_entry md_reshape_direction =
4615 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4616 reshape_direction_store);
4617
4618 static ssize_t
4619 array_size_show(struct mddev *mddev, char *page)
4620 {
4621 if (mddev->external_size)
4622 return sprintf(page, "%llu\n",
4623 (unsigned long long)mddev->array_sectors/2);
4624 else
4625 return sprintf(page, "default\n");
4626 }
4627
4628 static ssize_t
4629 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4630 {
4631 sector_t sectors;
4632
4633 if (strncmp(buf, "default", 7) == 0) {
4634 if (mddev->pers)
4635 sectors = mddev->pers->size(mddev, 0, 0);
4636 else
4637 sectors = mddev->array_sectors;
4638
4639 mddev->external_size = 0;
4640 } else {
4641 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4642 return -EINVAL;
4643 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4644 return -E2BIG;
4645
4646 mddev->external_size = 1;
4647 }
4648
4649 mddev->array_sectors = sectors;
4650 if (mddev->pers) {
4651 set_capacity(mddev->gendisk, mddev->array_sectors);
4652 revalidate_disk(mddev->gendisk);
4653 }
4654 return len;
4655 }
4656
4657 static struct md_sysfs_entry md_array_size =
4658 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4659 array_size_store);
4660
4661 static struct attribute *md_default_attrs[] = {
4662 &md_level.attr,
4663 &md_layout.attr,
4664 &md_raid_disks.attr,
4665 &md_chunk_size.attr,
4666 &md_size.attr,
4667 &md_resync_start.attr,
4668 &md_metadata.attr,
4669 &md_new_device.attr,
4670 &md_safe_delay.attr,
4671 &md_array_state.attr,
4672 &md_reshape_position.attr,
4673 &md_reshape_direction.attr,
4674 &md_array_size.attr,
4675 &max_corr_read_errors.attr,
4676 NULL,
4677 };
4678
4679 static struct attribute *md_redundancy_attrs[] = {
4680 &md_scan_mode.attr,
4681 &md_last_scan_mode.attr,
4682 &md_mismatches.attr,
4683 &md_sync_min.attr,
4684 &md_sync_max.attr,
4685 &md_sync_speed.attr,
4686 &md_sync_force_parallel.attr,
4687 &md_sync_completed.attr,
4688 &md_min_sync.attr,
4689 &md_max_sync.attr,
4690 &md_suspend_lo.attr,
4691 &md_suspend_hi.attr,
4692 &md_bitmap.attr,
4693 &md_degraded.attr,
4694 NULL,
4695 };
4696 static struct attribute_group md_redundancy_group = {
4697 .name = NULL,
4698 .attrs = md_redundancy_attrs,
4699 };
4700
4701
4702 static ssize_t
4703 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4704 {
4705 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4706 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4707 ssize_t rv;
4708
4709 if (!entry->show)
4710 return -EIO;
4711 spin_lock(&all_mddevs_lock);
4712 if (list_empty(&mddev->all_mddevs)) {
4713 spin_unlock(&all_mddevs_lock);
4714 return -EBUSY;
4715 }
4716 mddev_get(mddev);
4717 spin_unlock(&all_mddevs_lock);
4718
4719 rv = mddev_lock(mddev);
4720 if (!rv) {
4721 rv = entry->show(mddev, page);
4722 mddev_unlock(mddev);
4723 }
4724 mddev_put(mddev);
4725 return rv;
4726 }
4727
4728 static ssize_t
4729 md_attr_store(struct kobject *kobj, struct attribute *attr,
4730 const char *page, size_t length)
4731 {
4732 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4733 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4734 ssize_t rv;
4735
4736 if (!entry->store)
4737 return -EIO;
4738 if (!capable(CAP_SYS_ADMIN))
4739 return -EACCES;
4740 spin_lock(&all_mddevs_lock);
4741 if (list_empty(&mddev->all_mddevs)) {
4742 spin_unlock(&all_mddevs_lock);
4743 return -EBUSY;
4744 }
4745 mddev_get(mddev);
4746 spin_unlock(&all_mddevs_lock);
4747 if (entry->store == new_dev_store)
4748 flush_workqueue(md_misc_wq);
4749 rv = mddev_lock(mddev);
4750 if (!rv) {
4751 rv = entry->store(mddev, page, length);
4752 mddev_unlock(mddev);
4753 }
4754 mddev_put(mddev);
4755 return rv;
4756 }
4757
4758 static void md_free(struct kobject *ko)
4759 {
4760 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4761
4762 if (mddev->sysfs_state)
4763 sysfs_put(mddev->sysfs_state);
4764
4765 if (mddev->gendisk) {
4766 del_gendisk(mddev->gendisk);
4767 put_disk(mddev->gendisk);
4768 }
4769 if (mddev->queue)
4770 blk_cleanup_queue(mddev->queue);
4771
4772 kfree(mddev);
4773 }
4774
4775 static const struct sysfs_ops md_sysfs_ops = {
4776 .show = md_attr_show,
4777 .store = md_attr_store,
4778 };
4779 static struct kobj_type md_ktype = {
4780 .release = md_free,
4781 .sysfs_ops = &md_sysfs_ops,
4782 .default_attrs = md_default_attrs,
4783 };
4784
4785 int mdp_major = 0;
4786
4787 static void mddev_delayed_delete(struct work_struct *ws)
4788 {
4789 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4790
4791 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4792 kobject_del(&mddev->kobj);
4793 kobject_put(&mddev->kobj);
4794 }
4795
4796 static int md_alloc(dev_t dev, char *name)
4797 {
4798 static DEFINE_MUTEX(disks_mutex);
4799 struct mddev *mddev = mddev_find(dev);
4800 struct gendisk *disk;
4801 int partitioned;
4802 int shift;
4803 int unit;
4804 int error;
4805
4806 if (!mddev)
4807 return -ENODEV;
4808
4809 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4810 shift = partitioned ? MdpMinorShift : 0;
4811 unit = MINOR(mddev->unit) >> shift;
4812
4813 /* wait for any previous instance of this device to be
4814 * completely removed (mddev_delayed_delete).
4815 */
4816 flush_workqueue(md_misc_wq);
4817
4818 mutex_lock(&disks_mutex);
4819 error = -EEXIST;
4820 if (mddev->gendisk)
4821 goto abort;
4822
4823 if (name) {
4824 /* Need to ensure that 'name' is not a duplicate.
4825 */
4826 struct mddev *mddev2;
4827 spin_lock(&all_mddevs_lock);
4828
4829 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4830 if (mddev2->gendisk &&
4831 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4832 spin_unlock(&all_mddevs_lock);
4833 goto abort;
4834 }
4835 spin_unlock(&all_mddevs_lock);
4836 }
4837
4838 error = -ENOMEM;
4839 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4840 if (!mddev->queue)
4841 goto abort;
4842 mddev->queue->queuedata = mddev;
4843
4844 blk_queue_make_request(mddev->queue, md_make_request);
4845 blk_set_stacking_limits(&mddev->queue->limits);
4846
4847 disk = alloc_disk(1 << shift);
4848 if (!disk) {
4849 blk_cleanup_queue(mddev->queue);
4850 mddev->queue = NULL;
4851 goto abort;
4852 }
4853 disk->major = MAJOR(mddev->unit);
4854 disk->first_minor = unit << shift;
4855 if (name)
4856 strcpy(disk->disk_name, name);
4857 else if (partitioned)
4858 sprintf(disk->disk_name, "md_d%d", unit);
4859 else
4860 sprintf(disk->disk_name, "md%d", unit);
4861 disk->fops = &md_fops;
4862 disk->private_data = mddev;
4863 disk->queue = mddev->queue;
4864 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4865 /* Allow extended partitions. This makes the
4866 * 'mdp' device redundant, but we can't really
4867 * remove it now.
4868 */
4869 disk->flags |= GENHD_FL_EXT_DEVT;
4870 mddev->gendisk = disk;
4871 /* As soon as we call add_disk(), another thread could get
4872 * through to md_open, so make sure it doesn't get too far
4873 */
4874 mutex_lock(&mddev->open_mutex);
4875 add_disk(disk);
4876
4877 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4878 &disk_to_dev(disk)->kobj, "%s", "md");
4879 if (error) {
4880 /* This isn't possible, but as kobject_init_and_add is marked
4881 * __must_check, we must do something with the result
4882 */
4883 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4884 disk->disk_name);
4885 error = 0;
4886 }
4887 if (mddev->kobj.sd &&
4888 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4889 printk(KERN_DEBUG "pointless warning\n");
4890 mutex_unlock(&mddev->open_mutex);
4891 abort:
4892 mutex_unlock(&disks_mutex);
4893 if (!error && mddev->kobj.sd) {
4894 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4895 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4896 }
4897 mddev_put(mddev);
4898 return error;
4899 }
4900
4901 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4902 {
4903 md_alloc(dev, NULL);
4904 return NULL;
4905 }
4906
4907 static int add_named_array(const char *val, struct kernel_param *kp)
4908 {
4909 /* val must be "md_*" where * is not all digits.
4910 * We allocate an array with a large free minor number, and
4911 * set the name to val. val must not already be an active name.
4912 */
4913 int len = strlen(val);
4914 char buf[DISK_NAME_LEN];
4915
4916 while (len && val[len-1] == '\n')
4917 len--;
4918 if (len >= DISK_NAME_LEN)
4919 return -E2BIG;
4920 strlcpy(buf, val, len+1);
4921 if (strncmp(buf, "md_", 3) != 0)
4922 return -EINVAL;
4923 return md_alloc(0, buf);
4924 }
4925
4926 static void md_safemode_timeout(unsigned long data)
4927 {
4928 struct mddev *mddev = (struct mddev *) data;
4929
4930 if (!atomic_read(&mddev->writes_pending)) {
4931 mddev->safemode = 1;
4932 if (mddev->external)
4933 sysfs_notify_dirent_safe(mddev->sysfs_state);
4934 }
4935 md_wakeup_thread(mddev->thread);
4936 }
4937
4938 static int start_dirty_degraded;
4939
4940 int md_run(struct mddev *mddev)
4941 {
4942 int err;
4943 struct md_rdev *rdev;
4944 struct md_personality *pers;
4945
4946 if (list_empty(&mddev->disks))
4947 /* cannot run an array with no devices.. */
4948 return -EINVAL;
4949
4950 if (mddev->pers)
4951 return -EBUSY;
4952 /* Cannot run until previous stop completes properly */
4953 if (mddev->sysfs_active)
4954 return -EBUSY;
4955
4956 /*
4957 * Analyze all RAID superblock(s)
4958 */
4959 if (!mddev->raid_disks) {
4960 if (!mddev->persistent)
4961 return -EINVAL;
4962 analyze_sbs(mddev);
4963 }
4964
4965 if (mddev->level != LEVEL_NONE)
4966 request_module("md-level-%d", mddev->level);
4967 else if (mddev->clevel[0])
4968 request_module("md-%s", mddev->clevel);
4969
4970 /*
4971 * Drop all container device buffers, from now on
4972 * the only valid external interface is through the md
4973 * device.
4974 */
4975 rdev_for_each(rdev, mddev) {
4976 if (test_bit(Faulty, &rdev->flags))
4977 continue;
4978 sync_blockdev(rdev->bdev);
4979 invalidate_bdev(rdev->bdev);
4980
4981 /* perform some consistency tests on the device.
4982 * We don't want the data to overlap the metadata,
4983 * Internal Bitmap issues have been handled elsewhere.
4984 */
4985 if (rdev->meta_bdev) {
4986 /* Nothing to check */;
4987 } else if (rdev->data_offset < rdev->sb_start) {
4988 if (mddev->dev_sectors &&
4989 rdev->data_offset + mddev->dev_sectors
4990 > rdev->sb_start) {
4991 printk("md: %s: data overlaps metadata\n",
4992 mdname(mddev));
4993 return -EINVAL;
4994 }
4995 } else {
4996 if (rdev->sb_start + rdev->sb_size/512
4997 > rdev->data_offset) {
4998 printk("md: %s: metadata overlaps data\n",
4999 mdname(mddev));
5000 return -EINVAL;
5001 }
5002 }
5003 sysfs_notify_dirent_safe(rdev->sysfs_state);
5004 }
5005
5006 if (mddev->bio_set == NULL)
5007 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5008
5009 spin_lock(&pers_lock);
5010 pers = find_pers(mddev->level, mddev->clevel);
5011 if (!pers || !try_module_get(pers->owner)) {
5012 spin_unlock(&pers_lock);
5013 if (mddev->level != LEVEL_NONE)
5014 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5015 mddev->level);
5016 else
5017 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5018 mddev->clevel);
5019 return -EINVAL;
5020 }
5021 mddev->pers = pers;
5022 spin_unlock(&pers_lock);
5023 if (mddev->level != pers->level) {
5024 mddev->level = pers->level;
5025 mddev->new_level = pers->level;
5026 }
5027 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5028
5029 if (mddev->reshape_position != MaxSector &&
5030 pers->start_reshape == NULL) {
5031 /* This personality cannot handle reshaping... */
5032 mddev->pers = NULL;
5033 module_put(pers->owner);
5034 return -EINVAL;
5035 }
5036
5037 if (pers->sync_request) {
5038 /* Warn if this is a potentially silly
5039 * configuration.
