]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 /* pers_list is a list of registered personalities protected
64 * by pers_lock.
65 * pers_lock does extra service to protect accesses to
66 * mddev->thread when the mutex cannot be held.
67 */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79
80 static int remove_and_add_spares(struct mddev *mddev,
81 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83
84 /*
85 * Default number of read corrections we'll attempt on an rdev
86 * before ejecting it from the array. We divide the read error
87 * count by 2 for every hour elapsed between read errors.
88 */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92 * is 1000 KB/sec, so the extra system load does not show up that much.
93 * Increase it if you want to have more _guaranteed_ speed. Note that
94 * the RAID driver will use the maximum available bandwidth if the IO
95 * subsystem is idle. There is also an 'absolute maximum' reconstruction
96 * speed limit - in case reconstruction slows down your system despite
97 * idle IO detection.
98 *
99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100 * or /sys/block/mdX/md/sync_speed_{min,max}
101 */
102
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 return mddev->sync_speed_min ?
108 mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110
111 static inline int speed_max(struct mddev *mddev)
112 {
113 return mddev->sync_speed_max ?
114 mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116
117 static struct ctl_table_header *raid_table_header;
118
119 static struct ctl_table raid_table[] = {
120 {
121 .procname = "speed_limit_min",
122 .data = &sysctl_speed_limit_min,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 {
128 .procname = "speed_limit_max",
129 .data = &sysctl_speed_limit_max,
130 .maxlen = sizeof(int),
131 .mode = S_IRUGO|S_IWUSR,
132 .proc_handler = proc_dointvec,
133 },
134 { }
135 };
136
137 static struct ctl_table raid_dir_table[] = {
138 {
139 .procname = "raid",
140 .maxlen = 0,
141 .mode = S_IRUGO|S_IXUGO,
142 .child = raid_table,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_root_table[] = {
148 {
149 .procname = "dev",
150 .maxlen = 0,
151 .mode = 0555,
152 .child = raid_dir_table,
153 },
154 { }
155 };
156
157 static const struct block_device_operations md_fops;
158
159 static int start_readonly;
160
161 /* bio_clone_mddev
162 * like bio_clone, but with a local bio set
163 */
164
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 struct mddev *mddev)
167 {
168 struct bio *b;
169
170 if (!mddev || !mddev->bio_set)
171 return bio_alloc(gfp_mask, nr_iovecs);
172
173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 if (!b)
175 return NULL;
176 return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 struct mddev *mddev)
182 {
183 if (!mddev || !mddev->bio_set)
184 return bio_clone(bio, gfp_mask);
185
186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189
190 /*
191 * We have a system wide 'event count' that is incremented
192 * on any 'interesting' event, and readers of /proc/mdstat
193 * can use 'poll' or 'select' to find out when the event
194 * count increases.
195 *
196 * Events are:
197 * start array, stop array, error, add device, remove device,
198 * start build, activate spare
199 */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 atomic_inc(&md_event_count);
205 wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208
209 /*
210 * Enables to iterate over all existing md arrays
211 * all_mddevs_lock protects this list.
212 */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215
216 /*
217 * iterates through all used mddevs in the system.
218 * We take care to grab the all_mddevs_lock whenever navigating
219 * the list, and to always hold a refcount when unlocked.
220 * Any code which breaks out of this loop while own
221 * a reference to the current mddev and must mddev_put it.
222 */
223 #define for_each_mddev(_mddev,_tmp) \
224 \
225 for (({ spin_lock(&all_mddevs_lock); \
226 _tmp = all_mddevs.next; \
227 _mddev = NULL;}); \
228 ({ if (_tmp != &all_mddevs) \
229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 spin_unlock(&all_mddevs_lock); \
231 if (_mddev) mddev_put(_mddev); \
232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
233 _tmp != &all_mddevs;}); \
234 ({ spin_lock(&all_mddevs_lock); \
235 _tmp = _tmp->next;}) \
236 )
237
238 /* Rather than calling directly into the personality make_request function,
239 * IO requests come here first so that we can check if the device is
240 * being suspended pending a reconfiguration.
241 * We hold a refcount over the call to ->make_request. By the time that
242 * call has finished, the bio has been linked into some internal structure
243 * and so is visible to ->quiesce(), so we don't need the refcount any more.
244 */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 const int rw = bio_data_dir(bio);
248 struct mddev *mddev = q->queuedata;
249 unsigned int sectors;
250 int cpu;
251
252 blk_queue_split(q, &bio, q->bio_split);
253
254 if (mddev == NULL || mddev->pers == NULL) {
255 bio_io_error(bio);
256 return BLK_QC_T_NONE;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 if (bio_sectors(bio) != 0)
260 bio->bi_error = -EROFS;
261 bio_endio(bio);
262 return BLK_QC_T_NONE;
263 }
264 smp_rmb(); /* Ensure implications of 'active' are visible */
265 rcu_read_lock();
266 if (mddev->suspended) {
267 DEFINE_WAIT(__wait);
268 for (;;) {
269 prepare_to_wait(&mddev->sb_wait, &__wait,
270 TASK_UNINTERRUPTIBLE);
271 if (!mddev->suspended)
272 break;
273 rcu_read_unlock();
274 schedule();
275 rcu_read_lock();
276 }
277 finish_wait(&mddev->sb_wait, &__wait);
278 }
279 atomic_inc(&mddev->active_io);
280 rcu_read_unlock();
281
282 /*
283 * save the sectors now since our bio can
284 * go away inside make_request
285 */
286 sectors = bio_sectors(bio);
287 /* bio could be mergeable after passing to underlayer */
288 bio->bi_rw &= ~REQ_NOMERGE;
289 mddev->pers->make_request(mddev, bio);
290
291 cpu = part_stat_lock();
292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 part_stat_unlock();
295
296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 wake_up(&mddev->sb_wait);
298
299 return BLK_QC_T_NONE;
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once mddev_detach() is called and completes, the module will be
306 * completely unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
311 if (mddev->suspended++)
312 return;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 if (--mddev->suspended)
324 return;
325 wake_up(&mddev->sb_wait);
326 mddev->pers->quiesce(mddev, 0);
327
328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 md_wakeup_thread(mddev->thread);
330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 struct md_personality *pers = mddev->pers;
337 int ret = 0;
338
339 rcu_read_lock();
340 if (mddev->suspended)
341 ret = 1;
342 else if (pers && pers->congested)
343 ret = pers->congested(mddev, bits);
344 rcu_read_unlock();
345 return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 struct mddev *mddev = data;
351 return mddev_congested(mddev, bits);
352 }
353
354 /*
355 * Generic flush handling for md
356 */
357
358 static void md_end_flush(struct bio *bio)
359 {
360 struct md_rdev *rdev = bio->bi_private;
361 struct mddev *mddev = rdev->mddev;
362
363 rdev_dec_pending(rdev, mddev);
364
365 if (atomic_dec_and_test(&mddev->flush_pending)) {
366 /* The pre-request flush has finished */
367 queue_work(md_wq, &mddev->flush_work);
368 }
369 bio_put(bio);
370 }
371
372 static void md_submit_flush_data(struct work_struct *ws);
373
374 static void submit_flushes(struct work_struct *ws)
375 {
376 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 struct md_rdev *rdev;
378
379 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 atomic_set(&mddev->flush_pending, 1);
381 rcu_read_lock();
382 rdev_for_each_rcu(rdev, mddev)
383 if (rdev->raid_disk >= 0 &&
384 !test_bit(Faulty, &rdev->flags)) {
385 /* Take two references, one is dropped
386 * when request finishes, one after
387 * we reclaim rcu_read_lock
388 */
389 struct bio *bi;
390 atomic_inc(&rdev->nr_pending);
391 atomic_inc(&rdev->nr_pending);
392 rcu_read_unlock();
393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 bi->bi_end_io = md_end_flush;
395 bi->bi_private = rdev;
396 bi->bi_bdev = rdev->bdev;
397 atomic_inc(&mddev->flush_pending);
398 submit_bio(WRITE_FLUSH, bi);
399 rcu_read_lock();
400 rdev_dec_pending(rdev, mddev);
401 }
402 rcu_read_unlock();
403 if (atomic_dec_and_test(&mddev->flush_pending))
404 queue_work(md_wq, &mddev->flush_work);
405 }
406
407 static void md_submit_flush_data(struct work_struct *ws)
408 {
409 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 struct bio *bio = mddev->flush_bio;
411
412 if (bio->bi_iter.bi_size == 0)
413 /* an empty barrier - all done */
414 bio_endio(bio);
415 else {
416 bio->bi_rw &= ~REQ_FLUSH;
417 mddev->pers->make_request(mddev, bio);
418 }
419
420 mddev->flush_bio = NULL;
421 wake_up(&mddev->sb_wait);
422 }
423
424 void md_flush_request(struct mddev *mddev, struct bio *bio)
425 {
426 spin_lock_irq(&mddev->lock);
427 wait_event_lock_irq(mddev->sb_wait,
428 !mddev->flush_bio,
429 mddev->lock);
430 mddev->flush_bio = bio;
431 spin_unlock_irq(&mddev->lock);
432
433 INIT_WORK(&mddev->flush_work, submit_flushes);
434 queue_work(md_wq, &mddev->flush_work);
435 }
436 EXPORT_SYMBOL(md_flush_request);
437
438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
439 {
440 struct mddev *mddev = cb->data;
441 md_wakeup_thread(mddev->thread);
442 kfree(cb);
443 }
444 EXPORT_SYMBOL(md_unplug);
445
446 static inline struct mddev *mddev_get(struct mddev *mddev)
447 {
448 atomic_inc(&mddev->active);
449 return mddev;
450 }
451
452 static void mddev_delayed_delete(struct work_struct *ws);
453
454 static void mddev_put(struct mddev *mddev)
455 {
456 struct bio_set *bs = NULL;
457
458 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
459 return;
460 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
461 mddev->ctime == 0 && !mddev->hold_active) {
462 /* Array is not configured at all, and not held active,
463 * so destroy it */
464 list_del_init(&mddev->all_mddevs);
465 bs = mddev->bio_set;
466 mddev->bio_set = NULL;
467 if (mddev->gendisk) {
468 /* We did a probe so need to clean up. Call
469 * queue_work inside the spinlock so that
470 * flush_workqueue() after mddev_find will
471 * succeed in waiting for the work to be done.
472 */
473 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
474 queue_work(md_misc_wq, &mddev->del_work);
475 } else
476 kfree(mddev);
477 }
478 spin_unlock(&all_mddevs_lock);
479 if (bs)
480 bioset_free(bs);
481 }
482
483 static void md_safemode_timeout(unsigned long data);
484
485 void mddev_init(struct mddev *mddev)
486 {
487 mutex_init(&mddev->open_mutex);
488 mutex_init(&mddev->reconfig_mutex);
489 mutex_init(&mddev->bitmap_info.mutex);
490 INIT_LIST_HEAD(&mddev->disks);
491 INIT_LIST_HEAD(&mddev->all_mddevs);
492 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
493 (unsigned long) mddev);
494 atomic_set(&mddev->active, 1);
495 atomic_set(&mddev->openers, 0);
496 atomic_set(&mddev->active_io, 0);
497 spin_lock_init(&mddev->lock);
498 atomic_set(&mddev->flush_pending, 0);
499 init_waitqueue_head(&mddev->sb_wait);
500 init_waitqueue_head(&mddev->recovery_wait);
501 mddev->reshape_position = MaxSector;
502 mddev->reshape_backwards = 0;
503 mddev->last_sync_action = "none";
504 mddev->resync_min = 0;
505 mddev->resync_max = MaxSector;
506 mddev->level = LEVEL_NONE;
507 }
508 EXPORT_SYMBOL_GPL(mddev_init);
509
510 static struct mddev *mddev_find(dev_t unit)
511 {
512 struct mddev *mddev, *new = NULL;
513
514 if (unit && MAJOR(unit) != MD_MAJOR)
515 unit &= ~((1<<MdpMinorShift)-1);
516
517 retry:
518 spin_lock(&all_mddevs_lock);
519
520 if (unit) {
521 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
522 if (mddev->unit == unit) {
523 mddev_get(mddev);
524 spin_unlock(&all_mddevs_lock);
525 kfree(new);
526 return mddev;
527 }
528
529 if (new) {
530 list_add(&new->all_mddevs, &all_mddevs);
531 spin_unlock(&all_mddevs_lock);
532 new->hold_active = UNTIL_IOCTL;
533 return new;
534 }
535 } else if (new) {
536 /* find an unused unit number */
537 static int next_minor = 512;
538 int start = next_minor;
539 int is_free = 0;
540 int dev = 0;
541 while (!is_free) {
542 dev = MKDEV(MD_MAJOR, next_minor);
543 next_minor++;
544 if (next_minor > MINORMASK)
545 next_minor = 0;
546 if (next_minor == start) {
547 /* Oh dear, all in use. */
548 spin_unlock(&all_mddevs_lock);
549 kfree(new);
550 return NULL;
551 }
552
553 is_free = 1;
554 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 if (mddev->unit == dev) {
556 is_free = 0;
557 break;
558 }
559 }
560 new->unit = dev;
561 new->md_minor = MINOR(dev);
562 new->hold_active = UNTIL_STOP;
563 list_add(&new->all_mddevs, &all_mddevs);
564 spin_unlock(&all_mddevs_lock);
565 return new;
566 }
567 spin_unlock(&all_mddevs_lock);
568
569 new = kzalloc(sizeof(*new), GFP_KERNEL);
570 if (!new)
571 return NULL;
572
573 new->unit = unit;
574 if (MAJOR(unit) == MD_MAJOR)
575 new->md_minor = MINOR(unit);
576 else
577 new->md_minor = MINOR(unit) >> MdpMinorShift;
578
579 mddev_init(new);
580
581 goto retry;
582 }
583
584 static struct attribute_group md_redundancy_group;
585
586 void mddev_unlock(struct mddev *mddev)
587 {
588 if (mddev->to_remove) {
589 /* These cannot be removed under reconfig_mutex as
590 * an access to the files will try to take reconfig_mutex
591 * while holding the file unremovable, which leads to
592 * a deadlock.
593 * So hold set sysfs_active while the remove in happeing,
594 * and anything else which might set ->to_remove or my
595 * otherwise change the sysfs namespace will fail with
596 * -EBUSY if sysfs_active is still set.
597 * We set sysfs_active under reconfig_mutex and elsewhere
598 * test it under the same mutex to ensure its correct value
599 * is seen.
600 */
601 struct attribute_group *to_remove = mddev->to_remove;
602 mddev->to_remove = NULL;
603 mddev->sysfs_active = 1;
604 mutex_unlock(&mddev->reconfig_mutex);
605
606 if (mddev->kobj.sd) {
607 if (to_remove != &md_redundancy_group)
608 sysfs_remove_group(&mddev->kobj, to_remove);
609 if (mddev->pers == NULL ||
610 mddev->pers->sync_request == NULL) {
611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 if (mddev->sysfs_action)
613 sysfs_put(mddev->sysfs_action);
614 mddev->sysfs_action = NULL;
615 }
616 }
617 mddev->sysfs_active = 0;
618 } else
619 mutex_unlock(&mddev->reconfig_mutex);
620
621 /* As we've dropped the mutex we need a spinlock to
622 * make sure the thread doesn't disappear
623 */
624 spin_lock(&pers_lock);
625 md_wakeup_thread(mddev->thread);
626 spin_unlock(&pers_lock);
627 }
628 EXPORT_SYMBOL_GPL(mddev_unlock);
629
630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
631 {
632 struct md_rdev *rdev;
633
634 rdev_for_each_rcu(rdev, mddev)
635 if (rdev->desc_nr == nr)
636 return rdev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
641
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 struct md_rdev *rdev;
645
646 rdev_for_each(rdev, mddev)
647 if (rdev->bdev->bd_dev == dev)
648 return rdev;
649
650 return NULL;
651 }
652
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 struct md_rdev *rdev;
656
657 rdev_for_each_rcu(rdev, mddev)
658 if (rdev->bdev->bd_dev == dev)
659 return rdev;
660
661 return NULL;
662 }
663
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 struct md_personality *pers;
667 list_for_each_entry(pers, &pers_list, list) {
668 if (level != LEVEL_NONE && pers->level == level)
669 return pers;
670 if (strcmp(pers->name, clevel)==0)
671 return pers;
672 }
673 return NULL;
674 }
675
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 rdev->sb_page = alloc_page(GFP_KERNEL);
686 if (!rdev->sb_page) {
687 printk(KERN_ALERT "md: out of memory.\n");
688 return -ENOMEM;
689 }
690
691 return 0;
692 }
693
694 void md_rdev_clear(struct md_rdev *rdev)
695 {
696 if (rdev->sb_page) {
697 put_page(rdev->sb_page);
698 rdev->sb_loaded = 0;
699 rdev->sb_page = NULL;
700 rdev->sb_start = 0;
701 rdev->sectors = 0;
702 }
703 if (rdev->bb_page) {
704 put_page(rdev->bb_page);
705 rdev->bb_page = NULL;
706 }
707 badblocks_exit(&rdev->badblocks);
708 }
709 EXPORT_SYMBOL_GPL(md_rdev_clear);
710
711 static void super_written(struct bio *bio)
712 {
713 struct md_rdev *rdev = bio->bi_private;
714 struct mddev *mddev = rdev->mddev;
715
716 if (bio->bi_error) {
717 printk("md: super_written gets error=%d\n", bio->bi_error);
718 md_error(mddev, rdev);
719 }
720
721 if (atomic_dec_and_test(&mddev->pending_writes))
722 wake_up(&mddev->sb_wait);
723 rdev_dec_pending(rdev, mddev);
724 bio_put(bio);
725 }
726
727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 sector_t sector, int size, struct page *page)
729 {
730 /* write first size bytes of page to sector of rdev
731 * Increment mddev->pending_writes before returning
732 * and decrement it on completion, waking up sb_wait
733 * if zero is reached.
734 * If an error occurred, call md_error
735 */
736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737
738 atomic_inc(&rdev->nr_pending);
739
740 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
741 bio->bi_iter.bi_sector = sector;
742 bio_add_page(bio, page, size, 0);
743 bio->bi_private = rdev;
744 bio->bi_end_io = super_written;
745
746 atomic_inc(&mddev->pending_writes);
747 submit_bio(WRITE_FLUSH_FUA, bio);
748 }
749
750 void md_super_wait(struct mddev *mddev)
751 {
752 /* wait for all superblock writes that were scheduled to complete */
753 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
754 }
755
756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
757 struct page *page, int rw, bool metadata_op)
758 {
759 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
760 int ret;
761
762 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
763 rdev->meta_bdev : rdev->bdev;
764 if (metadata_op)
765 bio->bi_iter.bi_sector = sector + rdev->sb_start;
766 else if (rdev->mddev->reshape_position != MaxSector &&
767 (rdev->mddev->reshape_backwards ==
768 (sector >= rdev->mddev->reshape_position)))
769 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
770 else
771 bio->bi_iter.bi_sector = sector + rdev->data_offset;
772 bio_add_page(bio, page, size, 0);
773 submit_bio_wait(rw, bio);
774
775 ret = !bio->bi_error;
776 bio_put(bio);
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(sync_page_io);
780
781 static int read_disk_sb(struct md_rdev *rdev, int size)
782 {
783 char b[BDEVNAME_SIZE];
784
785 if (rdev->sb_loaded)
786 return 0;
787
788 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
789 goto fail;
790 rdev->sb_loaded = 1;
791 return 0;
792
793 fail:
794 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
795 bdevname(rdev->bdev,b));
796 return -EINVAL;
797 }
798
799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 return sb1->set_uuid0 == sb2->set_uuid0 &&
802 sb1->set_uuid1 == sb2->set_uuid1 &&
803 sb1->set_uuid2 == sb2->set_uuid2 &&
804 sb1->set_uuid3 == sb2->set_uuid3;
805 }
806
807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 int ret;
810 mdp_super_t *tmp1, *tmp2;
811
812 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
813 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
814
815 if (!tmp1 || !tmp2) {
816 ret = 0;
817 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
818 goto abort;
819 }
820
821 *tmp1 = *sb1;
822 *tmp2 = *sb2;
823
824 /*
825 * nr_disks is not constant
826 */
827 tmp1->nr_disks = 0;
828 tmp2->nr_disks = 0;
829
830 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
831 abort:
832 kfree(tmp1);
833 kfree(tmp2);
834 return ret;
835 }
836
837 static u32 md_csum_fold(u32 csum)
838 {
839 csum = (csum & 0xffff) + (csum >> 16);
840 return (csum & 0xffff) + (csum >> 16);
841 }
842
843 static unsigned int calc_sb_csum(mdp_super_t *sb)
844 {
845 u64 newcsum = 0;
846 u32 *sb32 = (u32*)sb;
847 int i;
848 unsigned int disk_csum, csum;
849
850 disk_csum = sb->sb_csum;
851 sb->sb_csum = 0;
852
853 for (i = 0; i < MD_SB_BYTES/4 ; i++)
854 newcsum += sb32[i];
855 csum = (newcsum & 0xffffffff) + (newcsum>>32);
856
857 #ifdef CONFIG_ALPHA
858 /* This used to use csum_partial, which was wrong for several
859 * reasons including that different results are returned on
860 * different architectures. It isn't critical that we get exactly
861 * the same return value as before (we always csum_fold before
862 * testing, and that removes any differences). However as we
863 * know that csum_partial always returned a 16bit value on
864 * alphas, do a fold to maximise conformity to previous behaviour.
865 */
866 sb->sb_csum = md_csum_fold(disk_csum);
867 #else
868 sb->sb_csum = disk_csum;
869 #endif
870 return csum;
871 }
872
873 /*
874 * Handle superblock details.
875 * We want to be able to handle multiple superblock formats
876 * so we have a common interface to them all, and an array of
877 * different handlers.
878 * We rely on user-space to write the initial superblock, and support
879 * reading and updating of superblocks.
880 * Interface methods are:
881 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
882 * loads and validates a superblock on dev.
883 * if refdev != NULL, compare superblocks on both devices
884 * Return:
885 * 0 - dev has a superblock that is compatible with refdev
886 * 1 - dev has a superblock that is compatible and newer than refdev
887 * so dev should be used as the refdev in future
888 * -EINVAL superblock incompatible or invalid
889 * -othererror e.g. -EIO
890 *
891 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
892 * Verify that dev is acceptable into mddev.
893 * The first time, mddev->raid_disks will be 0, and data from
894 * dev should be merged in. Subsequent calls check that dev
895 * is new enough. Return 0 or -EINVAL
896 *
897 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
898 * Update the superblock for rdev with data in mddev
899 * This does not write to disc.
900 *
901 */
902
903 struct super_type {
904 char *name;
905 struct module *owner;
906 int (*load_super)(struct md_rdev *rdev,
907 struct md_rdev *refdev,
908 int minor_version);
909 int (*validate_super)(struct mddev *mddev,
910 struct md_rdev *rdev);
911 void (*sync_super)(struct mddev *mddev,
912 struct md_rdev *rdev);
913 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
914 sector_t num_sectors);
915 int (*allow_new_offset)(struct md_rdev *rdev,
916 unsigned long long new_offset);
917 };
918
919 /*
920 * Check that the given mddev has no bitmap.
921 *
922 * This function is called from the run method of all personalities that do not
923 * support bitmaps. It prints an error message and returns non-zero if mddev
924 * has a bitmap. Otherwise, it returns 0.
925 *
926 */
927 int md_check_no_bitmap(struct mddev *mddev)
928 {
929 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
930 return 0;
931 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
932 mdname(mddev), mddev->pers->name);
933 return 1;
934 }
935 EXPORT_SYMBOL(md_check_no_bitmap);
936
937 /*
938 * load_super for 0.90.0
939 */
940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
941 {
942 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
943 mdp_super_t *sb;
944 int ret;
945
946 /*
947 * Calculate the position of the superblock (512byte sectors),
948 * it's at the end of the disk.
949 *
950 * It also happens to be a multiple of 4Kb.
951 */
952 rdev->sb_start = calc_dev_sboffset(rdev);
953
954 ret = read_disk_sb(rdev, MD_SB_BYTES);
955 if (ret) return ret;
956
957 ret = -EINVAL;
958
959 bdevname(rdev->bdev, b);
960 sb = page_address(rdev->sb_page);
961
962 if (sb->md_magic != MD_SB_MAGIC) {
963 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
964 b);
965 goto abort;
966 }
967
968 if (sb->major_version != 0 ||
969 sb->minor_version < 90 ||
970 sb->minor_version > 91) {
971 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
972 sb->major_version, sb->minor_version,
973 b);
974 goto abort;
975 }
976
977 if (sb->raid_disks <= 0)
978 goto abort;
979
980 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
981 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
982 b);
983 goto abort;
984 }
985
986 rdev->preferred_minor = sb->md_minor;
987 rdev->data_offset = 0;
988 rdev->new_data_offset = 0;
989 rdev->sb_size = MD_SB_BYTES;
990 rdev->badblocks.shift = -1;
991
992 if (sb->level == LEVEL_MULTIPATH)
993 rdev->desc_nr = -1;
994 else
995 rdev->desc_nr = sb->this_disk.number;
996
997 if (!refdev) {
998 ret = 1;
999 } else {
1000 __u64 ev1, ev2;
1001 mdp_super_t *refsb = page_address(refdev->sb_page);
1002 if (!uuid_equal(refsb, sb)) {
1003 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1004 b, bdevname(refdev->bdev,b2));
1005 goto abort;
1006 }
1007 if (!sb_equal(refsb, sb)) {
1008 printk(KERN_WARNING "md: %s has same UUID"
1009 " but different superblock to %s\n",
1010 b, bdevname(refdev->bdev, b2));
1011 goto abort;
1012 }
1013 ev1 = md_event(sb);
1014 ev2 = md_event(refsb);
1015 if (ev1 > ev2)
1016 ret = 1;
1017 else
1018 ret = 0;
1019 }
1020 rdev->sectors = rdev->sb_start;
1021 /* Limit to 4TB as metadata cannot record more than that.
1022 * (not needed for Linear and RAID0 as metadata doesn't
1023 * record this size)
1024 */
1025 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1026 sb->level >= 1)
1027 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1028
1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 /* "this cannot possibly happen" ... */
1031 ret = -EINVAL;
1032
1033 abort:
1034 return ret;
1035 }
1036
1037 /*
1038 * validate_super for 0.90.0
1039 */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 mdp_disk_t *desc;
1043 mdp_super_t *sb = page_address(rdev->sb_page);
1044 __u64 ev1 = md_event(sb);
1045
1046 rdev->raid_disk = -1;
1047 clear_bit(Faulty, &rdev->flags);
1048 clear_bit(In_sync, &rdev->flags);
1049 clear_bit(Bitmap_sync, &rdev->flags);
1050 clear_bit(WriteMostly, &rdev->flags);
1051
1052 if (mddev->raid_disks == 0) {
1053 mddev->major_version = 0;
1054 mddev->minor_version = sb->minor_version;
1055 mddev->patch_version = sb->patch_version;
1056 mddev->external = 0;
1057 mddev->chunk_sectors = sb->chunk_size >> 9;
1058 mddev->ctime = sb->ctime;
1059 mddev->utime = sb->utime;
1060 mddev->level = sb->level;
1061 mddev->clevel[0] = 0;
1062 mddev->layout = sb->layout;
1063 mddev->raid_disks = sb->raid_disks;
1064 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 mddev->events = ev1;
1066 mddev->bitmap_info.offset = 0;
1067 mddev->bitmap_info.space = 0;
1068 /* bitmap can use 60 K after the 4K superblocks */
1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 mddev->reshape_backwards = 0;
1072
1073 if (mddev->minor_version >= 91) {
1074 mddev->reshape_position = sb->reshape_position;
1075 mddev->delta_disks = sb->delta_disks;
1076 mddev->new_level = sb->new_level;
1077 mddev->new_layout = sb->new_layout;
1078 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 if (mddev->delta_disks < 0)
1080 mddev->reshape_backwards = 1;
1081 } else {
1082 mddev->reshape_position = MaxSector;
1083 mddev->delta_disks = 0;
1084 mddev->new_level = mddev->level;
1085 mddev->new_layout = mddev->layout;
1086 mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 }
1088
1089 if (sb->state & (1<<MD_SB_CLEAN))
1090 mddev->recovery_cp = MaxSector;
1091 else {
1092 if (sb->events_hi == sb->cp_events_hi &&
1093 sb->events_lo == sb->cp_events_lo) {
1094 mddev->recovery_cp = sb->recovery_cp;
1095 } else
1096 mddev->recovery_cp = 0;
1097 }
1098
1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104 mddev->max_disks = MD_SB_DISKS;
1105
1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 mddev->bitmap_info.file == NULL) {
1108 mddev->bitmap_info.offset =
1109 mddev->bitmap_info.default_offset;
1110 mddev->bitmap_info.space =
1111 mddev->bitmap_info.default_space;
1112 }
1113
1114 } else if (mddev->pers == NULL) {
1115 /* Insist on good event counter while assembling, except
1116 * for spares (which don't need an event count) */
1117 ++ev1;
1118 if (sb->disks[rdev->desc_nr].state & (
1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 if (ev1 < mddev->events)
1121 return -EINVAL;
1122 } else if (mddev->bitmap) {
1123 /* if adding to array with a bitmap, then we can accept an
1124 * older device ... but not too old.
1125 */
1126 if (ev1 < mddev->bitmap->events_cleared)
1127 return 0;
1128 if (ev1 < mddev->events)
1129 set_bit(Bitmap_sync, &rdev->flags);
1130 } else {
1131 if (ev1 < mddev->events)
1132 /* just a hot-add of a new device, leave raid_disk at -1 */
1133 return 0;
1134 }
1135
1136 if (mddev->level != LEVEL_MULTIPATH) {
1137 desc = sb->disks + rdev->desc_nr;
1138
1139 if (desc->state & (1<<MD_DISK_FAULTY))
1140 set_bit(Faulty, &rdev->flags);
1141 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 desc->raid_disk < mddev->raid_disks */) {
1143 set_bit(In_sync, &rdev->flags);
1144 rdev->raid_disk = desc->raid_disk;
1145 rdev->saved_raid_disk = desc->raid_disk;
1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 /* active but not in sync implies recovery up to
1148 * reshape position. We don't know exactly where
1149 * that is, so set to zero for now */
1150 if (mddev->minor_version >= 91) {
1151 rdev->recovery_offset = 0;
1152 rdev->raid_disk = desc->raid_disk;
1153 }
1154 }
1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 set_bit(WriteMostly, &rdev->flags);
1157 } else /* MULTIPATH are always insync */
1158 set_bit(In_sync, &rdev->flags);
1159 return 0;
1160 }
1161
1162 /*
1163 * sync_super for 0.90.0
1164 */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 mdp_super_t *sb;
1168 struct md_rdev *rdev2;
1169 int next_spare = mddev->raid_disks;
1170
1171 /* make rdev->sb match mddev data..
1172 *
1173 * 1/ zero out disks
1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 * 3/ any empty disks < next_spare become removed
1176 *
1177 * disks[0] gets initialised to REMOVED because
1178 * we cannot be sure from other fields if it has
1179 * been initialised or not.
1180 */
1181 int i;
1182 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184 rdev->sb_size = MD_SB_BYTES;
1185
1186 sb = page_address(rdev->sb_page);
1187
1188 memset(sb, 0, sizeof(*sb));
1189
1190 sb->md_magic = MD_SB_MAGIC;
1191 sb->major_version = mddev->major_version;
1192 sb->patch_version = mddev->patch_version;
1193 sb->gvalid_words = 0; /* ignored */
1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1200 sb->level = mddev->level;
1201 sb->size = mddev->dev_sectors / 2;
1202 sb->raid_disks = mddev->raid_disks;
1203 sb->md_minor = mddev->md_minor;
1204 sb->not_persistent = 0;
1205 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1206 sb->state = 0;
1207 sb->events_hi = (mddev->events>>32);
1208 sb->events_lo = (u32)mddev->events;
1209
1210 if (mddev->reshape_position == MaxSector)
1211 sb->minor_version = 90;
1212 else {
1213 sb->minor_version = 91;
1214 sb->reshape_position = mddev->reshape_position;
1215 sb->new_level = mddev->new_level;
1216 sb->delta_disks = mddev->delta_disks;
1217 sb->new_layout = mddev->new_layout;
1218 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 }
1220 mddev->minor_version = sb->minor_version;
1221 if (mddev->in_sync)
1222 {
1223 sb->recovery_cp = mddev->recovery_cp;
1224 sb->cp_events_hi = (mddev->events>>32);
1225 sb->cp_events_lo = (u32)mddev->events;
1226 if (mddev->recovery_cp == MaxSector)
1227 sb->state = (1<< MD_SB_CLEAN);
1228 } else
1229 sb->recovery_cp = 0;
1230
1231 sb->layout = mddev->layout;
1232 sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 rdev_for_each(rdev2, mddev) {
1239 mdp_disk_t *d;
1240 int desc_nr;
1241 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243 if (rdev2->raid_disk >= 0 &&
1244 sb->minor_version >= 91)
1245 /* we have nowhere to store the recovery_offset,
1246 * but if it is not below the reshape_position,
1247 * we can piggy-back on that.
