]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
md: use correct type in super_1_sync
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33
34 Errors, Warnings, etc.
35 Please use:
36 pr_crit() for error conditions that risk data loss
37 pr_err() for error conditions that are unexpected, like an IO error
38 or internal inconsistency
39 pr_warn() for error conditions that could have been predicated, like
40 adding a device to an array when it has incompatible metadata
41 pr_info() for every interesting, very rare events, like an array starting
42 or stopping, or resync starting or stopping
43 pr_debug() for everything else.
44
45 */
46
47 #include <linux/sched/signal.h>
48 #include <linux/kthread.h>
49 #include <linux/blkdev.h>
50 #include <linux/badblocks.h>
51 #include <linux/sysctl.h>
52 #include <linux/seq_file.h>
53 #include <linux/fs.h>
54 #include <linux/poll.h>
55 #include <linux/ctype.h>
56 #include <linux/string.h>
57 #include <linux/hdreg.h>
58 #include <linux/proc_fs.h>
59 #include <linux/random.h>
60 #include <linux/module.h>
61 #include <linux/reboot.h>
62 #include <linux/file.h>
63 #include <linux/compat.h>
64 #include <linux/delay.h>
65 #include <linux/raid/md_p.h>
66 #include <linux/raid/md_u.h>
67 #include <linux/slab.h>
68 #include <linux/percpu-refcount.h>
69
70 #include <trace/events/block.h>
71 #include "md.h"
72 #include "md-bitmap.h"
73 #include "md-cluster.h"
74
75 #ifndef MODULE
76 static void autostart_arrays(int part);
77 #endif
78
79 /* pers_list is a list of registered personalities protected
80 * by pers_lock.
81 * pers_lock does extra service to protect accesses to
82 * mddev->thread when the mutex cannot be held.
83 */
84 static LIST_HEAD(pers_list);
85 static DEFINE_SPINLOCK(pers_lock);
86
87 static struct kobj_type md_ktype;
88
89 struct md_cluster_operations *md_cluster_ops;
90 EXPORT_SYMBOL(md_cluster_ops);
91 struct module *md_cluster_mod;
92 EXPORT_SYMBOL(md_cluster_mod);
93
94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
95 static struct workqueue_struct *md_wq;
96 static struct workqueue_struct *md_misc_wq;
97
98 static int remove_and_add_spares(struct mddev *mddev,
99 struct md_rdev *this);
100 static void mddev_detach(struct mddev *mddev);
101
102 /*
103 * Default number of read corrections we'll attempt on an rdev
104 * before ejecting it from the array. We divide the read error
105 * count by 2 for every hour elapsed between read errors.
106 */
107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
108 /*
109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
110 * is 1000 KB/sec, so the extra system load does not show up that much.
111 * Increase it if you want to have more _guaranteed_ speed. Note that
112 * the RAID driver will use the maximum available bandwidth if the IO
113 * subsystem is idle. There is also an 'absolute maximum' reconstruction
114 * speed limit - in case reconstruction slows down your system despite
115 * idle IO detection.
116 *
117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
118 * or /sys/block/mdX/md/sync_speed_{min,max}
119 */
120
121 static int sysctl_speed_limit_min = 1000;
122 static int sysctl_speed_limit_max = 200000;
123 static inline int speed_min(struct mddev *mddev)
124 {
125 return mddev->sync_speed_min ?
126 mddev->sync_speed_min : sysctl_speed_limit_min;
127 }
128
129 static inline int speed_max(struct mddev *mddev)
130 {
131 return mddev->sync_speed_max ?
132 mddev->sync_speed_max : sysctl_speed_limit_max;
133 }
134
135 static struct ctl_table_header *raid_table_header;
136
137 static struct ctl_table raid_table[] = {
138 {
139 .procname = "speed_limit_min",
140 .data = &sysctl_speed_limit_min,
141 .maxlen = sizeof(int),
142 .mode = S_IRUGO|S_IWUSR,
143 .proc_handler = proc_dointvec,
144 },
145 {
146 .procname = "speed_limit_max",
147 .data = &sysctl_speed_limit_max,
148 .maxlen = sizeof(int),
149 .mode = S_IRUGO|S_IWUSR,
150 .proc_handler = proc_dointvec,
151 },
152 { }
153 };
154
155 static struct ctl_table raid_dir_table[] = {
156 {
157 .procname = "raid",
158 .maxlen = 0,
159 .mode = S_IRUGO|S_IXUGO,
160 .child = raid_table,
161 },
162 { }
163 };
164
165 static struct ctl_table raid_root_table[] = {
166 {
167 .procname = "dev",
168 .maxlen = 0,
169 .mode = 0555,
170 .child = raid_dir_table,
171 },
172 { }
173 };
174
175 static const struct block_device_operations md_fops;
176
177 static int start_readonly;
178
179 /*
180 * The original mechanism for creating an md device is to create
181 * a device node in /dev and to open it. This causes races with device-close.
182 * The preferred method is to write to the "new_array" module parameter.
183 * This can avoid races.
184 * Setting create_on_open to false disables the original mechanism
185 * so all the races disappear.
186 */
187 static bool create_on_open = true;
188
189 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
190 struct mddev *mddev)
191 {
192 if (!mddev || !bioset_initialized(&mddev->bio_set))
193 return bio_alloc(gfp_mask, nr_iovecs);
194
195 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
196 }
197 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
198
199 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
200 {
201 if (!mddev || !bioset_initialized(&mddev->sync_set))
202 return bio_alloc(GFP_NOIO, 1);
203
204 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
205 }
206
207 /*
208 * We have a system wide 'event count' that is incremented
209 * on any 'interesting' event, and readers of /proc/mdstat
210 * can use 'poll' or 'select' to find out when the event
211 * count increases.
212 *
213 * Events are:
214 * start array, stop array, error, add device, remove device,
215 * start build, activate spare
216 */
217 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
218 static atomic_t md_event_count;
219 void md_new_event(struct mddev *mddev)
220 {
221 atomic_inc(&md_event_count);
222 wake_up(&md_event_waiters);
223 }
224 EXPORT_SYMBOL_GPL(md_new_event);
225
226 /*
227 * Enables to iterate over all existing md arrays
228 * all_mddevs_lock protects this list.
229 */
230 static LIST_HEAD(all_mddevs);
231 static DEFINE_SPINLOCK(all_mddevs_lock);
232
233 /*
234 * iterates through all used mddevs in the system.
235 * We take care to grab the all_mddevs_lock whenever navigating
236 * the list, and to always hold a refcount when unlocked.
237 * Any code which breaks out of this loop while own
238 * a reference to the current mddev and must mddev_put it.
239 */
240 #define for_each_mddev(_mddev,_tmp) \
241 \
242 for (({ spin_lock(&all_mddevs_lock); \
243 _tmp = all_mddevs.next; \
244 _mddev = NULL;}); \
245 ({ if (_tmp != &all_mddevs) \
246 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
247 spin_unlock(&all_mddevs_lock); \
248 if (_mddev) mddev_put(_mddev); \
249 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
250 _tmp != &all_mddevs;}); \
251 ({ spin_lock(&all_mddevs_lock); \
252 _tmp = _tmp->next;}) \
253 )
254
255 /* Rather than calling directly into the personality make_request function,
256 * IO requests come here first so that we can check if the device is
257 * being suspended pending a reconfiguration.
258 * We hold a refcount over the call to ->make_request. By the time that
259 * call has finished, the bio has been linked into some internal structure
260 * and so is visible to ->quiesce(), so we don't need the refcount any more.
261 */
262 static bool is_suspended(struct mddev *mddev, struct bio *bio)
263 {
264 if (mddev->suspended)
265 return true;
266 if (bio_data_dir(bio) != WRITE)
267 return false;
268 if (mddev->suspend_lo >= mddev->suspend_hi)
269 return false;
270 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
271 return false;
272 if (bio_end_sector(bio) < mddev->suspend_lo)
273 return false;
274 return true;
275 }
276
277 void md_handle_request(struct mddev *mddev, struct bio *bio)
278 {
279 check_suspended:
280 rcu_read_lock();
281 if (is_suspended(mddev, bio)) {
282 DEFINE_WAIT(__wait);
283 for (;;) {
284 prepare_to_wait(&mddev->sb_wait, &__wait,
285 TASK_UNINTERRUPTIBLE);
286 if (!is_suspended(mddev, bio))
287 break;
288 rcu_read_unlock();
289 schedule();
290 rcu_read_lock();
291 }
292 finish_wait(&mddev->sb_wait, &__wait);
293 }
294 atomic_inc(&mddev->active_io);
295 rcu_read_unlock();
296
297 if (!mddev->pers->make_request(mddev, bio)) {
298 atomic_dec(&mddev->active_io);
299 wake_up(&mddev->sb_wait);
300 goto check_suspended;
301 }
302
303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 wake_up(&mddev->sb_wait);
305 }
306 EXPORT_SYMBOL(md_handle_request);
307
308 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
309 {
310 const int rw = bio_data_dir(bio);
311 const int sgrp = op_stat_group(bio_op(bio));
312 struct mddev *mddev = q->queuedata;
313 unsigned int sectors;
314
315 blk_queue_split(q, &bio);
316
317 if (mddev == NULL || mddev->pers == NULL) {
318 bio_io_error(bio);
319 return BLK_QC_T_NONE;
320 }
321 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
322 if (bio_sectors(bio) != 0)
323 bio->bi_status = BLK_STS_IOERR;
324 bio_endio(bio);
325 return BLK_QC_T_NONE;
326 }
327
328 /*
329 * save the sectors now since our bio can
330 * go away inside make_request
331 */
332 sectors = bio_sectors(bio);
333 /* bio could be mergeable after passing to underlayer */
334 bio->bi_opf &= ~REQ_NOMERGE;
335
336 md_handle_request(mddev, bio);
337
338 part_stat_lock();
339 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]);
340 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors);
341 part_stat_unlock();
342
343 return BLK_QC_T_NONE;
344 }
345
346 /* mddev_suspend makes sure no new requests are submitted
347 * to the device, and that any requests that have been submitted
348 * are completely handled.
349 * Once mddev_detach() is called and completes, the module will be
350 * completely unused.
351 */
352 void mddev_suspend(struct mddev *mddev)
353 {
354 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
355 lockdep_assert_held(&mddev->reconfig_mutex);
356 if (mddev->suspended++)
357 return;
358 synchronize_rcu();
359 wake_up(&mddev->sb_wait);
360 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
361 smp_mb__after_atomic();
362 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
363 mddev->pers->quiesce(mddev, 1);
364 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
365 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
366
367 del_timer_sync(&mddev->safemode_timer);
368 }
369 EXPORT_SYMBOL_GPL(mddev_suspend);
370
371 void mddev_resume(struct mddev *mddev)
372 {
373 lockdep_assert_held(&mddev->reconfig_mutex);
374 if (--mddev->suspended)
375 return;
376 wake_up(&mddev->sb_wait);
377 mddev->pers->quiesce(mddev, 0);
378
379 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
380 md_wakeup_thread(mddev->thread);
381 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
382 }
383 EXPORT_SYMBOL_GPL(mddev_resume);
384
385 int mddev_congested(struct mddev *mddev, int bits)
386 {
387 struct md_personality *pers = mddev->pers;
388 int ret = 0;
389
390 rcu_read_lock();
391 if (mddev->suspended)
392 ret = 1;
393 else if (pers && pers->congested)
394 ret = pers->congested(mddev, bits);
395 rcu_read_unlock();
396 return ret;
397 }
398 EXPORT_SYMBOL_GPL(mddev_congested);
399 static int md_congested(void *data, int bits)
400 {
401 struct mddev *mddev = data;
402 return mddev_congested(mddev, bits);
403 }
404
405 /*
406 * Generic flush handling for md
407 */
408
409 static void md_end_flush(struct bio *bio)
410 {
411 struct md_rdev *rdev = bio->bi_private;
412 struct mddev *mddev = rdev->mddev;
413
414 rdev_dec_pending(rdev, mddev);
415
416 if (atomic_dec_and_test(&mddev->flush_pending)) {
417 /* The pre-request flush has finished */
418 queue_work(md_wq, &mddev->flush_work);
419 }
420 bio_put(bio);
421 }
422
423 static void md_submit_flush_data(struct work_struct *ws);
424
425 static void submit_flushes(struct work_struct *ws)
426 {
427 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
428 struct md_rdev *rdev;
429
430 mddev->start_flush = ktime_get_boottime();
431 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
432 atomic_set(&mddev->flush_pending, 1);
433 rcu_read_lock();
434 rdev_for_each_rcu(rdev, mddev)
435 if (rdev->raid_disk >= 0 &&
436 !test_bit(Faulty, &rdev->flags)) {
437 /* Take two references, one is dropped
438 * when request finishes, one after
439 * we reclaim rcu_read_lock
440 */
441 struct bio *bi;
442 atomic_inc(&rdev->nr_pending);
443 atomic_inc(&rdev->nr_pending);
444 rcu_read_unlock();
445 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
446 bi->bi_end_io = md_end_flush;
447 bi->bi_private = rdev;
448 bio_set_dev(bi, rdev->bdev);
449 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
450 atomic_inc(&mddev->flush_pending);
451 submit_bio(bi);
452 rcu_read_lock();
453 rdev_dec_pending(rdev, mddev);
454 }
455 rcu_read_unlock();
456 if (atomic_dec_and_test(&mddev->flush_pending))
457 queue_work(md_wq, &mddev->flush_work);
458 }
459
460 static void md_submit_flush_data(struct work_struct *ws)
461 {
462 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
463 struct bio *bio = mddev->flush_bio;
464
465 /*
466 * must reset flush_bio before calling into md_handle_request to avoid a
467 * deadlock, because other bios passed md_handle_request suspend check
468 * could wait for this and below md_handle_request could wait for those
469 * bios because of suspend check
470 */
471 mddev->last_flush = mddev->start_flush;
472 mddev->flush_bio = NULL;
473 wake_up(&mddev->sb_wait);
474
475 if (bio->bi_iter.bi_size == 0) {
476 /* an empty barrier - all done */
477 bio_endio(bio);
478 } else {
479 bio->bi_opf &= ~REQ_PREFLUSH;
480 md_handle_request(mddev, bio);
481 }
482 }
483
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486 ktime_t start = ktime_get_boottime();
487 spin_lock_irq(&mddev->lock);
488 wait_event_lock_irq(mddev->sb_wait,
489 !mddev->flush_bio ||
490 ktime_after(mddev->last_flush, start),
491 mddev->lock);
492 if (!ktime_after(mddev->last_flush, start)) {
493 WARN_ON(mddev->flush_bio);
494 mddev->flush_bio = bio;
495 bio = NULL;
496 }
497 spin_unlock_irq(&mddev->lock);
498
499 if (!bio) {
500 INIT_WORK(&mddev->flush_work, submit_flushes);
501 queue_work(md_wq, &mddev->flush_work);
502 } else {
503 /* flush was performed for some other bio while we waited. */
504 if (bio->bi_iter.bi_size == 0)
505 /* an empty barrier - all done */
506 bio_endio(bio);
507 else {
508 bio->bi_opf &= ~REQ_PREFLUSH;
509 mddev->pers->make_request(mddev, bio);
510 }
511 }
512 }
513 EXPORT_SYMBOL(md_flush_request);
514
515 static inline struct mddev *mddev_get(struct mddev *mddev)
516 {
517 atomic_inc(&mddev->active);
518 return mddev;
519 }
520
521 static void mddev_delayed_delete(struct work_struct *ws);
522
523 static void mddev_put(struct mddev *mddev)
524 {
525 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
526 return;
527 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
528 mddev->ctime == 0 && !mddev->hold_active) {
529 /* Array is not configured at all, and not held active,
530 * so destroy it */
531 list_del_init(&mddev->all_mddevs);
532
533 /*
534 * Call queue_work inside the spinlock so that
535 * flush_workqueue() after mddev_find will succeed in waiting
536 * for the work to be done.
537 */
538 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
539 queue_work(md_misc_wq, &mddev->del_work);
540 }
541 spin_unlock(&all_mddevs_lock);
542 }
543
544 static void md_safemode_timeout(struct timer_list *t);
545
546 void mddev_init(struct mddev *mddev)
547 {
548 kobject_init(&mddev->kobj, &md_ktype);
549 mutex_init(&mddev->open_mutex);
550 mutex_init(&mddev->reconfig_mutex);
551 mutex_init(&mddev->bitmap_info.mutex);
552 INIT_LIST_HEAD(&mddev->disks);
553 INIT_LIST_HEAD(&mddev->all_mddevs);
554 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
555 atomic_set(&mddev->active, 1);
556 atomic_set(&mddev->openers, 0);
557 atomic_set(&mddev->active_io, 0);
558 spin_lock_init(&mddev->lock);
559 atomic_set(&mddev->flush_pending, 0);
560 init_waitqueue_head(&mddev->sb_wait);
561 init_waitqueue_head(&mddev->recovery_wait);
562 mddev->reshape_position = MaxSector;
563 mddev->reshape_backwards = 0;
564 mddev->last_sync_action = "none";
565 mddev->resync_min = 0;
566 mddev->resync_max = MaxSector;
567 mddev->level = LEVEL_NONE;
568 }
569 EXPORT_SYMBOL_GPL(mddev_init);
570
571 static struct mddev *mddev_find(dev_t unit)
572 {
573 struct mddev *mddev, *new = NULL;
574
575 if (unit && MAJOR(unit) != MD_MAJOR)
576 unit &= ~((1<<MdpMinorShift)-1);
577
578 retry:
579 spin_lock(&all_mddevs_lock);
580
581 if (unit) {
582 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
583 if (mddev->unit == unit) {
584 mddev_get(mddev);
585 spin_unlock(&all_mddevs_lock);
586 kfree(new);
587 return mddev;
588 }
589
590 if (new) {
591 list_add(&new->all_mddevs, &all_mddevs);
592 spin_unlock(&all_mddevs_lock);
593 new->hold_active = UNTIL_IOCTL;
594 return new;
595 }
596 } else if (new) {
597 /* find an unused unit number */
598 static int next_minor = 512;
599 int start = next_minor;
600 int is_free = 0;
601 int dev = 0;
602 while (!is_free) {
603 dev = MKDEV(MD_MAJOR, next_minor);
604 next_minor++;
605 if (next_minor > MINORMASK)
606 next_minor = 0;
607 if (next_minor == start) {
608 /* Oh dear, all in use. */
609 spin_unlock(&all_mddevs_lock);
610 kfree(new);
611 return NULL;
612 }
613
614 is_free = 1;
615 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
616 if (mddev->unit == dev) {
617 is_free = 0;
618 break;
619 }
620 }
621 new->unit = dev;
622 new->md_minor = MINOR(dev);
623 new->hold_active = UNTIL_STOP;
624 list_add(&new->all_mddevs, &all_mddevs);
625 spin_unlock(&all_mddevs_lock);
626 return new;
627 }
628 spin_unlock(&all_mddevs_lock);
629
630 new = kzalloc(sizeof(*new), GFP_KERNEL);
631 if (!new)
632 return NULL;
633
634 new->unit = unit;
635 if (MAJOR(unit) == MD_MAJOR)
636 new->md_minor = MINOR(unit);
637 else
638 new->md_minor = MINOR(unit) >> MdpMinorShift;
639
640 mddev_init(new);
641
642 goto retry;
643 }
644
645 static struct attribute_group md_redundancy_group;
646
647 void mddev_unlock(struct mddev *mddev)
648 {
649 if (mddev->to_remove) {
650 /* These cannot be removed under reconfig_mutex as
651 * an access to the files will try to take reconfig_mutex
652 * while holding the file unremovable, which leads to
653 * a deadlock.
654 * So hold set sysfs_active while the remove in happeing,
655 * and anything else which might set ->to_remove or my
656 * otherwise change the sysfs namespace will fail with
657 * -EBUSY if sysfs_active is still set.
658 * We set sysfs_active under reconfig_mutex and elsewhere
659 * test it under the same mutex to ensure its correct value
660 * is seen.
661 */
662 struct attribute_group *to_remove = mddev->to_remove;
663 mddev->to_remove = NULL;
664 mddev->sysfs_active = 1;
665 mutex_unlock(&mddev->reconfig_mutex);
666
667 if (mddev->kobj.sd) {
668 if (to_remove != &md_redundancy_group)
669 sysfs_remove_group(&mddev->kobj, to_remove);
670 if (mddev->pers == NULL ||
671 mddev->pers->sync_request == NULL) {
672 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
673 if (mddev->sysfs_action)
674 sysfs_put(mddev->sysfs_action);
675 mddev->sysfs_action = NULL;
676 }
677 }
678 mddev->sysfs_active = 0;
679 } else
680 mutex_unlock(&mddev->reconfig_mutex);
681
682 /* As we've dropped the mutex we need a spinlock to
683 * make sure the thread doesn't disappear
684 */
685 spin_lock(&pers_lock);
686 md_wakeup_thread(mddev->thread);
687 wake_up(&mddev->sb_wait);
688 spin_unlock(&pers_lock);
689 }
690 EXPORT_SYMBOL_GPL(mddev_unlock);
691
692 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
693 {
694 struct md_rdev *rdev;
695
696 rdev_for_each_rcu(rdev, mddev)
697 if (rdev->desc_nr == nr)
698 return rdev;
699
700 return NULL;
701 }
702 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
703
704 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
705 {
706 struct md_rdev *rdev;
707
708 rdev_for_each(rdev, mddev)
709 if (rdev->bdev->bd_dev == dev)
710 return rdev;
711
712 return NULL;
713 }
714
715 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
716 {
717 struct md_rdev *rdev;
718
719 rdev_for_each_rcu(rdev, mddev)
720 if (rdev->bdev->bd_dev == dev)
721 return rdev;
722
723 return NULL;
724 }
725 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
726
727 static struct md_personality *find_pers(int level, char *clevel)
728 {
729 struct md_personality *pers;
730 list_for_each_entry(pers, &pers_list, list) {
731 if (level != LEVEL_NONE && pers->level == level)
732 return pers;
733 if (strcmp(pers->name, clevel)==0)
734 return pers;
735 }
736 return NULL;
737 }
738
739 /* return the offset of the super block in 512byte sectors */
740 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
741 {
742 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
743 return MD_NEW_SIZE_SECTORS(num_sectors);
744 }
745
746 static int alloc_disk_sb(struct md_rdev *rdev)
747 {
748 rdev->sb_page = alloc_page(GFP_KERNEL);
749 if (!rdev->sb_page)
750 return -ENOMEM;
751 return 0;
752 }
753
754 void md_rdev_clear(struct md_rdev *rdev)
755 {
756 if (rdev->sb_page) {
757 put_page(rdev->sb_page);
758 rdev->sb_loaded = 0;
759 rdev->sb_page = NULL;
760 rdev->sb_start = 0;
761 rdev->sectors = 0;
762 }
763 if (rdev->bb_page) {
764 put_page(rdev->bb_page);
765 rdev->bb_page = NULL;
766 }
767 badblocks_exit(&rdev->badblocks);
768 }
769 EXPORT_SYMBOL_GPL(md_rdev_clear);
770
771 static void super_written(struct bio *bio)
772 {
773 struct md_rdev *rdev = bio->bi_private;
774 struct mddev *mddev = rdev->mddev;
775
776 if (bio->bi_status) {
777 pr_err("md: super_written gets error=%d\n", bio->bi_status);
778 md_error(mddev, rdev);
779 if (!test_bit(Faulty, &rdev->flags)
780 && (bio->bi_opf & MD_FAILFAST)) {
781 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
782 set_bit(LastDev, &rdev->flags);
783 }
784 } else
785 clear_bit(LastDev, &rdev->flags);
786
787 if (atomic_dec_and_test(&mddev->pending_writes))
788 wake_up(&mddev->sb_wait);
789 rdev_dec_pending(rdev, mddev);
790 bio_put(bio);
791 }
792
793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
794 sector_t sector, int size, struct page *page)
795 {
796 /* write first size bytes of page to sector of rdev
797 * Increment mddev->pending_writes before returning
798 * and decrement it on completion, waking up sb_wait
799 * if zero is reached.
800 * If an error occurred, call md_error
801 */
802 struct bio *bio;
803 int ff = 0;
804
805 if (!page)
806 return;
807
808 if (test_bit(Faulty, &rdev->flags))
809 return;
810
811 bio = md_bio_alloc_sync(mddev);
812
813 atomic_inc(&rdev->nr_pending);
814
815 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
816 bio->bi_iter.bi_sector = sector;
817 bio_add_page(bio, page, size, 0);
818 bio->bi_private = rdev;
819 bio->bi_end_io = super_written;
820
821 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
822 test_bit(FailFast, &rdev->flags) &&
823 !test_bit(LastDev, &rdev->flags))
824 ff = MD_FAILFAST;
825 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
826
827 atomic_inc(&mddev->pending_writes);
828 submit_bio(bio);
829 }
830
831 int md_super_wait(struct mddev *mddev)
832 {
833 /* wait for all superblock writes that were scheduled to complete */
834 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
835 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
836 return -EAGAIN;
837 return 0;
838 }
839
840 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
841 struct page *page, int op, int op_flags, bool metadata_op)
842 {
843 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
844 int ret;
845
846 if (metadata_op && rdev->meta_bdev)
847 bio_set_dev(bio, rdev->meta_bdev);
848 else
849 bio_set_dev(bio, rdev->bdev);
850 bio_set_op_attrs(bio, op, op_flags);
851 if (metadata_op)
852 bio->bi_iter.bi_sector = sector + rdev->sb_start;
853 else if (rdev->mddev->reshape_position != MaxSector &&
854 (rdev->mddev->reshape_backwards ==
855 (sector >= rdev->mddev->reshape_position)))
856 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
857 else
858 bio->bi_iter.bi_sector = sector + rdev->data_offset;
859 bio_add_page(bio, page, size, 0);
860
861 submit_bio_wait(bio);
862
863 ret = !bio->bi_status;
864 bio_put(bio);
865 return ret;
866 }
867 EXPORT_SYMBOL_GPL(sync_page_io);
868
869 static int read_disk_sb(struct md_rdev *rdev, int size)
870 {
871 char b[BDEVNAME_SIZE];
872
873 if (rdev->sb_loaded)
874 return 0;
875
876 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
877 goto fail;
878 rdev->sb_loaded = 1;
879 return 0;
880
881 fail:
882 pr_err("md: disabled device %s, could not read superblock.\n",
883 bdevname(rdev->bdev,b));
884 return -EINVAL;
885 }
886
887 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
888 {
889 return sb1->set_uuid0 == sb2->set_uuid0 &&
890 sb1->set_uuid1 == sb2->set_uuid1 &&
891 sb1->set_uuid2 == sb2->set_uuid2 &&
892 sb1->set_uuid3 == sb2->set_uuid3;
893 }
894
895 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
896 {
897 int ret;
898 mdp_super_t *tmp1, *tmp2;
899
900 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
901 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
902
903 if (!tmp1 || !tmp2) {
904 ret = 0;
905 goto abort;
906 }
907
908 *tmp1 = *sb1;
909 *tmp2 = *sb2;
910
911 /*
912 * nr_disks is not constant
913 */
914 tmp1->nr_disks = 0;
915 tmp2->nr_disks = 0;
916
917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
918 abort:
919 kfree(tmp1);
920 kfree(tmp2);
921 return ret;
922 }
923
924 static u32 md_csum_fold(u32 csum)
925 {
926 csum = (csum & 0xffff) + (csum >> 16);
927 return (csum & 0xffff) + (csum >> 16);
928 }
929
930 static unsigned int calc_sb_csum(mdp_super_t *sb)
931 {
932 u64 newcsum = 0;
933 u32 *sb32 = (u32*)sb;
934 int i;
935 unsigned int disk_csum, csum;
936
937 disk_csum = sb->sb_csum;
938 sb->sb_csum = 0;
939
940 for (i = 0; i < MD_SB_BYTES/4 ; i++)
941 newcsum += sb32[i];
942 csum = (newcsum & 0xffffffff) + (newcsum>>32);
943
944 #ifdef CONFIG_ALPHA
945 /* This used to use csum_partial, which was wrong for several
946 * reasons including that different results are returned on
947 * different architectures. It isn't critical that we get exactly
948 * the same return value as before (we always csum_fold before
949 * testing, and that removes any differences). However as we
950 * know that csum_partial always returned a 16bit value on
951 * alphas, do a fold to maximise conformity to previous behaviour.
952 */
953 sb->sb_csum = md_csum_fold(disk_csum);
954 #else
955 sb->sb_csum = disk_csum;
956 #endif
957 return csum;
958 }
959
960 /*
961 * Handle superblock details.
962 * We want to be able to handle multiple superblock formats
963 * so we have a common interface to them all, and an array of
964 * different handlers.
965 * We rely on user-space to write the initial superblock, and support
966 * reading and updating of superblocks.
967 * Interface methods are:
968 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
969 * loads and validates a superblock on dev.
970 * if refdev != NULL, compare superblocks on both devices
971 * Return:
972 * 0 - dev has a superblock that is compatible with refdev
973 * 1 - dev has a superblock that is compatible and newer than refdev
974 * so dev should be used as the refdev in future
975 * -EINVAL superblock incompatible or invalid
976 * -othererror e.g. -EIO
977 *
978 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
979 * Verify that dev is acceptable into mddev.
980 * The first time, mddev->raid_disks will be 0, and data from
981 * dev should be merged in. Subsequent calls check that dev
982 * is new enough. Return 0 or -EINVAL
983 *
984 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
985 * Update the superblock for rdev with data in mddev
986 * This does not write to disc.
987 *
988 */
989
990 struct super_type {
991 char *name;
992 struct module *owner;
993 int (*load_super)(struct md_rdev *rdev,
994 struct md_rdev *refdev,
995 int minor_version);
996 int (*validate_super)(struct mddev *mddev,
997 struct md_rdev *rdev);
998 void (*sync_super)(struct mddev *mddev,
999 struct md_rdev *rdev);
1000 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1001 sector_t num_sectors);
1002 int (*allow_new_offset)(struct md_rdev *rdev,
1003 unsigned long long new_offset);
1004 };
1005
1006 /*
1007 * Check that the given mddev has no bitmap.
1008 *
1009 * This function is called from the run method of all personalities that do not
1010 * support bitmaps. It prints an error message and returns non-zero if mddev
1011 * has a bitmap. Otherwise, it returns 0.
1012 *
1013 */
1014 int md_check_no_bitmap(struct mddev *mddev)
1015 {
1016 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1017 return 0;
1018 pr_warn("%s: bitmaps are not supported for %s\n",
1019 mdname(mddev), mddev->pers->name);
1020 return 1;
1021 }
1022 EXPORT_SYMBOL(md_check_no_bitmap);
1023
1024 /*
1025 * load_super for 0.90.0
1026 */
1027 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1028 {
1029 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1030 mdp_super_t *sb;
1031 int ret;
1032
1033 /*
1034 * Calculate the position of the superblock (512byte sectors),
1035 * it's at the end of the disk.
1036 *
1037 * It also happens to be a multiple of 4Kb.
1038 */
1039 rdev->sb_start = calc_dev_sboffset(rdev);
1040
1041 ret = read_disk_sb(rdev, MD_SB_BYTES);
1042 if (ret)
1043 return ret;
1044
1045 ret = -EINVAL;
1046
1047 bdevname(rdev->bdev, b);
1048 sb = page_address(rdev->sb_page);
1049
1050 if (sb->md_magic != MD_SB_MAGIC) {
1051 pr_warn("md: invalid raid superblock magic on %s\n", b);
1052 goto abort;
1053 }
1054
1055 if (sb->major_version != 0 ||
1056 sb->minor_version < 90 ||
1057 sb->minor_version > 91) {
1058 pr_warn("Bad version number %d.%d on %s\n",
1059 sb->major_version, sb->minor_version, b);
1060 goto abort;
1061 }
1062
1063 if (sb->raid_disks <= 0)
1064 goto abort;
1065
1066 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1067 pr_warn("md: invalid superblock checksum on %s\n", b);
1068 goto abort;
1069 }
1070
1071 rdev->preferred_minor = sb->md_minor;
1072 rdev->data_offset = 0;
1073 rdev->new_data_offset = 0;
1074 rdev->sb_size = MD_SB_BYTES;
1075 rdev->badblocks.shift = -1;
1076
1077 if (sb->level == LEVEL_MULTIPATH)
1078 rdev->desc_nr = -1;
1079 else
1080 rdev->desc_nr = sb->this_disk.number;
1081
1082 if (!refdev) {
1083 ret = 1;
1084 } else {
1085 __u64 ev1, ev2;
1086 mdp_super_t *refsb = page_address(refdev->sb_page);
1087 if (!md_uuid_equal(refsb, sb)) {
1088 pr_warn("md: %s has different UUID to %s\n",
1089 b, bdevname(refdev->bdev,b2));
1090 goto abort;
1091 }
1092 if (!md_sb_equal(refsb, sb)) {
1093 pr_warn("md: %s has same UUID but different superblock to %s\n",
1094 b, bdevname(refdev->bdev, b2));
1095 goto abort;
1096 }
1097 ev1 = md_event(sb);
1098 ev2 = md_event(refsb);
1099 if (ev1 > ev2)
1100 ret = 1;
1101 else
1102 ret = 0;
1103 }
1104 rdev->sectors = rdev->sb_start;
1105 /* Limit to 4TB as metadata cannot record more than that.
1106 * (not needed for Linear and RAID0 as metadata doesn't
1107 * record this size)
1108 */
1109 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1110 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1111
1112 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1113 /* "this cannot possibly happen" ... */
1114 ret = -EINVAL;
1115
1116 abort:
1117 return ret;
1118 }
1119
1120 /*
1121 * validate_super for 0.90.0
1122 */
1123 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1124 {
1125 mdp_disk_t *desc;
1126 mdp_super_t *sb = page_address(rdev->sb_page);
1127 __u64 ev1 = md_event(sb);
1128
1129 rdev->raid_disk = -1;
1130 clear_bit(Faulty, &rdev->flags);
1131 clear_bit(In_sync, &rdev->flags);
1132 clear_bit(Bitmap_sync, &rdev->flags);
1133 clear_bit(WriteMostly, &rdev->flags);
1134
1135 if (mddev->raid_disks == 0) {
1136 mddev->major_version = 0;
1137 mddev->minor_version = sb->minor_version;
1138 mddev->patch_version = sb->patch_version;
1139 mddev->external = 0;
1140 mddev->chunk_sectors = sb->chunk_size >> 9;
1141 mddev->ctime = sb->ctime;
1142 mddev->utime = sb->utime;
1143 mddev->level = sb->level;
1144 mddev->clevel[0] = 0;
1145 mddev->layout = sb->layout;
1146 mddev->raid_disks = sb->raid_disks;
1147 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1148 mddev->events = ev1;
1149 mddev->bitmap_info.offset = 0;
1150 mddev->bitmap_info.space = 0;
1151 /* bitmap can use 60 K after the 4K superblocks */
1152 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1153 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1154 mddev->reshape_backwards = 0;
1155
1156 if (mddev->minor_version >= 91) {
1157 mddev->reshape_position = sb->reshape_position;
1158 mddev->delta_disks = sb->delta_disks;
1159 mddev->new_level = sb->new_level;
1160 mddev->new_layout = sb->new_layout;
1161 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1162 if (mddev->delta_disks < 0)
1163 mddev->reshape_backwards = 1;
1164 } else {
1165 mddev->reshape_position = MaxSector;
1166 mddev->delta_disks = 0;
1167 mddev->new_level = mddev->level;
1168 mddev->new_layout = mddev->layout;
1169 mddev->new_chunk_sectors = mddev->chunk_sectors;
1170 }
1171
1172 if (sb->state & (1<<MD_SB_CLEAN))
1173 mddev->recovery_cp = MaxSector;
1174 else {
1175 if (sb->events_hi == sb->cp_events_hi &&
1176 sb->events_lo == sb->cp_events_lo) {
1177 mddev->recovery_cp = sb->recovery_cp;
1178 } else
1179 mddev->recovery_cp = 0;
1180 }
1181
1182 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1183 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1184 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1185 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1186
1187 mddev->max_disks = MD_SB_DISKS;
1188
1189 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1190 mddev->bitmap_info.file == NULL) {
1191 mddev->bitmap_info.offset =
1192 mddev->bitmap_info.default_offset;
1193 mddev->bitmap_info.space =
1194 mddev->bitmap_info.default_space;
1195 }
1196
1197 } else if (mddev->pers == NULL) {
1198 /* Insist on good event counter while assembling, except
1199 * for spares (which don't need an event count) */
1200 ++ev1;
1201 if (sb->disks[rdev->desc_nr].state & (
1202 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1203 if (ev1 < mddev->events)
1204 return -EINVAL;
1205 } else if (mddev->bitmap) {
1206 /* if adding to array with a bitmap, then we can accept an
1207 * older device ... but not too old.
