]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/md.c
md: simplify the code with md_kick_rdev_from_array
[mirror_ubuntu-jammy-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 /* pers_list is a list of registered personalities protected
64 * by pers_lock.
65 * pers_lock does extra service to protect accesses to
66 * mddev->thread when the mutex cannot be held.
67 */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79
80 static int remove_and_add_spares(struct mddev *mddev,
81 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83
84 /*
85 * Default number of read corrections we'll attempt on an rdev
86 * before ejecting it from the array. We divide the read error
87 * count by 2 for every hour elapsed between read errors.
88 */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92 * is 1000 KB/sec, so the extra system load does not show up that much.
93 * Increase it if you want to have more _guaranteed_ speed. Note that
94 * the RAID driver will use the maximum available bandwidth if the IO
95 * subsystem is idle. There is also an 'absolute maximum' reconstruction
96 * speed limit - in case reconstruction slows down your system despite
97 * idle IO detection.
98 *
99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100 * or /sys/block/mdX/md/sync_speed_{min,max}
101 */
102
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 return mddev->sync_speed_min ?
108 mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110
111 static inline int speed_max(struct mddev *mddev)
112 {
113 return mddev->sync_speed_max ?
114 mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116
117 static struct ctl_table_header *raid_table_header;
118
119 static struct ctl_table raid_table[] = {
120 {
121 .procname = "speed_limit_min",
122 .data = &sysctl_speed_limit_min,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 {
128 .procname = "speed_limit_max",
129 .data = &sysctl_speed_limit_max,
130 .maxlen = sizeof(int),
131 .mode = S_IRUGO|S_IWUSR,
132 .proc_handler = proc_dointvec,
133 },
134 { }
135 };
136
137 static struct ctl_table raid_dir_table[] = {
138 {
139 .procname = "raid",
140 .maxlen = 0,
141 .mode = S_IRUGO|S_IXUGO,
142 .child = raid_table,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_root_table[] = {
148 {
149 .procname = "dev",
150 .maxlen = 0,
151 .mode = 0555,
152 .child = raid_dir_table,
153 },
154 { }
155 };
156
157 static const struct block_device_operations md_fops;
158
159 static int start_readonly;
160
161 /* bio_clone_mddev
162 * like bio_clone, but with a local bio set
163 */
164
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 struct mddev *mddev)
167 {
168 struct bio *b;
169
170 if (!mddev || !mddev->bio_set)
171 return bio_alloc(gfp_mask, nr_iovecs);
172
173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 if (!b)
175 return NULL;
176 return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 struct mddev *mddev)
182 {
183 if (!mddev || !mddev->bio_set)
184 return bio_clone(bio, gfp_mask);
185
186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189
190 /*
191 * We have a system wide 'event count' that is incremented
192 * on any 'interesting' event, and readers of /proc/mdstat
193 * can use 'poll' or 'select' to find out when the event
194 * count increases.
195 *
196 * Events are:
197 * start array, stop array, error, add device, remove device,
198 * start build, activate spare
199 */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 atomic_inc(&md_event_count);
205 wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208
209 /*
210 * Enables to iterate over all existing md arrays
211 * all_mddevs_lock protects this list.
212 */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215
216 /*
217 * iterates through all used mddevs in the system.
218 * We take care to grab the all_mddevs_lock whenever navigating
219 * the list, and to always hold a refcount when unlocked.
220 * Any code which breaks out of this loop while own
221 * a reference to the current mddev and must mddev_put it.
222 */
223 #define for_each_mddev(_mddev,_tmp) \
224 \
225 for (({ spin_lock(&all_mddevs_lock); \
226 _tmp = all_mddevs.next; \
227 _mddev = NULL;}); \
228 ({ if (_tmp != &all_mddevs) \
229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 spin_unlock(&all_mddevs_lock); \
231 if (_mddev) mddev_put(_mddev); \
232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
233 _tmp != &all_mddevs;}); \
234 ({ spin_lock(&all_mddevs_lock); \
235 _tmp = _tmp->next;}) \
236 )
237
238 /* Rather than calling directly into the personality make_request function,
239 * IO requests come here first so that we can check if the device is
240 * being suspended pending a reconfiguration.
241 * We hold a refcount over the call to ->make_request. By the time that
242 * call has finished, the bio has been linked into some internal structure
243 * and so is visible to ->quiesce(), so we don't need the refcount any more.
244 */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 const int rw = bio_data_dir(bio);
248 struct mddev *mddev = q->queuedata;
249 unsigned int sectors;
250 int cpu;
251
252 blk_queue_split(q, &bio, q->bio_split);
253
254 if (mddev == NULL || mddev->pers == NULL) {
255 bio_io_error(bio);
256 return BLK_QC_T_NONE;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 if (bio_sectors(bio) != 0)
260 bio->bi_error = -EROFS;
261 bio_endio(bio);
262 return BLK_QC_T_NONE;
263 }
264 smp_rmb(); /* Ensure implications of 'active' are visible */
265 rcu_read_lock();
266 if (mddev->suspended) {
267 DEFINE_WAIT(__wait);
268 for (;;) {
269 prepare_to_wait(&mddev->sb_wait, &__wait,
270 TASK_UNINTERRUPTIBLE);
271 if (!mddev->suspended)
272 break;
273 rcu_read_unlock();
274 schedule();
275 rcu_read_lock();
276 }
277 finish_wait(&mddev->sb_wait, &__wait);
278 }
279 atomic_inc(&mddev->active_io);
280 rcu_read_unlock();
281
282 /*
283 * save the sectors now since our bio can
284 * go away inside make_request
285 */
286 sectors = bio_sectors(bio);
287 /* bio could be mergeable after passing to underlayer */
288 bio->bi_rw &= ~REQ_NOMERGE;
289 mddev->pers->make_request(mddev, bio);
290
291 cpu = part_stat_lock();
292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 part_stat_unlock();
295
296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 wake_up(&mddev->sb_wait);
298
299 return BLK_QC_T_NONE;
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once mddev_detach() is called and completes, the module will be
306 * completely unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
311 if (mddev->suspended++)
312 return;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 if (--mddev->suspended)
324 return;
325 wake_up(&mddev->sb_wait);
326 mddev->pers->quiesce(mddev, 0);
327
328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 md_wakeup_thread(mddev->thread);