5040 */
5041 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5042 struct md_rdev *rdev2;
5043 int warned = 0;
5044
5045 rdev_for_each(rdev, mddev)
5046 rdev_for_each(rdev2, mddev) {
5047 if (rdev < rdev2 &&
5048 rdev->bdev->bd_contains ==
5049 rdev2->bdev->bd_contains) {
5050 printk(KERN_WARNING
5051 "%s: WARNING: %s appears to be"
5052 " on the same physical disk as"
5053 " %s.\n",
5054 mdname(mddev),
5055 bdevname(rdev->bdev,b),
5056 bdevname(rdev2->bdev,b2));
5057 warned = 1;
5058 }
5059 }
5060
5061 if (warned)
5062 printk(KERN_WARNING
5063 "True protection against single-disk"
5064 " failure might be compromised.\n");
5065 }
5066
5067 mddev->recovery = 0;
5068 /* may be over-ridden by personality */
5069 mddev->resync_max_sectors = mddev->dev_sectors;
5070
5071 mddev->ok_start_degraded = start_dirty_degraded;
5072
5073 if (start_readonly && mddev->ro == 0)
5074 mddev->ro = 2; /* read-only, but switch on first write */
5075
5076 err = mddev->pers->run(mddev);
5077 if (err)
5078 printk(KERN_ERR "md: pers->run() failed ...\n");
5079 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5080 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5081 " but 'external_size' not in effect?\n", __func__);
5082 printk(KERN_ERR
5083 "md: invalid array_size %llu > default size %llu\n",
5084 (unsigned long long)mddev->array_sectors / 2,
5085 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5086 err = -EINVAL;
5087 mddev->pers->stop(mddev);
5088 }
5089 if (err == 0 && mddev->pers->sync_request &&
5090 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5091 err = bitmap_create(mddev);
5092 if (err) {
5093 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5094 mdname(mddev), err);
5095 mddev->pers->stop(mddev);
5096 }
5097 }
5098 if (err) {
5099 module_put(mddev->pers->owner);
5100 mddev->pers = NULL;
5101 bitmap_destroy(mddev);
5102 return err;
5103 }
5104 if (mddev->pers->sync_request) {
5105 if (mddev->kobj.sd &&
5106 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5107 printk(KERN_WARNING
5108 "md: cannot register extra attributes for %s\n",
5109 mdname(mddev));
5110 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5111 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5112 mddev->ro = 0;
5113
5114 atomic_set(&mddev->writes_pending,0);
5115 atomic_set(&mddev->max_corr_read_errors,
5116 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5117 mddev->safemode = 0;
5118 mddev->safemode_timer.function = md_safemode_timeout;
5119 mddev->safemode_timer.data = (unsigned long) mddev;
5120 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5121 mddev->in_sync = 1;
5122 smp_wmb();
5123 mddev->ready = 1;
5124 rdev_for_each(rdev, mddev)
5125 if (rdev->raid_disk >= 0)
5126 if (sysfs_link_rdev(mddev, rdev))
5127 /* failure here is OK */;
5128
5129 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5130
5131 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5132 md_update_sb(mddev, 0);
5133
5134 md_new_event(mddev);
5135 sysfs_notify_dirent_safe(mddev->sysfs_state);
5136 sysfs_notify_dirent_safe(mddev->sysfs_action);
5137 sysfs_notify(&mddev->kobj, NULL, "degraded");
5138 return 0;
5139 }
5140 EXPORT_SYMBOL_GPL(md_run);
5141
5142 static int do_md_run(struct mddev *mddev)
5143 {
5144 int err;
5145
5146 err = md_run(mddev);
5147 if (err)
5148 goto out;
5149 err = bitmap_load(mddev);
5150 if (err) {
5151 bitmap_destroy(mddev);
5152 goto out;
5153 }
5154
5155 md_wakeup_thread(mddev->thread);
5156 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5157
5158 set_capacity(mddev->gendisk, mddev->array_sectors);
5159 revalidate_disk(mddev->gendisk);
5160 mddev->changed = 1;
5161 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5162 out:
5163 return err;
5164 }
5165
5166 static int restart_array(struct mddev *mddev)
5167 {
5168 struct gendisk *disk = mddev->gendisk;
5169
5170 /* Complain if it has no devices */
5171 if (list_empty(&mddev->disks))
5172 return -ENXIO;
5173 if (!mddev->pers)
5174 return -EINVAL;
5175 if (!mddev->ro)
5176 return -EBUSY;
5177 mddev->safemode = 0;
5178 mddev->ro = 0;
5179 set_disk_ro(disk, 0);
5180 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5181 mdname(mddev));
5182 /* Kick recovery or resync if necessary */
5183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5184 md_wakeup_thread(mddev->thread);
5185 md_wakeup_thread(mddev->sync_thread);
5186 sysfs_notify_dirent_safe(mddev->sysfs_state);
5187 return 0;
5188 }
5189
5190 static void md_clean(struct mddev *mddev)
5191 {
5192 mddev->array_sectors = 0;
5193 mddev->external_size = 0;
5194 mddev->dev_sectors = 0;
5195 mddev->raid_disks = 0;
5196 mddev->recovery_cp = 0;
5197 mddev->resync_min = 0;
5198 mddev->resync_max = MaxSector;
5199 mddev->reshape_position = MaxSector;
5200 mddev->external = 0;
5201 mddev->persistent = 0;
5202 mddev->level = LEVEL_NONE;
5203 mddev->clevel[0] = 0;
5204 mddev->flags = 0;
5205 mddev->ro = 0;
5206 mddev->metadata_type[0] = 0;
5207 mddev->chunk_sectors = 0;
5208 mddev->ctime = mddev->utime = 0;
5209 mddev->layout = 0;
5210 mddev->max_disks = 0;
5211 mddev->events = 0;
5212 mddev->can_decrease_events = 0;
5213 mddev->delta_disks = 0;
5214 mddev->reshape_backwards = 0;
5215 mddev->new_level = LEVEL_NONE;
5216 mddev->new_layout = 0;
5217 mddev->new_chunk_sectors = 0;
5218 mddev->curr_resync = 0;
5219 atomic64_set(&mddev->resync_mismatches, 0);
5220 mddev->suspend_lo = mddev->suspend_hi = 0;
5221 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5222 mddev->recovery = 0;
5223 mddev->in_sync = 0;
5224 mddev->changed = 0;
5225 mddev->degraded = 0;
5226 mddev->safemode = 0;
5227 mddev->merge_check_needed = 0;
5228 mddev->bitmap_info.offset = 0;
5229 mddev->bitmap_info.default_offset = 0;
5230 mddev->bitmap_info.default_space = 0;
5231 mddev->bitmap_info.chunksize = 0;
5232 mddev->bitmap_info.daemon_sleep = 0;
5233 mddev->bitmap_info.max_write_behind = 0;
5234 }
5235
5236 static void __md_stop_writes(struct mddev *mddev)
5237 {
5238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5239 if (mddev->sync_thread) {
5240 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5241 md_reap_sync_thread(mddev);
5242 }
5243
5244 del_timer_sync(&mddev->safemode_timer);
5245
5246 bitmap_flush(mddev);
5247 md_super_wait(mddev);
5248
5249 if (mddev->ro == 0 &&
5250 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5251 /* mark array as shutdown cleanly */
5252 mddev->in_sync = 1;
5253 md_update_sb(mddev, 1);
5254 }
5255 }
5256
5257 void md_stop_writes(struct mddev *mddev)
5258 {
5259 mddev_lock_nointr(mddev);
5260 __md_stop_writes(mddev);
5261 mddev_unlock(mddev);
5262 }
5263 EXPORT_SYMBOL_GPL(md_stop_writes);
5264
5265 static void __md_stop(struct mddev *mddev)
5266 {
5267 mddev->ready = 0;
5268 mddev->pers->stop(mddev);
5269 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5270 mddev->to_remove = &md_redundancy_group;
5271 module_put(mddev->pers->owner);
5272 mddev->pers = NULL;
5273 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5274 }
5275
5276 void md_stop(struct mddev *mddev)
5277 {
5278 /* stop the array and free an attached data structures.
5279 * This is called from dm-raid
5280 */
5281 __md_stop(mddev);
5282 bitmap_destroy(mddev);
5283 if (mddev->bio_set)
5284 bioset_free(mddev->bio_set);
5285 }
5286
5287 EXPORT_SYMBOL_GPL(md_stop);
5288
5289 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5290 {
5291 int err = 0;
5292 int did_freeze = 0;
5293
5294 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5295 did_freeze = 1;
5296 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5297 md_wakeup_thread(mddev->thread);
5298 }
5299 if (mddev->sync_thread) {
5300 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5301 /* Thread might be blocked waiting for metadata update
5302 * which will now never happen */
5303 wake_up_process(mddev->sync_thread->tsk);
5304 }
5305 mddev_unlock(mddev);
5306 wait_event(resync_wait, mddev->sync_thread == NULL);
5307 mddev_lock_nointr(mddev);
5308
5309 mutex_lock(&mddev->open_mutex);
5310 if (atomic_read(&mddev->openers) > !!bdev ||
5311 mddev->sync_thread ||
5312 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5313 printk("md: %s still in use.\n",mdname(mddev));
5314 if (did_freeze) {
5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5316 md_wakeup_thread(mddev->thread);
5317 }
5318 err = -EBUSY;
5319 goto out;
5320 }
5321 if (mddev->pers) {
5322 __md_stop_writes(mddev);
5323
5324 err = -ENXIO;
5325 if (mddev->ro==1)
5326 goto out;
5327 mddev->ro = 1;
5328 set_disk_ro(mddev->gendisk, 1);
5329 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5330 sysfs_notify_dirent_safe(mddev->sysfs_state);
5331 err = 0;
5332 }
5333 out:
5334 mutex_unlock(&mddev->open_mutex);
5335 return err;
5336 }
5337
5338 /* mode:
5339 * 0 - completely stop and dis-assemble array
5340 * 2 - stop but do not disassemble array
5341 */
5342 static int do_md_stop(struct mddev * mddev, int mode,
5343 struct block_device *bdev)
5344 {
5345 struct gendisk *disk = mddev->gendisk;
5346 struct md_rdev *rdev;
5347 int did_freeze = 0;
5348
5349 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5350 did_freeze = 1;
5351 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5352 md_wakeup_thread(mddev->thread);
5353 }
5354 if (mddev->sync_thread) {
5355 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5356 /* Thread might be blocked waiting for metadata update
5357 * which will now never happen */
5358 wake_up_process(mddev->sync_thread->tsk);
5359 }
5360 mddev_unlock(mddev);
5361 wait_event(resync_wait, mddev->sync_thread == NULL);
5362 mddev_lock_nointr(mddev);
5363
5364 mutex_lock(&mddev->open_mutex);
5365 if (atomic_read(&mddev->openers) > !!bdev ||
5366 mddev->sysfs_active ||
5367 mddev->sync_thread ||
5368 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5369 printk("md: %s still in use.\n",mdname(mddev));
5370 mutex_unlock(&mddev->open_mutex);
5371 if (did_freeze) {
5372 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5373 md_wakeup_thread(mddev->thread);
5374 }
5375 return -EBUSY;
5376 }
5377 if (mddev->pers) {
5378 if (mddev->ro)
5379 set_disk_ro(disk, 0);
5380
5381 __md_stop_writes(mddev);
5382 __md_stop(mddev);
5383 mddev->queue->merge_bvec_fn = NULL;
5384 mddev->queue->backing_dev_info.congested_fn = NULL;
5385
5386 /* tell userspace to handle 'inactive' */
5387 sysfs_notify_dirent_safe(mddev->sysfs_state);
5388
5389 rdev_for_each(rdev, mddev)
5390 if (rdev->raid_disk >= 0)
5391 sysfs_unlink_rdev(mddev, rdev);
5392
5393 set_capacity(disk, 0);
5394 mutex_unlock(&mddev->open_mutex);
5395 mddev->changed = 1;
5396 revalidate_disk(disk);
5397
5398 if (mddev->ro)
5399 mddev->ro = 0;
5400 } else
5401 mutex_unlock(&mddev->open_mutex);
5402 /*
5403 * Free resources if final stop
5404 */
5405 if (mode == 0) {
5406 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5407
5408 bitmap_destroy(mddev);
5409 if (mddev->bitmap_info.file) {
5410 fput(mddev->bitmap_info.file);
5411 mddev->bitmap_info.file = NULL;
5412 }
5413 mddev->bitmap_info.offset = 0;
5414
5415 export_array(mddev);
5416
5417 md_clean(mddev);
5418 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5419 if (mddev->hold_active == UNTIL_STOP)
5420 mddev->hold_active = 0;
5421 }
5422 blk_integrity_unregister(disk);
5423 md_new_event(mddev);
5424 sysfs_notify_dirent_safe(mddev->sysfs_state);
5425 return 0;
5426 }
5427
5428 #ifndef MODULE
5429 static void autorun_array(struct mddev *mddev)
5430 {
5431 struct md_rdev *rdev;
5432 int err;
5433
5434 if (list_empty(&mddev->disks))
5435 return;
5436
5437 printk(KERN_INFO "md: running: ");
5438
5439 rdev_for_each(rdev, mddev) {
5440 char b[BDEVNAME_SIZE];
5441 printk("<%s>", bdevname(rdev->bdev,b));
5442 }
5443 printk("\n");
5444
5445 err = do_md_run(mddev);
5446 if (err) {
5447 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5448 do_md_stop(mddev, 0, NULL);
5449 }
5450 }
5451
5452 /*
5453 * lets try to run arrays based on all disks that have arrived
5454 * until now. (those are in pending_raid_disks)
5455 *
5456 * the method: pick the first pending disk, collect all disks with
5457 * the same UUID, remove all from the pending list and put them into
5458 * the 'same_array' list. Then order this list based on superblock
5459 * update time (freshest comes first), kick out 'old' disks and
5460 * compare superblocks. If everything's fine then run it.
5461 *
5462 * If "unit" is allocated, then bump its reference count
5463 */
5464 static void autorun_devices(int part)
5465 {
5466 struct md_rdev *rdev0, *rdev, *tmp;
5467 struct mddev *mddev;
5468 char b[BDEVNAME_SIZE];
5469
5470 printk(KERN_INFO "md: autorun ...\n");
5471 while (!list_empty(&pending_raid_disks)) {
5472 int unit;
5473 dev_t dev;
5474 LIST_HEAD(candidates);
5475 rdev0 = list_entry(pending_raid_disks.next,
5476 struct md_rdev, same_set);
5477
5478 printk(KERN_INFO "md: considering %s ...\n",
5479 bdevname(rdev0->bdev,b));
5480 INIT_LIST_HEAD(&candidates);
5481 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5482 if (super_90_load(rdev, rdev0, 0) >= 0) {
5483 printk(KERN_INFO "md: adding %s ...\n",
5484 bdevname(rdev->bdev,b));
5485 list_move(&rdev->same_set, &candidates);
5486 }
5487 /*
5488 * now we have a set of devices, with all of them having
5489 * mostly sane superblocks. It's time to allocate the
5490 * mddev.
5491 */
5492 if (part) {
5493 dev = MKDEV(mdp_major,
5494 rdev0->preferred_minor << MdpMinorShift);
5495 unit = MINOR(dev) >> MdpMinorShift;
5496 } else {
5497 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5498 unit = MINOR(dev);
5499 }
5500 if (rdev0->preferred_minor != unit) {
5501 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5502 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5503 break;
5504 }
5505
5506 md_probe(dev, NULL, NULL);
5507 mddev = mddev_find(dev);
5508 if (!mddev || !mddev->gendisk) {
5509 if (mddev)
5510 mddev_put(mddev);
5511 printk(KERN_ERR
5512 "md: cannot allocate memory for md drive.\n");
5513 break;
5514 }
5515 if (mddev_lock(mddev))
5516 printk(KERN_WARNING "md: %s locked, cannot run\n",
5517 mdname(mddev));
5518 else if (mddev->raid_disks || mddev->major_version
5519 || !list_empty(&mddev->disks)) {
5520 printk(KERN_WARNING
5521 "md: %s already running, cannot run %s\n",
5522 mdname(mddev), bdevname(rdev0->bdev,b));
5523 mddev_unlock(mddev);
5524 } else {
5525 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5526 mddev->persistent = 1;
5527 rdev_for_each_list(rdev, tmp, &candidates) {
5528 list_del_init(&rdev->same_set);
5529 if (bind_rdev_to_array(rdev, mddev))
5530 export_rdev(rdev);
5531 }
5532 autorun_array(mddev);
5533 mddev_unlock(mddev);
5534 }
5535 /* on success, candidates will be empty, on error
5536 * it won't...