1208 */
1209 if (ev1 < mddev->bitmap->events_cleared)
1210 return 0;
1211 if (ev1 < mddev->events)
1212 set_bit(Bitmap_sync, &rdev->flags);
1213 } else {
1214 if (ev1 < mddev->events)
1215 /* just a hot-add of a new device, leave raid_disk at -1 */
1216 return 0;
1217 }
1218
1219 if (mddev->level != LEVEL_MULTIPATH) {
1220 desc = sb->disks + rdev->desc_nr;
1221
1222 if (desc->state & (1<<MD_DISK_FAULTY))
1223 set_bit(Faulty, &rdev->flags);
1224 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1225 desc->raid_disk < mddev->raid_disks */) {
1226 set_bit(In_sync, &rdev->flags);
1227 rdev->raid_disk = desc->raid_disk;
1228 rdev->saved_raid_disk = desc->raid_disk;
1229 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1230 /* active but not in sync implies recovery up to
1231 * reshape position. We don't know exactly where
1232 * that is, so set to zero for now */
1233 if (mddev->minor_version >= 91) {
1234 rdev->recovery_offset = 0;
1235 rdev->raid_disk = desc->raid_disk;
1236 }
1237 }
1238 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1239 set_bit(WriteMostly, &rdev->flags);
1240 if (desc->state & (1<<MD_DISK_FAILFAST))
1241 set_bit(FailFast, &rdev->flags);
1242 } else /* MULTIPATH are always insync */
1243 set_bit(In_sync, &rdev->flags);
1244 return 0;
1245 }
1246
1247 /*
1248 * sync_super for 0.90.0
1249 */
1250 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252 mdp_super_t *sb;
1253 struct md_rdev *rdev2;
1254 int next_spare = mddev->raid_disks;
1255
1256 /* make rdev->sb match mddev data..
1257 *
1258 * 1/ zero out disks
1259 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1260 * 3/ any empty disks < next_spare become removed
1261 *
1262 * disks[0] gets initialised to REMOVED because
1263 * we cannot be sure from other fields if it has
1264 * been initialised or not.
1265 */
1266 int i;
1267 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1268
1269 rdev->sb_size = MD_SB_BYTES;
1270
1271 sb = page_address(rdev->sb_page);
1272
1273 memset(sb, 0, sizeof(*sb));
1274
1275 sb->md_magic = MD_SB_MAGIC;
1276 sb->major_version = mddev->major_version;
1277 sb->patch_version = mddev->patch_version;
1278 sb->gvalid_words = 0; /* ignored */
1279 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1280 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1281 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1282 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1283
1284 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1285 sb->level = mddev->level;
1286 sb->size = mddev->dev_sectors / 2;
1287 sb->raid_disks = mddev->raid_disks;
1288 sb->md_minor = mddev->md_minor;
1289 sb->not_persistent = 0;
1290 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1291 sb->state = 0;
1292 sb->events_hi = (mddev->events>>32);
1293 sb->events_lo = (u32)mddev->events;
1294
1295 if (mddev->reshape_position == MaxSector)
1296 sb->minor_version = 90;
1297 else {
1298 sb->minor_version = 91;
1299 sb->reshape_position = mddev->reshape_position;
1300 sb->new_level = mddev->new_level;
1301 sb->delta_disks = mddev->delta_disks;
1302 sb->new_layout = mddev->new_layout;
1303 sb->new_chunk = mddev->new_chunk_sectors << 9;
1304 }
1305 mddev->minor_version = sb->minor_version;
1306 if (mddev->in_sync)
1307 {
1308 sb->recovery_cp = mddev->recovery_cp;
1309 sb->cp_events_hi = (mddev->events>>32);
1310 sb->cp_events_lo = (u32)mddev->events;
1311 if (mddev->recovery_cp == MaxSector)
1312 sb->state = (1<< MD_SB_CLEAN);
1313 } else
1314 sb->recovery_cp = 0;
1315
1316 sb->layout = mddev->layout;
1317 sb->chunk_size = mddev->chunk_sectors << 9;
1318
1319 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1320 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1321
1322 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1323 rdev_for_each(rdev2, mddev) {
1324 mdp_disk_t *d;
1325 int desc_nr;
1326 int is_active = test_bit(In_sync, &rdev2->flags);
1327
1328 if (rdev2->raid_disk >= 0 &&
1329 sb->minor_version >= 91)
1330 /* we have nowhere to store the recovery_offset,
1331 * but if it is not below the reshape_position,
1332 * we can piggy-back on that.
1333 */
1334 is_active = 1;
1335 if (rdev2->raid_disk < 0 ||
1336 test_bit(Faulty, &rdev2->flags))
1337 is_active = 0;
1338 if (is_active)
1339 desc_nr = rdev2->raid_disk;
1340 else
1341 desc_nr = next_spare++;
1342 rdev2->desc_nr = desc_nr;
1343 d = &sb->disks[rdev2->desc_nr];
1344 nr_disks++;
1345 d->number = rdev2->desc_nr;
1346 d->major = MAJOR(rdev2->bdev->bd_dev);
1347 d->minor = MINOR(rdev2->bdev->bd_dev);
1348 if (is_active)
1349 d->raid_disk = rdev2->raid_disk;
1350 else
1351 d->raid_disk = rdev2->desc_nr; /* compatibility */
1352 if (test_bit(Faulty, &rdev2->flags))
1353 d->state = (1<<MD_DISK_FAULTY);
1354 else if (is_active) {
1355 d->state = (1<<MD_DISK_ACTIVE);
1356 if (test_bit(In_sync, &rdev2->flags))
1357 d->state |= (1<<MD_DISK_SYNC);
1358 active++;
1359 working++;
1360 } else {
1361 d->state = 0;
1362 spare++;
1363 working++;
1364 }
1365 if (test_bit(WriteMostly, &rdev2->flags))
1366 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1367 if (test_bit(FailFast, &rdev2->flags))
1368 d->state |= (1<<MD_DISK_FAILFAST);
1369 }
1370 /* now set the "removed" and "faulty" bits on any missing devices */
1371 for (i=0 ; i < mddev->raid_disks ; i++) {
1372 mdp_disk_t *d = &sb->disks[i];
1373 if (d->state == 0 && d->number == 0) {
1374 d->number = i;
1375 d->raid_disk = i;
1376 d->state = (1<<MD_DISK_REMOVED);
1377 d->state |= (1<<MD_DISK_FAULTY);
1378 failed++;
1379 }
1380 }
1381 sb->nr_disks = nr_disks;
1382 sb->active_disks = active;
1383 sb->working_disks = working;
1384 sb->failed_disks = failed;
1385 sb->spare_disks = spare;
1386
1387 sb->this_disk = sb->disks[rdev->desc_nr];
1388 sb->sb_csum = calc_sb_csum(sb);
1389 }
1390
1391 /*
1392 * rdev_size_change for 0.90.0
1393 */
1394 static unsigned long long
1395 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1396 {
1397 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1398 return 0; /* component must fit device */
1399 if (rdev->mddev->bitmap_info.offset)
1400 return 0; /* can't move bitmap */
1401 rdev->sb_start = calc_dev_sboffset(rdev);
1402 if (!num_sectors || num_sectors > rdev->sb_start)
1403 num_sectors = rdev->sb_start;
1404 /* Limit to 4TB as metadata cannot record more than that.
1405 * 4TB == 2^32 KB, or 2*2^32 sectors.
1406 */
1407 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1408 num_sectors = (sector_t)(2ULL << 32) - 2;
1409 do {
1410 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1411 rdev->sb_page);
1412 } while (md_super_wait(rdev->mddev) < 0);
1413 return num_sectors;
1414 }
1415
1416 static int
1417 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1418 {
1419 /* non-zero offset changes not possible with v0.90 */
1420 return new_offset == 0;
1421 }
1422
1423 /*
1424 * version 1 superblock
1425 */
1426
1427 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1428 {
1429 __le32 disk_csum;
1430 u32 csum;
1431 unsigned long long newcsum;
1432 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1433 __le32 *isuper = (__le32*)sb;
1434
1435 disk_csum = sb->sb_csum;
1436 sb->sb_csum = 0;
1437 newcsum = 0;
1438 for (; size >= 4; size -= 4)
1439 newcsum += le32_to_cpu(*isuper++);
1440
1441 if (size == 2)
1442 newcsum += le16_to_cpu(*(__le16*) isuper);
1443
1444 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1445 sb->sb_csum = disk_csum;
1446 return cpu_to_le32(csum);
1447 }
1448
1449 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1450 {
1451 struct mdp_superblock_1 *sb;
1452 int ret;
1453 sector_t sb_start;
1454 sector_t sectors;
1455 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1456 int bmask;
1457
1458 /*
1459 * Calculate the position of the superblock in 512byte sectors.
1460 * It is always aligned to a 4K boundary and
1461 * depeding on minor_version, it can be:
1462 * 0: At least 8K, but less than 12K, from end of device
1463 * 1: At start of device
1464 * 2: 4K from start of device.
1465 */
1466 switch(minor_version) {
1467 case 0:
1468 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1469 sb_start -= 8*2;
1470 sb_start &= ~(sector_t)(4*2-1);
1471 break;
1472 case 1:
1473 sb_start = 0;
1474 break;
1475 case 2:
1476 sb_start = 8;
1477 break;
1478 default:
1479 return -EINVAL;
1480 }
1481 rdev->sb_start = sb_start;
1482
1483 /* superblock is rarely larger than 1K, but it can be larger,
1484 * and it is safe to read 4k, so we do that
1485 */
1486 ret = read_disk_sb(rdev, 4096);
1487 if (ret) return ret;
1488
1489 sb = page_address(rdev->sb_page);
1490
1491 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1492 sb->major_version != cpu_to_le32(1) ||
1493 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1494 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1495 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1496 return -EINVAL;
1497
1498 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1499 pr_warn("md: invalid superblock checksum on %s\n",
1500 bdevname(rdev->bdev,b));
1501 return -EINVAL;
1502 }
1503 if (le64_to_cpu(sb->data_size) < 10) {
1504 pr_warn("md: data_size too small on %s\n",
1505 bdevname(rdev->bdev,b));
1506 return -EINVAL;
1507 }
1508 if (sb->pad0 ||
1509 sb->pad3[0] ||
1510 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1511 /* Some padding is non-zero, might be a new feature */
1512 return -EINVAL;
1513
1514 rdev->preferred_minor = 0xffff;
1515 rdev->data_offset = le64_to_cpu(sb->data_offset);
1516 rdev->new_data_offset = rdev->data_offset;
1517 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1518 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1519 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1520 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1521
1522 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1523 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1524 if (rdev->sb_size & bmask)
1525 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1526
1527 if (minor_version
1528 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1529 return -EINVAL;
1530 if (minor_version
1531 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1532 return -EINVAL;
1533
1534 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1535 rdev->desc_nr = -1;
1536 else
1537 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1538
1539 if (!rdev->bb_page) {
1540 rdev->bb_page = alloc_page(GFP_KERNEL);
1541 if (!rdev->bb_page)
1542 return -ENOMEM;
1543 }
1544 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1545 rdev->badblocks.count == 0) {
1546 /* need to load the bad block list.
1547 * Currently we limit it to one page.
1548 */
1549 s32 offset;
1550 sector_t bb_sector;
1551 __le64 *bbp;
1552 int i;
1553 int sectors = le16_to_cpu(sb->bblog_size);
1554 if (sectors > (PAGE_SIZE / 512))
1555 return -EINVAL;
1556 offset = le32_to_cpu(sb->bblog_offset);
1557 if (offset == 0)
1558 return -EINVAL;
1559 bb_sector = (long long)offset;
1560 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1561 rdev->bb_page, REQ_OP_READ, 0, true))
1562 return -EIO;
1563 bbp = (__le64 *)page_address(rdev->bb_page);
1564 rdev->badblocks.shift = sb->bblog_shift;
1565 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1566 u64 bb = le64_to_cpu(*bbp);
1567 int count = bb & (0x3ff);
1568 u64 sector = bb >> 10;
1569 sector <<= sb->bblog_shift;
1570 count <<= sb->bblog_shift;
1571 if (bb + 1 == 0)
1572 break;
1573 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1574 return -EINVAL;
1575 }
1576 } else if (sb->bblog_offset != 0)
1577 rdev->badblocks.shift = 0;
1578
1579 if ((le32_to_cpu(sb->feature_map) &
1580 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1581 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1582 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1583 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1584 }
1585
1586 if (!refdev) {
1587 ret = 1;
1588 } else {
1589 __u64 ev1, ev2;
1590 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591
1592 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1593 sb->level != refsb->level ||
1594 sb->layout != refsb->layout ||
1595 sb->chunksize != refsb->chunksize) {
1596 pr_warn("md: %s has strangely different superblock to %s\n",
1597 bdevname(rdev->bdev,b),
1598 bdevname(refdev->bdev,b2));
1599 return -EINVAL;
1600 }
1601 ev1 = le64_to_cpu(sb->events);
1602 ev2 = le64_to_cpu(refsb->events);
1603
1604 if (ev1 > ev2)
1605 ret = 1;
1606 else
1607 ret = 0;
1608 }
1609 if (minor_version) {
1610 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1611 sectors -= rdev->data_offset;
1612 } else
1613 sectors = rdev->sb_start;
1614 if (sectors < le64_to_cpu(sb->data_size))
1615 return -EINVAL;
1616 rdev->sectors = le64_to_cpu(sb->data_size);
1617 return ret;
1618 }
1619
1620 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1621 {
1622 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1623 __u64 ev1 = le64_to_cpu(sb->events);
1624
1625 rdev->raid_disk = -1;
1626 clear_bit(Faulty, &rdev->flags);
1627 clear_bit(In_sync, &rdev->flags);
1628 clear_bit(Bitmap_sync, &rdev->flags);
1629 clear_bit(WriteMostly, &rdev->flags);
1630
1631 if (mddev->raid_disks == 0) {
1632 mddev->major_version = 1;
1633 mddev->patch_version = 0;
1634 mddev->external = 0;
1635 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 mddev->ctime = le64_to_cpu(sb->ctime);
1637 mddev->utime = le64_to_cpu(sb->utime);
1638 mddev->level = le32_to_cpu(sb->level);
1639 mddev->clevel[0] = 0;
1640 mddev->layout = le32_to_cpu(sb->layout);
1641 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 mddev->dev_sectors = le64_to_cpu(sb->size);
1643 mddev->events = ev1;
1644 mddev->bitmap_info.offset = 0;
1645 mddev->bitmap_info.space = 0;
1646 /* Default location for bitmap is 1K after superblock
1647 * using 3K - total of 4K
1648 */
1649 mddev->bitmap_info.default_offset = 1024 >> 9;
1650 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1651 mddev->reshape_backwards = 0;
1652
1653 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1654 memcpy(mddev->uuid, sb->set_uuid, 16);
1655
1656 mddev->max_disks = (4096-256)/2;
1657
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1659 mddev->bitmap_info.file == NULL) {
1660 mddev->bitmap_info.offset =
1661 (__s32)le32_to_cpu(sb->bitmap_offset);
1662 /* Metadata doesn't record how much space is available.
1663 * For 1.0, we assume we can use up to the superblock
1664 * if before, else to 4K beyond superblock.
1665 * For others, assume no change is possible.
1666 */
1667 if (mddev->minor_version > 0)
1668 mddev->bitmap_info.space = 0;
1669 else if (mddev->bitmap_info.offset > 0)
1670 mddev->bitmap_info.space =
1671 8 - mddev->bitmap_info.offset;
1672 else
1673 mddev->bitmap_info.space =
1674 -mddev->bitmap_info.offset;
1675 }
1676
1677 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1678 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1679 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1680 mddev->new_level = le32_to_cpu(sb->new_level);
1681 mddev->new_layout = le32_to_cpu(sb->new_layout);
1682 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1683 if (mddev->delta_disks < 0 ||
1684 (mddev->delta_disks == 0 &&
1685 (le32_to_cpu(sb->feature_map)
1686 & MD_FEATURE_RESHAPE_BACKWARDS)))
1687 mddev->reshape_backwards = 1;
1688 } else {
1689 mddev->reshape_position = MaxSector;
1690 mddev->delta_disks = 0;
1691 mddev->new_level = mddev->level;
1692 mddev->new_layout = mddev->layout;
1693 mddev->new_chunk_sectors = mddev->chunk_sectors;
1694 }
1695
1696 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1697 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1698
1699 if (le32_to_cpu(sb->feature_map) &
1700 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1701 if (le32_to_cpu(sb->feature_map) &
1702 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1703 return -EINVAL;
1704 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1705 (le32_to_cpu(sb->feature_map) &
1706 MD_FEATURE_MULTIPLE_PPLS))
1707 return -EINVAL;
1708 set_bit(MD_HAS_PPL, &mddev->flags);
1709 }
1710 } else if (mddev->pers == NULL) {
1711 /* Insist of good event counter while assembling, except for
1712 * spares (which don't need an event count) */
1713 ++ev1;
1714 if (rdev->desc_nr >= 0 &&
1715 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1716 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1717 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1718 if (ev1 < mddev->events)
1719 return -EINVAL;
1720 } else if (mddev->bitmap) {
1721 /* If adding to array with a bitmap, then we can accept an
1722 * older device, but not too old.
1723 */
1724 if (ev1 < mddev->bitmap->events_cleared)
1725 return 0;
1726 if (ev1 < mddev->events)
1727 set_bit(Bitmap_sync, &rdev->flags);
1728 } else {
1729 if (ev1 < mddev->events)
1730 /* just a hot-add of a new device, leave raid_disk at -1 */
1731 return 0;
1732 }
1733 if (mddev->level != LEVEL_MULTIPATH) {
1734 int role;
1735 if (rdev->desc_nr < 0 ||
1736 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1737 role = MD_DISK_ROLE_SPARE;
1738 rdev->desc_nr = -1;
1739 } else
1740 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1741 switch(role) {
1742 case MD_DISK_ROLE_SPARE: /* spare */
1743 break;
1744 case MD_DISK_ROLE_FAULTY: /* faulty */
1745 set_bit(Faulty, &rdev->flags);
1746 break;
1747 case MD_DISK_ROLE_JOURNAL: /* journal device */
1748 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1749 /* journal device without journal feature */
1750 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1751 return -EINVAL;
1752 }
1753 set_bit(Journal, &rdev->flags);
1754 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1755 rdev->raid_disk = 0;
1756 break;
1757 default:
1758 rdev->saved_raid_disk = role;
1759 if ((le32_to_cpu(sb->feature_map) &
1760 MD_FEATURE_RECOVERY_OFFSET)) {
1761 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1762 if (!(le32_to_cpu(sb->feature_map) &
1763 MD_FEATURE_RECOVERY_BITMAP))
1764 rdev->saved_raid_disk = -1;
1765 } else
1766 set_bit(In_sync, &rdev->flags);
1767 rdev->raid_disk = role;
1768 break;
1769 }
1770 if (sb->devflags & WriteMostly1)
1771 set_bit(WriteMostly, &rdev->flags);
1772 if (sb->devflags & FailFast1)
1773 set_bit(FailFast, &rdev->flags);
1774 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1775 set_bit(Replacement, &rdev->flags);
1776 } else /* MULTIPATH are always insync */
1777 set_bit(In_sync, &rdev->flags);
1778
1779 return 0;
1780 }
1781
1782 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1783 {
1784 struct mdp_superblock_1 *sb;
1785 struct md_rdev *rdev2;
1786 int max_dev, i;
1787 /* make rdev->sb match mddev and rdev data. */
1788
1789 sb = page_address(rdev->sb_page);
1790
1791 sb->feature_map = 0;
1792 sb->pad0 = 0;
1793 sb->recovery_offset = cpu_to_le64(0);
1794 memset(sb->pad3, 0, sizeof(sb->pad3));
1795
1796 sb->utime = cpu_to_le64((__u64)mddev->utime);
1797 sb->events = cpu_to_le64(mddev->events);
1798 if (mddev->in_sync)
1799 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1800 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1801 sb->resync_offset = cpu_to_le64(MaxSector);
1802 else
1803 sb->resync_offset = cpu_to_le64(0);
1804
1805 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1806
1807 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1808 sb->size = cpu_to_le64(mddev->dev_sectors);
1809 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1810 sb->level = cpu_to_le32(mddev->level);
1811 sb->layout = cpu_to_le32(mddev->layout);
1812 if (test_bit(FailFast, &rdev->flags))
1813 sb->devflags |= FailFast1;
1814 else
1815 sb->devflags &= ~FailFast1;
1816
1817 if (test_bit(WriteMostly, &rdev->flags))
1818 sb->devflags |= WriteMostly1;
1819 else
1820 sb->devflags &= ~WriteMostly1;
1821 sb->data_offset = cpu_to_le64(rdev->data_offset);
1822 sb->data_size = cpu_to_le64(rdev->sectors);
1823
1824 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1825 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1826 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1827 }
1828
1829 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1830 !test_bit(In_sync, &rdev->flags)) {
1831 sb->feature_map |=
1832 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1833 sb->recovery_offset =
1834 cpu_to_le64(rdev->recovery_offset);
1835 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1836 sb->feature_map |=
1837 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1838 }
1839 /* Note: recovery_offset and journal_tail share space */
1840 if (test_bit(Journal, &rdev->flags))
1841 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1842 if (test_bit(Replacement, &rdev->flags))
1843 sb->feature_map |=
1844 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1845
1846 if (mddev->reshape_position != MaxSector) {
1847 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1848 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1849 sb->new_layout = cpu_to_le32(mddev->new_layout);
1850 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1851 sb->new_level = cpu_to_le32(mddev->new_level);
1852 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1853 if (mddev->delta_disks == 0 &&
1854 mddev->reshape_backwards)
1855 sb->feature_map
1856 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1857 if (rdev->new_data_offset != rdev->data_offset) {
1858 sb->feature_map
1859 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1860 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1861 - rdev->data_offset));
1862 }
1863 }
1864
1865 if (mddev_is_clustered(mddev))
1866 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1867
1868 if (rdev->badblocks.count == 0)
1869 /* Nothing to do for bad blocks*/ ;
1870 else if (sb->bblog_offset == 0)
1871 /* Cannot record bad blocks on this device */
1872 md_error(mddev, rdev);
1873 else {
1874 struct badblocks *bb = &rdev->badblocks;
1875 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
1876 u64 *p = bb->page;
1877 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1878 if (bb->changed) {
1879 unsigned seq;
1880
1881 retry:
1882 seq = read_seqbegin(&bb->lock);
1883
1884 memset(bbp, 0xff, PAGE_SIZE);
1885
1886 for (i = 0 ; i < bb->count ; i++) {
1887 u64 internal_bb = p[i];
1888 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1889 | BB_LEN(internal_bb));
1890 bbp[i] = cpu_to_le64(store_bb);
1891 }
1892 bb->changed = 0;
1893 if (read_seqretry(&bb->lock, seq))
1894 goto retry;
1895
1896 bb->sector = (rdev->sb_start +
1897 (int)le32_to_cpu(sb->bblog_offset));
1898 bb->size = le16_to_cpu(sb->bblog_size);
1899 }
1900 }
1901
1902 max_dev = 0;
1903 rdev_for_each(rdev2, mddev)
1904 if (rdev2->desc_nr+1 > max_dev)
1905 max_dev = rdev2->desc_nr+1;
1906
1907 if (max_dev > le32_to_cpu(sb->max_dev)) {
1908 int bmask;
1909 sb->max_dev = cpu_to_le32(max_dev);
1910 rdev->sb_size = max_dev * 2 + 256;
1911 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1912 if (rdev->sb_size & bmask)
1913 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1914 } else
1915 max_dev = le32_to_cpu(sb->max_dev);
1916
1917 for (i=0; i<max_dev;i++)
1918 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1919
1920 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1921 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1922
1923 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
1924 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
1925 sb->feature_map |=
1926 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
1927 else
1928 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
1929 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
1930 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
1931 }
1932
1933 rdev_for_each(rdev2, mddev) {
1934 i = rdev2->desc_nr;
1935 if (test_bit(Faulty, &rdev2->flags))
1936 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1937 else if (test_bit(In_sync, &rdev2->flags))
1938 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1939 else if (test_bit(Journal, &rdev2->flags))
1940 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1941 else if (rdev2->raid_disk >= 0)
1942 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1943 else
1944 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1945 }
1946
1947 sb->sb_csum = calc_sb_1_csum(sb);
1948 }
1949
1950 static unsigned long long
1951 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1952 {
1953 struct mdp_superblock_1 *sb;
1954 sector_t max_sectors;
1955 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1956 return 0; /* component must fit device */
1957 if (rdev->data_offset != rdev->new_data_offset)
1958 return 0; /* too confusing */
1959 if (rdev->sb_start < rdev->data_offset) {
1960 /* minor versions 1 and 2; superblock before data */
1961 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1962 max_sectors -= rdev->data_offset;
1963 if (!num_sectors || num_sectors > max_sectors)
1964 num_sectors = max_sectors;
1965 } else if (rdev->mddev->bitmap_info.offset) {
1966 /* minor version 0 with bitmap we can't move */
1967 return 0;
1968 } else {
1969 /* minor version 0; superblock after data */
1970 sector_t sb_start;
1971 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1972 sb_start &= ~(sector_t)(4*2 - 1);
1973 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1974 if (!num_sectors || num_sectors > max_sectors)
1975 num_sectors = max_sectors;
1976 rdev->sb_start = sb_start;
1977 }
1978 sb = page_address(rdev->sb_page);
1979 sb->data_size = cpu_to_le64(num_sectors);
1980 sb->super_offset = cpu_to_le64(rdev->sb_start);
1981 sb->sb_csum = calc_sb_1_csum(sb);
1982 do {
1983 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1984 rdev->sb_page);
1985 } while (md_super_wait(rdev->mddev) < 0);
1986 return num_sectors;
1987
1988 }
1989
1990 static int
1991 super_1_allow_new_offset(struct md_rdev *rdev,
1992 unsigned long long new_offset)
1993 {
1994 /* All necessary checks on new >= old have been done */
1995 struct bitmap *bitmap;
1996 if (new_offset >= rdev->data_offset)
1997 return 1;
1998
1999 /* with 1.0 metadata, there is no metadata to tread on
2000 * so we can always move back */
2001 if (rdev->mddev->minor_version == 0)
2002 return 1;
2003
2004 /* otherwise we must be sure not to step on
2005 * any metadata, so stay:
2006 * 36K beyond start of superblock
2007 * beyond end of badblocks
2008 * beyond write-intent bitmap
2009 */
2010 if (rdev->sb_start + (32+4)*2 > new_offset)
2011 return 0;
2012 bitmap = rdev->mddev->bitmap;
2013 if (bitmap && !rdev->mddev->bitmap_info.file &&
2014 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2015 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2016 return 0;
2017 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 static struct super_type super_types[] = {
2024 [0] = {
2025 .name = "0.90.0",
2026 .owner = THIS_MODULE,
2027 .load_super = super_90_load,
2028 .validate_super = super_90_validate,
2029 .sync_super = super_90_sync,
2030 .rdev_size_change = super_90_rdev_size_change,
2031 .allow_new_offset = super_90_allow_new_offset,
2032 },
2033 [1] = {
2034 .name = "md-1",
2035 .owner = THIS_MODULE,
2036 .load_super = super_1_load,
2037 .validate_super = super_1_validate,
2038 .sync_super = super_1_sync,
2039 .rdev_size_change = super_1_rdev_size_change,
2040 .allow_new_offset = super_1_allow_new_offset,
2041 },
2042 };
2043
2044 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2045 {
2046 if (mddev->sync_super) {
2047 mddev->sync_super(mddev, rdev);
2048 return;
2049 }
2050
2051 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2052
2053 super_types[mddev->major_version].sync_super(mddev, rdev);
2054 }
2055
2056 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2057 {
2058 struct md_rdev *rdev, *rdev2;
2059
2060 rcu_read_lock();
2061 rdev_for_each_rcu(rdev, mddev1) {
2062 if (test_bit(Faulty, &rdev->flags) ||
2063 test_bit(Journal, &rdev->flags) ||
2064 rdev->raid_disk == -1)
2065 continue;
2066 rdev_for_each_rcu(rdev2, mddev2) {
2067 if (test_bit(Faulty, &rdev2->flags) ||
2068 test_bit(Journal, &rdev2->flags) ||
2069 rdev2->raid_disk == -1)
2070 continue;
2071 if (rdev->bdev->bd_contains ==
2072 rdev2->bdev->bd_contains) {
2073 rcu_read_unlock();
2074 return 1;
2075 }
2076 }
2077 }
2078 rcu_read_unlock();
2079 return 0;
2080 }
2081
2082 static LIST_HEAD(pending_raid_disks);
2083
2084 /*
2085 * Try to register data integrity profile for an mddev
2086 *
2087 * This is called when an array is started and after a disk has been kicked
2088 * from the array. It only succeeds if all working and active component devices
2089 * are integrity capable with matching profiles.
2090 */
2091 int md_integrity_register(struct mddev *mddev)
2092 {
2093 struct md_rdev *rdev, *reference = NULL;
2094
2095 if (list_empty(&mddev->disks))
2096 return 0; /* nothing to do */
2097 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2098 return 0; /* shouldn't register, or already is */
2099 rdev_for_each(rdev, mddev) {
2100 /* skip spares and non-functional disks */
2101 if (test_bit(Faulty, &rdev->flags))
2102 continue;
2103 if (rdev->raid_disk < 0)
2104 continue;
2105 if (!reference) {
2106 /* Use the first rdev as the reference */
2107 reference = rdev;
2108 continue;
2109 }
2110 /* does this rdev's profile match the reference profile? */
2111 if (blk_integrity_compare(reference->bdev->bd_disk,
2112 rdev->bdev->bd_disk) < 0)
2113 return -EINVAL;
2114 }
2115 if (!reference || !bdev_get_integrity(reference->bdev))
2116 return 0;
2117 /*
2118 * All component devices are integrity capable and have matching
2119 * profiles, register the common profile for the md device.
2120 */
2121 blk_integrity_register(mddev->gendisk,
2122 bdev_get_integrity(reference->bdev));
2123
2124 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2125 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2126 pr_err("md: failed to create integrity pool for %s\n",
2127 mdname(mddev));
2128 return -EINVAL;
2129 }
2130 return 0;
2131 }
2132 EXPORT_SYMBOL(md_integrity_register);
2133
2134 /*
2135 * Attempt to add an rdev, but only if it is consistent with the current
2136 * integrity profile
2137 */
2138 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2139 {
2140 struct blk_integrity *bi_mddev;
2141 char name[BDEVNAME_SIZE];
2142
2143 if (!mddev->gendisk)
2144 return 0;
2145
2146 bi_mddev = blk_get_integrity(mddev->gendisk);
2147
2148 if (!bi_mddev) /* nothing to do */
2149 return 0;
2150
2151 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2152 pr_err("%s: incompatible integrity profile for %s\n",
2153 mdname(mddev), bdevname(rdev->bdev, name));
2154 return -ENXIO;
2155 }
2156
2157 return 0;
2158 }
2159 EXPORT_SYMBOL(md_integrity_add_rdev);
2160
2161 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2162 {
2163 char b[BDEVNAME_SIZE];
2164 struct kobject *ko;
2165 int err;
2166
2167 /* prevent duplicates */
2168 if (find_rdev(mddev, rdev->bdev->bd_dev))
2169 return -EEXIST;
2170
2171 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2172 mddev->pers)
2173 return -EROFS;
2174
2175 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2176 if (!test_bit(Journal, &rdev->flags) &&
2177 rdev->sectors &&
2178 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2179 if (mddev->pers) {
2180 /* Cannot change size, so fail
2181 * If mddev->level <= 0, then we don't care
2182 * about aligning sizes (e.g. linear)
2183 */
2184 if (mddev->level > 0)
2185 return -ENOSPC;
2186 } else
2187 mddev->dev_sectors = rdev->sectors;
2188 }
2189
2190 /* Verify rdev->desc_nr is unique.
2191 * If it is -1, assign a free number, else
2192 * check number is not in use
2193 */
2194 rcu_read_lock();
2195 if (rdev->desc_nr < 0) {
2196 int choice = 0;
2197 if (mddev->pers)
2198 choice = mddev->raid_disks;
2199 while (md_find_rdev_nr_rcu(mddev, choice))
2200 choice++;
2201 rdev->desc_nr = choice;
2202 } else {
2203 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2204 rcu_read_unlock();
2205 return -EBUSY;
2206 }
2207 }
2208 rcu_read_unlock();
2209 if (!test_bit(Journal, &rdev->flags) &&
2210 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2211 pr_warn("md: %s: array is limited to %d devices\n",
2212 mdname(mddev), mddev->max_disks);
2213 return -EBUSY;
2214 }
2215 bdevname(rdev->bdev,b);
2216 strreplace(b, '/', '!');
2217
2218 rdev->mddev = mddev;
2219 pr_debug("md: bind<%s>\n", b);
2220
2221 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2222 goto fail;
2223
2224 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2225 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2226 /* failure here is OK */;
2227 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2228
2229 list_add_rcu(&rdev->same_set, &mddev->disks);
2230 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2231
2232 /* May as well allow recovery to be retried once */
2233 mddev->recovery_disabled++;
2234
2235 return 0;
2236
2237 fail:
2238 pr_warn("md: failed to register dev-%s for %s\n",
2239 b, mdname(mddev));
2240 return err;
2241 }
2242
2243 static void md_delayed_delete(struct work_struct *ws)
2244 {
2245 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2246 kobject_del(&rdev->kobj);
2247 kobject_put(&rdev->kobj);
2248 }
2249
2250 static void unbind_rdev_from_array(struct md_rdev *rdev)
2251 {
2252 char b[BDEVNAME_SIZE];
2253
2254 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2255 list_del_rcu(&rdev->same_set);
2256 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2257 rdev->mddev = NULL;
2258 sysfs_remove_link(&rdev->kobj, "block");
2259 sysfs_put(rdev->sysfs_state);
2260 rdev->sysfs_state = NULL;
2261 rdev->badblocks.count = 0;
2262 /* We need to delay this, otherwise we can deadlock when
2263 * writing to 'remove' to "dev/state". We also need
2264 * to delay it due to rcu usage.
2265 */
2266 synchronize_rcu();
2267 INIT_WORK(&rdev->del_work, md_delayed_delete);
2268 kobject_get(&rdev->kobj);
2269 queue_work(md_misc_wq, &rdev->del_work);
2270 }
2271
2272 /*
2273 * prevent the device from being mounted, repartitioned or
2274 * otherwise reused by a RAID array (or any other kernel
2275 * subsystem), by bd_claiming the device.
2276 */
2277 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2278 {
2279 int err = 0;
2280 struct block_device *bdev;
2281 char b[BDEVNAME_SIZE];
2282
2283 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2284 shared ? (struct md_rdev *)lock_rdev : rdev);
2285 if (IS_ERR(bdev)) {
2286 pr_warn("md: could not open %s.\n", __bdevname(dev, b));
2287 return PTR_ERR(bdev);
2288 }
2289 rdev->bdev = bdev;
2290 return err;
2291 }
2292
2293 static void unlock_rdev(struct md_rdev *rdev)
2294 {
2295 struct block_device *bdev = rdev->bdev;
2296 rdev->bdev = NULL;
2297 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2298 }
2299
2300 void md_autodetect_dev(dev_t dev);
2301
2302 static void export_rdev(struct md_rdev *rdev)
2303 {
2304 char b[BDEVNAME_SIZE];
2305
2306 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2307 md_rdev_clear(rdev);
2308 #ifndef MODULE
2309 if (test_bit(AutoDetected, &rdev->flags))
2310 md_autodetect_dev(rdev->bdev->bd_dev);
2311 #endif
2312 unlock_rdev(rdev);
2313 kobject_put(&rdev->kobj);
2314 }
2315
2316 void md_kick_rdev_from_array(struct md_rdev *rdev)
2317 {
2318 unbind_rdev_from_array(rdev);
2319 export_rdev(rdev);
2320 }
2321 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2322
2323 static void export_array(struct mddev *mddev)
2324 {
2325 struct md_rdev *rdev;
2326
2327 while (!list_empty(&mddev->disks)) {
2328 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2329 same_set);
2330 md_kick_rdev_from_array(rdev);
2331 }
2332 mddev->raid_disks = 0;
2333 mddev->major_version = 0;
2334 }
2335
2336 static bool set_in_sync(struct mddev *mddev)
2337 {
2338 lockdep_assert_held(&mddev->lock);
2339 if (!mddev->in_sync) {
2340 mddev->sync_checkers++;
2341 spin_unlock(&mddev->lock);
2342 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2343 spin_lock(&mddev->lock);
2344 if (!mddev->in_sync &&
2345 percpu_ref_is_zero(&mddev->writes_pending)) {
2346 mddev->in_sync = 1;
2347 /*
2348 * Ensure ->in_sync is visible before we clear
2349 * ->sync_checkers.