1248 */
1249 is_active = 1;
1250 if (rdev2->raid_disk < 0 ||
1251 test_bit(Faulty, &rdev2->flags))
1252 is_active = 0;
1253 if (is_active)
1254 desc_nr = rdev2->raid_disk;
1255 else
1256 desc_nr = next_spare++;
1257 rdev2->desc_nr = desc_nr;
1258 d = &sb->disks[rdev2->desc_nr];
1259 nr_disks++;
1260 d->number = rdev2->desc_nr;
1261 d->major = MAJOR(rdev2->bdev->bd_dev);
1262 d->minor = MINOR(rdev2->bdev->bd_dev);
1263 if (is_active)
1264 d->raid_disk = rdev2->raid_disk;
1265 else
1266 d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 if (test_bit(Faulty, &rdev2->flags))
1268 d->state = (1<<MD_DISK_FAULTY);
1269 else if (is_active) {
1270 d->state = (1<<MD_DISK_ACTIVE);
1271 if (test_bit(In_sync, &rdev2->flags))
1272 d->state |= (1<<MD_DISK_SYNC);
1273 active++;
1274 working++;
1275 } else {
1276 d->state = 0;
1277 spare++;
1278 working++;
1279 }
1280 if (test_bit(WriteMostly, &rdev2->flags))
1281 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 }
1283 /* now set the "removed" and "faulty" bits on any missing devices */
1284 for (i=0 ; i < mddev->raid_disks ; i++) {
1285 mdp_disk_t *d = &sb->disks[i];
1286 if (d->state == 0 && d->number == 0) {
1287 d->number = i;
1288 d->raid_disk = i;
1289 d->state = (1<<MD_DISK_REMOVED);
1290 d->state |= (1<<MD_DISK_FAULTY);
1291 failed++;
1292 }
1293 }
1294 sb->nr_disks = nr_disks;
1295 sb->active_disks = active;
1296 sb->working_disks = working;
1297 sb->failed_disks = failed;
1298 sb->spare_disks = spare;
1299
1300 sb->this_disk = sb->disks[rdev->desc_nr];
1301 sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305 * rdev_size_change for 0.90.0
1306 */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 return 0; /* component must fit device */
1312 if (rdev->mddev->bitmap_info.offset)
1313 return 0; /* can't move bitmap */
1314 rdev->sb_start = calc_dev_sboffset(rdev);
1315 if (!num_sectors || num_sectors > rdev->sb_start)
1316 num_sectors = rdev->sb_start;
1317 /* Limit to 4TB as metadata cannot record more than that.
1318 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 */
1320 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1321 rdev->mddev->level >= 1)
1322 num_sectors = (sector_t)(2ULL << 32) - 2;
1323 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1324 rdev->sb_page);
1325 md_super_wait(rdev->mddev);
1326 return num_sectors;
1327 }
1328
1329 static int
1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1331 {
1332 /* non-zero offset changes not possible with v0.90 */
1333 return new_offset == 0;
1334 }
1335
1336 /*
1337 * version 1 superblock
1338 */
1339
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1341 {
1342 __le32 disk_csum;
1343 u32 csum;
1344 unsigned long long newcsum;
1345 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 __le32 *isuper = (__le32*)sb;
1347
1348 disk_csum = sb->sb_csum;
1349 sb->sb_csum = 0;
1350 newcsum = 0;
1351 for (; size >= 4; size -= 4)
1352 newcsum += le32_to_cpu(*isuper++);
1353
1354 if (size == 2)
1355 newcsum += le16_to_cpu(*(__le16*) isuper);
1356
1357 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1358 sb->sb_csum = disk_csum;
1359 return cpu_to_le32(csum);
1360 }
1361
1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1363 {
1364 struct mdp_superblock_1 *sb;
1365 int ret;
1366 sector_t sb_start;
1367 sector_t sectors;
1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 int bmask;
1370
1371 /*
1372 * Calculate the position of the superblock in 512byte sectors.
1373 * It is always aligned to a 4K boundary and
1374 * depeding on minor_version, it can be:
1375 * 0: At least 8K, but less than 12K, from end of device
1376 * 1: At start of device
1377 * 2: 4K from start of device.
1378 */
1379 switch(minor_version) {
1380 case 0:
1381 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1382 sb_start -= 8*2;
1383 sb_start &= ~(sector_t)(4*2-1);
1384 break;
1385 case 1:
1386 sb_start = 0;
1387 break;
1388 case 2:
1389 sb_start = 8;
1390 break;
1391 default:
1392 return -EINVAL;
1393 }
1394 rdev->sb_start = sb_start;
1395
1396 /* superblock is rarely larger than 1K, but it can be larger,
1397 * and it is safe to read 4k, so we do that
1398 */
1399 ret = read_disk_sb(rdev, 4096);
1400 if (ret) return ret;
1401
1402 sb = page_address(rdev->sb_page);
1403
1404 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1405 sb->major_version != cpu_to_le32(1) ||
1406 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1407 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1408 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1409 return -EINVAL;
1410
1411 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1412 printk("md: invalid superblock checksum on %s\n",
1413 bdevname(rdev->bdev,b));
1414 return -EINVAL;
1415 }
1416 if (le64_to_cpu(sb->data_size) < 10) {
1417 printk("md: data_size too small on %s\n",
1418 bdevname(rdev->bdev,b));
1419 return -EINVAL;
1420 }
1421 if (sb->pad0 ||
1422 sb->pad3[0] ||
1423 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1424 /* Some padding is non-zero, might be a new feature */
1425 return -EINVAL;
1426
1427 rdev->preferred_minor = 0xffff;
1428 rdev->data_offset = le64_to_cpu(sb->data_offset);
1429 rdev->new_data_offset = rdev->data_offset;
1430 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1431 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1432 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1433 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1434
1435 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1436 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1437 if (rdev->sb_size & bmask)
1438 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1439
1440 if (minor_version
1441 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1442 return -EINVAL;
1443 if (minor_version
1444 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1445 return -EINVAL;
1446
1447 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1448 rdev->desc_nr = -1;
1449 else
1450 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1451
1452 if (!rdev->bb_page) {
1453 rdev->bb_page = alloc_page(GFP_KERNEL);
1454 if (!rdev->bb_page)
1455 return -ENOMEM;
1456 }
1457 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1458 rdev->badblocks.count == 0) {
1459 /* need to load the bad block list.
1460 * Currently we limit it to one page.
1461 */
1462 s32 offset;
1463 sector_t bb_sector;
1464 u64 *bbp;
1465 int i;
1466 int sectors = le16_to_cpu(sb->bblog_size);
1467 if (sectors > (PAGE_SIZE / 512))
1468 return -EINVAL;
1469 offset = le32_to_cpu(sb->bblog_offset);
1470 if (offset == 0)
1471 return -EINVAL;
1472 bb_sector = (long long)offset;
1473 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1474 rdev->bb_page, READ, true))
1475 return -EIO;
1476 bbp = (u64 *)page_address(rdev->bb_page);
1477 rdev->badblocks.shift = sb->bblog_shift;
1478 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1479 u64 bb = le64_to_cpu(*bbp);
1480 int count = bb & (0x3ff);
1481 u64 sector = bb >> 10;
1482 sector <<= sb->bblog_shift;
1483 count <<= sb->bblog_shift;
1484 if (bb + 1 == 0)
1485 break;
1486 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1487 return -EINVAL;
1488 }
1489 } else if (sb->bblog_offset != 0)
1490 rdev->badblocks.shift = 0;
1491
1492 if (!refdev) {
1493 ret = 1;
1494 } else {
1495 __u64 ev1, ev2;
1496 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1497
1498 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1499 sb->level != refsb->level ||
1500 sb->layout != refsb->layout ||
1501 sb->chunksize != refsb->chunksize) {
1502 printk(KERN_WARNING "md: %s has strangely different"
1503 " superblock to %s\n",
1504 bdevname(rdev->bdev,b),
1505 bdevname(refdev->bdev,b2));
1506 return -EINVAL;
1507 }
1508 ev1 = le64_to_cpu(sb->events);
1509 ev2 = le64_to_cpu(refsb->events);
1510
1511 if (ev1 > ev2)
1512 ret = 1;
1513 else
1514 ret = 0;
1515 }
1516 if (minor_version) {
1517 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1518 sectors -= rdev->data_offset;
1519 } else
1520 sectors = rdev->sb_start;
1521 if (sectors < le64_to_cpu(sb->data_size))
1522 return -EINVAL;
1523 rdev->sectors = le64_to_cpu(sb->data_size);
1524 return ret;
1525 }
1526
1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1528 {
1529 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1530 __u64 ev1 = le64_to_cpu(sb->events);
1531
1532 rdev->raid_disk = -1;
1533 clear_bit(Faulty, &rdev->flags);
1534 clear_bit(In_sync, &rdev->flags);
1535 clear_bit(Bitmap_sync, &rdev->flags);
1536 clear_bit(WriteMostly, &rdev->flags);
1537
1538 if (mddev->raid_disks == 0) {
1539 mddev->major_version = 1;
1540 mddev->patch_version = 0;
1541 mddev->external = 0;
1542 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1543 mddev->ctime = le64_to_cpu(sb->ctime);
1544 mddev->utime = le64_to_cpu(sb->utime);
1545 mddev->level = le32_to_cpu(sb->level);
1546 mddev->clevel[0] = 0;
1547 mddev->layout = le32_to_cpu(sb->layout);
1548 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1549 mddev->dev_sectors = le64_to_cpu(sb->size);
1550 mddev->events = ev1;
1551 mddev->bitmap_info.offset = 0;
1552 mddev->bitmap_info.space = 0;
1553 /* Default location for bitmap is 1K after superblock
1554 * using 3K - total of 4K
1555 */
1556 mddev->bitmap_info.default_offset = 1024 >> 9;
1557 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1558 mddev->reshape_backwards = 0;
1559
1560 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1561 memcpy(mddev->uuid, sb->set_uuid, 16);
1562
1563 mddev->max_disks = (4096-256)/2;
1564
1565 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1566 mddev->bitmap_info.file == NULL) {
1567 mddev->bitmap_info.offset =
1568 (__s32)le32_to_cpu(sb->bitmap_offset);
1569 /* Metadata doesn't record how much space is available.
1570 * For 1.0, we assume we can use up to the superblock
1571 * if before, else to 4K beyond superblock.
1572 * For others, assume no change is possible.
1573 */
1574 if (mddev->minor_version > 0)
1575 mddev->bitmap_info.space = 0;
1576 else if (mddev->bitmap_info.offset > 0)
1577 mddev->bitmap_info.space =
1578 8 - mddev->bitmap_info.offset;
1579 else
1580 mddev->bitmap_info.space =
1581 -mddev->bitmap_info.offset;
1582 }
1583
1584 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1585 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1586 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1587 mddev->new_level = le32_to_cpu(sb->new_level);
1588 mddev->new_layout = le32_to_cpu(sb->new_layout);
1589 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1590 if (mddev->delta_disks < 0 ||
1591 (mddev->delta_disks == 0 &&
1592 (le32_to_cpu(sb->feature_map)
1593 & MD_FEATURE_RESHAPE_BACKWARDS)))
1594 mddev->reshape_backwards = 1;
1595 } else {
1596 mddev->reshape_position = MaxSector;
1597 mddev->delta_disks = 0;
1598 mddev->new_level = mddev->level;
1599 mddev->new_layout = mddev->layout;
1600 mddev->new_chunk_sectors = mddev->chunk_sectors;
1601 }
1602
1603 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1604 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1605 if (mddev->recovery_cp == MaxSector)
1606 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1607 }
1608 } else if (mddev->pers == NULL) {
1609 /* Insist of good event counter while assembling, except for
1610 * spares (which don't need an event count) */
1611 ++ev1;
1612 if (rdev->desc_nr >= 0 &&
1613 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 if (ev1 < mddev->events)
1617 return -EINVAL;
1618 } else if (mddev->bitmap) {
1619 /* If adding to array with a bitmap, then we can accept an
1620 * older device, but not too old.
1621 */
1622 if (ev1 < mddev->bitmap->events_cleared)
1623 return 0;
1624 if (ev1 < mddev->events)
1625 set_bit(Bitmap_sync, &rdev->flags);
1626 } else {
1627 if (ev1 < mddev->events)
1628 /* just a hot-add of a new device, leave raid_disk at -1 */
1629 return 0;
1630 }
1631 if (mddev->level != LEVEL_MULTIPATH) {
1632 int role;
1633 if (rdev->desc_nr < 0 ||
1634 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 role = MD_DISK_ROLE_SPARE;
1636 rdev->desc_nr = -1;
1637 } else
1638 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 switch(role) {
1640 case MD_DISK_ROLE_SPARE: /* spare */
1641 break;
1642 case MD_DISK_ROLE_FAULTY: /* faulty */
1643 set_bit(Faulty, &rdev->flags);
1644 break;
1645 case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 /* journal device without journal feature */
1648 printk(KERN_WARNING
1649 "md: journal device provided without journal feature, ignoring the device\n");
1650 return -EINVAL;
1651 }
1652 set_bit(Journal, &rdev->flags);
1653 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 rdev->raid_disk = 0;
1655 break;
1656 default:
1657 rdev->saved_raid_disk = role;
1658 if ((le32_to_cpu(sb->feature_map) &
1659 MD_FEATURE_RECOVERY_OFFSET)) {
1660 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1661 if (!(le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_BITMAP))
1663 rdev->saved_raid_disk = -1;
1664 } else
1665 set_bit(In_sync, &rdev->flags);
1666 rdev->raid_disk = role;
1667 break;
1668 }
1669 if (sb->devflags & WriteMostly1)
1670 set_bit(WriteMostly, &rdev->flags);
1671 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1672 set_bit(Replacement, &rdev->flags);
1673 } else /* MULTIPATH are always insync */
1674 set_bit(In_sync, &rdev->flags);
1675
1676 return 0;
1677 }
1678
1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 struct mdp_superblock_1 *sb;
1682 struct md_rdev *rdev2;
1683 int max_dev, i;
1684 /* make rdev->sb match mddev and rdev data. */
1685
1686 sb = page_address(rdev->sb_page);
1687
1688 sb->feature_map = 0;
1689 sb->pad0 = 0;
1690 sb->recovery_offset = cpu_to_le64(0);
1691 memset(sb->pad3, 0, sizeof(sb->pad3));
1692
1693 sb->utime = cpu_to_le64((__u64)mddev->utime);
1694 sb->events = cpu_to_le64(mddev->events);
1695 if (mddev->in_sync)
1696 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1697 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1698 sb->resync_offset = cpu_to_le64(MaxSector);
1699 else
1700 sb->resync_offset = cpu_to_le64(0);
1701
1702 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1703
1704 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1705 sb->size = cpu_to_le64(mddev->dev_sectors);
1706 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1707 sb->level = cpu_to_le32(mddev->level);
1708 sb->layout = cpu_to_le32(mddev->layout);
1709
1710 if (test_bit(WriteMostly, &rdev->flags))
1711 sb->devflags |= WriteMostly1;
1712 else
1713 sb->devflags &= ~WriteMostly1;
1714 sb->data_offset = cpu_to_le64(rdev->data_offset);
1715 sb->data_size = cpu_to_le64(rdev->sectors);
1716
1717 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1718 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1719 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1720 }
1721
1722 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1723 !test_bit(In_sync, &rdev->flags)) {
1724 sb->feature_map |=
1725 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1726 sb->recovery_offset =
1727 cpu_to_le64(rdev->recovery_offset);
1728 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1729 sb->feature_map |=
1730 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1731 }
1732 /* Note: recovery_offset and journal_tail share space */
1733 if (test_bit(Journal, &rdev->flags))
1734 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1735 if (test_bit(Replacement, &rdev->flags))
1736 sb->feature_map |=
1737 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1738
1739 if (mddev->reshape_position != MaxSector) {
1740 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1741 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1742 sb->new_layout = cpu_to_le32(mddev->new_layout);
1743 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1744 sb->new_level = cpu_to_le32(mddev->new_level);
1745 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1746 if (mddev->delta_disks == 0 &&
1747 mddev->reshape_backwards)
1748 sb->feature_map
1749 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1750 if (rdev->new_data_offset != rdev->data_offset) {
1751 sb->feature_map
1752 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1753 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1754 - rdev->data_offset));
1755 }
1756 }
1757
1758 if (mddev_is_clustered(mddev))
1759 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1760
1761 if (rdev->badblocks.count == 0)
1762 /* Nothing to do for bad blocks*/ ;
1763 else if (sb->bblog_offset == 0)
1764 /* Cannot record bad blocks on this device */
1765 md_error(mddev, rdev);
1766 else {
1767 struct badblocks *bb = &rdev->badblocks;
1768 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1769 u64 *p = bb->page;
1770 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1771 if (bb->changed) {
1772 unsigned seq;
1773
1774 retry:
1775 seq = read_seqbegin(&bb->lock);
1776
1777 memset(bbp, 0xff, PAGE_SIZE);
1778
1779 for (i = 0 ; i < bb->count ; i++) {
1780 u64 internal_bb = p[i];
1781 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1782 | BB_LEN(internal_bb));
1783 bbp[i] = cpu_to_le64(store_bb);
1784 }
1785 bb->changed = 0;
1786 if (read_seqretry(&bb->lock, seq))
1787 goto retry;
1788
1789 bb->sector = (rdev->sb_start +
1790 (int)le32_to_cpu(sb->bblog_offset));
1791 bb->size = le16_to_cpu(sb->bblog_size);
1792 }
1793 }
1794
1795 max_dev = 0;
1796 rdev_for_each(rdev2, mddev)
1797 if (rdev2->desc_nr+1 > max_dev)
1798 max_dev = rdev2->desc_nr+1;
1799
1800 if (max_dev > le32_to_cpu(sb->max_dev)) {
1801 int bmask;
1802 sb->max_dev = cpu_to_le32(max_dev);
1803 rdev->sb_size = max_dev * 2 + 256;
1804 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1805 if (rdev->sb_size & bmask)
1806 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1807 } else
1808 max_dev = le32_to_cpu(sb->max_dev);
1809
1810 for (i=0; i<max_dev;i++)
1811 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1812
1813 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1815
1816 rdev_for_each(rdev2, mddev) {
1817 i = rdev2->desc_nr;
1818 if (test_bit(Faulty, &rdev2->flags))
1819 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1820 else if (test_bit(In_sync, &rdev2->flags))
1821 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822 else if (test_bit(Journal, &rdev2->flags))
1823 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1824 else if (rdev2->raid_disk >= 0)
1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 else
1827 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1828 }
1829
1830 sb->sb_csum = calc_sb_1_csum(sb);
1831 }
1832
1833 static unsigned long long
1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1835 {
1836 struct mdp_superblock_1 *sb;
1837 sector_t max_sectors;
1838 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1839 return 0; /* component must fit device */
1840 if (rdev->data_offset != rdev->new_data_offset)
1841 return 0; /* too confusing */
1842 if (rdev->sb_start < rdev->data_offset) {
1843 /* minor versions 1 and 2; superblock before data */
1844 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1845 max_sectors -= rdev->data_offset;
1846 if (!num_sectors || num_sectors > max_sectors)
1847 num_sectors = max_sectors;
1848 } else if (rdev->mddev->bitmap_info.offset) {
1849 /* minor version 0 with bitmap we can't move */
1850 return 0;
1851 } else {
1852 /* minor version 0; superblock after data */
1853 sector_t sb_start;
1854 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1855 sb_start &= ~(sector_t)(4*2 - 1);
1856 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1857 if (!num_sectors || num_sectors > max_sectors)
1858 num_sectors = max_sectors;
1859 rdev->sb_start = sb_start;
1860 }
1861 sb = page_address(rdev->sb_page);
1862 sb->data_size = cpu_to_le64(num_sectors);
1863 sb->super_offset = rdev->sb_start;
1864 sb->sb_csum = calc_sb_1_csum(sb);
1865 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1866 rdev->sb_page);
1867 md_super_wait(rdev->mddev);
1868 return num_sectors;
1869
1870 }
1871
1872 static int
1873 super_1_allow_new_offset(struct md_rdev *rdev,
1874 unsigned long long new_offset)
1875 {
1876 /* All necessary checks on new >= old have been done */
1877 struct bitmap *bitmap;
1878 if (new_offset >= rdev->data_offset)
1879 return 1;
1880
1881 /* with 1.0 metadata, there is no metadata to tread on
1882 * so we can always move back */
1883 if (rdev->mddev->minor_version == 0)
1884 return 1;
1885
1886 /* otherwise we must be sure not to step on
1887 * any metadata, so stay:
1888 * 36K beyond start of superblock
1889 * beyond end of badblocks
1890 * beyond write-intent bitmap
1891 */
1892 if (rdev->sb_start + (32+4)*2 > new_offset)
1893 return 0;
1894 bitmap = rdev->mddev->bitmap;
1895 if (bitmap && !rdev->mddev->bitmap_info.file &&
1896 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1897 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1898 return 0;
1899 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1900 return 0;
1901
1902 return 1;
1903 }
1904
1905 static struct super_type super_types[] = {
1906 [0] = {
1907 .name = "0.90.0",
1908 .owner = THIS_MODULE,
1909 .load_super = super_90_load,
1910 .validate_super = super_90_validate,
1911 .sync_super = super_90_sync,
1912 .rdev_size_change = super_90_rdev_size_change,
1913 .allow_new_offset = super_90_allow_new_offset,
1914 },
1915 [1] = {
1916 .name = "md-1",
1917 .owner = THIS_MODULE,
1918 .load_super = super_1_load,
1919 .validate_super = super_1_validate,
1920 .sync_super = super_1_sync,
1921 .rdev_size_change = super_1_rdev_size_change,
1922 .allow_new_offset = super_1_allow_new_offset,
1923 },
1924 };
1925
1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 if (mddev->sync_super) {
1929 mddev->sync_super(mddev, rdev);
1930 return;
1931 }
1932
1933 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1934
1935 super_types[mddev->major_version].sync_super(mddev, rdev);
1936 }
1937
1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1939 {
1940 struct md_rdev *rdev, *rdev2;
1941
1942 rcu_read_lock();
1943 rdev_for_each_rcu(rdev, mddev1) {
1944 if (test_bit(Faulty, &rdev->flags) ||
1945 test_bit(Journal, &rdev->flags) ||
1946 rdev->raid_disk == -1)
1947 continue;
1948 rdev_for_each_rcu(rdev2, mddev2) {
1949 if (test_bit(Faulty, &rdev2->flags) ||
1950 test_bit(Journal, &rdev2->flags) ||
1951 rdev2->raid_disk == -1)
1952 continue;
1953 if (rdev->bdev->bd_contains ==
1954 rdev2->bdev->bd_contains) {
1955 rcu_read_unlock();
1956 return 1;
1957 }
1958 }
1959 }
1960 rcu_read_unlock();
1961 return 0;
1962 }
1963
1964 static LIST_HEAD(pending_raid_disks);
1965
1966 /*
1967 * Try to register data integrity profile for an mddev
1968 *
1969 * This is called when an array is started and after a disk has been kicked
1970 * from the array. It only succeeds if all working and active component devices
1971 * are integrity capable with matching profiles.
1972 */
1973 int md_integrity_register(struct mddev *mddev)
1974 {
1975 struct md_rdev *rdev, *reference = NULL;
1976
1977 if (list_empty(&mddev->disks))
1978 return 0; /* nothing to do */
1979 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1980 return 0; /* shouldn't register, or already is */
1981 rdev_for_each(rdev, mddev) {
1982 /* skip spares and non-functional disks */
1983 if (test_bit(Faulty, &rdev->flags))
1984 continue;
1985 if (rdev->raid_disk < 0)
1986 continue;
1987 if (!reference) {
1988 /* Use the first rdev as the reference */
1989 reference = rdev;
1990 continue;
1991 }
1992 /* does this rdev's profile match the reference profile? */
1993 if (blk_integrity_compare(reference->bdev->bd_disk,
1994 rdev->bdev->bd_disk) < 0)
1995 return -EINVAL;
1996 }
1997 if (!reference || !bdev_get_integrity(reference->bdev))
1998 return 0;
1999 /*
2000 * All component devices are integrity capable and have matching
2001 * profiles, register the common profile for the md device.
2002 */
2003 blk_integrity_register(mddev->gendisk,
2004 bdev_get_integrity(reference->bdev));
2005
2006 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2007 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2008 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2009 mdname(mddev));
2010 return -EINVAL;
2011 }
2012 return 0;
2013 }
2014 EXPORT_SYMBOL(md_integrity_register);
2015
2016 /*
2017 * Attempt to add an rdev, but only if it is consistent with the current
2018 * integrity profile
2019 */
2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 struct blk_integrity *bi_rdev;
2023 struct blk_integrity *bi_mddev;
2024 char name[BDEVNAME_SIZE];
2025
2026 if (!mddev->gendisk)
2027 return 0;
2028
2029 bi_rdev = bdev_get_integrity(rdev->bdev);
2030 bi_mddev = blk_get_integrity(mddev->gendisk);
2031
2032 if (!bi_mddev) /* nothing to do */
2033 return 0;
2034
2035 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2036 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2037 mdname(mddev), bdevname(rdev->bdev, name));
2038 return -ENXIO;
2039 }
2040
2041 return 0;
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 char b[BDEVNAME_SIZE];
2048 struct kobject *ko;
2049 int err;
2050
2051 /* prevent duplicates */
2052 if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 return -EEXIST;
2054
2055 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 if (!test_bit(Journal, &rdev->flags) &&
2057 rdev->sectors &&
2058 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2059 if (mddev->pers) {
2060 /* Cannot change size, so fail
2061 * If mddev->level <= 0, then we don't care
2062 * about aligning sizes (e.g. linear)
2063 */
2064 if (mddev->level > 0)
2065 return -ENOSPC;
2066 } else
2067 mddev->dev_sectors = rdev->sectors;
2068 }
2069
2070 /* Verify rdev->desc_nr is unique.
2071 * If it is -1, assign a free number, else
2072 * check number is not in use
2073 */
2074 rcu_read_lock();
2075 if (rdev->desc_nr < 0) {
2076 int choice = 0;
2077 if (mddev->pers)
2078 choice = mddev->raid_disks;
2079 while (md_find_rdev_nr_rcu(mddev, choice))
2080 choice++;
2081 rdev->desc_nr = choice;
2082 } else {
2083 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2084 rcu_read_unlock();
2085 return -EBUSY;
2086 }
2087 }
2088 rcu_read_unlock();
2089 if (!test_bit(Journal, &rdev->flags) &&
2090 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2091 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2092 mdname(mddev), mddev->max_disks);
2093 return -EBUSY;
2094 }
2095 bdevname(rdev->bdev,b);
2096 strreplace(b, '/', '!');
2097
2098 rdev->mddev = mddev;
2099 printk(KERN_INFO "md: bind<%s>\n", b);
2100
2101 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2102 goto fail;
2103
2104 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2105 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2106 /* failure here is OK */;
2107 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2108
2109 list_add_rcu(&rdev->same_set, &mddev->disks);
2110 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2111
2112 /* May as well allow recovery to be retried once */
2113 mddev->recovery_disabled++;
2114
2115 return 0;
2116
2117 fail:
2118 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2119 b, mdname(mddev));
2120 return err;
2121 }
2122
2123 static void md_delayed_delete(struct work_struct *ws)
2124 {
2125 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2126 kobject_del(&rdev->kobj);
2127 kobject_put(&rdev->kobj);
2128 }
2129
2130 static void unbind_rdev_from_array(struct md_rdev *rdev)
2131 {
2132 char b[BDEVNAME_SIZE];
2133
2134 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2135 list_del_rcu(&rdev->same_set);
2136 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2137 rdev->mddev = NULL;
2138 sysfs_remove_link(&rdev->kobj, "block");
2139 sysfs_put(rdev->sysfs_state);
2140 rdev->sysfs_state = NULL;
2141 rdev->badblocks.count = 0;
2142 /* We need to delay this, otherwise we can deadlock when
2143 * writing to 'remove' to "dev/state". We also need
2144 * to delay it due to rcu usage.
2145 */
2146 synchronize_rcu();
2147 INIT_WORK(&rdev->del_work, md_delayed_delete);
2148 kobject_get(&rdev->kobj);
2149 queue_work(md_misc_wq, &rdev->del_work);
2150 }
2151
2152 /*
2153 * prevent the device from being mounted, repartitioned or
2154 * otherwise reused by a RAID array (or any other kernel
2155 * subsystem), by bd_claiming the device.
2156 */
2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2158 {
2159 int err = 0;
2160 struct block_device *bdev;
2161 char b[BDEVNAME_SIZE];
2162
2163 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2164 shared ? (struct md_rdev *)lock_rdev : rdev);
2165 if (IS_ERR(bdev)) {
2166 printk(KERN_ERR "md: could not open %s.\n",
2167 __bdevname(dev, b));
2168 return PTR_ERR(bdev);
2169 }
2170 rdev->bdev = bdev;
2171 return err;
2172 }
2173
2174 static void unlock_rdev(struct md_rdev *rdev)
2175 {
2176 struct block_device *bdev = rdev->bdev;
2177 rdev->bdev = NULL;
2178 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2179 }
2180
2181 void md_autodetect_dev(dev_t dev);
2182
2183 static void export_rdev(struct md_rdev *rdev)
2184 {
2185 char b[BDEVNAME_SIZE];
2186
2187 printk(KERN_INFO "md: export_rdev(%s)\n",
2188 bdevname(rdev->bdev,b));
2189 md_rdev_clear(rdev);
2190 #ifndef MODULE
2191 if (test_bit(AutoDetected, &rdev->flags))
2192 md_autodetect_dev(rdev->bdev->bd_dev);
2193 #endif
2194 unlock_rdev(rdev);
2195 kobject_put(&rdev->kobj);
2196 }
2197
2198 void md_kick_rdev_from_array(struct md_rdev *rdev)
2199 {
2200 unbind_rdev_from_array(rdev);
2201 export_rdev(rdev);
2202 }
2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2204
2205 static void export_array(struct mddev *mddev)
2206 {
2207 struct md_rdev *rdev;
2208
2209 while (!list_empty(&mddev->disks)) {
2210 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2211 same_set);
2212 md_kick_rdev_from_array(rdev);
2213 }
2214 mddev->raid_disks = 0;
2215 mddev->major_version = 0;
2216 }
2217
2218 static void sync_sbs(struct mddev *mddev, int nospares)
2219 {
2220 /* Update each superblock (in-memory image), but
2221 * if we are allowed to, skip spares which already
2222 * have the right event counter, or have one earlier
2223 * (which would mean they aren't being marked as dirty
2224 * with the rest of the array)
2225 */
2226 struct md_rdev *rdev;
2227 rdev_for_each(rdev, mddev) {
2228 if (rdev->sb_events == mddev->events ||
2229 (nospares &&
2230 rdev->raid_disk < 0 &&
2231 rdev->sb_events+1 == mddev->events)) {
2232 /* Don't update this superblock */
2233 rdev->sb_loaded = 2;
2234 } else {
2235 sync_super(mddev, rdev);
2236 rdev->sb_loaded = 1;
2237 }
2238 }
2239 }
2240
2241 static bool does_sb_need_changing(struct mddev *mddev)
2242 {
2243 struct md_rdev *rdev;
2244 struct mdp_superblock_1 *sb;
2245 int role;
2246
2247 /* Find a good rdev */
2248 rdev_for_each(rdev, mddev)
2249 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2250 break;
2251
2252 /* No good device found. */
2253 if (!rdev)
2254 return false;
2255
2256 sb = page_address(rdev->sb_page);
2257 /* Check if a device has become faulty or a spare become active */
2258 rdev_for_each(rdev, mddev) {
2259 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2260 /* Device activated? */
2261 if (role == 0xffff && rdev->raid_disk >=0 &&
2262 !test_bit(Faulty, &rdev->flags))
2263 return true;
2264 /* Device turned faulty? */
2265 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2266 return true;
2267 }
2268
2269 /* Check if any mddev parameters have changed */
2270 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2271 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2272 (mddev->layout != le64_to_cpu(sb->layout)) ||
2273 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2274 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2275 return true;
2276
2277 return false;
2278 }
2279
2280 void md_update_sb(struct mddev *mddev, int force_change)
2281 {
2282 struct md_rdev *rdev;
2283 int sync_req;
2284 int nospares = 0;
2285 int any_badblocks_changed = 0;
2286 int ret = -1;
2287
2288 if (mddev->ro) {
2289 if (force_change)
2290 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2291 return;
2292 }
2293
2294 repeat:
2295 if (mddev_is_clustered(mddev)) {
2296 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2297 force_change = 1;
2298 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2299 nospares = 1;
2300 ret = md_cluster_ops->metadata_update_start(mddev);
2301 /* Has someone else has updated the sb */
2302 if (!does_sb_need_changing(mddev)) {
2303 if (ret == 0)
2304 md_cluster_ops->metadata_update_cancel(mddev);
2305 bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2306 BIT(MD_CHANGE_DEVS) |
2307 BIT(MD_CHANGE_CLEAN));
2308 return;
2309 }
2310 }
2311
2312 /* First make sure individual recovery_offsets are correct */
2313 rdev_for_each(rdev, mddev) {
2314 if (rdev->raid_disk >= 0 &&
2315 mddev->delta_disks >= 0 &&
2316 !test_bit(Journal, &rdev->flags) &&
2317 !test_bit(In_sync, &rdev->flags) &&
2318 mddev->curr_resync_completed > rdev->recovery_offset)
2319 rdev->recovery_offset = mddev->curr_resync_completed;
2320
2321 }
2322 if (!mddev->persistent) {
2323 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2324 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2325 if (!mddev->external) {
2326 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2327 rdev_for_each(rdev, mddev) {
2328 if (rdev->badblocks.changed) {
2329 rdev->badblocks.changed = 0;
2330 ack_all_badblocks(&rdev->badblocks);
2331 md_error(mddev, rdev);
2332 }
2333 clear_bit(Blocked, &rdev->flags);
2334 clear_bit(BlockedBadBlocks, &rdev->flags);
2335 wake_up(&rdev->blocked_wait);
2336 }
2337 }
2338 wake_up(&mddev->sb_wait);
2339 return;
2340 }
2341
2342 spin_lock(&mddev->lock);
2343
2344 mddev->utime = ktime_get_real_seconds();
2345
2346 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2347 force_change = 1;
2348 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2349 /* just a clean<-> dirty transition, possibly leave spares alone,
2350 * though if events isn't the right even/odd, we will have to do
2351 * spares after all
2352 */
2353 nospares = 1;
2354 if (force_change)
2355 nospares = 0;
2356 if (mddev->degraded)
2357 /* If the array is degraded, then skipping spares is both
2358 * dangerous and fairly pointless.