5537 */
5538 rdev_for_each_list(rdev, tmp, &candidates) {
5539 list_del_init(&rdev->same_set);
5540 export_rdev(rdev);
5541 }
5542 mddev_put(mddev);
5543 }
5544 printk(KERN_INFO "md: ... autorun DONE.\n");
5545 }
5546 #endif /* !MODULE */
5547
5548 static int get_version(void __user * arg)
5549 {
5550 mdu_version_t ver;
5551
5552 ver.major = MD_MAJOR_VERSION;
5553 ver.minor = MD_MINOR_VERSION;
5554 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5555
5556 if (copy_to_user(arg, &ver, sizeof(ver)))
5557 return -EFAULT;
5558
5559 return 0;
5560 }
5561
5562 static int get_array_info(struct mddev * mddev, void __user * arg)
5563 {
5564 mdu_array_info_t info;
5565 int nr,working,insync,failed,spare;
5566 struct md_rdev *rdev;
5567
5568 nr = working = insync = failed = spare = 0;
5569 rcu_read_lock();
5570 rdev_for_each_rcu(rdev, mddev) {
5571 nr++;
5572 if (test_bit(Faulty, &rdev->flags))
5573 failed++;
5574 else {
5575 working++;
5576 if (test_bit(In_sync, &rdev->flags))
5577 insync++;
5578 else
5579 spare++;
5580 }
5581 }
5582 rcu_read_unlock();
5583
5584 info.major_version = mddev->major_version;
5585 info.minor_version = mddev->minor_version;
5586 info.patch_version = MD_PATCHLEVEL_VERSION;
5587 info.ctime = mddev->ctime;
5588 info.level = mddev->level;
5589 info.size = mddev->dev_sectors / 2;
5590 if (info.size != mddev->dev_sectors / 2) /* overflow */
5591 info.size = -1;
5592 info.nr_disks = nr;
5593 info.raid_disks = mddev->raid_disks;
5594 info.md_minor = mddev->md_minor;
5595 info.not_persistent= !mddev->persistent;
5596
5597 info.utime = mddev->utime;
5598 info.state = 0;
5599 if (mddev->in_sync)
5600 info.state = (1<<MD_SB_CLEAN);
5601 if (mddev->bitmap && mddev->bitmap_info.offset)
5602 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5603 info.active_disks = insync;
5604 info.working_disks = working;
5605 info.failed_disks = failed;
5606 info.spare_disks = spare;
5607
5608 info.layout = mddev->layout;
5609 info.chunk_size = mddev->chunk_sectors << 9;
5610
5611 if (copy_to_user(arg, &info, sizeof(info)))
5612 return -EFAULT;
5613
5614 return 0;
5615 }
5616
5617 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5618 {
5619 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5620 char *ptr, *buf = NULL;
5621 int err = -ENOMEM;
5622
5623 file = kmalloc(sizeof(*file), GFP_NOIO);
5624
5625 if (!file)
5626 goto out;
5627
5628 /* bitmap disabled, zero the first byte and copy out */
5629 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5630 file->pathname[0] = '\0';
5631 goto copy_out;
5632 }
5633
5634 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5635 if (!buf)
5636 goto out;
5637
5638 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5639 buf, sizeof(file->pathname));
5640 if (IS_ERR(ptr))
5641 goto out;
5642
5643 strcpy(file->pathname, ptr);
5644
5645 copy_out:
5646 err = 0;
5647 if (copy_to_user(arg, file, sizeof(*file)))
5648 err = -EFAULT;
5649 out:
5650 kfree(buf);
5651 kfree(file);
5652 return err;
5653 }
5654
5655 static int get_disk_info(struct mddev * mddev, void __user * arg)
5656 {
5657 mdu_disk_info_t info;
5658 struct md_rdev *rdev;
5659
5660 if (copy_from_user(&info, arg, sizeof(info)))
5661 return -EFAULT;
5662
5663 rcu_read_lock();
5664 rdev = find_rdev_nr_rcu(mddev, info.number);
5665 if (rdev) {
5666 info.major = MAJOR(rdev->bdev->bd_dev);
5667 info.minor = MINOR(rdev->bdev->bd_dev);
5668 info.raid_disk = rdev->raid_disk;
5669 info.state = 0;
5670 if (test_bit(Faulty, &rdev->flags))
5671 info.state |= (1<<MD_DISK_FAULTY);
5672 else if (test_bit(In_sync, &rdev->flags)) {
5673 info.state |= (1<<MD_DISK_ACTIVE);
5674 info.state |= (1<<MD_DISK_SYNC);
5675 }
5676 if (test_bit(WriteMostly, &rdev->flags))
5677 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5678 } else {
5679 info.major = info.minor = 0;
5680 info.raid_disk = -1;
5681 info.state = (1<<MD_DISK_REMOVED);
5682 }
5683 rcu_read_unlock();
5684
5685 if (copy_to_user(arg, &info, sizeof(info)))
5686 return -EFAULT;
5687
5688 return 0;
5689 }
5690
5691 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5692 {
5693 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5694 struct md_rdev *rdev;
5695 dev_t dev = MKDEV(info->major,info->minor);
5696
5697 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5698 return -EOVERFLOW;
5699
5700 if (!mddev->raid_disks) {
5701 int err;
5702 /* expecting a device which has a superblock */
5703 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5704 if (IS_ERR(rdev)) {
5705 printk(KERN_WARNING
5706 "md: md_import_device returned %ld\n",
5707 PTR_ERR(rdev));
5708 return PTR_ERR(rdev);
5709 }
5710 if (!list_empty(&mddev->disks)) {
5711 struct md_rdev *rdev0
5712 = list_entry(mddev->disks.next,
5713 struct md_rdev, same_set);
5714 err = super_types[mddev->major_version]
5715 .load_super(rdev, rdev0, mddev->minor_version);
5716 if (err < 0) {
5717 printk(KERN_WARNING
5718 "md: %s has different UUID to %s\n",
5719 bdevname(rdev->bdev,b),
5720 bdevname(rdev0->bdev,b2));
5721 export_rdev(rdev);
5722 return -EINVAL;
5723 }
5724 }
5725 err = bind_rdev_to_array(rdev, mddev);
5726 if (err)
5727 export_rdev(rdev);
5728 return err;
5729 }
5730
5731 /*
5732 * add_new_disk can be used once the array is assembled
5733 * to add "hot spares". They must already have a superblock
5734 * written
5735 */
5736 if (mddev->pers) {
5737 int err;
5738 if (!mddev->pers->hot_add_disk) {
5739 printk(KERN_WARNING
5740 "%s: personality does not support diskops!\n",
5741 mdname(mddev));
5742 return -EINVAL;
5743 }
5744 if (mddev->persistent)
5745 rdev = md_import_device(dev, mddev->major_version,
5746 mddev->minor_version);
5747 else
5748 rdev = md_import_device(dev, -1, -1);
5749 if (IS_ERR(rdev)) {
5750 printk(KERN_WARNING
5751 "md: md_import_device returned %ld\n",
5752 PTR_ERR(rdev));
5753 return PTR_ERR(rdev);
5754 }
5755 /* set saved_raid_disk if appropriate */
5756 if (!mddev->persistent) {
5757 if (info->state & (1<<MD_DISK_SYNC) &&
5758 info->raid_disk < mddev->raid_disks) {
5759 rdev->raid_disk = info->raid_disk;
5760 set_bit(In_sync, &rdev->flags);
5761 clear_bit(Bitmap_sync, &rdev->flags);
5762 } else
5763 rdev->raid_disk = -1;
5764 rdev->saved_raid_disk = rdev->raid_disk;
5765 } else
5766 super_types[mddev->major_version].
5767 validate_super(mddev, rdev);
5768 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769 rdev->raid_disk != info->raid_disk) {
5770 /* This was a hot-add request, but events doesn't
5771 * match, so reject it.
5772 */
5773 export_rdev(rdev);
5774 return -EINVAL;
5775 }
5776
5777 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5778 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5779 set_bit(WriteMostly, &rdev->flags);
5780 else
5781 clear_bit(WriteMostly, &rdev->flags);
5782
5783 rdev->raid_disk = -1;
5784 err = bind_rdev_to_array(rdev, mddev);
5785 if (!err && !mddev->pers->hot_remove_disk) {
5786 /* If there is hot_add_disk but no hot_remove_disk
5787 * then added disks for geometry changes,
5788 * and should be added immediately.
5789 */
5790 super_types[mddev->major_version].
5791 validate_super(mddev, rdev);
5792 err = mddev->pers->hot_add_disk(mddev, rdev);
5793 if (err)
5794 unbind_rdev_from_array(rdev);
5795 }
5796 if (err)
5797 export_rdev(rdev);
5798 else
5799 sysfs_notify_dirent_safe(rdev->sysfs_state);
5800
5801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5802 if (mddev->degraded)
5803 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5804 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5805 if (!err)
5806 md_new_event(mddev);
5807 md_wakeup_thread(mddev->thread);
5808 return err;
5809 }
5810
5811 /* otherwise, add_new_disk is only allowed
5812 * for major_version==0 superblocks
5813 */
5814 if (mddev->major_version != 0) {
5815 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5816 mdname(mddev));
5817 return -EINVAL;
5818 }
5819
5820 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5821 int err;
5822 rdev = md_import_device(dev, -1, 0);
5823 if (IS_ERR(rdev)) {
5824 printk(KERN_WARNING
5825 "md: error, md_import_device() returned %ld\n",
5826 PTR_ERR(rdev));
5827 return PTR_ERR(rdev);
5828 }
5829 rdev->desc_nr = info->number;
5830 if (info->raid_disk < mddev->raid_disks)
5831 rdev->raid_disk = info->raid_disk;
5832 else
5833 rdev->raid_disk = -1;
5834
5835 if (rdev->raid_disk < mddev->raid_disks)
5836 if (info->state & (1<<MD_DISK_SYNC))
5837 set_bit(In_sync, &rdev->flags);
5838
5839 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5840 set_bit(WriteMostly, &rdev->flags);
5841
5842 if (!mddev->persistent) {
5843 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5844 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5845 } else
5846 rdev->sb_start = calc_dev_sboffset(rdev);
5847 rdev->sectors = rdev->sb_start;
5848
5849 err = bind_rdev_to_array(rdev, mddev);
5850 if (err) {
5851 export_rdev(rdev);
5852 return err;
5853 }
5854 }
5855
5856 return 0;
5857 }
5858
5859 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5860 {
5861 char b[BDEVNAME_SIZE];
5862 struct md_rdev *rdev;
5863
5864 rdev = find_rdev(mddev, dev);
5865 if (!rdev)
5866 return -ENXIO;
5867
5868 clear_bit(Blocked, &rdev->flags);
5869 remove_and_add_spares(mddev, rdev);
5870
5871 if (rdev->raid_disk >= 0)
5872 goto busy;
5873
5874 kick_rdev_from_array(rdev);
5875 md_update_sb(mddev, 1);
5876 md_new_event(mddev);
5877
5878 return 0;
5879 busy:
5880 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5881 bdevname(rdev->bdev,b), mdname(mddev));
5882 return -EBUSY;
5883 }
5884
5885 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5886 {
5887 char b[BDEVNAME_SIZE];
5888 int err;
5889 struct md_rdev *rdev;
5890
5891 if (!mddev->pers)
5892 return -ENODEV;
5893
5894 if (mddev->major_version != 0) {
5895 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5896 " version-0 superblocks.\n",
5897 mdname(mddev));
5898 return -EINVAL;
5899 }
5900 if (!mddev->pers->hot_add_disk) {
5901 printk(KERN_WARNING
5902 "%s: personality does not support diskops!\n",
5903 mdname(mddev));
5904 return -EINVAL;
5905 }
5906
5907 rdev = md_import_device(dev, -1, 0);
5908 if (IS_ERR(rdev)) {
5909 printk(KERN_WARNING
5910 "md: error, md_import_device() returned %ld\n",
5911 PTR_ERR(rdev));
5912 return -EINVAL;
5913 }
5914
5915 if (mddev->persistent)
5916 rdev->sb_start = calc_dev_sboffset(rdev);
5917 else
5918 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5919
5920 rdev->sectors = rdev->sb_start;
5921
5922 if (test_bit(Faulty, &rdev->flags)) {
5923 printk(KERN_WARNING
5924 "md: can not hot-add faulty %s disk to %s!\n",
5925 bdevname(rdev->bdev,b), mdname(mddev));
5926 err = -EINVAL;
5927 goto abort_export;
5928 }
5929 clear_bit(In_sync, &rdev->flags);
5930 rdev->desc_nr = -1;
5931 rdev->saved_raid_disk = -1;
5932 err = bind_rdev_to_array(rdev, mddev);
5933 if (err)
5934 goto abort_export;
5935
5936 /*
5937 * The rest should better be atomic, we can have disk failures
5938 * noticed in interrupt contexts ...
5939 */
5940
5941 rdev->raid_disk = -1;
5942
5943 md_update_sb(mddev, 1);
5944
5945 /*
5946 * Kick recovery, maybe this spare has to be added to the
5947 * array immediately.
5948 */
5949 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5950 md_wakeup_thread(mddev->thread);
5951 md_new_event(mddev);
5952 return 0;
5953
5954 abort_export:
5955 export_rdev(rdev);
5956 return err;
5957 }
5958
5959 static int set_bitmap_file(struct mddev *mddev, int fd)
5960 {
5961 int err = 0;
5962
5963 if (mddev->pers) {
5964 if (!mddev->pers->quiesce)
5965 return -EBUSY;
5966 if (mddev->recovery || mddev->sync_thread)
5967 return -EBUSY;
5968 /* we should be able to change the bitmap.. */
5969 }
5970
5971
5972 if (fd >= 0) {
5973 struct inode *inode;
5974 if (mddev->bitmap)
5975 return -EEXIST; /* cannot add when bitmap is present */
5976 mddev->bitmap_info.file = fget(fd);
5977
5978 if (mddev->bitmap_info.file == NULL) {
5979 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5980 mdname(mddev));
5981 return -EBADF;
5982 }
5983
5984 inode = mddev->bitmap_info.file->f_mapping->host;
5985 if (!S_ISREG(inode->i_mode)) {
5986 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5987 mdname(mddev));
5988 err = -EBADF;
5989 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5990 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5991 mdname(mddev));
5992 err = -EBADF;
5993 } else if (atomic_read(&inode->i_writecount) != 1) {
5994 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5995 mdname(mddev));
5996 err = -EBUSY;
5997 }
5998 if (err) {
5999 fput(mddev->bitmap_info.file);
6000 mddev->bitmap_info.file = NULL;
6001 return err;
6002 }
6003 mddev->bitmap_info.offset = 0; /* file overrides offset */
6004 } else if (mddev->bitmap == NULL)
6005 return -ENOENT; /* cannot remove what isn't there */
6006 err = 0;
6007 if (mddev->pers) {
6008 mddev->pers->quiesce(mddev, 1);
6009 if (fd >= 0) {
6010 err = bitmap_create(mddev);
6011 if (!err)
6012 err = bitmap_load(mddev);
6013 }
6014 if (fd < 0 || err) {
6015 bitmap_destroy(mddev);
6016 fd = -1; /* make sure to put the file */
6017 }
6018 mddev->pers->quiesce(mddev, 0);
6019 }
6020 if (fd < 0) {
6021 if (mddev->bitmap_info.file)
6022 fput(mddev->bitmap_info.file);
6023 mddev->bitmap_info.file = NULL;
6024 }
6025
6026 return err;
6027 }
6028
6029 /*
6030 * set_array_info is used two different ways
6031 * The original usage is when creating a new array.
6032 * In this usage, raid_disks is > 0 and it together with
6033 * level, size, not_persistent,layout,chunksize determine the
6034 * shape of the array.
6035 * This will always create an array with a type-0.90.0 superblock.
6036 * The newer usage is when assembling an array.
6037 * In this case raid_disks will be 0, and the major_version field is
6038 * use to determine which style super-blocks are to be found on the devices.
6039 * The minor and patch _version numbers are also kept incase the
6040 * super_block handler wishes to interpret them.
6041 */
6042 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6043 {
6044
6045 if (info->raid_disks == 0) {
6046 /* just setting version number for superblock loading */
6047 if (info->major_version < 0 ||
6048 info->major_version >= ARRAY_SIZE(super_types) ||
6049 super_types[info->major_version].name == NULL) {
6050 /* maybe try to auto-load a module? */
6051 printk(KERN_INFO
6052 "md: superblock version %d not known\n",
6053 info->major_version);
6054 return -EINVAL;
6055 }
6056 mddev->major_version = info->major_version;
6057 mddev->minor_version = info->minor_version;
6058 mddev->patch_version = info->patch_version;
6059 mddev->persistent = !info->not_persistent;
6060 /* ensure mddev_put doesn't delete this now that there
6061 * is some minimal configuration.
6062 */
6063 mddev->ctime = get_seconds();
6064 return 0;
6065 }
6066 mddev->major_version = MD_MAJOR_VERSION;
6067 mddev->minor_version = MD_MINOR_VERSION;
6068 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6069 mddev->ctime = get_seconds();
6070
6071 mddev->level = info->level;
6072 mddev->clevel[0] = 0;
6073 mddev->dev_sectors = 2 * (sector_t)info->size;
6074 mddev->raid_disks = info->raid_disks;
6075 /* don't set md_minor, it is determined by which /dev/md* was
6076 * openned
6077 */
6078 if (info->state & (1<<MD_SB_CLEAN))
6079 mddev->recovery_cp = MaxSector;
6080 else
6081 mddev->recovery_cp = 0;
6082 mddev->persistent = ! info->not_persistent;
6083 mddev->external = 0;
6084
6085 mddev->layout = info->layout;
6086 mddev->chunk_sectors = info->chunk_size >> 9;
6087
6088 mddev->max_disks = MD_SB_DISKS;
6089
6090 if (mddev->persistent)
6091 mddev->flags = 0;
6092 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6093
6094 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6095 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6096 mddev->bitmap_info.offset = 0;
6097
6098 mddev->reshape_position = MaxSector;
6099
6100 /*
6101 * Generate a 128 bit UUID
6102 */
6103 get_random_bytes(mddev->uuid, 16);
6104
6105 mddev->new_level = mddev->level;
6106 mddev->new_chunk_sectors = mddev->chunk_sectors;
6107 mddev->new_layout = mddev->layout;
6108 mddev->delta_disks = 0;
6109 mddev->reshape_backwards = 0;
6110
6111 return 0;
6112 }
6113
6114 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6115 {
6116 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6117
6118 if (mddev->external_size)
6119 return;
6120
6121 mddev->array_sectors = array_sectors;
6122 }
6123 EXPORT_SYMBOL(md_set_array_sectors);
6124
6125 static int update_size(struct mddev *mddev, sector_t num_sectors)
6126 {
6127 struct md_rdev *rdev;
6128 int rv;
6129 int fit = (num_sectors == 0);
6130
6131 if (mddev->pers->resize == NULL)
6132 return -EINVAL;
6133 /* The "num_sectors" is the number of sectors of each device that
6134 * is used. This can only make sense for arrays with redundancy.