2350 */
2351 smp_mb();
2352 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2353 sysfs_notify_dirent_safe(mddev->sysfs_state);
2354 }
2355 if (--mddev->sync_checkers == 0)
2356 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2357 }
2358 if (mddev->safemode == 1)
2359 mddev->safemode = 0;
2360 return mddev->in_sync;
2361 }
2362
2363 static void sync_sbs(struct mddev *mddev, int nospares)
2364 {
2365 /* Update each superblock (in-memory image), but
2366 * if we are allowed to, skip spares which already
2367 * have the right event counter, or have one earlier
2368 * (which would mean they aren't being marked as dirty
2369 * with the rest of the array)
2370 */
2371 struct md_rdev *rdev;
2372 rdev_for_each(rdev, mddev) {
2373 if (rdev->sb_events == mddev->events ||
2374 (nospares &&
2375 rdev->raid_disk < 0 &&
2376 rdev->sb_events+1 == mddev->events)) {
2377 /* Don't update this superblock */
2378 rdev->sb_loaded = 2;
2379 } else {
2380 sync_super(mddev, rdev);
2381 rdev->sb_loaded = 1;
2382 }
2383 }
2384 }
2385
2386 static bool does_sb_need_changing(struct mddev *mddev)
2387 {
2388 struct md_rdev *rdev;
2389 struct mdp_superblock_1 *sb;
2390 int role;
2391
2392 /* Find a good rdev */
2393 rdev_for_each(rdev, mddev)
2394 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2395 break;
2396
2397 /* No good device found. */
2398 if (!rdev)
2399 return false;
2400
2401 sb = page_address(rdev->sb_page);
2402 /* Check if a device has become faulty or a spare become active */
2403 rdev_for_each(rdev, mddev) {
2404 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2405 /* Device activated? */
2406 if (role == 0xffff && rdev->raid_disk >=0 &&
2407 !test_bit(Faulty, &rdev->flags))
2408 return true;
2409 /* Device turned faulty? */
2410 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2411 return true;
2412 }
2413
2414 /* Check if any mddev parameters have changed */
2415 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2416 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2417 (mddev->layout != le32_to_cpu(sb->layout)) ||
2418 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2419 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2420 return true;
2421
2422 return false;
2423 }
2424
2425 void md_update_sb(struct mddev *mddev, int force_change)
2426 {
2427 struct md_rdev *rdev;
2428 int sync_req;
2429 int nospares = 0;
2430 int any_badblocks_changed = 0;
2431 int ret = -1;
2432
2433 if (mddev->ro) {
2434 if (force_change)
2435 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2436 return;
2437 }
2438
2439 repeat:
2440 if (mddev_is_clustered(mddev)) {
2441 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2442 force_change = 1;
2443 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2444 nospares = 1;
2445 ret = md_cluster_ops->metadata_update_start(mddev);
2446 /* Has someone else has updated the sb */
2447 if (!does_sb_need_changing(mddev)) {
2448 if (ret == 0)
2449 md_cluster_ops->metadata_update_cancel(mddev);
2450 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2451 BIT(MD_SB_CHANGE_DEVS) |
2452 BIT(MD_SB_CHANGE_CLEAN));
2453 return;
2454 }
2455 }
2456
2457 /*
2458 * First make sure individual recovery_offsets are correct
2459 * curr_resync_completed can only be used during recovery.
2460 * During reshape/resync it might use array-addresses rather
2461 * that device addresses.
2462 */
2463 rdev_for_each(rdev, mddev) {
2464 if (rdev->raid_disk >= 0 &&
2465 mddev->delta_disks >= 0 &&
2466 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2467 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2468 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2469 !test_bit(Journal, &rdev->flags) &&
2470 !test_bit(In_sync, &rdev->flags) &&
2471 mddev->curr_resync_completed > rdev->recovery_offset)
2472 rdev->recovery_offset = mddev->curr_resync_completed;
2473
2474 }
2475 if (!mddev->persistent) {
2476 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2477 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2478 if (!mddev->external) {
2479 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2480 rdev_for_each(rdev, mddev) {
2481 if (rdev->badblocks.changed) {
2482 rdev->badblocks.changed = 0;
2483 ack_all_badblocks(&rdev->badblocks);
2484 md_error(mddev, rdev);
2485 }
2486 clear_bit(Blocked, &rdev->flags);
2487 clear_bit(BlockedBadBlocks, &rdev->flags);
2488 wake_up(&rdev->blocked_wait);
2489 }
2490 }
2491 wake_up(&mddev->sb_wait);
2492 return;
2493 }
2494
2495 spin_lock(&mddev->lock);
2496
2497 mddev->utime = ktime_get_real_seconds();
2498
2499 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2500 force_change = 1;
2501 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2502 /* just a clean<-> dirty transition, possibly leave spares alone,
2503 * though if events isn't the right even/odd, we will have to do
2504 * spares after all
2505 */
2506 nospares = 1;
2507 if (force_change)
2508 nospares = 0;
2509 if (mddev->degraded)
2510 /* If the array is degraded, then skipping spares is both
2511 * dangerous and fairly pointless.
2512 * Dangerous because a device that was removed from the array
2513 * might have a event_count that still looks up-to-date,
2514 * so it can be re-added without a resync.
2515 * Pointless because if there are any spares to skip,
2516 * then a recovery will happen and soon that array won't
2517 * be degraded any more and the spare can go back to sleep then.
2518 */
2519 nospares = 0;
2520
2521 sync_req = mddev->in_sync;
2522
2523 /* If this is just a dirty<->clean transition, and the array is clean
2524 * and 'events' is odd, we can roll back to the previous clean state */
2525 if (nospares
2526 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2527 && mddev->can_decrease_events
2528 && mddev->events != 1) {
2529 mddev->events--;
2530 mddev->can_decrease_events = 0;
2531 } else {
2532 /* otherwise we have to go forward and ... */
2533 mddev->events ++;
2534 mddev->can_decrease_events = nospares;
2535 }
2536
2537 /*
2538 * This 64-bit counter should never wrap.
2539 * Either we are in around ~1 trillion A.C., assuming
2540 * 1 reboot per second, or we have a bug...
2541 */
2542 WARN_ON(mddev->events == 0);
2543
2544 rdev_for_each(rdev, mddev) {
2545 if (rdev->badblocks.changed)
2546 any_badblocks_changed++;
2547 if (test_bit(Faulty, &rdev->flags))
2548 set_bit(FaultRecorded, &rdev->flags);
2549 }
2550
2551 sync_sbs(mddev, nospares);
2552 spin_unlock(&mddev->lock);
2553
2554 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2555 mdname(mddev), mddev->in_sync);
2556
2557 if (mddev->queue)
2558 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2559 rewrite:
2560 md_bitmap_update_sb(mddev->bitmap);
2561 rdev_for_each(rdev, mddev) {
2562 char b[BDEVNAME_SIZE];
2563
2564 if (rdev->sb_loaded != 1)
2565 continue; /* no noise on spare devices */
2566
2567 if (!test_bit(Faulty, &rdev->flags)) {
2568 md_super_write(mddev,rdev,
2569 rdev->sb_start, rdev->sb_size,
2570 rdev->sb_page);
2571 pr_debug("md: (write) %s's sb offset: %llu\n",
2572 bdevname(rdev->bdev, b),
2573 (unsigned long long)rdev->sb_start);
2574 rdev->sb_events = mddev->events;
2575 if (rdev->badblocks.size) {
2576 md_super_write(mddev, rdev,
2577 rdev->badblocks.sector,
2578 rdev->badblocks.size << 9,
2579 rdev->bb_page);
2580 rdev->badblocks.size = 0;
2581 }
2582
2583 } else
2584 pr_debug("md: %s (skipping faulty)\n",
2585 bdevname(rdev->bdev, b));
2586
2587 if (mddev->level == LEVEL_MULTIPATH)
2588 /* only need to write one superblock... */
2589 break;
2590 }
2591 if (md_super_wait(mddev) < 0)
2592 goto rewrite;
2593 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2594
2595 if (mddev_is_clustered(mddev) && ret == 0)
2596 md_cluster_ops->metadata_update_finish(mddev);
2597
2598 if (mddev->in_sync != sync_req ||
2599 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2600 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2601 /* have to write it out again */
2602 goto repeat;
2603 wake_up(&mddev->sb_wait);
2604 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2605 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2606
2607 rdev_for_each(rdev, mddev) {
2608 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2609 clear_bit(Blocked, &rdev->flags);
2610
2611 if (any_badblocks_changed)
2612 ack_all_badblocks(&rdev->badblocks);
2613 clear_bit(BlockedBadBlocks, &rdev->flags);
2614 wake_up(&rdev->blocked_wait);
2615 }
2616 }
2617 EXPORT_SYMBOL(md_update_sb);
2618
2619 static int add_bound_rdev(struct md_rdev *rdev)
2620 {
2621 struct mddev *mddev = rdev->mddev;
2622 int err = 0;
2623 bool add_journal = test_bit(Journal, &rdev->flags);
2624
2625 if (!mddev->pers->hot_remove_disk || add_journal) {
2626 /* If there is hot_add_disk but no hot_remove_disk
2627 * then added disks for geometry changes,
2628 * and should be added immediately.
2629 */
2630 super_types[mddev->major_version].
2631 validate_super(mddev, rdev);
2632 if (add_journal)
2633 mddev_suspend(mddev);
2634 err = mddev->pers->hot_add_disk(mddev, rdev);
2635 if (add_journal)
2636 mddev_resume(mddev);
2637 if (err) {
2638 md_kick_rdev_from_array(rdev);
2639 return err;
2640 }
2641 }
2642 sysfs_notify_dirent_safe(rdev->sysfs_state);
2643
2644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2645 if (mddev->degraded)
2646 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2647 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2648 md_new_event(mddev);
2649 md_wakeup_thread(mddev->thread);
2650 return 0;
2651 }
2652
2653 /* words written to sysfs files may, or may not, be \n terminated.
2654 * We want to accept with case. For this we use cmd_match.
2655 */
2656 static int cmd_match(const char *cmd, const char *str)
2657 {
2658 /* See if cmd, written into a sysfs file, matches
2659 * str. They must either be the same, or cmd can
2660 * have a trailing newline
2661 */
2662 while (*cmd && *str && *cmd == *str) {
2663 cmd++;
2664 str++;
2665 }
2666 if (*cmd == '\n')
2667 cmd++;
2668 if (*str || *cmd)
2669 return 0;
2670 return 1;
2671 }
2672
2673 struct rdev_sysfs_entry {
2674 struct attribute attr;
2675 ssize_t (*show)(struct md_rdev *, char *);
2676 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2677 };
2678
2679 static ssize_t
2680 state_show(struct md_rdev *rdev, char *page)
2681 {
2682 char *sep = ",";
2683 size_t len = 0;
2684 unsigned long flags = READ_ONCE(rdev->flags);
2685
2686 if (test_bit(Faulty, &flags) ||
2687 (!test_bit(ExternalBbl, &flags) &&
2688 rdev->badblocks.unacked_exist))
2689 len += sprintf(page+len, "faulty%s", sep);
2690 if (test_bit(In_sync, &flags))
2691 len += sprintf(page+len, "in_sync%s", sep);
2692 if (test_bit(Journal, &flags))
2693 len += sprintf(page+len, "journal%s", sep);
2694 if (test_bit(WriteMostly, &flags))
2695 len += sprintf(page+len, "write_mostly%s", sep);
2696 if (test_bit(Blocked, &flags) ||
2697 (rdev->badblocks.unacked_exist
2698 && !test_bit(Faulty, &flags)))
2699 len += sprintf(page+len, "blocked%s", sep);
2700 if (!test_bit(Faulty, &flags) &&
2701 !test_bit(Journal, &flags) &&
2702 !test_bit(In_sync, &flags))
2703 len += sprintf(page+len, "spare%s", sep);
2704 if (test_bit(WriteErrorSeen, &flags))
2705 len += sprintf(page+len, "write_error%s", sep);
2706 if (test_bit(WantReplacement, &flags))
2707 len += sprintf(page+len, "want_replacement%s", sep);
2708 if (test_bit(Replacement, &flags))
2709 len += sprintf(page+len, "replacement%s", sep);
2710 if (test_bit(ExternalBbl, &flags))
2711 len += sprintf(page+len, "external_bbl%s", sep);
2712 if (test_bit(FailFast, &flags))
2713 len += sprintf(page+len, "failfast%s", sep);
2714
2715 if (len)
2716 len -= strlen(sep);
2717
2718 return len+sprintf(page+len, "\n");
2719 }
2720
2721 static ssize_t
2722 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 /* can write
2725 * faulty - simulates an error
2726 * remove - disconnects the device
2727 * writemostly - sets write_mostly
2728 * -writemostly - clears write_mostly
2729 * blocked - sets the Blocked flags
2730 * -blocked - clears the Blocked and possibly simulates an error
2731 * insync - sets Insync providing device isn't active
2732 * -insync - clear Insync for a device with a slot assigned,
2733 * so that it gets rebuilt based on bitmap
2734 * write_error - sets WriteErrorSeen
2735 * -write_error - clears WriteErrorSeen
2736 * {,-}failfast - set/clear FailFast
2737 */
2738 int err = -EINVAL;
2739 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2740 md_error(rdev->mddev, rdev);
2741 if (test_bit(Faulty, &rdev->flags))
2742 err = 0;
2743 else
2744 err = -EBUSY;
2745 } else if (cmd_match(buf, "remove")) {
2746 if (rdev->mddev->pers) {
2747 clear_bit(Blocked, &rdev->flags);
2748 remove_and_add_spares(rdev->mddev, rdev);
2749 }
2750 if (rdev->raid_disk >= 0)
2751 err = -EBUSY;
2752 else {
2753 struct mddev *mddev = rdev->mddev;
2754 err = 0;
2755 if (mddev_is_clustered(mddev))
2756 err = md_cluster_ops->remove_disk(mddev, rdev);
2757
2758 if (err == 0) {
2759 md_kick_rdev_from_array(rdev);
2760 if (mddev->pers) {
2761 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2762 md_wakeup_thread(mddev->thread);
2763 }
2764 md_new_event(mddev);
2765 }
2766 }
2767 } else if (cmd_match(buf, "writemostly")) {
2768 set_bit(WriteMostly, &rdev->flags);
2769 err = 0;
2770 } else if (cmd_match(buf, "-writemostly")) {
2771 clear_bit(WriteMostly, &rdev->flags);
2772 err = 0;
2773 } else if (cmd_match(buf, "blocked")) {
2774 set_bit(Blocked, &rdev->flags);
2775 err = 0;
2776 } else if (cmd_match(buf, "-blocked")) {
2777 if (!test_bit(Faulty, &rdev->flags) &&
2778 !test_bit(ExternalBbl, &rdev->flags) &&
2779 rdev->badblocks.unacked_exist) {
2780 /* metadata handler doesn't understand badblocks,
2781 * so we need to fail the device
2782 */
2783 md_error(rdev->mddev, rdev);
2784 }
2785 clear_bit(Blocked, &rdev->flags);
2786 clear_bit(BlockedBadBlocks, &rdev->flags);
2787 wake_up(&rdev->blocked_wait);
2788 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2789 md_wakeup_thread(rdev->mddev->thread);
2790
2791 err = 0;
2792 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2793 set_bit(In_sync, &rdev->flags);
2794 err = 0;
2795 } else if (cmd_match(buf, "failfast")) {
2796 set_bit(FailFast, &rdev->flags);
2797 err = 0;
2798 } else if (cmd_match(buf, "-failfast")) {
2799 clear_bit(FailFast, &rdev->flags);
2800 err = 0;
2801 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2802 !test_bit(Journal, &rdev->flags)) {
2803 if (rdev->mddev->pers == NULL) {
2804 clear_bit(In_sync, &rdev->flags);
2805 rdev->saved_raid_disk = rdev->raid_disk;
2806 rdev->raid_disk = -1;
2807 err = 0;
2808 }
2809 } else if (cmd_match(buf, "write_error")) {
2810 set_bit(WriteErrorSeen, &rdev->flags);
2811 err = 0;
2812 } else if (cmd_match(buf, "-write_error")) {
2813 clear_bit(WriteErrorSeen, &rdev->flags);
2814 err = 0;
2815 } else if (cmd_match(buf, "want_replacement")) {
2816 /* Any non-spare device that is not a replacement can
2817 * become want_replacement at any time, but we then need to
2818 * check if recovery is needed.
2819 */
2820 if (rdev->raid_disk >= 0 &&
2821 !test_bit(Journal, &rdev->flags) &&
2822 !test_bit(Replacement, &rdev->flags))
2823 set_bit(WantReplacement, &rdev->flags);
2824 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2825 md_wakeup_thread(rdev->mddev->thread);
2826 err = 0;
2827 } else if (cmd_match(buf, "-want_replacement")) {
2828 /* Clearing 'want_replacement' is always allowed.
2829 * Once replacements starts it is too late though.
2830 */
2831 err = 0;
2832 clear_bit(WantReplacement, &rdev->flags);
2833 } else if (cmd_match(buf, "replacement")) {
2834 /* Can only set a device as a replacement when array has not
2835 * yet been started. Once running, replacement is automatic
2836 * from spares, or by assigning 'slot'.
2837 */
2838 if (rdev->mddev->pers)
2839 err = -EBUSY;
2840 else {
2841 set_bit(Replacement, &rdev->flags);
2842 err = 0;
2843 }
2844 } else if (cmd_match(buf, "-replacement")) {
2845 /* Similarly, can only clear Replacement before start */
2846 if (rdev->mddev->pers)
2847 err = -EBUSY;
2848 else {
2849 clear_bit(Replacement, &rdev->flags);
2850 err = 0;
2851 }
2852 } else if (cmd_match(buf, "re-add")) {
2853 if (!rdev->mddev->pers)
2854 err = -EINVAL;
2855 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2856 rdev->saved_raid_disk >= 0) {
2857 /* clear_bit is performed _after_ all the devices
2858 * have their local Faulty bit cleared. If any writes
2859 * happen in the meantime in the local node, they
2860 * will land in the local bitmap, which will be synced
2861 * by this node eventually
2862 */
2863 if (!mddev_is_clustered(rdev->mddev) ||
2864 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2865 clear_bit(Faulty, &rdev->flags);
2866 err = add_bound_rdev(rdev);
2867 }
2868 } else
2869 err = -EBUSY;
2870 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
2871 set_bit(ExternalBbl, &rdev->flags);
2872 rdev->badblocks.shift = 0;
2873 err = 0;
2874 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
2875 clear_bit(ExternalBbl, &rdev->flags);
2876 err = 0;
2877 }
2878 if (!err)
2879 sysfs_notify_dirent_safe(rdev->sysfs_state);
2880 return err ? err : len;
2881 }
2882 static struct rdev_sysfs_entry rdev_state =
2883 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2884
2885 static ssize_t
2886 errors_show(struct md_rdev *rdev, char *page)
2887 {
2888 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2889 }
2890
2891 static ssize_t
2892 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2893 {
2894 unsigned int n;
2895 int rv;
2896
2897 rv = kstrtouint(buf, 10, &n);
2898 if (rv < 0)
2899 return rv;
2900 atomic_set(&rdev->corrected_errors, n);
2901 return len;
2902 }
2903 static struct rdev_sysfs_entry rdev_errors =
2904 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2905
2906 static ssize_t
2907 slot_show(struct md_rdev *rdev, char *page)
2908 {
2909 if (test_bit(Journal, &rdev->flags))
2910 return sprintf(page, "journal\n");
2911 else if (rdev->raid_disk < 0)
2912 return sprintf(page, "none\n");
2913 else
2914 return sprintf(page, "%d\n", rdev->raid_disk);
2915 }
2916
2917 static ssize_t
2918 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2919 {
2920 int slot;
2921 int err;
2922
2923 if (test_bit(Journal, &rdev->flags))
2924 return -EBUSY;
2925 if (strncmp(buf, "none", 4)==0)
2926 slot = -1;
2927 else {
2928 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2929 if (err < 0)
2930 return err;
2931 }
2932 if (rdev->mddev->pers && slot == -1) {
2933 /* Setting 'slot' on an active array requires also
2934 * updating the 'rd%d' link, and communicating
2935 * with the personality with ->hot_*_disk.
2936 * For now we only support removing
2937 * failed/spare devices. This normally happens automatically,
2938 * but not when the metadata is externally managed.
2939 */
2940 if (rdev->raid_disk == -1)
2941 return -EEXIST;
2942 /* personality does all needed checks */
2943 if (rdev->mddev->pers->hot_remove_disk == NULL)
2944 return -EINVAL;
2945 clear_bit(Blocked, &rdev->flags);
2946 remove_and_add_spares(rdev->mddev, rdev);
2947 if (rdev->raid_disk >= 0)
2948 return -EBUSY;
2949 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2950 md_wakeup_thread(rdev->mddev->thread);
2951 } else if (rdev->mddev->pers) {
2952 /* Activating a spare .. or possibly reactivating
2953 * if we ever get bitmaps working here.
2954 */
2955 int err;
2956
2957 if (rdev->raid_disk != -1)
2958 return -EBUSY;
2959
2960 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2961 return -EBUSY;
2962
2963 if (rdev->mddev->pers->hot_add_disk == NULL)
2964 return -EINVAL;
2965
2966 if (slot >= rdev->mddev->raid_disks &&
2967 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2968 return -ENOSPC;
2969
2970 rdev->raid_disk = slot;
2971 if (test_bit(In_sync, &rdev->flags))
2972 rdev->saved_raid_disk = slot;
2973 else
2974 rdev->saved_raid_disk = -1;
2975 clear_bit(In_sync, &rdev->flags);
2976 clear_bit(Bitmap_sync, &rdev->flags);
2977 err = rdev->mddev->pers->
2978 hot_add_disk(rdev->mddev, rdev);
2979 if (err) {
2980 rdev->raid_disk = -1;
2981 return err;
2982 } else
2983 sysfs_notify_dirent_safe(rdev->sysfs_state);
2984 if (sysfs_link_rdev(rdev->mddev, rdev))
2985 /* failure here is OK */;
2986 /* don't wakeup anyone, leave that to userspace. */
2987 } else {
2988 if (slot >= rdev->mddev->raid_disks &&
2989 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2990 return -ENOSPC;
2991 rdev->raid_disk = slot;
2992 /* assume it is working */
2993 clear_bit(Faulty, &rdev->flags);
2994 clear_bit(WriteMostly, &rdev->flags);
2995 set_bit(In_sync, &rdev->flags);
2996 sysfs_notify_dirent_safe(rdev->sysfs_state);
2997 }
2998 return len;
2999 }
3000
3001 static struct rdev_sysfs_entry rdev_slot =
3002 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3003
3004 static ssize_t
3005 offset_show(struct md_rdev *rdev, char *page)
3006 {
3007 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3008 }
3009
3010 static ssize_t
3011 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3012 {
3013 unsigned long long offset;
3014 if (kstrtoull(buf, 10, &offset) < 0)
3015 return -EINVAL;
3016 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3017 return -EBUSY;
3018 if (rdev->sectors && rdev->mddev->external)
3019 /* Must set offset before size, so overlap checks
3020 * can be sane */
3021 return -EBUSY;
3022 rdev->data_offset = offset;
3023 rdev->new_data_offset = offset;
3024 return len;
3025 }
3026
3027 static struct rdev_sysfs_entry rdev_offset =
3028 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3029
3030 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3031 {
3032 return sprintf(page, "%llu\n",
3033 (unsigned long long)rdev->new_data_offset);
3034 }
3035
3036 static ssize_t new_offset_store(struct md_rdev *rdev,
3037 const char *buf, size_t len)
3038 {
3039 unsigned long long new_offset;
3040 struct mddev *mddev = rdev->mddev;
3041
3042 if (kstrtoull(buf, 10, &new_offset) < 0)
3043 return -EINVAL;
3044
3045 if (mddev->sync_thread ||
3046 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3047 return -EBUSY;
3048 if (new_offset == rdev->data_offset)
3049 /* reset is always permitted */
3050 ;
3051 else if (new_offset > rdev->data_offset) {
3052 /* must not push array size beyond rdev_sectors */
3053 if (new_offset - rdev->data_offset
3054 + mddev->dev_sectors > rdev->sectors)
3055 return -E2BIG;
3056 }
3057 /* Metadata worries about other space details. */
3058
3059 /* decreasing the offset is inconsistent with a backwards
3060 * reshape.
3061 */
3062 if (new_offset < rdev->data_offset &&
3063 mddev->reshape_backwards)
3064 return -EINVAL;
3065 /* Increasing offset is inconsistent with forwards
3066 * reshape. reshape_direction should be set to
3067 * 'backwards' first.
3068 */
3069 if (new_offset > rdev->data_offset &&
3070 !mddev->reshape_backwards)
3071 return -EINVAL;
3072
3073 if (mddev->pers && mddev->persistent &&
3074 !super_types[mddev->major_version]
3075 .allow_new_offset(rdev, new_offset))
3076 return -E2BIG;
3077 rdev->new_data_offset = new_offset;
3078 if (new_offset > rdev->data_offset)
3079 mddev->reshape_backwards = 1;
3080 else if (new_offset < rdev->data_offset)
3081 mddev->reshape_backwards = 0;
3082
3083 return len;
3084 }
3085 static struct rdev_sysfs_entry rdev_new_offset =
3086 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3087
3088 static ssize_t
3089 rdev_size_show(struct md_rdev *rdev, char *page)
3090 {
3091 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3092 }
3093
3094 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3095 {
3096 /* check if two start/length pairs overlap */
3097 if (s1+l1 <= s2)
3098 return 0;
3099 if (s2+l2 <= s1)
3100 return 0;
3101 return 1;
3102 }
3103
3104 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3105 {
3106 unsigned long long blocks;
3107 sector_t new;
3108
3109 if (kstrtoull(buf, 10, &blocks) < 0)
3110 return -EINVAL;
3111
3112 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3113 return -EINVAL; /* sector conversion overflow */
3114
3115 new = blocks * 2;
3116 if (new != blocks * 2)
3117 return -EINVAL; /* unsigned long long to sector_t overflow */
3118
3119 *sectors = new;
3120 return 0;
3121 }
3122
3123 static ssize_t
3124 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3125 {
3126 struct mddev *my_mddev = rdev->mddev;
3127 sector_t oldsectors = rdev->sectors;
3128 sector_t sectors;
3129
3130 if (test_bit(Journal, &rdev->flags))
3131 return -EBUSY;
3132 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3133 return -EINVAL;
3134 if (rdev->data_offset != rdev->new_data_offset)
3135 return -EINVAL; /* too confusing */
3136 if (my_mddev->pers && rdev->raid_disk >= 0) {
3137 if (my_mddev->persistent) {
3138 sectors = super_types[my_mddev->major_version].
3139 rdev_size_change(rdev, sectors);
3140 if (!sectors)
3141 return -EBUSY;
3142 } else if (!sectors)
3143 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3144 rdev->data_offset;
3145 if (!my_mddev->pers->resize)
3146 /* Cannot change size for RAID0 or Linear etc */
3147 return -EINVAL;
3148 }
3149 if (sectors < my_mddev->dev_sectors)
3150 return -EINVAL; /* component must fit device */
3151
3152 rdev->sectors = sectors;
3153 if (sectors > oldsectors && my_mddev->external) {
3154 /* Need to check that all other rdevs with the same
3155 * ->bdev do not overlap. 'rcu' is sufficient to walk
3156 * the rdev lists safely.
3157 * This check does not provide a hard guarantee, it
3158 * just helps avoid dangerous mistakes.
3159 */
3160 struct mddev *mddev;
3161 int overlap = 0;
3162 struct list_head *tmp;
3163
3164 rcu_read_lock();
3165 for_each_mddev(mddev, tmp) {
3166 struct md_rdev *rdev2;
3167
3168 rdev_for_each(rdev2, mddev)
3169 if (rdev->bdev == rdev2->bdev &&
3170 rdev != rdev2 &&
3171 overlaps(rdev->data_offset, rdev->sectors,
3172 rdev2->data_offset,
3173 rdev2->sectors)) {
3174 overlap = 1;
3175 break;
3176 }
3177 if (overlap) {
3178 mddev_put(mddev);
3179 break;
3180 }
3181 }
3182 rcu_read_unlock();
3183 if (overlap) {
3184 /* Someone else could have slipped in a size
3185 * change here, but doing so is just silly.
3186 * We put oldsectors back because we *know* it is
3187 * safe, and trust userspace not to race with
3188 * itself
3189 */
3190 rdev->sectors = oldsectors;
3191 return -EBUSY;
3192 }
3193 }
3194 return len;
3195 }
3196
3197 static struct rdev_sysfs_entry rdev_size =
3198 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3199
3200 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3201 {
3202 unsigned long long recovery_start = rdev->recovery_offset;
3203
3204 if (test_bit(In_sync, &rdev->flags) ||
3205 recovery_start == MaxSector)
3206 return sprintf(page, "none\n");
3207
3208 return sprintf(page, "%llu\n", recovery_start);
3209 }
3210
3211 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3212 {
3213 unsigned long long recovery_start;
3214
3215 if (cmd_match(buf, "none"))
3216 recovery_start = MaxSector;
3217 else if (kstrtoull(buf, 10, &recovery_start))
3218 return -EINVAL;
3219
3220 if (rdev->mddev->pers &&
3221 rdev->raid_disk >= 0)
3222 return -EBUSY;
3223
3224 rdev->recovery_offset = recovery_start;
3225 if (recovery_start == MaxSector)
3226 set_bit(In_sync, &rdev->flags);
3227 else
3228 clear_bit(In_sync, &rdev->flags);
3229 return len;
3230 }
3231
3232 static struct rdev_sysfs_entry rdev_recovery_start =
3233 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3234
3235 /* sysfs access to bad-blocks list.
3236 * We present two files.
3237 * 'bad-blocks' lists sector numbers and lengths of ranges that
3238 * are recorded as bad. The list is truncated to fit within
3239 * the one-page limit of sysfs.
3240 * Writing "sector length" to this file adds an acknowledged
3241 * bad block list.
3242 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3243 * been acknowledged. Writing to this file adds bad blocks
3244 * without acknowledging them. This is largely for testing.
3245 */
3246 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3247 {
3248 return badblocks_show(&rdev->badblocks, page, 0);
3249 }
3250 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3251 {
3252 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3253 /* Maybe that ack was all we needed */
3254 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3255 wake_up(&rdev->blocked_wait);
3256 return rv;
3257 }
3258 static struct rdev_sysfs_entry rdev_bad_blocks =
3259 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3260
3261 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3262 {
3263 return badblocks_show(&rdev->badblocks, page, 1);
3264 }
3265 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3266 {
3267 return badblocks_store(&rdev->badblocks, page, len, 1);
3268 }
3269 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3270 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3271
3272 static ssize_t
3273 ppl_sector_show(struct md_rdev *rdev, char *page)
3274 {
3275 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3276 }
3277
3278 static ssize_t
3279 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3280 {
3281 unsigned long long sector;
3282
3283 if (kstrtoull(buf, 10, &sector) < 0)
3284 return -EINVAL;
3285 if (sector != (sector_t)sector)
3286 return -EINVAL;
3287
3288 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3289 rdev->raid_disk >= 0)
3290 return -EBUSY;
3291
3292 if (rdev->mddev->persistent) {
3293 if (rdev->mddev->major_version == 0)
3294 return -EINVAL;
3295 if ((sector > rdev->sb_start &&
3296 sector - rdev->sb_start > S16_MAX) ||
3297 (sector < rdev->sb_start &&
3298 rdev->sb_start - sector > -S16_MIN))
3299 return -EINVAL;
3300 rdev->ppl.offset = sector - rdev->sb_start;
3301 } else if (!rdev->mddev->external) {
3302 return -EBUSY;
3303 }
3304 rdev->ppl.sector = sector;
3305 return len;
3306 }
3307
3308 static struct rdev_sysfs_entry rdev_ppl_sector =
3309 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3310
3311 static ssize_t
3312 ppl_size_show(struct md_rdev *rdev, char *page)
3313 {
3314 return sprintf(page, "%u\n", rdev->ppl.size);
3315 }
3316
3317 static ssize_t
3318 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3319 {
3320 unsigned int size;
3321
3322 if (kstrtouint(buf, 10, &size) < 0)
3323 return -EINVAL;
3324
3325 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3326 rdev->raid_disk >= 0)
3327 return -EBUSY;
3328
3329 if (rdev->mddev->persistent) {
3330 if (rdev->mddev->major_version == 0)
3331 return -EINVAL;
3332 if (size > U16_MAX)
3333 return -EINVAL;
3334 } else if (!rdev->mddev->external) {
3335 return -EBUSY;
3336 }
3337 rdev->ppl.size = size;
3338 return len;
3339 }
3340
3341 static struct rdev_sysfs_entry rdev_ppl_size =
3342 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3343
3344 static struct attribute *rdev_default_attrs[] = {
3345 &rdev_state.attr,
3346 &rdev_errors.attr,
3347 &rdev_slot.attr,
3348 &rdev_offset.attr,
3349 &rdev_new_offset.attr,
3350 &rdev_size.attr,
3351 &rdev_recovery_start.attr,
3352 &rdev_bad_blocks.attr,
3353 &rdev_unack_bad_blocks.attr,
3354 &rdev_ppl_sector.attr,
3355 &rdev_ppl_size.attr,
3356 NULL,
3357 };
3358 static ssize_t
3359 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3360 {
3361 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3362 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3363
3364 if (!entry->show)
3365 return -EIO;
3366 if (!rdev->mddev)
3367 return -EBUSY;
3368 return entry->show(rdev, page);
3369 }
3370
3371 static ssize_t
3372 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3373 const char *page, size_t length)
3374 {
3375 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3376 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3377 ssize_t rv;
3378 struct mddev *mddev = rdev->mddev;
3379
3380 if (!entry->store)
3381 return -EIO;
3382 if (!capable(CAP_SYS_ADMIN))
3383 return -EACCES;
3384 rv = mddev ? mddev_lock(mddev): -EBUSY;
3385 if (!rv) {
3386 if (rdev->mddev == NULL)
3387 rv = -EBUSY;
3388 else
3389 rv = entry->store(rdev, page, length);
3390 mddev_unlock(mddev);
3391 }
3392 return rv;
3393 }
3394
3395 static void rdev_free(struct kobject *ko)
3396 {
3397 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3398 kfree(rdev);
3399 }
3400 static const struct sysfs_ops rdev_sysfs_ops = {
3401 .show = rdev_attr_show,
3402 .store = rdev_attr_store,
3403 };
3404 static struct kobj_type rdev_ktype = {
3405 .release = rdev_free,
3406 .sysfs_ops = &rdev_sysfs_ops,
3407 .default_attrs = rdev_default_attrs,
3408 };
3409
3410 int md_rdev_init(struct md_rdev *rdev)
3411 {
3412 rdev->desc_nr = -1;
3413 rdev->saved_raid_disk = -1;
3414 rdev->raid_disk = -1;
3415 rdev->flags = 0;
3416 rdev->data_offset = 0;
3417 rdev->new_data_offset = 0;
3418 rdev->sb_events = 0;
3419 rdev->last_read_error = 0;
3420 rdev->sb_loaded = 0;
3421 rdev->bb_page = NULL;
3422 atomic_set(&rdev->nr_pending, 0);
3423 atomic_set(&rdev->read_errors, 0);
3424 atomic_set(&rdev->corrected_errors, 0);
3425
3426 INIT_LIST_HEAD(&rdev->same_set);
3427 init_waitqueue_head(&rdev->blocked_wait);
3428
3429 /* Add space to store bad block list.
3430 * This reserves the space even on arrays where it cannot
3431 * be used - I wonder if that matters
3432 */
3433 return badblocks_init(&rdev->badblocks, 0);
3434 }
3435 EXPORT_SYMBOL_GPL(md_rdev_init);
3436 /*
3437 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3438 *
3439 * mark the device faulty if:
3440 *
3441 * - the device is nonexistent (zero size)
3442 * - the device has no valid superblock
3443 *
3444 * a faulty rdev _never_ has rdev->sb set.
3445 */
3446 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3447 {
3448 char b[BDEVNAME_SIZE];
3449 int err;
3450 struct md_rdev *rdev;
3451 sector_t size;
3452
3453 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3454 if (!rdev)
3455 return ERR_PTR(-ENOMEM);
3456
3457 err = md_rdev_init(rdev);
3458 if (err)
3459 goto abort_free;
3460 err = alloc_disk_sb(rdev);
3461 if (err)
3462 goto abort_free;
3463
3464 err = lock_rdev(rdev, newdev, super_format == -2);
3465 if (err)
3466 goto abort_free;
3467
3468 kobject_init(&rdev->kobj, &rdev_ktype);
3469
3470 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3471 if (!size) {
3472 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3473 bdevname(rdev->bdev,b));
3474 err = -EINVAL;
3475 goto abort_free;
3476 }
3477
3478 if (super_format >= 0) {
3479 err = super_types[super_format].
3480 load_super(rdev, NULL, super_minor);
3481 if (err == -EINVAL) {
3482 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3483 bdevname(rdev->bdev,b),
3484 super_format, super_minor);
3485 goto abort_free;
3486 }
3487 if (err < 0) {
3488 pr_warn("md: could not read %s's sb, not importing!\n",
3489 bdevname(rdev->bdev,b));
3490 goto abort_free;
3491 }
3492 }
3493
3494 return rdev;
3495
3496 abort_free:
3497 if (rdev->bdev)
3498 unlock_rdev(rdev);
3499 md_rdev_clear(rdev);
3500 kfree(rdev);
3501 return ERR_PTR(err);
3502 }
3503
3504 /*
3505 * Check a full RAID array for plausibility
3506 */
3507
3508 static void analyze_sbs(struct mddev *mddev)
3509 {
3510 int i;
3511 struct md_rdev *rdev, *freshest, *tmp;
3512 char b[BDEVNAME_SIZE];
3513
3514 freshest = NULL;
3515 rdev_for_each_safe(rdev, tmp, mddev)
3516 switch (super_types[mddev->major_version].