2359 * Dangerous because a device that was removed from the array
2360 * might have a event_count that still looks up-to-date,
2361 * so it can be re-added without a resync.
2362 * Pointless because if there are any spares to skip,
2363 * then a recovery will happen and soon that array won't
2364 * be degraded any more and the spare can go back to sleep then.
2365 */
2366 nospares = 0;
2367
2368 sync_req = mddev->in_sync;
2369
2370 /* If this is just a dirty<->clean transition, and the array is clean
2371 * and 'events' is odd, we can roll back to the previous clean state */
2372 if (nospares
2373 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2374 && mddev->can_decrease_events
2375 && mddev->events != 1) {
2376 mddev->events--;
2377 mddev->can_decrease_events = 0;
2378 } else {
2379 /* otherwise we have to go forward and ... */
2380 mddev->events ++;
2381 mddev->can_decrease_events = nospares;
2382 }
2383
2384 /*
2385 * This 64-bit counter should never wrap.
2386 * Either we are in around ~1 trillion A.C., assuming
2387 * 1 reboot per second, or we have a bug...
2388 */
2389 WARN_ON(mddev->events == 0);
2390
2391 rdev_for_each(rdev, mddev) {
2392 if (rdev->badblocks.changed)
2393 any_badblocks_changed++;
2394 if (test_bit(Faulty, &rdev->flags))
2395 set_bit(FaultRecorded, &rdev->flags);
2396 }
2397
2398 sync_sbs(mddev, nospares);
2399 spin_unlock(&mddev->lock);
2400
2401 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2402 mdname(mddev), mddev->in_sync);
2403
2404 bitmap_update_sb(mddev->bitmap);
2405 rdev_for_each(rdev, mddev) {
2406 char b[BDEVNAME_SIZE];
2407
2408 if (rdev->sb_loaded != 1)
2409 continue; /* no noise on spare devices */
2410
2411 if (!test_bit(Faulty, &rdev->flags)) {
2412 md_super_write(mddev,rdev,
2413 rdev->sb_start, rdev->sb_size,
2414 rdev->sb_page);
2415 pr_debug("md: (write) %s's sb offset: %llu\n",
2416 bdevname(rdev->bdev, b),
2417 (unsigned long long)rdev->sb_start);
2418 rdev->sb_events = mddev->events;
2419 if (rdev->badblocks.size) {
2420 md_super_write(mddev, rdev,
2421 rdev->badblocks.sector,
2422 rdev->badblocks.size << 9,
2423 rdev->bb_page);
2424 rdev->badblocks.size = 0;
2425 }
2426
2427 } else
2428 pr_debug("md: %s (skipping faulty)\n",
2429 bdevname(rdev->bdev, b));
2430
2431 if (mddev->level == LEVEL_MULTIPATH)
2432 /* only need to write one superblock... */
2433 break;
2434 }
2435 md_super_wait(mddev);
2436 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2437
2438 if (mddev_is_clustered(mddev) && ret == 0)
2439 md_cluster_ops->metadata_update_finish(mddev);
2440
2441 if (mddev->in_sync != sync_req ||
2442 !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2443 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN)))
2444 /* have to write it out again */
2445 goto repeat;
2446 wake_up(&mddev->sb_wait);
2447 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2448 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2449
2450 rdev_for_each(rdev, mddev) {
2451 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2452 clear_bit(Blocked, &rdev->flags);
2453
2454 if (any_badblocks_changed)
2455 ack_all_badblocks(&rdev->badblocks);
2456 clear_bit(BlockedBadBlocks, &rdev->flags);
2457 wake_up(&rdev->blocked_wait);
2458 }
2459 }
2460 EXPORT_SYMBOL(md_update_sb);
2461
2462 static int add_bound_rdev(struct md_rdev *rdev)
2463 {
2464 struct mddev *mddev = rdev->mddev;
2465 int err = 0;
2466 bool add_journal = test_bit(Journal, &rdev->flags);
2467
2468 if (!mddev->pers->hot_remove_disk || add_journal) {
2469 /* If there is hot_add_disk but no hot_remove_disk
2470 * then added disks for geometry changes,
2471 * and should be added immediately.
2472 */
2473 super_types[mddev->major_version].
2474 validate_super(mddev, rdev);
2475 if (add_journal)
2476 mddev_suspend(mddev);
2477 err = mddev->pers->hot_add_disk(mddev, rdev);
2478 if (add_journal)
2479 mddev_resume(mddev);
2480 if (err) {
2481 unbind_rdev_from_array(rdev);
2482 export_rdev(rdev);
2483 return err;
2484 }
2485 }
2486 sysfs_notify_dirent_safe(rdev->sysfs_state);
2487
2488 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2489 if (mddev->degraded)
2490 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2492 md_new_event(mddev);
2493 md_wakeup_thread(mddev->thread);
2494 return 0;
2495 }
2496
2497 /* words written to sysfs files may, or may not, be \n terminated.
2498 * We want to accept with case. For this we use cmd_match.
2499 */
2500 static int cmd_match(const char *cmd, const char *str)
2501 {
2502 /* See if cmd, written into a sysfs file, matches
2503 * str. They must either be the same, or cmd can
2504 * have a trailing newline
2505 */
2506 while (*cmd && *str && *cmd == *str) {
2507 cmd++;
2508 str++;
2509 }
2510 if (*cmd == '\n')
2511 cmd++;
2512 if (*str || *cmd)
2513 return 0;
2514 return 1;
2515 }
2516
2517 struct rdev_sysfs_entry {
2518 struct attribute attr;
2519 ssize_t (*show)(struct md_rdev *, char *);
2520 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2521 };
2522
2523 static ssize_t
2524 state_show(struct md_rdev *rdev, char *page)
2525 {
2526 char *sep = "";
2527 size_t len = 0;
2528 unsigned long flags = ACCESS_ONCE(rdev->flags);
2529
2530 if (test_bit(Faulty, &flags) ||
2531 rdev->badblocks.unacked_exist) {
2532 len+= sprintf(page+len, "%sfaulty",sep);
2533 sep = ",";
2534 }
2535 if (test_bit(In_sync, &flags)) {
2536 len += sprintf(page+len, "%sin_sync",sep);
2537 sep = ",";
2538 }
2539 if (test_bit(Journal, &flags)) {
2540 len += sprintf(page+len, "%sjournal",sep);
2541 sep = ",";
2542 }
2543 if (test_bit(WriteMostly, &flags)) {
2544 len += sprintf(page+len, "%swrite_mostly",sep);
2545 sep = ",";
2546 }
2547 if (test_bit(Blocked, &flags) ||
2548 (rdev->badblocks.unacked_exist
2549 && !test_bit(Faulty, &flags))) {
2550 len += sprintf(page+len, "%sblocked", sep);
2551 sep = ",";
2552 }
2553 if (!test_bit(Faulty, &flags) &&
2554 !test_bit(Journal, &flags) &&
2555 !test_bit(In_sync, &flags)) {
2556 len += sprintf(page+len, "%sspare", sep);
2557 sep = ",";
2558 }
2559 if (test_bit(WriteErrorSeen, &flags)) {
2560 len += sprintf(page+len, "%swrite_error", sep);
2561 sep = ",";
2562 }
2563 if (test_bit(WantReplacement, &flags)) {
2564 len += sprintf(page+len, "%swant_replacement", sep);
2565 sep = ",";
2566 }
2567 if (test_bit(Replacement, &flags)) {
2568 len += sprintf(page+len, "%sreplacement", sep);
2569 sep = ",";
2570 }
2571
2572 return len+sprintf(page+len, "\n");
2573 }
2574
2575 static ssize_t
2576 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2577 {
2578 /* can write
2579 * faulty - simulates an error
2580 * remove - disconnects the device
2581 * writemostly - sets write_mostly
2582 * -writemostly - clears write_mostly
2583 * blocked - sets the Blocked flags
2584 * -blocked - clears the Blocked and possibly simulates an error
2585 * insync - sets Insync providing device isn't active
2586 * -insync - clear Insync for a device with a slot assigned,
2587 * so that it gets rebuilt based on bitmap
2588 * write_error - sets WriteErrorSeen
2589 * -write_error - clears WriteErrorSeen
2590 */
2591 int err = -EINVAL;
2592 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2593 md_error(rdev->mddev, rdev);
2594 if (test_bit(Faulty, &rdev->flags))
2595 err = 0;
2596 else
2597 err = -EBUSY;
2598 } else if (cmd_match(buf, "remove")) {
2599 if (rdev->raid_disk >= 0)
2600 err = -EBUSY;
2601 else {
2602 struct mddev *mddev = rdev->mddev;
2603 err = 0;
2604 if (mddev_is_clustered(mddev))
2605 err = md_cluster_ops->remove_disk(mddev, rdev);
2606
2607 if (err == 0) {
2608 md_kick_rdev_from_array(rdev);
2609 if (mddev->pers)
2610 md_update_sb(mddev, 1);
2611 md_new_event(mddev);
2612 }
2613 }
2614 } else if (cmd_match(buf, "writemostly")) {
2615 set_bit(WriteMostly, &rdev->flags);
2616 err = 0;
2617 } else if (cmd_match(buf, "-writemostly")) {
2618 clear_bit(WriteMostly, &rdev->flags);
2619 err = 0;
2620 } else if (cmd_match(buf, "blocked")) {
2621 set_bit(Blocked, &rdev->flags);
2622 err = 0;
2623 } else if (cmd_match(buf, "-blocked")) {
2624 if (!test_bit(Faulty, &rdev->flags) &&
2625 rdev->badblocks.unacked_exist) {
2626 /* metadata handler doesn't understand badblocks,
2627 * so we need to fail the device
2628 */
2629 md_error(rdev->mddev, rdev);
2630 }
2631 clear_bit(Blocked, &rdev->flags);
2632 clear_bit(BlockedBadBlocks, &rdev->flags);
2633 wake_up(&rdev->blocked_wait);
2634 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635 md_wakeup_thread(rdev->mddev->thread);
2636
2637 err = 0;
2638 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2639 set_bit(In_sync, &rdev->flags);
2640 err = 0;
2641 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2642 !test_bit(Journal, &rdev->flags)) {
2643 if (rdev->mddev->pers == NULL) {
2644 clear_bit(In_sync, &rdev->flags);
2645 rdev->saved_raid_disk = rdev->raid_disk;
2646 rdev->raid_disk = -1;
2647 err = 0;
2648 }
2649 } else if (cmd_match(buf, "write_error")) {
2650 set_bit(WriteErrorSeen, &rdev->flags);
2651 err = 0;
2652 } else if (cmd_match(buf, "-write_error")) {
2653 clear_bit(WriteErrorSeen, &rdev->flags);
2654 err = 0;
2655 } else if (cmd_match(buf, "want_replacement")) {
2656 /* Any non-spare device that is not a replacement can
2657 * become want_replacement at any time, but we then need to
2658 * check if recovery is needed.
2659 */
2660 if (rdev->raid_disk >= 0 &&
2661 !test_bit(Journal, &rdev->flags) &&
2662 !test_bit(Replacement, &rdev->flags))
2663 set_bit(WantReplacement, &rdev->flags);
2664 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2665 md_wakeup_thread(rdev->mddev->thread);
2666 err = 0;
2667 } else if (cmd_match(buf, "-want_replacement")) {
2668 /* Clearing 'want_replacement' is always allowed.
2669 * Once replacements starts it is too late though.
2670 */
2671 err = 0;
2672 clear_bit(WantReplacement, &rdev->flags);
2673 } else if (cmd_match(buf, "replacement")) {
2674 /* Can only set a device as a replacement when array has not
2675 * yet been started. Once running, replacement is automatic
2676 * from spares, or by assigning 'slot'.
2677 */
2678 if (rdev->mddev->pers)
2679 err = -EBUSY;
2680 else {
2681 set_bit(Replacement, &rdev->flags);
2682 err = 0;
2683 }
2684 } else if (cmd_match(buf, "-replacement")) {
2685 /* Similarly, can only clear Replacement before start */
2686 if (rdev->mddev->pers)
2687 err = -EBUSY;
2688 else {
2689 clear_bit(Replacement, &rdev->flags);
2690 err = 0;
2691 }
2692 } else if (cmd_match(buf, "re-add")) {
2693 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2694 /* clear_bit is performed _after_ all the devices
2695 * have their local Faulty bit cleared. If any writes
2696 * happen in the meantime in the local node, they
2697 * will land in the local bitmap, which will be synced
2698 * by this node eventually
2699 */
2700 if (!mddev_is_clustered(rdev->mddev) ||
2701 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2702 clear_bit(Faulty, &rdev->flags);
2703 err = add_bound_rdev(rdev);
2704 }
2705 } else
2706 err = -EBUSY;
2707 }
2708 if (!err)
2709 sysfs_notify_dirent_safe(rdev->sysfs_state);
2710 return err ? err : len;
2711 }
2712 static struct rdev_sysfs_entry rdev_state =
2713 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2714
2715 static ssize_t
2716 errors_show(struct md_rdev *rdev, char *page)
2717 {
2718 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2719 }
2720
2721 static ssize_t
2722 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 unsigned int n;
2725 int rv;
2726
2727 rv = kstrtouint(buf, 10, &n);
2728 if (rv < 0)
2729 return rv;
2730 atomic_set(&rdev->corrected_errors, n);
2731 return len;
2732 }
2733 static struct rdev_sysfs_entry rdev_errors =
2734 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2735
2736 static ssize_t
2737 slot_show(struct md_rdev *rdev, char *page)
2738 {
2739 if (test_bit(Journal, &rdev->flags))
2740 return sprintf(page, "journal\n");
2741 else if (rdev->raid_disk < 0)
2742 return sprintf(page, "none\n");
2743 else
2744 return sprintf(page, "%d\n", rdev->raid_disk);
2745 }
2746
2747 static ssize_t
2748 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2749 {
2750 int slot;
2751 int err;
2752
2753 if (test_bit(Journal, &rdev->flags))
2754 return -EBUSY;
2755 if (strncmp(buf, "none", 4)==0)
2756 slot = -1;
2757 else {
2758 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2759 if (err < 0)
2760 return err;
2761 }
2762 if (rdev->mddev->pers && slot == -1) {
2763 /* Setting 'slot' on an active array requires also
2764 * updating the 'rd%d' link, and communicating
2765 * with the personality with ->hot_*_disk.
2766 * For now we only support removing
2767 * failed/spare devices. This normally happens automatically,
2768 * but not when the metadata is externally managed.
2769 */
2770 if (rdev->raid_disk == -1)
2771 return -EEXIST;
2772 /* personality does all needed checks */
2773 if (rdev->mddev->pers->hot_remove_disk == NULL)
2774 return -EINVAL;
2775 clear_bit(Blocked, &rdev->flags);
2776 remove_and_add_spares(rdev->mddev, rdev);
2777 if (rdev->raid_disk >= 0)
2778 return -EBUSY;
2779 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2780 md_wakeup_thread(rdev->mddev->thread);
2781 } else if (rdev->mddev->pers) {
2782 /* Activating a spare .. or possibly reactivating
2783 * if we ever get bitmaps working here.
2784 */
2785 int err;
2786
2787 if (rdev->raid_disk != -1)
2788 return -EBUSY;
2789
2790 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2791 return -EBUSY;
2792
2793 if (rdev->mddev->pers->hot_add_disk == NULL)
2794 return -EINVAL;
2795
2796 if (slot >= rdev->mddev->raid_disks &&
2797 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2798 return -ENOSPC;
2799
2800 rdev->raid_disk = slot;
2801 if (test_bit(In_sync, &rdev->flags))
2802 rdev->saved_raid_disk = slot;
2803 else
2804 rdev->saved_raid_disk = -1;
2805 clear_bit(In_sync, &rdev->flags);
2806 clear_bit(Bitmap_sync, &rdev->flags);
2807 err = rdev->mddev->pers->
2808 hot_add_disk(rdev->mddev, rdev);
2809 if (err) {
2810 rdev->raid_disk = -1;
2811 return err;
2812 } else
2813 sysfs_notify_dirent_safe(rdev->sysfs_state);
2814 if (sysfs_link_rdev(rdev->mddev, rdev))
2815 /* failure here is OK */;
2816 /* don't wakeup anyone, leave that to userspace. */
2817 } else {
2818 if (slot >= rdev->mddev->raid_disks &&
2819 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2820 return -ENOSPC;
2821 rdev->raid_disk = slot;
2822 /* assume it is working */
2823 clear_bit(Faulty, &rdev->flags);
2824 clear_bit(WriteMostly, &rdev->flags);
2825 set_bit(In_sync, &rdev->flags);
2826 sysfs_notify_dirent_safe(rdev->sysfs_state);
2827 }
2828 return len;
2829 }
2830
2831 static struct rdev_sysfs_entry rdev_slot =
2832 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2833
2834 static ssize_t
2835 offset_show(struct md_rdev *rdev, char *page)
2836 {
2837 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2838 }
2839
2840 static ssize_t
2841 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2842 {
2843 unsigned long long offset;
2844 if (kstrtoull(buf, 10, &offset) < 0)
2845 return -EINVAL;
2846 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2847 return -EBUSY;
2848 if (rdev->sectors && rdev->mddev->external)
2849 /* Must set offset before size, so overlap checks
2850 * can be sane */
2851 return -EBUSY;
2852 rdev->data_offset = offset;
2853 rdev->new_data_offset = offset;
2854 return len;
2855 }
2856
2857 static struct rdev_sysfs_entry rdev_offset =
2858 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2859
2860 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2861 {
2862 return sprintf(page, "%llu\n",
2863 (unsigned long long)rdev->new_data_offset);
2864 }
2865
2866 static ssize_t new_offset_store(struct md_rdev *rdev,
2867 const char *buf, size_t len)
2868 {
2869 unsigned long long new_offset;
2870 struct mddev *mddev = rdev->mddev;
2871
2872 if (kstrtoull(buf, 10, &new_offset) < 0)
2873 return -EINVAL;
2874
2875 if (mddev->sync_thread ||
2876 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2877 return -EBUSY;
2878 if (new_offset == rdev->data_offset)
2879 /* reset is always permitted */
2880 ;
2881 else if (new_offset > rdev->data_offset) {
2882 /* must not push array size beyond rdev_sectors */
2883 if (new_offset - rdev->data_offset
2884 + mddev->dev_sectors > rdev->sectors)
2885 return -E2BIG;
2886 }
2887 /* Metadata worries about other space details. */
2888
2889 /* decreasing the offset is inconsistent with a backwards
2890 * reshape.
2891 */
2892 if (new_offset < rdev->data_offset &&
2893 mddev->reshape_backwards)
2894 return -EINVAL;
2895 /* Increasing offset is inconsistent with forwards
2896 * reshape. reshape_direction should be set to
2897 * 'backwards' first.
2898 */
2899 if (new_offset > rdev->data_offset &&
2900 !mddev->reshape_backwards)
2901 return -EINVAL;
2902
2903 if (mddev->pers && mddev->persistent &&
2904 !super_types[mddev->major_version]
2905 .allow_new_offset(rdev, new_offset))
2906 return -E2BIG;
2907 rdev->new_data_offset = new_offset;
2908 if (new_offset > rdev->data_offset)
2909 mddev->reshape_backwards = 1;
2910 else if (new_offset < rdev->data_offset)
2911 mddev->reshape_backwards = 0;
2912
2913 return len;
2914 }
2915 static struct rdev_sysfs_entry rdev_new_offset =
2916 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2917
2918 static ssize_t
2919 rdev_size_show(struct md_rdev *rdev, char *page)
2920 {
2921 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2922 }
2923
2924 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2925 {
2926 /* check if two start/length pairs overlap */
2927 if (s1+l1 <= s2)
2928 return 0;
2929 if (s2+l2 <= s1)
2930 return 0;
2931 return 1;
2932 }
2933
2934 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2935 {
2936 unsigned long long blocks;
2937 sector_t new;
2938
2939 if (kstrtoull(buf, 10, &blocks) < 0)
2940 return -EINVAL;
2941
2942 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2943 return -EINVAL; /* sector conversion overflow */
2944
2945 new = blocks * 2;
2946 if (new != blocks * 2)
2947 return -EINVAL; /* unsigned long long to sector_t overflow */
2948
2949 *sectors = new;
2950 return 0;
2951 }
2952
2953 static ssize_t
2954 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2955 {
2956 struct mddev *my_mddev = rdev->mddev;
2957 sector_t oldsectors = rdev->sectors;
2958 sector_t sectors;
2959
2960 if (test_bit(Journal, &rdev->flags))
2961 return -EBUSY;
2962 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2963 return -EINVAL;
2964 if (rdev->data_offset != rdev->new_data_offset)
2965 return -EINVAL; /* too confusing */
2966 if (my_mddev->pers && rdev->raid_disk >= 0) {
2967 if (my_mddev->persistent) {
2968 sectors = super_types[my_mddev->major_version].
2969 rdev_size_change(rdev, sectors);
2970 if (!sectors)
2971 return -EBUSY;
2972 } else if (!sectors)
2973 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2974 rdev->data_offset;
2975 if (!my_mddev->pers->resize)
2976 /* Cannot change size for RAID0 or Linear etc */
2977 return -EINVAL;
2978 }
2979 if (sectors < my_mddev->dev_sectors)
2980 return -EINVAL; /* component must fit device */
2981
2982 rdev->sectors = sectors;
2983 if (sectors > oldsectors && my_mddev->external) {
2984 /* Need to check that all other rdevs with the same
2985 * ->bdev do not overlap. 'rcu' is sufficient to walk
2986 * the rdev lists safely.
2987 * This check does not provide a hard guarantee, it
2988 * just helps avoid dangerous mistakes.
2989 */
2990 struct mddev *mddev;
2991 int overlap = 0;
2992 struct list_head *tmp;
2993
2994 rcu_read_lock();
2995 for_each_mddev(mddev, tmp) {
2996 struct md_rdev *rdev2;
2997
2998 rdev_for_each(rdev2, mddev)
2999 if (rdev->bdev == rdev2->bdev &&
3000 rdev != rdev2 &&
3001 overlaps(rdev->data_offset, rdev->sectors,
3002 rdev2->data_offset,
3003 rdev2->sectors)) {
3004 overlap = 1;
3005 break;
3006 }
3007 if (overlap) {
3008 mddev_put(mddev);
3009 break;
3010 }
3011 }
3012 rcu_read_unlock();
3013 if (overlap) {
3014 /* Someone else could have slipped in a size
3015 * change here, but doing so is just silly.
3016 * We put oldsectors back because we *know* it is
3017 * safe, and trust userspace not to race with
3018 * itself
3019 */
3020 rdev->sectors = oldsectors;
3021 return -EBUSY;
3022 }
3023 }
3024 return len;
3025 }
3026
3027 static struct rdev_sysfs_entry rdev_size =
3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3029
3030 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3031 {
3032 unsigned long long recovery_start = rdev->recovery_offset;
3033
3034 if (test_bit(In_sync, &rdev->flags) ||
3035 recovery_start == MaxSector)
3036 return sprintf(page, "none\n");
3037
3038 return sprintf(page, "%llu\n", recovery_start);
3039 }
3040
3041 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3042 {
3043 unsigned long long recovery_start;
3044
3045 if (cmd_match(buf, "none"))
3046 recovery_start = MaxSector;
3047 else if (kstrtoull(buf, 10, &recovery_start))
3048 return -EINVAL;
3049
3050 if (rdev->mddev->pers &&
3051 rdev->raid_disk >= 0)
3052 return -EBUSY;
3053
3054 rdev->recovery_offset = recovery_start;
3055 if (recovery_start == MaxSector)
3056 set_bit(In_sync, &rdev->flags);
3057 else
3058 clear_bit(In_sync, &rdev->flags);
3059 return len;
3060 }
3061
3062 static struct rdev_sysfs_entry rdev_recovery_start =
3063 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3064
3065 /* sysfs access to bad-blocks list.
3066 * We present two files.
3067 * 'bad-blocks' lists sector numbers and lengths of ranges that
3068 * are recorded as bad. The list is truncated to fit within
3069 * the one-page limit of sysfs.
3070 * Writing "sector length" to this file adds an acknowledged
3071 * bad block list.
3072 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3073 * been acknowledged. Writing to this file adds bad blocks
3074 * without acknowledging them. This is largely for testing.
3075 */
3076 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3077 {
3078 return badblocks_show(&rdev->badblocks, page, 0);
3079 }
3080 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3081 {
3082 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3083 /* Maybe that ack was all we needed */
3084 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3085 wake_up(&rdev->blocked_wait);
3086 return rv;
3087 }
3088 static struct rdev_sysfs_entry rdev_bad_blocks =
3089 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3090
3091 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3092 {
3093 return badblocks_show(&rdev->badblocks, page, 1);
3094 }
3095 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3096 {
3097 return badblocks_store(&rdev->badblocks, page, len, 1);
3098 }
3099 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3100 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3101
3102 static struct attribute *rdev_default_attrs[] = {
3103 &rdev_state.attr,
3104 &rdev_errors.attr,
3105 &rdev_slot.attr,
3106 &rdev_offset.attr,
3107 &rdev_new_offset.attr,
3108 &rdev_size.attr,
3109 &rdev_recovery_start.attr,
3110 &rdev_bad_blocks.attr,
3111 &rdev_unack_bad_blocks.attr,
3112 NULL,
3113 };
3114 static ssize_t
3115 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3116 {
3117 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3118 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3119
3120 if (!entry->show)
3121 return -EIO;
3122 if (!rdev->mddev)
3123 return -EBUSY;
3124 return entry->show(rdev, page);
3125 }
3126
3127 static ssize_t
3128 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3129 const char *page, size_t length)
3130 {
3131 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3132 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3133 ssize_t rv;
3134 struct mddev *mddev = rdev->mddev;
3135
3136 if (!entry->store)
3137 return -EIO;
3138 if (!capable(CAP_SYS_ADMIN))
3139 return -EACCES;
3140 rv = mddev ? mddev_lock(mddev): -EBUSY;
3141 if (!rv) {
3142 if (rdev->mddev == NULL)
3143 rv = -EBUSY;
3144 else
3145 rv = entry->store(rdev, page, length);
3146 mddev_unlock(mddev);
3147 }
3148 return rv;
3149 }
3150
3151 static void rdev_free(struct kobject *ko)
3152 {
3153 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3154 kfree(rdev);
3155 }
3156 static const struct sysfs_ops rdev_sysfs_ops = {
3157 .show = rdev_attr_show,
3158 .store = rdev_attr_store,
3159 };
3160 static struct kobj_type rdev_ktype = {
3161 .release = rdev_free,
3162 .sysfs_ops = &rdev_sysfs_ops,
3163 .default_attrs = rdev_default_attrs,
3164 };
3165
3166 int md_rdev_init(struct md_rdev *rdev)
3167 {
3168 rdev->desc_nr = -1;
3169 rdev->saved_raid_disk = -1;
3170 rdev->raid_disk = -1;
3171 rdev->flags = 0;
3172 rdev->data_offset = 0;
3173 rdev->new_data_offset = 0;
3174 rdev->sb_events = 0;
3175 rdev->last_read_error.tv_sec = 0;
3176 rdev->last_read_error.tv_nsec = 0;
3177 rdev->sb_loaded = 0;
3178 rdev->bb_page = NULL;
3179 atomic_set(&rdev->nr_pending, 0);
3180 atomic_set(&rdev->read_errors, 0);
3181 atomic_set(&rdev->corrected_errors, 0);
3182
3183 INIT_LIST_HEAD(&rdev->same_set);
3184 init_waitqueue_head(&rdev->blocked_wait);
3185
3186 /* Add space to store bad block list.
3187 * This reserves the space even on arrays where it cannot
3188 * be used - I wonder if that matters
3189 */
3190 return badblocks_init(&rdev->badblocks, 0);
3191 }
3192 EXPORT_SYMBOL_GPL(md_rdev_init);
3193 /*
3194 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3195 *
3196 * mark the device faulty if:
3197 *
3198 * - the device is nonexistent (zero size)
3199 * - the device has no valid superblock
3200 *
3201 * a faulty rdev _never_ has rdev->sb set.
3202 */
3203 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3204 {
3205 char b[BDEVNAME_SIZE];
3206 int err;
3207 struct md_rdev *rdev;
3208 sector_t size;
3209
3210 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3211 if (!rdev) {
3212 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3213 return ERR_PTR(-ENOMEM);
3214 }
3215
3216 err = md_rdev_init(rdev);
3217 if (err)
3218 goto abort_free;
3219 err = alloc_disk_sb(rdev);
3220 if (err)
3221 goto abort_free;
3222
3223 err = lock_rdev(rdev, newdev, super_format == -2);
3224 if (err)
3225 goto abort_free;
3226
3227 kobject_init(&rdev->kobj, &rdev_ktype);
3228
3229 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3230 if (!size) {
3231 printk(KERN_WARNING
3232 "md: %s has zero or unknown size, marking faulty!\n",
3233 bdevname(rdev->bdev,b));
3234 err = -EINVAL;
3235 goto abort_free;
3236 }
3237
3238 if (super_format >= 0) {
3239 err = super_types[super_format].
3240 load_super(rdev, NULL, super_minor);
3241 if (err == -EINVAL) {
3242 printk(KERN_WARNING
3243 "md: %s does not have a valid v%d.%d "
3244 "superblock, not importing!\n",
3245 bdevname(rdev->bdev,b),
3246 super_format, super_minor);
3247 goto abort_free;
3248 }
3249 if (err < 0) {
3250 printk(KERN_WARNING
3251 "md: could not read %s's sb, not importing!\n",
3252 bdevname(rdev->bdev,b));
3253 goto abort_free;
3254 }
3255 }
3256
3257 return rdev;
3258
3259 abort_free:
3260 if (rdev->bdev)
3261 unlock_rdev(rdev);
3262 md_rdev_clear(rdev);
3263 kfree(rdev);
3264 return ERR_PTR(err);
3265 }
3266
3267 /*
3268 * Check a full RAID array for plausibility
3269 */
3270
3271 static void analyze_sbs(struct mddev *mddev)
3272 {
3273 int i;
3274 struct md_rdev *rdev, *freshest, *tmp;
3275 char b[BDEVNAME_SIZE];
3276
3277 freshest = NULL;
3278 rdev_for_each_safe(rdev, tmp, mddev)
3279 switch (super_types[mddev->major_version].
3280 load_super(rdev, freshest, mddev->minor_version)) {
3281 case 1:
3282 freshest = rdev;
3283 break;
3284 case 0:
3285 break;
3286 default:
3287 printk( KERN_ERR \
3288 "md: fatal superblock inconsistency in %s"
3289 " -- removing from array\n",
3290 bdevname(rdev->bdev,b));
3291 md_kick_rdev_from_array(rdev);
3292 }
3293
3294 super_types[mddev->major_version].
3295 validate_super(mddev, freshest);
3296
3297 i = 0;
3298 rdev_for_each_safe(rdev, tmp, mddev) {
3299 if (mddev->max_disks &&
3300 (rdev->desc_nr >= mddev->max_disks ||
3301 i > mddev->max_disks)) {
3302 printk(KERN_WARNING
3303 "md: %s: %s: only %d devices permitted\n",
3304 mdname(mddev), bdevname(rdev->bdev, b),
3305 mddev->max_disks);
3306 md_kick_rdev_from_array(rdev);
3307 continue;
3308 }
3309 if (rdev != freshest) {
3310 if (super_types[mddev->major_version].
3311 validate_super(mddev, rdev)) {
3312 printk(KERN_WARNING "md: kicking non-fresh %s"
3313 " from array!\n",
3314 bdevname(rdev->bdev,b));
3315 md_kick_rdev_from_array(rdev);
3316 continue;
3317 }
3318 }
3319 if (mddev->level == LEVEL_MULTIPATH) {
3320 rdev->desc_nr = i++;
3321 rdev->raid_disk = rdev->desc_nr;
3322 set_bit(In_sync, &rdev->flags);
3323 } else if (rdev->raid_disk >=
3324 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3325 !test_bit(Journal, &rdev->flags)) {
3326 rdev->raid_disk = -1;
3327 clear_bit(In_sync, &rdev->flags);
3328 }
3329 }
3330 }
3331
3332 /* Read a fixed-point number.
3333 * Numbers in sysfs attributes should be in "standard" units where
3334 * possible, so time should be in seconds.
3335 * However we internally use a a much smaller unit such as
3336 * milliseconds or jiffies.
3337 * This function takes a decimal number with a possible fractional
3338 * component, and produces an integer which is the result of
3339 * multiplying that number by 10^'scale'.
3340 * all without any floating-point arithmetic.
3341 */
3342 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3343 {
3344 unsigned long result = 0;
3345 long decimals = -1;
3346 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3347 if (*cp == '.')