6135 * linear and raid0 always use whatever space is available. We can only
6136 * consider changing this number if no resync or reconstruction is
6137 * happening, and if the new size is acceptable. It must fit before the
6138 * sb_start or, if that is <data_offset, it must fit before the size
6139 * of each device. If num_sectors is zero, we find the largest size
6140 * that fits.
6141 */
6142 if (mddev->sync_thread)
6143 return -EBUSY;
6144 if (mddev->ro)
6145 return -EROFS;
6146
6147 rdev_for_each(rdev, mddev) {
6148 sector_t avail = rdev->sectors;
6149
6150 if (fit && (num_sectors == 0 || num_sectors > avail))
6151 num_sectors = avail;
6152 if (avail < num_sectors)
6153 return -ENOSPC;
6154 }
6155 rv = mddev->pers->resize(mddev, num_sectors);
6156 if (!rv)
6157 revalidate_disk(mddev->gendisk);
6158 return rv;
6159 }
6160
6161 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6162 {
6163 int rv;
6164 struct md_rdev *rdev;
6165 /* change the number of raid disks */
6166 if (mddev->pers->check_reshape == NULL)
6167 return -EINVAL;
6168 if (mddev->ro)
6169 return -EROFS;
6170 if (raid_disks <= 0 ||
6171 (mddev->max_disks && raid_disks >= mddev->max_disks))
6172 return -EINVAL;
6173 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6174 return -EBUSY;
6175
6176 rdev_for_each(rdev, mddev) {
6177 if (mddev->raid_disks < raid_disks &&
6178 rdev->data_offset < rdev->new_data_offset)
6179 return -EINVAL;
6180 if (mddev->raid_disks > raid_disks &&
6181 rdev->data_offset > rdev->new_data_offset)
6182 return -EINVAL;
6183 }
6184
6185 mddev->delta_disks = raid_disks - mddev->raid_disks;
6186 if (mddev->delta_disks < 0)
6187 mddev->reshape_backwards = 1;
6188 else if (mddev->delta_disks > 0)
6189 mddev->reshape_backwards = 0;
6190
6191 rv = mddev->pers->check_reshape(mddev);
6192 if (rv < 0) {
6193 mddev->delta_disks = 0;
6194 mddev->reshape_backwards = 0;
6195 }
6196 return rv;
6197 }
6198
6199
6200 /*
6201 * update_array_info is used to change the configuration of an
6202 * on-line array.
6203 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6204 * fields in the info are checked against the array.
6205 * Any differences that cannot be handled will cause an error.
6206 * Normally, only one change can be managed at a time.
6207 */
6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6209 {
6210 int rv = 0;
6211 int cnt = 0;
6212 int state = 0;
6213
6214 /* calculate expected state,ignoring low bits */
6215 if (mddev->bitmap && mddev->bitmap_info.offset)
6216 state |= (1 << MD_SB_BITMAP_PRESENT);
6217
6218 if (mddev->major_version != info->major_version ||
6219 mddev->minor_version != info->minor_version ||
6220 /* mddev->patch_version != info->patch_version || */
6221 mddev->ctime != info->ctime ||
6222 mddev->level != info->level ||
6223 /* mddev->layout != info->layout || */
6224 !mddev->persistent != info->not_persistent||
6225 mddev->chunk_sectors != info->chunk_size >> 9 ||
6226 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6227 ((state^info->state) & 0xfffffe00)
6228 )
6229 return -EINVAL;
6230 /* Check there is only one change */
6231 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6232 cnt++;
6233 if (mddev->raid_disks != info->raid_disks)
6234 cnt++;
6235 if (mddev->layout != info->layout)
6236 cnt++;
6237 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6238 cnt++;
6239 if (cnt == 0)
6240 return 0;
6241 if (cnt > 1)
6242 return -EINVAL;
6243
6244 if (mddev->layout != info->layout) {
6245 /* Change layout
6246 * we don't need to do anything at the md level, the
6247 * personality will take care of it all.
6248 */
6249 if (mddev->pers->check_reshape == NULL)
6250 return -EINVAL;
6251 else {
6252 mddev->new_layout = info->layout;
6253 rv = mddev->pers->check_reshape(mddev);
6254 if (rv)
6255 mddev->new_layout = mddev->layout;
6256 return rv;
6257 }
6258 }
6259 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6260 rv = update_size(mddev, (sector_t)info->size * 2);
6261
6262 if (mddev->raid_disks != info->raid_disks)
6263 rv = update_raid_disks(mddev, info->raid_disks);
6264
6265 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6266 if (mddev->pers->quiesce == NULL)
6267 return -EINVAL;
6268 if (mddev->recovery || mddev->sync_thread)
6269 return -EBUSY;
6270 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6271 /* add the bitmap */
6272 if (mddev->bitmap)
6273 return -EEXIST;
6274 if (mddev->bitmap_info.default_offset == 0)
6275 return -EINVAL;
6276 mddev->bitmap_info.offset =
6277 mddev->bitmap_info.default_offset;
6278 mddev->bitmap_info.space =
6279 mddev->bitmap_info.default_space;
6280 mddev->pers->quiesce(mddev, 1);
6281 rv = bitmap_create(mddev);
6282 if (!rv)
6283 rv = bitmap_load(mddev);
6284 if (rv)
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 } else {
6288 /* remove the bitmap */
6289 if (!mddev->bitmap)
6290 return -ENOENT;
6291 if (mddev->bitmap->storage.file)
6292 return -EINVAL;
6293 mddev->pers->quiesce(mddev, 1);
6294 bitmap_destroy(mddev);
6295 mddev->pers->quiesce(mddev, 0);
6296 mddev->bitmap_info.offset = 0;
6297 }
6298 }
6299 md_update_sb(mddev, 1);
6300 return rv;
6301 }
6302
6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6304 {
6305 struct md_rdev *rdev;
6306 int err = 0;
6307
6308 if (mddev->pers == NULL)
6309 return -ENODEV;
6310
6311 rcu_read_lock();
6312 rdev = find_rdev_rcu(mddev, dev);
6313 if (!rdev)
6314 err = -ENODEV;
6315 else {
6316 md_error(mddev, rdev);
6317 if (!test_bit(Faulty, &rdev->flags))
6318 err = -EBUSY;
6319 }
6320 rcu_read_unlock();
6321 return err;
6322 }
6323
6324 /*
6325 * We have a problem here : there is no easy way to give a CHS
6326 * virtual geometry. We currently pretend that we have a 2 heads
6327 * 4 sectors (with a BIG number of cylinders...). This drives
6328 * dosfs just mad... ;-)
6329 */
6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6331 {
6332 struct mddev *mddev = bdev->bd_disk->private_data;
6333
6334 geo->heads = 2;
6335 geo->sectors = 4;
6336 geo->cylinders = mddev->array_sectors / 8;
6337 return 0;
6338 }
6339
6340 static inline bool md_ioctl_valid(unsigned int cmd)
6341 {
6342 switch (cmd) {
6343 case ADD_NEW_DISK:
6344 case BLKROSET:
6345 case GET_ARRAY_INFO:
6346 case GET_BITMAP_FILE:
6347 case GET_DISK_INFO:
6348 case HOT_ADD_DISK:
6349 case HOT_REMOVE_DISK:
6350 case PRINT_RAID_DEBUG:
6351 case RAID_AUTORUN:
6352 case RAID_VERSION:
6353 case RESTART_ARRAY_RW:
6354 case RUN_ARRAY:
6355 case SET_ARRAY_INFO:
6356 case SET_BITMAP_FILE:
6357 case SET_DISK_FAULTY:
6358 case STOP_ARRAY:
6359 case STOP_ARRAY_RO:
6360 return true;
6361 default:
6362 return false;
6363 }
6364 }
6365
6366 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6367 unsigned int cmd, unsigned long arg)
6368 {
6369 int err = 0;
6370 void __user *argp = (void __user *)arg;
6371 struct mddev *mddev = NULL;
6372 int ro;
6373
6374 if (!md_ioctl_valid(cmd))
6375 return -ENOTTY;
6376
6377 switch (cmd) {
6378 case RAID_VERSION:
6379 case GET_ARRAY_INFO:
6380 case GET_DISK_INFO:
6381 break;
6382 default:
6383 if (!capable(CAP_SYS_ADMIN))
6384 return -EACCES;
6385 }
6386
6387 /*
6388 * Commands dealing with the RAID driver but not any
6389 * particular array:
6390 */
6391 switch (cmd) {
6392 case RAID_VERSION:
6393 err = get_version(argp);
6394 goto done;
6395
6396 case PRINT_RAID_DEBUG:
6397 err = 0;
6398 md_print_devices();
6399 goto done;
6400
6401 #ifndef MODULE
6402 case RAID_AUTORUN:
6403 err = 0;
6404 autostart_arrays(arg);
6405 goto done;
6406 #endif
6407 default:;
6408 }
6409
6410 /*
6411 * Commands creating/starting a new array:
6412 */
6413
6414 mddev = bdev->bd_disk->private_data;
6415
6416 if (!mddev) {
6417 BUG();
6418 goto abort;
6419 }
6420
6421 /* Some actions do not requires the mutex */
6422 switch (cmd) {
6423 case GET_ARRAY_INFO:
6424 if (!mddev->raid_disks && !mddev->external)
6425 err = -ENODEV;
6426 else
6427 err = get_array_info(mddev, argp);
6428 goto abort;
6429
6430 case GET_DISK_INFO:
6431 if (!mddev->raid_disks && !mddev->external)
6432 err = -ENODEV;
6433 else
6434 err = get_disk_info(mddev, argp);
6435 goto abort;
6436
6437 case SET_DISK_FAULTY:
6438 err = set_disk_faulty(mddev, new_decode_dev(arg));
6439 goto abort;
6440 }
6441
6442 if (cmd == ADD_NEW_DISK)
6443 /* need to ensure md_delayed_delete() has completed */
6444 flush_workqueue(md_misc_wq);
6445
6446 if (cmd == HOT_REMOVE_DISK)
6447 /* need to ensure recovery thread has run */
6448 wait_event_interruptible_timeout(mddev->sb_wait,
6449 !test_bit(MD_RECOVERY_NEEDED,
6450 &mddev->flags),
6451 msecs_to_jiffies(5000));
6452 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6453 /* Need to flush page cache, and ensure no-one else opens
6454 * and writes
6455 */
6456 mutex_lock(&mddev->open_mutex);
6457 if (atomic_read(&mddev->openers) > 1) {
6458 mutex_unlock(&mddev->open_mutex);
6459 err = -EBUSY;
6460 goto abort;
6461 }
6462 set_bit(MD_STILL_CLOSED, &mddev->flags);
6463 mutex_unlock(&mddev->open_mutex);
6464 sync_blockdev(bdev);
6465 }
6466 err = mddev_lock(mddev);
6467 if (err) {
6468 printk(KERN_INFO
6469 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6470 err, cmd);
6471 goto abort;
6472 }
6473
6474 if (cmd == SET_ARRAY_INFO) {
6475 mdu_array_info_t info;
6476 if (!arg)
6477 memset(&info, 0, sizeof(info));
6478 else if (copy_from_user(&info, argp, sizeof(info))) {
6479 err = -EFAULT;
6480 goto abort_unlock;
6481 }
6482 if (mddev->pers) {
6483 err = update_array_info(mddev, &info);
6484 if (err) {
6485 printk(KERN_WARNING "md: couldn't update"
6486 " array info. %d\n", err);
6487 goto abort_unlock;
6488 }
6489 goto done_unlock;
6490 }
6491 if (!list_empty(&mddev->disks)) {
6492 printk(KERN_WARNING
6493 "md: array %s already has disks!\n",
6494 mdname(mddev));
6495 err = -EBUSY;
6496 goto abort_unlock;
6497 }
6498 if (mddev->raid_disks) {
6499 printk(KERN_WARNING
6500 "md: array %s already initialised!\n",
6501 mdname(mddev));
6502 err = -EBUSY;
6503 goto abort_unlock;
6504 }
6505 err = set_array_info(mddev, &info);
6506 if (err) {
6507 printk(KERN_WARNING "md: couldn't set"
6508 " array info. %d\n", err);
6509 goto abort_unlock;
6510 }
6511 goto done_unlock;
6512 }
6513
6514 /*
6515 * Commands querying/configuring an existing array:
6516 */
6517 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6518 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6519 if ((!mddev->raid_disks && !mddev->external)
6520 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6521 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6522 && cmd != GET_BITMAP_FILE) {
6523 err = -ENODEV;
6524 goto abort_unlock;
6525 }
6526
6527 /*
6528 * Commands even a read-only array can execute:
6529 */
6530 switch (cmd) {
6531 case GET_BITMAP_FILE:
6532 err = get_bitmap_file(mddev, argp);
6533 goto done_unlock;
6534
6535 case RESTART_ARRAY_RW:
6536 err = restart_array(mddev);
6537 goto done_unlock;
6538
6539 case STOP_ARRAY:
6540 err = do_md_stop(mddev, 0, bdev);
6541 goto done_unlock;
6542
6543 case STOP_ARRAY_RO:
6544 err = md_set_readonly(mddev, bdev);
6545 goto done_unlock;
6546
6547 case HOT_REMOVE_DISK:
6548 err = hot_remove_disk(mddev, new_decode_dev(arg));
6549 goto done_unlock;
6550
6551 case ADD_NEW_DISK:
6552 /* We can support ADD_NEW_DISK on read-only arrays
6553 * on if we are re-adding a preexisting device.
6554 * So require mddev->pers and MD_DISK_SYNC.
6555 */
6556 if (mddev->pers) {
6557 mdu_disk_info_t info;
6558 if (copy_from_user(&info, argp, sizeof(info)))
6559 err = -EFAULT;
6560 else if (!(info.state & (1<<MD_DISK_SYNC)))
6561 /* Need to clear read-only for this */
6562 break;
6563 else
6564 err = add_new_disk(mddev, &info);
6565 goto done_unlock;
6566 }
6567 break;
6568
6569 case BLKROSET:
6570 if (get_user(ro, (int __user *)(arg))) {
6571 err = -EFAULT;
6572 goto done_unlock;
6573 }
6574 err = -EINVAL;
6575
6576 /* if the bdev is going readonly the value of mddev->ro
6577 * does not matter, no writes are coming
6578 */
6579 if (ro)
6580 goto done_unlock;
6581
6582 /* are we are already prepared for writes? */
6583 if (mddev->ro != 1)
6584 goto done_unlock;
6585
6586 /* transitioning to readauto need only happen for
6587 * arrays that call md_write_start
6588 */
6589 if (mddev->pers) {
6590 err = restart_array(mddev);
6591 if (err == 0) {
6592 mddev->ro = 2;
6593 set_disk_ro(mddev->gendisk, 0);
6594 }
6595 }
6596 goto done_unlock;
6597 }
6598
6599 /*
6600 * The remaining ioctls are changing the state of the
6601 * superblock, so we do not allow them on read-only arrays.
6602 * However non-MD ioctls (e.g. get-size) will still come through
6603 * here and hit the 'default' below, so only disallow
6604 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6605 */
6606 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6607 if (mddev->ro == 2) {
6608 mddev->ro = 0;
6609 sysfs_notify_dirent_safe(mddev->sysfs_state);
6610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6611 /* mddev_unlock will wake thread */
6612 /* If a device failed while we were read-only, we
6613 * need to make sure the metadata is updated now.