3517 load_super(rdev, freshest, mddev->minor_version)) {
3518 case 1:
3519 freshest = rdev;
3520 break;
3521 case 0:
3522 break;
3523 default:
3524 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3525 bdevname(rdev->bdev,b));
3526 md_kick_rdev_from_array(rdev);
3527 }
3528
3529 super_types[mddev->major_version].
3530 validate_super(mddev, freshest);
3531
3532 i = 0;
3533 rdev_for_each_safe(rdev, tmp, mddev) {
3534 if (mddev->max_disks &&
3535 (rdev->desc_nr >= mddev->max_disks ||
3536 i > mddev->max_disks)) {
3537 pr_warn("md: %s: %s: only %d devices permitted\n",
3538 mdname(mddev), bdevname(rdev->bdev, b),
3539 mddev->max_disks);
3540 md_kick_rdev_from_array(rdev);
3541 continue;
3542 }
3543 if (rdev != freshest) {
3544 if (super_types[mddev->major_version].
3545 validate_super(mddev, rdev)) {
3546 pr_warn("md: kicking non-fresh %s from array!\n",
3547 bdevname(rdev->bdev,b));
3548 md_kick_rdev_from_array(rdev);
3549 continue;
3550 }
3551 }
3552 if (mddev->level == LEVEL_MULTIPATH) {
3553 rdev->desc_nr = i++;
3554 rdev->raid_disk = rdev->desc_nr;
3555 set_bit(In_sync, &rdev->flags);
3556 } else if (rdev->raid_disk >=
3557 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3558 !test_bit(Journal, &rdev->flags)) {
3559 rdev->raid_disk = -1;
3560 clear_bit(In_sync, &rdev->flags);
3561 }
3562 }
3563 }
3564
3565 /* Read a fixed-point number.
3566 * Numbers in sysfs attributes should be in "standard" units where
3567 * possible, so time should be in seconds.
3568 * However we internally use a a much smaller unit such as
3569 * milliseconds or jiffies.
3570 * This function takes a decimal number with a possible fractional
3571 * component, and produces an integer which is the result of
3572 * multiplying that number by 10^'scale'.
3573 * all without any floating-point arithmetic.
3574 */
3575 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3576 {
3577 unsigned long result = 0;
3578 long decimals = -1;
3579 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3580 if (*cp == '.')
3581 decimals = 0;
3582 else if (decimals < scale) {
3583 unsigned int value;
3584 value = *cp - '0';
3585 result = result * 10 + value;
3586 if (decimals >= 0)
3587 decimals++;
3588 }
3589 cp++;
3590 }
3591 if (*cp == '\n')
3592 cp++;
3593 if (*cp)
3594 return -EINVAL;
3595 if (decimals < 0)
3596 decimals = 0;
3597 while (decimals < scale) {
3598 result *= 10;
3599 decimals ++;
3600 }
3601 *res = result;
3602 return 0;
3603 }
3604
3605 static ssize_t
3606 safe_delay_show(struct mddev *mddev, char *page)
3607 {
3608 int msec = (mddev->safemode_delay*1000)/HZ;
3609 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3610 }
3611 static ssize_t
3612 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3613 {
3614 unsigned long msec;
3615
3616 if (mddev_is_clustered(mddev)) {
3617 pr_warn("md: Safemode is disabled for clustered mode\n");
3618 return -EINVAL;
3619 }
3620
3621 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3622 return -EINVAL;
3623 if (msec == 0)
3624 mddev->safemode_delay = 0;
3625 else {
3626 unsigned long old_delay = mddev->safemode_delay;
3627 unsigned long new_delay = (msec*HZ)/1000;
3628
3629 if (new_delay == 0)
3630 new_delay = 1;
3631 mddev->safemode_delay = new_delay;
3632 if (new_delay < old_delay || old_delay == 0)
3633 mod_timer(&mddev->safemode_timer, jiffies+1);
3634 }
3635 return len;
3636 }
3637 static struct md_sysfs_entry md_safe_delay =
3638 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3639
3640 static ssize_t
3641 level_show(struct mddev *mddev, char *page)
3642 {
3643 struct md_personality *p;
3644 int ret;
3645 spin_lock(&mddev->lock);
3646 p = mddev->pers;
3647 if (p)
3648 ret = sprintf(page, "%s\n", p->name);
3649 else if (mddev->clevel[0])
3650 ret = sprintf(page, "%s\n", mddev->clevel);
3651 else if (mddev->level != LEVEL_NONE)
3652 ret = sprintf(page, "%d\n", mddev->level);
3653 else
3654 ret = 0;
3655 spin_unlock(&mddev->lock);
3656 return ret;
3657 }
3658
3659 static ssize_t
3660 level_store(struct mddev *mddev, const char *buf, size_t len)
3661 {
3662 char clevel[16];
3663 ssize_t rv;
3664 size_t slen = len;
3665 struct md_personality *pers, *oldpers;
3666 long level;
3667 void *priv, *oldpriv;
3668 struct md_rdev *rdev;
3669
3670 if (slen == 0 || slen >= sizeof(clevel))
3671 return -EINVAL;
3672
3673 rv = mddev_lock(mddev);
3674 if (rv)
3675 return rv;
3676
3677 if (mddev->pers == NULL) {
3678 strncpy(mddev->clevel, buf, slen);
3679 if (mddev->clevel[slen-1] == '\n')
3680 slen--;
3681 mddev->clevel[slen] = 0;
3682 mddev->level = LEVEL_NONE;
3683 rv = len;
3684 goto out_unlock;
3685 }
3686 rv = -EROFS;
3687 if (mddev->ro)
3688 goto out_unlock;
3689
3690 /* request to change the personality. Need to ensure:
3691 * - array is not engaged in resync/recovery/reshape
3692 * - old personality can be suspended
3693 * - new personality will access other array.
3694 */
3695
3696 rv = -EBUSY;
3697 if (mddev->sync_thread ||
3698 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3699 mddev->reshape_position != MaxSector ||
3700 mddev->sysfs_active)
3701 goto out_unlock;
3702
3703 rv = -EINVAL;
3704 if (!mddev->pers->quiesce) {
3705 pr_warn("md: %s: %s does not support online personality change\n",
3706 mdname(mddev), mddev->pers->name);
3707 goto out_unlock;
3708 }
3709
3710 /* Now find the new personality */
3711 strncpy(clevel, buf, slen);
3712 if (clevel[slen-1] == '\n')
3713 slen--;
3714 clevel[slen] = 0;
3715 if (kstrtol(clevel, 10, &level))
3716 level = LEVEL_NONE;
3717
3718 if (request_module("md-%s", clevel) != 0)
3719 request_module("md-level-%s", clevel);
3720 spin_lock(&pers_lock);
3721 pers = find_pers(level, clevel);
3722 if (!pers || !try_module_get(pers->owner)) {
3723 spin_unlock(&pers_lock);
3724 pr_warn("md: personality %s not loaded\n", clevel);
3725 rv = -EINVAL;
3726 goto out_unlock;
3727 }
3728 spin_unlock(&pers_lock);
3729
3730 if (pers == mddev->pers) {
3731 /* Nothing to do! */
3732 module_put(pers->owner);
3733 rv = len;
3734 goto out_unlock;
3735 }
3736 if (!pers->takeover) {
3737 module_put(pers->owner);
3738 pr_warn("md: %s: %s does not support personality takeover\n",
3739 mdname(mddev), clevel);
3740 rv = -EINVAL;
3741 goto out_unlock;
3742 }
3743
3744 rdev_for_each(rdev, mddev)
3745 rdev->new_raid_disk = rdev->raid_disk;
3746
3747 /* ->takeover must set new_* and/or delta_disks
3748 * if it succeeds, and may set them when it fails.
3749 */
3750 priv = pers->takeover(mddev);
3751 if (IS_ERR(priv)) {
3752 mddev->new_level = mddev->level;
3753 mddev->new_layout = mddev->layout;
3754 mddev->new_chunk_sectors = mddev->chunk_sectors;
3755 mddev->raid_disks -= mddev->delta_disks;
3756 mddev->delta_disks = 0;
3757 mddev->reshape_backwards = 0;
3758 module_put(pers->owner);
3759 pr_warn("md: %s: %s would not accept array\n",
3760 mdname(mddev), clevel);
3761 rv = PTR_ERR(priv);
3762 goto out_unlock;
3763 }
3764
3765 /* Looks like we have a winner */
3766 mddev_suspend(mddev);
3767 mddev_detach(mddev);
3768
3769 spin_lock(&mddev->lock);
3770 oldpers = mddev->pers;
3771 oldpriv = mddev->private;
3772 mddev->pers = pers;
3773 mddev->private = priv;
3774 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3775 mddev->level = mddev->new_level;
3776 mddev->layout = mddev->new_layout;
3777 mddev->chunk_sectors = mddev->new_chunk_sectors;
3778 mddev->delta_disks = 0;
3779 mddev->reshape_backwards = 0;
3780 mddev->degraded = 0;
3781 spin_unlock(&mddev->lock);
3782
3783 if (oldpers->sync_request == NULL &&
3784 mddev->external) {
3785 /* We are converting from a no-redundancy array
3786 * to a redundancy array and metadata is managed
3787 * externally so we need to be sure that writes
3788 * won't block due to a need to transition
3789 * clean->dirty
3790 * until external management is started.
3791 */
3792 mddev->in_sync = 0;
3793 mddev->safemode_delay = 0;
3794 mddev->safemode = 0;
3795 }
3796
3797 oldpers->free(mddev, oldpriv);
3798
3799 if (oldpers->sync_request == NULL &&
3800 pers->sync_request != NULL) {
3801 /* need to add the md_redundancy_group */
3802 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3803 pr_warn("md: cannot register extra attributes for %s\n",
3804 mdname(mddev));
3805 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3806 }
3807 if (oldpers->sync_request != NULL &&
3808 pers->sync_request == NULL) {
3809 /* need to remove the md_redundancy_group */
3810 if (mddev->to_remove == NULL)
3811 mddev->to_remove = &md_redundancy_group;
3812 }
3813
3814 module_put(oldpers->owner);
3815
3816 rdev_for_each(rdev, mddev) {
3817 if (rdev->raid_disk < 0)
3818 continue;
3819 if (rdev->new_raid_disk >= mddev->raid_disks)
3820 rdev->new_raid_disk = -1;
3821 if (rdev->new_raid_disk == rdev->raid_disk)
3822 continue;
3823 sysfs_unlink_rdev(mddev, rdev);
3824 }
3825 rdev_for_each(rdev, mddev) {
3826 if (rdev->raid_disk < 0)
3827 continue;
3828 if (rdev->new_raid_disk == rdev->raid_disk)
3829 continue;
3830 rdev->raid_disk = rdev->new_raid_disk;
3831 if (rdev->raid_disk < 0)
3832 clear_bit(In_sync, &rdev->flags);
3833 else {
3834 if (sysfs_link_rdev(mddev, rdev))
3835 pr_warn("md: cannot register rd%d for %s after level change\n",
3836 rdev->raid_disk, mdname(mddev));
3837 }
3838 }
3839
3840 if (pers->sync_request == NULL) {
3841 /* this is now an array without redundancy, so
3842 * it must always be in_sync
3843 */
3844 mddev->in_sync = 1;
3845 del_timer_sync(&mddev->safemode_timer);
3846 }
3847 blk_set_stacking_limits(&mddev->queue->limits);
3848 pers->run(mddev);
3849 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3850 mddev_resume(mddev);
3851 if (!mddev->thread)
3852 md_update_sb(mddev, 1);
3853 sysfs_notify(&mddev->kobj, NULL, "level");
3854 md_new_event(mddev);
3855 rv = len;
3856 out_unlock:
3857 mddev_unlock(mddev);
3858 return rv;
3859 }
3860
3861 static struct md_sysfs_entry md_level =
3862 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3863
3864 static ssize_t
3865 layout_show(struct mddev *mddev, char *page)
3866 {
3867 /* just a number, not meaningful for all levels */
3868 if (mddev->reshape_position != MaxSector &&
3869 mddev->layout != mddev->new_layout)
3870 return sprintf(page, "%d (%d)\n",
3871 mddev->new_layout, mddev->layout);
3872 return sprintf(page, "%d\n", mddev->layout);
3873 }
3874
3875 static ssize_t
3876 layout_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878 unsigned int n;
3879 int err;
3880
3881 err = kstrtouint(buf, 10, &n);
3882 if (err < 0)
3883 return err;
3884 err = mddev_lock(mddev);
3885 if (err)
3886 return err;
3887
3888 if (mddev->pers) {
3889 if (mddev->pers->check_reshape == NULL)
3890 err = -EBUSY;
3891 else if (mddev->ro)
3892 err = -EROFS;
3893 else {
3894 mddev->new_layout = n;
3895 err = mddev->pers->check_reshape(mddev);
3896 if (err)
3897 mddev->new_layout = mddev->layout;
3898 }
3899 } else {
3900 mddev->new_layout = n;
3901 if (mddev->reshape_position == MaxSector)
3902 mddev->layout = n;
3903 }
3904 mddev_unlock(mddev);
3905 return err ?: len;
3906 }
3907 static struct md_sysfs_entry md_layout =
3908 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3909
3910 static ssize_t
3911 raid_disks_show(struct mddev *mddev, char *page)
3912 {
3913 if (mddev->raid_disks == 0)
3914 return 0;
3915 if (mddev->reshape_position != MaxSector &&
3916 mddev->delta_disks != 0)
3917 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3918 mddev->raid_disks - mddev->delta_disks);
3919 return sprintf(page, "%d\n", mddev->raid_disks);
3920 }
3921
3922 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3923
3924 static ssize_t
3925 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3926 {
3927 unsigned int n;
3928 int err;
3929
3930 err = kstrtouint(buf, 10, &n);
3931 if (err < 0)
3932 return err;
3933
3934 err = mddev_lock(mddev);
3935 if (err)
3936 return err;
3937 if (mddev->pers)
3938 err = update_raid_disks(mddev, n);
3939 else if (mddev->reshape_position != MaxSector) {
3940 struct md_rdev *rdev;
3941 int olddisks = mddev->raid_disks - mddev->delta_disks;
3942
3943 err = -EINVAL;
3944 rdev_for_each(rdev, mddev) {
3945 if (olddisks < n &&
3946 rdev->data_offset < rdev->new_data_offset)
3947 goto out_unlock;
3948 if (olddisks > n &&
3949 rdev->data_offset > rdev->new_data_offset)
3950 goto out_unlock;
3951 }
3952 err = 0;
3953 mddev->delta_disks = n - olddisks;
3954 mddev->raid_disks = n;
3955 mddev->reshape_backwards = (mddev->delta_disks < 0);
3956 } else
3957 mddev->raid_disks = n;
3958 out_unlock:
3959 mddev_unlock(mddev);
3960 return err ? err : len;
3961 }
3962 static struct md_sysfs_entry md_raid_disks =
3963 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3964
3965 static ssize_t
3966 chunk_size_show(struct mddev *mddev, char *page)
3967 {
3968 if (mddev->reshape_position != MaxSector &&
3969 mddev->chunk_sectors != mddev->new_chunk_sectors)
3970 return sprintf(page, "%d (%d)\n",
3971 mddev->new_chunk_sectors << 9,
3972 mddev->chunk_sectors << 9);
3973 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3974 }
3975
3976 static ssize_t
3977 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3978 {
3979 unsigned long n;
3980 int err;
3981
3982 err = kstrtoul(buf, 10, &n);
3983 if (err < 0)
3984 return err;
3985
3986 err = mddev_lock(mddev);
3987 if (err)
3988 return err;
3989 if (mddev->pers) {
3990 if (mddev->pers->check_reshape == NULL)
3991 err = -EBUSY;
3992 else if (mddev->ro)
3993 err = -EROFS;
3994 else {
3995 mddev->new_chunk_sectors = n >> 9;
3996 err = mddev->pers->check_reshape(mddev);
3997 if (err)
3998 mddev->new_chunk_sectors = mddev->chunk_sectors;
3999 }
4000 } else {
4001 mddev->new_chunk_sectors = n >> 9;
4002 if (mddev->reshape_position == MaxSector)
4003 mddev->chunk_sectors = n >> 9;
4004 }
4005 mddev_unlock(mddev);
4006 return err ?: len;
4007 }
4008 static struct md_sysfs_entry md_chunk_size =
4009 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4010
4011 static ssize_t
4012 resync_start_show(struct mddev *mddev, char *page)
4013 {
4014 if (mddev->recovery_cp == MaxSector)
4015 return sprintf(page, "none\n");
4016 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4017 }
4018
4019 static ssize_t
4020 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4021 {
4022 unsigned long long n;
4023 int err;
4024
4025 if (cmd_match(buf, "none"))
4026 n = MaxSector;
4027 else {
4028 err = kstrtoull(buf, 10, &n);
4029 if (err < 0)
4030 return err;
4031 if (n != (sector_t)n)
4032 return -EINVAL;
4033 }
4034
4035 err = mddev_lock(mddev);
4036 if (err)
4037 return err;
4038 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4039 err = -EBUSY;
4040
4041 if (!err) {
4042 mddev->recovery_cp = n;
4043 if (mddev->pers)
4044 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4045 }
4046 mddev_unlock(mddev);
4047 return err ?: len;
4048 }
4049 static struct md_sysfs_entry md_resync_start =
4050 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4051 resync_start_show, resync_start_store);
4052
4053 /*
4054 * The array state can be:
4055 *
4056 * clear
4057 * No devices, no size, no level
4058 * Equivalent to STOP_ARRAY ioctl
4059 * inactive
4060 * May have some settings, but array is not active
4061 * all IO results in error
4062 * When written, doesn't tear down array, but just stops it
4063 * suspended (not supported yet)
4064 * All IO requests will block. The array can be reconfigured.
4065 * Writing this, if accepted, will block until array is quiescent
4066 * readonly
4067 * no resync can happen. no superblocks get written.
4068 * write requests fail
4069 * read-auto
4070 * like readonly, but behaves like 'clean' on a write request.
4071 *
4072 * clean - no pending writes, but otherwise active.
4073 * When written to inactive array, starts without resync
4074 * If a write request arrives then
4075 * if metadata is known, mark 'dirty' and switch to 'active'.
4076 * if not known, block and switch to write-pending
4077 * If written to an active array that has pending writes, then fails.
4078 * active
4079 * fully active: IO and resync can be happening.
4080 * When written to inactive array, starts with resync
4081 *
4082 * write-pending
4083 * clean, but writes are blocked waiting for 'active' to be written.
4084 *
4085 * active-idle
4086 * like active, but no writes have been seen for a while (100msec).
4087 *
4088 */
4089 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4090 write_pending, active_idle, bad_word};
4091 static char *array_states[] = {
4092 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4093 "write-pending", "active-idle", NULL };
4094
4095 static int match_word(const char *word, char **list)
4096 {
4097 int n;
4098 for (n=0; list[n]; n++)
4099 if (cmd_match(word, list[n]))
4100 break;
4101 return n;
4102 }
4103
4104 static ssize_t
4105 array_state_show(struct mddev *mddev, char *page)
4106 {
4107 enum array_state st = inactive;
4108
4109 if (mddev->pers)
4110 switch(mddev->ro) {
4111 case 1:
4112 st = readonly;
4113 break;
4114 case 2:
4115 st = read_auto;
4116 break;
4117 case 0:
4118 spin_lock(&mddev->lock);
4119 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4120 st = write_pending;
4121 else if (mddev->in_sync)
4122 st = clean;
4123 else if (mddev->safemode)
4124 st = active_idle;
4125 else
4126 st = active;
4127 spin_unlock(&mddev->lock);
4128 }
4129 else {
4130 if (list_empty(&mddev->disks) &&
4131 mddev->raid_disks == 0 &&
4132 mddev->dev_sectors == 0)
4133 st = clear;
4134 else
4135 st = inactive;
4136 }
4137 return sprintf(page, "%s\n", array_states[st]);
4138 }
4139
4140 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4141 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4142 static int do_md_run(struct mddev *mddev);
4143 static int restart_array(struct mddev *mddev);
4144
4145 static ssize_t
4146 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 int err = 0;
4149 enum array_state st = match_word(buf, array_states);
4150
4151 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4152 /* don't take reconfig_mutex when toggling between
4153 * clean and active
4154 */
4155 spin_lock(&mddev->lock);
4156 if (st == active) {
4157 restart_array(mddev);
4158 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4159 md_wakeup_thread(mddev->thread);
4160 wake_up(&mddev->sb_wait);
4161 } else /* st == clean */ {
4162 restart_array(mddev);
4163 if (!set_in_sync(mddev))
4164 err = -EBUSY;
4165 }
4166 if (!err)
4167 sysfs_notify_dirent_safe(mddev->sysfs_state);
4168 spin_unlock(&mddev->lock);
4169 return err ?: len;
4170 }
4171 err = mddev_lock(mddev);
4172 if (err)
4173 return err;
4174 err = -EINVAL;
4175 switch(st) {
4176 case bad_word:
4177 break;
4178 case clear:
4179 /* stopping an active array */
4180 err = do_md_stop(mddev, 0, NULL);
4181 break;
4182 case inactive:
4183 /* stopping an active array */
4184 if (mddev->pers)
4185 err = do_md_stop(mddev, 2, NULL);
4186 else
4187 err = 0; /* already inactive */
4188 break;
4189 case suspended:
4190 break; /* not supported yet */
4191 case readonly:
4192 if (mddev->pers)
4193 err = md_set_readonly(mddev, NULL);
4194 else {
4195 mddev->ro = 1;
4196 set_disk_ro(mddev->gendisk, 1);
4197 err = do_md_run(mddev);
4198 }
4199 break;
4200 case read_auto:
4201 if (mddev->pers) {
4202 if (mddev->ro == 0)
4203 err = md_set_readonly(mddev, NULL);
4204 else if (mddev->ro == 1)
4205 err = restart_array(mddev);
4206 if (err == 0) {
4207 mddev->ro = 2;
4208 set_disk_ro(mddev->gendisk, 0);
4209 }
4210 } else {
4211 mddev->ro = 2;
4212 err = do_md_run(mddev);
4213 }
4214 break;
4215 case clean:
4216 if (mddev->pers) {
4217 err = restart_array(mddev);
4218 if (err)
4219 break;
4220 spin_lock(&mddev->lock);
4221 if (!set_in_sync(mddev))
4222 err = -EBUSY;
4223 spin_unlock(&mddev->lock);
4224 } else
4225 err = -EINVAL;
4226 break;
4227 case active:
4228 if (mddev->pers) {
4229 err = restart_array(mddev);
4230 if (err)
4231 break;
4232 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4233 wake_up(&mddev->sb_wait);
4234 err = 0;
4235 } else {
4236 mddev->ro = 0;
4237 set_disk_ro(mddev->gendisk, 0);
4238 err = do_md_run(mddev);
4239 }
4240 break;
4241 case write_pending:
4242 case active_idle:
4243 /* these cannot be set */
4244 break;
4245 }
4246
4247 if (!err) {
4248 if (mddev->hold_active == UNTIL_IOCTL)
4249 mddev->hold_active = 0;
4250 sysfs_notify_dirent_safe(mddev->sysfs_state);
4251 }
4252 mddev_unlock(mddev);
4253 return err ?: len;
4254 }
4255 static struct md_sysfs_entry md_array_state =
4256 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4257
4258 static ssize_t
4259 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4260 return sprintf(page, "%d\n",
4261 atomic_read(&mddev->max_corr_read_errors));
4262 }
4263
4264 static ssize_t
4265 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4266 {
4267 unsigned int n;
4268 int rv;
4269
4270 rv = kstrtouint(buf, 10, &n);
4271 if (rv < 0)
4272 return rv;
4273 atomic_set(&mddev->max_corr_read_errors, n);
4274 return len;
4275 }
4276
4277 static struct md_sysfs_entry max_corr_read_errors =
4278 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4279 max_corrected_read_errors_store);
4280
4281 static ssize_t
4282 null_show(struct mddev *mddev, char *page)
4283 {
4284 return -EINVAL;
4285 }
4286
4287 static ssize_t
4288 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4289 {
4290 /* buf must be %d:%d\n? giving major and minor numbers */
4291 /* The new device is added to the array.
4292 * If the array has a persistent superblock, we read the
4293 * superblock to initialise info and check validity.
4294 * Otherwise, only checking done is that in bind_rdev_to_array,
4295 * which mainly checks size.
4296 */
4297 char *e;
4298 int major = simple_strtoul(buf, &e, 10);
4299 int minor;
4300 dev_t dev;
4301 struct md_rdev *rdev;
4302 int err;
4303
4304 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4305 return -EINVAL;
4306 minor = simple_strtoul(e+1, &e, 10);
4307 if (*e && *e != '\n')
4308 return -EINVAL;
4309 dev = MKDEV(major, minor);
4310 if (major != MAJOR(dev) ||
4311 minor != MINOR(dev))
4312 return -EOVERFLOW;
4313
4314 flush_workqueue(md_misc_wq);
4315
4316 err = mddev_lock(mddev);
4317 if (err)
4318 return err;
4319 if (mddev->persistent) {
4320 rdev = md_import_device(dev, mddev->major_version,
4321 mddev->minor_version);
4322 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4323 struct md_rdev *rdev0
4324 = list_entry(mddev->disks.next,
4325 struct md_rdev, same_set);
4326 err = super_types[mddev->major_version]
4327 .load_super(rdev, rdev0, mddev->minor_version);
4328 if (err < 0)
4329 goto out;
4330 }
4331 } else if (mddev->external)
4332 rdev = md_import_device(dev, -2, -1);
4333 else
4334 rdev = md_import_device(dev, -1, -1);
4335
4336 if (IS_ERR(rdev)) {
4337 mddev_unlock(mddev);
4338 return PTR_ERR(rdev);
4339 }
4340 err = bind_rdev_to_array(rdev, mddev);
4341 out:
4342 if (err)
4343 export_rdev(rdev);
4344 mddev_unlock(mddev);
4345 if (!err)
4346 md_new_event(mddev);
4347 return err ? err : len;
4348 }
4349
4350 static struct md_sysfs_entry md_new_device =
4351 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4352
4353 static ssize_t
4354 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4355 {
4356 char *end;
4357 unsigned long chunk, end_chunk;
4358 int err;
4359
4360 err = mddev_lock(mddev);
4361 if (err)
4362 return err;
4363 if (!mddev->bitmap)
4364 goto out;
4365 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4366 while (*buf) {
4367 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4368 if (buf == end) break;
4369 if (*end == '-') { /* range */
4370 buf = end + 1;
4371 end_chunk = simple_strtoul(buf, &end, 0);
4372 if (buf == end) break;
4373 }
4374 if (*end && !isspace(*end)) break;
4375 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4376 buf = skip_spaces(end);
4377 }
4378 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4379 out:
4380 mddev_unlock(mddev);
4381 return len;
4382 }
4383
4384 static struct md_sysfs_entry md_bitmap =
4385 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4386
4387 static ssize_t
4388 size_show(struct mddev *mddev, char *page)
4389 {
4390 return sprintf(page, "%llu\n",
4391 (unsigned long long)mddev->dev_sectors / 2);
4392 }
4393
4394 static int update_size(struct mddev *mddev, sector_t num_sectors);
4395
4396 static ssize_t
4397 size_store(struct mddev *mddev, const char *buf, size_t len)
4398 {
4399 /* If array is inactive, we can reduce the component size, but
4400 * not increase it (except from 0).
4401 * If array is active, we can try an on-line resize
4402 */
4403 sector_t sectors;
4404 int err = strict_blocks_to_sectors(buf, &sectors);
4405
4406 if (err < 0)
4407 return err;
4408 err = mddev_lock(mddev);
4409 if (err)
4410 return err;
4411 if (mddev->pers) {
4412 err = update_size(mddev, sectors);
4413 if (err == 0)
4414 md_update_sb(mddev, 1);
4415 } else {
4416 if (mddev->dev_sectors == 0 ||
4417 mddev->dev_sectors > sectors)
4418 mddev->dev_sectors = sectors;
4419 else
4420 err = -ENOSPC;
4421 }
4422 mddev_unlock(mddev);
4423 return err ? err : len;
4424 }
4425
4426 static struct md_sysfs_entry md_size =
4427 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4428
4429 /* Metadata version.
4430 * This is one of
4431 * 'none' for arrays with no metadata (good luck...)
4432 * 'external' for arrays with externally managed metadata,
4433 * or N.M for internally known formats
4434 */
4435 static ssize_t
4436 metadata_show(struct mddev *mddev, char *page)
4437 {
4438 if (mddev->persistent)
4439 return sprintf(page, "%d.%d\n",
4440 mddev->major_version, mddev->minor_version);
4441 else if (mddev->external)
4442 return sprintf(page, "external:%s\n", mddev->metadata_type);
4443 else
4444 return sprintf(page, "none\n");
4445 }
4446
4447 static ssize_t
4448 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4449 {
4450 int major, minor;
4451 char *e;
4452 int err;
4453 /* Changing the details of 'external' metadata is
4454 * always permitted. Otherwise there must be
4455 * no devices attached to the array.
4456 */
4457
4458 err = mddev_lock(mddev);
4459 if (err)
4460 return err;
4461 err = -EBUSY;
4462 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4463 ;
4464 else if (!list_empty(&mddev->disks))
4465 goto out_unlock;
4466
4467 err = 0;
4468 if (cmd_match(buf, "none")) {
4469 mddev->persistent = 0;
4470 mddev->external = 0;
4471 mddev->major_version = 0;
4472 mddev->minor_version = 90;
4473 goto out_unlock;
4474 }
4475 if (strncmp(buf, "external:", 9) == 0) {
4476 size_t namelen = len-9;
4477 if (namelen >= sizeof(mddev->metadata_type))
4478 namelen = sizeof(mddev->metadata_type)-1;
4479 strncpy(mddev->metadata_type, buf+9, namelen);
4480 mddev->metadata_type[namelen] = 0;
4481 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4482 mddev->metadata_type[--namelen] = 0;
4483 mddev->persistent = 0;
4484 mddev->external = 1;
4485 mddev->major_version = 0;
4486 mddev->minor_version = 90;
4487 goto out_unlock;
4488 }
4489 major = simple_strtoul(buf, &e, 10);
4490 err = -EINVAL;
4491 if (e==buf || *e != '.')