3348 decimals = 0;
3349 else if (decimals < scale) {
3350 unsigned int value;
3351 value = *cp - '0';
3352 result = result * 10 + value;
3353 if (decimals >= 0)
3354 decimals++;
3355 }
3356 cp++;
3357 }
3358 if (*cp == '\n')
3359 cp++;
3360 if (*cp)
3361 return -EINVAL;
3362 if (decimals < 0)
3363 decimals = 0;
3364 while (decimals < scale) {
3365 result *= 10;
3366 decimals ++;
3367 }
3368 *res = result;
3369 return 0;
3370 }
3371
3372 static ssize_t
3373 safe_delay_show(struct mddev *mddev, char *page)
3374 {
3375 int msec = (mddev->safemode_delay*1000)/HZ;
3376 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3377 }
3378 static ssize_t
3379 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3380 {
3381 unsigned long msec;
3382
3383 if (mddev_is_clustered(mddev)) {
3384 pr_info("md: Safemode is disabled for clustered mode\n");
3385 return -EINVAL;
3386 }
3387
3388 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3389 return -EINVAL;
3390 if (msec == 0)
3391 mddev->safemode_delay = 0;
3392 else {
3393 unsigned long old_delay = mddev->safemode_delay;
3394 unsigned long new_delay = (msec*HZ)/1000;
3395
3396 if (new_delay == 0)
3397 new_delay = 1;
3398 mddev->safemode_delay = new_delay;
3399 if (new_delay < old_delay || old_delay == 0)
3400 mod_timer(&mddev->safemode_timer, jiffies+1);
3401 }
3402 return len;
3403 }
3404 static struct md_sysfs_entry md_safe_delay =
3405 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3406
3407 static ssize_t
3408 level_show(struct mddev *mddev, char *page)
3409 {
3410 struct md_personality *p;
3411 int ret;
3412 spin_lock(&mddev->lock);
3413 p = mddev->pers;
3414 if (p)
3415 ret = sprintf(page, "%s\n", p->name);
3416 else if (mddev->clevel[0])
3417 ret = sprintf(page, "%s\n", mddev->clevel);
3418 else if (mddev->level != LEVEL_NONE)
3419 ret = sprintf(page, "%d\n", mddev->level);
3420 else
3421 ret = 0;
3422 spin_unlock(&mddev->lock);
3423 return ret;
3424 }
3425
3426 static ssize_t
3427 level_store(struct mddev *mddev, const char *buf, size_t len)
3428 {
3429 char clevel[16];
3430 ssize_t rv;
3431 size_t slen = len;
3432 struct md_personality *pers, *oldpers;
3433 long level;
3434 void *priv, *oldpriv;
3435 struct md_rdev *rdev;
3436
3437 if (slen == 0 || slen >= sizeof(clevel))
3438 return -EINVAL;
3439
3440 rv = mddev_lock(mddev);
3441 if (rv)
3442 return rv;
3443
3444 if (mddev->pers == NULL) {
3445 strncpy(mddev->clevel, buf, slen);
3446 if (mddev->clevel[slen-1] == '\n')
3447 slen--;
3448 mddev->clevel[slen] = 0;
3449 mddev->level = LEVEL_NONE;
3450 rv = len;
3451 goto out_unlock;
3452 }
3453 rv = -EROFS;
3454 if (mddev->ro)
3455 goto out_unlock;
3456
3457 /* request to change the personality. Need to ensure:
3458 * - array is not engaged in resync/recovery/reshape
3459 * - old personality can be suspended
3460 * - new personality will access other array.
3461 */
3462
3463 rv = -EBUSY;
3464 if (mddev->sync_thread ||
3465 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3466 mddev->reshape_position != MaxSector ||
3467 mddev->sysfs_active)
3468 goto out_unlock;
3469
3470 rv = -EINVAL;
3471 if (!mddev->pers->quiesce) {
3472 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3473 mdname(mddev), mddev->pers->name);
3474 goto out_unlock;
3475 }
3476
3477 /* Now find the new personality */
3478 strncpy(clevel, buf, slen);
3479 if (clevel[slen-1] == '\n')
3480 slen--;
3481 clevel[slen] = 0;
3482 if (kstrtol(clevel, 10, &level))
3483 level = LEVEL_NONE;
3484
3485 if (request_module("md-%s", clevel) != 0)
3486 request_module("md-level-%s", clevel);
3487 spin_lock(&pers_lock);
3488 pers = find_pers(level, clevel);
3489 if (!pers || !try_module_get(pers->owner)) {
3490 spin_unlock(&pers_lock);
3491 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3492 rv = -EINVAL;
3493 goto out_unlock;
3494 }
3495 spin_unlock(&pers_lock);
3496
3497 if (pers == mddev->pers) {
3498 /* Nothing to do! */
3499 module_put(pers->owner);
3500 rv = len;
3501 goto out_unlock;
3502 }
3503 if (!pers->takeover) {
3504 module_put(pers->owner);
3505 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3506 mdname(mddev), clevel);
3507 rv = -EINVAL;
3508 goto out_unlock;
3509 }
3510
3511 rdev_for_each(rdev, mddev)
3512 rdev->new_raid_disk = rdev->raid_disk;
3513
3514 /* ->takeover must set new_* and/or delta_disks
3515 * if it succeeds, and may set them when it fails.
3516 */
3517 priv = pers->takeover(mddev);
3518 if (IS_ERR(priv)) {
3519 mddev->new_level = mddev->level;
3520 mddev->new_layout = mddev->layout;
3521 mddev->new_chunk_sectors = mddev->chunk_sectors;
3522 mddev->raid_disks -= mddev->delta_disks;
3523 mddev->delta_disks = 0;
3524 mddev->reshape_backwards = 0;
3525 module_put(pers->owner);
3526 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3527 mdname(mddev), clevel);
3528 rv = PTR_ERR(priv);
3529 goto out_unlock;
3530 }
3531
3532 /* Looks like we have a winner */
3533 mddev_suspend(mddev);
3534 mddev_detach(mddev);
3535
3536 spin_lock(&mddev->lock);
3537 oldpers = mddev->pers;
3538 oldpriv = mddev->private;
3539 mddev->pers = pers;
3540 mddev->private = priv;
3541 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3542 mddev->level = mddev->new_level;
3543 mddev->layout = mddev->new_layout;
3544 mddev->chunk_sectors = mddev->new_chunk_sectors;
3545 mddev->delta_disks = 0;
3546 mddev->reshape_backwards = 0;
3547 mddev->degraded = 0;
3548 spin_unlock(&mddev->lock);
3549
3550 if (oldpers->sync_request == NULL &&
3551 mddev->external) {
3552 /* We are converting from a no-redundancy array
3553 * to a redundancy array and metadata is managed
3554 * externally so we need to be sure that writes
3555 * won't block due to a need to transition
3556 * clean->dirty
3557 * until external management is started.
3558 */
3559 mddev->in_sync = 0;
3560 mddev->safemode_delay = 0;
3561 mddev->safemode = 0;
3562 }
3563
3564 oldpers->free(mddev, oldpriv);
3565
3566 if (oldpers->sync_request == NULL &&
3567 pers->sync_request != NULL) {
3568 /* need to add the md_redundancy_group */
3569 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3570 printk(KERN_WARNING
3571 "md: cannot register extra attributes for %s\n",
3572 mdname(mddev));
3573 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3574 }
3575 if (oldpers->sync_request != NULL &&
3576 pers->sync_request == NULL) {
3577 /* need to remove the md_redundancy_group */
3578 if (mddev->to_remove == NULL)
3579 mddev->to_remove = &md_redundancy_group;
3580 }
3581
3582 rdev_for_each(rdev, mddev) {
3583 if (rdev->raid_disk < 0)
3584 continue;
3585 if (rdev->new_raid_disk >= mddev->raid_disks)
3586 rdev->new_raid_disk = -1;
3587 if (rdev->new_raid_disk == rdev->raid_disk)
3588 continue;
3589 sysfs_unlink_rdev(mddev, rdev);
3590 }
3591 rdev_for_each(rdev, mddev) {
3592 if (rdev->raid_disk < 0)
3593 continue;
3594 if (rdev->new_raid_disk == rdev->raid_disk)
3595 continue;
3596 rdev->raid_disk = rdev->new_raid_disk;
3597 if (rdev->raid_disk < 0)
3598 clear_bit(In_sync, &rdev->flags);
3599 else {
3600 if (sysfs_link_rdev(mddev, rdev))
3601 printk(KERN_WARNING "md: cannot register rd%d"
3602 " for %s after level change\n",
3603 rdev->raid_disk, mdname(mddev));
3604 }
3605 }
3606
3607 if (pers->sync_request == NULL) {
3608 /* this is now an array without redundancy, so
3609 * it must always be in_sync
3610 */
3611 mddev->in_sync = 1;
3612 del_timer_sync(&mddev->safemode_timer);
3613 }
3614 blk_set_stacking_limits(&mddev->queue->limits);
3615 pers->run(mddev);
3616 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3617 mddev_resume(mddev);
3618 if (!mddev->thread)
3619 md_update_sb(mddev, 1);
3620 sysfs_notify(&mddev->kobj, NULL, "level");
3621 md_new_event(mddev);
3622 rv = len;
3623 out_unlock:
3624 mddev_unlock(mddev);
3625 return rv;
3626 }
3627
3628 static struct md_sysfs_entry md_level =
3629 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3630
3631 static ssize_t
3632 layout_show(struct mddev *mddev, char *page)
3633 {
3634 /* just a number, not meaningful for all levels */
3635 if (mddev->reshape_position != MaxSector &&
3636 mddev->layout != mddev->new_layout)
3637 return sprintf(page, "%d (%d)\n",
3638 mddev->new_layout, mddev->layout);
3639 return sprintf(page, "%d\n", mddev->layout);
3640 }
3641
3642 static ssize_t
3643 layout_store(struct mddev *mddev, const char *buf, size_t len)
3644 {
3645 unsigned int n;
3646 int err;
3647
3648 err = kstrtouint(buf, 10, &n);
3649 if (err < 0)
3650 return err;
3651 err = mddev_lock(mddev);
3652 if (err)
3653 return err;
3654
3655 if (mddev->pers) {
3656 if (mddev->pers->check_reshape == NULL)
3657 err = -EBUSY;
3658 else if (mddev->ro)
3659 err = -EROFS;
3660 else {
3661 mddev->new_layout = n;
3662 err = mddev->pers->check_reshape(mddev);
3663 if (err)
3664 mddev->new_layout = mddev->layout;
3665 }
3666 } else {
3667 mddev->new_layout = n;
3668 if (mddev->reshape_position == MaxSector)
3669 mddev->layout = n;
3670 }
3671 mddev_unlock(mddev);
3672 return err ?: len;
3673 }
3674 static struct md_sysfs_entry md_layout =
3675 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3676
3677 static ssize_t
3678 raid_disks_show(struct mddev *mddev, char *page)
3679 {
3680 if (mddev->raid_disks == 0)
3681 return 0;
3682 if (mddev->reshape_position != MaxSector &&
3683 mddev->delta_disks != 0)
3684 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3685 mddev->raid_disks - mddev->delta_disks);
3686 return sprintf(page, "%d\n", mddev->raid_disks);
3687 }
3688
3689 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3690
3691 static ssize_t
3692 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3693 {
3694 unsigned int n;
3695 int err;
3696
3697 err = kstrtouint(buf, 10, &n);
3698 if (err < 0)
3699 return err;
3700
3701 err = mddev_lock(mddev);
3702 if (err)
3703 return err;
3704 if (mddev->pers)
3705 err = update_raid_disks(mddev, n);
3706 else if (mddev->reshape_position != MaxSector) {
3707 struct md_rdev *rdev;
3708 int olddisks = mddev->raid_disks - mddev->delta_disks;
3709
3710 err = -EINVAL;
3711 rdev_for_each(rdev, mddev) {
3712 if (olddisks < n &&
3713 rdev->data_offset < rdev->new_data_offset)
3714 goto out_unlock;
3715 if (olddisks > n &&
3716 rdev->data_offset > rdev->new_data_offset)
3717 goto out_unlock;
3718 }
3719 err = 0;
3720 mddev->delta_disks = n - olddisks;
3721 mddev->raid_disks = n;
3722 mddev->reshape_backwards = (mddev->delta_disks < 0);
3723 } else
3724 mddev->raid_disks = n;
3725 out_unlock:
3726 mddev_unlock(mddev);
3727 return err ? err : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 unsigned long n;
3747 int err;
3748
3749 err = kstrtoul(buf, 10, &n);
3750 if (err < 0)
3751 return err;
3752
3753 err = mddev_lock(mddev);
3754 if (err)
3755 return err;
3756 if (mddev->pers) {
3757 if (mddev->pers->check_reshape == NULL)
3758 err = -EBUSY;
3759 else if (mddev->ro)
3760 err = -EROFS;
3761 else {
3762 mddev->new_chunk_sectors = n >> 9;
3763 err = mddev->pers->check_reshape(mddev);
3764 if (err)
3765 mddev->new_chunk_sectors = mddev->chunk_sectors;
3766 }
3767 } else {
3768 mddev->new_chunk_sectors = n >> 9;
3769 if (mddev->reshape_position == MaxSector)
3770 mddev->chunk_sectors = n >> 9;
3771 }
3772 mddev_unlock(mddev);
3773 return err ?: len;
3774 }
3775 static struct md_sysfs_entry md_chunk_size =
3776 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3777
3778 static ssize_t
3779 resync_start_show(struct mddev *mddev, char *page)
3780 {
3781 if (mddev->recovery_cp == MaxSector)
3782 return sprintf(page, "none\n");
3783 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3784 }
3785
3786 static ssize_t
3787 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3788 {
3789 unsigned long long n;
3790 int err;
3791
3792 if (cmd_match(buf, "none"))
3793 n = MaxSector;
3794 else {
3795 err = kstrtoull(buf, 10, &n);
3796 if (err < 0)
3797 return err;
3798 if (n != (sector_t)n)
3799 return -EINVAL;
3800 }
3801
3802 err = mddev_lock(mddev);
3803 if (err)
3804 return err;
3805 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3806 err = -EBUSY;
3807
3808 if (!err) {
3809 mddev->recovery_cp = n;
3810 if (mddev->pers)
3811 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3812 }
3813 mddev_unlock(mddev);
3814 return err ?: len;
3815 }
3816 static struct md_sysfs_entry md_resync_start =
3817 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3818 resync_start_show, resync_start_store);
3819
3820 /*
3821 * The array state can be:
3822 *
3823 * clear
3824 * No devices, no size, no level
3825 * Equivalent to STOP_ARRAY ioctl
3826 * inactive
3827 * May have some settings, but array is not active
3828 * all IO results in error
3829 * When written, doesn't tear down array, but just stops it
3830 * suspended (not supported yet)
3831 * All IO requests will block. The array can be reconfigured.
3832 * Writing this, if accepted, will block until array is quiescent
3833 * readonly
3834 * no resync can happen. no superblocks get written.
3835 * write requests fail
3836 * read-auto
3837 * like readonly, but behaves like 'clean' on a write request.
3838 *
3839 * clean - no pending writes, but otherwise active.
3840 * When written to inactive array, starts without resync
3841 * If a write request arrives then
3842 * if metadata is known, mark 'dirty' and switch to 'active'.
3843 * if not known, block and switch to write-pending
3844 * If written to an active array that has pending writes, then fails.
3845 * active
3846 * fully active: IO and resync can be happening.
3847 * When written to inactive array, starts with resync
3848 *
3849 * write-pending
3850 * clean, but writes are blocked waiting for 'active' to be written.
3851 *
3852 * active-idle
3853 * like active, but no writes have been seen for a while (100msec).
3854 *
3855 */
3856 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3857 write_pending, active_idle, bad_word};
3858 static char *array_states[] = {
3859 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3860 "write-pending", "active-idle", NULL };
3861
3862 static int match_word(const char *word, char **list)
3863 {
3864 int n;
3865 for (n=0; list[n]; n++)
3866 if (cmd_match(word, list[n]))
3867 break;
3868 return n;
3869 }
3870
3871 static ssize_t
3872 array_state_show(struct mddev *mddev, char *page)
3873 {
3874 enum array_state st = inactive;
3875
3876 if (mddev->pers)
3877 switch(mddev->ro) {
3878 case 1:
3879 st = readonly;
3880 break;
3881 case 2:
3882 st = read_auto;
3883 break;
3884 case 0:
3885 if (mddev->in_sync)
3886 st = clean;
3887 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3888 st = write_pending;
3889 else if (mddev->safemode)
3890 st = active_idle;
3891 else
3892 st = active;
3893 }
3894 else {
3895 if (list_empty(&mddev->disks) &&
3896 mddev->raid_disks == 0 &&
3897 mddev->dev_sectors == 0)
3898 st = clear;
3899 else
3900 st = inactive;
3901 }
3902 return sprintf(page, "%s\n", array_states[st]);
3903 }
3904
3905 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3906 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3907 static int do_md_run(struct mddev *mddev);
3908 static int restart_array(struct mddev *mddev);
3909
3910 static ssize_t
3911 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3912 {
3913 int err;
3914 enum array_state st = match_word(buf, array_states);
3915
3916 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3917 /* don't take reconfig_mutex when toggling between
3918 * clean and active
3919 */
3920 spin_lock(&mddev->lock);
3921 if (st == active) {
3922 restart_array(mddev);
3923 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3924 wake_up(&mddev->sb_wait);
3925 err = 0;
3926 } else /* st == clean */ {
3927 restart_array(mddev);
3928 if (atomic_read(&mddev->writes_pending) == 0) {
3929 if (mddev->in_sync == 0) {
3930 mddev->in_sync = 1;
3931 if (mddev->safemode == 1)
3932 mddev->safemode = 0;
3933 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3934 }
3935 err = 0;
3936 } else
3937 err = -EBUSY;
3938 }
3939 spin_unlock(&mddev->lock);
3940 return err ?: len;
3941 }
3942 err = mddev_lock(mddev);
3943 if (err)
3944 return err;
3945 err = -EINVAL;
3946 switch(st) {
3947 case bad_word:
3948 break;
3949 case clear:
3950 /* stopping an active array */
3951 err = do_md_stop(mddev, 0, NULL);
3952 break;
3953 case inactive:
3954 /* stopping an active array */
3955 if (mddev->pers)
3956 err = do_md_stop(mddev, 2, NULL);
3957 else
3958 err = 0; /* already inactive */
3959 break;
3960 case suspended:
3961 break; /* not supported yet */
3962 case readonly:
3963 if (mddev->pers)
3964 err = md_set_readonly(mddev, NULL);
3965 else {
3966 mddev->ro = 1;
3967 set_disk_ro(mddev->gendisk, 1);
3968 err = do_md_run(mddev);
3969 }
3970 break;
3971 case read_auto:
3972 if (mddev->pers) {
3973 if (mddev->ro == 0)
3974 err = md_set_readonly(mddev, NULL);
3975 else if (mddev->ro == 1)
3976 err = restart_array(mddev);
3977 if (err == 0) {
3978 mddev->ro = 2;
3979 set_disk_ro(mddev->gendisk, 0);
3980 }
3981 } else {
3982 mddev->ro = 2;
3983 err = do_md_run(mddev);
3984 }
3985 break;
3986 case clean:
3987 if (mddev->pers) {
3988 err = restart_array(mddev);
3989 if (err)
3990 break;
3991 spin_lock(&mddev->lock);
3992 if (atomic_read(&mddev->writes_pending) == 0) {
3993 if (mddev->in_sync == 0) {
3994 mddev->in_sync = 1;
3995 if (mddev->safemode == 1)
3996 mddev->safemode = 0;
3997 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3998 }
3999 err = 0;
4000 } else
4001 err = -EBUSY;
4002 spin_unlock(&mddev->lock);
4003 } else
4004 err = -EINVAL;
4005 break;
4006 case active:
4007 if (mddev->pers) {
4008 err = restart_array(mddev);
4009 if (err)
4010 break;
4011 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4012 wake_up(&mddev->sb_wait);
4013 err = 0;
4014 } else {
4015 mddev->ro = 0;
4016 set_disk_ro(mddev->gendisk, 0);
4017 err = do_md_run(mddev);
4018 }
4019 break;
4020 case write_pending:
4021 case active_idle:
4022 /* these cannot be set */
4023 break;
4024 }
4025
4026 if (!err) {
4027 if (mddev->hold_active == UNTIL_IOCTL)
4028 mddev->hold_active = 0;
4029 sysfs_notify_dirent_safe(mddev->sysfs_state);
4030 }
4031 mddev_unlock(mddev);
4032 return err ?: len;
4033 }
4034 static struct md_sysfs_entry md_array_state =
4035 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4036
4037 static ssize_t
4038 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4039 return sprintf(page, "%d\n",
4040 atomic_read(&mddev->max_corr_read_errors));
4041 }
4042
4043 static ssize_t
4044 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4045 {
4046 unsigned int n;
4047 int rv;
4048
4049 rv = kstrtouint(buf, 10, &n);
4050 if (rv < 0)
4051 return rv;
4052 atomic_set(&mddev->max_corr_read_errors, n);
4053 return len;
4054 }
4055
4056 static struct md_sysfs_entry max_corr_read_errors =
4057 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4058 max_corrected_read_errors_store);
4059
4060 static ssize_t
4061 null_show(struct mddev *mddev, char *page)
4062 {
4063 return -EINVAL;
4064 }
4065
4066 static ssize_t
4067 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4068 {
4069 /* buf must be %d:%d\n? giving major and minor numbers */
4070 /* The new device is added to the array.
4071 * If the array has a persistent superblock, we read the
4072 * superblock to initialise info and check validity.
4073 * Otherwise, only checking done is that in bind_rdev_to_array,
4074 * which mainly checks size.
4075 */
4076 char *e;
4077 int major = simple_strtoul(buf, &e, 10);
4078 int minor;
4079 dev_t dev;
4080 struct md_rdev *rdev;
4081 int err;
4082
4083 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4084 return -EINVAL;
4085 minor = simple_strtoul(e+1, &e, 10);
4086 if (*e && *e != '\n')
4087 return -EINVAL;
4088 dev = MKDEV(major, minor);
4089 if (major != MAJOR(dev) ||
4090 minor != MINOR(dev))
4091 return -EOVERFLOW;
4092
4093 flush_workqueue(md_misc_wq);
4094
4095 err = mddev_lock(mddev);
4096 if (err)
4097 return err;
4098 if (mddev->persistent) {
4099 rdev = md_import_device(dev, mddev->major_version,
4100 mddev->minor_version);
4101 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4102 struct md_rdev *rdev0
4103 = list_entry(mddev->disks.next,
4104 struct md_rdev, same_set);
4105 err = super_types[mddev->major_version]
4106 .load_super(rdev, rdev0, mddev->minor_version);
4107 if (err < 0)
4108 goto out;
4109 }
4110 } else if (mddev->external)
4111 rdev = md_import_device(dev, -2, -1);
4112 else
4113 rdev = md_import_device(dev, -1, -1);
4114
4115 if (IS_ERR(rdev)) {
4116 mddev_unlock(mddev);
4117 return PTR_ERR(rdev);
4118 }
4119 err = bind_rdev_to_array(rdev, mddev);
4120 out:
4121 if (err)
4122 export_rdev(rdev);
4123 mddev_unlock(mddev);
4124 return err ? err : len;
4125 }
4126
4127 static struct md_sysfs_entry md_new_device =
4128 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4129
4130 static ssize_t
4131 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 char *end;
4134 unsigned long chunk, end_chunk;
4135 int err;
4136
4137 err = mddev_lock(mddev);
4138 if (err)
4139 return err;
4140 if (!mddev->bitmap)
4141 goto out;
4142 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4143 while (*buf) {
4144 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4145 if (buf == end) break;
4146 if (*end == '-') { /* range */
4147 buf = end + 1;
4148 end_chunk = simple_strtoul(buf, &end, 0);
4149 if (buf == end) break;
4150 }
4151 if (*end && !isspace(*end)) break;
4152 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4153 buf = skip_spaces(end);
4154 }
4155 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4156 out:
4157 mddev_unlock(mddev);
4158 return len;
4159 }
4160
4161 static struct md_sysfs_entry md_bitmap =
4162 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4163
4164 static ssize_t
4165 size_show(struct mddev *mddev, char *page)
4166 {
4167 return sprintf(page, "%llu\n",
4168 (unsigned long long)mddev->dev_sectors / 2);
4169 }
4170
4171 static int update_size(struct mddev *mddev, sector_t num_sectors);
4172
4173 static ssize_t
4174 size_store(struct mddev *mddev, const char *buf, size_t len)
4175 {
4176 /* If array is inactive, we can reduce the component size, but
4177 * not increase it (except from 0).
4178 * If array is active, we can try an on-line resize
4179 */
4180 sector_t sectors;
4181 int err = strict_blocks_to_sectors(buf, &sectors);
4182
4183 if (err < 0)
4184 return err;
4185 err = mddev_lock(mddev);
4186 if (err)
4187 return err;
4188 if (mddev->pers) {
4189 err = update_size(mddev, sectors);
4190 md_update_sb(mddev, 1);
4191 } else {
4192 if (mddev->dev_sectors == 0 ||
4193 mddev->dev_sectors > sectors)
4194 mddev->dev_sectors = sectors;
4195 else
4196 err = -ENOSPC;
4197 }
4198 mddev_unlock(mddev);
4199 return err ? err : len;
4200 }
4201
4202 static struct md_sysfs_entry md_size =
4203 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4204
4205 /* Metadata version.
4206 * This is one of
4207 * 'none' for arrays with no metadata (good luck...)
4208 * 'external' for arrays with externally managed metadata,
4209 * or N.M for internally known formats
4210 */
4211 static ssize_t
4212 metadata_show(struct mddev *mddev, char *page)
4213 {
4214 if (mddev->persistent)
4215 return sprintf(page, "%d.%d\n",
4216 mddev->major_version, mddev->minor_version);
4217 else if (mddev->external)
4218 return sprintf(page, "external:%s\n", mddev->metadata_type);
4219 else
4220 return sprintf(page, "none\n");
4221 }
4222
4223 static ssize_t
4224 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4225 {
4226 int major, minor;
4227 char *e;
4228 int err;
4229 /* Changing the details of 'external' metadata is
4230 * always permitted. Otherwise there must be
4231 * no devices attached to the array.
4232 */
4233
4234 err = mddev_lock(mddev);
4235 if (err)
4236 return err;
4237 err = -EBUSY;
4238 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4239 ;
4240 else if (!list_empty(&mddev->disks))
4241 goto out_unlock;
4242
4243 err = 0;
4244 if (cmd_match(buf, "none")) {
4245 mddev->persistent = 0;
4246 mddev->external = 0;
4247 mddev->major_version = 0;
4248 mddev->minor_version = 90;
4249 goto out_unlock;
4250 }
4251 if (strncmp(buf, "external:", 9) == 0) {
4252 size_t namelen = len-9;
4253 if (namelen >= sizeof(mddev->metadata_type))
4254 namelen = sizeof(mddev->metadata_type)-1;
4255 strncpy(mddev->metadata_type, buf+9, namelen);
4256 mddev->metadata_type[namelen] = 0;
4257 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4258 mddev->metadata_type[--namelen] = 0;
4259 mddev->persistent = 0;
4260 mddev->external = 1;
4261 mddev->major_version = 0;
4262 mddev->minor_version = 90;
4263 goto out_unlock;
4264 }
4265 major = simple_strtoul(buf, &e, 10);
4266 err = -EINVAL;
4267 if (e==buf || *e != '.')