6614 */
6615 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6616 mddev_unlock(mddev);
6617 wait_event(mddev->sb_wait,
6618 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6619 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6620 mddev_lock_nointr(mddev);
6621 }
6622 } else {
6623 err = -EROFS;
6624 goto abort_unlock;
6625 }
6626 }
6627
6628 switch (cmd) {
6629 case ADD_NEW_DISK:
6630 {
6631 mdu_disk_info_t info;
6632 if (copy_from_user(&info, argp, sizeof(info)))
6633 err = -EFAULT;
6634 else
6635 err = add_new_disk(mddev, &info);
6636 goto done_unlock;
6637 }
6638
6639 case HOT_ADD_DISK:
6640 err = hot_add_disk(mddev, new_decode_dev(arg));
6641 goto done_unlock;
6642
6643 case RUN_ARRAY:
6644 err = do_md_run(mddev);
6645 goto done_unlock;
6646
6647 case SET_BITMAP_FILE:
6648 err = set_bitmap_file(mddev, (int)arg);
6649 goto done_unlock;
6650
6651 default:
6652 err = -EINVAL;
6653 goto abort_unlock;
6654 }
6655
6656 done_unlock:
6657 abort_unlock:
6658 if (mddev->hold_active == UNTIL_IOCTL &&
6659 err != -EINVAL)
6660 mddev->hold_active = 0;
6661 mddev_unlock(mddev);
6662
6663 return err;
6664 done:
6665 if (err)
6666 MD_BUG();
6667 abort:
6668 return err;
6669 }
6670 #ifdef CONFIG_COMPAT
6671 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6672 unsigned int cmd, unsigned long arg)
6673 {
6674 switch (cmd) {
6675 case HOT_REMOVE_DISK:
6676 case HOT_ADD_DISK:
6677 case SET_DISK_FAULTY:
6678 case SET_BITMAP_FILE:
6679 /* These take in integer arg, do not convert */
6680 break;
6681 default:
6682 arg = (unsigned long)compat_ptr(arg);
6683 break;
6684 }
6685
6686 return md_ioctl(bdev, mode, cmd, arg);
6687 }
6688 #endif /* CONFIG_COMPAT */
6689
6690 static int md_open(struct block_device *bdev, fmode_t mode)
6691 {
6692 /*
6693 * Succeed if we can lock the mddev, which confirms that
6694 * it isn't being stopped right now.
6695 */
6696 struct mddev *mddev = mddev_find(bdev->bd_dev);
6697 int err;
6698
6699 if (!mddev)
6700 return -ENODEV;
6701
6702 if (mddev->gendisk != bdev->bd_disk) {
6703 /* we are racing with mddev_put which is discarding this
6704 * bd_disk.
6705 */
6706 mddev_put(mddev);
6707 /* Wait until bdev->bd_disk is definitely gone */
6708 flush_workqueue(md_misc_wq);
6709 /* Then retry the open from the top */
6710 return -ERESTARTSYS;
6711 }
6712 BUG_ON(mddev != bdev->bd_disk->private_data);
6713
6714 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6715 goto out;
6716
6717 err = 0;
6718 atomic_inc(&mddev->openers);
6719 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6720 mutex_unlock(&mddev->open_mutex);
6721
6722 check_disk_change(bdev);
6723 out:
6724 return err;
6725 }
6726
6727 static void md_release(struct gendisk *disk, fmode_t mode)
6728 {
6729 struct mddev *mddev = disk->private_data;
6730
6731 BUG_ON(!mddev);
6732 atomic_dec(&mddev->openers);
6733 mddev_put(mddev);
6734 }
6735
6736 static int md_media_changed(struct gendisk *disk)
6737 {
6738 struct mddev *mddev = disk->private_data;
6739
6740 return mddev->changed;
6741 }
6742
6743 static int md_revalidate(struct gendisk *disk)
6744 {
6745 struct mddev *mddev = disk->private_data;
6746
6747 mddev->changed = 0;
6748 return 0;
6749 }
6750 static const struct block_device_operations md_fops =
6751 {
6752 .owner = THIS_MODULE,
6753 .open = md_open,
6754 .release = md_release,
6755 .ioctl = md_ioctl,
6756 #ifdef CONFIG_COMPAT
6757 .compat_ioctl = md_compat_ioctl,
6758 #endif
6759 .getgeo = md_getgeo,
6760 .media_changed = md_media_changed,
6761 .revalidate_disk= md_revalidate,
6762 };
6763
6764 static int md_thread(void * arg)
6765 {
6766 struct md_thread *thread = arg;
6767
6768 /*
6769 * md_thread is a 'system-thread', it's priority should be very
6770 * high. We avoid resource deadlocks individually in each
6771 * raid personality. (RAID5 does preallocation) We also use RR and
6772 * the very same RT priority as kswapd, thus we will never get
6773 * into a priority inversion deadlock.
6774 *
6775 * we definitely have to have equal or higher priority than
6776 * bdflush, otherwise bdflush will deadlock if there are too
6777 * many dirty RAID5 blocks.
6778 */
6779
6780 allow_signal(SIGKILL);
6781 while (!kthread_should_stop()) {
6782
6783 /* We need to wait INTERRUPTIBLE so that
6784 * we don't add to the load-average.
6785 * That means we need to be sure no signals are
6786 * pending
6787 */
6788 if (signal_pending(current))
6789 flush_signals(current);
6790
6791 wait_event_interruptible_timeout
6792 (thread->wqueue,
6793 test_bit(THREAD_WAKEUP, &thread->flags)
6794 || kthread_should_stop(),
6795 thread->timeout);
6796
6797 clear_bit(THREAD_WAKEUP, &thread->flags);
6798 if (!kthread_should_stop())
6799 thread->run(thread);
6800 }
6801
6802 return 0;
6803 }
6804
6805 void md_wakeup_thread(struct md_thread *thread)
6806 {
6807 if (thread) {
6808 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6809 set_bit(THREAD_WAKEUP, &thread->flags);
6810 wake_up(&thread->wqueue);
6811 }
6812 }
6813
6814 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6815 struct mddev *mddev, const char *name)
6816 {
6817 struct md_thread *thread;
6818
6819 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6820 if (!thread)
6821 return NULL;
6822
6823 init_waitqueue_head(&thread->wqueue);
6824
6825 thread->run = run;
6826 thread->mddev = mddev;
6827 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6828 thread->tsk = kthread_run(md_thread, thread,
6829 "%s_%s",
6830 mdname(thread->mddev),
6831 name);
6832 if (IS_ERR(thread->tsk)) {
6833 kfree(thread);
6834 return NULL;
6835 }
6836 return thread;
6837 }
6838
6839 void md_unregister_thread(struct md_thread **threadp)
6840 {
6841 struct md_thread *thread = *threadp;
6842 if (!thread)
6843 return;
6844 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6845 /* Locking ensures that mddev_unlock does not wake_up a
6846 * non-existent thread
6847 */
6848 spin_lock(&pers_lock);
6849 *threadp = NULL;
6850 spin_unlock(&pers_lock);
6851
6852 kthread_stop(thread->tsk);
6853 kfree(thread);
6854 }
6855
6856 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6857 {
6858 if (!mddev) {
6859 MD_BUG();
6860 return;
6861 }
6862
6863 if (!rdev || test_bit(Faulty, &rdev->flags))
6864 return;
6865
6866 if (!mddev->pers || !mddev->pers->error_handler)
6867 return;
6868 mddev->pers->error_handler(mddev,rdev);
6869 if (mddev->degraded)
6870 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6871 sysfs_notify_dirent_safe(rdev->sysfs_state);
6872 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6874 md_wakeup_thread(mddev->thread);
6875 if (mddev->event_work.func)
6876 queue_work(md_misc_wq, &mddev->event_work);
6877 md_new_event_inintr(mddev);
6878 }
6879
6880 /* seq_file implementation /proc/mdstat */
6881
6882 static void status_unused(struct seq_file *seq)
6883 {
6884 int i = 0;
6885 struct md_rdev *rdev;
6886
6887 seq_printf(seq, "unused devices: ");
6888
6889 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6890 char b[BDEVNAME_SIZE];
6891 i++;
6892 seq_printf(seq, "%s ",
6893 bdevname(rdev->bdev,b));
6894 }
6895 if (!i)
6896 seq_printf(seq, "<none>");
6897
6898 seq_printf(seq, "\n");
6899 }
6900
6901
6902 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6903 {
6904 sector_t max_sectors, resync, res;
6905 unsigned long dt, db;
6906 sector_t rt;
6907 int scale;
6908 unsigned int per_milli;
6909
6910 if (mddev->curr_resync <= 3)
6911 resync = 0;
6912 else
6913 resync = mddev->curr_resync
6914 - atomic_read(&mddev->recovery_active);
6915
6916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6918 max_sectors = mddev->resync_max_sectors;
6919 else
6920 max_sectors = mddev->dev_sectors;
6921
6922 /*
6923 * Should not happen.
6924 */
6925 if (!max_sectors) {
6926 MD_BUG();
6927 return;
6928 }
6929 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6930 * in a sector_t, and (max_sectors>>scale) will fit in a
6931 * u32, as those are the requirements for sector_div.
6932 * Thus 'scale' must be at least 10
6933 */
6934 scale = 10;
6935 if (sizeof(sector_t) > sizeof(unsigned long)) {
6936 while ( max_sectors/2 > (1ULL<<(scale+32)))
6937 scale++;
6938 }
6939 res = (resync>>scale)*1000;
6940 sector_div(res, (u32)((max_sectors>>scale)+1));
6941
6942 per_milli = res;
6943 {
6944 int i, x = per_milli/50, y = 20-x;
6945 seq_printf(seq, "[");
6946 for (i = 0; i < x; i++)
6947 seq_printf(seq, "=");
6948 seq_printf(seq, ">");
6949 for (i = 0; i < y; i++)
6950 seq_printf(seq, ".");
6951 seq_printf(seq, "] ");
6952 }
6953 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6954 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6955 "reshape" :
6956 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6957 "check" :
6958 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6959 "resync" : "recovery"))),
6960 per_milli/10, per_milli % 10,
6961 (unsigned long long) resync/2,
6962 (unsigned long long) max_sectors/2);
6963
6964 /*
6965 * dt: time from mark until now
6966 * db: blocks written from mark until now
6967 * rt: remaining time
6968 *
6969 * rt is a sector_t, so could be 32bit or 64bit.
6970 * So we divide before multiply in case it is 32bit and close
6971 * to the limit.
6972 * We scale the divisor (db) by 32 to avoid losing precision
6973 * near the end of resync when the number of remaining sectors
6974 * is close to 'db'.
6975 * We then divide rt by 32 after multiplying by db to compensate.
6976 * The '+1' avoids division by zero if db is very small.
6977 */
6978 dt = ((jiffies - mddev->resync_mark) / HZ);
6979 if (!dt) dt++;
6980 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6981 - mddev->resync_mark_cnt;
6982
6983 rt = max_sectors - resync; /* number of remaining sectors */
6984 sector_div(rt, db/32+1);
6985 rt *= dt;
6986 rt >>= 5;
6987
6988 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6989 ((unsigned long)rt % 60)/6);
6990
6991 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6992 }
6993
6994 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6995 {
6996 struct list_head *tmp;
6997 loff_t l = *pos;
6998 struct mddev *mddev;
6999
7000 if (l >= 0x10000)
7001 return NULL;
7002 if (!l--)
7003 /* header */
7004 return (void*)1;
7005
7006 spin_lock(&all_mddevs_lock);
7007 list_for_each(tmp,&all_mddevs)
7008 if (!l--) {
7009 mddev = list_entry(tmp, struct mddev, all_mddevs);
7010 mddev_get(mddev);
7011 spin_unlock(&all_mddevs_lock);
7012 return mddev;
7013 }
7014 spin_unlock(&all_mddevs_lock);
7015 if (!l--)
7016 return (void*)2;/* tail */
7017 return NULL;
7018 }
7019
7020 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7021 {
7022 struct list_head *tmp;
7023 struct mddev *next_mddev, *mddev = v;
7024
7025 ++*pos;
7026 if (v == (void*)2)
7027 return NULL;
7028
7029 spin_lock(&all_mddevs_lock);
7030 if (v == (void*)1)
7031 tmp = all_mddevs.next;
7032 else
7033 tmp = mddev->all_mddevs.next;
7034 if (tmp != &all_mddevs)
7035 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7036 else {
7037 next_mddev = (void*)2;
7038 *pos = 0x10000;
7039 }
7040 spin_unlock(&all_mddevs_lock);
7041
7042 if (v != (void*)1)
7043 mddev_put(mddev);
7044 return next_mddev;
7045
7046 }
7047
7048 static void md_seq_stop(struct seq_file *seq, void *v)
7049 {
7050 struct mddev *mddev = v;
7051
7052 if (mddev && v != (void*)1 && v != (void*)2)
7053 mddev_put(mddev);
7054 }
7055
7056 static int md_seq_show(struct seq_file *seq, void *v)
7057 {
7058 struct mddev *mddev = v;
7059 sector_t sectors;
7060 struct md_rdev *rdev;
7061
7062 if (v == (void*)1) {
7063 struct md_personality *pers;
7064 seq_printf(seq, "Personalities : ");
7065 spin_lock(&pers_lock);
7066 list_for_each_entry(pers, &pers_list, list)
7067 seq_printf(seq, "[%s] ", pers->name);
7068
7069 spin_unlock(&pers_lock);
7070 seq_printf(seq, "\n");
7071 seq->poll_event = atomic_read(&md_event_count);
7072 return 0;
7073 }
7074 if (v == (void*)2) {
7075 status_unused(seq);
7076 return 0;
7077 }
7078
7079 if (mddev_lock(mddev) < 0)
7080 return -EINTR;
7081
7082 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7083 seq_printf(seq, "%s : %sactive", mdname(mddev),
7084 mddev->pers ? "" : "in");
7085 if (mddev->pers) {
7086 if (mddev->ro==1)
7087 seq_printf(seq, " (read-only)");
7088 if (mddev->ro==2)
7089 seq_printf(seq, " (auto-read-only)");
7090 seq_printf(seq, " %s", mddev->pers->name);
7091 }
7092
7093 sectors = 0;
7094 rdev_for_each(rdev, mddev) {
7095 char b[BDEVNAME_SIZE];
7096 seq_printf(seq, " %s[%d]",
7097 bdevname(rdev->bdev,b), rdev->desc_nr);
7098 if (test_bit(WriteMostly, &rdev->flags))
7099 seq_printf(seq, "(W)");
7100 if (test_bit(Faulty, &rdev->flags)) {
7101 seq_printf(seq, "(F)");
7102 continue;
7103 }
7104 if (rdev->raid_disk < 0)
7105 seq_printf(seq, "(S)"); /* spare */
7106 if (test_bit(Replacement, &rdev->flags))
7107 seq_printf(seq, "(R)");
7108 sectors += rdev->sectors;
7109 }
7110
7111 if (!list_empty(&mddev->disks)) {
7112 if (mddev->pers)
7113 seq_printf(seq, "\n %llu blocks",
7114 (unsigned long long)
7115 mddev->array_sectors / 2);
7116 else
7117 seq_printf(seq, "\n %llu blocks",
7118 (unsigned long long)sectors / 2);
7119 }
7120 if (mddev->persistent) {
7121 if (mddev->major_version != 0 ||
7122 mddev->minor_version != 90) {
7123 seq_printf(seq," super %d.%d",
7124 mddev->major_version,
7125 mddev->minor_version);
7126 }
7127 } else if (mddev->external)
7128 seq_printf(seq, " super external:%s",
7129 mddev->metadata_type);
7130 else
7131 seq_printf(seq, " super non-persistent");
7132
7133 if (mddev->pers) {
7134 mddev->pers->status(seq, mddev);
7135 seq_printf(seq, "\n ");
7136 if (mddev->pers->sync_request) {
7137 if (mddev->curr_resync > 2) {
7138 status_resync(seq, mddev);
7139 seq_printf(seq, "\n ");
7140 } else if (mddev->curr_resync >= 1)
7141 seq_printf(seq, "\tresync=DELAYED\n ");
7142 else if (mddev->recovery_cp < MaxSector)
7143 seq_printf(seq, "\tresync=PENDING\n ");
7144 }
7145 } else
7146 seq_printf(seq, "\n ");
7147
7148 bitmap_status(seq, mddev->bitmap);
7149
7150 seq_printf(seq, "\n");
7151 }
7152 mddev_unlock(mddev);
7153
7154 return 0;
7155 }
7156
7157 static const struct seq_operations md_seq_ops = {
7158 .start = md_seq_start,
7159 .next = md_seq_next,
7160 .stop = md_seq_stop,
7161 .show = md_seq_show,
7162 };
7163
7164 static int md_seq_open(struct inode *inode, struct file *file)
7165 {
7166 struct seq_file *seq;
7167 int error;
7168
7169 error = seq_open(file, &md_seq_ops);
7170 if (error)
7171 return error;
7172
7173 seq = file->private_data;
7174 seq->poll_event = atomic_read(&md_event_count);
7175 return error;
7176 }
7177
7178 static int md_unloading;
7179 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7180 {
7181 struct seq_file *seq = filp->private_data;
7182 int mask;
7183
7184 if (md_unloading)
7185 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7186 poll_wait(filp, &md_event_waiters, wait);
7187
7188 /* always allow read */
7189 mask = POLLIN | POLLRDNORM;
7190
7191 if (seq->poll_event != atomic_read(&md_event_count))
7192 mask |= POLLERR | POLLPRI;
7193 return mask;
7194 }
7195
7196 static const struct file_operations md_seq_fops = {
7197 .owner = THIS_MODULE,
7198 .open = md_seq_open,
7199 .read = seq_read,
7200 .llseek = seq_lseek,
7201 .release = seq_release_private,
7202 .poll = mdstat_poll,
7203 };
7204
7205 int register_md_personality(struct md_personality *p)
7206 {
7207 spin_lock(&pers_lock);
7208 list_add_tail(&p->list, &pers_list);
7209 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7210 spin_unlock(&pers_lock);
7211 return 0;
7212 }
7213
7214 int unregister_md_personality(struct md_personality *p)
7215 {
7216 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7217 spin_lock(&pers_lock);
7218 list_del_init(&p->list);
7219 spin_unlock(&pers_lock);
7220 return 0;
7221 }
7222
7223 static int is_mddev_idle(struct mddev *mddev, int init)
7224 {
7225 struct md_rdev * rdev;
7226 int idle;
7227 int curr_events;
7228
7229 idle = 1;
7230 rcu_read_lock();
7231 rdev_for_each_rcu(rdev, mddev) {
7232 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7233 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7234 (int)part_stat_read(&disk->part0, sectors[1]) -
7235 atomic_read(&disk->sync_io);
7236 /* sync IO will cause sync_io to increase before the disk_stats
7237 * as sync_io is counted when a request starts, and
7238 * disk_stats is counted when it completes.