4492 goto out_unlock;
4493 buf = e+1;
4494 minor = simple_strtoul(buf, &e, 10);
4495 if (e==buf || (*e && *e != '\n') )
4496 goto out_unlock;
4497 err = -ENOENT;
4498 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4499 goto out_unlock;
4500 mddev->major_version = major;
4501 mddev->minor_version = minor;
4502 mddev->persistent = 1;
4503 mddev->external = 0;
4504 err = 0;
4505 out_unlock:
4506 mddev_unlock(mddev);
4507 return err ?: len;
4508 }
4509
4510 static struct md_sysfs_entry md_metadata =
4511 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4512
4513 static ssize_t
4514 action_show(struct mddev *mddev, char *page)
4515 {
4516 char *type = "idle";
4517 unsigned long recovery = mddev->recovery;
4518 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4519 type = "frozen";
4520 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4521 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4522 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4523 type = "reshape";
4524 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4525 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4526 type = "resync";
4527 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4528 type = "check";
4529 else
4530 type = "repair";
4531 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4532 type = "recover";
4533 else if (mddev->reshape_position != MaxSector)
4534 type = "reshape";
4535 }
4536 return sprintf(page, "%s\n", type);
4537 }
4538
4539 static ssize_t
4540 action_store(struct mddev *mddev, const char *page, size_t len)
4541 {
4542 if (!mddev->pers || !mddev->pers->sync_request)
4543 return -EINVAL;
4544
4545
4546 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4547 if (cmd_match(page, "frozen"))
4548 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4549 else
4550 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4551 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4552 mddev_lock(mddev) == 0) {
4553 flush_workqueue(md_misc_wq);
4554 if (mddev->sync_thread) {
4555 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4556 md_reap_sync_thread(mddev);
4557 }
4558 mddev_unlock(mddev);
4559 }
4560 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4561 return -EBUSY;
4562 else if (cmd_match(page, "resync"))
4563 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4564 else if (cmd_match(page, "recover")) {
4565 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4566 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4567 } else if (cmd_match(page, "reshape")) {
4568 int err;
4569 if (mddev->pers->start_reshape == NULL)
4570 return -EINVAL;
4571 err = mddev_lock(mddev);
4572 if (!err) {
4573 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4574 err = -EBUSY;
4575 else {
4576 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4577 err = mddev->pers->start_reshape(mddev);
4578 }
4579 mddev_unlock(mddev);
4580 }
4581 if (err)
4582 return err;
4583 sysfs_notify(&mddev->kobj, NULL, "degraded");
4584 } else {
4585 if (cmd_match(page, "check"))
4586 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4587 else if (!cmd_match(page, "repair"))
4588 return -EINVAL;
4589 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4590 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4591 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4592 }
4593 if (mddev->ro == 2) {
4594 /* A write to sync_action is enough to justify
4595 * canceling read-auto mode
4596 */
4597 mddev->ro = 0;
4598 md_wakeup_thread(mddev->sync_thread);
4599 }
4600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4601 md_wakeup_thread(mddev->thread);
4602 sysfs_notify_dirent_safe(mddev->sysfs_action);
4603 return len;
4604 }
4605
4606 static struct md_sysfs_entry md_scan_mode =
4607 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4608
4609 static ssize_t
4610 last_sync_action_show(struct mddev *mddev, char *page)
4611 {
4612 return sprintf(page, "%s\n", mddev->last_sync_action);
4613 }
4614
4615 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4616
4617 static ssize_t
4618 mismatch_cnt_show(struct mddev *mddev, char *page)
4619 {
4620 return sprintf(page, "%llu\n",
4621 (unsigned long long)
4622 atomic64_read(&mddev->resync_mismatches));
4623 }
4624
4625 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4626
4627 static ssize_t
4628 sync_min_show(struct mddev *mddev, char *page)
4629 {
4630 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4631 mddev->sync_speed_min ? "local": "system");
4632 }
4633
4634 static ssize_t
4635 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4636 {
4637 unsigned int min;
4638 int rv;
4639
4640 if (strncmp(buf, "system", 6)==0) {
4641 min = 0;
4642 } else {
4643 rv = kstrtouint(buf, 10, &min);
4644 if (rv < 0)
4645 return rv;
4646 if (min == 0)
4647 return -EINVAL;
4648 }
4649 mddev->sync_speed_min = min;
4650 return len;
4651 }
4652
4653 static struct md_sysfs_entry md_sync_min =
4654 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4655
4656 static ssize_t
4657 sync_max_show(struct mddev *mddev, char *page)
4658 {
4659 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4660 mddev->sync_speed_max ? "local": "system");
4661 }
4662
4663 static ssize_t
4664 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4665 {
4666 unsigned int max;
4667 int rv;
4668
4669 if (strncmp(buf, "system", 6)==0) {
4670 max = 0;
4671 } else {
4672 rv = kstrtouint(buf, 10, &max);
4673 if (rv < 0)
4674 return rv;
4675 if (max == 0)
4676 return -EINVAL;
4677 }
4678 mddev->sync_speed_max = max;
4679 return len;
4680 }
4681
4682 static struct md_sysfs_entry md_sync_max =
4683 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4684
4685 static ssize_t
4686 degraded_show(struct mddev *mddev, char *page)
4687 {
4688 return sprintf(page, "%d\n", mddev->degraded);
4689 }
4690 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4691
4692 static ssize_t
4693 sync_force_parallel_show(struct mddev *mddev, char *page)
4694 {
4695 return sprintf(page, "%d\n", mddev->parallel_resync);
4696 }
4697
4698 static ssize_t
4699 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4700 {
4701 long n;
4702
4703 if (kstrtol(buf, 10, &n))
4704 return -EINVAL;
4705
4706 if (n != 0 && n != 1)
4707 return -EINVAL;
4708
4709 mddev->parallel_resync = n;
4710
4711 if (mddev->sync_thread)
4712 wake_up(&resync_wait);
4713
4714 return len;
4715 }
4716
4717 /* force parallel resync, even with shared block devices */
4718 static struct md_sysfs_entry md_sync_force_parallel =
4719 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4720 sync_force_parallel_show, sync_force_parallel_store);
4721
4722 static ssize_t
4723 sync_speed_show(struct mddev *mddev, char *page)
4724 {
4725 unsigned long resync, dt, db;
4726 if (mddev->curr_resync == 0)
4727 return sprintf(page, "none\n");
4728 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4729 dt = (jiffies - mddev->resync_mark) / HZ;
4730 if (!dt) dt++;
4731 db = resync - mddev->resync_mark_cnt;
4732 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4733 }
4734
4735 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4736
4737 static ssize_t
4738 sync_completed_show(struct mddev *mddev, char *page)
4739 {
4740 unsigned long long max_sectors, resync;
4741
4742 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4743 return sprintf(page, "none\n");
4744
4745 if (mddev->curr_resync == 1 ||
4746 mddev->curr_resync == 2)
4747 return sprintf(page, "delayed\n");
4748
4749 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4750 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4751 max_sectors = mddev->resync_max_sectors;
4752 else
4753 max_sectors = mddev->dev_sectors;
4754
4755 resync = mddev->curr_resync_completed;
4756 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4757 }
4758
4759 static struct md_sysfs_entry md_sync_completed =
4760 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4761
4762 static ssize_t
4763 min_sync_show(struct mddev *mddev, char *page)
4764 {
4765 return sprintf(page, "%llu\n",
4766 (unsigned long long)mddev->resync_min);
4767 }
4768 static ssize_t
4769 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4770 {
4771 unsigned long long min;
4772 int err;
4773
4774 if (kstrtoull(buf, 10, &min))
4775 return -EINVAL;
4776
4777 spin_lock(&mddev->lock);
4778 err = -EINVAL;
4779 if (min > mddev->resync_max)
4780 goto out_unlock;
4781
4782 err = -EBUSY;
4783 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4784 goto out_unlock;
4785
4786 /* Round down to multiple of 4K for safety */
4787 mddev->resync_min = round_down(min, 8);
4788 err = 0;
4789
4790 out_unlock:
4791 spin_unlock(&mddev->lock);
4792 return err ?: len;
4793 }
4794
4795 static struct md_sysfs_entry md_min_sync =
4796 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4797
4798 static ssize_t
4799 max_sync_show(struct mddev *mddev, char *page)
4800 {
4801 if (mddev->resync_max == MaxSector)
4802 return sprintf(page, "max\n");
4803 else
4804 return sprintf(page, "%llu\n",
4805 (unsigned long long)mddev->resync_max);
4806 }
4807 static ssize_t
4808 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4809 {
4810 int err;
4811 spin_lock(&mddev->lock);
4812 if (strncmp(buf, "max", 3) == 0)
4813 mddev->resync_max = MaxSector;
4814 else {
4815 unsigned long long max;
4816 int chunk;
4817
4818 err = -EINVAL;
4819 if (kstrtoull(buf, 10, &max))
4820 goto out_unlock;
4821 if (max < mddev->resync_min)
4822 goto out_unlock;
4823
4824 err = -EBUSY;
4825 if (max < mddev->resync_max &&
4826 mddev->ro == 0 &&
4827 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4828 goto out_unlock;
4829
4830 /* Must be a multiple of chunk_size */
4831 chunk = mddev->chunk_sectors;
4832 if (chunk) {
4833 sector_t temp = max;
4834
4835 err = -EINVAL;
4836 if (sector_div(temp, chunk))
4837 goto out_unlock;
4838 }
4839 mddev->resync_max = max;
4840 }
4841 wake_up(&mddev->recovery_wait);
4842 err = 0;
4843 out_unlock:
4844 spin_unlock(&mddev->lock);
4845 return err ?: len;
4846 }
4847
4848 static struct md_sysfs_entry md_max_sync =
4849 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4850
4851 static ssize_t
4852 suspend_lo_show(struct mddev *mddev, char *page)
4853 {
4854 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4855 }
4856
4857 static ssize_t
4858 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4859 {
4860 unsigned long long new;
4861 int err;
4862
4863 err = kstrtoull(buf, 10, &new);
4864 if (err < 0)
4865 return err;
4866 if (new != (sector_t)new)
4867 return -EINVAL;
4868
4869 err = mddev_lock(mddev);
4870 if (err)
4871 return err;
4872 err = -EINVAL;
4873 if (mddev->pers == NULL ||
4874 mddev->pers->quiesce == NULL)
4875 goto unlock;
4876 mddev_suspend(mddev);
4877 mddev->suspend_lo = new;
4878 mddev_resume(mddev);
4879
4880 err = 0;
4881 unlock:
4882 mddev_unlock(mddev);
4883 return err ?: len;
4884 }
4885 static struct md_sysfs_entry md_suspend_lo =
4886 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4887
4888 static ssize_t
4889 suspend_hi_show(struct mddev *mddev, char *page)
4890 {
4891 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4892 }
4893
4894 static ssize_t
4895 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4896 {
4897 unsigned long long new;
4898 int err;
4899
4900 err = kstrtoull(buf, 10, &new);
4901 if (err < 0)
4902 return err;
4903 if (new != (sector_t)new)
4904 return -EINVAL;
4905
4906 err = mddev_lock(mddev);
4907 if (err)
4908 return err;
4909 err = -EINVAL;
4910 if (mddev->pers == NULL)
4911 goto unlock;
4912
4913 mddev_suspend(mddev);
4914 mddev->suspend_hi = new;
4915 mddev_resume(mddev);
4916
4917 err = 0;
4918 unlock:
4919 mddev_unlock(mddev);
4920 return err ?: len;
4921 }
4922 static struct md_sysfs_entry md_suspend_hi =
4923 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4924
4925 static ssize_t
4926 reshape_position_show(struct mddev *mddev, char *page)
4927 {
4928 if (mddev->reshape_position != MaxSector)
4929 return sprintf(page, "%llu\n",
4930 (unsigned long long)mddev->reshape_position);
4931 strcpy(page, "none\n");
4932 return 5;
4933 }
4934
4935 static ssize_t
4936 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4937 {
4938 struct md_rdev *rdev;
4939 unsigned long long new;
4940 int err;
4941
4942 err = kstrtoull(buf, 10, &new);
4943 if (err < 0)
4944 return err;
4945 if (new != (sector_t)new)
4946 return -EINVAL;
4947 err = mddev_lock(mddev);
4948 if (err)
4949 return err;
4950 err = -EBUSY;
4951 if (mddev->pers)
4952 goto unlock;
4953 mddev->reshape_position = new;
4954 mddev->delta_disks = 0;
4955 mddev->reshape_backwards = 0;
4956 mddev->new_level = mddev->level;
4957 mddev->new_layout = mddev->layout;
4958 mddev->new_chunk_sectors = mddev->chunk_sectors;
4959 rdev_for_each(rdev, mddev)
4960 rdev->new_data_offset = rdev->data_offset;
4961 err = 0;
4962 unlock:
4963 mddev_unlock(mddev);
4964 return err ?: len;
4965 }
4966
4967 static struct md_sysfs_entry md_reshape_position =
4968 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4969 reshape_position_store);
4970
4971 static ssize_t
4972 reshape_direction_show(struct mddev *mddev, char *page)
4973 {
4974 return sprintf(page, "%s\n",
4975 mddev->reshape_backwards ? "backwards" : "forwards");
4976 }
4977
4978 static ssize_t
4979 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4980 {
4981 int backwards = 0;
4982 int err;
4983
4984 if (cmd_match(buf, "forwards"))
4985 backwards = 0;
4986 else if (cmd_match(buf, "backwards"))
4987 backwards = 1;
4988 else
4989 return -EINVAL;
4990 if (mddev->reshape_backwards == backwards)
4991 return len;
4992
4993 err = mddev_lock(mddev);
4994 if (err)
4995 return err;
4996 /* check if we are allowed to change */
4997 if (mddev->delta_disks)
4998 err = -EBUSY;
4999 else if (mddev->persistent &&
5000 mddev->major_version == 0)
5001 err = -EINVAL;
5002 else
5003 mddev->reshape_backwards = backwards;
5004 mddev_unlock(mddev);
5005 return err ?: len;
5006 }
5007
5008 static struct md_sysfs_entry md_reshape_direction =
5009 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5010 reshape_direction_store);
5011
5012 static ssize_t
5013 array_size_show(struct mddev *mddev, char *page)
5014 {
5015 if (mddev->external_size)
5016 return sprintf(page, "%llu\n",
5017 (unsigned long long)mddev->array_sectors/2);
5018 else
5019 return sprintf(page, "default\n");
5020 }
5021
5022 static ssize_t
5023 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5024 {
5025 sector_t sectors;
5026 int err;
5027
5028 err = mddev_lock(mddev);
5029 if (err)
5030 return err;
5031
5032 /* cluster raid doesn't support change array_sectors */
5033 if (mddev_is_clustered(mddev)) {
5034 mddev_unlock(mddev);
5035 return -EINVAL;
5036 }
5037
5038 if (strncmp(buf, "default", 7) == 0) {
5039 if (mddev->pers)
5040 sectors = mddev->pers->size(mddev, 0, 0);
5041 else
5042 sectors = mddev->array_sectors;
5043
5044 mddev->external_size = 0;
5045 } else {
5046 if (strict_blocks_to_sectors(buf, &sectors) < 0)
5047 err = -EINVAL;
5048 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5049 err = -E2BIG;
5050 else
5051 mddev->external_size = 1;
5052 }
5053
5054 if (!err) {
5055 mddev->array_sectors = sectors;
5056 if (mddev->pers) {
5057 set_capacity(mddev->gendisk, mddev->array_sectors);
5058 revalidate_disk(mddev->gendisk);
5059 }
5060 }
5061 mddev_unlock(mddev);
5062 return err ?: len;
5063 }
5064
5065 static struct md_sysfs_entry md_array_size =
5066 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5067 array_size_store);
5068
5069 static ssize_t
5070 consistency_policy_show(struct mddev *mddev, char *page)
5071 {
5072 int ret;
5073
5074 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5075 ret = sprintf(page, "journal\n");
5076 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5077 ret = sprintf(page, "ppl\n");
5078 } else if (mddev->bitmap) {
5079 ret = sprintf(page, "bitmap\n");
5080 } else if (mddev->pers) {
5081 if (mddev->pers->sync_request)
5082 ret = sprintf(page, "resync\n");
5083 else
5084 ret = sprintf(page, "none\n");
5085 } else {
5086 ret = sprintf(page, "unknown\n");
5087 }
5088
5089 return ret;
5090 }
5091
5092 static ssize_t
5093 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5094 {
5095 int err = 0;
5096
5097 if (mddev->pers) {
5098 if (mddev->pers->change_consistency_policy)
5099 err = mddev->pers->change_consistency_policy(mddev, buf);
5100 else
5101 err = -EBUSY;
5102 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5103 set_bit(MD_HAS_PPL, &mddev->flags);
5104 } else {
5105 err = -EINVAL;
5106 }
5107
5108 return err ? err : len;
5109 }
5110
5111 static struct md_sysfs_entry md_consistency_policy =
5112 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5113 consistency_policy_store);
5114
5115 static struct attribute *md_default_attrs[] = {
5116 &md_level.attr,
5117 &md_layout.attr,
5118 &md_raid_disks.attr,
5119 &md_chunk_size.attr,
5120 &md_size.attr,
5121 &md_resync_start.attr,
5122 &md_metadata.attr,
5123 &md_new_device.attr,
5124 &md_safe_delay.attr,
5125 &md_array_state.attr,
5126 &md_reshape_position.attr,
5127 &md_reshape_direction.attr,
5128 &md_array_size.attr,
5129 &max_corr_read_errors.attr,
5130 &md_consistency_policy.attr,
5131 NULL,
5132 };
5133
5134 static struct attribute *md_redundancy_attrs[] = {
5135 &md_scan_mode.attr,
5136 &md_last_scan_mode.attr,
5137 &md_mismatches.attr,
5138 &md_sync_min.attr,
5139 &md_sync_max.attr,
5140 &md_sync_speed.attr,
5141 &md_sync_force_parallel.attr,
5142 &md_sync_completed.attr,
5143 &md_min_sync.attr,
5144 &md_max_sync.attr,
5145 &md_suspend_lo.attr,
5146 &md_suspend_hi.attr,
5147 &md_bitmap.attr,
5148 &md_degraded.attr,
5149 NULL,
5150 };
5151 static struct attribute_group md_redundancy_group = {
5152 .name = NULL,
5153 .attrs = md_redundancy_attrs,
5154 };
5155
5156 static ssize_t
5157 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5158 {
5159 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5160 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5161 ssize_t rv;
5162
5163 if (!entry->show)
5164 return -EIO;
5165 spin_lock(&all_mddevs_lock);
5166 if (list_empty(&mddev->all_mddevs)) {
5167 spin_unlock(&all_mddevs_lock);
5168 return -EBUSY;
5169 }
5170 mddev_get(mddev);
5171 spin_unlock(&all_mddevs_lock);
5172
5173 rv = entry->show(mddev, page);
5174 mddev_put(mddev);
5175 return rv;
5176 }
5177
5178 static ssize_t
5179 md_attr_store(struct kobject *kobj, struct attribute *attr,
5180 const char *page, size_t length)
5181 {
5182 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5183 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5184 ssize_t rv;
5185
5186 if (!entry->store)
5187 return -EIO;
5188 if (!capable(CAP_SYS_ADMIN))
5189 return -EACCES;
5190 spin_lock(&all_mddevs_lock);
5191 if (list_empty(&mddev->all_mddevs)) {
5192 spin_unlock(&all_mddevs_lock);
5193 return -EBUSY;
5194 }
5195 mddev_get(mddev);
5196 spin_unlock(&all_mddevs_lock);
5197 rv = entry->store(mddev, page, length);
5198 mddev_put(mddev);
5199 return rv;
5200 }
5201
5202 static void md_free(struct kobject *ko)
5203 {
5204 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5205
5206 if (mddev->sysfs_state)
5207 sysfs_put(mddev->sysfs_state);
5208
5209 if (mddev->gendisk)
5210 del_gendisk(mddev->gendisk);
5211 if (mddev->queue)
5212 blk_cleanup_queue(mddev->queue);
5213 if (mddev->gendisk)
5214 put_disk(mddev->gendisk);
5215 percpu_ref_exit(&mddev->writes_pending);
5216
5217 bioset_exit(&mddev->bio_set);
5218 bioset_exit(&mddev->sync_set);
5219 kfree(mddev);
5220 }
5221
5222 static const struct sysfs_ops md_sysfs_ops = {
5223 .show = md_attr_show,
5224 .store = md_attr_store,
5225 };
5226 static struct kobj_type md_ktype = {
5227 .release = md_free,
5228 .sysfs_ops = &md_sysfs_ops,
5229 .default_attrs = md_default_attrs,
5230 };
5231
5232 int mdp_major = 0;
5233
5234 static void mddev_delayed_delete(struct work_struct *ws)
5235 {
5236 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5237
5238 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5239 kobject_del(&mddev->kobj);
5240 kobject_put(&mddev->kobj);
5241 }
5242
5243 static void no_op(struct percpu_ref *r) {}
5244
5245 int mddev_init_writes_pending(struct mddev *mddev)
5246 {
5247 if (mddev->writes_pending.percpu_count_ptr)
5248 return 0;
5249 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0)
5250 return -ENOMEM;
5251 /* We want to start with the refcount at zero */
5252 percpu_ref_put(&mddev->writes_pending);
5253 return 0;
5254 }
5255 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5256
5257 static int md_alloc(dev_t dev, char *name)
5258 {
5259 /*
5260 * If dev is zero, name is the name of a device to allocate with
5261 * an arbitrary minor number. It will be "md_???"
5262 * If dev is non-zero it must be a device number with a MAJOR of
5263 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5264 * the device is being created by opening a node in /dev.
5265 * If "name" is not NULL, the device is being created by
5266 * writing to /sys/module/md_mod/parameters/new_array.
5267 */
5268 static DEFINE_MUTEX(disks_mutex);
5269 struct mddev *mddev = mddev_find(dev);
5270 struct gendisk *disk;
5271 int partitioned;
5272 int shift;
5273 int unit;
5274 int error;
5275
5276 if (!mddev)
5277 return -ENODEV;
5278
5279 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5280 shift = partitioned ? MdpMinorShift : 0;
5281 unit = MINOR(mddev->unit) >> shift;
5282
5283 /* wait for any previous instance of this device to be
5284 * completely removed (mddev_delayed_delete).
5285 */
5286 flush_workqueue(md_misc_wq);
5287
5288 mutex_lock(&disks_mutex);
5289 error = -EEXIST;
5290 if (mddev->gendisk)
5291 goto abort;
5292
5293 if (name && !dev) {
5294 /* Need to ensure that 'name' is not a duplicate.
5295 */
5296 struct mddev *mddev2;
5297 spin_lock(&all_mddevs_lock);
5298
5299 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5300 if (mddev2->gendisk &&
5301 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5302 spin_unlock(&all_mddevs_lock);
5303 goto abort;
5304 }
5305 spin_unlock(&all_mddevs_lock);
5306 }
5307 if (name && dev)
5308 /*
5309 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5310 */
5311 mddev->hold_active = UNTIL_STOP;
5312
5313 error = -ENOMEM;
5314 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5315 if (!mddev->queue)
5316 goto abort;
5317 mddev->queue->queuedata = mddev;
5318
5319 blk_queue_make_request(mddev->queue, md_make_request);
5320 blk_set_stacking_limits(&mddev->queue->limits);
5321
5322 disk = alloc_disk(1 << shift);
5323 if (!disk) {
5324 blk_cleanup_queue(mddev->queue);
5325 mddev->queue = NULL;
5326 goto abort;
5327 }
5328 disk->major = MAJOR(mddev->unit);
5329 disk->first_minor = unit << shift;
5330 if (name)
5331 strcpy(disk->disk_name, name);
5332 else if (partitioned)
5333 sprintf(disk->disk_name, "md_d%d", unit);
5334 else
5335 sprintf(disk->disk_name, "md%d", unit);
5336 disk->fops = &md_fops;
5337 disk->private_data = mddev;
5338 disk->queue = mddev->queue;
5339 blk_queue_write_cache(mddev->queue, true, true);
5340 /* Allow extended partitions. This makes the
5341 * 'mdp' device redundant, but we can't really
5342 * remove it now.
5343 */
5344 disk->flags |= GENHD_FL_EXT_DEVT;
5345 mddev->gendisk = disk;
5346 /* As soon as we call add_disk(), another thread could get
5347 * through to md_open, so make sure it doesn't get too far
5348 */
5349 mutex_lock(&mddev->open_mutex);
5350 add_disk(disk);
5351
5352 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5353 if (error) {
5354 /* This isn't possible, but as kobject_init_and_add is marked
5355 * __must_check, we must do something with the result
5356 */
5357 pr_debug("md: cannot register %s/md - name in use\n",
5358 disk->disk_name);
5359 error = 0;
5360 }
5361 if (mddev->kobj.sd &&
5362 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5363 pr_debug("pointless warning\n");
5364 mutex_unlock(&mddev->open_mutex);
5365 abort:
5366 mutex_unlock(&disks_mutex);
5367 if (!error && mddev->kobj.sd) {
5368 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5369 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5370 }
5371 mddev_put(mddev);
5372 return error;
5373 }
5374
5375 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5376 {
5377 if (create_on_open)
5378 md_alloc(dev, NULL);
5379 return NULL;
5380 }
5381
5382 static int add_named_array(const char *val, const struct kernel_param *kp)
5383 {
5384 /*
5385 * val must be "md_*" or "mdNNN".
5386 * For "md_*" we allocate an array with a large free minor number, and
5387 * set the name to val. val must not already be an active name.
5388 * For "mdNNN" we allocate an array with the minor number NNN
5389 * which must not already be in use.
5390 */
5391 int len = strlen(val);
5392 char buf[DISK_NAME_LEN];
5393 unsigned long devnum;
5394
5395 while (len && val[len-1] == '\n')
5396 len--;
5397 if (len >= DISK_NAME_LEN)
5398 return -E2BIG;
5399 strlcpy(buf, val, len+1);
5400 if (strncmp(buf, "md_", 3) == 0)
5401 return md_alloc(0, buf);
5402 if (strncmp(buf, "md", 2) == 0 &&
5403 isdigit(buf[2]) &&
5404 kstrtoul(buf+2, 10, &devnum) == 0 &&
5405 devnum <= MINORMASK)
5406 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5407
5408 return -EINVAL;
5409 }
5410
5411 static void md_safemode_timeout(struct timer_list *t)
5412 {
5413 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5414
5415 mddev->safemode = 1;
5416 if (mddev->external)
5417 sysfs_notify_dirent_safe(mddev->sysfs_state);
5418
5419 md_wakeup_thread(mddev->thread);
5420 }
5421
5422 static int start_dirty_degraded;
5423
5424 int md_run(struct mddev *mddev)
5425 {
5426 int err;
5427 struct md_rdev *rdev;
5428 struct md_personality *pers;
5429
5430 if (list_empty(&mddev->disks))
5431 /* cannot run an array with no devices.. */
5432 return -EINVAL;
5433
5434 if (mddev->pers)
5435 return -EBUSY;
5436 /* Cannot run until previous stop completes properly */
5437 if (mddev->sysfs_active)
5438 return -EBUSY;
5439
5440 /*
5441 * Analyze all RAID superblock(s)
5442 */
5443 if (!mddev->raid_disks) {
5444 if (!mddev->persistent)
5445 return -EINVAL;
5446 analyze_sbs(mddev);
5447 }
5448
5449 if (mddev->level != LEVEL_NONE)
5450 request_module("md-level-%d", mddev->level);
5451 else if (mddev->clevel[0])
5452 request_module("md-%s", mddev->clevel);
5453
5454 /*
5455 * Drop all container device buffers, from now on
5456 * the only valid external interface is through the md
5457 * device.
5458 */
5459 mddev->has_superblocks = false;
5460 rdev_for_each(rdev, mddev) {
5461 if (test_bit(Faulty, &rdev->flags))
5462 continue;
5463 sync_blockdev(rdev->bdev);
5464 invalidate_bdev(rdev->bdev);
5465 if (mddev->ro != 1 &&
5466 (bdev_read_only(rdev->bdev) ||
5467 bdev_read_only(rdev->meta_bdev))) {
5468 mddev->ro = 1;
5469 if (mddev->gendisk)
5470 set_disk_ro(mddev->gendisk, 1);
5471 }
5472
5473 if (rdev->sb_page)
5474 mddev->has_superblocks = true;
5475
5476 /* perform some consistency tests on the device.
5477 * We don't want the data to overlap the metadata,
5478 * Internal Bitmap issues have been handled elsewhere.
5479 */
5480 if (rdev->meta_bdev) {
5481 /* Nothing to check */;
5482 } else if (rdev->data_offset < rdev->sb_start) {
5483 if (mddev->dev_sectors &&
5484 rdev->data_offset + mddev->dev_sectors
5485 > rdev->sb_start) {
5486 pr_warn("md: %s: data overlaps metadata\n",
5487 mdname(mddev));
5488 return -EINVAL;
5489 }
5490 } else {
5491 if (rdev->sb_start + rdev->sb_size/512
5492 > rdev->data_offset) {
5493 pr_warn("md: %s: metadata overlaps data\n",
5494 mdname(mddev));
5495 return -EINVAL;
5496 }
5497 }
5498 sysfs_notify_dirent_safe(rdev->sysfs_state);
5499 }
5500
5501 if (!bioset_initialized(&mddev->bio_set)) {
5502 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5503 if (err)
5504 return err;
5505 }
5506 if (!bioset_initialized(&mddev->sync_set)) {
5507 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5508 if (err)
5509 return err;
5510 }
5511
5512 spin_lock(&pers_lock);
5513 pers = find_pers(mddev->level, mddev->clevel);
5514 if (!pers || !try_module_get(pers->owner)) {
5515 spin_unlock(&pers_lock);
5516 if (mddev->level != LEVEL_NONE)
5517 pr_warn("md: personality for level %d is not loaded!\n",
5518 mddev->level);
5519 else
5520 pr_warn("md: personality for level %s is not loaded!\n",
5521 mddev->clevel);
5522 err = -EINVAL;
5523 goto abort;
5524 }
5525 spin_unlock(&pers_lock);
5526 if (mddev->level != pers->level) {
5527 mddev->level = pers->level;
5528 mddev->new_level = pers->level;
5529 }
5530 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5531
5532 if (mddev->reshape_position != MaxSector &&
5533 pers->start_reshape == NULL) {
5534 /* This personality cannot handle reshaping... */
5535 module_put(pers->owner);
5536 err = -EINVAL;
5537 goto abort;
5538 }
5539
5540 if (pers->sync_request) {
5541 /* Warn if this is a potentially silly
5542 * configuration.
5543 */
5544 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5545 struct md_rdev *rdev2;
5546 int warned = 0;
5547
5548 rdev_for_each(rdev, mddev)
5549 rdev_for_each(rdev2, mddev) {
5550 if (rdev < rdev2 &&
5551 rdev->bdev->bd_contains ==
5552 rdev2->bdev->bd_contains) {
5553 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5554 mdname(mddev),
5555 bdevname(rdev->bdev,b),
5556 bdevname(rdev2->bdev,b2));
5557 warned = 1;
5558 }
5559 }
5560
5561 if (warned)
5562 pr_warn("True protection against single-disk failure might be compromised.\n");
5563 }
5564
5565 mddev->recovery = 0;
5566 /* may be over-ridden by personality */
5567 mddev->resync_max_sectors = mddev->dev_sectors;
5568
5569 mddev->ok_start_degraded = start_dirty_degraded;
5570
5571 if (start_readonly && mddev->ro == 0)
5572 mddev->ro = 2; /* read-only, but switch on first write */
5573
5574 err = pers->run(mddev);
5575 if (err)
5576 pr_warn("md: pers->run() failed ...\n");
5577 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5578 WARN_ONCE(!mddev->external_size,
5579 "%s: default size too small, but 'external_size' not in effect?\n",
5580 __func__);
5581 pr_warn("md: invalid array_size %llu > default size %llu\n",
5582 (unsigned long long)mddev->array_sectors / 2,
5583 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5584 err = -EINVAL;
5585 }
5586 if (err == 0 && pers->sync_request &&
5587 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5588 struct bitmap *bitmap;
5589
5590 bitmap = md_bitmap_create(mddev, -1);
5591 if (IS_ERR(bitmap)) {
5592 err = PTR_ERR(bitmap);
5593 pr_warn("%s: failed to create bitmap (%d)\n",
5594 mdname(mddev), err);
5595 } else
5596 mddev->bitmap = bitmap;
5597
5598 }
5599 if (err) {
5600 mddev_detach(mddev);
5601 if (mddev->private)
5602 pers->free(mddev, mddev->private);
5603 mddev->private = NULL;
5604 module_put(pers->owner);
5605 md_bitmap_destroy(mddev);
5606 goto abort;
5607 }
5608 if (mddev->queue) {
5609 bool nonrot = true;
5610
5611 rdev_for_each(rdev, mddev) {
5612 if (rdev->raid_disk >= 0 &&
5613 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5614 nonrot = false;
5615 break;
5616 }
5617 }
5618 if (mddev->degraded)
5619 nonrot = false;
5620 if (nonrot)
5621 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
5622 else
5623 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
5624 mddev->queue->backing_dev_info->congested_data = mddev;
5625 mddev->queue->backing_dev_info->congested_fn = md_congested;
5626 }
5627 if (pers->sync_request) {
5628 if (mddev->kobj.sd &&
5629 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5630 pr_warn("md: cannot register extra attributes for %s\n",
5631 mdname(mddev));
5632 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5633 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5634 mddev->ro = 0;
5635
5636 atomic_set(&mddev->max_corr_read_errors,
5637 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5638 mddev->safemode = 0;
5639 if (mddev_is_clustered(mddev))
5640 mddev->safemode_delay = 0;
5641 else
5642 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5643 mddev->in_sync = 1;
5644 smp_wmb();
5645 spin_lock(&mddev->lock);
5646 mddev->pers = pers;
5647 spin_unlock(&mddev->lock);
5648 rdev_for_each(rdev, mddev)
5649 if (rdev->raid_disk >= 0)
5650 if (sysfs_link_rdev(mddev, rdev))
5651 /* failure here is OK */;
5652
5653 if (mddev->degraded && !mddev->ro)
5654 /* This ensures that recovering status is reported immediately
5655 * via sysfs - until a lack of spares is confirmed.
5656 */
5657 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5658 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5659
5660 if (mddev->sb_flags)
5661 md_update_sb(mddev, 0);
5662
5663 md_new_event(mddev);
5664 sysfs_notify_dirent_safe(mddev->sysfs_state);
5665 sysfs_notify_dirent_safe(mddev->sysfs_action);
5666 sysfs_notify(&mddev->kobj, NULL, "degraded");
5667 return 0;
5668
5669 abort:
5670 bioset_exit(&mddev->bio_set);
5671 bioset_exit(&mddev->sync_set);
5672 return err;
5673 }
5674 EXPORT_SYMBOL_GPL(md_run);
5675
5676 static int do_md_run(struct mddev *mddev)
5677 {
5678 int err;
5679
5680 err = md_run(mddev);
5681 if (err)
5682 goto out;
5683 err = md_bitmap_load(mddev);
5684 if (err) {
5685 md_bitmap_destroy(mddev);
5686 goto out;
5687 }
5688
5689 if (mddev_is_clustered(mddev))
5690 md_allow_write(mddev);
5691
5692 /* run start up tasks that require md_thread */
5693 md_start(mddev);
5694
5695 md_wakeup_thread(mddev->thread);
5696 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5697
5698 set_capacity(mddev->gendisk, mddev->array_sectors);
5699 revalidate_disk(mddev->gendisk);
5700 mddev->changed = 1;
5701 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5702 out:
5703 return err;
5704 }
5705
5706 int md_start(struct mddev *mddev)
5707 {
5708 int ret = 0;
5709
5710 if (mddev->pers->start) {
5711 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5712 md_wakeup_thread(mddev->thread);
5713 ret = mddev->pers->start(mddev);
5714 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
5715 md_wakeup_thread(mddev->sync_thread);
5716 }
5717 return ret;
5718 }
5719 EXPORT_SYMBOL_GPL(md_start);
5720
5721 static int restart_array(struct mddev *mddev)
5722 {
5723 struct gendisk *disk = mddev->gendisk;
5724 struct md_rdev *rdev;
5725 bool has_journal = false;
5726 bool has_readonly = false;
5727
5728 /* Complain if it has no devices */
5729 if (list_empty(&mddev->disks))
5730 return -ENXIO;
5731 if (!mddev->pers)
5732 return -EINVAL;
5733 if (!mddev->ro)
5734 return -EBUSY;
5735
5736 rcu_read_lock();
5737 rdev_for_each_rcu(rdev, mddev) {
5738 if (test_bit(Journal, &rdev->flags) &&
5739 !test_bit(Faulty, &rdev->flags))
5740 has_journal = true;
5741 if (bdev_read_only(rdev->bdev))
5742 has_readonly = true;
5743 }
5744 rcu_read_unlock();
5745 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
5746 /* Don't restart rw with journal missing/faulty */
5747 return -EINVAL;
5748 if (has_readonly)
5749 return -EROFS;
5750
5751 mddev->safemode = 0;
5752 mddev->ro = 0;
5753 set_disk_ro(disk, 0);
5754 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
5755 /* Kick recovery or resync if necessary */
5756 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5757 md_wakeup_thread(mddev->thread);
5758 md_wakeup_thread(mddev->sync_thread);
5759 sysfs_notify_dirent_safe(mddev->sysfs_state);
5760 return 0;
5761 }
5762
5763 static void md_clean(struct mddev *mddev)
5764 {
5765 mddev->array_sectors = 0;
5766 mddev->external_size = 0;
5767 mddev->dev_sectors = 0;
5768 mddev->raid_disks = 0;
5769 mddev->recovery_cp = 0;
5770 mddev->resync_min = 0;
5771 mddev->resync_max = MaxSector;
5772 mddev->reshape_position = MaxSector;
5773 mddev->external = 0;
5774 mddev->persistent = 0;
5775 mddev->level = LEVEL_NONE;
5776 mddev->clevel[0] = 0;
5777 mddev->flags = 0;
5778 mddev->sb_flags = 0;
5779 mddev->ro = 0;
5780 mddev->metadata_type[0] = 0;
5781 mddev->chunk_sectors = 0;
5782 mddev->ctime = mddev->utime = 0;
5783 mddev->layout = 0;
5784 mddev->max_disks = 0;
5785 mddev->events = 0;
5786 mddev->can_decrease_events = 0;
5787 mddev->delta_disks = 0;
5788 mddev->reshape_backwards = 0;
5789 mddev->new_level = LEVEL_NONE;
5790 mddev->new_layout = 0;
5791 mddev->new_chunk_sectors = 0;
5792 mddev->curr_resync = 0;
5793 atomic64_set(&mddev->resync_mismatches, 0);
5794 mddev->suspend_lo = mddev->suspend_hi = 0;
5795 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5796 mddev->recovery = 0;
5797 mddev->in_sync = 0;
5798 mddev->changed = 0;
5799 mddev->degraded = 0;
5800 mddev->safemode = 0;
5801 mddev->private = NULL;
5802 mddev->cluster_info = NULL;
5803 mddev->bitmap_info.offset = 0;
5804 mddev->bitmap_info.default_offset = 0;
5805 mddev->bitmap_info.default_space = 0;
5806 mddev->bitmap_info.chunksize = 0;
5807 mddev->bitmap_info.daemon_sleep = 0;
5808 mddev->bitmap_info.max_write_behind = 0;
5809 mddev->bitmap_info.nodes = 0;
5810 }
5811
5812 static void __md_stop_writes(struct mddev *mddev)
5813 {
5814 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5815 flush_workqueue(md_misc_wq);
5816 if (mddev->sync_thread) {
5817 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5818 md_reap_sync_thread(mddev);
5819 }
5820
5821 del_timer_sync(&mddev->safemode_timer);
5822
5823 if (mddev->pers && mddev->pers->quiesce) {
5824 mddev->pers->quiesce(mddev, 1);
5825 mddev->pers->quiesce(mddev, 0);
5826 }
5827 md_bitmap_flush(mddev);
5828
5829 if (mddev->ro == 0 &&
5830 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5831 mddev->sb_flags)) {
5832 /* mark array as shutdown cleanly */
5833 if (!mddev_is_clustered(mddev))
5834 mddev->in_sync = 1;
5835 md_update_sb(mddev, 1);
5836 }
5837 }
5838
5839 void md_stop_writes(struct mddev *mddev)
5840 {
5841 mddev_lock_nointr(mddev);
5842 __md_stop_writes(mddev);
5843 mddev_unlock(mddev);
5844 }
5845 EXPORT_SYMBOL_GPL(md_stop_writes);
5846
5847 static void mddev_detach(struct mddev *mddev)
5848 {
5849 md_bitmap_wait_behind_writes(mddev);
5850 if (mddev->pers && mddev->pers->quiesce) {
5851 mddev->pers->quiesce(mddev, 1);
5852 mddev->pers->quiesce(mddev, 0);
5853 }
5854 md_unregister_thread(&mddev->thread);
5855 if (mddev->queue)
5856 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5857 }
5858
5859 static void __md_stop(struct mddev *mddev)
5860 {
5861 struct md_personality *pers = mddev->pers;
5862 md_bitmap_destroy(mddev);
5863 mddev_detach(mddev);
5864 /* Ensure ->event_work is done */
5865 flush_workqueue(md_misc_wq);
5866 spin_lock(&mddev->lock);
5867 mddev->pers = NULL;
5868 spin_unlock(&mddev->lock);
5869 pers->free(mddev, mddev->private);
5870 mddev->private = NULL;
5871 if (pers->sync_request && mddev->to_remove == NULL)
5872 mddev->to_remove = &md_redundancy_group;
5873 module_put(pers->owner);
5874 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5875 }
5876
5877 void md_stop(struct mddev *mddev)
5878 {
5879 /* stop the array and free an attached data structures.