330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 struct md_personality *pers = mddev->pers;
337 int ret = 0;
338
339 rcu_read_lock();
340 if (mddev->suspended)
341 ret = 1;
342 else if (pers && pers->congested)
343 ret = pers->congested(mddev, bits);
344 rcu_read_unlock();
345 return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 struct mddev *mddev = data;
351 return mddev_congested(mddev, bits);
352 }
353
354 /*
355 * Generic flush handling for md
356 */
357
358 static void md_end_flush(struct bio *bio)
359 {
360 struct md_rdev *rdev = bio->bi_private;
361 struct mddev *mddev = rdev->mddev;
362
363 rdev_dec_pending(rdev, mddev);
364
365 if (atomic_dec_and_test(&mddev->flush_pending)) {
366 /* The pre-request flush has finished */
367 queue_work(md_wq, &mddev->flush_work);
368 }
369 bio_put(bio);
370 }
371
372 static void md_submit_flush_data(struct work_struct *ws);
373
374 static void submit_flushes(struct work_struct *ws)
375 {
376 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 struct md_rdev *rdev;
378
379 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 atomic_set(&mddev->flush_pending, 1);
381 rcu_read_lock();
382 rdev_for_each_rcu(rdev, mddev)
383 if (rdev->raid_disk >= 0 &&
384 !test_bit(Faulty, &rdev->flags)) {
385 /* Take two references, one is dropped
386 * when request finishes, one after
387 * we reclaim rcu_read_lock
388 */
389 struct bio *bi;
390 atomic_inc(&rdev->nr_pending);
391 atomic_inc(&rdev->nr_pending);
392 rcu_read_unlock();
393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 bi->bi_end_io = md_end_flush;
395 bi->bi_private = rdev;
396 bi->bi_bdev = rdev->bdev;
397 atomic_inc(&mddev->flush_pending);
398 submit_bio(WRITE_FLUSH, bi);
399 rcu_read_lock();
400 rdev_dec_pending(rdev, mddev);
401 }
402 rcu_read_unlock();
403 if (atomic_dec_and_test(&mddev->flush_pending))
404 queue_work(md_wq, &mddev->flush_work);
405 }
406
407 static void md_submit_flush_data(struct work_struct *ws)
408 {
409 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 struct bio *bio = mddev->flush_bio;
411
412 if (bio->bi_iter.bi_size == 0)
413 /* an empty barrier - all done */
414 bio_endio(bio);
415 else {
416 bio->bi_rw &= ~REQ_FLUSH;
417 mddev->pers->make_request(mddev, bio);
418 }
419
420 mddev->flush_bio = NULL;
421 wake_up(&mddev->sb_wait);
422 }
423
424 void md_flush_request(struct mddev *mddev, struct bio *bio)
425 {
426 spin_lock_irq(&mddev->lock);
427 wait_event_lock_irq(mddev->sb_wait,
428 !mddev->flush_bio,
429 mddev->lock);
430 mddev->flush_bio = bio;
431 spin_unlock_irq(&mddev->lock);
432
433 INIT_WORK(&mddev->flush_work, submit_flushes);
434 queue_work(md_wq, &mddev->flush_work);
435 }
436 EXPORT_SYMBOL(md_flush_request);
437
438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
439 {
440 struct mddev *mddev = cb->data;
441 md_wakeup_thread(mddev->thread);
442 kfree(cb);
443 }
444 EXPORT_SYMBOL(md_unplug);
445
446 static inline struct mddev *mddev_get(struct mddev *mddev)
447 {
448 atomic_inc(&mddev->active);
449 return mddev;
450 }
451
452 static void mddev_delayed_delete(struct work_struct *ws);
453
454 static void mddev_put(struct mddev *mddev)
455 {
456 struct bio_set *bs = NULL;
457
458 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
459 return;
460 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
461 mddev->ctime == 0 && !mddev->hold_active) {
462 /* Array is not configured at all, and not held active,
463 * so destroy it */
464 list_del_init(&mddev->all_mddevs);
465 bs = mddev->bio_set;
466 mddev->bio_set = NULL;
467 if (mddev->gendisk) {
468 /* We did a probe so need to clean up. Call
469 * queue_work inside the spinlock so that
470 * flush_workqueue() after mddev_find will
471 * succeed in waiting for the work to be done.
472 */
473 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
474 queue_work(md_misc_wq, &mddev->del_work);
475 } else
476 kfree(mddev);
477 }
478 spin_unlock(&all_mddevs_lock);
479 if (bs)
480 bioset_free(bs);
481 }
482
483 static void md_safemode_timeout(unsigned long data);
484
485 void mddev_init(struct mddev *mddev)
486 {
487 mutex_init(&mddev->open_mutex);
488 mutex_init(&mddev->reconfig_mutex);
489 mutex_init(&mddev->bitmap_info.mutex);
490 INIT_LIST_HEAD(&mddev->disks);
491 INIT_LIST_HEAD(&mddev->all_mddevs);
492 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
493 (unsigned long) mddev);
494 atomic_set(&mddev->active, 1);
495 atomic_set(&mddev->openers, 0);
496 atomic_set(&mddev->active_io, 0);
497 spin_lock_init(&mddev->lock);
498 atomic_set(&mddev->flush_pending, 0);
499 init_waitqueue_head(&mddev->sb_wait);
500 init_waitqueue_head(&mddev->recovery_wait);
501 mddev->reshape_position = MaxSector;
502 mddev->reshape_backwards = 0;
503 mddev->last_sync_action = "none";
504 mddev->resync_min = 0;
505 mddev->resync_max = MaxSector;
506 mddev->level = LEVEL_NONE;
507 }
508 EXPORT_SYMBOL_GPL(mddev_init);
509
510 static struct mddev *mddev_find(dev_t unit)
511 {
512 struct mddev *mddev, *new = NULL;
513
514 if (unit && MAJOR(unit) != MD_MAJOR)
515 unit &= ~((1<<MdpMinorShift)-1);
516
517 retry:
518 spin_lock(&all_mddevs_lock);
519
520 if (unit) {
521 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
522 if (mddev->unit == unit) {
523 mddev_get(mddev);
524 spin_unlock(&all_mddevs_lock);
525 kfree(new);
526 return mddev;
527 }
528
529 if (new) {
530 list_add(&new->all_mddevs, &all_mddevs);
531 spin_unlock(&all_mddevs_lock);
532 new->hold_active = UNTIL_IOCTL;
533 return new;
534 }
535 } else if (new) {
536 /* find an unused unit number */
537 static int next_minor = 512;
538 int start = next_minor;
539 int is_free = 0;
540 int dev = 0;
541 while (!is_free) {
542 dev = MKDEV(MD_MAJOR, next_minor);
543 next_minor++;
544 if (next_minor > MINORMASK)
545 next_minor = 0;
546 if (next_minor == start) {
547 /* Oh dear, all in use. */
548 spin_unlock(&all_mddevs_lock);
549 kfree(new);
550 return NULL;
551 }
552
553 is_free = 1;
554 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 if (mddev->unit == dev) {
556 is_free = 0;
557 break;
558 }
559 }
560 new->unit = dev;
561 new->md_minor = MINOR(dev);
562 new->hold_active = UNTIL_STOP;
563 list_add(&new->all_mddevs, &all_mddevs);
564 spin_unlock(&all_mddevs_lock);
565 return new;
566 }
567 spin_unlock(&all_mddevs_lock);
568
569 new = kzalloc(sizeof(*new), GFP_KERNEL);
570 if (!new)
571 return NULL;
572
573 new->unit = unit;
574 if (MAJOR(unit) == MD_MAJOR)
575 new->md_minor = MINOR(unit);
576 else
577 new->md_minor = MINOR(unit) >> MdpMinorShift;
578
579 mddev_init(new);
580
581 goto retry;
582 }
583
584 static struct attribute_group md_redundancy_group;
585
586 void mddev_unlock(struct mddev *mddev)
587 {
588 if (mddev->to_remove) {
589 /* These cannot be removed under reconfig_mutex as
590 * an access to the files will try to take reconfig_mutex
591 * while holding the file unremovable, which leads to
592 * a deadlock.