7239 * So resync activity will cause curr_events to be smaller than
7240 * when there was no such activity.
7241 * non-sync IO will cause disk_stat to increase without
7242 * increasing sync_io so curr_events will (eventually)
7243 * be larger than it was before. Once it becomes
7244 * substantially larger, the test below will cause
7245 * the array to appear non-idle, and resync will slow
7246 * down.
7247 * If there is a lot of outstanding resync activity when
7248 * we set last_event to curr_events, then all that activity
7249 * completing might cause the array to appear non-idle
7250 * and resync will be slowed down even though there might
7251 * not have been non-resync activity. This will only
7252 * happen once though. 'last_events' will soon reflect
7253 * the state where there is little or no outstanding
7254 * resync requests, and further resync activity will
7255 * always make curr_events less than last_events.
7256 *
7257 */
7258 if (init || curr_events - rdev->last_events > 64) {
7259 rdev->last_events = curr_events;
7260 idle = 0;
7261 }
7262 }
7263 rcu_read_unlock();
7264 return idle;
7265 }
7266
7267 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7268 {
7269 /* another "blocks" (512byte) blocks have been synced */
7270 atomic_sub(blocks, &mddev->recovery_active);
7271 wake_up(&mddev->recovery_wait);
7272 if (!ok) {
7273 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7274 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7275 md_wakeup_thread(mddev->thread);
7276 // stop recovery, signal do_sync ....
7277 }
7278 }
7279
7280
7281 /* md_write_start(mddev, bi)
7282 * If we need to update some array metadata (e.g. 'active' flag
7283 * in superblock) before writing, schedule a superblock update
7284 * and wait for it to complete.
7285 */
7286 void md_write_start(struct mddev *mddev, struct bio *bi)
7287 {
7288 int did_change = 0;
7289 if (bio_data_dir(bi) != WRITE)
7290 return;
7291
7292 BUG_ON(mddev->ro == 1);
7293 if (mddev->ro == 2) {
7294 /* need to switch to read/write */
7295 mddev->ro = 0;
7296 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7297 md_wakeup_thread(mddev->thread);
7298 md_wakeup_thread(mddev->sync_thread);
7299 did_change = 1;
7300 }
7301 atomic_inc(&mddev->writes_pending);
7302 if (mddev->safemode == 1)
7303 mddev->safemode = 0;
7304 if (mddev->in_sync) {
7305 spin_lock_irq(&mddev->write_lock);
7306 if (mddev->in_sync) {
7307 mddev->in_sync = 0;
7308 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7309 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7310 md_wakeup_thread(mddev->thread);
7311 did_change = 1;
7312 }
7313 spin_unlock_irq(&mddev->write_lock);
7314 }
7315 if (did_change)
7316 sysfs_notify_dirent_safe(mddev->sysfs_state);
7317 wait_event(mddev->sb_wait,
7318 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7319 }
7320
7321 void md_write_end(struct mddev *mddev)
7322 {
7323 if (atomic_dec_and_test(&mddev->writes_pending)) {
7324 if (mddev->safemode == 2)
7325 md_wakeup_thread(mddev->thread);
7326 else if (mddev->safemode_delay)
7327 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7328 }
7329 }
7330
7331 /* md_allow_write(mddev)
7332 * Calling this ensures that the array is marked 'active' so that writes
7333 * may proceed without blocking. It is important to call this before
7334 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7335 * Must be called with mddev_lock held.
7336 *
7337 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7338 * is dropped, so return -EAGAIN after notifying userspace.
7339 */
7340 int md_allow_write(struct mddev *mddev)
7341 {
7342 if (!mddev->pers)
7343 return 0;
7344 if (mddev->ro)
7345 return 0;
7346 if (!mddev->pers->sync_request)
7347 return 0;
7348
7349 spin_lock_irq(&mddev->write_lock);
7350 if (mddev->in_sync) {
7351 mddev->in_sync = 0;
7352 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7353 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7354 if (mddev->safemode_delay &&
7355 mddev->safemode == 0)
7356 mddev->safemode = 1;
7357 spin_unlock_irq(&mddev->write_lock);
7358 md_update_sb(mddev, 0);
7359 sysfs_notify_dirent_safe(mddev->sysfs_state);
7360 } else
7361 spin_unlock_irq(&mddev->write_lock);
7362
7363 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7364 return -EAGAIN;
7365 else
7366 return 0;
7367 }
7368 EXPORT_SYMBOL_GPL(md_allow_write);
7369
7370 #define SYNC_MARKS 10
7371 #define SYNC_MARK_STEP (3*HZ)
7372 #define UPDATE_FREQUENCY (5*60*HZ)
7373 void md_do_sync(struct md_thread *thread)
7374 {
7375 struct mddev *mddev = thread->mddev;
7376 struct mddev *mddev2;
7377 unsigned int currspeed = 0,
7378 window;
7379 sector_t max_sectors,j, io_sectors;
7380 unsigned long mark[SYNC_MARKS];
7381 unsigned long update_time;
7382 sector_t mark_cnt[SYNC_MARKS];
7383 int last_mark,m;
7384 struct list_head *tmp;
7385 sector_t last_check;
7386 int skipped = 0;
7387 struct md_rdev *rdev;
7388 char *desc, *action = NULL;
7389 struct blk_plug plug;
7390
7391 /* just incase thread restarts... */
7392 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7393 return;
7394 if (mddev->ro) {/* never try to sync a read-only array */
7395 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7396 return;
7397 }
7398
7399 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7400 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7401 desc = "data-check";
7402 action = "check";
7403 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7404 desc = "requested-resync";
7405 action = "repair";
7406 } else
7407 desc = "resync";
7408 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7409 desc = "reshape";
7410 else
7411 desc = "recovery";
7412
7413 mddev->last_sync_action = action ?: desc;
7414
7415 /* we overload curr_resync somewhat here.
7416 * 0 == not engaged in resync at all
7417 * 2 == checking that there is no conflict with another sync
7418 * 1 == like 2, but have yielded to allow conflicting resync to
7419 * commense
7420 * other == active in resync - this many blocks
7421 *
7422 * Before starting a resync we must have set curr_resync to
7423 * 2, and then checked that every "conflicting" array has curr_resync
7424 * less than ours. When we find one that is the same or higher
7425 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7426 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7427 * This will mean we have to start checking from the beginning again.
7428 *
7429 */
7430
7431 do {
7432 mddev->curr_resync = 2;
7433
7434 try_again:
7435 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7436 goto skip;
7437 for_each_mddev(mddev2, tmp) {
7438 if (mddev2 == mddev)
7439 continue;
7440 if (!mddev->parallel_resync
7441 && mddev2->curr_resync
7442 && match_mddev_units(mddev, mddev2)) {
7443 DEFINE_WAIT(wq);
7444 if (mddev < mddev2 && mddev->curr_resync == 2) {
7445 /* arbitrarily yield */
7446 mddev->curr_resync = 1;
7447 wake_up(&resync_wait);
7448 }
7449 if (mddev > mddev2 && mddev->curr_resync == 1)
7450 /* no need to wait here, we can wait the next
7451 * time 'round when curr_resync == 2
7452 */
7453 continue;
7454 /* We need to wait 'interruptible' so as not to
7455 * contribute to the load average, and not to
7456 * be caught by 'softlockup'
7457 */
7458 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7459 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7460 mddev2->curr_resync >= mddev->curr_resync) {
7461 printk(KERN_INFO "md: delaying %s of %s"
7462 " until %s has finished (they"
7463 " share one or more physical units)\n",
7464 desc, mdname(mddev), mdname(mddev2));
7465 mddev_put(mddev2);
7466 if (signal_pending(current))
7467 flush_signals(current);
7468 schedule();
7469 finish_wait(&resync_wait, &wq);
7470 goto try_again;
7471 }
7472 finish_wait(&resync_wait, &wq);
7473 }
7474 }
7475 } while (mddev->curr_resync < 2);
7476
7477 j = 0;
7478 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7479 /* resync follows the size requested by the personality,
7480 * which defaults to physical size, but can be virtual size
7481 */
7482 max_sectors = mddev->resync_max_sectors;
7483 atomic64_set(&mddev->resync_mismatches, 0);
7484 /* we don't use the checkpoint if there's a bitmap */
7485 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7486 j = mddev->resync_min;
7487 else if (!mddev->bitmap)
7488 j = mddev->recovery_cp;
7489
7490 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7491 max_sectors = mddev->resync_max_sectors;
7492 else {
7493 /* recovery follows the physical size of devices */
7494 max_sectors = mddev->dev_sectors;
7495 j = MaxSector;
7496 rcu_read_lock();
7497 rdev_for_each_rcu(rdev, mddev)
7498 if (rdev->raid_disk >= 0 &&
7499 !test_bit(Faulty, &rdev->flags) &&
7500 !test_bit(In_sync, &rdev->flags) &&
7501 rdev->recovery_offset < j)
7502 j = rdev->recovery_offset;
7503 rcu_read_unlock();
7504
7505 /* If there is a bitmap, we need to make sure all
7506 * writes that started before we added a spare
7507 * complete before we start doing a recovery.
7508 * Otherwise the write might complete and (via
7509 * bitmap_endwrite) set a bit in the bitmap after the
7510 * recovery has checked that bit and skipped that
7511 * region.
7512 */
7513 if (mddev->bitmap) {
7514 mddev->pers->quiesce(mddev, 1);
7515 mddev->pers->quiesce(mddev, 0);
7516 }
7517 }
7518
7519 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7520 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7521 " %d KB/sec/disk.\n", speed_min(mddev));
7522 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7523 "(but not more than %d KB/sec) for %s.\n",
7524 speed_max(mddev), desc);
7525
7526 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7527
7528 io_sectors = 0;
7529 for (m = 0; m < SYNC_MARKS; m++) {
7530 mark[m] = jiffies;
7531 mark_cnt[m] = io_sectors;
7532 }
7533 last_mark = 0;
7534 mddev->resync_mark = mark[last_mark];
7535 mddev->resync_mark_cnt = mark_cnt[last_mark];
7536
7537 /*
7538 * Tune reconstruction:
7539 */
7540 window = 32*(PAGE_SIZE/512);
7541 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7542 window/2, (unsigned long long)max_sectors/2);
7543
7544 atomic_set(&mddev->recovery_active, 0);
7545 last_check = 0;
7546
7547 if (j>2) {
7548 printk(KERN_INFO
7549 "md: resuming %s of %s from checkpoint.\n",
7550 desc, mdname(mddev));
7551 mddev->curr_resync = j;
7552 } else
7553 mddev->curr_resync = 3; /* no longer delayed */
7554 mddev->curr_resync_completed = j;
7555 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7556 md_new_event(mddev);
7557 update_time = jiffies;
7558
7559 blk_start_plug(&plug);
7560 while (j < max_sectors) {
7561 sector_t sectors;
7562
7563 skipped = 0;
7564
7565 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7566 ((mddev->curr_resync > mddev->curr_resync_completed &&
7567 (mddev->curr_resync - mddev->curr_resync_completed)
7568 > (max_sectors >> 4)) ||
7569 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7570 (j - mddev->curr_resync_completed)*2
7571 >= mddev->resync_max - mddev->curr_resync_completed
7572 )) {
7573 /* time to update curr_resync_completed */
7574 wait_event(mddev->recovery_wait,
7575 atomic_read(&mddev->recovery_active) == 0);
7576 mddev->curr_resync_completed = j;
7577 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7578 j > mddev->recovery_cp)
7579 mddev->recovery_cp = j;
7580 update_time = jiffies;
7581 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7582 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7583 }
7584
7585 while (j >= mddev->resync_max &&
7586 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7587 /* As this condition is controlled by user-space,
7588 * we can block indefinitely, so use '_interruptible'
7589 * to avoid triggering warnings.
7590 */
7591 flush_signals(current); /* just in case */
7592 wait_event_interruptible(mddev->recovery_wait,
7593 mddev->resync_max > j
7594 || test_bit(MD_RECOVERY_INTR,
7595 &mddev->recovery));
7596 }
7597
7598 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7599 break;
7600
7601 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7602 currspeed < speed_min(mddev));
7603 if (sectors == 0) {
7604 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7605 break;
7606 }
7607
7608 if (!skipped) { /* actual IO requested */
7609 io_sectors += sectors;
7610 atomic_add(sectors, &mddev->recovery_active);
7611 }
7612
7613 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7614 break;
7615
7616 j += sectors;
7617 if (j > 2)
7618 mddev->curr_resync = j;
7619 mddev->curr_mark_cnt = io_sectors;
7620 if (last_check == 0)
7621 /* this is the earliest that rebuild will be
7622 * visible in /proc/mdstat
7623 */
7624 md_new_event(mddev);
7625
7626 if (last_check + window > io_sectors || j == max_sectors)
7627 continue;
7628
7629 last_check = io_sectors;
7630 repeat:
7631 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7632 /* step marks */
7633 int next = (last_mark+1) % SYNC_MARKS;
7634
7635 mddev->resync_mark = mark[next];
7636 mddev->resync_mark_cnt = mark_cnt[next];
7637 mark[next] = jiffies;
7638 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7639 last_mark = next;
7640 }
7641
7642 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7643 break;
7644
7645 /*
7646 * this loop exits only if either when we are slower than
7647 * the 'hard' speed limit, or the system was IO-idle for
7648 * a jiffy.