5880 * This is called from dm-raid
5881 */
5882 __md_stop(mddev);
5883 bioset_exit(&mddev->bio_set);
5884 bioset_exit(&mddev->sync_set);
5885 }
5886
5887 EXPORT_SYMBOL_GPL(md_stop);
5888
5889 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5890 {
5891 int err = 0;
5892 int did_freeze = 0;
5893
5894 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5895 did_freeze = 1;
5896 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5897 md_wakeup_thread(mddev->thread);
5898 }
5899 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5901 if (mddev->sync_thread)
5902 /* Thread might be blocked waiting for metadata update
5903 * which will now never happen */
5904 wake_up_process(mddev->sync_thread->tsk);
5905
5906 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
5907 return -EBUSY;
5908 mddev_unlock(mddev);
5909 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5910 &mddev->recovery));
5911 wait_event(mddev->sb_wait,
5912 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
5913 mddev_lock_nointr(mddev);
5914
5915 mutex_lock(&mddev->open_mutex);
5916 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5917 mddev->sync_thread ||
5918 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5919 pr_warn("md: %s still in use.\n",mdname(mddev));
5920 if (did_freeze) {
5921 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5922 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5923 md_wakeup_thread(mddev->thread);
5924 }
5925 err = -EBUSY;
5926 goto out;
5927 }
5928 if (mddev->pers) {
5929 __md_stop_writes(mddev);
5930
5931 err = -ENXIO;
5932 if (mddev->ro==1)
5933 goto out;
5934 mddev->ro = 1;
5935 set_disk_ro(mddev->gendisk, 1);
5936 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5937 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5938 md_wakeup_thread(mddev->thread);
5939 sysfs_notify_dirent_safe(mddev->sysfs_state);
5940 err = 0;
5941 }
5942 out:
5943 mutex_unlock(&mddev->open_mutex);
5944 return err;
5945 }
5946
5947 /* mode:
5948 * 0 - completely stop and dis-assemble array
5949 * 2 - stop but do not disassemble array
5950 */
5951 static int do_md_stop(struct mddev *mddev, int mode,
5952 struct block_device *bdev)
5953 {
5954 struct gendisk *disk = mddev->gendisk;
5955 struct md_rdev *rdev;
5956 int did_freeze = 0;
5957
5958 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5959 did_freeze = 1;
5960 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5961 md_wakeup_thread(mddev->thread);
5962 }
5963 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5964 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5965 if (mddev->sync_thread)
5966 /* Thread might be blocked waiting for metadata update
5967 * which will now never happen */
5968 wake_up_process(mddev->sync_thread->tsk);
5969
5970 mddev_unlock(mddev);
5971 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5972 !test_bit(MD_RECOVERY_RUNNING,
5973 &mddev->recovery)));
5974 mddev_lock_nointr(mddev);
5975
5976 mutex_lock(&mddev->open_mutex);
5977 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5978 mddev->sysfs_active ||
5979 mddev->sync_thread ||
5980 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
5981 pr_warn("md: %s still in use.\n",mdname(mddev));
5982 mutex_unlock(&mddev->open_mutex);
5983 if (did_freeze) {
5984 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5985 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5986 md_wakeup_thread(mddev->thread);
5987 }
5988 return -EBUSY;
5989 }
5990 if (mddev->pers) {
5991 if (mddev->ro)
5992 set_disk_ro(disk, 0);
5993
5994 __md_stop_writes(mddev);
5995 __md_stop(mddev);
5996 mddev->queue->backing_dev_info->congested_fn = NULL;
5997
5998 /* tell userspace to handle 'inactive' */
5999 sysfs_notify_dirent_safe(mddev->sysfs_state);
6000
6001 rdev_for_each(rdev, mddev)
6002 if (rdev->raid_disk >= 0)
6003 sysfs_unlink_rdev(mddev, rdev);
6004
6005 set_capacity(disk, 0);
6006 mutex_unlock(&mddev->open_mutex);
6007 mddev->changed = 1;
6008 revalidate_disk(disk);
6009
6010 if (mddev->ro)
6011 mddev->ro = 0;
6012 } else
6013 mutex_unlock(&mddev->open_mutex);
6014 /*
6015 * Free resources if final stop
6016 */
6017 if (mode == 0) {
6018 pr_info("md: %s stopped.\n", mdname(mddev));
6019
6020 if (mddev->bitmap_info.file) {
6021 struct file *f = mddev->bitmap_info.file;
6022 spin_lock(&mddev->lock);
6023 mddev->bitmap_info.file = NULL;
6024 spin_unlock(&mddev->lock);
6025 fput(f);
6026 }
6027 mddev->bitmap_info.offset = 0;
6028
6029 export_array(mddev);
6030
6031 md_clean(mddev);
6032 if (mddev->hold_active == UNTIL_STOP)
6033 mddev->hold_active = 0;
6034 }
6035 md_new_event(mddev);
6036 sysfs_notify_dirent_safe(mddev->sysfs_state);
6037 return 0;
6038 }
6039
6040 #ifndef MODULE
6041 static void autorun_array(struct mddev *mddev)
6042 {
6043 struct md_rdev *rdev;
6044 int err;
6045
6046 if (list_empty(&mddev->disks))
6047 return;
6048
6049 pr_info("md: running: ");
6050
6051 rdev_for_each(rdev, mddev) {
6052 char b[BDEVNAME_SIZE];
6053 pr_cont("<%s>", bdevname(rdev->bdev,b));
6054 }
6055 pr_cont("\n");
6056
6057 err = do_md_run(mddev);
6058 if (err) {
6059 pr_warn("md: do_md_run() returned %d\n", err);
6060 do_md_stop(mddev, 0, NULL);
6061 }
6062 }
6063
6064 /*
6065 * lets try to run arrays based on all disks that have arrived
6066 * until now. (those are in pending_raid_disks)
6067 *
6068 * the method: pick the first pending disk, collect all disks with
6069 * the same UUID, remove all from the pending list and put them into
6070 * the 'same_array' list. Then order this list based on superblock
6071 * update time (freshest comes first), kick out 'old' disks and
6072 * compare superblocks. If everything's fine then run it.
6073 *
6074 * If "unit" is allocated, then bump its reference count
6075 */
6076 static void autorun_devices(int part)
6077 {
6078 struct md_rdev *rdev0, *rdev, *tmp;
6079 struct mddev *mddev;
6080 char b[BDEVNAME_SIZE];
6081
6082 pr_info("md: autorun ...\n");
6083 while (!list_empty(&pending_raid_disks)) {
6084 int unit;
6085 dev_t dev;
6086 LIST_HEAD(candidates);
6087 rdev0 = list_entry(pending_raid_disks.next,
6088 struct md_rdev, same_set);
6089
6090 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6091 INIT_LIST_HEAD(&candidates);
6092 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6093 if (super_90_load(rdev, rdev0, 0) >= 0) {
6094 pr_debug("md: adding %s ...\n",
6095 bdevname(rdev->bdev,b));
6096 list_move(&rdev->same_set, &candidates);
6097 }
6098 /*
6099 * now we have a set of devices, with all of them having
6100 * mostly sane superblocks. It's time to allocate the
6101 * mddev.
6102 */
6103 if (part) {
6104 dev = MKDEV(mdp_major,
6105 rdev0->preferred_minor << MdpMinorShift);
6106 unit = MINOR(dev) >> MdpMinorShift;
6107 } else {
6108 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6109 unit = MINOR(dev);
6110 }
6111 if (rdev0->preferred_minor != unit) {
6112 pr_warn("md: unit number in %s is bad: %d\n",
6113 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6114 break;
6115 }
6116
6117 md_probe(dev, NULL, NULL);
6118 mddev = mddev_find(dev);
6119 if (!mddev || !mddev->gendisk) {
6120 if (mddev)
6121 mddev_put(mddev);
6122 break;
6123 }
6124 if (mddev_lock(mddev))
6125 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6126 else if (mddev->raid_disks || mddev->major_version
6127 || !list_empty(&mddev->disks)) {
6128 pr_warn("md: %s already running, cannot run %s\n",
6129 mdname(mddev), bdevname(rdev0->bdev,b));
6130 mddev_unlock(mddev);
6131 } else {
6132 pr_debug("md: created %s\n", mdname(mddev));
6133 mddev->persistent = 1;
6134 rdev_for_each_list(rdev, tmp, &candidates) {
6135 list_del_init(&rdev->same_set);
6136 if (bind_rdev_to_array(rdev, mddev))
6137 export_rdev(rdev);
6138 }
6139 autorun_array(mddev);
6140 mddev_unlock(mddev);
6141 }
6142 /* on success, candidates will be empty, on error
6143 * it won't...
6144 */
6145 rdev_for_each_list(rdev, tmp, &candidates) {
6146 list_del_init(&rdev->same_set);
6147 export_rdev(rdev);
6148 }
6149 mddev_put(mddev);
6150 }
6151 pr_info("md: ... autorun DONE.\n");
6152 }
6153 #endif /* !MODULE */
6154
6155 static int get_version(void __user *arg)
6156 {
6157 mdu_version_t ver;
6158
6159 ver.major = MD_MAJOR_VERSION;
6160 ver.minor = MD_MINOR_VERSION;
6161 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6162
6163 if (copy_to_user(arg, &ver, sizeof(ver)))
6164 return -EFAULT;
6165
6166 return 0;
6167 }
6168
6169 static int get_array_info(struct mddev *mddev, void __user *arg)
6170 {
6171 mdu_array_info_t info;
6172 int nr,working,insync,failed,spare;
6173 struct md_rdev *rdev;
6174
6175 nr = working = insync = failed = spare = 0;
6176 rcu_read_lock();
6177 rdev_for_each_rcu(rdev, mddev) {
6178 nr++;
6179 if (test_bit(Faulty, &rdev->flags))
6180 failed++;
6181 else {
6182 working++;
6183 if (test_bit(In_sync, &rdev->flags))
6184 insync++;
6185 else if (test_bit(Journal, &rdev->flags))
6186 /* TODO: add journal count to md_u.h */
6187 ;
6188 else
6189 spare++;
6190 }
6191 }
6192 rcu_read_unlock();
6193
6194 info.major_version = mddev->major_version;
6195 info.minor_version = mddev->minor_version;
6196 info.patch_version = MD_PATCHLEVEL_VERSION;
6197 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6198 info.level = mddev->level;
6199 info.size = mddev->dev_sectors / 2;
6200 if (info.size != mddev->dev_sectors / 2) /* overflow */
6201 info.size = -1;
6202 info.nr_disks = nr;
6203 info.raid_disks = mddev->raid_disks;
6204 info.md_minor = mddev->md_minor;
6205 info.not_persistent= !mddev->persistent;
6206
6207 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6208 info.state = 0;
6209 if (mddev->in_sync)
6210 info.state = (1<<MD_SB_CLEAN);
6211 if (mddev->bitmap && mddev->bitmap_info.offset)
6212 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6213 if (mddev_is_clustered(mddev))
6214 info.state |= (1<<MD_SB_CLUSTERED);
6215 info.active_disks = insync;
6216 info.working_disks = working;
6217 info.failed_disks = failed;
6218 info.spare_disks = spare;
6219
6220 info.layout = mddev->layout;
6221 info.chunk_size = mddev->chunk_sectors << 9;
6222
6223 if (copy_to_user(arg, &info, sizeof(info)))
6224 return -EFAULT;
6225
6226 return 0;
6227 }
6228
6229 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6230 {
6231 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6232 char *ptr;
6233 int err;
6234
6235 file = kzalloc(sizeof(*file), GFP_NOIO);
6236 if (!file)
6237 return -ENOMEM;
6238
6239 err = 0;
6240 spin_lock(&mddev->lock);
6241 /* bitmap enabled */
6242 if (mddev->bitmap_info.file) {
6243 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6244 sizeof(file->pathname));
6245 if (IS_ERR(ptr))
6246 err = PTR_ERR(ptr);
6247 else
6248 memmove(file->pathname, ptr,
6249 sizeof(file->pathname)-(ptr-file->pathname));
6250 }
6251 spin_unlock(&mddev->lock);
6252
6253 if (err == 0 &&
6254 copy_to_user(arg, file, sizeof(*file)))
6255 err = -EFAULT;
6256
6257 kfree(file);
6258 return err;
6259 }
6260
6261 static int get_disk_info(struct mddev *mddev, void __user * arg)
6262 {
6263 mdu_disk_info_t info;
6264 struct md_rdev *rdev;
6265
6266 if (copy_from_user(&info, arg, sizeof(info)))
6267 return -EFAULT;
6268
6269 rcu_read_lock();
6270 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6271 if (rdev) {
6272 info.major = MAJOR(rdev->bdev->bd_dev);
6273 info.minor = MINOR(rdev->bdev->bd_dev);
6274 info.raid_disk = rdev->raid_disk;
6275 info.state = 0;
6276 if (test_bit(Faulty, &rdev->flags))
6277 info.state |= (1<<MD_DISK_FAULTY);
6278 else if (test_bit(In_sync, &rdev->flags)) {
6279 info.state |= (1<<MD_DISK_ACTIVE);
6280 info.state |= (1<<MD_DISK_SYNC);
6281 }
6282 if (test_bit(Journal, &rdev->flags))
6283 info.state |= (1<<MD_DISK_JOURNAL);
6284 if (test_bit(WriteMostly, &rdev->flags))
6285 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6286 if (test_bit(FailFast, &rdev->flags))
6287 info.state |= (1<<MD_DISK_FAILFAST);
6288 } else {
6289 info.major = info.minor = 0;
6290 info.raid_disk = -1;
6291 info.state = (1<<MD_DISK_REMOVED);
6292 }
6293 rcu_read_unlock();
6294
6295 if (copy_to_user(arg, &info, sizeof(info)))
6296 return -EFAULT;
6297
6298 return 0;
6299 }
6300
6301 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6302 {
6303 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6304 struct md_rdev *rdev;
6305 dev_t dev = MKDEV(info->major,info->minor);
6306
6307 if (mddev_is_clustered(mddev) &&
6308 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6309 pr_warn("%s: Cannot add to clustered mddev.\n",
6310 mdname(mddev));
6311 return -EINVAL;
6312 }
6313
6314 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6315 return -EOVERFLOW;
6316
6317 if (!mddev->raid_disks) {
6318 int err;
6319 /* expecting a device which has a superblock */
6320 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6321 if (IS_ERR(rdev)) {
6322 pr_warn("md: md_import_device returned %ld\n",
6323 PTR_ERR(rdev));
6324 return PTR_ERR(rdev);
6325 }
6326 if (!list_empty(&mddev->disks)) {
6327 struct md_rdev *rdev0
6328 = list_entry(mddev->disks.next,
6329 struct md_rdev, same_set);
6330 err = super_types[mddev->major_version]
6331 .load_super(rdev, rdev0, mddev->minor_version);
6332 if (err < 0) {
6333 pr_warn("md: %s has different UUID to %s\n",
6334 bdevname(rdev->bdev,b),
6335 bdevname(rdev0->bdev,b2));
6336 export_rdev(rdev);
6337 return -EINVAL;
6338 }
6339 }
6340 err = bind_rdev_to_array(rdev, mddev);
6341 if (err)
6342 export_rdev(rdev);
6343 return err;
6344 }
6345
6346 /*
6347 * add_new_disk can be used once the array is assembled
6348 * to add "hot spares". They must already have a superblock
6349 * written
6350 */
6351 if (mddev->pers) {
6352 int err;
6353 if (!mddev->pers->hot_add_disk) {
6354 pr_warn("%s: personality does not support diskops!\n",
6355 mdname(mddev));
6356 return -EINVAL;
6357 }
6358 if (mddev->persistent)
6359 rdev = md_import_device(dev, mddev->major_version,
6360 mddev->minor_version);
6361 else
6362 rdev = md_import_device(dev, -1, -1);
6363 if (IS_ERR(rdev)) {
6364 pr_warn("md: md_import_device returned %ld\n",
6365 PTR_ERR(rdev));
6366 return PTR_ERR(rdev);
6367 }
6368 /* set saved_raid_disk if appropriate */
6369 if (!mddev->persistent) {
6370 if (info->state & (1<<MD_DISK_SYNC) &&
6371 info->raid_disk < mddev->raid_disks) {
6372 rdev->raid_disk = info->raid_disk;
6373 set_bit(In_sync, &rdev->flags);
6374 clear_bit(Bitmap_sync, &rdev->flags);
6375 } else
6376 rdev->raid_disk = -1;
6377 rdev->saved_raid_disk = rdev->raid_disk;
6378 } else
6379 super_types[mddev->major_version].
6380 validate_super(mddev, rdev);
6381 if ((info->state & (1<<MD_DISK_SYNC)) &&
6382 rdev->raid_disk != info->raid_disk) {
6383 /* This was a hot-add request, but events doesn't
6384 * match, so reject it.
6385 */
6386 export_rdev(rdev);
6387 return -EINVAL;
6388 }
6389
6390 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6391 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6392 set_bit(WriteMostly, &rdev->flags);
6393 else
6394 clear_bit(WriteMostly, &rdev->flags);
6395 if (info->state & (1<<MD_DISK_FAILFAST))
6396 set_bit(FailFast, &rdev->flags);
6397 else
6398 clear_bit(FailFast, &rdev->flags);
6399
6400 if (info->state & (1<<MD_DISK_JOURNAL)) {
6401 struct md_rdev *rdev2;
6402 bool has_journal = false;
6403
6404 /* make sure no existing journal disk */
6405 rdev_for_each(rdev2, mddev) {
6406 if (test_bit(Journal, &rdev2->flags)) {
6407 has_journal = true;
6408 break;
6409 }
6410 }
6411 if (has_journal || mddev->bitmap) {
6412 export_rdev(rdev);
6413 return -EBUSY;
6414 }
6415 set_bit(Journal, &rdev->flags);
6416 }
6417 /*
6418 * check whether the device shows up in other nodes
6419 */
6420 if (mddev_is_clustered(mddev)) {
6421 if (info->state & (1 << MD_DISK_CANDIDATE))
6422 set_bit(Candidate, &rdev->flags);
6423 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6424 /* --add initiated by this node */
6425 err = md_cluster_ops->add_new_disk(mddev, rdev);
6426 if (err) {
6427 export_rdev(rdev);
6428 return err;
6429 }
6430 }
6431 }
6432
6433 rdev->raid_disk = -1;
6434 err = bind_rdev_to_array(rdev, mddev);
6435
6436 if (err)
6437 export_rdev(rdev);
6438
6439 if (mddev_is_clustered(mddev)) {
6440 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6441 if (!err) {
6442 err = md_cluster_ops->new_disk_ack(mddev,
6443 err == 0);
6444 if (err)
6445 md_kick_rdev_from_array(rdev);
6446 }
6447 } else {
6448 if (err)
6449 md_cluster_ops->add_new_disk_cancel(mddev);
6450 else
6451 err = add_bound_rdev(rdev);
6452 }
6453
6454 } else if (!err)
6455 err = add_bound_rdev(rdev);
6456
6457 return err;
6458 }
6459
6460 /* otherwise, add_new_disk is only allowed
6461 * for major_version==0 superblocks
6462 */
6463 if (mddev->major_version != 0) {
6464 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6465 return -EINVAL;
6466 }
6467
6468 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6469 int err;
6470 rdev = md_import_device(dev, -1, 0);
6471 if (IS_ERR(rdev)) {
6472 pr_warn("md: error, md_import_device() returned %ld\n",
6473 PTR_ERR(rdev));
6474 return PTR_ERR(rdev);
6475 }
6476 rdev->desc_nr = info->number;
6477 if (info->raid_disk < mddev->raid_disks)
6478 rdev->raid_disk = info->raid_disk;
6479 else
6480 rdev->raid_disk = -1;
6481
6482 if (rdev->raid_disk < mddev->raid_disks)
6483 if (info->state & (1<<MD_DISK_SYNC))
6484 set_bit(In_sync, &rdev->flags);
6485
6486 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6487 set_bit(WriteMostly, &rdev->flags);
6488 if (info->state & (1<<MD_DISK_FAILFAST))
6489 set_bit(FailFast, &rdev->flags);
6490
6491 if (!mddev->persistent) {
6492 pr_debug("md: nonpersistent superblock ...\n");
6493 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6494 } else
6495 rdev->sb_start = calc_dev_sboffset(rdev);
6496 rdev->sectors = rdev->sb_start;
6497
6498 err = bind_rdev_to_array(rdev, mddev);
6499 if (err) {
6500 export_rdev(rdev);
6501 return err;
6502 }
6503 }
6504
6505 return 0;
6506 }
6507
6508 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6509 {
6510 char b[BDEVNAME_SIZE];
6511 struct md_rdev *rdev;
6512
6513 if (!mddev->pers)
6514 return -ENODEV;
6515
6516 rdev = find_rdev(mddev, dev);
6517 if (!rdev)
6518 return -ENXIO;
6519
6520 if (rdev->raid_disk < 0)
6521 goto kick_rdev;
6522
6523 clear_bit(Blocked, &rdev->flags);
6524 remove_and_add_spares(mddev, rdev);
6525
6526 if (rdev->raid_disk >= 0)
6527 goto busy;
6528
6529 kick_rdev:
6530 if (mddev_is_clustered(mddev))
6531 md_cluster_ops->remove_disk(mddev, rdev);
6532
6533 md_kick_rdev_from_array(rdev);
6534 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6535 if (mddev->thread)
6536 md_wakeup_thread(mddev->thread);
6537 else
6538 md_update_sb(mddev, 1);
6539 md_new_event(mddev);
6540
6541 return 0;
6542 busy:
6543 pr_debug("md: cannot remove active disk %s from %s ...\n",
6544 bdevname(rdev->bdev,b), mdname(mddev));
6545 return -EBUSY;
6546 }
6547
6548 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6549 {
6550 char b[BDEVNAME_SIZE];
6551 int err;
6552 struct md_rdev *rdev;
6553
6554 if (!mddev->pers)
6555 return -ENODEV;
6556
6557 if (mddev->major_version != 0) {
6558 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6559 mdname(mddev));
6560 return -EINVAL;
6561 }
6562 if (!mddev->pers->hot_add_disk) {
6563 pr_warn("%s: personality does not support diskops!\n",
6564 mdname(mddev));
6565 return -EINVAL;
6566 }
6567
6568 rdev = md_import_device(dev, -1, 0);
6569 if (IS_ERR(rdev)) {
6570 pr_warn("md: error, md_import_device() returned %ld\n",
6571 PTR_ERR(rdev));
6572 return -EINVAL;
6573 }
6574
6575 if (mddev->persistent)
6576 rdev->sb_start = calc_dev_sboffset(rdev);
6577 else
6578 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6579
6580 rdev->sectors = rdev->sb_start;
6581
6582 if (test_bit(Faulty, &rdev->flags)) {
6583 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6584 bdevname(rdev->bdev,b), mdname(mddev));
6585 err = -EINVAL;
6586 goto abort_export;
6587 }
6588
6589 clear_bit(In_sync, &rdev->flags);
6590 rdev->desc_nr = -1;
6591 rdev->saved_raid_disk = -1;
6592 err = bind_rdev_to_array(rdev, mddev);
6593 if (err)
6594 goto abort_export;
6595
6596 /*
6597 * The rest should better be atomic, we can have disk failures
6598 * noticed in interrupt contexts ...
6599 */
6600
6601 rdev->raid_disk = -1;
6602
6603 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6604 if (!mddev->thread)
6605 md_update_sb(mddev, 1);
6606 /*
6607 * Kick recovery, maybe this spare has to be added to the
6608 * array immediately.
6609 */
6610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6611 md_wakeup_thread(mddev->thread);
6612 md_new_event(mddev);
6613 return 0;
6614
6615 abort_export:
6616 export_rdev(rdev);
6617 return err;
6618 }
6619
6620 static int set_bitmap_file(struct mddev *mddev, int fd)
6621 {
6622 int err = 0;
6623
6624 if (mddev->pers) {
6625 if (!mddev->pers->quiesce || !mddev->thread)
6626 return -EBUSY;
6627 if (mddev->recovery || mddev->sync_thread)
6628 return -EBUSY;
6629 /* we should be able to change the bitmap.. */
6630 }
6631
6632 if (fd >= 0) {
6633 struct inode *inode;
6634 struct file *f;
6635
6636 if (mddev->bitmap || mddev->bitmap_info.file)
6637 return -EEXIST; /* cannot add when bitmap is present */
6638 f = fget(fd);
6639
6640 if (f == NULL) {
6641 pr_warn("%s: error: failed to get bitmap file\n",
6642 mdname(mddev));
6643 return -EBADF;
6644 }
6645
6646 inode = f->f_mapping->host;
6647 if (!S_ISREG(inode->i_mode)) {
6648 pr_warn("%s: error: bitmap file must be a regular file\n",
6649 mdname(mddev));
6650 err = -EBADF;
6651 } else if (!(f->f_mode & FMODE_WRITE)) {
6652 pr_warn("%s: error: bitmap file must open for write\n",
6653 mdname(mddev));
6654 err = -EBADF;
6655 } else if (atomic_read(&inode->i_writecount) != 1) {
6656 pr_warn("%s: error: bitmap file is already in use\n",
6657 mdname(mddev));
6658 err = -EBUSY;
6659 }
6660 if (err) {
6661 fput(f);
6662 return err;
6663 }
6664 mddev->bitmap_info.file = f;
6665 mddev->bitmap_info.offset = 0; /* file overrides offset */
6666 } else if (mddev->bitmap == NULL)
6667 return -ENOENT; /* cannot remove what isn't there */
6668 err = 0;
6669 if (mddev->pers) {
6670 if (fd >= 0) {
6671 struct bitmap *bitmap;
6672
6673 bitmap = md_bitmap_create(mddev, -1);
6674 mddev_suspend(mddev);
6675 if (!IS_ERR(bitmap)) {
6676 mddev->bitmap = bitmap;
6677 err = md_bitmap_load(mddev);
6678 } else
6679 err = PTR_ERR(bitmap);
6680 if (err) {
6681 md_bitmap_destroy(mddev);
6682 fd = -1;
6683 }
6684 mddev_resume(mddev);
6685 } else if (fd < 0) {
6686 mddev_suspend(mddev);
6687 md_bitmap_destroy(mddev);
6688 mddev_resume(mddev);
6689 }
6690 }
6691 if (fd < 0) {
6692 struct file *f = mddev->bitmap_info.file;
6693 if (f) {
6694 spin_lock(&mddev->lock);
6695 mddev->bitmap_info.file = NULL;
6696 spin_unlock(&mddev->lock);
6697 fput(f);
6698 }
6699 }
6700
6701 return err;
6702 }
6703
6704 /*
6705 * set_array_info is used two different ways
6706 * The original usage is when creating a new array.
6707 * In this usage, raid_disks is > 0 and it together with
6708 * level, size, not_persistent,layout,chunksize determine the
6709 * shape of the array.
6710 * This will always create an array with a type-0.90.0 superblock.
6711 * The newer usage is when assembling an array.
6712 * In this case raid_disks will be 0, and the major_version field is
6713 * use to determine which style super-blocks are to be found on the devices.
6714 * The minor and patch _version numbers are also kept incase the
6715 * super_block handler wishes to interpret them.
6716 */
6717 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6718 {
6719
6720 if (info->raid_disks == 0) {
6721 /* just setting version number for superblock loading */
6722 if (info->major_version < 0 ||
6723 info->major_version >= ARRAY_SIZE(super_types) ||
6724 super_types[info->major_version].name == NULL) {
6725 /* maybe try to auto-load a module? */
6726 pr_warn("md: superblock version %d not known\n",
6727 info->major_version);
6728 return -EINVAL;
6729 }
6730 mddev->major_version = info->major_version;
6731 mddev->minor_version = info->minor_version;
6732 mddev->patch_version = info->patch_version;
6733 mddev->persistent = !info->not_persistent;
6734 /* ensure mddev_put doesn't delete this now that there
6735 * is some minimal configuration.
6736 */
6737 mddev->ctime = ktime_get_real_seconds();
6738 return 0;
6739 }
6740 mddev->major_version = MD_MAJOR_VERSION;
6741 mddev->minor_version = MD_MINOR_VERSION;
6742 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6743 mddev->ctime = ktime_get_real_seconds();
6744
6745 mddev->level = info->level;
6746 mddev->clevel[0] = 0;
6747 mddev->dev_sectors = 2 * (sector_t)info->size;
6748 mddev->raid_disks = info->raid_disks;
6749 /* don't set md_minor, it is determined by which /dev/md* was
6750 * openned
6751 */
6752 if (info->state & (1<<MD_SB_CLEAN))
6753 mddev->recovery_cp = MaxSector;
6754 else
6755 mddev->recovery_cp = 0;
6756 mddev->persistent = ! info->not_persistent;
6757 mddev->external = 0;
6758
6759 mddev->layout = info->layout;
6760 mddev->chunk_sectors = info->chunk_size >> 9;
6761
6762 if (mddev->persistent) {
6763 mddev->max_disks = MD_SB_DISKS;
6764 mddev->flags = 0;
6765 mddev->sb_flags = 0;
6766 }
6767 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6768
6769 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6770 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6771 mddev->bitmap_info.offset = 0;
6772
6773 mddev->reshape_position = MaxSector;
6774
6775 /*
6776 * Generate a 128 bit UUID
6777 */
6778 get_random_bytes(mddev->uuid, 16);
6779
6780 mddev->new_level = mddev->level;
6781 mddev->new_chunk_sectors = mddev->chunk_sectors;
6782 mddev->new_layout = mddev->layout;
6783 mddev->delta_disks = 0;
6784 mddev->reshape_backwards = 0;
6785
6786 return 0;
6787 }
6788
6789 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6790 {
6791 lockdep_assert_held(&mddev->reconfig_mutex);
6792
6793 if (mddev->external_size)
6794 return;
6795
6796 mddev->array_sectors = array_sectors;
6797 }
6798 EXPORT_SYMBOL(md_set_array_sectors);
6799
6800 static int update_size(struct mddev *mddev, sector_t num_sectors)
6801 {
6802 struct md_rdev *rdev;
6803 int rv;
6804 int fit = (num_sectors == 0);
6805 sector_t old_dev_sectors = mddev->dev_sectors;
6806
6807 if (mddev->pers->resize == NULL)
6808 return -EINVAL;
6809 /* The "num_sectors" is the number of sectors of each device that
6810 * is used. This can only make sense for arrays with redundancy.
6811 * linear and raid0 always use whatever space is available. We can only
6812 * consider changing this number if no resync or reconstruction is
6813 * happening, and if the new size is acceptable. It must fit before the
6814 * sb_start or, if that is <data_offset, it must fit before the size
6815 * of each device. If num_sectors is zero, we find the largest size
6816 * that fits.
6817 */
6818 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6819 mddev->sync_thread)
6820 return -EBUSY;
6821 if (mddev->ro)
6822 return -EROFS;
6823
6824 rdev_for_each(rdev, mddev) {
6825 sector_t avail = rdev->sectors;
6826
6827 if (fit && (num_sectors == 0 || num_sectors > avail))
6828 num_sectors = avail;
6829 if (avail < num_sectors)
6830 return -ENOSPC;
6831 }
6832 rv = mddev->pers->resize(mddev, num_sectors);
6833 if (!rv) {
6834 if (mddev_is_clustered(mddev))
6835 md_cluster_ops->update_size(mddev, old_dev_sectors);
6836 else if (mddev->queue) {
6837 set_capacity(mddev->gendisk, mddev->array_sectors);
6838 revalidate_disk(mddev->gendisk);
6839 }
6840 }
6841 return rv;
6842 }
6843
6844 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6845 {
6846 int rv;
6847 struct md_rdev *rdev;
6848 /* change the number of raid disks */
6849 if (mddev->pers->check_reshape == NULL)
6850 return -EINVAL;
6851 if (mddev->ro)
6852 return -EROFS;
6853 if (raid_disks <= 0 ||
6854 (mddev->max_disks && raid_disks >= mddev->max_disks))
6855 return -EINVAL;
6856 if (mddev->sync_thread ||
6857 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6858 mddev->reshape_position != MaxSector)
6859 return -EBUSY;
6860
6861 rdev_for_each(rdev, mddev) {
6862 if (mddev->raid_disks < raid_disks &&
6863 rdev->data_offset < rdev->new_data_offset)
6864 return -EINVAL;
6865 if (mddev->raid_disks > raid_disks &&
6866 rdev->data_offset > rdev->new_data_offset)
6867 return -EINVAL;
6868 }
6869
6870 mddev->delta_disks = raid_disks - mddev->raid_disks;
6871 if (mddev->delta_disks < 0)
6872 mddev->reshape_backwards = 1;
6873 else if (mddev->delta_disks > 0)
6874 mddev->reshape_backwards = 0;
6875
6876 rv = mddev->pers->check_reshape(mddev);
6877 if (rv < 0) {
6878 mddev->delta_disks = 0;
6879 mddev->reshape_backwards = 0;
6880 }
6881 return rv;
6882 }
6883
6884 /*
6885 * update_array_info is used to change the configuration of an
6886 * on-line array.
6887 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6888 * fields in the info are checked against the array.
6889 * Any differences that cannot be handled will cause an error.
6890 * Normally, only one change can be managed at a time.
6891 */
6892 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6893 {
6894 int rv = 0;
6895 int cnt = 0;
6896 int state = 0;
6897
6898 /* calculate expected state,ignoring low bits */
6899 if (mddev->bitmap && mddev->bitmap_info.offset)
6900 state |= (1 << MD_SB_BITMAP_PRESENT);
6901
6902 if (mddev->major_version != info->major_version ||
6903 mddev->minor_version != info->minor_version ||
6904 /* mddev->patch_version != info->patch_version || */
6905 mddev->ctime != info->ctime ||
6906 mddev->level != info->level ||
6907 /* mddev->layout != info->layout || */
6908 mddev->persistent != !info->not_persistent ||
6909 mddev->chunk_sectors != info->chunk_size >> 9 ||
6910 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6911 ((state^info->state) & 0xfffffe00)
6912 )
6913 return -EINVAL;
6914 /* Check there is only one change */
6915 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6916 cnt++;
6917 if (mddev->raid_disks != info->raid_disks)
6918 cnt++;
6919 if (mddev->layout != info->layout)
6920 cnt++;
6921 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6922 cnt++;
6923 if (cnt == 0)
6924 return 0;
6925 if (cnt > 1)
6926 return -EINVAL;
6927
6928 if (mddev->layout != info->layout) {
6929 /* Change layout
6930 * we don't need to do anything at the md level, the
6931 * personality will take care of it all.