593 * So hold set sysfs_active while the remove in happeing,
594 * and anything else which might set ->to_remove or my
595 * otherwise change the sysfs namespace will fail with
596 * -EBUSY if sysfs_active is still set.
597 * We set sysfs_active under reconfig_mutex and elsewhere
598 * test it under the same mutex to ensure its correct value
599 * is seen.
600 */
601 struct attribute_group *to_remove = mddev->to_remove;
602 mddev->to_remove = NULL;
603 mddev->sysfs_active = 1;
604 mutex_unlock(&mddev->reconfig_mutex);
605
606 if (mddev->kobj.sd) {
607 if (to_remove != &md_redundancy_group)
608 sysfs_remove_group(&mddev->kobj, to_remove);
609 if (mddev->pers == NULL ||
610 mddev->pers->sync_request == NULL) {
611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 if (mddev->sysfs_action)
613 sysfs_put(mddev->sysfs_action);
614 mddev->sysfs_action = NULL;
615 }
616 }
617 mddev->sysfs_active = 0;
618 } else
619 mutex_unlock(&mddev->reconfig_mutex);
620
621 /* As we've dropped the mutex we need a spinlock to
622 * make sure the thread doesn't disappear
623 */
624 spin_lock(&pers_lock);
625 md_wakeup_thread(mddev->thread);
626 spin_unlock(&pers_lock);
627 }
628 EXPORT_SYMBOL_GPL(mddev_unlock);
629
630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
631 {
632 struct md_rdev *rdev;
633
634 rdev_for_each_rcu(rdev, mddev)
635 if (rdev->desc_nr == nr)
636 return rdev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
641
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 struct md_rdev *rdev;
645
646 rdev_for_each(rdev, mddev)
647 if (rdev->bdev->bd_dev == dev)
648 return rdev;
649
650 return NULL;
651 }
652
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 struct md_rdev *rdev;
656
657 rdev_for_each_rcu(rdev, mddev)
658 if (rdev->bdev->bd_dev == dev)
659 return rdev;
660
661 return NULL;
662 }
663
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 struct md_personality *pers;
667 list_for_each_entry(pers, &pers_list, list) {
668 if (level != LEVEL_NONE && pers->level == level)
669 return pers;
670 if (strcmp(pers->name, clevel)==0)
671 return pers;
672 }
673 return NULL;
674 }
675
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 rdev->sb_page = alloc_page(GFP_KERNEL);
686 if (!rdev->sb_page) {
687 printk(KERN_ALERT "md: out of memory.\n");
688 return -ENOMEM;
689 }
690
691 return 0;
692 }
693
694 void md_rdev_clear(struct md_rdev *rdev)
695 {
696 if (rdev->sb_page) {
697 put_page(rdev->sb_page);
698 rdev->sb_loaded = 0;
699 rdev->sb_page = NULL;
700 rdev->sb_start = 0;
701 rdev->sectors = 0;
702 }
703 if (rdev->bb_page) {
704 put_page(rdev->bb_page);
705 rdev->bb_page = NULL;
706 }
707 badblocks_exit(&rdev->badblocks);
708 }
709 EXPORT_SYMBOL_GPL(md_rdev_clear);
710
711 static void super_written(struct bio *bio)
712 {
713 struct md_rdev *rdev = bio->bi_private;
714 struct mddev *mddev = rdev->mddev;
715
716 if (bio->bi_error) {
717 printk("md: super_written gets error=%d\n", bio->bi_error);
718 md_error(mddev, rdev);
719 }
720
721 if (atomic_dec_and_test(&mddev->pending_writes))
722 wake_up(&mddev->sb_wait);
723 rdev_dec_pending(rdev, mddev);
724 bio_put(bio);
725 }
726
727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 sector_t sector, int size, struct page *page)
729 {
730 /* write first size bytes of page to sector of rdev
731 * Increment mddev->pending_writes before returning
732 * and decrement it on completion, waking up sb_wait
733 * if zero is reached.
734 * If an error occurred, call md_error
735 */
736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737
738 atomic_inc(&rdev->nr_pending);
739
740 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
741 bio->bi_iter.bi_sector = sector;
742 bio_add_page(bio, page, size, 0);
743 bio->bi_private = rdev;
744 bio->bi_end_io = super_written;
745
746 atomic_inc(&mddev->pending_writes);
747 submit_bio(WRITE_FLUSH_FUA, bio);
748 }
749
750 void md_super_wait(struct mddev *mddev)
751 {
752 /* wait for all superblock writes that were scheduled to complete */
753 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
754 }
755
756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
757 struct page *page, int rw, bool metadata_op)
758 {
759 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
760 int ret;
761
762 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
763 rdev->meta_bdev : rdev->bdev;
764 if (metadata_op)
765 bio->bi_iter.bi_sector = sector + rdev->sb_start;
766 else if (rdev->mddev->reshape_position != MaxSector &&
767 (rdev->mddev->reshape_backwards ==
768 (sector >= rdev->mddev->reshape_position)))
769 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
770 else
771 bio->bi_iter.bi_sector = sector + rdev->data_offset;
772 bio_add_page(bio, page, size, 0);
773 submit_bio_wait(rw, bio);
774
775 ret = !bio->bi_error;
776 bio_put(bio);
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(sync_page_io);
780
781 static int read_disk_sb(struct md_rdev *rdev, int size)
782 {
783 char b[BDEVNAME_SIZE];
784
785 if (rdev->sb_loaded)
786 return 0;
787
788 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
789 goto fail;
790 rdev->sb_loaded = 1;
791 return 0;
792
793 fail:
794 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
795 bdevname(rdev->bdev,b));
796 return -EINVAL;
797 }
798
799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 return sb1->set_uuid0 == sb2->set_uuid0 &&
802 sb1->set_uuid1 == sb2->set_uuid1 &&
803 sb1->set_uuid2 == sb2->set_uuid2 &&
804 sb1->set_uuid3 == sb2->set_uuid3;
805 }
806
807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 int ret;
810 mdp_super_t *tmp1, *tmp2;
811
812 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
813 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
814
815 if (!tmp1 || !tmp2) {
816 ret = 0;
817 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
818 goto abort;
819 }
820
821 *tmp1 = *sb1;
822 *tmp2 = *sb2;
823
824 /*
825 * nr_disks is not constant
826 */
827 tmp1->nr_disks = 0;
828 tmp2->nr_disks = 0;
829
830 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
831 abort:
832 kfree(tmp1);
833 kfree(tmp2);
834 return ret;
835 }
836
837 static u32 md_csum_fold(u32 csum)
838 {
839 csum = (csum & 0xffff) + (csum >> 16);
840 return (csum & 0xffff) + (csum >> 16);
841 }
842
843 static unsigned int calc_sb_csum(mdp_super_t *sb)
844 {
845 u64 newcsum = 0;
846 u32 *sb32 = (u32*)sb;
847 int i;
848 unsigned int disk_csum, csum;
849
850 disk_csum = sb->sb_csum;
851 sb->sb_csum = 0;
852
853 for (i = 0; i < MD_SB_BYTES/4 ; i++)
854 newcsum += sb32[i];
855 csum = (newcsum & 0xffffffff) + (newcsum>>32);
856
857 #ifdef CONFIG_ALPHA
858 /* This used to use csum_partial, which was wrong for several
859 * reasons including that different results are returned on
860 * different architectures. It isn't critical that we get exactly
861 * the same return value as before (we always csum_fold before
862 * testing, and that removes any differences). However as we
863 * know that csum_partial always returned a 16bit value on
864 * alphas, do a fold to maximise conformity to previous behaviour.