7649 * the system might be non-idle CPU-wise, but we only care
7650 * about not overloading the IO subsystem. (things like an
7651 * e2fsck being done on the RAID array should execute fast)
7652 */
7653 cond_resched();
7654
7655 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7656 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7657
7658 if (currspeed > speed_min(mddev)) {
7659 if ((currspeed > speed_max(mddev)) ||
7660 !is_mddev_idle(mddev, 0)) {
7661 msleep(500);
7662 goto repeat;
7663 }
7664 }
7665 }
7666 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7667 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7668 ? "interrupted" : "done");
7669 /*
7670 * this also signals 'finished resyncing' to md_stop
7671 */
7672 blk_finish_plug(&plug);
7673 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7674
7675 /* tell personality that we are finished */
7676 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7677
7678 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7679 mddev->curr_resync > 2) {
7680 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7681 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7682 if (mddev->curr_resync >= mddev->recovery_cp) {
7683 printk(KERN_INFO
7684 "md: checkpointing %s of %s.\n",
7685 desc, mdname(mddev));
7686 if (test_bit(MD_RECOVERY_ERROR,
7687 &mddev->recovery))
7688 mddev->recovery_cp =
7689 mddev->curr_resync_completed;
7690 else
7691 mddev->recovery_cp =
7692 mddev->curr_resync;
7693 }
7694 } else
7695 mddev->recovery_cp = MaxSector;
7696 } else {
7697 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7698 mddev->curr_resync = MaxSector;
7699 rcu_read_lock();
7700 rdev_for_each_rcu(rdev, mddev)
7701 if (rdev->raid_disk >= 0 &&
7702 mddev->delta_disks >= 0 &&
7703 !test_bit(Faulty, &rdev->flags) &&
7704 !test_bit(In_sync, &rdev->flags) &&
7705 rdev->recovery_offset < mddev->curr_resync)
7706 rdev->recovery_offset = mddev->curr_resync;
7707 rcu_read_unlock();
7708 }
7709 }
7710 skip:
7711 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7712
7713 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7714 /* We completed so min/max setting can be forgotten if used. */
7715 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7716 mddev->resync_min = 0;
7717 mddev->resync_max = MaxSector;
7718 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7719 mddev->resync_min = mddev->curr_resync_completed;
7720 mddev->curr_resync = 0;
7721 wake_up(&resync_wait);
7722 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7723 md_wakeup_thread(mddev->thread);
7724 return;
7725 }
7726 EXPORT_SYMBOL_GPL(md_do_sync);
7727
7728 static int remove_and_add_spares(struct mddev *mddev,
7729 struct md_rdev *this)
7730 {
7731 struct md_rdev *rdev;
7732 int spares = 0;
7733 int removed = 0;
7734
7735 rdev_for_each(rdev, mddev)
7736 if ((this == NULL || rdev == this) &&
7737 rdev->raid_disk >= 0 &&
7738 !test_bit(Blocked, &rdev->flags) &&
7739 (test_bit(Faulty, &rdev->flags) ||
7740 ! test_bit(In_sync, &rdev->flags)) &&
7741 atomic_read(&rdev->nr_pending)==0) {
7742 if (mddev->pers->hot_remove_disk(
7743 mddev, rdev) == 0) {
7744 sysfs_unlink_rdev(mddev, rdev);
7745 rdev->raid_disk = -1;
7746 removed++;
7747 }
7748 }
7749 if (removed && mddev->kobj.sd)
7750 sysfs_notify(&mddev->kobj, NULL, "degraded");
7751
7752 if (this)
7753 goto no_add;
7754
7755 rdev_for_each(rdev, mddev) {
7756 if (rdev->raid_disk >= 0 &&
7757 !test_bit(In_sync, &rdev->flags) &&
7758 !test_bit(Faulty, &rdev->flags))
7759 spares++;
7760 if (rdev->raid_disk >= 0)
7761 continue;
7762 if (test_bit(Faulty, &rdev->flags))
7763 continue;
7764 if (mddev->ro &&
7765 ! (rdev->saved_raid_disk >= 0 &&
7766 !test_bit(Bitmap_sync, &rdev->flags)))
7767 continue;
7768
7769 if (rdev->saved_raid_disk < 0)
7770 rdev->recovery_offset = 0;
7771 if (mddev->pers->
7772 hot_add_disk(mddev, rdev) == 0) {
7773 if (sysfs_link_rdev(mddev, rdev))
7774 /* failure here is OK */;
7775 spares++;
7776 md_new_event(mddev);
7777 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7778 }
7779 }
7780 no_add:
7781 if (removed)
7782 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7783 return spares;
7784 }
7785
7786 /*
7787 * This routine is regularly called by all per-raid-array threads to
7788 * deal with generic issues like resync and super-block update.
7789 * Raid personalities that don't have a thread (linear/raid0) do not
7790 * need this as they never do any recovery or update the superblock.
7791 *
7792 * It does not do any resync itself, but rather "forks" off other threads
7793 * to do that as needed.
7794 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7795 * "->recovery" and create a thread at ->sync_thread.
7796 * When the thread finishes it sets MD_RECOVERY_DONE
7797 * and wakeups up this thread which will reap the thread and finish up.
7798 * This thread also removes any faulty devices (with nr_pending == 0).
7799 *
7800 * The overall approach is:
7801 * 1/ if the superblock needs updating, update it.
7802 * 2/ If a recovery thread is running, don't do anything else.
7803 * 3/ If recovery has finished, clean up, possibly marking spares active.
7804 * 4/ If there are any faulty devices, remove them.
7805 * 5/ If array is degraded, try to add spares devices
7806 * 6/ If array has spares or is not in-sync, start a resync thread.
7807 */
7808 void md_check_recovery(struct mddev *mddev)
7809 {
7810 if (mddev->suspended)
7811 return;
7812
7813 if (mddev->bitmap)
7814 bitmap_daemon_work(mddev);
7815
7816 if (signal_pending(current)) {
7817 if (mddev->pers->sync_request && !mddev->external) {
7818 printk(KERN_INFO "md: %s in immediate safe mode\n",
7819 mdname(mddev));
7820 mddev->safemode = 2;
7821 }
7822 flush_signals(current);
7823 }
7824
7825 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7826 return;
7827 if ( ! (
7828 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7829 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7830 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7831 (mddev->external == 0 && mddev->safemode == 1) ||
7832 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7833 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7834 ))
7835 return;
7836
7837 if (mddev_trylock(mddev)) {
7838 int spares = 0;
7839
7840 if (mddev->ro) {
7841 /* On a read-only array we can:
7842 * - remove failed devices
7843 * - add already-in_sync devices if the array itself
7844 * is in-sync.
7845 * As we only add devices that are already in-sync,
7846 * we can activate the spares immediately.
7847 */
7848 remove_and_add_spares(mddev, NULL);
7849 /* There is no thread, but we need to call
7850 * ->spare_active and clear saved_raid_disk
7851 */
7852 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7853 md_reap_sync_thread(mddev);
7854 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7855 goto unlock;
7856 }
7857
7858 if (!mddev->external) {
7859 int did_change = 0;
7860 spin_lock_irq(&mddev->write_lock);
7861 if (mddev->safemode &&
7862 !atomic_read(&mddev->writes_pending) &&
7863 !mddev->in_sync &&
7864 mddev->recovery_cp == MaxSector) {
7865 mddev->in_sync = 1;
7866 did_change = 1;
7867 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7868 }
7869 if (mddev->safemode == 1)
7870 mddev->safemode = 0;
7871 spin_unlock_irq(&mddev->write_lock);
7872 if (did_change)
7873 sysfs_notify_dirent_safe(mddev->sysfs_state);
7874 }
7875
7876 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7877 md_update_sb(mddev, 0);
7878
7879 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7880 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7881 /* resync/recovery still happening */
7882 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7883 goto unlock;
7884 }
7885 if (mddev->sync_thread) {
7886 md_reap_sync_thread(mddev);
7887 goto unlock;
7888 }
7889 /* Set RUNNING before clearing NEEDED to avoid
7890 * any transients in the value of "sync_action".
7891 */
7892 mddev->curr_resync_completed = 0;
7893 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7894 /* Clear some bits that don't mean anything, but
7895 * might be left set
7896 */
7897 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7898 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7899
7900 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7901 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7902 goto unlock;
7903 /* no recovery is running.
7904 * remove any failed drives, then
7905 * add spares if possible.
7906 * Spares are also removed and re-added, to allow
7907 * the personality to fail the re-add.
7908 */
7909
7910 if (mddev->reshape_position != MaxSector) {
7911 if (mddev->pers->check_reshape == NULL ||
7912 mddev->pers->check_reshape(mddev) != 0)
7913 /* Cannot proceed */
7914 goto unlock;
7915 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7916 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7917 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7918 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7919 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7920 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7921 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7922 } else if (mddev->recovery_cp < MaxSector) {
7923 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7924 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7925 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7926 /* nothing to be done ... */
7927 goto unlock;
7928
7929 if (mddev->pers->sync_request) {
7930 if (spares) {
7931 /* We are adding a device or devices to an array
7932 * which has the bitmap stored on all devices.
7933 * So make sure all bitmap pages get written
7934 */
7935 bitmap_write_all(mddev->bitmap);
7936 }
7937 mddev->sync_thread = md_register_thread(md_do_sync,
7938 mddev,
7939 "resync");
7940 if (!mddev->sync_thread) {
7941 printk(KERN_ERR "%s: could not start resync"
7942 " thread...\n",
7943 mdname(mddev));
7944 /* leave the spares where they are, it shouldn't hurt */
7945 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7946 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7947 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7948 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7949 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7950 } else
7951 md_wakeup_thread(mddev->sync_thread);
7952 sysfs_notify_dirent_safe(mddev->sysfs_action);
7953 md_new_event(mddev);
7954 }
7955 unlock:
7956 wake_up(&mddev->sb_wait);
7957
7958 if (!mddev->sync_thread) {
7959 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7960 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7961 &mddev->recovery))
7962 if (mddev->sysfs_action)
7963 sysfs_notify_dirent_safe(mddev->sysfs_action);
7964 }
7965 mddev_unlock(mddev);
7966 }
7967 }
7968
7969 void md_reap_sync_thread(struct mddev *mddev)
7970 {
7971 struct md_rdev *rdev;
7972
7973 /* resync has finished, collect result */
7974 md_unregister_thread(&mddev->sync_thread);
7975 wake_up(&resync_wait);
7976 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7977 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7978 /* success...*/
7979 /* activate any spares */
7980 if (mddev->pers->spare_active(mddev)) {
7981 sysfs_notify(&mddev->kobj, NULL,
7982 "degraded");
7983 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7984 }
7985 }
7986 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7987 mddev->pers->finish_reshape)
7988 mddev->pers->finish_reshape(mddev);
7989
7990 /* If array is no-longer degraded, then any saved_raid_disk
7991 * information must be scrapped.
7992 */
7993 if (!mddev->degraded)
7994 rdev_for_each(rdev, mddev)
7995 rdev->saved_raid_disk = -1;
7996
7997 md_update_sb(mddev, 1);
7998 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7999 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8000 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8001 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8002 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8003 /* flag recovery needed just to double check */
8004 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8005 sysfs_notify_dirent_safe(mddev->sysfs_action);
8006 md_new_event(mddev);
8007 if (mddev->event_work.func)
8008 queue_work(md_misc_wq, &mddev->event_work);
8009 }
8010
8011 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8012 {
8013 sysfs_notify_dirent_safe(rdev->sysfs_state);
8014 wait_event_timeout(rdev->blocked_wait,
8015 !test_bit(Blocked, &rdev->flags) &&
8016 !test_bit(BlockedBadBlocks, &rdev->flags),
8017 msecs_to_jiffies(5000));
8018 rdev_dec_pending(rdev, mddev);
8019 }
8020 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8021
8022 void md_finish_reshape(struct mddev *mddev)
8023 {
8024 /* called be personality module when reshape completes. */
8025 struct md_rdev *rdev;
8026
8027 rdev_for_each(rdev, mddev) {
8028 if (rdev->data_offset > rdev->new_data_offset)
8029 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8030 else
8031 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8032 rdev->data_offset = rdev->new_data_offset;
8033 }
8034 }
8035 EXPORT_SYMBOL(md_finish_reshape);
8036
8037 /* Bad block management.
8038 * We can record which blocks on each device are 'bad' and so just
8039 * fail those blocks, or that stripe, rather than the whole device.
8040 * Entries in the bad-block table are 64bits wide. This comprises:
8041 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8042 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8043 * A 'shift' can be set so that larger blocks are tracked and
8044 * consequently larger devices can be covered.
8045 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8046 *
8047 * Locking of the bad-block table uses a seqlock so md_is_badblock
8048 * might need to retry if it is very unlucky.
8049 * We will sometimes want to check for bad blocks in a bi_end_io function,
8050 * so we use the write_seqlock_irq variant.
8051 *
8052 * When looking for a bad block we specify a range and want to
8053 * know if any block in the range is bad. So we binary-search
8054 * to the last range that starts at-or-before the given endpoint,
8055 * (or "before the sector after the target range")
8056 * then see if it ends after the given start.
8057 * We return
8058 * 0 if there are no known bad blocks in the range
8059 * 1 if there are known bad block which are all acknowledged
8060 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8061 * plus the start/length of the first bad section we overlap.
8062 */
8063 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8064 sector_t *first_bad, int *bad_sectors)
8065 {
8066 int hi;
8067 int lo;
8068 u64 *p = bb->page;
8069 int rv;
8070 sector_t target = s + sectors;
8071 unsigned seq;
8072
8073 if (bb->shift > 0) {
8074 /* round the start down, and the end up */
8075 s >>= bb->shift;
8076 target += (1<<bb->shift) - 1;
8077 target >>= bb->shift;
8078 sectors = target - s;
8079 }
8080 /* 'target' is now the first block after the bad range */
8081
8082 retry:
8083 seq = read_seqbegin(&bb->lock);
8084 lo = 0;
8085 rv = 0;
8086 hi = bb->count;
8087
8088 /* Binary search between lo and hi for 'target'
8089 * i.e. for the last range that starts before 'target'
8090 */
8091 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8092 * are known not to be the last range before target.
8093 * VARIANT: hi-lo is the number of possible
8094 * ranges, and decreases until it reaches 1
8095 */
8096 while (hi - lo > 1) {
8097 int mid = (lo + hi) / 2;
8098 sector_t a = BB_OFFSET(p[mid]);
8099 if (a < target)
8100 /* This could still be the one, earlier ranges
8101 * could not. */
8102 lo = mid;
8103 else
8104 /* This and later ranges are definitely out. */
8105 hi = mid;
8106 }
8107 /* 'lo' might be the last that started before target, but 'hi' isn't */
8108 if (hi > lo) {
8109 /* need to check all range that end after 's' to see if
8110 * any are unacknowledged.
8111 */
8112 while (lo >= 0 &&
8113 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8114 if (BB_OFFSET(p[lo]) < target) {
8115 /* starts before the end, and finishes after
8116 * the start, so they must overlap
8117 */
8118 if (rv != -1 && BB_ACK(p[lo]))
8119 rv = 1;
8120 else
8121 rv = -1;
8122 *first_bad = BB_OFFSET(p[lo]);
8123 *bad_sectors = BB_LEN(p[lo]);
8124 }
8125 lo--;
8126 }
8127 }
8128
8129 if (read_seqretry(&bb->lock, seq))
8130 goto retry;
8131
8132 return rv;
8133 }
8134 EXPORT_SYMBOL_GPL(md_is_badblock);
8135
8136 /*
8137 * Add a range of bad blocks to the table.
8138 * This might extend the table, or might contract it
8139 * if two adjacent ranges can be merged.
8140 * We binary-search to find the 'insertion' point, then
8141 * decide how best to handle it.
8142 */
8143 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8144 int acknowledged)
8145 {
8146 u64 *p;
8147 int lo, hi;
8148 int rv = 1;
8149 unsigned long flags;
8150
8151 if (bb->shift < 0)
8152 /* badblocks are disabled */
8153 return 0;
8154
8155 if (bb->shift) {
8156 /* round the start down, and the end up */
8157 sector_t next = s + sectors;
8158 s >>= bb->shift;
8159 next += (1<<bb->shift) - 1;
8160 next >>= bb->shift;
8161 sectors = next - s;
8162 }
8163
8164 write_seqlock_irqsave(&bb->lock, flags);
8165
8166 p = bb->page;
8167 lo = 0;
8168 hi = bb->count;
8169 /* Find the last range that starts at-or-before 's' */
8170 while (hi - lo > 1) {
8171 int mid = (lo + hi) / 2;
8172 sector_t a = BB_OFFSET(p[mid]);
8173 if (a <= s)
8174 lo = mid;
8175 else
8176 hi = mid;
8177 }
8178 if (hi > lo && BB_OFFSET(p[lo]) > s)
8179 hi = lo;
8180
8181 if (hi > lo) {
8182 /* we found a range that might merge with the start
8183 * of our new range
8184 */
8185 sector_t a = BB_OFFSET(p[lo]);
8186 sector_t e = a + BB_LEN(p[lo]);
8187 int ack = BB_ACK(p[lo]);
8188 if (e >= s) {
8189 /* Yes, we can merge with a previous range */
8190 if (s == a && s + sectors >= e)
8191 /* new range covers old */
8192 ack = acknowledged;
8193 else
8194 ack = ack && acknowledged;
8195
8196 if (e < s + sectors)
8197 e = s + sectors;
8198 if (e - a <= BB_MAX_LEN) {
8199 p[lo] = BB_MAKE(a, e-a, ack);
8200 s = e;
8201 } else {
8202 /* does not all fit in one range,
8203 * make p[lo] maximal
8204 */
8205 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8206 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8207 s = a + BB_MAX_LEN;
8208 }
8209 sectors = e - s;
8210 }
8211 }
8212 if (sectors && hi < bb->count) {
8213 /* 'hi' points to the first range that starts after 's'.