4268 goto out_unlock;
4269 buf = e+1;
4270 minor = simple_strtoul(buf, &e, 10);
4271 if (e==buf || (*e && *e != '\n') )
4272 goto out_unlock;
4273 err = -ENOENT;
4274 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4275 goto out_unlock;
4276 mddev->major_version = major;
4277 mddev->minor_version = minor;
4278 mddev->persistent = 1;
4279 mddev->external = 0;
4280 err = 0;
4281 out_unlock:
4282 mddev_unlock(mddev);
4283 return err ?: len;
4284 }
4285
4286 static struct md_sysfs_entry md_metadata =
4287 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4288
4289 static ssize_t
4290 action_show(struct mddev *mddev, char *page)
4291 {
4292 char *type = "idle";
4293 unsigned long recovery = mddev->recovery;
4294 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4295 type = "frozen";
4296 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4297 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4298 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4299 type = "reshape";
4300 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4301 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4302 type = "resync";
4303 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4304 type = "check";
4305 else
4306 type = "repair";
4307 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4308 type = "recover";
4309 else if (mddev->reshape_position != MaxSector)
4310 type = "reshape";
4311 }
4312 return sprintf(page, "%s\n", type);
4313 }
4314
4315 static ssize_t
4316 action_store(struct mddev *mddev, const char *page, size_t len)
4317 {
4318 if (!mddev->pers || !mddev->pers->sync_request)
4319 return -EINVAL;
4320
4321
4322 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4323 if (cmd_match(page, "frozen"))
4324 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4325 else
4326 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4327 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4328 mddev_lock(mddev) == 0) {
4329 flush_workqueue(md_misc_wq);
4330 if (mddev->sync_thread) {
4331 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4332 md_reap_sync_thread(mddev);
4333 }
4334 mddev_unlock(mddev);
4335 }
4336 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4337 return -EBUSY;
4338 else if (cmd_match(page, "resync"))
4339 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4340 else if (cmd_match(page, "recover")) {
4341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4342 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4343 } else if (cmd_match(page, "reshape")) {
4344 int err;
4345 if (mddev->pers->start_reshape == NULL)
4346 return -EINVAL;
4347 err = mddev_lock(mddev);
4348 if (!err) {
4349 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4350 err = -EBUSY;
4351 else {
4352 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4353 err = mddev->pers->start_reshape(mddev);
4354 }
4355 mddev_unlock(mddev);
4356 }
4357 if (err)
4358 return err;
4359 sysfs_notify(&mddev->kobj, NULL, "degraded");
4360 } else {
4361 if (cmd_match(page, "check"))
4362 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4363 else if (!cmd_match(page, "repair"))
4364 return -EINVAL;
4365 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4366 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4367 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4368 }
4369 if (mddev->ro == 2) {
4370 /* A write to sync_action is enough to justify
4371 * canceling read-auto mode
4372 */
4373 mddev->ro = 0;
4374 md_wakeup_thread(mddev->sync_thread);
4375 }
4376 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4377 md_wakeup_thread(mddev->thread);
4378 sysfs_notify_dirent_safe(mddev->sysfs_action);
4379 return len;
4380 }
4381
4382 static struct md_sysfs_entry md_scan_mode =
4383 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4384
4385 static ssize_t
4386 last_sync_action_show(struct mddev *mddev, char *page)
4387 {
4388 return sprintf(page, "%s\n", mddev->last_sync_action);
4389 }
4390
4391 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4392
4393 static ssize_t
4394 mismatch_cnt_show(struct mddev *mddev, char *page)
4395 {
4396 return sprintf(page, "%llu\n",
4397 (unsigned long long)
4398 atomic64_read(&mddev->resync_mismatches));
4399 }
4400
4401 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4402
4403 static ssize_t
4404 sync_min_show(struct mddev *mddev, char *page)
4405 {
4406 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4407 mddev->sync_speed_min ? "local": "system");
4408 }
4409
4410 static ssize_t
4411 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4412 {
4413 unsigned int min;
4414 int rv;
4415
4416 if (strncmp(buf, "system", 6)==0) {
4417 min = 0;
4418 } else {
4419 rv = kstrtouint(buf, 10, &min);
4420 if (rv < 0)
4421 return rv;
4422 if (min == 0)
4423 return -EINVAL;
4424 }
4425 mddev->sync_speed_min = min;
4426 return len;
4427 }
4428
4429 static struct md_sysfs_entry md_sync_min =
4430 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4431
4432 static ssize_t
4433 sync_max_show(struct mddev *mddev, char *page)
4434 {
4435 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4436 mddev->sync_speed_max ? "local": "system");
4437 }
4438
4439 static ssize_t
4440 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4441 {
4442 unsigned int max;
4443 int rv;
4444
4445 if (strncmp(buf, "system", 6)==0) {
4446 max = 0;
4447 } else {
4448 rv = kstrtouint(buf, 10, &max);
4449 if (rv < 0)
4450 return rv;
4451 if (max == 0)
4452 return -EINVAL;
4453 }
4454 mddev->sync_speed_max = max;
4455 return len;
4456 }
4457
4458 static struct md_sysfs_entry md_sync_max =
4459 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4460
4461 static ssize_t
4462 degraded_show(struct mddev *mddev, char *page)
4463 {
4464 return sprintf(page, "%d\n", mddev->degraded);
4465 }
4466 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4467
4468 static ssize_t
4469 sync_force_parallel_show(struct mddev *mddev, char *page)
4470 {
4471 return sprintf(page, "%d\n", mddev->parallel_resync);
4472 }
4473
4474 static ssize_t
4475 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4476 {
4477 long n;
4478
4479 if (kstrtol(buf, 10, &n))
4480 return -EINVAL;
4481
4482 if (n != 0 && n != 1)
4483 return -EINVAL;
4484
4485 mddev->parallel_resync = n;
4486
4487 if (mddev->sync_thread)
4488 wake_up(&resync_wait);
4489
4490 return len;
4491 }
4492
4493 /* force parallel resync, even with shared block devices */
4494 static struct md_sysfs_entry md_sync_force_parallel =
4495 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4496 sync_force_parallel_show, sync_force_parallel_store);
4497
4498 static ssize_t
4499 sync_speed_show(struct mddev *mddev, char *page)
4500 {
4501 unsigned long resync, dt, db;
4502 if (mddev->curr_resync == 0)
4503 return sprintf(page, "none\n");
4504 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4505 dt = (jiffies - mddev->resync_mark) / HZ;
4506 if (!dt) dt++;
4507 db = resync - mddev->resync_mark_cnt;
4508 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4509 }
4510
4511 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4512
4513 static ssize_t
4514 sync_completed_show(struct mddev *mddev, char *page)
4515 {
4516 unsigned long long max_sectors, resync;
4517
4518 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4519 return sprintf(page, "none\n");
4520
4521 if (mddev->curr_resync == 1 ||
4522 mddev->curr_resync == 2)
4523 return sprintf(page, "delayed\n");
4524
4525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4526 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4527 max_sectors = mddev->resync_max_sectors;
4528 else
4529 max_sectors = mddev->dev_sectors;
4530
4531 resync = mddev->curr_resync_completed;
4532 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4533 }
4534
4535 static struct md_sysfs_entry md_sync_completed =
4536 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4537
4538 static ssize_t
4539 min_sync_show(struct mddev *mddev, char *page)
4540 {
4541 return sprintf(page, "%llu\n",
4542 (unsigned long long)mddev->resync_min);
4543 }
4544 static ssize_t
4545 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4546 {
4547 unsigned long long min;
4548 int err;
4549
4550 if (kstrtoull(buf, 10, &min))
4551 return -EINVAL;
4552
4553 spin_lock(&mddev->lock);
4554 err = -EINVAL;
4555 if (min > mddev->resync_max)
4556 goto out_unlock;
4557
4558 err = -EBUSY;
4559 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4560 goto out_unlock;
4561
4562 /* Round down to multiple of 4K for safety */
4563 mddev->resync_min = round_down(min, 8);
4564 err = 0;
4565
4566 out_unlock:
4567 spin_unlock(&mddev->lock);
4568 return err ?: len;
4569 }
4570
4571 static struct md_sysfs_entry md_min_sync =
4572 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4573
4574 static ssize_t
4575 max_sync_show(struct mddev *mddev, char *page)
4576 {
4577 if (mddev->resync_max == MaxSector)
4578 return sprintf(page, "max\n");
4579 else
4580 return sprintf(page, "%llu\n",
4581 (unsigned long long)mddev->resync_max);
4582 }
4583 static ssize_t
4584 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4585 {
4586 int err;
4587 spin_lock(&mddev->lock);
4588 if (strncmp(buf, "max", 3) == 0)
4589 mddev->resync_max = MaxSector;
4590 else {
4591 unsigned long long max;
4592 int chunk;
4593
4594 err = -EINVAL;
4595 if (kstrtoull(buf, 10, &max))
4596 goto out_unlock;
4597 if (max < mddev->resync_min)
4598 goto out_unlock;
4599
4600 err = -EBUSY;
4601 if (max < mddev->resync_max &&
4602 mddev->ro == 0 &&
4603 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4604 goto out_unlock;
4605
4606 /* Must be a multiple of chunk_size */
4607 chunk = mddev->chunk_sectors;
4608 if (chunk) {
4609 sector_t temp = max;
4610
4611 err = -EINVAL;
4612 if (sector_div(temp, chunk))
4613 goto out_unlock;
4614 }
4615 mddev->resync_max = max;
4616 }
4617 wake_up(&mddev->recovery_wait);
4618 err = 0;
4619 out_unlock:
4620 spin_unlock(&mddev->lock);
4621 return err ?: len;
4622 }
4623
4624 static struct md_sysfs_entry md_max_sync =
4625 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4626
4627 static ssize_t
4628 suspend_lo_show(struct mddev *mddev, char *page)
4629 {
4630 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4631 }
4632
4633 static ssize_t
4634 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4635 {
4636 unsigned long long old, new;
4637 int err;
4638
4639 err = kstrtoull(buf, 10, &new);
4640 if (err < 0)
4641 return err;
4642 if (new != (sector_t)new)
4643 return -EINVAL;
4644
4645 err = mddev_lock(mddev);
4646 if (err)
4647 return err;
4648 err = -EINVAL;
4649 if (mddev->pers == NULL ||
4650 mddev->pers->quiesce == NULL)
4651 goto unlock;
4652 old = mddev->suspend_lo;
4653 mddev->suspend_lo = new;
4654 if (new >= old)
4655 /* Shrinking suspended region */
4656 mddev->pers->quiesce(mddev, 2);
4657 else {
4658 /* Expanding suspended region - need to wait */
4659 mddev->pers->quiesce(mddev, 1);
4660 mddev->pers->quiesce(mddev, 0);
4661 }
4662 err = 0;
4663 unlock:
4664 mddev_unlock(mddev);
4665 return err ?: len;
4666 }
4667 static struct md_sysfs_entry md_suspend_lo =
4668 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4669
4670 static ssize_t
4671 suspend_hi_show(struct mddev *mddev, char *page)
4672 {
4673 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4674 }
4675
4676 static ssize_t
4677 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4678 {
4679 unsigned long long old, new;
4680 int err;
4681
4682 err = kstrtoull(buf, 10, &new);
4683 if (err < 0)
4684 return err;
4685 if (new != (sector_t)new)
4686 return -EINVAL;
4687
4688 err = mddev_lock(mddev);
4689 if (err)
4690 return err;
4691 err = -EINVAL;
4692 if (mddev->pers == NULL ||
4693 mddev->pers->quiesce == NULL)
4694 goto unlock;
4695 old = mddev->suspend_hi;
4696 mddev->suspend_hi = new;
4697 if (new <= old)
4698 /* Shrinking suspended region */
4699 mddev->pers->quiesce(mddev, 2);
4700 else {
4701 /* Expanding suspended region - need to wait */
4702 mddev->pers->quiesce(mddev, 1);
4703 mddev->pers->quiesce(mddev, 0);
4704 }
4705 err = 0;
4706 unlock:
4707 mddev_unlock(mddev);
4708 return err ?: len;
4709 }
4710 static struct md_sysfs_entry md_suspend_hi =
4711 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4712
4713 static ssize_t
4714 reshape_position_show(struct mddev *mddev, char *page)
4715 {
4716 if (mddev->reshape_position != MaxSector)
4717 return sprintf(page, "%llu\n",
4718 (unsigned long long)mddev->reshape_position);
4719 strcpy(page, "none\n");
4720 return 5;
4721 }
4722
4723 static ssize_t
4724 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4725 {
4726 struct md_rdev *rdev;
4727 unsigned long long new;
4728 int err;
4729
4730 err = kstrtoull(buf, 10, &new);
4731 if (err < 0)
4732 return err;
4733 if (new != (sector_t)new)
4734 return -EINVAL;
4735 err = mddev_lock(mddev);
4736 if (err)
4737 return err;
4738 err = -EBUSY;
4739 if (mddev->pers)
4740 goto unlock;
4741 mddev->reshape_position = new;
4742 mddev->delta_disks = 0;
4743 mddev->reshape_backwards = 0;
4744 mddev->new_level = mddev->level;
4745 mddev->new_layout = mddev->layout;
4746 mddev->new_chunk_sectors = mddev->chunk_sectors;
4747 rdev_for_each(rdev, mddev)
4748 rdev->new_data_offset = rdev->data_offset;
4749 err = 0;
4750 unlock:
4751 mddev_unlock(mddev);
4752 return err ?: len;
4753 }
4754
4755 static struct md_sysfs_entry md_reshape_position =
4756 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4757 reshape_position_store);
4758
4759 static ssize_t
4760 reshape_direction_show(struct mddev *mddev, char *page)
4761 {
4762 return sprintf(page, "%s\n",
4763 mddev->reshape_backwards ? "backwards" : "forwards");
4764 }
4765
4766 static ssize_t
4767 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4768 {
4769 int backwards = 0;
4770 int err;
4771
4772 if (cmd_match(buf, "forwards"))
4773 backwards = 0;
4774 else if (cmd_match(buf, "backwards"))
4775 backwards = 1;
4776 else
4777 return -EINVAL;
4778 if (mddev->reshape_backwards == backwards)
4779 return len;
4780
4781 err = mddev_lock(mddev);
4782 if (err)
4783 return err;
4784 /* check if we are allowed to change */
4785 if (mddev->delta_disks)
4786 err = -EBUSY;
4787 else if (mddev->persistent &&
4788 mddev->major_version == 0)
4789 err = -EINVAL;
4790 else
4791 mddev->reshape_backwards = backwards;
4792 mddev_unlock(mddev);
4793 return err ?: len;
4794 }
4795
4796 static struct md_sysfs_entry md_reshape_direction =
4797 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4798 reshape_direction_store);
4799
4800 static ssize_t
4801 array_size_show(struct mddev *mddev, char *page)
4802 {
4803 if (mddev->external_size)
4804 return sprintf(page, "%llu\n",
4805 (unsigned long long)mddev->array_sectors/2);
4806 else
4807 return sprintf(page, "default\n");
4808 }
4809
4810 static ssize_t
4811 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4812 {
4813 sector_t sectors;
4814 int err;
4815
4816 err = mddev_lock(mddev);
4817 if (err)
4818 return err;
4819
4820 /* cluster raid doesn't support change array_sectors */
4821 if (mddev_is_clustered(mddev))
4822 return -EINVAL;
4823
4824 if (strncmp(buf, "default", 7) == 0) {
4825 if (mddev->pers)
4826 sectors = mddev->pers->size(mddev, 0, 0);
4827 else
4828 sectors = mddev->array_sectors;
4829
4830 mddev->external_size = 0;
4831 } else {
4832 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4833 err = -EINVAL;
4834 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4835 err = -E2BIG;
4836 else
4837 mddev->external_size = 1;
4838 }
4839
4840 if (!err) {
4841 mddev->array_sectors = sectors;
4842 if (mddev->pers) {
4843 set_capacity(mddev->gendisk, mddev->array_sectors);
4844 revalidate_disk(mddev->gendisk);
4845 }
4846 }
4847 mddev_unlock(mddev);
4848 return err ?: len;
4849 }
4850
4851 static struct md_sysfs_entry md_array_size =
4852 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4853 array_size_store);
4854
4855 static struct attribute *md_default_attrs[] = {
4856 &md_level.attr,
4857 &md_layout.attr,
4858 &md_raid_disks.attr,
4859 &md_chunk_size.attr,
4860 &md_size.attr,
4861 &md_resync_start.attr,
4862 &md_metadata.attr,
4863 &md_new_device.attr,
4864 &md_safe_delay.attr,
4865 &md_array_state.attr,
4866 &md_reshape_position.attr,
4867 &md_reshape_direction.attr,
4868 &md_array_size.attr,
4869 &max_corr_read_errors.attr,
4870 NULL,
4871 };
4872
4873 static struct attribute *md_redundancy_attrs[] = {
4874 &md_scan_mode.attr,
4875 &md_last_scan_mode.attr,
4876 &md_mismatches.attr,
4877 &md_sync_min.attr,
4878 &md_sync_max.attr,
4879 &md_sync_speed.attr,
4880 &md_sync_force_parallel.attr,
4881 &md_sync_completed.attr,
4882 &md_min_sync.attr,
4883 &md_max_sync.attr,
4884 &md_suspend_lo.attr,
4885 &md_suspend_hi.attr,
4886 &md_bitmap.attr,
4887 &md_degraded.attr,
4888 NULL,
4889 };
4890 static struct attribute_group md_redundancy_group = {
4891 .name = NULL,
4892 .attrs = md_redundancy_attrs,
4893 };
4894
4895 static ssize_t
4896 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4897 {
4898 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4899 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4900 ssize_t rv;
4901
4902 if (!entry->show)
4903 return -EIO;
4904 spin_lock(&all_mddevs_lock);
4905 if (list_empty(&mddev->all_mddevs)) {
4906 spin_unlock(&all_mddevs_lock);
4907 return -EBUSY;
4908 }
4909 mddev_get(mddev);
4910 spin_unlock(&all_mddevs_lock);
4911
4912 rv = entry->show(mddev, page);
4913 mddev_put(mddev);
4914 return rv;
4915 }
4916
4917 static ssize_t
4918 md_attr_store(struct kobject *kobj, struct attribute *attr,
4919 const char *page, size_t length)
4920 {
4921 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4922 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4923 ssize_t rv;
4924
4925 if (!entry->store)
4926 return -EIO;
4927 if (!capable(CAP_SYS_ADMIN))
4928 return -EACCES;
4929 spin_lock(&all_mddevs_lock);
4930 if (list_empty(&mddev->all_mddevs)) {
4931 spin_unlock(&all_mddevs_lock);
4932 return -EBUSY;
4933 }
4934 mddev_get(mddev);
4935 spin_unlock(&all_mddevs_lock);
4936 rv = entry->store(mddev, page, length);
4937 mddev_put(mddev);
4938 return rv;
4939 }
4940
4941 static void md_free(struct kobject *ko)
4942 {
4943 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4944
4945 if (mddev->sysfs_state)
4946 sysfs_put(mddev->sysfs_state);
4947
4948 if (mddev->queue)
4949 blk_cleanup_queue(mddev->queue);
4950 if (mddev->gendisk) {
4951 del_gendisk(mddev->gendisk);
4952 put_disk(mddev->gendisk);
4953 }
4954
4955 kfree(mddev);
4956 }
4957
4958 static const struct sysfs_ops md_sysfs_ops = {
4959 .show = md_attr_show,
4960 .store = md_attr_store,
4961 };
4962 static struct kobj_type md_ktype = {
4963 .release = md_free,
4964 .sysfs_ops = &md_sysfs_ops,
4965 .default_attrs = md_default_attrs,
4966 };
4967
4968 int mdp_major = 0;
4969
4970 static void mddev_delayed_delete(struct work_struct *ws)
4971 {
4972 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4973
4974 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4975 kobject_del(&mddev->kobj);
4976 kobject_put(&mddev->kobj);
4977 }
4978
4979 static int md_alloc(dev_t dev, char *name)
4980 {
4981 static DEFINE_MUTEX(disks_mutex);
4982 struct mddev *mddev = mddev_find(dev);
4983 struct gendisk *disk;
4984 int partitioned;
4985 int shift;
4986 int unit;
4987 int error;
4988
4989 if (!mddev)
4990 return -ENODEV;
4991
4992 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4993 shift = partitioned ? MdpMinorShift : 0;
4994 unit = MINOR(mddev->unit) >> shift;
4995
4996 /* wait for any previous instance of this device to be
4997 * completely removed (mddev_delayed_delete).
4998 */
4999 flush_workqueue(md_misc_wq);
5000
5001 mutex_lock(&disks_mutex);
5002 error = -EEXIST;
5003 if (mddev->gendisk)
5004 goto abort;
5005
5006 if (name) {
5007 /* Need to ensure that 'name' is not a duplicate.
5008 */
5009 struct mddev *mddev2;
5010 spin_lock(&all_mddevs_lock);
5011
5012 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5013 if (mddev2->gendisk &&
5014 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5015 spin_unlock(&all_mddevs_lock);
5016 goto abort;
5017 }
5018 spin_unlock(&all_mddevs_lock);
5019 }
5020
5021 error = -ENOMEM;
5022 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5023 if (!mddev->queue)
5024 goto abort;
5025 mddev->queue->queuedata = mddev;
5026
5027 blk_queue_make_request(mddev->queue, md_make_request);
5028 blk_set_stacking_limits(&mddev->queue->limits);
5029
5030 disk = alloc_disk(1 << shift);
5031 if (!disk) {
5032 blk_cleanup_queue(mddev->queue);
5033 mddev->queue = NULL;
5034 goto abort;
5035 }
5036 disk->major = MAJOR(mddev->unit);
5037 disk->first_minor = unit << shift;
5038 if (name)
5039 strcpy(disk->disk_name, name);
5040 else if (partitioned)
5041 sprintf(disk->disk_name, "md_d%d", unit);
5042 else
5043 sprintf(disk->disk_name, "md%d", unit);
5044 disk->fops = &md_fops;
5045 disk->private_data = mddev;
5046 disk->queue = mddev->queue;
5047 blk_queue_write_cache(mddev->queue, true, true);
5048 /* Allow extended partitions. This makes the
5049 * 'mdp' device redundant, but we can't really
5050 * remove it now.
5051 */
5052 disk->flags |= GENHD_FL_EXT_DEVT;
5053 mddev->gendisk = disk;
5054 /* As soon as we call add_disk(), another thread could get
5055 * through to md_open, so make sure it doesn't get too far
5056 */
5057 mutex_lock(&mddev->open_mutex);
5058 add_disk(disk);
5059
5060 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5061 &disk_to_dev(disk)->kobj, "%s", "md");
5062 if (error) {
5063 /* This isn't possible, but as kobject_init_and_add is marked
5064 * __must_check, we must do something with the result
5065 */
5066 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5067 disk->disk_name);
5068 error = 0;
5069 }
5070 if (mddev->kobj.sd &&
5071 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5072 printk(KERN_DEBUG "pointless warning\n");
5073 mutex_unlock(&mddev->open_mutex);
5074 abort:
5075 mutex_unlock(&disks_mutex);
5076 if (!error && mddev->kobj.sd) {
5077 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5078 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5079 }
5080 mddev_put(mddev);
5081 return error;
5082 }
5083
5084 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5085 {
5086 md_alloc(dev, NULL);
5087 return NULL;
5088 }
5089
5090 static int add_named_array(const char *val, struct kernel_param *kp)
5091 {
5092 /* val must be "md_*" where * is not all digits.
5093 * We allocate an array with a large free minor number, and
5094 * set the name to val. val must not already be an active name.
5095 */
5096 int len = strlen(val);
5097 char buf[DISK_NAME_LEN];
5098
5099 while (len && val[len-1] == '\n')
5100 len--;
5101 if (len >= DISK_NAME_LEN)
5102 return -E2BIG;
5103 strlcpy(buf, val, len+1);
5104 if (strncmp(buf, "md_", 3) != 0)
5105 return -EINVAL;
5106 return md_alloc(0, buf);
5107 }
5108
5109 static void md_safemode_timeout(unsigned long data)
5110 {
5111 struct mddev *mddev = (struct mddev *) data;
5112
5113 if (!atomic_read(&mddev->writes_pending)) {
5114 mddev->safemode = 1;
5115 if (mddev->external)
5116 sysfs_notify_dirent_safe(mddev->sysfs_state);
5117 }
5118 md_wakeup_thread(mddev->thread);
5119 }
5120
5121 static int start_dirty_degraded;
5122
5123 int md_run(struct mddev *mddev)
5124 {
5125 int err;
5126 struct md_rdev *rdev;
5127 struct md_personality *pers;
5128
5129 if (list_empty(&mddev->disks))
5130 /* cannot run an array with no devices.. */
5131 return -EINVAL;
5132
5133 if (mddev->pers)
5134 return -EBUSY;
5135 /* Cannot run until previous stop completes properly */
5136 if (mddev->sysfs_active)
5137 return -EBUSY;
5138
5139 /*
5140 * Analyze all RAID superblock(s)
5141 */
5142 if (!mddev->raid_disks) {
5143 if (!mddev->persistent)
5144 return -EINVAL;
5145 analyze_sbs(mddev);
5146 }
5147
5148 if (mddev->level != LEVEL_NONE)
5149 request_module("md-level-%d", mddev->level);
5150 else if (mddev->clevel[0])
5151 request_module("md-%s", mddev->clevel);
5152
5153 /*
5154 * Drop all container device buffers, from now on
5155 * the only valid external interface is through the md
5156 * device.
5157 */
5158 rdev_for_each(rdev, mddev) {
5159 if (test_bit(Faulty, &rdev->flags))
5160 continue;
5161 sync_blockdev(rdev->bdev);
5162 invalidate_bdev(rdev->bdev);
5163
5164 /* perform some consistency tests on the device.
5165 * We don't want the data to overlap the metadata,
5166 * Internal Bitmap issues have been handled elsewhere.
5167 */
5168 if (rdev->meta_bdev) {
5169 /* Nothing to check */;
5170 } else if (rdev->data_offset < rdev->sb_start) {
5171 if (mddev->dev_sectors &&
5172 rdev->data_offset + mddev->dev_sectors
5173 > rdev->sb_start) {
5174 printk("md: %s: data overlaps metadata\n",
5175 mdname(mddev));
5176 return -EINVAL;
5177 }
5178 } else {
5179 if (rdev->sb_start + rdev->sb_size/512
5180 > rdev->data_offset) {
5181 printk("md: %s: metadata overlaps data\n",
5182 mdname(mddev));
5183 return -EINVAL;
5184 }
5185 }
5186 sysfs_notify_dirent_safe(rdev->sysfs_state);
5187 }
5188
5189 if (mddev->bio_set == NULL)
5190 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5191
5192 spin_lock(&pers_lock);
5193 pers = find_pers(mddev->level, mddev->clevel);
5194 if (!pers || !try_module_get(pers->owner)) {
5195 spin_unlock(&pers_lock);
5196 if (mddev->level != LEVEL_NONE)
5197 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5198 mddev->level);
5199 else
5200 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5201 mddev->clevel);
5202 return -EINVAL;
5203 }
5204 spin_unlock(&pers_lock);
5205 if (mddev->level != pers->level) {
5206 mddev->level = pers->level;
5207 mddev->new_level = pers->level;
5208 }
5209 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5210
5211 if (mddev->reshape_position != MaxSector &&
5212 pers->start_reshape == NULL) {
5213 /* This personality cannot handle reshaping... */
5214 module_put(pers->owner);
5215 return -EINVAL;
5216 }
5217
5218 if (pers->sync_request) {
5219 /* Warn if this is a potentially silly
5220 * configuration.
5221 */
5222 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5223 struct md_rdev *rdev2;
5224 int warned = 0;
5225
5226 rdev_for_each(rdev, mddev)
5227 rdev_for_each(rdev2, mddev) {
5228 if (rdev < rdev2 &&
5229 rdev->bdev->bd_contains ==
5230 rdev2->bdev->bd_contains) {
5231 printk(KERN_WARNING
5232 "%s: WARNING: %s appears to be"
5233 " on the same physical disk as"
5234 " %s.\n",
5235 mdname(mddev),
5236 bdevname(rdev->bdev,b),
5237 bdevname(rdev2->bdev,b2));
5238 warned = 1;
5239 }
5240 }
5241
5242 if (warned)
5243 printk(KERN_WARNING
5244 "True protection against single-disk"
5245 " failure might be compromised.\n");
5246 }
5247
5248 mddev->recovery = 0;
5249 /* may be over-ridden by personality */
5250 mddev->resync_max_sectors = mddev->dev_sectors;
5251
5252 mddev->ok_start_degraded = start_dirty_degraded;
5253
5254 if (start_readonly && mddev->ro == 0)
5255 mddev->ro = 2; /* read-only, but switch on first write */
5256
5257 err = pers->run(mddev);
5258 if (err)
5259 printk(KERN_ERR "md: pers->run() failed ...\n");
5260 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5261 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5262 " but 'external_size' not in effect?\n", __func__);
5263 printk(KERN_ERR
5264 "md: invalid array_size %llu > default size %llu\n",
5265 (unsigned long long)mddev->array_sectors / 2,
5266 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5267 err = -EINVAL;
5268 }
5269 if (err == 0 && pers->sync_request &&
5270 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5271 struct bitmap *bitmap;
5272
5273 bitmap = bitmap_create(mddev, -1);
5274 if (IS_ERR(bitmap)) {
5275 err = PTR_ERR(bitmap);
5276 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5277 mdname(mddev), err);
5278 } else
5279 mddev->bitmap = bitmap;
5280
5281 }
5282 if (err) {
5283 mddev_detach(mddev);
5284 if (mddev->private)
5285 pers->free(mddev, mddev->private);
5286 mddev->private = NULL;
5287 module_put(pers->owner);
5288 bitmap_destroy(mddev);
5289 return err;
5290 }
5291 if (mddev->queue) {
5292 mddev->queue->backing_dev_info.congested_data = mddev;
5293 mddev->queue->backing_dev_info.congested_fn = md_congested;
5294 }
5295 if (pers->sync_request) {
5296 if (mddev->kobj.sd &&
5297 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5298 printk(KERN_WARNING
5299 "md: cannot register extra attributes for %s\n",
5300 mdname(mddev));
5301 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5302 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5303 mddev->ro = 0;
5304
5305 atomic_set(&mddev->writes_pending,0);
5306 atomic_set(&mddev->max_corr_read_errors,
5307 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5308 mddev->safemode = 0;
5309 if (mddev_is_clustered(mddev))
5310 mddev->safemode_delay = 0;
5311 else
5312 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5313 mddev->in_sync = 1;
5314 smp_wmb();
5315 spin_lock(&mddev->lock);
5316 mddev->pers = pers;
5317 spin_unlock(&mddev->lock);
5318 rdev_for_each(rdev, mddev)
5319 if (rdev->raid_disk >= 0)
5320 if (sysfs_link_rdev(mddev, rdev))
5321 /* failure here is OK */;
5322
5323 if (mddev->degraded && !mddev->ro)
5324 /* This ensures that recovering status is reported immediately
5325 * via sysfs - until a lack of spares is confirmed.
5326 */
5327 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5329
5330 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5331 md_update_sb(mddev, 0);
5332
5333 md_new_event(mddev);
5334 sysfs_notify_dirent_safe(mddev->sysfs_state);
5335 sysfs_notify_dirent_safe(mddev->sysfs_action);
5336 sysfs_notify(&mddev->kobj, NULL, "degraded");
5337 return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(md_run);
5340
5341 static int do_md_run(struct mddev *mddev)
5342 {
5343 int err;
5344
5345 err = md_run(mddev);
5346 if (err)
5347 goto out;
5348 err = bitmap_load(mddev);
5349 if (err) {
5350 bitmap_destroy(mddev);
5351 goto out;
5352 }
5353
5354 if (mddev_is_clustered(mddev))
5355 md_allow_write(mddev);
5356
5357 md_wakeup_thread(mddev->thread);
5358 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5359
5360 set_capacity(mddev->gendisk, mddev->array_sectors);
5361 revalidate_disk(mddev->gendisk);
5362 mddev->changed = 1;
5363 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5364 out:
5365 return err;
5366 }
5367
5368 static int restart_array(struct mddev *mddev)
5369 {
5370 struct gendisk *disk = mddev->gendisk;
5371
5372 /* Complain if it has no devices */
5373 if (list_empty(&mddev->disks))
5374 return -ENXIO;
5375 if (!mddev->pers)
5376 return -EINVAL;
5377 if (!mddev->ro)
5378 return -EBUSY;
5379 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5380 struct md_rdev *rdev;
5381 bool has_journal = false;
5382
5383 rcu_read_lock();
5384 rdev_for_each_rcu(rdev, mddev) {
5385 if (test_bit(Journal, &rdev->flags) &&
5386 !test_bit(Faulty, &rdev->flags)) {
5387 has_journal = true;
5388 break;
5389 }
5390 }
5391 rcu_read_unlock();
5392
5393 /* Don't restart rw with journal missing/faulty */
5394 if (!has_journal)
5395 return -EINVAL;
5396 }
5397
5398 mddev->safemode = 0;
5399 mddev->ro = 0;
5400 set_disk_ro(disk, 0);
5401 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5402 mdname(mddev));
5403 /* Kick recovery or resync if necessary */
5404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5405 md_wakeup_thread(mddev->thread);
5406 md_wakeup_thread(mddev->sync_thread);
5407 sysfs_notify_dirent_safe(mddev->sysfs_state);
5408 return 0;
5409 }
5410
5411 static void md_clean(struct mddev *mddev)
5412 {
5413 mddev->array_sectors = 0;
5414 mddev->external_size = 0;
5415 mddev->dev_sectors = 0;
5416 mddev->raid_disks = 0;
5417 mddev->recovery_cp = 0;
5418 mddev->resync_min = 0;
5419 mddev->resync_max = MaxSector;
5420 mddev->reshape_position = MaxSector;
5421 mddev->external = 0;
5422 mddev->persistent = 0;
5423 mddev->level = LEVEL_NONE;
5424 mddev->clevel[0] = 0;
5425 mddev->flags = 0;
5426 mddev->ro = 0;
5427 mddev->metadata_type[0] = 0;
5428 mddev->chunk_sectors = 0;
5429 mddev->ctime = mddev->utime = 0;
5430 mddev->layout = 0;
5431 mddev->max_disks = 0;
5432 mddev->events = 0;
5433 mddev->can_decrease_events = 0;
5434 mddev->delta_disks = 0;
5435 mddev->reshape_backwards = 0;
5436 mddev->new_level = LEVEL_NONE;
5437 mddev->new_layout = 0;
5438 mddev->new_chunk_sectors = 0;
5439 mddev->curr_resync = 0;
5440 atomic64_set(&mddev->resync_mismatches, 0);
5441 mddev->suspend_lo = mddev->suspend_hi = 0;
5442 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5443 mddev->recovery = 0;
5444 mddev->in_sync = 0;
5445 mddev->changed = 0;
5446 mddev->degraded = 0;
5447 mddev->safemode = 0;
5448 mddev->private = NULL;
5449 mddev->bitmap_info.offset = 0;
5450 mddev->bitmap_info.default_offset = 0;
5451 mddev->bitmap_info.default_space = 0;
5452 mddev->bitmap_info.chunksize = 0;
5453 mddev->bitmap_info.daemon_sleep = 0;
5454 mddev->bitmap_info.max_write_behind = 0;
5455 }
5456
5457 static void __md_stop_writes(struct mddev *mddev)
5458 {
5459 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5460 flush_workqueue(md_misc_wq);
5461 if (mddev->sync_thread) {
5462 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5463 md_reap_sync_thread(mddev);
5464 }
5465
5466 del_timer_sync(&mddev->safemode_timer);
5467
5468 bitmap_flush(mddev);
5469 md_super_wait(mddev);
5470
5471 if (mddev->ro == 0 &&
5472 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5473 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5474 /* mark array as shutdown cleanly */
5475 if (!mddev_is_clustered(mddev))
5476 mddev->in_sync = 1;
5477 md_update_sb(mddev, 1);
5478 }
5479 }
5480
5481 void md_stop_writes(struct mddev *mddev)
5482 {
5483 mddev_lock_nointr(mddev);
5484 __md_stop_writes(mddev);
5485 mddev_unlock(mddev);
5486 }
5487 EXPORT_SYMBOL_GPL(md_stop_writes);
5488
5489 static void mddev_detach(struct mddev *mddev)
5490 {
5491 struct bitmap *bitmap = mddev->bitmap;
5492 /* wait for behind writes to complete */
5493 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5494 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5495 mdname(mddev));
5496 /* need to kick something here to make sure I/O goes? */
5497 wait_event(bitmap->behind_wait,
5498 atomic_read(&bitmap->behind_writes) == 0);
5499 }
5500 if (mddev->pers && mddev->pers->quiesce) {
5501 mddev->pers->quiesce(mddev, 1);
5502 mddev->pers->quiesce(mddev, 0);
5503 }
5504 md_unregister_thread(&mddev->thread);
5505 if (mddev->queue)
5506 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5507 }
5508
5509 static void __md_stop(struct mddev *mddev)
5510 {
5511 struct md_personality *pers = mddev->pers;
5512 mddev_detach(mddev);
5513 /* Ensure ->event_work is done */
5514 flush_workqueue(md_misc_wq);
5515 spin_lock(&mddev->lock);
5516 mddev->pers = NULL;
5517 spin_unlock(&mddev->lock);
5518 pers->free(mddev, mddev->private);
5519 mddev->private = NULL;
5520 if (pers->sync_request && mddev->to_remove == NULL)
5521 mddev->to_remove = &md_redundancy_group;
5522 module_put(pers->owner);
5523 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5524 }
5525
5526 void md_stop(struct mddev *mddev)
5527 {
5528 /* stop the array and free an attached data structures.
5529 * This is called from dm-raid
5530 */
5531 __md_stop(mddev);
5532 bitmap_destroy(mddev);
5533 if (mddev->bio_set)
5534 bioset_free(mddev->bio_set);
5535 }
5536
5537 EXPORT_SYMBOL_GPL(md_stop);
5538
5539 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5540 {
5541 int err = 0;
5542 int did_freeze = 0;
5543
5544 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5545 did_freeze = 1;
5546 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5547 md_wakeup_thread(mddev->thread);
5548 }
5549 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5550 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5551 if (mddev->sync_thread)
5552 /* Thread might be blocked waiting for metadata update
5553 * which will now never happen */
5554 wake_up_process(mddev->sync_thread->tsk);
5555
5556 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5557 return -EBUSY;
5558 mddev_unlock(mddev);
5559 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5560 &mddev->recovery));
5561 wait_event(mddev->sb_wait,
5562 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5563 mddev_lock_nointr(mddev);
5564
5565 mutex_lock(&mddev->open_mutex);
5566 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5567 mddev->sync_thread ||
5568 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5569 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5570 printk("md: %s still in use.\n",mdname(mddev));
5571 if (did_freeze) {
5572 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5574 md_wakeup_thread(mddev->thread);
5575 }
5576 err = -EBUSY;
5577 goto out;
5578 }
5579 if (mddev->pers) {
5580 __md_stop_writes(mddev);
5581
5582 err = -ENXIO;
5583 if (mddev->ro==1)
5584 goto out;
5585 mddev->ro = 1;
5586 set_disk_ro(mddev->gendisk, 1);
5587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5589 md_wakeup_thread(mddev->thread);
5590 sysfs_notify_dirent_safe(mddev->sysfs_state);
5591 err = 0;
5592 }
5593 out:
5594 mutex_unlock(&mddev->open_mutex);
5595 return err;
5596 }
5597
5598 /* mode:
5599 * 0 - completely stop and dis-assemble array
5600 * 2 - stop but do not disassemble array
5601 */
5602 static int do_md_stop(struct mddev *mddev, int mode,
5603 struct block_device *bdev)
5604 {
5605 struct gendisk *disk = mddev->gendisk;
5606 struct md_rdev *rdev;
5607 int did_freeze = 0;
5608
5609 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5610 did_freeze = 1;
5611 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5612 md_wakeup_thread(mddev->thread);
5613 }
5614 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5615 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5616 if (mddev->sync_thread)
5617 /* Thread might be blocked waiting for metadata update
5618 * which will now never happen */
5619 wake_up_process(mddev->sync_thread->tsk);
5620
5621 mddev_unlock(mddev);
5622 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5623 !test_bit(MD_RECOVERY_RUNNING,
5624 &mddev->recovery)));
5625 mddev_lock_nointr(mddev);
5626
5627 mutex_lock(&mddev->open_mutex);
5628 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5629 mddev->sysfs_active ||
5630 mddev->sync_thread ||
5631 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5632 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5633 printk("md: %s still in use.\n",mdname(mddev));
5634 mutex_unlock(&mddev->open_mutex);
5635 if (did_freeze) {
5636 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5637 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5638 md_wakeup_thread(mddev->thread);
5639 }
5640 return -EBUSY;
5641 }
5642 if (mddev->pers) {
5643 if (mddev->ro)
5644 set_disk_ro(disk, 0);
5645
5646 __md_stop_writes(mddev);
5647 __md_stop(mddev);
5648 mddev->queue->backing_dev_info.congested_fn = NULL;
5649
5650 /* tell userspace to handle 'inactive' */
5651 sysfs_notify_dirent_safe(mddev->sysfs_state);
5652
5653 rdev_for_each(rdev, mddev)
5654 if (rdev->raid_disk >= 0)
5655 sysfs_unlink_rdev(mddev, rdev);
5656
5657 set_capacity(disk, 0);
5658 mutex_unlock(&mddev->open_mutex);
5659 mddev->changed = 1;
5660 revalidate_disk(disk);
5661
5662 if (mddev->ro)
5663 mddev->ro = 0;
5664 } else
5665 mutex_unlock(&mddev->open_mutex);
5666 /*
5667 * Free resources if final stop
5668 */
5669 if (mode == 0) {
5670 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5671
5672 bitmap_destroy(mddev);
5673 if (mddev->bitmap_info.file) {
5674 struct file *f = mddev->bitmap_info.file;
5675 spin_lock(&mddev->lock);
5676 mddev->bitmap_info.file = NULL;
5677 spin_unlock(&mddev->lock);
5678 fput(f);
5679 }
5680 mddev->bitmap_info.offset = 0;
5681
5682 export_array(mddev);
5683
5684 md_clean(mddev);
5685 if (mddev->hold_active == UNTIL_STOP)
5686 mddev->hold_active = 0;
5687 }
5688 md_new_event(mddev);
5689 sysfs_notify_dirent_safe(mddev->sysfs_state);
5690 return 0;
5691 }
5692
5693 #ifndef MODULE
5694 static void autorun_array(struct mddev *mddev)
5695 {
5696 struct md_rdev *rdev;
5697 int err;
5698
5699 if (list_empty(&mddev->disks))
5700 return;
5701
5702 printk(KERN_INFO "md: running: ");
5703
5704 rdev_for_each(rdev, mddev) {
5705 char b[BDEVNAME_SIZE];
5706 printk("<%s>", bdevname(rdev->bdev,b));
5707 }
5708 printk("\n");
5709
5710 err = do_md_run(mddev);
5711 if (err) {
5712 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5713 do_md_stop(mddev, 0, NULL);
5714 }
5715 }
5716
5717 /*
5718 * lets try to run arrays based on all disks that have arrived
5719 * until now. (those are in pending_raid_disks)
5720 *
5721 * the method: pick the first pending disk, collect all disks with
5722 * the same UUID, remove all from the pending list and put them into
5723 * the 'same_array' list. Then order this list based on superblock
5724 * update time (freshest comes first), kick out 'old' disks and
5725 * compare superblocks. If everything's fine then run it.