865 */
866 sb->sb_csum = md_csum_fold(disk_csum);
867 #else
868 sb->sb_csum = disk_csum;
869 #endif
870 return csum;
871 }
872
873 /*
874 * Handle superblock details.
875 * We want to be able to handle multiple superblock formats
876 * so we have a common interface to them all, and an array of
877 * different handlers.
878 * We rely on user-space to write the initial superblock, and support
879 * reading and updating of superblocks.
880 * Interface methods are:
881 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
882 * loads and validates a superblock on dev.
883 * if refdev != NULL, compare superblocks on both devices
884 * Return:
885 * 0 - dev has a superblock that is compatible with refdev
886 * 1 - dev has a superblock that is compatible and newer than refdev
887 * so dev should be used as the refdev in future
888 * -EINVAL superblock incompatible or invalid
889 * -othererror e.g. -EIO
890 *
891 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
892 * Verify that dev is acceptable into mddev.
893 * The first time, mddev->raid_disks will be 0, and data from
894 * dev should be merged in. Subsequent calls check that dev
895 * is new enough. Return 0 or -EINVAL
896 *
897 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
898 * Update the superblock for rdev with data in mddev
899 * This does not write to disc.
900 *
901 */
902
903 struct super_type {
904 char *name;
905 struct module *owner;
906 int (*load_super)(struct md_rdev *rdev,
907 struct md_rdev *refdev,
908 int minor_version);
909 int (*validate_super)(struct mddev *mddev,
910 struct md_rdev *rdev);
911 void (*sync_super)(struct mddev *mddev,
912 struct md_rdev *rdev);
913 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
914 sector_t num_sectors);
915 int (*allow_new_offset)(struct md_rdev *rdev,
916 unsigned long long new_offset);
917 };
918
919 /*
920 * Check that the given mddev has no bitmap.
921 *
922 * This function is called from the run method of all personalities that do not
923 * support bitmaps. It prints an error message and returns non-zero if mddev
924 * has a bitmap. Otherwise, it returns 0.
925 *
926 */
927 int md_check_no_bitmap(struct mddev *mddev)
928 {
929 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
930 return 0;
931 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
932 mdname(mddev), mddev->pers->name);
933 return 1;
934 }
935 EXPORT_SYMBOL(md_check_no_bitmap);
936
937 /*
938 * load_super for 0.90.0
939 */
940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
941 {
942 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
943 mdp_super_t *sb;
944 int ret;
945
946 /*
947 * Calculate the position of the superblock (512byte sectors),
948 * it's at the end of the disk.
949 *
950 * It also happens to be a multiple of 4Kb.
951 */
952 rdev->sb_start = calc_dev_sboffset(rdev);
953
954 ret = read_disk_sb(rdev, MD_SB_BYTES);
955 if (ret) return ret;
956
957 ret = -EINVAL;
958
959 bdevname(rdev->bdev, b);
960 sb = page_address(rdev->sb_page);
961
962 if (sb->md_magic != MD_SB_MAGIC) {
963 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
964 b);
965 goto abort;
966 }
967
968 if (sb->major_version != 0 ||
969 sb->minor_version < 90 ||
970 sb->minor_version > 91) {
971 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
972 sb->major_version, sb->minor_version,
973 b);
974 goto abort;
975 }
976
977 if (sb->raid_disks <= 0)
978 goto abort;
979
980 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
981 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
982 b);
983 goto abort;
984 }
985
986 rdev->preferred_minor = sb->md_minor;
987 rdev->data_offset = 0;
988 rdev->new_data_offset = 0;
989 rdev->sb_size = MD_SB_BYTES;
990 rdev->badblocks.shift = -1;
991
992 if (sb->level == LEVEL_MULTIPATH)
993 rdev->desc_nr = -1;
994 else
995 rdev->desc_nr = sb->this_disk.number;
996
997 if (!refdev) {
998 ret = 1;
999 } else {
1000 __u64 ev1, ev2;
1001 mdp_super_t *refsb = page_address(refdev->sb_page);
1002 if (!uuid_equal(refsb, sb)) {
1003 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1004 b, bdevname(refdev->bdev,b2));
1005 goto abort;
1006 }
1007 if (!sb_equal(refsb, sb)) {
1008 printk(KERN_WARNING "md: %s has same UUID"
1009 " but different superblock to %s\n",
1010 b, bdevname(refdev->bdev, b2));
1011 goto abort;
1012 }
1013 ev1 = md_event(sb);
1014 ev2 = md_event(refsb);
1015 if (ev1 > ev2)
1016 ret = 1;
1017 else
1018 ret = 0;
1019 }
1020 rdev->sectors = rdev->sb_start;
1021 /* Limit to 4TB as metadata cannot record more than that.
1022 * (not needed for Linear and RAID0 as metadata doesn't
1023 * record this size)
1024 */
1025 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1026 sb->level >= 1)
1027 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1028
1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 /* "this cannot possibly happen" ... */
1031 ret = -EINVAL;
1032
1033 abort:
1034 return ret;
1035 }
1036
1037 /*
1038 * validate_super for 0.90.0
1039 */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 mdp_disk_t *desc;
1043 mdp_super_t *sb = page_address(rdev->sb_page);
1044 __u64 ev1 = md_event(sb);
1045
1046 rdev->raid_disk = -1;
1047 clear_bit(Faulty, &rdev->flags);
1048 clear_bit(In_sync, &rdev->flags);
1049 clear_bit(Bitmap_sync, &rdev->flags);
1050 clear_bit(WriteMostly, &rdev->flags);
1051
1052 if (mddev->raid_disks == 0) {
1053 mddev->major_version = 0;
1054 mddev->minor_version = sb->minor_version;
1055 mddev->patch_version = sb->patch_version;
1056 mddev->external = 0;
1057 mddev->chunk_sectors = sb->chunk_size >> 9;
1058 mddev->ctime = sb->ctime;
1059 mddev->utime = sb->utime;
1060 mddev->level = sb->level;
1061 mddev->clevel[0] = 0;
1062 mddev->layout = sb->layout;
1063 mddev->raid_disks = sb->raid_disks;
1064 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 mddev->events = ev1;
1066 mddev->bitmap_info.offset = 0;
1067 mddev->bitmap_info.space = 0;
1068 /* bitmap can use 60 K after the 4K superblocks */
1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 mddev->reshape_backwards = 0;
1072
1073 if (mddev->minor_version >= 91) {
1074 mddev->reshape_position = sb->reshape_position;
1075 mddev->delta_disks = sb->delta_disks;
1076 mddev->new_level = sb->new_level;
1077 mddev->new_layout = sb->new_layout;
1078 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 if (mddev->delta_disks < 0)
1080 mddev->reshape_backwards = 1;
1081 } else {
1082 mddev->reshape_position = MaxSector;
1083 mddev->delta_disks = 0;
1084 mddev->new_level = mddev->level;
1085 mddev->new_layout = mddev->layout;
1086 mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 }
1088
1089 if (sb->state & (1<<MD_SB_CLEAN))
1090 mddev->recovery_cp = MaxSector;
1091 else {
1092 if (sb->events_hi == sb->cp_events_hi &&
1093 sb->events_lo == sb->cp_events_lo) {
1094 mddev->recovery_cp = sb->recovery_cp;
1095 } else
1096 mddev->recovery_cp = 0;
1097 }
1098
1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104 mddev->max_disks = MD_SB_DISKS;
1105
1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 mddev->bitmap_info.file == NULL) {
1108 mddev->bitmap_info.offset =
1109 mddev->bitmap_info.default_offset;
1110 mddev->bitmap_info.space =
1111 mddev->bitmap_info.default_space;
1112 }
1113
1114 } else if (mddev->pers == NULL) {
1115 /* Insist on good event counter while assembling, except
1116 * for spares (which don't need an event count) */
1117 ++ev1;
1118 if (sb->disks[rdev->desc_nr].state & (
1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 if (ev1 < mddev->events)
1121 return -EINVAL;
1122 } else if (mddev->bitmap) {
1123 /* if adding to array with a bitmap, then we can accept an
1124 * older device ... but not too old.