8214 * Maybe we can merge with the start of that range */
8215 sector_t a = BB_OFFSET(p[hi]);
8216 sector_t e = a + BB_LEN(p[hi]);
8217 int ack = BB_ACK(p[hi]);
8218 if (a <= s + sectors) {
8219 /* merging is possible */
8220 if (e <= s + sectors) {
8221 /* full overlap */
8222 e = s + sectors;
8223 ack = acknowledged;
8224 } else
8225 ack = ack && acknowledged;
8226
8227 a = s;
8228 if (e - a <= BB_MAX_LEN) {
8229 p[hi] = BB_MAKE(a, e-a, ack);
8230 s = e;
8231 } else {
8232 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8233 s = a + BB_MAX_LEN;
8234 }
8235 sectors = e - s;
8236 lo = hi;
8237 hi++;
8238 }
8239 }
8240 if (sectors == 0 && hi < bb->count) {
8241 /* we might be able to combine lo and hi */
8242 /* Note: 's' is at the end of 'lo' */
8243 sector_t a = BB_OFFSET(p[hi]);
8244 int lolen = BB_LEN(p[lo]);
8245 int hilen = BB_LEN(p[hi]);
8246 int newlen = lolen + hilen - (s - a);
8247 if (s >= a && newlen < BB_MAX_LEN) {
8248 /* yes, we can combine them */
8249 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8250 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8251 memmove(p + hi, p + hi + 1,
8252 (bb->count - hi - 1) * 8);
8253 bb->count--;
8254 }
8255 }
8256 while (sectors) {
8257 /* didn't merge (it all).
8258 * Need to add a range just before 'hi' */
8259 if (bb->count >= MD_MAX_BADBLOCKS) {
8260 /* No room for more */
8261 rv = 0;
8262 break;
8263 } else {
8264 int this_sectors = sectors;
8265 memmove(p + hi + 1, p + hi,
8266 (bb->count - hi) * 8);
8267 bb->count++;
8268
8269 if (this_sectors > BB_MAX_LEN)
8270 this_sectors = BB_MAX_LEN;
8271 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8272 sectors -= this_sectors;
8273 s += this_sectors;
8274 }
8275 }
8276
8277 bb->changed = 1;
8278 if (!acknowledged)
8279 bb->unacked_exist = 1;
8280 write_sequnlock_irqrestore(&bb->lock, flags);
8281
8282 return rv;
8283 }
8284
8285 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8286 int is_new)
8287 {
8288 int rv;
8289 if (is_new)
8290 s += rdev->new_data_offset;
8291 else
8292 s += rdev->data_offset;
8293 rv = md_set_badblocks(&rdev->badblocks,
8294 s, sectors, 0);
8295 if (rv) {
8296 /* Make sure they get written out promptly */
8297 sysfs_notify_dirent_safe(rdev->sysfs_state);
8298 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8299 md_wakeup_thread(rdev->mddev->thread);
8300 }
8301 return rv;
8302 }
8303 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8304
8305 /*
8306 * Remove a range of bad blocks from the table.
8307 * This may involve extending the table if we spilt a region,
8308 * but it must not fail. So if the table becomes full, we just
8309 * drop the remove request.
8310 */
8311 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8312 {
8313 u64 *p;
8314 int lo, hi;
8315 sector_t target = s + sectors;
8316 int rv = 0;
8317
8318 if (bb->shift > 0) {
8319 /* When clearing we round the start up and the end down.
8320 * This should not matter as the shift should align with
8321 * the block size and no rounding should ever be needed.
8322 * However it is better the think a block is bad when it
8323 * isn't than to think a block is not bad when it is.
8324 */
8325 s += (1<<bb->shift) - 1;
8326 s >>= bb->shift;
8327 target >>= bb->shift;
8328 sectors = target - s;
8329 }
8330
8331 write_seqlock_irq(&bb->lock);
8332
8333 p = bb->page;
8334 lo = 0;
8335 hi = bb->count;
8336 /* Find the last range that starts before 'target' */
8337 while (hi - lo > 1) {
8338 int mid = (lo + hi) / 2;
8339 sector_t a = BB_OFFSET(p[mid]);
8340 if (a < target)
8341 lo = mid;
8342 else
8343 hi = mid;
8344 }
8345 if (hi > lo) {
8346 /* p[lo] is the last range that could overlap the
8347 * current range. Earlier ranges could also overlap,
8348 * but only this one can overlap the end of the range.
8349 */
8350 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8351 /* Partial overlap, leave the tail of this range */
8352 int ack = BB_ACK(p[lo]);
8353 sector_t a = BB_OFFSET(p[lo]);
8354 sector_t end = a + BB_LEN(p[lo]);
8355
8356 if (a < s) {
8357 /* we need to split this range */
8358 if (bb->count >= MD_MAX_BADBLOCKS) {
8359 rv = -ENOSPC;
8360 goto out;
8361 }
8362 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8363 bb->count++;
8364 p[lo] = BB_MAKE(a, s-a, ack);
8365 lo++;
8366 }
8367 p[lo] = BB_MAKE(target, end - target, ack);
8368 /* there is no longer an overlap */
8369 hi = lo;
8370 lo--;
8371 }
8372 while (lo >= 0 &&
8373 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8374 /* This range does overlap */
8375 if (BB_OFFSET(p[lo]) < s) {
8376 /* Keep the early parts of this range. */
8377 int ack = BB_ACK(p[lo]);
8378 sector_t start = BB_OFFSET(p[lo]);
8379 p[lo] = BB_MAKE(start, s - start, ack);
8380 /* now low doesn't overlap, so.. */
8381 break;
8382 }
8383 lo--;
8384 }
8385 /* 'lo' is strictly before, 'hi' is strictly after,
8386 * anything between needs to be discarded
8387 */
8388 if (hi - lo > 1) {
8389 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8390 bb->count -= (hi - lo - 1);
8391 }
8392 }
8393
8394 bb->changed = 1;
8395 out:
8396 write_sequnlock_irq(&bb->lock);
8397 return rv;
8398 }
8399
8400 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8401 int is_new)
8402 {
8403 if (is_new)
8404 s += rdev->new_data_offset;
8405 else
8406 s += rdev->data_offset;
8407 return md_clear_badblocks(&rdev->badblocks,
8408 s, sectors);
8409 }
8410 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8411
8412 /*
8413 * Acknowledge all bad blocks in a list.
8414 * This only succeeds if ->changed is clear. It is used by
8415 * in-kernel metadata updates
8416 */
8417 void md_ack_all_badblocks(struct badblocks *bb)
8418 {
8419 if (bb->page == NULL || bb->changed)
8420 /* no point even trying */
8421 return;
8422 write_seqlock_irq(&bb->lock);
8423
8424 if (bb->changed == 0 && bb->unacked_exist) {
8425 u64 *p = bb->page;
8426 int i;
8427 for (i = 0; i < bb->count ; i++) {
8428 if (!BB_ACK(p[i])) {
8429 sector_t start = BB_OFFSET(p[i]);
8430 int len = BB_LEN(p[i]);
8431 p[i] = BB_MAKE(start, len, 1);
8432 }
8433 }
8434 bb->unacked_exist = 0;
8435 }
8436 write_sequnlock_irq(&bb->lock);
8437 }
8438 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8439
8440 /* sysfs access to bad-blocks list.
8441 * We present two files.
8442 * 'bad-blocks' lists sector numbers and lengths of ranges that
8443 * are recorded as bad. The list is truncated to fit within
8444 * the one-page limit of sysfs.
8445 * Writing "sector length" to this file adds an acknowledged
8446 * bad block list.
8447 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8448 * been acknowledged. Writing to this file adds bad blocks
8449 * without acknowledging them. This is largely for testing.
8450 */
8451
8452 static ssize_t
8453 badblocks_show(struct badblocks *bb, char *page, int unack)
8454 {
8455 size_t len;
8456 int i;
8457 u64 *p = bb->page;
8458 unsigned seq;
8459
8460 if (bb->shift < 0)
8461 return 0;
8462
8463 retry:
8464 seq = read_seqbegin(&bb->lock);
8465
8466 len = 0;
8467 i = 0;
8468
8469 while (len < PAGE_SIZE && i < bb->count) {
8470 sector_t s = BB_OFFSET(p[i]);
8471 unsigned int length = BB_LEN(p[i]);
8472 int ack = BB_ACK(p[i]);
8473 i++;
8474
8475 if (unack && ack)
8476 continue;
8477
8478 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8479 (unsigned long long)s << bb->shift,
8480 length << bb->shift);
8481 }
8482 if (unack && len == 0)
8483 bb->unacked_exist = 0;
8484
8485 if (read_seqretry(&bb->lock, seq))
8486 goto retry;
8487
8488 return len;
8489 }
8490
8491 #define DO_DEBUG 1
8492
8493 static ssize_t
8494 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8495 {
8496 unsigned long long sector;
8497 int length;
8498 char newline;
8499 #ifdef DO_DEBUG
8500 /* Allow clearing via sysfs *only* for testing/debugging.
8501 * Normally only a successful write may clear a badblock
8502 */
8503 int clear = 0;
8504 if (page[0] == '-') {
8505 clear = 1;
8506 page++;
8507 }
8508 #endif /* DO_DEBUG */
8509
8510 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8511 case 3:
8512 if (newline != '\n')
8513 return -EINVAL;
8514 case 2:
8515 if (length <= 0)
8516 return -EINVAL;
8517 break;
8518 default:
8519 return -EINVAL;
8520 }
8521
8522 #ifdef DO_DEBUG
8523 if (clear) {
8524 md_clear_badblocks(bb, sector, length);
8525 return len;
8526 }
8527 #endif /* DO_DEBUG */
8528 if (md_set_badblocks(bb, sector, length, !unack))
8529 return len;
8530 else
8531 return -ENOSPC;
8532 }
8533
8534 static int md_notify_reboot(struct notifier_block *this,
8535 unsigned long code, void *x)
8536 {
8537 struct list_head *tmp;
8538 struct mddev *mddev;
8539 int need_delay = 0;
8540
8541 for_each_mddev(mddev, tmp) {
8542 if (mddev_trylock(mddev)) {
8543 if (mddev->pers)
8544 __md_stop_writes(mddev);
8545 if (mddev->persistent)
8546 mddev->safemode = 2;
8547 mddev_unlock(mddev);
8548 }
8549 need_delay = 1;
8550 }
8551 /*
8552 * certain more exotic SCSI devices are known to be
8553 * volatile wrt too early system reboots. While the
8554 * right place to handle this issue is the given
8555 * driver, we do want to have a safe RAID driver ...
8556 */
8557 if (need_delay)
8558 mdelay(1000*1);
8559
8560 return NOTIFY_DONE;
8561 }
8562
8563 static struct notifier_block md_notifier = {
8564 .notifier_call = md_notify_reboot,
8565 .next = NULL,
8566 .priority = INT_MAX, /* before any real devices */
8567 };
8568
8569 static void md_geninit(void)
8570 {
8571 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8572
8573 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8574 }
8575
8576 static int __init md_init(void)
8577 {
8578 int ret = -ENOMEM;
8579
8580 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8581 if (!md_wq)
8582 goto err_wq;
8583
8584 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8585 if (!md_misc_wq)
8586 goto err_misc_wq;
8587
8588 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8589 goto err_md;
8590
8591 if ((ret = register_blkdev(0, "mdp")) < 0)
8592 goto err_mdp;
8593 mdp_major = ret;
8594
8595 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8596 md_probe, NULL, NULL);
8597 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8598 md_probe, NULL, NULL);
8599
8600 register_reboot_notifier(&md_notifier);
8601 raid_table_header = register_sysctl_table(raid_root_table);
8602
8603 md_geninit();
8604 return 0;
8605
8606 err_mdp:
8607 unregister_blkdev(MD_MAJOR, "md");
8608 err_md:
8609 destroy_workqueue(md_misc_wq);
8610 err_misc_wq:
8611 destroy_workqueue(md_wq);
8612 err_wq:
8613 return ret;
8614 }
8615
8616 #ifndef MODULE
8617
8618 /*
8619 * Searches all registered partitions for autorun RAID arrays
8620 * at boot time.
8621 */
8622
8623 static LIST_HEAD(all_detected_devices);
8624 struct detected_devices_node {
8625 struct list_head list;
8626 dev_t dev;
8627 };
8628
8629 void md_autodetect_dev(dev_t dev)
8630 {
8631 struct detected_devices_node *node_detected_dev;
8632
8633 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8634 if (node_detected_dev) {
8635 node_detected_dev->dev = dev;
8636 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8637 } else {
8638 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8639 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8640 }
8641 }
8642
8643
8644 static void autostart_arrays(int part)
8645 {
8646 struct md_rdev *rdev;
8647 struct detected_devices_node *node_detected_dev;
8648 dev_t dev;
8649 int i_scanned, i_passed;
8650
8651 i_scanned = 0;
8652 i_passed = 0;
8653
8654 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8655
8656 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8657 i_scanned++;
8658 node_detected_dev = list_entry(all_detected_devices.next,
8659 struct detected_devices_node, list);
8660 list_del(&node_detected_dev->list);
8661 dev = node_detected_dev->dev;
8662 kfree(node_detected_dev);
8663 rdev = md_import_device(dev,0, 90);
8664 if (IS_ERR(rdev))
8665 continue;
8666
8667 if (test_bit(Faulty, &rdev->flags)) {
8668 MD_BUG();
8669 continue;
8670 }
8671 set_bit(AutoDetected, &rdev->flags);
8672 list_add(&rdev->same_set, &pending_raid_disks);
8673 i_passed++;
8674 }
8675
8676 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8677 i_scanned, i_passed);
8678
8679 autorun_devices(part);
8680 }
8681
8682 #endif /* !MODULE */
8683
8684 static __exit void md_exit(void)
8685 {
8686 struct mddev *mddev;
8687 struct list_head *tmp;
8688 int delay = 1;
8689
8690 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8691 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8692
8693 unregister_blkdev(MD_MAJOR,"md");
8694 unregister_blkdev(mdp_major, "mdp");
8695 unregister_reboot_notifier(&md_notifier);
8696 unregister_sysctl_table(raid_table_header);
8697
8698 /* We cannot unload the modules while some process is
8699 * waiting for us in select() or poll() - wake them up
8700 */
8701 md_unloading = 1;
8702 while (waitqueue_active(&md_event_waiters)) {
8703 /* not safe to leave yet */
8704 wake_up(&md_event_waiters);
8705 msleep(delay);
8706 delay += delay;
8707 }
8708 remove_proc_entry("mdstat", NULL);
8709
8710 for_each_mddev(mddev, tmp) {
8711 export_array(mddev);
8712 mddev->hold_active = 0;
8713 }
8714 destroy_workqueue(md_misc_wq);
8715 destroy_workqueue(md_wq);
8716 }
8717
8718 subsys_initcall(md_init);
8719 module_exit(md_exit)
8720
8721 static int get_ro(char *buffer, struct kernel_param *kp)
8722 {
8723 return sprintf(buffer, "%d", start_readonly);
8724 }
8725 static int set_ro(const char *val, struct kernel_param *kp)
8726 {
8727 char *e;
8728 int num = simple_strtoul(val, &e, 10);
8729 if (*val && (*e == '\0' || *e == '\n')) {
8730 start_readonly = num;
8731 return 0;
8732 }
8733 return -EINVAL;
8734 }
8735
8736 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8737 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8738
8739 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8740
8741 EXPORT_SYMBOL(register_md_personality);
8742 EXPORT_SYMBOL(unregister_md_personality);
8743 EXPORT_SYMBOL(md_error);
8744 EXPORT_SYMBOL(md_done_sync);
8745 EXPORT_SYMBOL(md_write_start);
8746 EXPORT_SYMBOL(md_write_end);
8747 EXPORT_SYMBOL(md_register_thread);
8748 EXPORT_SYMBOL(md_unregister_thread);
8749 EXPORT_SYMBOL(md_wakeup_thread);
8750 EXPORT_SYMBOL(md_check_recovery);
8751 EXPORT_SYMBOL(md_reap_sync_thread);
8752 MODULE_LICENSE("GPL");
8753 MODULE_DESCRIPTION("MD RAID framework");
8754 MODULE_ALIAS("md");
8755 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);