5726 *
5727 * If "unit" is allocated, then bump its reference count
5728 */
5729 static void autorun_devices(int part)
5730 {
5731 struct md_rdev *rdev0, *rdev, *tmp;
5732 struct mddev *mddev;
5733 char b[BDEVNAME_SIZE];
5734
5735 printk(KERN_INFO "md: autorun ...\n");
5736 while (!list_empty(&pending_raid_disks)) {
5737 int unit;
5738 dev_t dev;
5739 LIST_HEAD(candidates);
5740 rdev0 = list_entry(pending_raid_disks.next,
5741 struct md_rdev, same_set);
5742
5743 printk(KERN_INFO "md: considering %s ...\n",
5744 bdevname(rdev0->bdev,b));
5745 INIT_LIST_HEAD(&candidates);
5746 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5747 if (super_90_load(rdev, rdev0, 0) >= 0) {
5748 printk(KERN_INFO "md: adding %s ...\n",
5749 bdevname(rdev->bdev,b));
5750 list_move(&rdev->same_set, &candidates);
5751 }
5752 /*
5753 * now we have a set of devices, with all of them having
5754 * mostly sane superblocks. It's time to allocate the
5755 * mddev.
5756 */
5757 if (part) {
5758 dev = MKDEV(mdp_major,
5759 rdev0->preferred_minor << MdpMinorShift);
5760 unit = MINOR(dev) >> MdpMinorShift;
5761 } else {
5762 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5763 unit = MINOR(dev);
5764 }
5765 if (rdev0->preferred_minor != unit) {
5766 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5767 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5768 break;
5769 }
5770
5771 md_probe(dev, NULL, NULL);
5772 mddev = mddev_find(dev);
5773 if (!mddev || !mddev->gendisk) {
5774 if (mddev)
5775 mddev_put(mddev);
5776 printk(KERN_ERR
5777 "md: cannot allocate memory for md drive.\n");
5778 break;
5779 }
5780 if (mddev_lock(mddev))
5781 printk(KERN_WARNING "md: %s locked, cannot run\n",
5782 mdname(mddev));
5783 else if (mddev->raid_disks || mddev->major_version
5784 || !list_empty(&mddev->disks)) {
5785 printk(KERN_WARNING
5786 "md: %s already running, cannot run %s\n",
5787 mdname(mddev), bdevname(rdev0->bdev,b));
5788 mddev_unlock(mddev);
5789 } else {
5790 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5791 mddev->persistent = 1;
5792 rdev_for_each_list(rdev, tmp, &candidates) {
5793 list_del_init(&rdev->same_set);
5794 if (bind_rdev_to_array(rdev, mddev))
5795 export_rdev(rdev);
5796 }
5797 autorun_array(mddev);
5798 mddev_unlock(mddev);
5799 }
5800 /* on success, candidates will be empty, on error
5801 * it won't...
5802 */
5803 rdev_for_each_list(rdev, tmp, &candidates) {
5804 list_del_init(&rdev->same_set);
5805 export_rdev(rdev);
5806 }
5807 mddev_put(mddev);
5808 }
5809 printk(KERN_INFO "md: ... autorun DONE.\n");
5810 }
5811 #endif /* !MODULE */
5812
5813 static int get_version(void __user *arg)
5814 {
5815 mdu_version_t ver;
5816
5817 ver.major = MD_MAJOR_VERSION;
5818 ver.minor = MD_MINOR_VERSION;
5819 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5820
5821 if (copy_to_user(arg, &ver, sizeof(ver)))
5822 return -EFAULT;
5823
5824 return 0;
5825 }
5826
5827 static int get_array_info(struct mddev *mddev, void __user *arg)
5828 {
5829 mdu_array_info_t info;
5830 int nr,working,insync,failed,spare;
5831 struct md_rdev *rdev;
5832
5833 nr = working = insync = failed = spare = 0;
5834 rcu_read_lock();
5835 rdev_for_each_rcu(rdev, mddev) {
5836 nr++;
5837 if (test_bit(Faulty, &rdev->flags))
5838 failed++;
5839 else {
5840 working++;
5841 if (test_bit(In_sync, &rdev->flags))
5842 insync++;
5843 else
5844 spare++;
5845 }
5846 }
5847 rcu_read_unlock();
5848
5849 info.major_version = mddev->major_version;
5850 info.minor_version = mddev->minor_version;
5851 info.patch_version = MD_PATCHLEVEL_VERSION;
5852 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5853 info.level = mddev->level;
5854 info.size = mddev->dev_sectors / 2;
5855 if (info.size != mddev->dev_sectors / 2) /* overflow */
5856 info.size = -1;
5857 info.nr_disks = nr;
5858 info.raid_disks = mddev->raid_disks;
5859 info.md_minor = mddev->md_minor;
5860 info.not_persistent= !mddev->persistent;
5861
5862 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5863 info.state = 0;
5864 if (mddev->in_sync)
5865 info.state = (1<<MD_SB_CLEAN);
5866 if (mddev->bitmap && mddev->bitmap_info.offset)
5867 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5868 if (mddev_is_clustered(mddev))
5869 info.state |= (1<<MD_SB_CLUSTERED);
5870 info.active_disks = insync;
5871 info.working_disks = working;
5872 info.failed_disks = failed;
5873 info.spare_disks = spare;
5874
5875 info.layout = mddev->layout;
5876 info.chunk_size = mddev->chunk_sectors << 9;
5877
5878 if (copy_to_user(arg, &info, sizeof(info)))
5879 return -EFAULT;
5880
5881 return 0;
5882 }
5883
5884 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5885 {
5886 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5887 char *ptr;
5888 int err;
5889
5890 file = kzalloc(sizeof(*file), GFP_NOIO);
5891 if (!file)
5892 return -ENOMEM;
5893
5894 err = 0;
5895 spin_lock(&mddev->lock);
5896 /* bitmap enabled */
5897 if (mddev->bitmap_info.file) {
5898 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5899 sizeof(file->pathname));
5900 if (IS_ERR(ptr))
5901 err = PTR_ERR(ptr);
5902 else
5903 memmove(file->pathname, ptr,
5904 sizeof(file->pathname)-(ptr-file->pathname));
5905 }
5906 spin_unlock(&mddev->lock);
5907
5908 if (err == 0 &&
5909 copy_to_user(arg, file, sizeof(*file)))
5910 err = -EFAULT;
5911
5912 kfree(file);
5913 return err;
5914 }
5915
5916 static int get_disk_info(struct mddev *mddev, void __user * arg)
5917 {
5918 mdu_disk_info_t info;
5919 struct md_rdev *rdev;
5920
5921 if (copy_from_user(&info, arg, sizeof(info)))
5922 return -EFAULT;
5923
5924 rcu_read_lock();
5925 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5926 if (rdev) {
5927 info.major = MAJOR(rdev->bdev->bd_dev);
5928 info.minor = MINOR(rdev->bdev->bd_dev);
5929 info.raid_disk = rdev->raid_disk;
5930 info.state = 0;
5931 if (test_bit(Faulty, &rdev->flags))
5932 info.state |= (1<<MD_DISK_FAULTY);
5933 else if (test_bit(In_sync, &rdev->flags)) {
5934 info.state |= (1<<MD_DISK_ACTIVE);
5935 info.state |= (1<<MD_DISK_SYNC);
5936 }
5937 if (test_bit(Journal, &rdev->flags))
5938 info.state |= (1<<MD_DISK_JOURNAL);
5939 if (test_bit(WriteMostly, &rdev->flags))
5940 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5941 } else {
5942 info.major = info.minor = 0;
5943 info.raid_disk = -1;
5944 info.state = (1<<MD_DISK_REMOVED);
5945 }
5946 rcu_read_unlock();
5947
5948 if (copy_to_user(arg, &info, sizeof(info)))
5949 return -EFAULT;
5950
5951 return 0;
5952 }
5953
5954 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5955 {
5956 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5957 struct md_rdev *rdev;
5958 dev_t dev = MKDEV(info->major,info->minor);
5959
5960 if (mddev_is_clustered(mddev) &&
5961 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5962 pr_err("%s: Cannot add to clustered mddev.\n",
5963 mdname(mddev));
5964 return -EINVAL;
5965 }
5966
5967 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5968 return -EOVERFLOW;
5969
5970 if (!mddev->raid_disks) {
5971 int err;
5972 /* expecting a device which has a superblock */
5973 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5974 if (IS_ERR(rdev)) {
5975 printk(KERN_WARNING
5976 "md: md_import_device returned %ld\n",
5977 PTR_ERR(rdev));
5978 return PTR_ERR(rdev);
5979 }
5980 if (!list_empty(&mddev->disks)) {
5981 struct md_rdev *rdev0
5982 = list_entry(mddev->disks.next,
5983 struct md_rdev, same_set);
5984 err = super_types[mddev->major_version]
5985 .load_super(rdev, rdev0, mddev->minor_version);
5986 if (err < 0) {
5987 printk(KERN_WARNING
5988 "md: %s has different UUID to %s\n",
5989 bdevname(rdev->bdev,b),
5990 bdevname(rdev0->bdev,b2));
5991 export_rdev(rdev);
5992 return -EINVAL;
5993 }
5994 }
5995 err = bind_rdev_to_array(rdev, mddev);
5996 if (err)
5997 export_rdev(rdev);
5998 return err;
5999 }
6000
6001 /*
6002 * add_new_disk can be used once the array is assembled
6003 * to add "hot spares". They must already have a superblock
6004 * written
6005 */
6006 if (mddev->pers) {
6007 int err;
6008 if (!mddev->pers->hot_add_disk) {
6009 printk(KERN_WARNING
6010 "%s: personality does not support diskops!\n",
6011 mdname(mddev));
6012 return -EINVAL;
6013 }
6014 if (mddev->persistent)
6015 rdev = md_import_device(dev, mddev->major_version,
6016 mddev->minor_version);
6017 else
6018 rdev = md_import_device(dev, -1, -1);
6019 if (IS_ERR(rdev)) {
6020 printk(KERN_WARNING
6021 "md: md_import_device returned %ld\n",
6022 PTR_ERR(rdev));
6023 return PTR_ERR(rdev);
6024 }
6025 /* set saved_raid_disk if appropriate */
6026 if (!mddev->persistent) {
6027 if (info->state & (1<<MD_DISK_SYNC) &&
6028 info->raid_disk < mddev->raid_disks) {
6029 rdev->raid_disk = info->raid_disk;
6030 set_bit(In_sync, &rdev->flags);
6031 clear_bit(Bitmap_sync, &rdev->flags);
6032 } else
6033 rdev->raid_disk = -1;
6034 rdev->saved_raid_disk = rdev->raid_disk;
6035 } else
6036 super_types[mddev->major_version].
6037 validate_super(mddev, rdev);
6038 if ((info->state & (1<<MD_DISK_SYNC)) &&
6039 rdev->raid_disk != info->raid_disk) {
6040 /* This was a hot-add request, but events doesn't
6041 * match, so reject it.
6042 */
6043 export_rdev(rdev);
6044 return -EINVAL;
6045 }
6046
6047 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6048 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6049 set_bit(WriteMostly, &rdev->flags);
6050 else
6051 clear_bit(WriteMostly, &rdev->flags);
6052
6053 if (info->state & (1<<MD_DISK_JOURNAL)) {
6054 struct md_rdev *rdev2;
6055 bool has_journal = false;
6056
6057 /* make sure no existing journal disk */
6058 rdev_for_each(rdev2, mddev) {
6059 if (test_bit(Journal, &rdev2->flags)) {
6060 has_journal = true;
6061 break;
6062 }
6063 }
6064 if (has_journal) {
6065 export_rdev(rdev);
6066 return -EBUSY;
6067 }
6068 set_bit(Journal, &rdev->flags);
6069 }
6070 /*
6071 * check whether the device shows up in other nodes
6072 */
6073 if (mddev_is_clustered(mddev)) {
6074 if (info->state & (1 << MD_DISK_CANDIDATE))
6075 set_bit(Candidate, &rdev->flags);
6076 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6077 /* --add initiated by this node */
6078 err = md_cluster_ops->add_new_disk(mddev, rdev);
6079 if (err) {
6080 export_rdev(rdev);
6081 return err;
6082 }
6083 }
6084 }
6085
6086 rdev->raid_disk = -1;
6087 err = bind_rdev_to_array(rdev, mddev);
6088
6089 if (err)
6090 export_rdev(rdev);
6091
6092 if (mddev_is_clustered(mddev)) {
6093 if (info->state & (1 << MD_DISK_CANDIDATE))
6094 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6095 else {
6096 if (err)
6097 md_cluster_ops->add_new_disk_cancel(mddev);
6098 else
6099 err = add_bound_rdev(rdev);
6100 }
6101
6102 } else if (!err)
6103 err = add_bound_rdev(rdev);
6104
6105 return err;
6106 }
6107
6108 /* otherwise, add_new_disk is only allowed
6109 * for major_version==0 superblocks
6110 */
6111 if (mddev->major_version != 0) {
6112 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6113 mdname(mddev));
6114 return -EINVAL;
6115 }
6116
6117 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6118 int err;
6119 rdev = md_import_device(dev, -1, 0);
6120 if (IS_ERR(rdev)) {
6121 printk(KERN_WARNING
6122 "md: error, md_import_device() returned %ld\n",
6123 PTR_ERR(rdev));
6124 return PTR_ERR(rdev);
6125 }
6126 rdev->desc_nr = info->number;
6127 if (info->raid_disk < mddev->raid_disks)
6128 rdev->raid_disk = info->raid_disk;
6129 else
6130 rdev->raid_disk = -1;
6131
6132 if (rdev->raid_disk < mddev->raid_disks)
6133 if (info->state & (1<<MD_DISK_SYNC))
6134 set_bit(In_sync, &rdev->flags);
6135
6136 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6137 set_bit(WriteMostly, &rdev->flags);
6138
6139 if (!mddev->persistent) {
6140 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6141 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6142 } else
6143 rdev->sb_start = calc_dev_sboffset(rdev);
6144 rdev->sectors = rdev->sb_start;
6145
6146 err = bind_rdev_to_array(rdev, mddev);
6147 if (err) {
6148 export_rdev(rdev);
6149 return err;
6150 }
6151 }
6152
6153 return 0;
6154 }
6155
6156 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6157 {
6158 char b[BDEVNAME_SIZE];
6159 struct md_rdev *rdev;
6160
6161 rdev = find_rdev(mddev, dev);
6162 if (!rdev)
6163 return -ENXIO;
6164
6165 if (rdev->raid_disk < 0)
6166 goto kick_rdev;
6167
6168 clear_bit(Blocked, &rdev->flags);
6169 remove_and_add_spares(mddev, rdev);
6170
6171 if (rdev->raid_disk >= 0)
6172 goto busy;
6173
6174 kick_rdev:
6175 if (mddev_is_clustered(mddev))
6176 md_cluster_ops->remove_disk(mddev, rdev);
6177
6178 md_kick_rdev_from_array(rdev);
6179 md_update_sb(mddev, 1);
6180 md_new_event(mddev);
6181
6182 return 0;
6183 busy:
6184 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6185 bdevname(rdev->bdev,b), mdname(mddev));
6186 return -EBUSY;
6187 }
6188
6189 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6190 {
6191 char b[BDEVNAME_SIZE];
6192 int err;
6193 struct md_rdev *rdev;
6194
6195 if (!mddev->pers)
6196 return -ENODEV;
6197
6198 if (mddev->major_version != 0) {
6199 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6200 " version-0 superblocks.\n",
6201 mdname(mddev));
6202 return -EINVAL;
6203 }
6204 if (!mddev->pers->hot_add_disk) {
6205 printk(KERN_WARNING
6206 "%s: personality does not support diskops!\n",
6207 mdname(mddev));
6208 return -EINVAL;
6209 }
6210
6211 rdev = md_import_device(dev, -1, 0);
6212 if (IS_ERR(rdev)) {
6213 printk(KERN_WARNING
6214 "md: error, md_import_device() returned %ld\n",
6215 PTR_ERR(rdev));
6216 return -EINVAL;
6217 }
6218
6219 if (mddev->persistent)
6220 rdev->sb_start = calc_dev_sboffset(rdev);
6221 else
6222 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6223
6224 rdev->sectors = rdev->sb_start;
6225
6226 if (test_bit(Faulty, &rdev->flags)) {
6227 printk(KERN_WARNING
6228 "md: can not hot-add faulty %s disk to %s!\n",
6229 bdevname(rdev->bdev,b), mdname(mddev));
6230 err = -EINVAL;
6231 goto abort_export;
6232 }
6233
6234 clear_bit(In_sync, &rdev->flags);
6235 rdev->desc_nr = -1;
6236 rdev->saved_raid_disk = -1;
6237 err = bind_rdev_to_array(rdev, mddev);
6238 if (err)
6239 goto abort_export;
6240
6241 /*
6242 * The rest should better be atomic, we can have disk failures
6243 * noticed in interrupt contexts ...
6244 */
6245
6246 rdev->raid_disk = -1;
6247
6248 md_update_sb(mddev, 1);
6249 /*
6250 * Kick recovery, maybe this spare has to be added to the
6251 * array immediately.
6252 */
6253 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6254 md_wakeup_thread(mddev->thread);
6255 md_new_event(mddev);
6256 return 0;
6257
6258 abort_export:
6259 export_rdev(rdev);
6260 return err;
6261 }
6262
6263 static int set_bitmap_file(struct mddev *mddev, int fd)
6264 {
6265 int err = 0;
6266
6267 if (mddev->pers) {
6268 if (!mddev->pers->quiesce || !mddev->thread)
6269 return -EBUSY;
6270 if (mddev->recovery || mddev->sync_thread)
6271 return -EBUSY;
6272 /* we should be able to change the bitmap.. */
6273 }
6274
6275 if (fd >= 0) {
6276 struct inode *inode;
6277 struct file *f;
6278
6279 if (mddev->bitmap || mddev->bitmap_info.file)
6280 return -EEXIST; /* cannot add when bitmap is present */
6281 f = fget(fd);
6282
6283 if (f == NULL) {
6284 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6285 mdname(mddev));
6286 return -EBADF;
6287 }
6288
6289 inode = f->f_mapping->host;
6290 if (!S_ISREG(inode->i_mode)) {
6291 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6292 mdname(mddev));
6293 err = -EBADF;
6294 } else if (!(f->f_mode & FMODE_WRITE)) {
6295 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6296 mdname(mddev));
6297 err = -EBADF;
6298 } else if (atomic_read(&inode->i_writecount) != 1) {
6299 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6300 mdname(mddev));
6301 err = -EBUSY;
6302 }
6303 if (err) {
6304 fput(f);
6305 return err;
6306 }
6307 mddev->bitmap_info.file = f;
6308 mddev->bitmap_info.offset = 0; /* file overrides offset */
6309 } else if (mddev->bitmap == NULL)
6310 return -ENOENT; /* cannot remove what isn't there */
6311 err = 0;
6312 if (mddev->pers) {
6313 mddev->pers->quiesce(mddev, 1);
6314 if (fd >= 0) {
6315 struct bitmap *bitmap;
6316
6317 bitmap = bitmap_create(mddev, -1);
6318 if (!IS_ERR(bitmap)) {
6319 mddev->bitmap = bitmap;
6320 err = bitmap_load(mddev);
6321 } else
6322 err = PTR_ERR(bitmap);
6323 }
6324 if (fd < 0 || err) {
6325 bitmap_destroy(mddev);
6326 fd = -1; /* make sure to put the file */
6327 }
6328 mddev->pers->quiesce(mddev, 0);
6329 }
6330 if (fd < 0) {
6331 struct file *f = mddev->bitmap_info.file;
6332 if (f) {
6333 spin_lock(&mddev->lock);
6334 mddev->bitmap_info.file = NULL;
6335 spin_unlock(&mddev->lock);
6336 fput(f);
6337 }
6338 }
6339
6340 return err;
6341 }
6342
6343 /*
6344 * set_array_info is used two different ways
6345 * The original usage is when creating a new array.
6346 * In this usage, raid_disks is > 0 and it together with
6347 * level, size, not_persistent,layout,chunksize determine the
6348 * shape of the array.
6349 * This will always create an array with a type-0.90.0 superblock.
6350 * The newer usage is when assembling an array.
6351 * In this case raid_disks will be 0, and the major_version field is
6352 * use to determine which style super-blocks are to be found on the devices.
6353 * The minor and patch _version numbers are also kept incase the
6354 * super_block handler wishes to interpret them.
6355 */
6356 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6357 {
6358
6359 if (info->raid_disks == 0) {
6360 /* just setting version number for superblock loading */
6361 if (info->major_version < 0 ||
6362 info->major_version >= ARRAY_SIZE(super_types) ||
6363 super_types[info->major_version].name == NULL) {
6364 /* maybe try to auto-load a module? */
6365 printk(KERN_INFO
6366 "md: superblock version %d not known\n",
6367 info->major_version);
6368 return -EINVAL;
6369 }
6370 mddev->major_version = info->major_version;
6371 mddev->minor_version = info->minor_version;
6372 mddev->patch_version = info->patch_version;
6373 mddev->persistent = !info->not_persistent;
6374 /* ensure mddev_put doesn't delete this now that there
6375 * is some minimal configuration.
6376 */
6377 mddev->ctime = ktime_get_real_seconds();
6378 return 0;
6379 }
6380 mddev->major_version = MD_MAJOR_VERSION;
6381 mddev->minor_version = MD_MINOR_VERSION;
6382 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6383 mddev->ctime = ktime_get_real_seconds();
6384
6385 mddev->level = info->level;
6386 mddev->clevel[0] = 0;
6387 mddev->dev_sectors = 2 * (sector_t)info->size;
6388 mddev->raid_disks = info->raid_disks;
6389 /* don't set md_minor, it is determined by which /dev/md* was
6390 * openned
6391 */
6392 if (info->state & (1<<MD_SB_CLEAN))
6393 mddev->recovery_cp = MaxSector;
6394 else
6395 mddev->recovery_cp = 0;
6396 mddev->persistent = ! info->not_persistent;
6397 mddev->external = 0;
6398
6399 mddev->layout = info->layout;
6400 mddev->chunk_sectors = info->chunk_size >> 9;
6401
6402 mddev->max_disks = MD_SB_DISKS;
6403
6404 if (mddev->persistent)
6405 mddev->flags = 0;
6406 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6407
6408 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6409 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6410 mddev->bitmap_info.offset = 0;
6411
6412 mddev->reshape_position = MaxSector;
6413
6414 /*
6415 * Generate a 128 bit UUID
6416 */
6417 get_random_bytes(mddev->uuid, 16);
6418
6419 mddev->new_level = mddev->level;
6420 mddev->new_chunk_sectors = mddev->chunk_sectors;
6421 mddev->new_layout = mddev->layout;
6422 mddev->delta_disks = 0;
6423 mddev->reshape_backwards = 0;
6424
6425 return 0;
6426 }
6427
6428 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6429 {
6430 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6431
6432 if (mddev->external_size)
6433 return;
6434
6435 mddev->array_sectors = array_sectors;
6436 }
6437 EXPORT_SYMBOL(md_set_array_sectors);
6438
6439 static int update_size(struct mddev *mddev, sector_t num_sectors)
6440 {
6441 struct md_rdev *rdev;
6442 int rv;
6443 int fit = (num_sectors == 0);
6444
6445 /* cluster raid doesn't support update size */
6446 if (mddev_is_clustered(mddev))
6447 return -EINVAL;
6448
6449 if (mddev->pers->resize == NULL)
6450 return -EINVAL;
6451 /* The "num_sectors" is the number of sectors of each device that
6452 * is used. This can only make sense for arrays with redundancy.
6453 * linear and raid0 always use whatever space is available. We can only
6454 * consider changing this number if no resync or reconstruction is
6455 * happening, and if the new size is acceptable. It must fit before the
6456 * sb_start or, if that is <data_offset, it must fit before the size
6457 * of each device. If num_sectors is zero, we find the largest size
6458 * that fits.
6459 */
6460 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6461 mddev->sync_thread)
6462 return -EBUSY;
6463 if (mddev->ro)
6464 return -EROFS;
6465
6466 rdev_for_each(rdev, mddev) {
6467 sector_t avail = rdev->sectors;
6468
6469 if (fit && (num_sectors == 0 || num_sectors > avail))
6470 num_sectors = avail;
6471 if (avail < num_sectors)
6472 return -ENOSPC;
6473 }
6474 rv = mddev->pers->resize(mddev, num_sectors);
6475 if (!rv)
6476 revalidate_disk(mddev->gendisk);
6477 return rv;
6478 }
6479
6480 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6481 {
6482 int rv;
6483 struct md_rdev *rdev;
6484 /* change the number of raid disks */
6485 if (mddev->pers->check_reshape == NULL)
6486 return -EINVAL;
6487 if (mddev->ro)
6488 return -EROFS;
6489 if (raid_disks <= 0 ||
6490 (mddev->max_disks && raid_disks >= mddev->max_disks))
6491 return -EINVAL;
6492 if (mddev->sync_thread ||
6493 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6494 mddev->reshape_position != MaxSector)
6495 return -EBUSY;
6496
6497 rdev_for_each(rdev, mddev) {
6498 if (mddev->raid_disks < raid_disks &&
6499 rdev->data_offset < rdev->new_data_offset)
6500 return -EINVAL;
6501 if (mddev->raid_disks > raid_disks &&
6502 rdev->data_offset > rdev->new_data_offset)
6503 return -EINVAL;
6504 }
6505
6506 mddev->delta_disks = raid_disks - mddev->raid_disks;
6507 if (mddev->delta_disks < 0)
6508 mddev->reshape_backwards = 1;
6509 else if (mddev->delta_disks > 0)
6510 mddev->reshape_backwards = 0;
6511
6512 rv = mddev->pers->check_reshape(mddev);
6513 if (rv < 0) {
6514 mddev->delta_disks = 0;
6515 mddev->reshape_backwards = 0;
6516 }
6517 return rv;
6518 }
6519
6520 /*
6521 * update_array_info is used to change the configuration of an
6522 * on-line array.
6523 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6524 * fields in the info are checked against the array.
6525 * Any differences that cannot be handled will cause an error.
6526 * Normally, only one change can be managed at a time.
6527 */
6528 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6529 {
6530 int rv = 0;
6531 int cnt = 0;
6532 int state = 0;
6533
6534 /* calculate expected state,ignoring low bits */
6535 if (mddev->bitmap && mddev->bitmap_info.offset)
6536 state |= (1 << MD_SB_BITMAP_PRESENT);
6537
6538 if (mddev->major_version != info->major_version ||
6539 mddev->minor_version != info->minor_version ||
6540 /* mddev->patch_version != info->patch_version || */
6541 mddev->ctime != info->ctime ||
6542 mddev->level != info->level ||
6543 /* mddev->layout != info->layout || */
6544 mddev->persistent != !info->not_persistent ||
6545 mddev->chunk_sectors != info->chunk_size >> 9 ||
6546 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6547 ((state^info->state) & 0xfffffe00)
6548 )
6549 return -EINVAL;
6550 /* Check there is only one change */
6551 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6552 cnt++;
6553 if (mddev->raid_disks != info->raid_disks)
6554 cnt++;
6555 if (mddev->layout != info->layout)
6556 cnt++;
6557 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6558 cnt++;
6559 if (cnt == 0)
6560 return 0;
6561 if (cnt > 1)
6562 return -EINVAL;
6563
6564 if (mddev->layout != info->layout) {
6565 /* Change layout
6566 * we don't need to do anything at the md level, the
6567 * personality will take care of it all.