1125 */
1126 if (ev1 < mddev->bitmap->events_cleared)
1127 return 0;
1128 if (ev1 < mddev->events)
1129 set_bit(Bitmap_sync, &rdev->flags);
1130 } else {
1131 if (ev1 < mddev->events)
1132 /* just a hot-add of a new device, leave raid_disk at -1 */
1133 return 0;
1134 }
1135
1136 if (mddev->level != LEVEL_MULTIPATH) {
1137 desc = sb->disks + rdev->desc_nr;
1138
1139 if (desc->state & (1<<MD_DISK_FAULTY))
1140 set_bit(Faulty, &rdev->flags);
1141 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 desc->raid_disk < mddev->raid_disks */) {
1143 set_bit(In_sync, &rdev->flags);
1144 rdev->raid_disk = desc->raid_disk;
1145 rdev->saved_raid_disk = desc->raid_disk;
1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 /* active but not in sync implies recovery up to
1148 * reshape position. We don't know exactly where
1149 * that is, so set to zero for now */
1150 if (mddev->minor_version >= 91) {
1151 rdev->recovery_offset = 0;
1152 rdev->raid_disk = desc->raid_disk;
1153 }
1154 }
1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 set_bit(WriteMostly, &rdev->flags);
1157 } else /* MULTIPATH are always insync */
1158 set_bit(In_sync, &rdev->flags);
1159 return 0;
1160 }
1161
1162 /*
1163 * sync_super for 0.90.0
1164 */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 mdp_super_t *sb;
1168 struct md_rdev *rdev2;
1169 int next_spare = mddev->raid_disks;
1170
1171 /* make rdev->sb match mddev data..
1172 *
1173 * 1/ zero out disks
1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 * 3/ any empty disks < next_spare become removed
1176 *
1177 * disks[0] gets initialised to REMOVED because
1178 * we cannot be sure from other fields if it has
1179 * been initialised or not.
1180 */
1181 int i;
1182 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184 rdev->sb_size = MD_SB_BYTES;
1185
1186 sb = page_address(rdev->sb_page);
1187
1188 memset(sb, 0, sizeof(*sb));
1189
1190 sb->md_magic = MD_SB_MAGIC;
1191 sb->major_version = mddev->major_version;
1192 sb->patch_version = mddev->patch_version;
1193 sb->gvalid_words = 0; /* ignored */
1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1200 sb->level = mddev->level;
1201 sb->size = mddev->dev_sectors / 2;
1202 sb->raid_disks = mddev->raid_disks;
1203 sb->md_minor = mddev->md_minor;
1204 sb->not_persistent = 0;
1205 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1206 sb->state = 0;
1207 sb->events_hi = (mddev->events>>32);
1208 sb->events_lo = (u32)mddev->events;
1209
1210 if (mddev->reshape_position == MaxSector)
1211 sb->minor_version = 90;
1212 else {
1213 sb->minor_version = 91;
1214 sb->reshape_position = mddev->reshape_position;
1215 sb->new_level = mddev->new_level;
1216 sb->delta_disks = mddev->delta_disks;
1217 sb->new_layout = mddev->new_layout;
1218 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 }
1220 mddev->minor_version = sb->minor_version;
1221 if (mddev->in_sync)
1222 {
1223 sb->recovery_cp = mddev->recovery_cp;
1224 sb->cp_events_hi = (mddev->events>>32);
1225 sb->cp_events_lo = (u32)mddev->events;
1226 if (mddev->recovery_cp == MaxSector)
1227 sb->state = (1<< MD_SB_CLEAN);
1228 } else
1229 sb->recovery_cp = 0;
1230
1231 sb->layout = mddev->layout;
1232 sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 rdev_for_each(rdev2, mddev) {
1239 mdp_disk_t *d;
1240 int desc_nr;
1241 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243 if (rdev2->raid_disk >= 0 &&
1244 sb->minor_version >= 91)
1245 /* we have nowhere to store the recovery_offset,
1246 * but if it is not below the reshape_position,
1247 * we can piggy-back on that.
1248 */
1249 is_active = 1;
1250 if (rdev2->raid_disk < 0 ||
1251 test_bit(Faulty, &rdev2->flags))
1252 is_active = 0;
1253 if (is_active)
1254 desc_nr = rdev2->raid_disk;
1255 else
1256 desc_nr = next_spare++;
1257 rdev2->desc_nr = desc_nr;
1258 d = &sb->disks[rdev2->desc_nr];
1259 nr_disks++;
1260 d->number = rdev2->desc_nr;
1261 d->major = MAJOR(rdev2->bdev->bd_dev);
1262 d->minor = MINOR(rdev2->bdev->bd_dev);
1263 if (is_active)
1264 d->raid_disk = rdev2->raid_disk;
1265 else
1266 d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 if (test_bit(Faulty, &rdev2->flags))
1268 d->state = (1<<MD_DISK_FAULTY);
1269 else if (is_active) {
1270 d->state = (1<<MD_DISK_ACTIVE);
1271 if (test_bit(In_sync, &rdev2->flags))
1272 d->state |= (1<<MD_DISK_SYNC);
1273 active++;
1274 working++;
1275 } else {
1276 d->state = 0;
1277 spare++;
1278 working++;
1279 }
1280 if (test_bit(WriteMostly, &rdev2->flags))
1281 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 }
1283 /* now set the "removed" and "faulty" bits on any missing devices */
1284 for (i=0 ; i < mddev->raid_disks ; i++) {
1285 mdp_disk_t *d = &sb->disks[i];
1286 if (d->state == 0 && d->number == 0) {
1287 d->number = i;
1288 d->raid_disk = i;
1289 d->state = (1<<MD_DISK_REMOVED);
1290 d->state |= (1<<MD_DISK_FAULTY);
1291 failed++;
1292 }
1293 }
1294 sb->nr_disks = nr_disks;
1295 sb->active_disks = active;
1296 sb->working_disks = working;
1297 sb->failed_disks = failed;
1298 sb->spare_disks = spare;
1299
1300 sb->this_disk = sb->disks[rdev->desc_nr];
1301 sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305 * rdev_size_change for 0.90.0
1306 */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 return 0; /* component must fit device */
1312 if (rdev->mddev->bitmap_info.offset)
1313 return 0; /* can't move bitmap */
1314 rdev->sb_start = calc_dev_sboffset(rdev);
1315 if (!num_sectors || num_sectors > rdev->sb_start)
1316 num_sectors = rdev->sb_start;
1317 /* Limit to 4TB as metadata cannot record more than that.