6932 */
6933 if (mddev->pers->check_reshape == NULL)
6934 return -EINVAL;
6935 else {
6936 mddev->new_layout = info->layout;
6937 rv = mddev->pers->check_reshape(mddev);
6938 if (rv)
6939 mddev->new_layout = mddev->layout;
6940 return rv;
6941 }
6942 }
6943 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6944 rv = update_size(mddev, (sector_t)info->size * 2);
6945
6946 if (mddev->raid_disks != info->raid_disks)
6947 rv = update_raid_disks(mddev, info->raid_disks);
6948
6949 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6950 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6951 rv = -EINVAL;
6952 goto err;
6953 }
6954 if (mddev->recovery || mddev->sync_thread) {
6955 rv = -EBUSY;
6956 goto err;
6957 }
6958 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6959 struct bitmap *bitmap;
6960 /* add the bitmap */
6961 if (mddev->bitmap) {
6962 rv = -EEXIST;
6963 goto err;
6964 }
6965 if (mddev->bitmap_info.default_offset == 0) {
6966 rv = -EINVAL;
6967 goto err;
6968 }
6969 mddev->bitmap_info.offset =
6970 mddev->bitmap_info.default_offset;
6971 mddev->bitmap_info.space =
6972 mddev->bitmap_info.default_space;
6973 bitmap = md_bitmap_create(mddev, -1);
6974 mddev_suspend(mddev);
6975 if (!IS_ERR(bitmap)) {
6976 mddev->bitmap = bitmap;
6977 rv = md_bitmap_load(mddev);
6978 } else
6979 rv = PTR_ERR(bitmap);
6980 if (rv)
6981 md_bitmap_destroy(mddev);
6982 mddev_resume(mddev);
6983 } else {
6984 /* remove the bitmap */
6985 if (!mddev->bitmap) {
6986 rv = -ENOENT;
6987 goto err;
6988 }
6989 if (mddev->bitmap->storage.file) {
6990 rv = -EINVAL;
6991 goto err;
6992 }
6993 if (mddev->bitmap_info.nodes) {
6994 /* hold PW on all the bitmap lock */
6995 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6996 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
6997 rv = -EPERM;
6998 md_cluster_ops->unlock_all_bitmaps(mddev);
6999 goto err;
7000 }
7001
7002 mddev->bitmap_info.nodes = 0;
7003 md_cluster_ops->leave(mddev);
7004 }
7005 mddev_suspend(mddev);
7006 md_bitmap_destroy(mddev);
7007 mddev_resume(mddev);
7008 mddev->bitmap_info.offset = 0;
7009 }
7010 }
7011 md_update_sb(mddev, 1);
7012 return rv;
7013 err:
7014 return rv;
7015 }
7016
7017 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7018 {
7019 struct md_rdev *rdev;
7020 int err = 0;
7021
7022 if (mddev->pers == NULL)
7023 return -ENODEV;
7024
7025 rcu_read_lock();
7026 rdev = md_find_rdev_rcu(mddev, dev);
7027 if (!rdev)
7028 err = -ENODEV;
7029 else {
7030 md_error(mddev, rdev);
7031 if (!test_bit(Faulty, &rdev->flags))
7032 err = -EBUSY;
7033 }
7034 rcu_read_unlock();
7035 return err;
7036 }
7037
7038 /*
7039 * We have a problem here : there is no easy way to give a CHS
7040 * virtual geometry. We currently pretend that we have a 2 heads
7041 * 4 sectors (with a BIG number of cylinders...). This drives
7042 * dosfs just mad... ;-)
7043 */
7044 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7045 {
7046 struct mddev *mddev = bdev->bd_disk->private_data;
7047
7048 geo->heads = 2;
7049 geo->sectors = 4;
7050 geo->cylinders = mddev->array_sectors / 8;
7051 return 0;
7052 }
7053
7054 static inline bool md_ioctl_valid(unsigned int cmd)
7055 {
7056 switch (cmd) {
7057 case ADD_NEW_DISK:
7058 case BLKROSET:
7059 case GET_ARRAY_INFO:
7060 case GET_BITMAP_FILE:
7061 case GET_DISK_INFO:
7062 case HOT_ADD_DISK:
7063 case HOT_REMOVE_DISK:
7064 case RAID_AUTORUN:
7065 case RAID_VERSION:
7066 case RESTART_ARRAY_RW:
7067 case RUN_ARRAY:
7068 case SET_ARRAY_INFO:
7069 case SET_BITMAP_FILE:
7070 case SET_DISK_FAULTY:
7071 case STOP_ARRAY:
7072 case STOP_ARRAY_RO:
7073 case CLUSTERED_DISK_NACK:
7074 return true;
7075 default:
7076 return false;
7077 }
7078 }
7079
7080 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7081 unsigned int cmd, unsigned long arg)
7082 {
7083 int err = 0;
7084 void __user *argp = (void __user *)arg;
7085 struct mddev *mddev = NULL;
7086 int ro;
7087 bool did_set_md_closing = false;
7088
7089 if (!md_ioctl_valid(cmd))
7090 return -ENOTTY;
7091
7092 switch (cmd) {
7093 case RAID_VERSION:
7094 case GET_ARRAY_INFO:
7095 case GET_DISK_INFO:
7096 break;
7097 default:
7098 if (!capable(CAP_SYS_ADMIN))
7099 return -EACCES;
7100 }
7101
7102 /*
7103 * Commands dealing with the RAID driver but not any
7104 * particular array:
7105 */
7106 switch (cmd) {
7107 case RAID_VERSION:
7108 err = get_version(argp);
7109 goto out;
7110
7111 #ifndef MODULE
7112 case RAID_AUTORUN:
7113 err = 0;
7114 autostart_arrays(arg);
7115 goto out;
7116 #endif
7117 default:;
7118 }
7119
7120 /*
7121 * Commands creating/starting a new array:
7122 */
7123
7124 mddev = bdev->bd_disk->private_data;
7125
7126 if (!mddev) {
7127 BUG();
7128 goto out;
7129 }
7130
7131 /* Some actions do not requires the mutex */
7132 switch (cmd) {
7133 case GET_ARRAY_INFO:
7134 if (!mddev->raid_disks && !mddev->external)
7135 err = -ENODEV;
7136 else
7137 err = get_array_info(mddev, argp);
7138 goto out;
7139
7140 case GET_DISK_INFO:
7141 if (!mddev->raid_disks && !mddev->external)
7142 err = -ENODEV;
7143 else
7144 err = get_disk_info(mddev, argp);
7145 goto out;
7146
7147 case SET_DISK_FAULTY:
7148 err = set_disk_faulty(mddev, new_decode_dev(arg));
7149 goto out;
7150
7151 case GET_BITMAP_FILE:
7152 err = get_bitmap_file(mddev, argp);
7153 goto out;
7154
7155 }
7156
7157 if (cmd == ADD_NEW_DISK)
7158 /* need to ensure md_delayed_delete() has completed */
7159 flush_workqueue(md_misc_wq);
7160
7161 if (cmd == HOT_REMOVE_DISK)
7162 /* need to ensure recovery thread has run */
7163 wait_event_interruptible_timeout(mddev->sb_wait,
7164 !test_bit(MD_RECOVERY_NEEDED,
7165 &mddev->recovery),
7166 msecs_to_jiffies(5000));
7167 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7168 /* Need to flush page cache, and ensure no-one else opens
7169 * and writes
7170 */
7171 mutex_lock(&mddev->open_mutex);
7172 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7173 mutex_unlock(&mddev->open_mutex);
7174 err = -EBUSY;
7175 goto out;
7176 }
7177 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7178 set_bit(MD_CLOSING, &mddev->flags);
7179 did_set_md_closing = true;
7180 mutex_unlock(&mddev->open_mutex);
7181 sync_blockdev(bdev);
7182 }
7183 err = mddev_lock(mddev);
7184 if (err) {
7185 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7186 err, cmd);
7187 goto out;
7188 }
7189
7190 if (cmd == SET_ARRAY_INFO) {
7191 mdu_array_info_t info;
7192 if (!arg)
7193 memset(&info, 0, sizeof(info));
7194 else if (copy_from_user(&info, argp, sizeof(info))) {
7195 err = -EFAULT;
7196 goto unlock;
7197 }
7198 if (mddev->pers) {
7199 err = update_array_info(mddev, &info);
7200 if (err) {
7201 pr_warn("md: couldn't update array info. %d\n", err);
7202 goto unlock;
7203 }
7204 goto unlock;
7205 }
7206 if (!list_empty(&mddev->disks)) {
7207 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7208 err = -EBUSY;
7209 goto unlock;
7210 }
7211 if (mddev->raid_disks) {
7212 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7213 err = -EBUSY;
7214 goto unlock;
7215 }
7216 err = set_array_info(mddev, &info);
7217 if (err) {
7218 pr_warn("md: couldn't set array info. %d\n", err);
7219 goto unlock;
7220 }
7221 goto unlock;
7222 }
7223
7224 /*
7225 * Commands querying/configuring an existing array:
7226 */
7227 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7228 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7229 if ((!mddev->raid_disks && !mddev->external)
7230 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7231 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7232 && cmd != GET_BITMAP_FILE) {
7233 err = -ENODEV;
7234 goto unlock;
7235 }
7236
7237 /*
7238 * Commands even a read-only array can execute:
7239 */
7240 switch (cmd) {
7241 case RESTART_ARRAY_RW:
7242 err = restart_array(mddev);
7243 goto unlock;
7244
7245 case STOP_ARRAY:
7246 err = do_md_stop(mddev, 0, bdev);
7247 goto unlock;
7248
7249 case STOP_ARRAY_RO:
7250 err = md_set_readonly(mddev, bdev);
7251 goto unlock;
7252
7253 case HOT_REMOVE_DISK:
7254 err = hot_remove_disk(mddev, new_decode_dev(arg));
7255 goto unlock;
7256
7257 case ADD_NEW_DISK:
7258 /* We can support ADD_NEW_DISK on read-only arrays
7259 * only if we are re-adding a preexisting device.
7260 * So require mddev->pers and MD_DISK_SYNC.
7261 */
7262 if (mddev->pers) {
7263 mdu_disk_info_t info;
7264 if (copy_from_user(&info, argp, sizeof(info)))
7265 err = -EFAULT;
7266 else if (!(info.state & (1<<MD_DISK_SYNC)))
7267 /* Need to clear read-only for this */
7268 break;
7269 else
7270 err = add_new_disk(mddev, &info);
7271 goto unlock;
7272 }
7273 break;
7274
7275 case BLKROSET:
7276 if (get_user(ro, (int __user *)(arg))) {
7277 err = -EFAULT;
7278 goto unlock;
7279 }
7280 err = -EINVAL;
7281
7282 /* if the bdev is going readonly the value of mddev->ro
7283 * does not matter, no writes are coming
7284 */
7285 if (ro)
7286 goto unlock;
7287
7288 /* are we are already prepared for writes? */
7289 if (mddev->ro != 1)
7290 goto unlock;
7291
7292 /* transitioning to readauto need only happen for
7293 * arrays that call md_write_start
7294 */
7295 if (mddev->pers) {
7296 err = restart_array(mddev);
7297 if (err == 0) {
7298 mddev->ro = 2;
7299 set_disk_ro(mddev->gendisk, 0);
7300 }
7301 }
7302 goto unlock;
7303 }
7304
7305 /*
7306 * The remaining ioctls are changing the state of the
7307 * superblock, so we do not allow them on read-only arrays.
7308 */
7309 if (mddev->ro && mddev->pers) {
7310 if (mddev->ro == 2) {
7311 mddev->ro = 0;
7312 sysfs_notify_dirent_safe(mddev->sysfs_state);
7313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7314 /* mddev_unlock will wake thread */
7315 /* If a device failed while we were read-only, we
7316 * need to make sure the metadata is updated now.
7317 */
7318 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7319 mddev_unlock(mddev);
7320 wait_event(mddev->sb_wait,
7321 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7322 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7323 mddev_lock_nointr(mddev);
7324 }
7325 } else {
7326 err = -EROFS;
7327 goto unlock;
7328 }
7329 }
7330
7331 switch (cmd) {
7332 case ADD_NEW_DISK:
7333 {
7334 mdu_disk_info_t info;
7335 if (copy_from_user(&info, argp, sizeof(info)))
7336 err = -EFAULT;
7337 else
7338 err = add_new_disk(mddev, &info);
7339 goto unlock;
7340 }
7341
7342 case CLUSTERED_DISK_NACK:
7343 if (mddev_is_clustered(mddev))
7344 md_cluster_ops->new_disk_ack(mddev, false);
7345 else
7346 err = -EINVAL;
7347 goto unlock;
7348
7349 case HOT_ADD_DISK:
7350 err = hot_add_disk(mddev, new_decode_dev(arg));
7351 goto unlock;
7352
7353 case RUN_ARRAY:
7354 err = do_md_run(mddev);
7355 goto unlock;
7356
7357 case SET_BITMAP_FILE:
7358 err = set_bitmap_file(mddev, (int)arg);
7359 goto unlock;
7360
7361 default:
7362 err = -EINVAL;
7363 goto unlock;
7364 }
7365
7366 unlock:
7367 if (mddev->hold_active == UNTIL_IOCTL &&
7368 err != -EINVAL)
7369 mddev->hold_active = 0;
7370 mddev_unlock(mddev);
7371 out:
7372 if(did_set_md_closing)
7373 clear_bit(MD_CLOSING, &mddev->flags);
7374 return err;
7375 }
7376 #ifdef CONFIG_COMPAT
7377 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7378 unsigned int cmd, unsigned long arg)
7379 {
7380 switch (cmd) {
7381 case HOT_REMOVE_DISK:
7382 case HOT_ADD_DISK:
7383 case SET_DISK_FAULTY:
7384 case SET_BITMAP_FILE:
7385 /* These take in integer arg, do not convert */
7386 break;
7387 default:
7388 arg = (unsigned long)compat_ptr(arg);
7389 break;
7390 }
7391
7392 return md_ioctl(bdev, mode, cmd, arg);
7393 }
7394 #endif /* CONFIG_COMPAT */
7395
7396 static int md_open(struct block_device *bdev, fmode_t mode)
7397 {
7398 /*
7399 * Succeed if we can lock the mddev, which confirms that
7400 * it isn't being stopped right now.
7401 */
7402 struct mddev *mddev = mddev_find(bdev->bd_dev);
7403 int err;
7404
7405 if (!mddev)
7406 return -ENODEV;
7407
7408 if (mddev->gendisk != bdev->bd_disk) {
7409 /* we are racing with mddev_put which is discarding this
7410 * bd_disk.
7411 */
7412 mddev_put(mddev);
7413 /* Wait until bdev->bd_disk is definitely gone */
7414 flush_workqueue(md_misc_wq);
7415 /* Then retry the open from the top */
7416 return -ERESTARTSYS;
7417 }
7418 BUG_ON(mddev != bdev->bd_disk->private_data);
7419
7420 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7421 goto out;
7422
7423 if (test_bit(MD_CLOSING, &mddev->flags)) {
7424 mutex_unlock(&mddev->open_mutex);
7425 err = -ENODEV;
7426 goto out;
7427 }
7428
7429 err = 0;
7430 atomic_inc(&mddev->openers);
7431 mutex_unlock(&mddev->open_mutex);
7432
7433 check_disk_change(bdev);
7434 out:
7435 if (err)
7436 mddev_put(mddev);
7437 return err;
7438 }
7439
7440 static void md_release(struct gendisk *disk, fmode_t mode)
7441 {
7442 struct mddev *mddev = disk->private_data;
7443
7444 BUG_ON(!mddev);
7445 atomic_dec(&mddev->openers);
7446 mddev_put(mddev);
7447 }
7448
7449 static int md_media_changed(struct gendisk *disk)
7450 {
7451 struct mddev *mddev = disk->private_data;
7452
7453 return mddev->changed;
7454 }
7455
7456 static int md_revalidate(struct gendisk *disk)
7457 {
7458 struct mddev *mddev = disk->private_data;
7459
7460 mddev->changed = 0;
7461 return 0;
7462 }
7463 static const struct block_device_operations md_fops =
7464 {
7465 .owner = THIS_MODULE,
7466 .open = md_open,
7467 .release = md_release,
7468 .ioctl = md_ioctl,
7469 #ifdef CONFIG_COMPAT
7470 .compat_ioctl = md_compat_ioctl,
7471 #endif
7472 .getgeo = md_getgeo,
7473 .media_changed = md_media_changed,
7474 .revalidate_disk= md_revalidate,
7475 };
7476
7477 static int md_thread(void *arg)
7478 {
7479 struct md_thread *thread = arg;
7480
7481 /*
7482 * md_thread is a 'system-thread', it's priority should be very
7483 * high. We avoid resource deadlocks individually in each
7484 * raid personality. (RAID5 does preallocation) We also use RR and
7485 * the very same RT priority as kswapd, thus we will never get
7486 * into a priority inversion deadlock.
7487 *
7488 * we definitely have to have equal or higher priority than
7489 * bdflush, otherwise bdflush will deadlock if there are too
7490 * many dirty RAID5 blocks.
7491 */
7492
7493 allow_signal(SIGKILL);
7494 while (!kthread_should_stop()) {
7495
7496 /* We need to wait INTERRUPTIBLE so that
7497 * we don't add to the load-average.
7498 * That means we need to be sure no signals are
7499 * pending
7500 */
7501 if (signal_pending(current))
7502 flush_signals(current);
7503
7504 wait_event_interruptible_timeout
7505 (thread->wqueue,
7506 test_bit(THREAD_WAKEUP, &thread->flags)
7507 || kthread_should_stop() || kthread_should_park(),
7508 thread->timeout);
7509
7510 clear_bit(THREAD_WAKEUP, &thread->flags);
7511 if (kthread_should_park())
7512 kthread_parkme();
7513 if (!kthread_should_stop())
7514 thread->run(thread);
7515 }
7516
7517 return 0;
7518 }
7519
7520 void md_wakeup_thread(struct md_thread *thread)
7521 {
7522 if (thread) {
7523 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7524 set_bit(THREAD_WAKEUP, &thread->flags);
7525 wake_up(&thread->wqueue);
7526 }
7527 }
7528 EXPORT_SYMBOL(md_wakeup_thread);
7529
7530 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7531 struct mddev *mddev, const char *name)
7532 {
7533 struct md_thread *thread;
7534
7535 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7536 if (!thread)
7537 return NULL;
7538
7539 init_waitqueue_head(&thread->wqueue);
7540
7541 thread->run = run;
7542 thread->mddev = mddev;
7543 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7544 thread->tsk = kthread_run(md_thread, thread,
7545 "%s_%s",
7546 mdname(thread->mddev),
7547 name);
7548 if (IS_ERR(thread->tsk)) {
7549 kfree(thread);
7550 return NULL;
7551 }
7552 return thread;
7553 }
7554 EXPORT_SYMBOL(md_register_thread);
7555
7556 void md_unregister_thread(struct md_thread **threadp)
7557 {
7558 struct md_thread *thread = *threadp;
7559 if (!thread)
7560 return;
7561 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7562 /* Locking ensures that mddev_unlock does not wake_up a
7563 * non-existent thread
7564 */
7565 spin_lock(&pers_lock);
7566 *threadp = NULL;
7567 spin_unlock(&pers_lock);
7568
7569 kthread_stop(thread->tsk);
7570 kfree(thread);
7571 }
7572 EXPORT_SYMBOL(md_unregister_thread);
7573
7574 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7575 {
7576 if (!rdev || test_bit(Faulty, &rdev->flags))
7577 return;
7578
7579 if (!mddev->pers || !mddev->pers->error_handler)
7580 return;
7581 mddev->pers->error_handler(mddev,rdev);
7582 if (mddev->degraded)
7583 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7584 sysfs_notify_dirent_safe(rdev->sysfs_state);
7585 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7587 md_wakeup_thread(mddev->thread);
7588 if (mddev->event_work.func)
7589 queue_work(md_misc_wq, &mddev->event_work);
7590 md_new_event(mddev);
7591 }
7592 EXPORT_SYMBOL(md_error);
7593
7594 /* seq_file implementation /proc/mdstat */
7595
7596 static void status_unused(struct seq_file *seq)
7597 {
7598 int i = 0;
7599 struct md_rdev *rdev;
7600
7601 seq_printf(seq, "unused devices: ");
7602
7603 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7604 char b[BDEVNAME_SIZE];
7605 i++;
7606 seq_printf(seq, "%s ",
7607 bdevname(rdev->bdev,b));
7608 }
7609 if (!i)
7610 seq_printf(seq, "<none>");
7611
7612 seq_printf(seq, "\n");
7613 }
7614
7615 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7616 {
7617 sector_t max_sectors, resync, res;
7618 unsigned long dt, db;
7619 sector_t rt;
7620 int scale;
7621 unsigned int per_milli;
7622
7623 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7624 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7625 max_sectors = mddev->resync_max_sectors;
7626 else
7627 max_sectors = mddev->dev_sectors;
7628
7629 resync = mddev->curr_resync;
7630 if (resync <= 3) {
7631 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7632 /* Still cleaning up */
7633 resync = max_sectors;
7634 } else if (resync > max_sectors)
7635 resync = max_sectors;
7636 else
7637 resync -= atomic_read(&mddev->recovery_active);
7638
7639 if (resync == 0) {
7640 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
7641 struct md_rdev *rdev;
7642
7643 rdev_for_each(rdev, mddev)
7644 if (rdev->raid_disk >= 0 &&
7645 !test_bit(Faulty, &rdev->flags) &&
7646 rdev->recovery_offset != MaxSector &&
7647 rdev->recovery_offset) {
7648 seq_printf(seq, "\trecover=REMOTE");
7649 return 1;
7650 }
7651 if (mddev->reshape_position != MaxSector)
7652 seq_printf(seq, "\treshape=REMOTE");
7653 else
7654 seq_printf(seq, "\tresync=REMOTE");
7655 return 1;
7656 }
7657 if (mddev->recovery_cp < MaxSector) {
7658 seq_printf(seq, "\tresync=PENDING");
7659 return 1;
7660 }
7661 return 0;
7662 }
7663 if (resync < 3) {
7664 seq_printf(seq, "\tresync=DELAYED");
7665 return 1;
7666 }
7667
7668 WARN_ON(max_sectors == 0);
7669 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7670 * in a sector_t, and (max_sectors>>scale) will fit in a
7671 * u32, as those are the requirements for sector_div.
7672 * Thus 'scale' must be at least 10
7673 */
7674 scale = 10;
7675 if (sizeof(sector_t) > sizeof(unsigned long)) {
7676 while ( max_sectors/2 > (1ULL<<(scale+32)))
7677 scale++;
7678 }
7679 res = (resync>>scale)*1000;
7680 sector_div(res, (u32)((max_sectors>>scale)+1));
7681
7682 per_milli = res;
7683 {
7684 int i, x = per_milli/50, y = 20-x;
7685 seq_printf(seq, "[");
7686 for (i = 0; i < x; i++)
7687 seq_printf(seq, "=");
7688 seq_printf(seq, ">");
7689 for (i = 0; i < y; i++)
7690 seq_printf(seq, ".");
7691 seq_printf(seq, "] ");
7692 }
7693 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7694 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7695 "reshape" :
7696 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7697 "check" :
7698 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7699 "resync" : "recovery"))),
7700 per_milli/10, per_milli % 10,
7701 (unsigned long long) resync/2,
7702 (unsigned long long) max_sectors/2);
7703
7704 /*
7705 * dt: time from mark until now
7706 * db: blocks written from mark until now
7707 * rt: remaining time
7708 *
7709 * rt is a sector_t, so could be 32bit or 64bit.
7710 * So we divide before multiply in case it is 32bit and close
7711 * to the limit.
7712 * We scale the divisor (db) by 32 to avoid losing precision
7713 * near the end of resync when the number of remaining sectors
7714 * is close to 'db'.
7715 * We then divide rt by 32 after multiplying by db to compensate.
7716 * The '+1' avoids division by zero if db is very small.
7717 */
7718 dt = ((jiffies - mddev->resync_mark) / HZ);
7719 if (!dt) dt++;
7720 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7721 - mddev->resync_mark_cnt;
7722
7723 rt = max_sectors - resync; /* number of remaining sectors */
7724 sector_div(rt, db/32+1);
7725 rt *= dt;
7726 rt >>= 5;
7727
7728 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7729 ((unsigned long)rt % 60)/6);
7730
7731 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7732 return 1;
7733 }
7734
7735 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7736 {
7737 struct list_head *tmp;
7738 loff_t l = *pos;
7739 struct mddev *mddev;
7740
7741 if (l >= 0x10000)
7742 return NULL;
7743 if (!l--)
7744 /* header */
7745 return (void*)1;
7746
7747 spin_lock(&all_mddevs_lock);
7748 list_for_each(tmp,&all_mddevs)
7749 if (!l--) {
7750 mddev = list_entry(tmp, struct mddev, all_mddevs);
7751 mddev_get(mddev);
7752 spin_unlock(&all_mddevs_lock);
7753 return mddev;
7754 }
7755 spin_unlock(&all_mddevs_lock);
7756 if (!l--)
7757 return (void*)2;/* tail */
7758 return NULL;
7759 }
7760
7761 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7762 {
7763 struct list_head *tmp;
7764 struct mddev *next_mddev, *mddev = v;
7765
7766 ++*pos;
7767 if (v == (void*)2)
7768 return NULL;
7769
7770 spin_lock(&all_mddevs_lock);
7771 if (v == (void*)1)
7772 tmp = all_mddevs.next;
7773 else
7774 tmp = mddev->all_mddevs.next;
7775 if (tmp != &all_mddevs)
7776 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7777 else {
7778 next_mddev = (void*)2;
7779 *pos = 0x10000;
7780 }
7781 spin_unlock(&all_mddevs_lock);
7782
7783 if (v != (void*)1)
7784 mddev_put(mddev);
7785 return next_mddev;
7786
7787 }
7788
7789 static void md_seq_stop(struct seq_file *seq, void *v)
7790 {
7791 struct mddev *mddev = v;
7792
7793 if (mddev && v != (void*)1 && v != (void*)2)
7794 mddev_put(mddev);
7795 }
7796
7797 static int md_seq_show(struct seq_file *seq, void *v)
7798 {
7799 struct mddev *mddev = v;
7800 sector_t sectors;
7801 struct md_rdev *rdev;
7802
7803 if (v == (void*)1) {
7804 struct md_personality *pers;
7805 seq_printf(seq, "Personalities : ");
7806 spin_lock(&pers_lock);
7807 list_for_each_entry(pers, &pers_list, list)
7808 seq_printf(seq, "[%s] ", pers->name);
7809
7810 spin_unlock(&pers_lock);
7811 seq_printf(seq, "\n");
7812 seq->poll_event = atomic_read(&md_event_count);
7813 return 0;
7814 }
7815 if (v == (void*)2) {
7816 status_unused(seq);
7817 return 0;
7818 }
7819
7820 spin_lock(&mddev->lock);
7821 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7822 seq_printf(seq, "%s : %sactive", mdname(mddev),
7823 mddev->pers ? "" : "in");
7824 if (mddev->pers) {
7825 if (mddev->ro==1)
7826 seq_printf(seq, " (read-only)");
7827 if (mddev->ro==2)
7828 seq_printf(seq, " (auto-read-only)");
7829 seq_printf(seq, " %s", mddev->pers->name);
7830 }
7831
7832 sectors = 0;
7833 rcu_read_lock();
7834 rdev_for_each_rcu(rdev, mddev) {
7835 char b[BDEVNAME_SIZE];
7836 seq_printf(seq, " %s[%d]",
7837 bdevname(rdev->bdev,b), rdev->desc_nr);
7838 if (test_bit(WriteMostly, &rdev->flags))
7839 seq_printf(seq, "(W)");
7840 if (test_bit(Journal, &rdev->flags))
7841 seq_printf(seq, "(J)");
7842 if (test_bit(Faulty, &rdev->flags)) {
7843 seq_printf(seq, "(F)");
7844 continue;
7845 }
7846 if (rdev->raid_disk < 0)
7847 seq_printf(seq, "(S)"); /* spare */
7848 if (test_bit(Replacement, &rdev->flags))
7849 seq_printf(seq, "(R)");
7850 sectors += rdev->sectors;
7851 }
7852 rcu_read_unlock();
7853
7854 if (!list_empty(&mddev->disks)) {
7855 if (mddev->pers)
7856 seq_printf(seq, "\n %llu blocks",
7857 (unsigned long long)
7858 mddev->array_sectors / 2);
7859 else
7860 seq_printf(seq, "\n %llu blocks",
7861 (unsigned long long)sectors / 2);
7862 }
7863 if (mddev->persistent) {
7864 if (mddev->major_version != 0 ||
7865 mddev->minor_version != 90) {
7866 seq_printf(seq," super %d.%d",
7867 mddev->major_version,
7868 mddev->minor_version);
7869 }
7870 } else if (mddev->external)
7871 seq_printf(seq, " super external:%s",
7872 mddev->metadata_type);
7873 else
7874 seq_printf(seq, " super non-persistent");
7875
7876 if (mddev->pers) {
7877 mddev->pers->status(seq, mddev);
7878 seq_printf(seq, "\n ");
7879 if (mddev->pers->sync_request) {
7880 if (status_resync(seq, mddev))
7881 seq_printf(seq, "\n ");
7882 }
7883 } else
7884 seq_printf(seq, "\n ");
7885
7886 md_bitmap_status(seq, mddev->bitmap);
7887
7888 seq_printf(seq, "\n");
7889 }
7890 spin_unlock(&mddev->lock);
7891
7892 return 0;
7893 }
7894
7895 static const struct seq_operations md_seq_ops = {
7896 .start = md_seq_start,
7897 .next = md_seq_next,
7898 .stop = md_seq_stop,
7899 .show = md_seq_show,
7900 };
7901
7902 static int md_seq_open(struct inode *inode, struct file *file)
7903 {
7904 struct seq_file *seq;
7905 int error;
7906
7907 error = seq_open(file, &md_seq_ops);
7908 if (error)
7909 return error;
7910
7911 seq = file->private_data;
7912 seq->poll_event = atomic_read(&md_event_count);
7913 return error;
7914 }
7915
7916 static int md_unloading;
7917 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
7918 {
7919 struct seq_file *seq = filp->private_data;
7920 __poll_t mask;
7921
7922 if (md_unloading)
7923 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
7924 poll_wait(filp, &md_event_waiters, wait);
7925
7926 /* always allow read */
7927 mask = EPOLLIN | EPOLLRDNORM;
7928
7929 if (seq->poll_event != atomic_read(&md_event_count))
7930 mask |= EPOLLERR | EPOLLPRI;
7931 return mask;
7932 }
7933
7934 static const struct file_operations md_seq_fops = {
7935 .owner = THIS_MODULE,
7936 .open = md_seq_open,
7937 .read = seq_read,
7938 .llseek = seq_lseek,
7939 .release = seq_release,
7940 .poll = mdstat_poll,
7941 };
7942
7943 int register_md_personality(struct md_personality *p)
7944 {
7945 pr_debug("md: %s personality registered for level %d\n",
7946 p->name, p->level);
7947 spin_lock(&pers_lock);
7948 list_add_tail(&p->list, &pers_list);
7949 spin_unlock(&pers_lock);
7950 return 0;
7951 }
7952 EXPORT_SYMBOL(register_md_personality);
7953
7954 int unregister_md_personality(struct md_personality *p)
7955 {
7956 pr_debug("md: %s personality unregistered\n", p->name);
7957 spin_lock(&pers_lock);
7958 list_del_init(&p->list);
7959 spin_unlock(&pers_lock);
7960 return 0;
7961 }
7962 EXPORT_SYMBOL(unregister_md_personality);
7963
7964 int register_md_cluster_operations(struct md_cluster_operations *ops,
7965 struct module *module)
7966 {
7967 int ret = 0;
7968 spin_lock(&pers_lock);
7969 if (md_cluster_ops != NULL)
7970 ret = -EALREADY;
7971 else {
7972 md_cluster_ops = ops;
7973 md_cluster_mod = module;
7974 }
7975 spin_unlock(&pers_lock);
7976 return ret;
7977 }
7978 EXPORT_SYMBOL(register_md_cluster_operations);
7979
7980 int unregister_md_cluster_operations(void)
7981 {
7982 spin_lock(&pers_lock);
7983 md_cluster_ops = NULL;
7984 spin_unlock(&pers_lock);
7985 return 0;
7986 }
7987 EXPORT_SYMBOL(unregister_md_cluster_operations);
7988
7989 int md_setup_cluster(struct mddev *mddev, int nodes)
7990 {
7991 if (!md_cluster_ops)
7992 request_module("md-cluster");
7993 spin_lock(&pers_lock);
7994 /* ensure module won't be unloaded */
7995 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7996 pr_warn("can't find md-cluster module or get it's reference.\n");
7997 spin_unlock(&pers_lock);
7998 return -ENOENT;
7999 }
8000 spin_unlock(&pers_lock);
8001
8002 return md_cluster_ops->join(mddev, nodes);
8003 }
8004
8005 void md_cluster_stop(struct mddev *mddev)
8006 {
8007 if (!md_cluster_ops)
8008 return;
8009 md_cluster_ops->leave(mddev);
8010 module_put(md_cluster_mod);
8011 }
8012
8013 static int is_mddev_idle(struct mddev *mddev, int init)
8014 {
8015 struct md_rdev *rdev;
8016 int idle;
8017 int curr_events;
8018
8019 idle = 1;
8020 rcu_read_lock();
8021 rdev_for_each_rcu(rdev, mddev) {
8022 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
8023 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8024 atomic_read(&disk->sync_io);
8025 /* sync IO will cause sync_io to increase before the disk_stats
8026 * as sync_io is counted when a request starts, and
8027 * disk_stats is counted when it completes.
8028 * So resync activity will cause curr_events to be smaller than
8029 * when there was no such activity.
8030 * non-sync IO will cause disk_stat to increase without
8031 * increasing sync_io so curr_events will (eventually)
8032 * be larger than it was before. Once it becomes
8033 * substantially larger, the test below will cause
8034 * the array to appear non-idle, and resync will slow
8035 * down.
8036 * If there is a lot of outstanding resync activity when
8037 * we set last_event to curr_events, then all that activity
8038 * completing might cause the array to appear non-idle
8039 * and resync will be slowed down even though there might
8040 * not have been non-resync activity. This will only
8041 * happen once though. 'last_events' will soon reflect
8042 * the state where there is little or no outstanding
8043 * resync requests, and further resync activity will
8044 * always make curr_events less than last_events.
8045 *
8046 */
8047 if (init || curr_events - rdev->last_events > 64) {
8048 rdev->last_events = curr_events;
8049 idle = 0;
8050 }
8051 }
8052 rcu_read_unlock();
8053 return idle;
8054 }
8055
8056 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8057 {
8058 /* another "blocks" (512byte) blocks have been synced */
8059 atomic_sub(blocks, &mddev->recovery_active);
8060 wake_up(&mddev->recovery_wait);
8061 if (!ok) {
8062 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8063 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8064 md_wakeup_thread(mddev->thread);
8065 // stop recovery, signal do_sync ....
8066 }
8067 }
8068 EXPORT_SYMBOL(md_done_sync);
8069
8070 /* md_write_start(mddev, bi)
8071 * If we need to update some array metadata (e.g. 'active' flag
8072 * in superblock) before writing, schedule a superblock update
8073 * and wait for it to complete.
8074 * A return value of 'false' means that the write wasn't recorded
8075 * and cannot proceed as the array is being suspend.
8076 */
8077 bool md_write_start(struct mddev *mddev, struct bio *bi)
8078 {
8079 int did_change = 0;
8080
8081 if (bio_data_dir(bi) != WRITE)
8082 return true;
8083
8084 BUG_ON(mddev->ro == 1);
8085 if (mddev->ro == 2) {
8086 /* need to switch to read/write */
8087 mddev->ro = 0;
8088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8089 md_wakeup_thread(mddev->thread);
8090 md_wakeup_thread(mddev->sync_thread);
8091 did_change = 1;
8092 }
8093 rcu_read_lock();
8094 percpu_ref_get(&mddev->writes_pending);
8095 smp_mb(); /* Match smp_mb in set_in_sync() */
8096 if (mddev->safemode == 1)
8097 mddev->safemode = 0;
8098 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8099 if (mddev->in_sync || mddev->sync_checkers) {
8100 spin_lock(&mddev->lock);
8101 if (mddev->in_sync) {
8102 mddev->in_sync = 0;
8103 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8104 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8105 md_wakeup_thread(mddev->thread);
8106 did_change = 1;
8107 }
8108 spin_unlock(&mddev->lock);
8109 }
8110 rcu_read_unlock();
8111 if (did_change)
8112 sysfs_notify_dirent_safe(mddev->sysfs_state);
8113 if (!mddev->has_superblocks)
8114 return true;
8115 wait_event(mddev->sb_wait,
8116 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8117 mddev->suspended);
8118 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8119 percpu_ref_put(&mddev->writes_pending);
8120 return false;
8121 }
8122 return true;
8123 }
8124 EXPORT_SYMBOL(md_write_start);
8125
8126 /* md_write_inc can only be called when md_write_start() has
8127 * already been called at least once of the current request.
8128 * It increments the counter and is useful when a single request
8129 * is split into several parts. Each part causes an increment and
8130 * so needs a matching md_write_end().
8131 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8132 * a spinlocked region.
8133 */
8134 void md_write_inc(struct mddev *mddev, struct bio *bi)
8135 {
8136 if (bio_data_dir(bi) != WRITE)
8137 return;
8138 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8139 percpu_ref_get(&mddev->writes_pending);
8140 }
8141 EXPORT_SYMBOL(md_write_inc);
8142
8143 void md_write_end(struct mddev *mddev)
8144 {
8145 percpu_ref_put(&mddev->writes_pending);
8146
8147 if (mddev->safemode == 2)
8148 md_wakeup_thread(mddev->thread);
8149 else if (mddev->safemode_delay)
8150 /* The roundup() ensures this only performs locking once
8151 * every ->safemode_delay jiffies
8152 */
8153 mod_timer(&mddev->safemode_timer,
8154 roundup(jiffies, mddev->safemode_delay) +
8155 mddev->safemode_delay);
8156 }
8157
8158 EXPORT_SYMBOL(md_write_end);
8159
8160 /* md_allow_write(mddev)
8161 * Calling this ensures that the array is marked 'active' so that writes
8162 * may proceed without blocking. It is important to call this before
8163 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8164 * Must be called with mddev_lock held.
8165 */
8166 void md_allow_write(struct mddev *mddev)
8167 {
8168 if (!mddev->pers)
8169 return;
8170 if (mddev->ro)
8171 return;
8172 if (!mddev->pers->sync_request)
8173 return;
8174
8175 spin_lock(&mddev->lock);
8176 if (mddev->in_sync) {
8177 mddev->in_sync = 0;
8178 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8179 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8180 if (mddev->safemode_delay &&
8181 mddev->safemode == 0)
8182 mddev->safemode = 1;
8183 spin_unlock(&mddev->lock);
8184 md_update_sb(mddev, 0);
8185 sysfs_notify_dirent_safe(mddev->sysfs_state);
8186 /* wait for the dirty state to be recorded in the metadata */
8187 wait_event(mddev->sb_wait,
8188 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8189 } else
8190 spin_unlock(&mddev->lock);
8191 }
8192 EXPORT_SYMBOL_GPL(md_allow_write);
8193
8194 #define SYNC_MARKS 10
8195 #define SYNC_MARK_STEP (3*HZ)
8196 #define UPDATE_FREQUENCY (5*60*HZ)
8197 void md_do_sync(struct md_thread *thread)
8198 {
8199 struct mddev *mddev = thread->mddev;
8200 struct mddev *mddev2;
8201 unsigned int currspeed = 0,
8202 window;
8203 sector_t max_sectors,j, io_sectors, recovery_done;
8204 unsigned long mark[SYNC_MARKS];
8205 unsigned long update_time;
8206 sector_t mark_cnt[SYNC_MARKS];
8207 int last_mark,m;
8208 struct list_head *tmp;
8209 sector_t last_check;
8210 int skipped = 0;
8211 struct md_rdev *rdev;
8212 char *desc, *action = NULL;
8213 struct blk_plug plug;
8214 int ret;
8215
8216 /* just incase thread restarts... */
8217 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8218 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8219 return;
8220 if (mddev->ro) {/* never try to sync a read-only array */
8221 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8222 return;
8223 }
8224
8225 if (mddev_is_clustered(mddev)) {
8226 ret = md_cluster_ops->resync_start(mddev);
8227 if (ret)
8228 goto skip;
8229
8230 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8231 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8232 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8233 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8234 && ((unsigned long long)mddev->curr_resync_completed
8235 < (unsigned long long)mddev->resync_max_sectors))
8236 goto skip;
8237 }
8238
8239 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8240 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8241 desc = "data-check";
8242 action = "check";
8243 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8244 desc = "requested-resync";
8245 action = "repair";
8246 } else
8247 desc = "resync";
8248 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8249 desc = "reshape";
8250 else
8251 desc = "recovery";
8252
8253 mddev->last_sync_action = action ?: desc;
8254
8255 /* we overload curr_resync somewhat here.
8256 * 0 == not engaged in resync at all
8257 * 2 == checking that there is no conflict with another sync
8258 * 1 == like 2, but have yielded to allow conflicting resync to
8259 * commense
8260 * other == active in resync - this many blocks
8261 *
8262 * Before starting a resync we must have set curr_resync to
8263 * 2, and then checked that every "conflicting" array has curr_resync
8264 * less than ours. When we find one that is the same or higher
8265 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8266 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8267 * This will mean we have to start checking from the beginning again.