6568 */
6569 if (mddev->pers->check_reshape == NULL)
6570 return -EINVAL;
6571 else {
6572 mddev->new_layout = info->layout;
6573 rv = mddev->pers->check_reshape(mddev);
6574 if (rv)
6575 mddev->new_layout = mddev->layout;
6576 return rv;
6577 }
6578 }
6579 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6580 rv = update_size(mddev, (sector_t)info->size * 2);
6581
6582 if (mddev->raid_disks != info->raid_disks)
6583 rv = update_raid_disks(mddev, info->raid_disks);
6584
6585 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6586 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6587 rv = -EINVAL;
6588 goto err;
6589 }
6590 if (mddev->recovery || mddev->sync_thread) {
6591 rv = -EBUSY;
6592 goto err;
6593 }
6594 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6595 struct bitmap *bitmap;
6596 /* add the bitmap */
6597 if (mddev->bitmap) {
6598 rv = -EEXIST;
6599 goto err;
6600 }
6601 if (mddev->bitmap_info.default_offset == 0) {
6602 rv = -EINVAL;
6603 goto err;
6604 }
6605 mddev->bitmap_info.offset =
6606 mddev->bitmap_info.default_offset;
6607 mddev->bitmap_info.space =
6608 mddev->bitmap_info.default_space;
6609 mddev->pers->quiesce(mddev, 1);
6610 bitmap = bitmap_create(mddev, -1);
6611 if (!IS_ERR(bitmap)) {
6612 mddev->bitmap = bitmap;
6613 rv = bitmap_load(mddev);
6614 } else
6615 rv = PTR_ERR(bitmap);
6616 if (rv)
6617 bitmap_destroy(mddev);
6618 mddev->pers->quiesce(mddev, 0);
6619 } else {
6620 /* remove the bitmap */
6621 if (!mddev->bitmap) {
6622 rv = -ENOENT;
6623 goto err;
6624 }
6625 if (mddev->bitmap->storage.file) {
6626 rv = -EINVAL;
6627 goto err;
6628 }
6629 if (mddev->bitmap_info.nodes) {
6630 /* hold PW on all the bitmap lock */
6631 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6632 printk("md: can't change bitmap to none since the"
6633 " array is in use by more than one node\n");
6634 rv = -EPERM;
6635 md_cluster_ops->unlock_all_bitmaps(mddev);
6636 goto err;
6637 }
6638
6639 mddev->bitmap_info.nodes = 0;
6640 md_cluster_ops->leave(mddev);
6641 }
6642 mddev->pers->quiesce(mddev, 1);
6643 bitmap_destroy(mddev);
6644 mddev->pers->quiesce(mddev, 0);
6645 mddev->bitmap_info.offset = 0;
6646 }
6647 }
6648 md_update_sb(mddev, 1);
6649 return rv;
6650 err:
6651 return rv;
6652 }
6653
6654 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6655 {
6656 struct md_rdev *rdev;
6657 int err = 0;
6658
6659 if (mddev->pers == NULL)
6660 return -ENODEV;
6661
6662 rcu_read_lock();
6663 rdev = find_rdev_rcu(mddev, dev);
6664 if (!rdev)
6665 err = -ENODEV;
6666 else {
6667 md_error(mddev, rdev);
6668 if (!test_bit(Faulty, &rdev->flags))
6669 err = -EBUSY;
6670 }
6671 rcu_read_unlock();
6672 return err;
6673 }
6674
6675 /*
6676 * We have a problem here : there is no easy way to give a CHS
6677 * virtual geometry. We currently pretend that we have a 2 heads
6678 * 4 sectors (with a BIG number of cylinders...). This drives
6679 * dosfs just mad... ;-)
6680 */
6681 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6682 {
6683 struct mddev *mddev = bdev->bd_disk->private_data;
6684
6685 geo->heads = 2;
6686 geo->sectors = 4;
6687 geo->cylinders = mddev->array_sectors / 8;
6688 return 0;
6689 }
6690
6691 static inline bool md_ioctl_valid(unsigned int cmd)
6692 {
6693 switch (cmd) {
6694 case ADD_NEW_DISK:
6695 case BLKROSET:
6696 case GET_ARRAY_INFO:
6697 case GET_BITMAP_FILE:
6698 case GET_DISK_INFO:
6699 case HOT_ADD_DISK:
6700 case HOT_REMOVE_DISK:
6701 case RAID_AUTORUN:
6702 case RAID_VERSION:
6703 case RESTART_ARRAY_RW:
6704 case RUN_ARRAY:
6705 case SET_ARRAY_INFO:
6706 case SET_BITMAP_FILE:
6707 case SET_DISK_FAULTY:
6708 case STOP_ARRAY:
6709 case STOP_ARRAY_RO:
6710 case CLUSTERED_DISK_NACK:
6711 return true;
6712 default:
6713 return false;
6714 }
6715 }
6716
6717 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6718 unsigned int cmd, unsigned long arg)
6719 {
6720 int err = 0;
6721 void __user *argp = (void __user *)arg;
6722 struct mddev *mddev = NULL;
6723 int ro;
6724
6725 if (!md_ioctl_valid(cmd))
6726 return -ENOTTY;
6727
6728 switch (cmd) {
6729 case RAID_VERSION:
6730 case GET_ARRAY_INFO:
6731 case GET_DISK_INFO:
6732 break;
6733 default:
6734 if (!capable(CAP_SYS_ADMIN))
6735 return -EACCES;
6736 }
6737
6738 /*
6739 * Commands dealing with the RAID driver but not any
6740 * particular array:
6741 */
6742 switch (cmd) {
6743 case RAID_VERSION:
6744 err = get_version(argp);
6745 goto out;
6746
6747 #ifndef MODULE
6748 case RAID_AUTORUN:
6749 err = 0;
6750 autostart_arrays(arg);
6751 goto out;
6752 #endif
6753 default:;
6754 }
6755
6756 /*
6757 * Commands creating/starting a new array:
6758 */
6759
6760 mddev = bdev->bd_disk->private_data;
6761
6762 if (!mddev) {
6763 BUG();
6764 goto out;
6765 }
6766
6767 /* Some actions do not requires the mutex */
6768 switch (cmd) {
6769 case GET_ARRAY_INFO:
6770 if (!mddev->raid_disks && !mddev->external)
6771 err = -ENODEV;
6772 else
6773 err = get_array_info(mddev, argp);
6774 goto out;
6775
6776 case GET_DISK_INFO:
6777 if (!mddev->raid_disks && !mddev->external)
6778 err = -ENODEV;
6779 else
6780 err = get_disk_info(mddev, argp);
6781 goto out;
6782
6783 case SET_DISK_FAULTY:
6784 err = set_disk_faulty(mddev, new_decode_dev(arg));
6785 goto out;
6786
6787 case GET_BITMAP_FILE:
6788 err = get_bitmap_file(mddev, argp);
6789 goto out;
6790
6791 }
6792
6793 if (cmd == ADD_NEW_DISK)
6794 /* need to ensure md_delayed_delete() has completed */
6795 flush_workqueue(md_misc_wq);
6796
6797 if (cmd == HOT_REMOVE_DISK)
6798 /* need to ensure recovery thread has run */
6799 wait_event_interruptible_timeout(mddev->sb_wait,
6800 !test_bit(MD_RECOVERY_NEEDED,
6801 &mddev->flags),
6802 msecs_to_jiffies(5000));
6803 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6804 /* Need to flush page cache, and ensure no-one else opens
6805 * and writes
6806 */
6807 mutex_lock(&mddev->open_mutex);
6808 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6809 mutex_unlock(&mddev->open_mutex);
6810 err = -EBUSY;
6811 goto out;
6812 }
6813 set_bit(MD_STILL_CLOSED, &mddev->flags);
6814 mutex_unlock(&mddev->open_mutex);
6815 sync_blockdev(bdev);
6816 }
6817 err = mddev_lock(mddev);
6818 if (err) {
6819 printk(KERN_INFO
6820 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6821 err, cmd);
6822 goto out;
6823 }
6824
6825 if (cmd == SET_ARRAY_INFO) {
6826 mdu_array_info_t info;
6827 if (!arg)
6828 memset(&info, 0, sizeof(info));
6829 else if (copy_from_user(&info, argp, sizeof(info))) {
6830 err = -EFAULT;
6831 goto unlock;
6832 }
6833 if (mddev->pers) {
6834 err = update_array_info(mddev, &info);
6835 if (err) {
6836 printk(KERN_WARNING "md: couldn't update"
6837 " array info. %d\n", err);
6838 goto unlock;
6839 }
6840 goto unlock;
6841 }
6842 if (!list_empty(&mddev->disks)) {
6843 printk(KERN_WARNING
6844 "md: array %s already has disks!\n",
6845 mdname(mddev));
6846 err = -EBUSY;
6847 goto unlock;
6848 }
6849 if (mddev->raid_disks) {
6850 printk(KERN_WARNING
6851 "md: array %s already initialised!\n",
6852 mdname(mddev));
6853 err = -EBUSY;
6854 goto unlock;
6855 }
6856 err = set_array_info(mddev, &info);
6857 if (err) {
6858 printk(KERN_WARNING "md: couldn't set"
6859 " array info. %d\n", err);
6860 goto unlock;
6861 }
6862 goto unlock;
6863 }
6864
6865 /*
6866 * Commands querying/configuring an existing array:
6867 */
6868 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6869 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6870 if ((!mddev->raid_disks && !mddev->external)
6871 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6872 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6873 && cmd != GET_BITMAP_FILE) {
6874 err = -ENODEV;
6875 goto unlock;
6876 }
6877
6878 /*
6879 * Commands even a read-only array can execute:
6880 */
6881 switch (cmd) {
6882 case RESTART_ARRAY_RW:
6883 err = restart_array(mddev);
6884 goto unlock;
6885
6886 case STOP_ARRAY:
6887 err = do_md_stop(mddev, 0, bdev);
6888 goto unlock;
6889
6890 case STOP_ARRAY_RO:
6891 err = md_set_readonly(mddev, bdev);
6892 goto unlock;
6893
6894 case HOT_REMOVE_DISK:
6895 err = hot_remove_disk(mddev, new_decode_dev(arg));
6896 goto unlock;
6897
6898 case ADD_NEW_DISK:
6899 /* We can support ADD_NEW_DISK on read-only arrays
6900 * only if we are re-adding a preexisting device.
6901 * So require mddev->pers and MD_DISK_SYNC.
6902 */
6903 if (mddev->pers) {
6904 mdu_disk_info_t info;
6905 if (copy_from_user(&info, argp, sizeof(info)))
6906 err = -EFAULT;
6907 else if (!(info.state & (1<<MD_DISK_SYNC)))
6908 /* Need to clear read-only for this */
6909 break;
6910 else
6911 err = add_new_disk(mddev, &info);
6912 goto unlock;
6913 }
6914 break;
6915
6916 case BLKROSET:
6917 if (get_user(ro, (int __user *)(arg))) {
6918 err = -EFAULT;
6919 goto unlock;
6920 }
6921 err = -EINVAL;
6922
6923 /* if the bdev is going readonly the value of mddev->ro
6924 * does not matter, no writes are coming
6925 */
6926 if (ro)
6927 goto unlock;
6928
6929 /* are we are already prepared for writes? */
6930 if (mddev->ro != 1)
6931 goto unlock;
6932
6933 /* transitioning to readauto need only happen for
6934 * arrays that call md_write_start
6935 */
6936 if (mddev->pers) {
6937 err = restart_array(mddev);
6938 if (err == 0) {
6939 mddev->ro = 2;
6940 set_disk_ro(mddev->gendisk, 0);
6941 }
6942 }
6943 goto unlock;
6944 }
6945
6946 /*
6947 * The remaining ioctls are changing the state of the
6948 * superblock, so we do not allow them on read-only arrays.
6949 */
6950 if (mddev->ro && mddev->pers) {
6951 if (mddev->ro == 2) {
6952 mddev->ro = 0;
6953 sysfs_notify_dirent_safe(mddev->sysfs_state);
6954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6955 /* mddev_unlock will wake thread */
6956 /* If a device failed while we were read-only, we
6957 * need to make sure the metadata is updated now.
6958 */
6959 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6960 mddev_unlock(mddev);
6961 wait_event(mddev->sb_wait,
6962 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6963 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6964 mddev_lock_nointr(mddev);
6965 }
6966 } else {
6967 err = -EROFS;
6968 goto unlock;
6969 }
6970 }
6971
6972 switch (cmd) {
6973 case ADD_NEW_DISK:
6974 {
6975 mdu_disk_info_t info;
6976 if (copy_from_user(&info, argp, sizeof(info)))
6977 err = -EFAULT;
6978 else
6979 err = add_new_disk(mddev, &info);
6980 goto unlock;
6981 }
6982
6983 case CLUSTERED_DISK_NACK:
6984 if (mddev_is_clustered(mddev))
6985 md_cluster_ops->new_disk_ack(mddev, false);
6986 else
6987 err = -EINVAL;
6988 goto unlock;
6989
6990 case HOT_ADD_DISK:
6991 err = hot_add_disk(mddev, new_decode_dev(arg));
6992 goto unlock;
6993
6994 case RUN_ARRAY:
6995 err = do_md_run(mddev);
6996 goto unlock;
6997
6998 case SET_BITMAP_FILE:
6999 err = set_bitmap_file(mddev, (int)arg);
7000 goto unlock;
7001
7002 default:
7003 err = -EINVAL;
7004 goto unlock;
7005 }
7006
7007 unlock:
7008 if (mddev->hold_active == UNTIL_IOCTL &&
7009 err != -EINVAL)
7010 mddev->hold_active = 0;
7011 mddev_unlock(mddev);
7012 out:
7013 return err;
7014 }
7015 #ifdef CONFIG_COMPAT
7016 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7017 unsigned int cmd, unsigned long arg)
7018 {
7019 switch (cmd) {
7020 case HOT_REMOVE_DISK:
7021 case HOT_ADD_DISK:
7022 case SET_DISK_FAULTY:
7023 case SET_BITMAP_FILE:
7024 /* These take in integer arg, do not convert */
7025 break;
7026 default:
7027 arg = (unsigned long)compat_ptr(arg);
7028 break;
7029 }
7030
7031 return md_ioctl(bdev, mode, cmd, arg);
7032 }
7033 #endif /* CONFIG_COMPAT */
7034
7035 static int md_open(struct block_device *bdev, fmode_t mode)
7036 {
7037 /*
7038 * Succeed if we can lock the mddev, which confirms that
7039 * it isn't being stopped right now.
7040 */
7041 struct mddev *mddev = mddev_find(bdev->bd_dev);
7042 int err;
7043
7044 if (!mddev)
7045 return -ENODEV;
7046
7047 if (mddev->gendisk != bdev->bd_disk) {
7048 /* we are racing with mddev_put which is discarding this
7049 * bd_disk.
7050 */
7051 mddev_put(mddev);
7052 /* Wait until bdev->bd_disk is definitely gone */
7053 flush_workqueue(md_misc_wq);
7054 /* Then retry the open from the top */
7055 return -ERESTARTSYS;
7056 }
7057 BUG_ON(mddev != bdev->bd_disk->private_data);
7058
7059 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7060 goto out;
7061
7062 err = 0;
7063 atomic_inc(&mddev->openers);
7064 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7065 mutex_unlock(&mddev->open_mutex);
7066
7067 check_disk_change(bdev);
7068 out:
7069 return err;
7070 }
7071
7072 static void md_release(struct gendisk *disk, fmode_t mode)
7073 {
7074 struct mddev *mddev = disk->private_data;
7075
7076 BUG_ON(!mddev);
7077 atomic_dec(&mddev->openers);
7078 mddev_put(mddev);
7079 }
7080
7081 static int md_media_changed(struct gendisk *disk)
7082 {
7083 struct mddev *mddev = disk->private_data;
7084
7085 return mddev->changed;
7086 }
7087
7088 static int md_revalidate(struct gendisk *disk)
7089 {
7090 struct mddev *mddev = disk->private_data;
7091
7092 mddev->changed = 0;
7093 return 0;
7094 }
7095 static const struct block_device_operations md_fops =
7096 {
7097 .owner = THIS_MODULE,
7098 .open = md_open,
7099 .release = md_release,
7100 .ioctl = md_ioctl,
7101 #ifdef CONFIG_COMPAT
7102 .compat_ioctl = md_compat_ioctl,
7103 #endif
7104 .getgeo = md_getgeo,
7105 .media_changed = md_media_changed,
7106 .revalidate_disk= md_revalidate,
7107 };
7108
7109 static int md_thread(void *arg)
7110 {
7111 struct md_thread *thread = arg;
7112
7113 /*
7114 * md_thread is a 'system-thread', it's priority should be very
7115 * high. We avoid resource deadlocks individually in each
7116 * raid personality. (RAID5 does preallocation) We also use RR and
7117 * the very same RT priority as kswapd, thus we will never get
7118 * into a priority inversion deadlock.
7119 *
7120 * we definitely have to have equal or higher priority than
7121 * bdflush, otherwise bdflush will deadlock if there are too
7122 * many dirty RAID5 blocks.
7123 */
7124
7125 allow_signal(SIGKILL);
7126 while (!kthread_should_stop()) {
7127
7128 /* We need to wait INTERRUPTIBLE so that
7129 * we don't add to the load-average.
7130 * That means we need to be sure no signals are
7131 * pending
7132 */
7133 if (signal_pending(current))
7134 flush_signals(current);
7135
7136 wait_event_interruptible_timeout
7137 (thread->wqueue,
7138 test_bit(THREAD_WAKEUP, &thread->flags)
7139 || kthread_should_stop(),
7140 thread->timeout);
7141
7142 clear_bit(THREAD_WAKEUP, &thread->flags);
7143 if (!kthread_should_stop())
7144 thread->run(thread);
7145 }
7146
7147 return 0;
7148 }
7149
7150 void md_wakeup_thread(struct md_thread *thread)
7151 {
7152 if (thread) {
7153 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7154 set_bit(THREAD_WAKEUP, &thread->flags);
7155 wake_up(&thread->wqueue);
7156 }
7157 }
7158 EXPORT_SYMBOL(md_wakeup_thread);
7159
7160 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7161 struct mddev *mddev, const char *name)
7162 {
7163 struct md_thread *thread;
7164
7165 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7166 if (!thread)
7167 return NULL;
7168
7169 init_waitqueue_head(&thread->wqueue);
7170
7171 thread->run = run;
7172 thread->mddev = mddev;
7173 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7174 thread->tsk = kthread_run(md_thread, thread,
7175 "%s_%s",
7176 mdname(thread->mddev),
7177 name);
7178 if (IS_ERR(thread->tsk)) {
7179 kfree(thread);
7180 return NULL;
7181 }
7182 return thread;
7183 }
7184 EXPORT_SYMBOL(md_register_thread);
7185
7186 void md_unregister_thread(struct md_thread **threadp)
7187 {
7188 struct md_thread *thread = *threadp;
7189 if (!thread)
7190 return;
7191 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7192 /* Locking ensures that mddev_unlock does not wake_up a
7193 * non-existent thread
7194 */
7195 spin_lock(&pers_lock);
7196 *threadp = NULL;
7197 spin_unlock(&pers_lock);
7198
7199 kthread_stop(thread->tsk);
7200 kfree(thread);
7201 }
7202 EXPORT_SYMBOL(md_unregister_thread);
7203
7204 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7205 {
7206 if (!rdev || test_bit(Faulty, &rdev->flags))
7207 return;
7208
7209 if (!mddev->pers || !mddev->pers->error_handler)
7210 return;
7211 mddev->pers->error_handler(mddev,rdev);
7212 if (mddev->degraded)
7213 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7214 sysfs_notify_dirent_safe(rdev->sysfs_state);
7215 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7217 md_wakeup_thread(mddev->thread);
7218 if (mddev->event_work.func)
7219 queue_work(md_misc_wq, &mddev->event_work);
7220 md_new_event(mddev);
7221 }
7222 EXPORT_SYMBOL(md_error);
7223
7224 /* seq_file implementation /proc/mdstat */
7225
7226 static void status_unused(struct seq_file *seq)
7227 {
7228 int i = 0;
7229 struct md_rdev *rdev;
7230
7231 seq_printf(seq, "unused devices: ");
7232
7233 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7234 char b[BDEVNAME_SIZE];
7235 i++;
7236 seq_printf(seq, "%s ",
7237 bdevname(rdev->bdev,b));
7238 }
7239 if (!i)
7240 seq_printf(seq, "<none>");
7241
7242 seq_printf(seq, "\n");
7243 }
7244
7245 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7246 {
7247 sector_t max_sectors, resync, res;
7248 unsigned long dt, db;
7249 sector_t rt;
7250 int scale;
7251 unsigned int per_milli;
7252
7253 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7254 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7255 max_sectors = mddev->resync_max_sectors;
7256 else
7257 max_sectors = mddev->dev_sectors;
7258
7259 resync = mddev->curr_resync;
7260 if (resync <= 3) {
7261 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7262 /* Still cleaning up */
7263 resync = max_sectors;
7264 } else
7265 resync -= atomic_read(&mddev->recovery_active);
7266
7267 if (resync == 0) {
7268 if (mddev->recovery_cp < MaxSector) {
7269 seq_printf(seq, "\tresync=PENDING");
7270 return 1;
7271 }
7272 return 0;
7273 }
7274 if (resync < 3) {
7275 seq_printf(seq, "\tresync=DELAYED");
7276 return 1;
7277 }
7278
7279 WARN_ON(max_sectors == 0);
7280 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7281 * in a sector_t, and (max_sectors>>scale) will fit in a
7282 * u32, as those are the requirements for sector_div.
7283 * Thus 'scale' must be at least 10
7284 */
7285 scale = 10;
7286 if (sizeof(sector_t) > sizeof(unsigned long)) {
7287 while ( max_sectors/2 > (1ULL<<(scale+32)))
7288 scale++;
7289 }
7290 res = (resync>>scale)*1000;
7291 sector_div(res, (u32)((max_sectors>>scale)+1));
7292
7293 per_milli = res;
7294 {
7295 int i, x = per_milli/50, y = 20-x;
7296 seq_printf(seq, "[");
7297 for (i = 0; i < x; i++)
7298 seq_printf(seq, "=");
7299 seq_printf(seq, ">");
7300 for (i = 0; i < y; i++)
7301 seq_printf(seq, ".");
7302 seq_printf(seq, "] ");
7303 }
7304 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7305 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7306 "reshape" :
7307 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7308 "check" :
7309 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7310 "resync" : "recovery"))),
7311 per_milli/10, per_milli % 10,
7312 (unsigned long long) resync/2,
7313 (unsigned long long) max_sectors/2);
7314
7315 /*
7316 * dt: time from mark until now
7317 * db: blocks written from mark until now
7318 * rt: remaining time
7319 *
7320 * rt is a sector_t, so could be 32bit or 64bit.
7321 * So we divide before multiply in case it is 32bit and close
7322 * to the limit.
7323 * We scale the divisor (db) by 32 to avoid losing precision
7324 * near the end of resync when the number of remaining sectors
7325 * is close to 'db'.
7326 * We then divide rt by 32 after multiplying by db to compensate.
7327 * The '+1' avoids division by zero if db is very small.
7328 */
7329 dt = ((jiffies - mddev->resync_mark) / HZ);
7330 if (!dt) dt++;
7331 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7332 - mddev->resync_mark_cnt;
7333
7334 rt = max_sectors - resync; /* number of remaining sectors */
7335 sector_div(rt, db/32+1);
7336 rt *= dt;
7337 rt >>= 5;
7338
7339 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7340 ((unsigned long)rt % 60)/6);
7341
7342 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7343 return 1;
7344 }
7345
7346 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7347 {
7348 struct list_head *tmp;
7349 loff_t l = *pos;
7350 struct mddev *mddev;
7351
7352 if (l >= 0x10000)
7353 return NULL;
7354 if (!l--)
7355 /* header */
7356 return (void*)1;
7357
7358 spin_lock(&all_mddevs_lock);
7359 list_for_each(tmp,&all_mddevs)
7360 if (!l--) {
7361 mddev = list_entry(tmp, struct mddev, all_mddevs);
7362 mddev_get(mddev);
7363 spin_unlock(&all_mddevs_lock);
7364 return mddev;
7365 }
7366 spin_unlock(&all_mddevs_lock);
7367 if (!l--)
7368 return (void*)2;/* tail */
7369 return NULL;
7370 }
7371
7372 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7373 {
7374 struct list_head *tmp;
7375 struct mddev *next_mddev, *mddev = v;
7376
7377 ++*pos;
7378 if (v == (void*)2)
7379 return NULL;
7380
7381 spin_lock(&all_mddevs_lock);
7382 if (v == (void*)1)
7383 tmp = all_mddevs.next;
7384 else
7385 tmp = mddev->all_mddevs.next;
7386 if (tmp != &all_mddevs)
7387 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7388 else {
7389 next_mddev = (void*)2;
7390 *pos = 0x10000;
7391 }
7392 spin_unlock(&all_mddevs_lock);
7393
7394 if (v != (void*)1)
7395 mddev_put(mddev);
7396 return next_mddev;
7397
7398 }
7399
7400 static void md_seq_stop(struct seq_file *seq, void *v)
7401 {
7402 struct mddev *mddev = v;
7403
7404 if (mddev && v != (void*)1 && v != (void*)2)
7405 mddev_put(mddev);
7406 }
7407
7408 static int md_seq_show(struct seq_file *seq, void *v)
7409 {
7410 struct mddev *mddev = v;
7411 sector_t sectors;
7412 struct md_rdev *rdev;
7413
7414 if (v == (void*)1) {
7415 struct md_personality *pers;
7416 seq_printf(seq, "Personalities : ");
7417 spin_lock(&pers_lock);
7418 list_for_each_entry(pers, &pers_list, list)
7419 seq_printf(seq, "[%s] ", pers->name);
7420
7421 spin_unlock(&pers_lock);
7422 seq_printf(seq, "\n");
7423 seq->poll_event = atomic_read(&md_event_count);
7424 return 0;
7425 }
7426 if (v == (void*)2) {
7427 status_unused(seq);
7428 return 0;
7429 }
7430
7431 spin_lock(&mddev->lock);
7432 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7433 seq_printf(seq, "%s : %sactive", mdname(mddev),
7434 mddev->pers ? "" : "in");
7435 if (mddev->pers) {
7436 if (mddev->ro==1)
7437 seq_printf(seq, " (read-only)");
7438 if (mddev->ro==2)
7439 seq_printf(seq, " (auto-read-only)");
7440 seq_printf(seq, " %s", mddev->pers->name);
7441 }
7442
7443 sectors = 0;
7444 rcu_read_lock();
7445 rdev_for_each_rcu(rdev, mddev) {
7446 char b[BDEVNAME_SIZE];
7447 seq_printf(seq, " %s[%d]",
7448 bdevname(rdev->bdev,b), rdev->desc_nr);
7449 if (test_bit(WriteMostly, &rdev->flags))
7450 seq_printf(seq, "(W)");
7451 if (test_bit(Journal, &rdev->flags))
7452 seq_printf(seq, "(J)");
7453 if (test_bit(Faulty, &rdev->flags)) {
7454 seq_printf(seq, "(F)");
7455 continue;
7456 }
7457 if (rdev->raid_disk < 0)
7458 seq_printf(seq, "(S)"); /* spare */
7459 if (test_bit(Replacement, &rdev->flags))
7460 seq_printf(seq, "(R)");
7461 sectors += rdev->sectors;
7462 }
7463 rcu_read_unlock();
7464
7465 if (!list_empty(&mddev->disks)) {
7466 if (mddev->pers)
7467 seq_printf(seq, "\n %llu blocks",
7468 (unsigned long long)
7469 mddev->array_sectors / 2);
7470 else
7471 seq_printf(seq, "\n %llu blocks",
7472 (unsigned long long)sectors / 2);
7473 }
7474 if (mddev->persistent) {
7475 if (mddev->major_version != 0 ||
7476 mddev->minor_version != 90) {
7477 seq_printf(seq," super %d.%d",
7478 mddev->major_version,
7479 mddev->minor_version);
7480 }
7481 } else if (mddev->external)
7482 seq_printf(seq, " super external:%s",
7483 mddev->metadata_type);
7484 else
7485 seq_printf(seq, " super non-persistent");
7486
7487 if (mddev->pers) {
7488 mddev->pers->status(seq, mddev);
7489 seq_printf(seq, "\n ");
7490 if (mddev->pers->sync_request) {
7491 if (status_resync(seq, mddev))
7492 seq_printf(seq, "\n ");
7493 }
7494 } else
7495 seq_printf(seq, "\n ");
7496
7497 bitmap_status(seq, mddev->bitmap);
7498
7499 seq_printf(seq, "\n");
7500 }
7501 spin_unlock(&mddev->lock);
7502
7503 return 0;
7504 }
7505
7506 static const struct seq_operations md_seq_ops = {
7507 .start = md_seq_start,
7508 .next = md_seq_next,
7509 .stop = md_seq_stop,
7510 .show = md_seq_show,
7511 };
7512
7513 static int md_seq_open(struct inode *inode, struct file *file)
7514 {
7515 struct seq_file *seq;
7516 int error;
7517
7518 error = seq_open(file, &md_seq_ops);
7519 if (error)
7520 return error;
7521
7522 seq = file->private_data;
7523 seq->poll_event = atomic_read(&md_event_count);
7524 return error;
7525 }
7526
7527 static int md_unloading;
7528 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7529 {
7530 struct seq_file *seq = filp->private_data;
7531 int mask;
7532
7533 if (md_unloading)
7534 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7535 poll_wait(filp, &md_event_waiters, wait);
7536
7537 /* always allow read */
7538 mask = POLLIN | POLLRDNORM;
7539
7540 if (seq->poll_event != atomic_read(&md_event_count))
7541 mask |= POLLERR | POLLPRI;
7542 return mask;
7543 }
7544
7545 static const struct file_operations md_seq_fops = {
7546 .owner = THIS_MODULE,
7547 .open = md_seq_open,
7548 .read = seq_read,
7549 .llseek = seq_lseek,
7550 .release = seq_release_private,
7551 .poll = mdstat_poll,
7552 };
7553
7554 int register_md_personality(struct md_personality *p)
7555 {
7556 printk(KERN_INFO "md: %s personality registered for level %d\n",
7557 p->name, p->level);
7558 spin_lock(&pers_lock);
7559 list_add_tail(&p->list, &pers_list);
7560 spin_unlock(&pers_lock);
7561 return 0;
7562 }
7563 EXPORT_SYMBOL(register_md_personality);
7564
7565 int unregister_md_personality(struct md_personality *p)
7566 {
7567 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7568 spin_lock(&pers_lock);
7569 list_del_init(&p->list);
7570 spin_unlock(&pers_lock);
7571 return 0;
7572 }
7573 EXPORT_SYMBOL(unregister_md_personality);
7574
7575 int register_md_cluster_operations(struct md_cluster_operations *ops,
7576 struct module *module)
7577 {
7578 int ret = 0;
7579 spin_lock(&pers_lock);
7580 if (md_cluster_ops != NULL)
7581 ret = -EALREADY;
7582 else {
7583 md_cluster_ops = ops;
7584 md_cluster_mod = module;
7585 }
7586 spin_unlock(&pers_lock);
7587 return ret;
7588 }
7589 EXPORT_SYMBOL(register_md_cluster_operations);
7590
7591 int unregister_md_cluster_operations(void)
7592 {
7593 spin_lock(&pers_lock);
7594 md_cluster_ops = NULL;
7595 spin_unlock(&pers_lock);
7596 return 0;
7597 }
7598 EXPORT_SYMBOL(unregister_md_cluster_operations);
7599
7600 int md_setup_cluster(struct mddev *mddev, int nodes)
7601 {
7602 int err;
7603
7604 err = request_module("md-cluster");
7605 if (err) {
7606 pr_err("md-cluster module not found.\n");
7607 return -ENOENT;
7608 }
7609
7610 spin_lock(&pers_lock);
7611 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7612 spin_unlock(&pers_lock);
7613 return -ENOENT;
7614 }
7615 spin_unlock(&pers_lock);
7616
7617 return md_cluster_ops->join(mddev, nodes);
7618 }
7619
7620 void md_cluster_stop(struct mddev *mddev)
7621 {
7622 if (!md_cluster_ops)
7623 return;
7624 md_cluster_ops->leave(mddev);
7625 module_put(md_cluster_mod);
7626 }
7627
7628 static int is_mddev_idle(struct mddev *mddev, int init)
7629 {
7630 struct md_rdev *rdev;
7631 int idle;
7632 int curr_events;
7633
7634 idle = 1;
7635 rcu_read_lock();
7636 rdev_for_each_rcu(rdev, mddev) {
7637 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7638 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7639 (int)part_stat_read(&disk->part0, sectors[1]) -
7640 atomic_read(&disk->sync_io);
7641 /* sync IO will cause sync_io to increase before the disk_stats
7642 * as sync_io is counted when a request starts, and
7643 * disk_stats is counted when it completes.
7644 * So resync activity will cause curr_events to be smaller than
7645 * when there was no such activity.
7646 * non-sync IO will cause disk_stat to increase without
7647 * increasing sync_io so curr_events will (eventually)
7648 * be larger than it was before. Once it becomes
7649 * substantially larger, the test below will cause
7650 * the array to appear non-idle, and resync will slow
7651 * down.
7652 * If there is a lot of outstanding resync activity when
7653 * we set last_event to curr_events, then all that activity
7654 * completing might cause the array to appear non-idle
7655 * and resync will be slowed down even though there might
7656 * not have been non-resync activity. This will only
7657 * happen once though. 'last_events' will soon reflect
7658 * the state where there is little or no outstanding
7659 * resync requests, and further resync activity will
7660 * always make curr_events less than last_events.
7661 *
7662 */
7663 if (init || curr_events - rdev->last_events > 64) {
7664 rdev->last_events = curr_events;
7665 idle = 0;
7666 }
7667 }
7668 rcu_read_unlock();
7669 return idle;
7670 }
7671
7672 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7673 {
7674 /* another "blocks" (512byte) blocks have been synced */
7675 atomic_sub(blocks, &mddev->recovery_active);
7676 wake_up(&mddev->recovery_wait);
7677 if (!ok) {
7678 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7679 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7680 md_wakeup_thread(mddev->thread);
7681 // stop recovery, signal do_sync ....
7682 }
7683 }
7684 EXPORT_SYMBOL(md_done_sync);
7685
7686 /* md_write_start(mddev, bi)
7687 * If we need to update some array metadata (e.g. 'active' flag
7688 * in superblock) before writing, schedule a superblock update
7689 * and wait for it to complete.
7690 */
7691 void md_write_start(struct mddev *mddev, struct bio *bi)
7692 {
7693 int did_change = 0;
7694 if (bio_data_dir(bi) != WRITE)
7695 return;
7696
7697 BUG_ON(mddev->ro == 1);
7698 if (mddev->ro == 2) {
7699 /* need to switch to read/write */
7700 mddev->ro = 0;
7701 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7702 md_wakeup_thread(mddev->thread);
7703 md_wakeup_thread(mddev->sync_thread);
7704 did_change = 1;
7705 }
7706 atomic_inc(&mddev->writes_pending);
7707 if (mddev->safemode == 1)
7708 mddev->safemode = 0;
7709 if (mddev->in_sync) {
7710 spin_lock(&mddev->lock);
7711 if (mddev->in_sync) {
7712 mddev->in_sync = 0;
7713 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7714 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7715 md_wakeup_thread(mddev->thread);
7716 did_change = 1;
7717 }
7718 spin_unlock(&mddev->lock);
7719 }
7720 if (did_change)
7721 sysfs_notify_dirent_safe(mddev->sysfs_state);
7722 wait_event(mddev->sb_wait,
7723 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7724 }
7725 EXPORT_SYMBOL(md_write_start);
7726
7727 void md_write_end(struct mddev *mddev)
7728 {
7729 if (atomic_dec_and_test(&mddev->writes_pending)) {
7730 if (mddev->safemode == 2)
7731 md_wakeup_thread(mddev->thread);
7732 else if (mddev->safemode_delay)
7733 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7734 }
7735 }
7736 EXPORT_SYMBOL(md_write_end);
7737
7738 /* md_allow_write(mddev)
7739 * Calling this ensures that the array is marked 'active' so that writes
7740 * may proceed without blocking. It is important to call this before
7741 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7742 * Must be called with mddev_lock held.
7743 *
7744 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7745 * is dropped, so return -EAGAIN after notifying userspace.
7746 */
7747 int md_allow_write(struct mddev *mddev)
7748 {
7749 if (!mddev->pers)
7750 return 0;
7751 if (mddev->ro)
7752 return 0;
7753 if (!mddev->pers->sync_request)
7754 return 0;
7755
7756 spin_lock(&mddev->lock);
7757 if (mddev->in_sync) {
7758 mddev->in_sync = 0;
7759 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7760 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7761 if (mddev->safemode_delay &&
7762 mddev->safemode == 0)
7763 mddev->safemode = 1;
7764 spin_unlock(&mddev->lock);
7765 md_update_sb(mddev, 0);
7766 sysfs_notify_dirent_safe(mddev->sysfs_state);
7767 } else
7768 spin_unlock(&mddev->lock);
7769
7770 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7771 return -EAGAIN;
7772 else
7773 return 0;
7774 }
7775 EXPORT_SYMBOL_GPL(md_allow_write);
7776
7777 #define SYNC_MARKS 10
7778 #define SYNC_MARK_STEP (3*HZ)
7779 #define UPDATE_FREQUENCY (5*60*HZ)
7780 void md_do_sync(struct md_thread *thread)
7781 {
7782 struct mddev *mddev = thread->mddev;
7783 struct mddev *mddev2;
7784 unsigned int currspeed = 0,
7785 window;
7786 sector_t max_sectors,j, io_sectors, recovery_done;
7787 unsigned long mark[SYNC_MARKS];
7788 unsigned long update_time;
7789 sector_t mark_cnt[SYNC_MARKS];
7790 int last_mark,m;
7791 struct list_head *tmp;
7792 sector_t last_check;
7793 int skipped = 0;
7794 struct md_rdev *rdev;
7795 char *desc, *action = NULL;
7796 struct blk_plug plug;
7797 int ret;
7798
7799 /* just incase thread restarts... */
7800 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7801 return;
7802 if (mddev->ro) {/* never try to sync a read-only array */
7803 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7804 return;
7805 }
7806
7807 if (mddev_is_clustered(mddev)) {
7808 ret = md_cluster_ops->resync_start(mddev);
7809 if (ret)
7810 goto skip;
7811
7812 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7813 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7814 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7815 && ((unsigned long long)mddev->curr_resync_completed
7816 < (unsigned long long)mddev->resync_max_sectors))
7817 goto skip;
7818 }
7819
7820 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7821 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7822 desc = "data-check";
7823 action = "check";
7824 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7825 desc = "requested-resync";
7826 action = "repair";
7827 } else
7828 desc = "resync";
7829 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7830 desc = "reshape";
7831 else
7832 desc = "recovery";
7833
7834 mddev->last_sync_action = action ?: desc;
7835
7836 /* we overload curr_resync somewhat here.