1318 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 */
1320 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1321 rdev->mddev->level >= 1)
1322 num_sectors = (sector_t)(2ULL << 32) - 2;
1323 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1324 rdev->sb_page);
1325 md_super_wait(rdev->mddev);
1326 return num_sectors;
1327 }
1328
1329 static int
1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1331 {
1332 /* non-zero offset changes not possible with v0.90 */
1333 return new_offset == 0;
1334 }
1335
1336 /*
1337 * version 1 superblock
1338 */
1339
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1341 {
1342 __le32 disk_csum;
1343 u32 csum;
1344 unsigned long long newcsum;
1345 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 __le32 *isuper = (__le32*)sb;
1347
1348 disk_csum = sb->sb_csum;
1349 sb->sb_csum = 0;
1350 newcsum = 0;
1351 for (; size >= 4; size -= 4)
1352 newcsum += le32_to_cpu(*isuper++);
1353
1354 if (size == 2)
1355 newcsum += le16_to_cpu(*(__le16*) isuper);
1356
1357 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1358 sb->sb_csum = disk_csum;
1359 return cpu_to_le32(csum);
1360 }
1361
1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1363 {
1364 struct mdp_superblock_1 *sb;
1365 int ret;
1366 sector_t sb_start;
1367 sector_t sectors;
1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 int bmask;
1370
1371 /*
1372 * Calculate the position of the superblock in 512byte sectors.
1373 * It is always aligned to a 4K boundary and
1374 * depeding on minor_version, it can be:
1375 * 0: At least 8K, but less than 12K, from end of device
1376 * 1: At start of device
1377 * 2: 4K from start of device.
1378 */
1379 switch(minor_version) {
1380 case 0:
1381 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1382 sb_start -= 8*2;
1383 sb_start &= ~(sector_t)(4*2-1);
1384 break;
1385 case 1:
1386 sb_start = 0;
1387 break;
1388 case 2:
1389 sb_start = 8;
1390 break;
1391 default:
1392 return -EINVAL;
1393 }
1394 rdev->sb_start = sb_start;
1395
1396 /* superblock is rarely larger than 1K, but it can be larger,
1397 * and it is safe to read 4k, so we do that
1398 */
1399 ret = read_disk_sb(rdev, 4096);
1400 if (ret) return ret;
1401
1402 sb = page_address(rdev->sb_page);
1403
1404 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1405 sb->major_version != cpu_to_le32(1) ||
1406 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1407 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1408 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1409 return -EINVAL;
1410
1411 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1412 printk("md: invalid superblock checksum on %s\n",
1413 bdevname(rdev->bdev,b));
1414 return -EINVAL;
1415 }
1416 if (le64_to_cpu(sb->data_size) < 10) {
1417 printk("md: data_size too small on %s\n",
1418 bdevname(rdev->bdev,b));
1419 return -EINVAL;
1420 }
1421 if (sb->pad0 ||
1422 sb->pad3[0] ||
1423 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1424 /* Some padding is non-zero, might be a new feature */
1425 return -EINVAL;
1426
1427 rdev->preferred_minor = 0xffff;
1428 rdev->data_offset = le64_to_cpu(sb->data_offset);
1429 rdev->new_data_offset = rdev->data_offset;
1430 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1431 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1432 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1433 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1434
1435 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1436 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1437 if (rdev->sb_size & bmask)
1438 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1439
1440 if (minor_version
1441 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1442 return -EINVAL;
1443 if (minor_version
1444 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1445 return -EINVAL;
1446
1447 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1448 rdev->desc_nr = -1;
1449 else
1450 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1451
1452 if (!rdev->bb_page) {
1453 rdev->bb_page = alloc_page(GFP_KERNEL);
1454 if (!rdev->bb_page)
1455 return -ENOMEM;
1456 }
1457 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1458 rdev->badblocks.count == 0) {
1459 /* need to load the bad block list.
1460 * Currently we limit it to one page.
1461 */
1462 s32 offset;
1463 sector_t bb_sector;
1464 u64 *bbp;
1465 int i;
1466 int sectors = le16_to_cpu(sb->bblog_size);
1467 if (sectors > (PAGE_SIZE / 512))
1468 return -EINVAL;
1469 offset = le32_to_cpu(sb->bblog_offset);
1470 if (offset == 0)
1471 return -EINVAL;
1472 bb_sector = (long long)offset;
1473 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1474 rdev->bb_page, READ, true))
1475 return -EIO;
1476 bbp = (u64 *)page_address(rdev->bb_page);
1477 rdev->badblocks.shift = sb->bblog_shift;
1478 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1479 u64 bb = le64_to_cpu(*bbp);
1480 int count = bb & (0x3ff);
1481 u64 sector = bb >> 10;
1482 sector <<= sb->bblog_shift;
1483 count <<= sb->bblog_shift;
1484 if (bb + 1 == 0)
1485 break;
1486 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1487 return -EINVAL;
1488 }
1489 } else if (sb->bblog_offset != 0)
1490 rdev->badblocks.shift = 0;
1491
1492 if (!refdev) {
1493 ret = 1;
1494 } else {
1495 __u64 ev1, ev2;
1496 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1497
1498 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1499 sb->level != refsb->level ||
1500 sb->layout != refsb->layout ||
1501 sb->chunksize != refsb->chunksize) {
1502 printk(KERN_WARNING "md: %s has strangely different"
1503 " superblock to %s\n",
1504 bdevname(rdev->bdev,b),
1505 bdevname(refdev->bdev,b2));
1506 return -EINVAL;
1507 }
1508 ev1 = le64_to_cpu(sb->events);
1509 ev2 = le64_to_cpu(refsb->events);
1510
1511 if (ev1 > ev2)
1512 ret = 1;
1513 else
1514 ret = 0;
1515 }
1516 if (minor_version) {
1517 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1518 sectors -= rdev->data_offset;
1519 } else
1520 sectors = rdev->sb_start;
1521 if (sectors < le64_to_cpu(sb->data_size))
1522 return -EINVAL;
1523 rdev->sectors = le64_to_cpu(sb->data_size);
1524 return ret;
1525 }
1526
1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1528 {
1529 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1530 __u64 ev1 = le64_to_cpu(sb->events);
1531
1532 rdev->raid_disk = -1;
1533 clear_bit(Faulty, &rdev->flags);
1534 clear_bit(In_sync, &rdev->flags);
1535 clear_bit(Bitmap_sync, &rdev->flags);
1536 clear_bit(WriteMostly, &rdev->flags);
1537
1538 if (mddev->raid_disks == 0) {
1539 mddev->major_version = 1;
1540 mddev->patch_version = 0;
1541 mddev->external = 0;
1542 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1543 mddev->ctime = le64_to_cpu(sb->ctime);
1544 mddev->utime = le64_to_cpu(sb->utime);
1545 mddev->level = le32_to_cpu(sb->level);
1546 mddev->clevel[0] = 0;
1547 mddev->layout = le32_to_cpu(sb->layout);
1548 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1549 mddev->dev_sectors = le64_to_cpu(sb->size);
1550 mddev->events = ev1;
1551 mddev->bitmap_info.offset = 0;
1552 mddev->bitmap_info.space = 0;
1553 /* Default location for bitmap is 1K after superblock
1554 * using 3K - total of 4K
1555 */
1556 mddev->bitmap_info.default_offset = 1024 >> 9;
1557 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1558 mddev->reshape_backwards = 0;
1559
1560 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1561 memcpy(mddev->uuid, sb->set_uuid, 16);
1562
1563 mddev->max_disks = (4096-256)/2;
1564
1565 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1566 mddev->bitmap_info.file == NULL) {
1567 mddev->bitmap_info.offset =
1568 (__s32)le32_to_cpu(sb->bitmap_offset);
1569 /* Metadata doesn't record how much space is available.