8268 *
8269 */
8270
8271 do {
8272 int mddev2_minor = -1;
8273 mddev->curr_resync = 2;
8274
8275 try_again:
8276 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8277 goto skip;
8278 for_each_mddev(mddev2, tmp) {
8279 if (mddev2 == mddev)
8280 continue;
8281 if (!mddev->parallel_resync
8282 && mddev2->curr_resync
8283 && match_mddev_units(mddev, mddev2)) {
8284 DEFINE_WAIT(wq);
8285 if (mddev < mddev2 && mddev->curr_resync == 2) {
8286 /* arbitrarily yield */
8287 mddev->curr_resync = 1;
8288 wake_up(&resync_wait);
8289 }
8290 if (mddev > mddev2 && mddev->curr_resync == 1)
8291 /* no need to wait here, we can wait the next
8292 * time 'round when curr_resync == 2
8293 */
8294 continue;
8295 /* We need to wait 'interruptible' so as not to
8296 * contribute to the load average, and not to
8297 * be caught by 'softlockup'
8298 */
8299 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8300 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8301 mddev2->curr_resync >= mddev->curr_resync) {
8302 if (mddev2_minor != mddev2->md_minor) {
8303 mddev2_minor = mddev2->md_minor;
8304 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8305 desc, mdname(mddev),
8306 mdname(mddev2));
8307 }
8308 mddev_put(mddev2);
8309 if (signal_pending(current))
8310 flush_signals(current);
8311 schedule();
8312 finish_wait(&resync_wait, &wq);
8313 goto try_again;
8314 }
8315 finish_wait(&resync_wait, &wq);
8316 }
8317 }
8318 } while (mddev->curr_resync < 2);
8319
8320 j = 0;
8321 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8322 /* resync follows the size requested by the personality,
8323 * which defaults to physical size, but can be virtual size
8324 */
8325 max_sectors = mddev->resync_max_sectors;
8326 atomic64_set(&mddev->resync_mismatches, 0);
8327 /* we don't use the checkpoint if there's a bitmap */
8328 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8329 j = mddev->resync_min;
8330 else if (!mddev->bitmap)
8331 j = mddev->recovery_cp;
8332
8333 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8334 max_sectors = mddev->resync_max_sectors;
8335 /*
8336 * If the original node aborts reshaping then we continue the
8337 * reshaping, so set j again to avoid restart reshape from the
8338 * first beginning
8339 */
8340 if (mddev_is_clustered(mddev) &&
8341 mddev->reshape_position != MaxSector)
8342 j = mddev->reshape_position;
8343 } else {
8344 /* recovery follows the physical size of devices */
8345 max_sectors = mddev->dev_sectors;
8346 j = MaxSector;
8347 rcu_read_lock();
8348 rdev_for_each_rcu(rdev, mddev)
8349 if (rdev->raid_disk >= 0 &&
8350 !test_bit(Journal, &rdev->flags) &&
8351 !test_bit(Faulty, &rdev->flags) &&
8352 !test_bit(In_sync, &rdev->flags) &&
8353 rdev->recovery_offset < j)
8354 j = rdev->recovery_offset;
8355 rcu_read_unlock();
8356
8357 /* If there is a bitmap, we need to make sure all
8358 * writes that started before we added a spare
8359 * complete before we start doing a recovery.
8360 * Otherwise the write might complete and (via
8361 * bitmap_endwrite) set a bit in the bitmap after the
8362 * recovery has checked that bit and skipped that
8363 * region.
8364 */
8365 if (mddev->bitmap) {
8366 mddev->pers->quiesce(mddev, 1);
8367 mddev->pers->quiesce(mddev, 0);
8368 }
8369 }
8370
8371 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8372 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8373 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8374 speed_max(mddev), desc);
8375
8376 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8377
8378 io_sectors = 0;
8379 for (m = 0; m < SYNC_MARKS; m++) {
8380 mark[m] = jiffies;
8381 mark_cnt[m] = io_sectors;
8382 }
8383 last_mark = 0;
8384 mddev->resync_mark = mark[last_mark];
8385 mddev->resync_mark_cnt = mark_cnt[last_mark];
8386
8387 /*
8388 * Tune reconstruction:
8389 */
8390 window = 32*(PAGE_SIZE/512);
8391 pr_debug("md: using %dk window, over a total of %lluk.\n",
8392 window/2, (unsigned long long)max_sectors/2);
8393
8394 atomic_set(&mddev->recovery_active, 0);
8395 last_check = 0;
8396
8397 if (j>2) {
8398 pr_debug("md: resuming %s of %s from checkpoint.\n",
8399 desc, mdname(mddev));
8400 mddev->curr_resync = j;
8401 } else
8402 mddev->curr_resync = 3; /* no longer delayed */
8403 mddev->curr_resync_completed = j;
8404 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8405 md_new_event(mddev);
8406 update_time = jiffies;
8407
8408 blk_start_plug(&plug);
8409 while (j < max_sectors) {
8410 sector_t sectors;
8411
8412 skipped = 0;
8413
8414 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8415 ((mddev->curr_resync > mddev->curr_resync_completed &&
8416 (mddev->curr_resync - mddev->curr_resync_completed)
8417 > (max_sectors >> 4)) ||
8418 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8419 (j - mddev->curr_resync_completed)*2
8420 >= mddev->resync_max - mddev->curr_resync_completed ||
8421 mddev->curr_resync_completed > mddev->resync_max
8422 )) {
8423 /* time to update curr_resync_completed */
8424 wait_event(mddev->recovery_wait,
8425 atomic_read(&mddev->recovery_active) == 0);
8426 mddev->curr_resync_completed = j;
8427 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8428 j > mddev->recovery_cp)
8429 mddev->recovery_cp = j;
8430 update_time = jiffies;
8431 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8432 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8433 }
8434
8435 while (j >= mddev->resync_max &&
8436 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8437 /* As this condition is controlled by user-space,
8438 * we can block indefinitely, so use '_interruptible'
8439 * to avoid triggering warnings.
8440 */
8441 flush_signals(current); /* just in case */
8442 wait_event_interruptible(mddev->recovery_wait,
8443 mddev->resync_max > j
8444 || test_bit(MD_RECOVERY_INTR,
8445 &mddev->recovery));
8446 }
8447
8448 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8449 break;
8450
8451 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8452 if (sectors == 0) {
8453 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8454 break;
8455 }
8456
8457 if (!skipped) { /* actual IO requested */
8458 io_sectors += sectors;
8459 atomic_add(sectors, &mddev->recovery_active);
8460 }
8461
8462 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8463 break;
8464
8465 j += sectors;
8466 if (j > max_sectors)
8467 /* when skipping, extra large numbers can be returned. */
8468 j = max_sectors;
8469 if (j > 2)
8470 mddev->curr_resync = j;
8471 mddev->curr_mark_cnt = io_sectors;
8472 if (last_check == 0)
8473 /* this is the earliest that rebuild will be
8474 * visible in /proc/mdstat
8475 */
8476 md_new_event(mddev);
8477
8478 if (last_check + window > io_sectors || j == max_sectors)
8479 continue;
8480
8481 last_check = io_sectors;
8482 repeat:
8483 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8484 /* step marks */
8485 int next = (last_mark+1) % SYNC_MARKS;
8486
8487 mddev->resync_mark = mark[next];
8488 mddev->resync_mark_cnt = mark_cnt[next];
8489 mark[next] = jiffies;
8490 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8491 last_mark = next;
8492 }
8493
8494 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8495 break;
8496
8497 /*
8498 * this loop exits only if either when we are slower than
8499 * the 'hard' speed limit, or the system was IO-idle for
8500 * a jiffy.
8501 * the system might be non-idle CPU-wise, but we only care
8502 * about not overloading the IO subsystem. (things like an
8503 * e2fsck being done on the RAID array should execute fast)
8504 */
8505 cond_resched();
8506
8507 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8508 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8509 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8510
8511 if (currspeed > speed_min(mddev)) {
8512 if (currspeed > speed_max(mddev)) {
8513 msleep(500);
8514 goto repeat;
8515 }
8516 if (!is_mddev_idle(mddev, 0)) {
8517 /*
8518 * Give other IO more of a chance.
8519 * The faster the devices, the less we wait.
8520 */
8521 wait_event(mddev->recovery_wait,
8522 !atomic_read(&mddev->recovery_active));
8523 }
8524 }
8525 }
8526 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8527 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8528 ? "interrupted" : "done");
8529 /*
8530 * this also signals 'finished resyncing' to md_stop
8531 */
8532 blk_finish_plug(&plug);
8533 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8534
8535 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8536 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8537 mddev->curr_resync > 3) {
8538 mddev->curr_resync_completed = mddev->curr_resync;
8539 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8540 }
8541 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8542
8543 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8544 mddev->curr_resync > 3) {
8545 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8546 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8547 if (mddev->curr_resync >= mddev->recovery_cp) {
8548 pr_debug("md: checkpointing %s of %s.\n",
8549 desc, mdname(mddev));
8550 if (test_bit(MD_RECOVERY_ERROR,
8551 &mddev->recovery))
8552 mddev->recovery_cp =
8553 mddev->curr_resync_completed;
8554 else
8555 mddev->recovery_cp =
8556 mddev->curr_resync;
8557 }
8558 } else
8559 mddev->recovery_cp = MaxSector;
8560 } else {
8561 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8562 mddev->curr_resync = MaxSector;
8563 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8564 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8565 rcu_read_lock();
8566 rdev_for_each_rcu(rdev, mddev)
8567 if (rdev->raid_disk >= 0 &&
8568 mddev->delta_disks >= 0 &&
8569 !test_bit(Journal, &rdev->flags) &&
8570 !test_bit(Faulty, &rdev->flags) &&
8571 !test_bit(In_sync, &rdev->flags) &&
8572 rdev->recovery_offset < mddev->curr_resync)
8573 rdev->recovery_offset = mddev->curr_resync;
8574 rcu_read_unlock();
8575 }
8576 }
8577 }
8578 skip:
8579 /* set CHANGE_PENDING here since maybe another update is needed,
8580 * so other nodes are informed. It should be harmless for normal
8581 * raid */
8582 set_mask_bits(&mddev->sb_flags, 0,
8583 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
8584
8585 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8586 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8587 mddev->delta_disks > 0 &&
8588 mddev->pers->finish_reshape &&
8589 mddev->pers->size &&
8590 mddev->queue) {
8591 mddev_lock_nointr(mddev);
8592 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
8593 mddev_unlock(mddev);
8594 if (!mddev_is_clustered(mddev)) {
8595 set_capacity(mddev->gendisk, mddev->array_sectors);
8596 revalidate_disk(mddev->gendisk);
8597 }
8598 }
8599
8600 spin_lock(&mddev->lock);
8601 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8602 /* We completed so min/max setting can be forgotten if used. */
8603 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8604 mddev->resync_min = 0;
8605 mddev->resync_max = MaxSector;
8606 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8607 mddev->resync_min = mddev->curr_resync_completed;
8608 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8609 mddev->curr_resync = 0;
8610 spin_unlock(&mddev->lock);
8611
8612 wake_up(&resync_wait);
8613 md_wakeup_thread(mddev->thread);
8614 return;
8615 }
8616 EXPORT_SYMBOL_GPL(md_do_sync);
8617
8618 static int remove_and_add_spares(struct mddev *mddev,
8619 struct md_rdev *this)
8620 {
8621 struct md_rdev *rdev;
8622 int spares = 0;
8623 int removed = 0;
8624 bool remove_some = false;
8625
8626 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8627 /* Mustn't remove devices when resync thread is running */
8628 return 0;
8629
8630 rdev_for_each(rdev, mddev) {
8631 if ((this == NULL || rdev == this) &&
8632 rdev->raid_disk >= 0 &&
8633 !test_bit(Blocked, &rdev->flags) &&
8634 test_bit(Faulty, &rdev->flags) &&
8635 atomic_read(&rdev->nr_pending)==0) {
8636 /* Faulty non-Blocked devices with nr_pending == 0
8637 * never get nr_pending incremented,
8638 * never get Faulty cleared, and never get Blocked set.
8639 * So we can synchronize_rcu now rather than once per device
8640 */
8641 remove_some = true;
8642 set_bit(RemoveSynchronized, &rdev->flags);
8643 }
8644 }
8645
8646 if (remove_some)
8647 synchronize_rcu();
8648 rdev_for_each(rdev, mddev) {
8649 if ((this == NULL || rdev == this) &&
8650 rdev->raid_disk >= 0 &&
8651 !test_bit(Blocked, &rdev->flags) &&
8652 ((test_bit(RemoveSynchronized, &rdev->flags) ||
8653 (!test_bit(In_sync, &rdev->flags) &&
8654 !test_bit(Journal, &rdev->flags))) &&
8655 atomic_read(&rdev->nr_pending)==0)) {
8656 if (mddev->pers->hot_remove_disk(
8657 mddev, rdev) == 0) {
8658 sysfs_unlink_rdev(mddev, rdev);
8659 rdev->saved_raid_disk = rdev->raid_disk;
8660 rdev->raid_disk = -1;
8661 removed++;
8662 }
8663 }
8664 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
8665 clear_bit(RemoveSynchronized, &rdev->flags);
8666 }
8667
8668 if (removed && mddev->kobj.sd)
8669 sysfs_notify(&mddev->kobj, NULL, "degraded");
8670
8671 if (this && removed)
8672 goto no_add;
8673
8674 rdev_for_each(rdev, mddev) {
8675 if (this && this != rdev)
8676 continue;
8677 if (test_bit(Candidate, &rdev->flags))
8678 continue;
8679 if (rdev->raid_disk >= 0 &&
8680 !test_bit(In_sync, &rdev->flags) &&
8681 !test_bit(Journal, &rdev->flags) &&
8682 !test_bit(Faulty, &rdev->flags))
8683 spares++;
8684 if (rdev->raid_disk >= 0)
8685 continue;
8686 if (test_bit(Faulty, &rdev->flags))
8687 continue;
8688 if (!test_bit(Journal, &rdev->flags)) {
8689 if (mddev->ro &&
8690 ! (rdev->saved_raid_disk >= 0 &&
8691 !test_bit(Bitmap_sync, &rdev->flags)))
8692 continue;
8693
8694 rdev->recovery_offset = 0;
8695 }
8696 if (mddev->pers->
8697 hot_add_disk(mddev, rdev) == 0) {
8698 if (sysfs_link_rdev(mddev, rdev))
8699 /* failure here is OK */;
8700 if (!test_bit(Journal, &rdev->flags))
8701 spares++;
8702 md_new_event(mddev);
8703 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8704 }
8705 }
8706 no_add:
8707 if (removed)
8708 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8709 return spares;
8710 }
8711
8712 static void md_start_sync(struct work_struct *ws)
8713 {
8714 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8715
8716 mddev->sync_thread = md_register_thread(md_do_sync,
8717 mddev,
8718 "resync");
8719 if (!mddev->sync_thread) {
8720 pr_warn("%s: could not start resync thread...\n",
8721 mdname(mddev));
8722 /* leave the spares where they are, it shouldn't hurt */
8723 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8724 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8725 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8726 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8727 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8728 wake_up(&resync_wait);
8729 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8730 &mddev->recovery))
8731 if (mddev->sysfs_action)
8732 sysfs_notify_dirent_safe(mddev->sysfs_action);
8733 } else
8734 md_wakeup_thread(mddev->sync_thread);
8735 sysfs_notify_dirent_safe(mddev->sysfs_action);
8736 md_new_event(mddev);
8737 }
8738
8739 /*
8740 * This routine is regularly called by all per-raid-array threads to
8741 * deal with generic issues like resync and super-block update.
8742 * Raid personalities that don't have a thread (linear/raid0) do not
8743 * need this as they never do any recovery or update the superblock.
8744 *
8745 * It does not do any resync itself, but rather "forks" off other threads
8746 * to do that as needed.
8747 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8748 * "->recovery" and create a thread at ->sync_thread.
8749 * When the thread finishes it sets MD_RECOVERY_DONE
8750 * and wakeups up this thread which will reap the thread and finish up.
8751 * This thread also removes any faulty devices (with nr_pending == 0).
8752 *
8753 * The overall approach is:
8754 * 1/ if the superblock needs updating, update it.
8755 * 2/ If a recovery thread is running, don't do anything else.
8756 * 3/ If recovery has finished, clean up, possibly marking spares active.
8757 * 4/ If there are any faulty devices, remove them.
8758 * 5/ If array is degraded, try to add spares devices
8759 * 6/ If array has spares or is not in-sync, start a resync thread.
8760 */
8761 void md_check_recovery(struct mddev *mddev)
8762 {
8763 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
8764 /* Write superblock - thread that called mddev_suspend()
8765 * holds reconfig_mutex for us.
8766 */
8767 set_bit(MD_UPDATING_SB, &mddev->flags);
8768 smp_mb__after_atomic();
8769 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
8770 md_update_sb(mddev, 0);
8771 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
8772 wake_up(&mddev->sb_wait);
8773 }
8774
8775 if (mddev->suspended)
8776 return;
8777
8778 if (mddev->bitmap)
8779 md_bitmap_daemon_work(mddev);
8780
8781 if (signal_pending(current)) {
8782 if (mddev->pers->sync_request && !mddev->external) {
8783 pr_debug("md: %s in immediate safe mode\n",
8784 mdname(mddev));
8785 mddev->safemode = 2;
8786 }
8787 flush_signals(current);
8788 }
8789
8790 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8791 return;
8792 if ( ! (
8793 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
8794 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8795 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8796 (mddev->external == 0 && mddev->safemode == 1) ||
8797 (mddev->safemode == 2
8798 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8799 ))
8800 return;
8801
8802 if (mddev_trylock(mddev)) {
8803 int spares = 0;
8804
8805 if (!mddev->external && mddev->safemode == 1)
8806 mddev->safemode = 0;
8807
8808 if (mddev->ro) {
8809 struct md_rdev *rdev;
8810 if (!mddev->external && mddev->in_sync)
8811 /* 'Blocked' flag not needed as failed devices
8812 * will be recorded if array switched to read/write.
8813 * Leaving it set will prevent the device
8814 * from being removed.
8815 */
8816 rdev_for_each(rdev, mddev)
8817 clear_bit(Blocked, &rdev->flags);
8818 /* On a read-only array we can:
8819 * - remove failed devices
8820 * - add already-in_sync devices if the array itself
8821 * is in-sync.
8822 * As we only add devices that are already in-sync,
8823 * we can activate the spares immediately.
8824 */
8825 remove_and_add_spares(mddev, NULL);
8826 /* There is no thread, but we need to call
8827 * ->spare_active and clear saved_raid_disk
8828 */
8829 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8830 md_reap_sync_thread(mddev);
8831 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8832 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8833 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8834 goto unlock;
8835 }
8836
8837 if (mddev_is_clustered(mddev)) {
8838 struct md_rdev *rdev;
8839 /* kick the device if another node issued a
8840 * remove disk.
8841 */
8842 rdev_for_each(rdev, mddev) {
8843 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8844 rdev->raid_disk < 0)
8845 md_kick_rdev_from_array(rdev);
8846 }
8847 }
8848
8849 if (!mddev->external && !mddev->in_sync) {
8850 spin_lock(&mddev->lock);
8851 set_in_sync(mddev);
8852 spin_unlock(&mddev->lock);
8853 }
8854
8855 if (mddev->sb_flags)
8856 md_update_sb(mddev, 0);
8857
8858 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8859 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8860 /* resync/recovery still happening */
8861 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8862 goto unlock;
8863 }
8864 if (mddev->sync_thread) {
8865 md_reap_sync_thread(mddev);
8866 goto unlock;
8867 }
8868 /* Set RUNNING before clearing NEEDED to avoid
8869 * any transients in the value of "sync_action".
8870 */
8871 mddev->curr_resync_completed = 0;
8872 spin_lock(&mddev->lock);
8873 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8874 spin_unlock(&mddev->lock);
8875 /* Clear some bits that don't mean anything, but
8876 * might be left set
8877 */
8878 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8879 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8880
8881 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8882 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8883 goto not_running;
8884 /* no recovery is running.
8885 * remove any failed drives, then
8886 * add spares if possible.
8887 * Spares are also removed and re-added, to allow
8888 * the personality to fail the re-add.
8889 */
8890
8891 if (mddev->reshape_position != MaxSector) {
8892 if (mddev->pers->check_reshape == NULL ||
8893 mddev->pers->check_reshape(mddev) != 0)
8894 /* Cannot proceed */
8895 goto not_running;
8896 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8897 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8898 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8899 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8900 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8901 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8902 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8903 } else if (mddev->recovery_cp < MaxSector) {
8904 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8905 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8906 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8907 /* nothing to be done ... */
8908 goto not_running;
8909
8910 if (mddev->pers->sync_request) {
8911 if (spares) {
8912 /* We are adding a device or devices to an array
8913 * which has the bitmap stored on all devices.
8914 * So make sure all bitmap pages get written
8915 */
8916 md_bitmap_write_all(mddev->bitmap);
8917 }
8918 INIT_WORK(&mddev->del_work, md_start_sync);
8919 queue_work(md_misc_wq, &mddev->del_work);
8920 goto unlock;
8921 }
8922 not_running:
8923 if (!mddev->sync_thread) {
8924 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8925 wake_up(&resync_wait);
8926 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8927 &mddev->recovery))
8928 if (mddev->sysfs_action)
8929 sysfs_notify_dirent_safe(mddev->sysfs_action);
8930 }
8931 unlock:
8932 wake_up(&mddev->sb_wait);
8933 mddev_unlock(mddev);
8934 }
8935 }
8936 EXPORT_SYMBOL(md_check_recovery);
8937
8938 void md_reap_sync_thread(struct mddev *mddev)
8939 {
8940 struct md_rdev *rdev;
8941 sector_t old_dev_sectors = mddev->dev_sectors;
8942 bool is_reshaped = false;
8943
8944 /* resync has finished, collect result */
8945 md_unregister_thread(&mddev->sync_thread);
8946 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8947 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8948 /* success...*/
8949 /* activate any spares */
8950 if (mddev->pers->spare_active(mddev)) {
8951 sysfs_notify(&mddev->kobj, NULL,
8952 "degraded");
8953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8954 }
8955 }
8956 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8957 mddev->pers->finish_reshape) {
8958 mddev->pers->finish_reshape(mddev);
8959 if (mddev_is_clustered(mddev))
8960 is_reshaped = true;
8961 }
8962
8963 /* If array is no-longer degraded, then any saved_raid_disk
8964 * information must be scrapped.
8965 */
8966 if (!mddev->degraded)
8967 rdev_for_each(rdev, mddev)
8968 rdev->saved_raid_disk = -1;
8969
8970 md_update_sb(mddev, 1);
8971 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
8972 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8973 * clustered raid */
8974 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8975 md_cluster_ops->resync_finish(mddev);
8976 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8977 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8978 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8979 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8980 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8981 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8982 /*
8983 * We call md_cluster_ops->update_size here because sync_size could
8984 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
8985 * so it is time to update size across cluster.
8986 */
8987 if (mddev_is_clustered(mddev) && is_reshaped
8988 && !test_bit(MD_CLOSING, &mddev->flags))
8989 md_cluster_ops->update_size(mddev, old_dev_sectors);
8990 wake_up(&resync_wait);
8991 /* flag recovery needed just to double check */
8992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8993 sysfs_notify_dirent_safe(mddev->sysfs_action);
8994 md_new_event(mddev);
8995 if (mddev->event_work.func)
8996 queue_work(md_misc_wq, &mddev->event_work);
8997 }
8998 EXPORT_SYMBOL(md_reap_sync_thread);
8999
9000 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9001 {
9002 sysfs_notify_dirent_safe(rdev->sysfs_state);
9003 wait_event_timeout(rdev->blocked_wait,
9004 !test_bit(Blocked, &rdev->flags) &&
9005 !test_bit(BlockedBadBlocks, &rdev->flags),
9006 msecs_to_jiffies(5000));
9007 rdev_dec_pending(rdev, mddev);
9008 }
9009 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9010
9011 void md_finish_reshape(struct mddev *mddev)
9012 {
9013 /* called be personality module when reshape completes. */
9014 struct md_rdev *rdev;
9015
9016 rdev_for_each(rdev, mddev) {
9017 if (rdev->data_offset > rdev->new_data_offset)
9018 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9019 else
9020 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9021 rdev->data_offset = rdev->new_data_offset;
9022 }
9023 }
9024 EXPORT_SYMBOL(md_finish_reshape);
9025
9026 /* Bad block management */
9027
9028 /* Returns 1 on success, 0 on failure */
9029 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9030 int is_new)
9031 {
9032 struct mddev *mddev = rdev->mddev;
9033 int rv;
9034 if (is_new)
9035 s += rdev->new_data_offset;
9036 else
9037 s += rdev->data_offset;
9038 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9039 if (rv == 0) {
9040 /* Make sure they get written out promptly */
9041 if (test_bit(ExternalBbl, &rdev->flags))
9042 sysfs_notify(&rdev->kobj, NULL,
9043 "unacknowledged_bad_blocks");
9044 sysfs_notify_dirent_safe(rdev->sysfs_state);
9045 set_mask_bits(&mddev->sb_flags, 0,
9046 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9047 md_wakeup_thread(rdev->mddev->thread);
9048 return 1;
9049 } else
9050 return 0;
9051 }
9052 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9053
9054 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9055 int is_new)
9056 {
9057 int rv;
9058 if (is_new)
9059 s += rdev->new_data_offset;
9060 else
9061 s += rdev->data_offset;
9062 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9063 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9064 sysfs_notify(&rdev->kobj, NULL, "bad_blocks");
9065 return rv;
9066 }
9067 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9068
9069 static int md_notify_reboot(struct notifier_block *this,
9070 unsigned long code, void *x)
9071 {
9072 struct list_head *tmp;
9073 struct mddev *mddev;
9074 int need_delay = 0;
9075
9076 for_each_mddev(mddev, tmp) {
9077 if (mddev_trylock(mddev)) {
9078 if (mddev->pers)
9079 __md_stop_writes(mddev);
9080 if (mddev->persistent)
9081 mddev->safemode = 2;
9082 mddev_unlock(mddev);
9083 }
9084 need_delay = 1;
9085 }
9086 /*
9087 * certain more exotic SCSI devices are known to be
9088 * volatile wrt too early system reboots. While the
9089 * right place to handle this issue is the given
9090 * driver, we do want to have a safe RAID driver ...
9091 */
9092 if (need_delay)
9093 mdelay(1000*1);
9094
9095 return NOTIFY_DONE;
9096 }
9097
9098 static struct notifier_block md_notifier = {
9099 .notifier_call = md_notify_reboot,
9100 .next = NULL,
9101 .priority = INT_MAX, /* before any real devices */
9102 };
9103
9104 static void md_geninit(void)
9105 {
9106 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9107
9108 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9109 }
9110
9111 static int __init md_init(void)
9112 {
9113 int ret = -ENOMEM;
9114
9115 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9116 if (!md_wq)
9117 goto err_wq;
9118
9119 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9120 if (!md_misc_wq)
9121 goto err_misc_wq;
9122
9123 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9124 goto err_md;
9125
9126 if ((ret = register_blkdev(0, "mdp")) < 0)
9127 goto err_mdp;
9128 mdp_major = ret;
9129
9130 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9131 md_probe, NULL, NULL);
9132 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9133 md_probe, NULL, NULL);
9134
9135 register_reboot_notifier(&md_notifier);
9136 raid_table_header = register_sysctl_table(raid_root_table);
9137
9138 md_geninit();
9139 return 0;
9140
9141 err_mdp:
9142 unregister_blkdev(MD_MAJOR, "md");
9143 err_md:
9144 destroy_workqueue(md_misc_wq);
9145 err_misc_wq:
9146 destroy_workqueue(md_wq);
9147 err_wq:
9148 return ret;
9149 }
9150
9151 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9152 {
9153 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9154 struct md_rdev *rdev2;
9155 int role, ret;
9156 char b[BDEVNAME_SIZE];
9157
9158 /*
9159 * If size is changed in another node then we need to
9160 * do resize as well.
9161 */
9162 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9163 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9164 if (ret)
9165 pr_info("md-cluster: resize failed\n");
9166 else
9167 md_bitmap_update_sb(mddev->bitmap);
9168 }
9169
9170 /* Check for change of roles in the active devices */
9171 rdev_for_each(rdev2, mddev) {
9172 if (test_bit(Faulty, &rdev2->flags))
9173 continue;
9174
9175 /* Check if the roles changed */
9176 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9177
9178 if (test_bit(Candidate, &rdev2->flags)) {
9179 if (role == 0xfffe) {
9180 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9181 md_kick_rdev_from_array(rdev2);
9182 continue;
9183 }
9184 else
9185 clear_bit(Candidate, &rdev2->flags);
9186 }
9187
9188 if (role != rdev2->raid_disk) {
9189 /*
9190 * got activated except reshape is happening.
9191 */
9192 if (rdev2->raid_disk == -1 && role != 0xffff &&
9193 !(le32_to_cpu(sb->feature_map) &
9194 MD_FEATURE_RESHAPE_ACTIVE)) {
9195 rdev2->saved_raid_disk = role;
9196 ret = remove_and_add_spares(mddev, rdev2);
9197 pr_info("Activated spare: %s\n",
9198 bdevname(rdev2->bdev,b));
9199 /* wakeup mddev->thread here, so array could
9200 * perform resync with the new activated disk */
9201 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9202 md_wakeup_thread(mddev->thread);
9203
9204 }
9205 /* device faulty
9206 * We just want to do the minimum to mark the disk
9207 * as faulty. The recovery is performed by the
9208 * one who initiated the error.
9209 */
9210 if ((role == 0xfffe) || (role == 0xfffd)) {
9211 md_error(mddev, rdev2);
9212 clear_bit(Blocked, &rdev2->flags);
9213 }
9214 }
9215 }
9216
9217 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9218 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9219
9220 /*
9221 * Since mddev->delta_disks has already updated in update_raid_disks,
9222 * so it is time to check reshape.
9223 */
9224 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9225 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9226 /*
9227 * reshape is happening in the remote node, we need to
9228 * update reshape_position and call start_reshape.
9229 */
9230 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9231 if (mddev->pers->update_reshape_pos)
9232 mddev->pers->update_reshape_pos(mddev);
9233 if (mddev->pers->start_reshape)
9234 mddev->pers->start_reshape(mddev);
9235 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9236 mddev->reshape_position != MaxSector &&
9237 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9238 /* reshape is just done in another node. */
9239 mddev->reshape_position = MaxSector;
9240 if (mddev->pers->update_reshape_pos)
9241 mddev->pers->update_reshape_pos(mddev);
9242 }
9243
9244 /* Finally set the event to be up to date */
9245 mddev->events = le64_to_cpu(sb->events);
9246 }
9247
9248 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9249 {
9250 int err;
9251 struct page *swapout = rdev->sb_page;
9252 struct mdp_superblock_1 *sb;
9253
9254 /* Store the sb page of the rdev in the swapout temporary
9255 * variable in case we err in the future
9256 */
9257 rdev->sb_page = NULL;
9258 err = alloc_disk_sb(rdev);
9259 if (err == 0) {
9260 ClearPageUptodate(rdev->sb_page);
9261 rdev->sb_loaded = 0;
9262 err = super_types[mddev->major_version].
9263 load_super(rdev, NULL, mddev->minor_version);
9264 }
9265 if (err < 0) {
9266 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9267 __func__, __LINE__, rdev->desc_nr, err);
9268 if (rdev->sb_page)
9269 put_page(rdev->sb_page);
9270 rdev->sb_page = swapout;
9271 rdev->sb_loaded = 1;
9272 return err;
9273 }
9274
9275 sb = page_address(rdev->sb_page);
9276 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9277 * is not set
9278 */
9279
9280 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9281 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9282
9283 /* The other node finished recovery, call spare_active to set
9284 * device In_sync and mddev->degraded
9285 */
9286 if (rdev->recovery_offset == MaxSector &&
9287 !test_bit(In_sync, &rdev->flags) &&
9288 mddev->pers->spare_active(mddev))
9289 sysfs_notify(&mddev->kobj, NULL, "degraded");
9290
9291 put_page(swapout);
9292 return 0;
9293 }
9294
9295 void md_reload_sb(struct mddev *mddev, int nr)
9296 {
9297 struct md_rdev *rdev;
9298 int err;
9299
9300 /* Find the rdev */
9301 rdev_for_each_rcu(rdev, mddev) {
9302 if (rdev->desc_nr == nr)
9303 break;
9304 }
9305
9306 if (!rdev || rdev->desc_nr != nr) {
9307 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9308 return;
9309 }
9310
9311 err = read_rdev(mddev, rdev);
9312 if (err < 0)
9313 return;
9314
9315 check_sb_changes(mddev, rdev);
9316
9317 /* Read all rdev's to update recovery_offset */
9318 rdev_for_each_rcu(rdev, mddev) {
9319 if (!test_bit(Faulty, &rdev->flags))
9320 read_rdev(mddev, rdev);
9321 }
9322 }
9323 EXPORT_SYMBOL(md_reload_sb);
9324
9325 #ifndef MODULE
9326
9327 /*
9328 * Searches all registered partitions for autorun RAID arrays
9329 * at boot time.
9330 */
9331
9332 static DEFINE_MUTEX(detected_devices_mutex);
9333 static LIST_HEAD(all_detected_devices);
9334 struct detected_devices_node {
9335 struct list_head list;
9336 dev_t dev;
9337 };
9338
9339 void md_autodetect_dev(dev_t dev)
9340 {
9341 struct detected_devices_node *node_detected_dev;
9342
9343 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9344 if (node_detected_dev) {
9345 node_detected_dev->dev = dev;
9346 mutex_lock(&detected_devices_mutex);
9347 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9348 mutex_unlock(&detected_devices_mutex);
9349 }
9350 }
9351
9352 static void autostart_arrays(int part)
9353 {
9354 struct md_rdev *rdev;
9355 struct detected_devices_node *node_detected_dev;
9356 dev_t dev;
9357 int i_scanned, i_passed;
9358
9359 i_scanned = 0;
9360 i_passed = 0;
9361
9362 pr_info("md: Autodetecting RAID arrays.\n");
9363
9364 mutex_lock(&detected_devices_mutex);
9365 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9366 i_scanned++;
9367 node_detected_dev = list_entry(all_detected_devices.next,
9368 struct detected_devices_node, list);
9369 list_del(&node_detected_dev->list);
9370 dev = node_detected_dev->dev;
9371 kfree(node_detected_dev);
9372 mutex_unlock(&detected_devices_mutex);
9373 rdev = md_import_device(dev,0, 90);
9374 mutex_lock(&detected_devices_mutex);
9375 if (IS_ERR(rdev))
9376 continue;
9377
9378 if (test_bit(Faulty, &rdev->flags))
9379 continue;
9380
9381 set_bit(AutoDetected, &rdev->flags);
9382 list_add(&rdev->same_set, &pending_raid_disks);
9383 i_passed++;
9384 }
9385 mutex_unlock(&detected_devices_mutex);
9386
9387 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9388
9389 autorun_devices(part);
9390 }
9391
9392 #endif /* !MODULE */
9393
9394 static __exit void md_exit(void)
9395 {
9396 struct mddev *mddev;
9397 struct list_head *tmp;
9398 int delay = 1;
9399
9400 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9401 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9402
9403 unregister_blkdev(MD_MAJOR,"md");
9404 unregister_blkdev(mdp_major, "mdp");
9405 unregister_reboot_notifier(&md_notifier);
9406 unregister_sysctl_table(raid_table_header);
9407
9408 /* We cannot unload the modules while some process is
9409 * waiting for us in select() or poll() - wake them up
9410 */
9411 md_unloading = 1;
9412 while (waitqueue_active(&md_event_waiters)) {
9413 /* not safe to leave yet */
9414 wake_up(&md_event_waiters);
9415 msleep(delay);
9416 delay += delay;
9417 }
9418 remove_proc_entry("mdstat", NULL);
9419
9420 for_each_mddev(mddev, tmp) {
9421 export_array(mddev);
9422 mddev->ctime = 0;
9423 mddev->hold_active = 0;
9424 /*
9425 * for_each_mddev() will call mddev_put() at the end of each
9426 * iteration. As the mddev is now fully clear, this will
9427 * schedule the mddev for destruction by a workqueue, and the
9428 * destroy_workqueue() below will wait for that to complete.
9429 */
9430 }
9431 destroy_workqueue(md_misc_wq);
9432 destroy_workqueue(md_wq);
9433 }
9434
9435 subsys_initcall(md_init);
9436 module_exit(md_exit)
9437
9438 static int get_ro(char *buffer, const struct kernel_param *kp)
9439 {
9440 return sprintf(buffer, "%d", start_readonly);
9441 }
9442 static int set_ro(const char *val, const struct kernel_param *kp)
9443 {
9444 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9445 }
9446
9447 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9448 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9449 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9450 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9451
9452 MODULE_LICENSE("GPL");
9453 MODULE_DESCRIPTION("MD RAID framework");
9454 MODULE_ALIAS("md");
9455 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);