7837 * 0 == not engaged in resync at all
7838 * 2 == checking that there is no conflict with another sync
7839 * 1 == like 2, but have yielded to allow conflicting resync to
7840 * commense
7841 * other == active in resync - this many blocks
7842 *
7843 * Before starting a resync we must have set curr_resync to
7844 * 2, and then checked that every "conflicting" array has curr_resync
7845 * less than ours. When we find one that is the same or higher
7846 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7847 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7848 * This will mean we have to start checking from the beginning again.
7849 *
7850 */
7851
7852 do {
7853 mddev->curr_resync = 2;
7854
7855 try_again:
7856 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7857 goto skip;
7858 for_each_mddev(mddev2, tmp) {
7859 if (mddev2 == mddev)
7860 continue;
7861 if (!mddev->parallel_resync
7862 && mddev2->curr_resync
7863 && match_mddev_units(mddev, mddev2)) {
7864 DEFINE_WAIT(wq);
7865 if (mddev < mddev2 && mddev->curr_resync == 2) {
7866 /* arbitrarily yield */
7867 mddev->curr_resync = 1;
7868 wake_up(&resync_wait);
7869 }
7870 if (mddev > mddev2 && mddev->curr_resync == 1)
7871 /* no need to wait here, we can wait the next
7872 * time 'round when curr_resync == 2
7873 */
7874 continue;
7875 /* We need to wait 'interruptible' so as not to
7876 * contribute to the load average, and not to
7877 * be caught by 'softlockup'
7878 */
7879 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7880 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7881 mddev2->curr_resync >= mddev->curr_resync) {
7882 printk(KERN_INFO "md: delaying %s of %s"
7883 " until %s has finished (they"
7884 " share one or more physical units)\n",
7885 desc, mdname(mddev), mdname(mddev2));
7886 mddev_put(mddev2);
7887 if (signal_pending(current))
7888 flush_signals(current);
7889 schedule();
7890 finish_wait(&resync_wait, &wq);
7891 goto try_again;
7892 }
7893 finish_wait(&resync_wait, &wq);
7894 }
7895 }
7896 } while (mddev->curr_resync < 2);
7897
7898 j = 0;
7899 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7900 /* resync follows the size requested by the personality,
7901 * which defaults to physical size, but can be virtual size
7902 */
7903 max_sectors = mddev->resync_max_sectors;
7904 atomic64_set(&mddev->resync_mismatches, 0);
7905 /* we don't use the checkpoint if there's a bitmap */
7906 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7907 j = mddev->resync_min;
7908 else if (!mddev->bitmap)
7909 j = mddev->recovery_cp;
7910
7911 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7912 max_sectors = mddev->resync_max_sectors;
7913 else {
7914 /* recovery follows the physical size of devices */
7915 max_sectors = mddev->dev_sectors;
7916 j = MaxSector;
7917 rcu_read_lock();
7918 rdev_for_each_rcu(rdev, mddev)
7919 if (rdev->raid_disk >= 0 &&
7920 !test_bit(Journal, &rdev->flags) &&
7921 !test_bit(Faulty, &rdev->flags) &&
7922 !test_bit(In_sync, &rdev->flags) &&
7923 rdev->recovery_offset < j)
7924 j = rdev->recovery_offset;
7925 rcu_read_unlock();
7926
7927 /* If there is a bitmap, we need to make sure all
7928 * writes that started before we added a spare
7929 * complete before we start doing a recovery.
7930 * Otherwise the write might complete and (via
7931 * bitmap_endwrite) set a bit in the bitmap after the
7932 * recovery has checked that bit and skipped that
7933 * region.
7934 */
7935 if (mddev->bitmap) {
7936 mddev->pers->quiesce(mddev, 1);
7937 mddev->pers->quiesce(mddev, 0);
7938 }
7939 }
7940
7941 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7942 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7943 " %d KB/sec/disk.\n", speed_min(mddev));
7944 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7945 "(but not more than %d KB/sec) for %s.\n",
7946 speed_max(mddev), desc);
7947
7948 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7949
7950 io_sectors = 0;
7951 for (m = 0; m < SYNC_MARKS; m++) {
7952 mark[m] = jiffies;
7953 mark_cnt[m] = io_sectors;
7954 }
7955 last_mark = 0;
7956 mddev->resync_mark = mark[last_mark];
7957 mddev->resync_mark_cnt = mark_cnt[last_mark];
7958
7959 /*
7960 * Tune reconstruction:
7961 */
7962 window = 32*(PAGE_SIZE/512);
7963 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7964 window/2, (unsigned long long)max_sectors/2);
7965
7966 atomic_set(&mddev->recovery_active, 0);
7967 last_check = 0;
7968
7969 if (j>2) {
7970 printk(KERN_INFO
7971 "md: resuming %s of %s from checkpoint.\n",
7972 desc, mdname(mddev));
7973 mddev->curr_resync = j;
7974 } else
7975 mddev->curr_resync = 3; /* no longer delayed */
7976 mddev->curr_resync_completed = j;
7977 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7978 md_new_event(mddev);
7979 update_time = jiffies;
7980
7981 blk_start_plug(&plug);
7982 while (j < max_sectors) {
7983 sector_t sectors;
7984
7985 skipped = 0;
7986
7987 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7988 ((mddev->curr_resync > mddev->curr_resync_completed &&
7989 (mddev->curr_resync - mddev->curr_resync_completed)
7990 > (max_sectors >> 4)) ||
7991 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7992 (j - mddev->curr_resync_completed)*2
7993 >= mddev->resync_max - mddev->curr_resync_completed ||
7994 mddev->curr_resync_completed > mddev->resync_max
7995 )) {
7996 /* time to update curr_resync_completed */
7997 wait_event(mddev->recovery_wait,
7998 atomic_read(&mddev->recovery_active) == 0);
7999 mddev->curr_resync_completed = j;
8000 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8001 j > mddev->recovery_cp)
8002 mddev->recovery_cp = j;
8003 update_time = jiffies;
8004 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8005 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8006 }
8007
8008 while (j >= mddev->resync_max &&
8009 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8010 /* As this condition is controlled by user-space,
8011 * we can block indefinitely, so use '_interruptible'
8012 * to avoid triggering warnings.
8013 */
8014 flush_signals(current); /* just in case */
8015 wait_event_interruptible(mddev->recovery_wait,
8016 mddev->resync_max > j
8017 || test_bit(MD_RECOVERY_INTR,
8018 &mddev->recovery));
8019 }
8020
8021 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8022 break;
8023
8024 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8025 if (sectors == 0) {
8026 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8027 break;
8028 }
8029
8030 if (!skipped) { /* actual IO requested */
8031 io_sectors += sectors;
8032 atomic_add(sectors, &mddev->recovery_active);
8033 }
8034
8035 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8036 break;
8037
8038 j += sectors;
8039 if (j > max_sectors)
8040 /* when skipping, extra large numbers can be returned. */
8041 j = max_sectors;
8042 if (j > 2)
8043 mddev->curr_resync = j;
8044 mddev->curr_mark_cnt = io_sectors;
8045 if (last_check == 0)
8046 /* this is the earliest that rebuild will be
8047 * visible in /proc/mdstat
8048 */
8049 md_new_event(mddev);
8050
8051 if (last_check + window > io_sectors || j == max_sectors)
8052 continue;
8053
8054 last_check = io_sectors;
8055 repeat:
8056 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8057 /* step marks */
8058 int next = (last_mark+1) % SYNC_MARKS;
8059
8060 mddev->resync_mark = mark[next];
8061 mddev->resync_mark_cnt = mark_cnt[next];
8062 mark[next] = jiffies;
8063 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8064 last_mark = next;
8065 }
8066
8067 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8068 break;
8069
8070 /*
8071 * this loop exits only if either when we are slower than
8072 * the 'hard' speed limit, or the system was IO-idle for
8073 * a jiffy.
8074 * the system might be non-idle CPU-wise, but we only care
8075 * about not overloading the IO subsystem. (things like an
8076 * e2fsck being done on the RAID array should execute fast)
8077 */
8078 cond_resched();
8079
8080 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8081 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8082 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8083
8084 if (currspeed > speed_min(mddev)) {
8085 if (currspeed > speed_max(mddev)) {
8086 msleep(500);
8087 goto repeat;
8088 }
8089 if (!is_mddev_idle(mddev, 0)) {
8090 /*
8091 * Give other IO more of a chance.
8092 * The faster the devices, the less we wait.
8093 */
8094 wait_event(mddev->recovery_wait,
8095 !atomic_read(&mddev->recovery_active));
8096 }
8097 }
8098 }
8099 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8100 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8101 ? "interrupted" : "done");
8102 /*
8103 * this also signals 'finished resyncing' to md_stop
8104 */
8105 blk_finish_plug(&plug);
8106 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8107
8108 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8109 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8110 mddev->curr_resync > 2) {
8111 mddev->curr_resync_completed = mddev->curr_resync;
8112 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8113 }
8114 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8115
8116 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8117 mddev->curr_resync > 2) {
8118 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8120 if (mddev->curr_resync >= mddev->recovery_cp) {
8121 printk(KERN_INFO
8122 "md: checkpointing %s of %s.\n",
8123 desc, mdname(mddev));
8124 if (test_bit(MD_RECOVERY_ERROR,
8125 &mddev->recovery))
8126 mddev->recovery_cp =
8127 mddev->curr_resync_completed;
8128 else
8129 mddev->recovery_cp =
8130 mddev->curr_resync;
8131 }
8132 } else
8133 mddev->recovery_cp = MaxSector;
8134 } else {
8135 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8136 mddev->curr_resync = MaxSector;
8137 rcu_read_lock();
8138 rdev_for_each_rcu(rdev, mddev)
8139 if (rdev->raid_disk >= 0 &&
8140 mddev->delta_disks >= 0 &&
8141 !test_bit(Journal, &rdev->flags) &&
8142 !test_bit(Faulty, &rdev->flags) &&
8143 !test_bit(In_sync, &rdev->flags) &&
8144 rdev->recovery_offset < mddev->curr_resync)
8145 rdev->recovery_offset = mddev->curr_resync;
8146 rcu_read_unlock();
8147 }
8148 }
8149 skip:
8150 if (mddev_is_clustered(mddev) &&
8151 ret == 0) {
8152 /* set CHANGE_PENDING here since maybe another
8153 * update is needed, so other nodes are informed */
8154 set_mask_bits(&mddev->flags, 0,
8155 BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS));
8156 md_wakeup_thread(mddev->thread);
8157 wait_event(mddev->sb_wait,
8158 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
8159 md_cluster_ops->resync_finish(mddev);
8160 } else
8161 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8162
8163 spin_lock(&mddev->lock);
8164 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8165 /* We completed so min/max setting can be forgotten if used. */
8166 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8167 mddev->resync_min = 0;
8168 mddev->resync_max = MaxSector;
8169 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8170 mddev->resync_min = mddev->curr_resync_completed;
8171 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8172 mddev->curr_resync = 0;
8173 spin_unlock(&mddev->lock);
8174
8175 wake_up(&resync_wait);
8176 md_wakeup_thread(mddev->thread);
8177 return;
8178 }
8179 EXPORT_SYMBOL_GPL(md_do_sync);
8180
8181 static int remove_and_add_spares(struct mddev *mddev,
8182 struct md_rdev *this)
8183 {
8184 struct md_rdev *rdev;
8185 int spares = 0;
8186 int removed = 0;
8187
8188 rdev_for_each(rdev, mddev)
8189 if ((this == NULL || rdev == this) &&
8190 rdev->raid_disk >= 0 &&
8191 !test_bit(Blocked, &rdev->flags) &&
8192 (test_bit(Faulty, &rdev->flags) ||
8193 (!test_bit(In_sync, &rdev->flags) &&
8194 !test_bit(Journal, &rdev->flags))) &&
8195 atomic_read(&rdev->nr_pending)==0) {
8196 if (mddev->pers->hot_remove_disk(
8197 mddev, rdev) == 0) {
8198 sysfs_unlink_rdev(mddev, rdev);
8199 rdev->raid_disk = -1;
8200 removed++;
8201 }
8202 }
8203 if (removed && mddev->kobj.sd)
8204 sysfs_notify(&mddev->kobj, NULL, "degraded");
8205
8206 if (this && removed)
8207 goto no_add;
8208
8209 rdev_for_each(rdev, mddev) {
8210 if (this && this != rdev)
8211 continue;
8212 if (test_bit(Candidate, &rdev->flags))
8213 continue;
8214 if (rdev->raid_disk >= 0 &&
8215 !test_bit(In_sync, &rdev->flags) &&
8216 !test_bit(Journal, &rdev->flags) &&
8217 !test_bit(Faulty, &rdev->flags))
8218 spares++;
8219 if (rdev->raid_disk >= 0)
8220 continue;
8221 if (test_bit(Faulty, &rdev->flags))
8222 continue;
8223 if (!test_bit(Journal, &rdev->flags)) {
8224 if (mddev->ro &&
8225 ! (rdev->saved_raid_disk >= 0 &&
8226 !test_bit(Bitmap_sync, &rdev->flags)))
8227 continue;
8228
8229 rdev->recovery_offset = 0;
8230 }
8231 if (mddev->pers->
8232 hot_add_disk(mddev, rdev) == 0) {
8233 if (sysfs_link_rdev(mddev, rdev))
8234 /* failure here is OK */;
8235 if (!test_bit(Journal, &rdev->flags))
8236 spares++;
8237 md_new_event(mddev);
8238 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8239 }
8240 }
8241 no_add:
8242 if (removed)
8243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8244 return spares;
8245 }
8246
8247 static void md_start_sync(struct work_struct *ws)
8248 {
8249 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8250 int ret = 0;
8251
8252 mddev->sync_thread = md_register_thread(md_do_sync,
8253 mddev,
8254 "resync");
8255 if (!mddev->sync_thread) {
8256 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8257 printk(KERN_ERR "%s: could not start resync"
8258 " thread...\n",
8259 mdname(mddev));
8260 /* leave the spares where they are, it shouldn't hurt */
8261 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8262 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8263 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8264 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8265 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8266 wake_up(&resync_wait);
8267 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8268 &mddev->recovery))
8269 if (mddev->sysfs_action)
8270 sysfs_notify_dirent_safe(mddev->sysfs_action);
8271 } else
8272 md_wakeup_thread(mddev->sync_thread);
8273 sysfs_notify_dirent_safe(mddev->sysfs_action);
8274 md_new_event(mddev);
8275 }
8276
8277 /*
8278 * This routine is regularly called by all per-raid-array threads to
8279 * deal with generic issues like resync and super-block update.
8280 * Raid personalities that don't have a thread (linear/raid0) do not
8281 * need this as they never do any recovery or update the superblock.
8282 *
8283 * It does not do any resync itself, but rather "forks" off other threads
8284 * to do that as needed.
8285 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8286 * "->recovery" and create a thread at ->sync_thread.
8287 * When the thread finishes it sets MD_RECOVERY_DONE
8288 * and wakeups up this thread which will reap the thread and finish up.
8289 * This thread also removes any faulty devices (with nr_pending == 0).
8290 *
8291 * The overall approach is:
8292 * 1/ if the superblock needs updating, update it.
8293 * 2/ If a recovery thread is running, don't do anything else.
8294 * 3/ If recovery has finished, clean up, possibly marking spares active.
8295 * 4/ If there are any faulty devices, remove them.
8296 * 5/ If array is degraded, try to add spares devices
8297 * 6/ If array has spares or is not in-sync, start a resync thread.
8298 */
8299 void md_check_recovery(struct mddev *mddev)
8300 {
8301 if (mddev->suspended)
8302 return;
8303
8304 if (mddev->bitmap)
8305 bitmap_daemon_work(mddev);
8306
8307 if (signal_pending(current)) {
8308 if (mddev->pers->sync_request && !mddev->external) {
8309 printk(KERN_INFO "md: %s in immediate safe mode\n",
8310 mdname(mddev));
8311 mddev->safemode = 2;
8312 }
8313 flush_signals(current);
8314 }
8315
8316 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8317 return;
8318 if ( ! (
8319 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8320 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8321 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8322 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8323 (mddev->external == 0 && mddev->safemode == 1) ||
8324 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8325 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8326 ))
8327 return;
8328
8329 if (mddev_trylock(mddev)) {
8330 int spares = 0;
8331
8332 if (mddev->ro) {
8333 struct md_rdev *rdev;
8334 if (!mddev->external && mddev->in_sync)
8335 /* 'Blocked' flag not needed as failed devices
8336 * will be recorded if array switched to read/write.
8337 * Leaving it set will prevent the device
8338 * from being removed.
8339 */
8340 rdev_for_each(rdev, mddev)
8341 clear_bit(Blocked, &rdev->flags);
8342 /* On a read-only array we can:
8343 * - remove failed devices
8344 * - add already-in_sync devices if the array itself
8345 * is in-sync.
8346 * As we only add devices that are already in-sync,
8347 * we can activate the spares immediately.
8348 */
8349 remove_and_add_spares(mddev, NULL);
8350 /* There is no thread, but we need to call
8351 * ->spare_active and clear saved_raid_disk
8352 */
8353 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8354 md_reap_sync_thread(mddev);
8355 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8356 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8357 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8358 goto unlock;
8359 }
8360
8361 if (mddev_is_clustered(mddev)) {
8362 struct md_rdev *rdev;
8363 /* kick the device if another node issued a
8364 * remove disk.
8365 */
8366 rdev_for_each(rdev, mddev) {
8367 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8368 rdev->raid_disk < 0)
8369 md_kick_rdev_from_array(rdev);
8370 }
8371
8372 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8373 md_reload_sb(mddev, mddev->good_device_nr);
8374 }
8375
8376 if (!mddev->external) {
8377 int did_change = 0;
8378 spin_lock(&mddev->lock);
8379 if (mddev->safemode &&
8380 !atomic_read(&mddev->writes_pending) &&
8381 !mddev->in_sync &&
8382 mddev->recovery_cp == MaxSector) {
8383 mddev->in_sync = 1;
8384 did_change = 1;
8385 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8386 }
8387 if (mddev->safemode == 1)
8388 mddev->safemode = 0;
8389 spin_unlock(&mddev->lock);
8390 if (did_change)
8391 sysfs_notify_dirent_safe(mddev->sysfs_state);
8392 }
8393
8394 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8395 md_update_sb(mddev, 0);
8396
8397 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8398 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8399 /* resync/recovery still happening */
8400 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8401 goto unlock;
8402 }
8403 if (mddev->sync_thread) {
8404 md_reap_sync_thread(mddev);
8405 goto unlock;
8406 }
8407 /* Set RUNNING before clearing NEEDED to avoid
8408 * any transients in the value of "sync_action".
8409 */
8410 mddev->curr_resync_completed = 0;
8411 spin_lock(&mddev->lock);
8412 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8413 spin_unlock(&mddev->lock);
8414 /* Clear some bits that don't mean anything, but
8415 * might be left set
8416 */
8417 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8418 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8419
8420 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8421 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8422 goto not_running;
8423 /* no recovery is running.
8424 * remove any failed drives, then
8425 * add spares if possible.
8426 * Spares are also removed and re-added, to allow
8427 * the personality to fail the re-add.
8428 */
8429
8430 if (mddev->reshape_position != MaxSector) {
8431 if (mddev->pers->check_reshape == NULL ||
8432 mddev->pers->check_reshape(mddev) != 0)
8433 /* Cannot proceed */
8434 goto not_running;
8435 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8436 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8437 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8438 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8439 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8440 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8441 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8442 } else if (mddev->recovery_cp < MaxSector) {
8443 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8444 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8445 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8446 /* nothing to be done ... */
8447 goto not_running;
8448
8449 if (mddev->pers->sync_request) {
8450 if (spares) {
8451 /* We are adding a device or devices to an array
8452 * which has the bitmap stored on all devices.
8453 * So make sure all bitmap pages get written
8454 */
8455 bitmap_write_all(mddev->bitmap);
8456 }
8457 INIT_WORK(&mddev->del_work, md_start_sync);
8458 queue_work(md_misc_wq, &mddev->del_work);
8459 goto unlock;
8460 }
8461 not_running:
8462 if (!mddev->sync_thread) {
8463 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8464 wake_up(&resync_wait);
8465 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8466 &mddev->recovery))
8467 if (mddev->sysfs_action)
8468 sysfs_notify_dirent_safe(mddev->sysfs_action);
8469 }
8470 unlock:
8471 wake_up(&mddev->sb_wait);
8472 mddev_unlock(mddev);
8473 }
8474 }
8475 EXPORT_SYMBOL(md_check_recovery);
8476
8477 void md_reap_sync_thread(struct mddev *mddev)
8478 {
8479 struct md_rdev *rdev;
8480
8481 /* resync has finished, collect result */
8482 md_unregister_thread(&mddev->sync_thread);
8483 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8484 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8485 /* success...*/
8486 /* activate any spares */
8487 if (mddev->pers->spare_active(mddev)) {
8488 sysfs_notify(&mddev->kobj, NULL,
8489 "degraded");
8490 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8491 }
8492 }
8493 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8494 mddev->pers->finish_reshape)
8495 mddev->pers->finish_reshape(mddev);
8496
8497 /* If array is no-longer degraded, then any saved_raid_disk
8498 * information must be scrapped.
8499 */
8500 if (!mddev->degraded)
8501 rdev_for_each(rdev, mddev)
8502 rdev->saved_raid_disk = -1;
8503
8504 md_update_sb(mddev, 1);
8505 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8506 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8507 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8508 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8509 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8510 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8511 wake_up(&resync_wait);
8512 /* flag recovery needed just to double check */
8513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8514 sysfs_notify_dirent_safe(mddev->sysfs_action);
8515 md_new_event(mddev);
8516 if (mddev->event_work.func)
8517 queue_work(md_misc_wq, &mddev->event_work);
8518 }
8519 EXPORT_SYMBOL(md_reap_sync_thread);
8520
8521 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8522 {
8523 sysfs_notify_dirent_safe(rdev->sysfs_state);
8524 wait_event_timeout(rdev->blocked_wait,
8525 !test_bit(Blocked, &rdev->flags) &&
8526 !test_bit(BlockedBadBlocks, &rdev->flags),
8527 msecs_to_jiffies(5000));
8528 rdev_dec_pending(rdev, mddev);
8529 }
8530 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8531
8532 void md_finish_reshape(struct mddev *mddev)
8533 {
8534 /* called be personality module when reshape completes. */
8535 struct md_rdev *rdev;
8536
8537 rdev_for_each(rdev, mddev) {
8538 if (rdev->data_offset > rdev->new_data_offset)
8539 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8540 else
8541 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8542 rdev->data_offset = rdev->new_data_offset;
8543 }
8544 }
8545 EXPORT_SYMBOL(md_finish_reshape);
8546
8547 /* Bad block management */
8548
8549 /* Returns 1 on success, 0 on failure */
8550 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8551 int is_new)
8552 {
8553 struct mddev *mddev = rdev->mddev;
8554 int rv;
8555 if (is_new)
8556 s += rdev->new_data_offset;
8557 else
8558 s += rdev->data_offset;
8559 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8560 if (rv == 0) {
8561 /* Make sure they get written out promptly */
8562 sysfs_notify_dirent_safe(rdev->sysfs_state);
8563 set_mask_bits(&mddev->flags, 0,
8564 BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING));
8565 md_wakeup_thread(rdev->mddev->thread);
8566 return 1;
8567 } else
8568 return 0;
8569 }
8570 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8571
8572 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8573 int is_new)
8574 {
8575 if (is_new)
8576 s += rdev->new_data_offset;
8577 else
8578 s += rdev->data_offset;
8579 return badblocks_clear(&rdev->badblocks,
8580 s, sectors);
8581 }
8582 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8583
8584 static int md_notify_reboot(struct notifier_block *this,
8585 unsigned long code, void *x)
8586 {
8587 struct list_head *tmp;
8588 struct mddev *mddev;
8589 int need_delay = 0;
8590
8591 for_each_mddev(mddev, tmp) {
8592 if (mddev_trylock(mddev)) {
8593 if (mddev->pers)
8594 __md_stop_writes(mddev);
8595 if (mddev->persistent)
8596 mddev->safemode = 2;
8597 mddev_unlock(mddev);
8598 }
8599 need_delay = 1;
8600 }
8601 /*
8602 * certain more exotic SCSI devices are known to be
8603 * volatile wrt too early system reboots. While the
8604 * right place to handle this issue is the given
8605 * driver, we do want to have a safe RAID driver ...
8606 */
8607 if (need_delay)
8608 mdelay(1000*1);
8609
8610 return NOTIFY_DONE;
8611 }
8612
8613 static struct notifier_block md_notifier = {
8614 .notifier_call = md_notify_reboot,
8615 .next = NULL,
8616 .priority = INT_MAX, /* before any real devices */
8617 };
8618
8619 static void md_geninit(void)
8620 {
8621 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8622
8623 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8624 }
8625
8626 static int __init md_init(void)
8627 {
8628 int ret = -ENOMEM;
8629
8630 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8631 if (!md_wq)
8632 goto err_wq;
8633
8634 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8635 if (!md_misc_wq)
8636 goto err_misc_wq;
8637
8638 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8639 goto err_md;
8640
8641 if ((ret = register_blkdev(0, "mdp")) < 0)
8642 goto err_mdp;
8643 mdp_major = ret;
8644
8645 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8646 md_probe, NULL, NULL);
8647 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8648 md_probe, NULL, NULL);
8649
8650 register_reboot_notifier(&md_notifier);
8651 raid_table_header = register_sysctl_table(raid_root_table);
8652
8653 md_geninit();
8654 return 0;
8655
8656 err_mdp:
8657 unregister_blkdev(MD_MAJOR, "md");
8658 err_md:
8659 destroy_workqueue(md_misc_wq);
8660 err_misc_wq:
8661 destroy_workqueue(md_wq);
8662 err_wq:
8663 return ret;
8664 }
8665
8666 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8667 {
8668 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8669 struct md_rdev *rdev2;
8670 int role, ret;
8671 char b[BDEVNAME_SIZE];
8672
8673 /* Check for change of roles in the active devices */
8674 rdev_for_each(rdev2, mddev) {
8675 if (test_bit(Faulty, &rdev2->flags))
8676 continue;
8677
8678 /* Check if the roles changed */
8679 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8680
8681 if (test_bit(Candidate, &rdev2->flags)) {
8682 if (role == 0xfffe) {
8683 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8684 md_kick_rdev_from_array(rdev2);
8685 continue;
8686 }
8687 else
8688 clear_bit(Candidate, &rdev2->flags);
8689 }
8690
8691 if (role != rdev2->raid_disk) {
8692 /* got activated */
8693 if (rdev2->raid_disk == -1 && role != 0xffff) {
8694 rdev2->saved_raid_disk = role;
8695 ret = remove_and_add_spares(mddev, rdev2);
8696 pr_info("Activated spare: %s\n",
8697 bdevname(rdev2->bdev,b));
8698 /* wakeup mddev->thread here, so array could
8699 * perform resync with the new activated disk */
8700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8701 md_wakeup_thread(mddev->thread);
8702
8703 }
8704 /* device faulty
8705 * We just want to do the minimum to mark the disk
8706 * as faulty. The recovery is performed by the
8707 * one who initiated the error.
8708 */
8709 if ((role == 0xfffe) || (role == 0xfffd)) {
8710 md_error(mddev, rdev2);
8711 clear_bit(Blocked, &rdev2->flags);
8712 }
8713 }
8714 }
8715
8716 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8717 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8718
8719 /* Finally set the event to be up to date */
8720 mddev->events = le64_to_cpu(sb->events);
8721 }
8722
8723 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8724 {
8725 int err;
8726 struct page *swapout = rdev->sb_page;
8727 struct mdp_superblock_1 *sb;
8728
8729 /* Store the sb page of the rdev in the swapout temporary
8730 * variable in case we err in the future
8731 */
8732 rdev->sb_page = NULL;
8733 alloc_disk_sb(rdev);
8734 ClearPageUptodate(rdev->sb_page);
8735 rdev->sb_loaded = 0;
8736 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8737
8738 if (err < 0) {
8739 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8740 __func__, __LINE__, rdev->desc_nr, err);
8741 put_page(rdev->sb_page);
8742 rdev->sb_page = swapout;
8743 rdev->sb_loaded = 1;
8744 return err;
8745 }
8746
8747 sb = page_address(rdev->sb_page);
8748 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8749 * is not set
8750 */
8751
8752 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8753 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8754
8755 /* The other node finished recovery, call spare_active to set
8756 * device In_sync and mddev->degraded
8757 */
8758 if (rdev->recovery_offset == MaxSector &&
8759 !test_bit(In_sync, &rdev->flags) &&
8760 mddev->pers->spare_active(mddev))
8761 sysfs_notify(&mddev->kobj, NULL, "degraded");
8762
8763 put_page(swapout);
8764 return 0;
8765 }
8766
8767 void md_reload_sb(struct mddev *mddev, int nr)
8768 {
8769 struct md_rdev *rdev;
8770 int err;
8771
8772 /* Find the rdev */
8773 rdev_for_each_rcu(rdev, mddev) {
8774 if (rdev->desc_nr == nr)
8775 break;
8776 }
8777
8778 if (!rdev || rdev->desc_nr != nr) {
8779 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8780 return;
8781 }
8782
8783 err = read_rdev(mddev, rdev);
8784 if (err < 0)
8785 return;
8786
8787 check_sb_changes(mddev, rdev);
8788
8789 /* Read all rdev's to update recovery_offset */
8790 rdev_for_each_rcu(rdev, mddev)
8791 read_rdev(mddev, rdev);
8792 }
8793 EXPORT_SYMBOL(md_reload_sb);
8794
8795 #ifndef MODULE
8796
8797 /*
8798 * Searches all registered partitions for autorun RAID arrays
8799 * at boot time.
8800 */
8801
8802 static LIST_HEAD(all_detected_devices);
8803 struct detected_devices_node {
8804 struct list_head list;
8805 dev_t dev;
8806 };
8807
8808 void md_autodetect_dev(dev_t dev)
8809 {
8810 struct detected_devices_node *node_detected_dev;
8811
8812 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8813 if (node_detected_dev) {
8814 node_detected_dev->dev = dev;
8815 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8816 } else {
8817 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8818 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8819 }
8820 }
8821
8822 static void autostart_arrays(int part)
8823 {
8824 struct md_rdev *rdev;
8825 struct detected_devices_node *node_detected_dev;
8826 dev_t dev;
8827 int i_scanned, i_passed;
8828
8829 i_scanned = 0;
8830 i_passed = 0;
8831
8832 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8833
8834 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8835 i_scanned++;
8836 node_detected_dev = list_entry(all_detected_devices.next,
8837 struct detected_devices_node, list);
8838 list_del(&node_detected_dev->list);
8839 dev = node_detected_dev->dev;
8840 kfree(node_detected_dev);
8841 rdev = md_import_device(dev,0, 90);
8842 if (IS_ERR(rdev))
8843 continue;
8844
8845 if (test_bit(Faulty, &rdev->flags))
8846 continue;
8847
8848 set_bit(AutoDetected, &rdev->flags);
8849 list_add(&rdev->same_set, &pending_raid_disks);
8850 i_passed++;
8851 }
8852
8853 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8854 i_scanned, i_passed);
8855
8856 autorun_devices(part);
8857 }
8858
8859 #endif /* !MODULE */
8860
8861 static __exit void md_exit(void)
8862 {
8863 struct mddev *mddev;
8864 struct list_head *tmp;
8865 int delay = 1;
8866
8867 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8868 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8869
8870 unregister_blkdev(MD_MAJOR,"md");
8871 unregister_blkdev(mdp_major, "mdp");
8872 unregister_reboot_notifier(&md_notifier);
8873 unregister_sysctl_table(raid_table_header);
8874
8875 /* We cannot unload the modules while some process is
8876 * waiting for us in select() or poll() - wake them up
8877 */
8878 md_unloading = 1;
8879 while (waitqueue_active(&md_event_waiters)) {
8880 /* not safe to leave yet */
8881 wake_up(&md_event_waiters);
8882 msleep(delay);
8883 delay += delay;
8884 }
8885 remove_proc_entry("mdstat", NULL);
8886
8887 for_each_mddev(mddev, tmp) {
8888 export_array(mddev);
8889 mddev->hold_active = 0;
8890 }
8891 destroy_workqueue(md_misc_wq);
8892 destroy_workqueue(md_wq);
8893 }
8894
8895 subsys_initcall(md_init);
8896 module_exit(md_exit)
8897
8898 static int get_ro(char *buffer, struct kernel_param *kp)
8899 {
8900 return sprintf(buffer, "%d", start_readonly);
8901 }
8902 static int set_ro(const char *val, struct kernel_param *kp)
8903 {
8904 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8905 }
8906
8907 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8908 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8909 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8910
8911 MODULE_LICENSE("GPL");
8912 MODULE_DESCRIPTION("MD RAID framework");
8913 MODULE_ALIAS("md");
8914 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);