1570 * For 1.0, we assume we can use up to the superblock
1571 * if before, else to 4K beyond superblock.
1572 * For others, assume no change is possible.
1573 */
1574 if (mddev->minor_version > 0)
1575 mddev->bitmap_info.space = 0;
1576 else if (mddev->bitmap_info.offset > 0)
1577 mddev->bitmap_info.space =
1578 8 - mddev->bitmap_info.offset;
1579 else
1580 mddev->bitmap_info.space =
1581 -mddev->bitmap_info.offset;
1582 }
1583
1584 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1585 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1586 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1587 mddev->new_level = le32_to_cpu(sb->new_level);
1588 mddev->new_layout = le32_to_cpu(sb->new_layout);
1589 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1590 if (mddev->delta_disks < 0 ||
1591 (mddev->delta_disks == 0 &&
1592 (le32_to_cpu(sb->feature_map)
1593 & MD_FEATURE_RESHAPE_BACKWARDS)))
1594 mddev->reshape_backwards = 1;
1595 } else {
1596 mddev->reshape_position = MaxSector;
1597 mddev->delta_disks = 0;
1598 mddev->new_level = mddev->level;
1599 mddev->new_layout = mddev->layout;
1600 mddev->new_chunk_sectors = mddev->chunk_sectors;
1601 }
1602
1603 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1604 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1605 if (mddev->recovery_cp == MaxSector)
1606 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1607 }
1608 } else if (mddev->pers == NULL) {
1609 /* Insist of good event counter while assembling, except for
1610 * spares (which don't need an event count) */
1611 ++ev1;
1612 if (rdev->desc_nr >= 0 &&
1613 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 if (ev1 < mddev->events)
1617 return -EINVAL;
1618 } else if (mddev->bitmap) {
1619 /* If adding to array with a bitmap, then we can accept an
1620 * older device, but not too old.
1621 */
1622 if (ev1 < mddev->bitmap->events_cleared)
1623 return 0;
1624 if (ev1 < mddev->events)
1625 set_bit(Bitmap_sync, &rdev->flags);
1626 } else {
1627 if (ev1 < mddev->events)
1628 /* just a hot-add of a new device, leave raid_disk at -1 */
1629 return 0;
1630 }
1631 if (mddev->level != LEVEL_MULTIPATH) {
1632 int role;
1633 if (rdev->desc_nr < 0 ||
1634 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 role = MD_DISK_ROLE_SPARE;
1636 rdev->desc_nr = -1;
1637 } else
1638 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 switch(role) {
1640 case MD_DISK_ROLE_SPARE: /* spare */
1641 break;
1642 case MD_DISK_ROLE_FAULTY: /* faulty */
1643 set_bit(Faulty, &rdev->flags);
1644 break;
1645 case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 /* journal device without journal feature */
1648 printk(KERN_WARNING
1649 "md: journal device provided without journal feature, ignoring the device\n");
1650 return -EINVAL;
1651 }
1652 set_bit(Journal, &rdev->flags);
1653 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 rdev->raid_disk = 0;
1655 break;
1656 default:
1657 rdev->saved_raid_disk = role;
1658 if ((le32_to_cpu(sb->feature_map) &
1659 MD_FEATURE_RECOVERY_OFFSET)) {
1660 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1661 if (!(le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_BITMAP))
1663 rdev->saved_raid_disk = -1;
1664 } else
1665 set_bit(In_sync, &rdev->flags);
1666 rdev->raid_disk = role;
1667 break;
1668 }
1669 if (sb->devflags & WriteMostly1)
1670 set_bit(WriteMostly, &rdev->flags);
1671 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1672 set_bit(Replacement, &rdev->flags);
1673 } else /* MULTIPATH are always insync */
1674 set_bit(In_sync, &rdev->flags);
1675
1676 return 0;
1677 }
1678
1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 struct mdp_superblock_1 *sb;
1682 struct md_rdev *rdev2;
1683 int max_dev, i;
1684 /* make rdev->sb match mddev and rdev data. */
1685
1686 sb = page_address(rdev->sb_page);
1687
1688 sb->feature_map = 0;
1689 sb->pad0 = 0;
1690 sb->recovery_offset = cpu_to_le64(0);
1691 memset(sb->pad3, 0, sizeof(sb->pad3));
1692
1693 sb->utime = cpu_to_le64((__u64)mddev->utime);
1694 sb->events = cpu_to_le64(mddev->events);
1695 if (mddev->in_sync)
1696 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1697 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1698 sb->resync_offset = cpu_to_le64(MaxSector);
1699 else
1700 sb->resync_offset = cpu_to_le64(0);
1701
1702 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1703
1704 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1705 sb->size = cpu_to_le64(mddev->dev_sectors);
1706 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1707 sb->level = cpu_to_le32(mddev->level);
1708 sb->layout = cpu_to_le32(mddev->layout);
1709
1710 if (test_bit(WriteMostly, &rdev->flags))
1711 sb->devflags |= WriteMostly1;
1712 else
1713 sb->devflags &= ~WriteMostly1;
1714 sb->data_offset = cpu_to_le64(rdev->data_offset);
1715 sb->data_size = cpu_to_le64(rdev->sectors);
1716
1717 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1718 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1719 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1720 }
1721
1722 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1723 !test_bit(In_sync, &rdev->flags)) {
1724 sb->feature_map |=
1725 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1726 sb->recovery_offset =
1727 cpu_to_le64(rdev->recovery_offset);
1728 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1729 sb->feature_map |=
1730 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1731 }
1732 /* Note: recovery_offset and journal_tail share space */
1733 if (test_bit(Journal, &rdev->flags))
1734 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1735 if (test_bit(Replacement, &rdev->flags))
1736 sb->feature_map |=
1737 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1738
1739 if (mddev->reshape_position != MaxSector) {
1740 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1741 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1742 sb->new_layout = cpu_to_le32(mddev->new_layout);
1743 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1744 sb->new_level = cpu_to_le32(mddev->new_level);
1745 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1746 if (mddev->delta_disks == 0 &&
1747 mddev->reshape_backwards)
1748 sb->feature_map
1749 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1750 if (rdev->new_data_offset != rdev->data_offset) {
1751 sb->feature_map
1752 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1753 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1754 - rdev->data_offset));
1755 }
1756 }
1757
1758 if (mddev_is_clustered(mddev))
1759 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1760
1761 if (rdev->badblocks.count == 0)
1762 /* Nothing to do for bad blocks*/ ;
1763 else if (sb->bblog_offset == 0)
1764 /* Cannot record bad blocks on this device */
1765 md_error(mddev, rdev);
1766 else {
1767 struct badblocks *bb = &rdev->badblocks;
1768 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1769 u64 *p = bb->page;
1770 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1771 if (bb->changed) {
1772 unsigned seq;
1773
1774 retry:
1775 seq = read_seqbegin(&bb->lock);
1776
1777 memset(bbp, 0xff, PAGE_SIZE);
1778
1779 for (i = 0 ; i < bb->count ; i++) {
1780 u64 internal_bb = p[i];
1781 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1782 | BB_LEN(internal_bb));
1783 bbp[i] = cpu_to_le64(store_bb);
1784 }
1785 bb->changed = 0;
1786 if (read_seqretry(&bb->lock, seq))
1787 goto retry;
1788
1789 bb->sector = (rdev->sb_start +
1790 (int)le32_to_cpu(sb->bblog_offset));
1791 bb->size = le16_to_cpu(sb->bblog_size);
1792 }
1793 }
1794
1795 max_dev = 0;
1796 rdev_for_each(rdev2, mddev)
1797 if (rdev2->desc_nr+1 > max_dev)
1798 max_dev = rdev2->desc_nr+1;
1799
1800 if (max_dev > le32_to_cpu(sb->max_dev)) {
1801 int bmask;
1802 sb->max_dev = cpu_to_le32(max_dev);
1803 rdev->sb_size = max_dev * 2 + 256;
1804 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1805 if (rdev->sb_size & bmask)
1806 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1807 } else
1808 max_dev = le32_to_cpu(sb->max_dev);
1809
1810 for (i=0; i<max_dev;i++)
1811 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1812
1813 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1815
1816 rdev_for_each(rdev2, mddev) {
1817 i = rdev2->desc_nr;
1818 if (test_bit(Faulty, &rdev2->flags))
1819 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1820 else if (test_bit(In_sync, &rdev2->flags))
1821 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822 else if (test_bit(Journal, &rdev2->flags))
1823 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1824 else if (rdev2->raid_disk >= 0)
1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 else
1827 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1828 }
1829
1830 sb->sb_csum = calc_sb_1_csum(sb);
1831 }
1832
1833 static unsigned long long
1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1835 {
1836 struct mdp_superblock_1 *sb;
1837 sector_t max_sectors;
1838 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1839 return 0; /* component must fit device */
1840 if (rdev->data_offset != rdev->new_data_offset)
1841 return 0; /* too confusing */
1842 if (rdev->sb_start < rdev->data_offset) {
1843 /* minor versions 1 and 2; superblock before data */
1844 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1845 max_sectors -= rdev->data_offset;
1846 if (!num_sectors || num_sectors > max_sectors)
1847 num_sectors = max_sectors;
1848 } else if (rdev->mddev->bitmap_info.offset) {
1849 /* minor version 0 with bitmap we can't move */
1850 return 0;
1851 } else {
1852 /* minor version 0; superblock after data */
1853 sector_t sb_start;
1854 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1855 sb_start &= ~(sector_t)(4*2 - 1);
1856 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1857 if (!num_sectors || num_sectors > max_sectors)
1858 num_sectors = max_sectors;
1859 rdev->sb_start = sb_start;
1860 }
1861 sb = page_address(rdev->sb_page);
1862 sb->data_size = cpu_to_le64(num_sectors);
1863 sb->super_offset = rdev->sb_start;
1864 sb->sb_csum = calc_sb_1_csum(sb);
1865 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1866 rdev->sb_page);
1867 md_super_wait(rdev->mddev);
1868 return num_sectors;
1869
1870 }
1871
1872 static int
1873 super_1_allow_new_offset(struct md_rdev *rdev,
1874 unsigned long long new_offset)
1875 {
1876 /* All necessary checks on new >= old have been done */
1877 struct bitmap *bitmap;
1878 if (new_offset >= rdev->data_offset)
1879 return 1;
1880
1881 /* with 1.0 metadata, there is no metadata to tread on
1882 * so we can always move back */
1883 if (rdev->mddev->minor_version == 0)
1884 return 1;
1885
1886 /* otherwise we must be sure not to step on
1887 * any metadata, so stay:
1888 * 36K beyond start of superblock
1889 * beyond end of badblocks
1890 * beyond write-intent bitmap
1891 */
1892 if (rdev->sb_start + (32+4)*2 > new_offset)
1893 return 0;
1894 bitmap = rdev->mddev->bitmap;
1895 if (bitmap && !rdev->mddev->bitmap_info.file &&
1896 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1897 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1898 return 0;
1899 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1900 return 0;
1901
1902 return 1;
1903 }
1904
1905 static struct super_type super_types[] = {
1906 [0] = {
1907 .name = "0.90.0",
1908 .owner = THIS_MODULE,
1909 .load_super = super_90_load,
1910 .validate_super = super_90_validate,
1911 .sync_super = super_90_sync,
1912 .rdev_size_change = super_90_rdev_size_change,
1913 .allow_new_offset = super_90_allow_new_offset,
1914 },
1915 [1] = {
1916 .name = "md-1",
1917 .owner = THIS_MODULE,
1918 .load_super = super_1_load,
1919 .validate_super = super_1_validate,
1920 .sync_super = super_1_sync,
1921 .rdev_size_change = super_1_rdev_size_change,
1922 .allow_new_offset = super_1_allow_new_offset,
1923 },
1924 };
1925
1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 if (mddev->sync_super) {
1929 mddev->sync_super(mddev, rdev);
1930 return;
1931 }
1932
1933 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1934
1935 super_types[mddev->major_version].sync_super(mddev, rdev);
1936 }
1937
1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1939 {
1940 struct md_rdev *rdev, *rdev2;
1941
1942 rcu_read_lock();
1943 rdev_for_each_rcu(rdev, mddev1) {
1944 if (test_bit(Faulty, &rdev->flags) ||
1945 test_bit(Journal, &rdev->flags) ||
1946 rdev->raid_disk == -1)
1947 continue;
1948 rdev_for_each_rcu(rdev2, mddev2) {
1949 if (test_bit(Faulty, &rdev2->flags) ||
1950 test_bit(Journal, &rdev2->flags) ||
1951 rdev2->raid_disk == -1)
1952 continue;
1953 if (rdev->bdev->bd_contains ==
1954 rdev2->bdev->bd_contains) {
1955 rcu_read_unlock();
1956 return 1;
1957 }
1958 }
1959 }
1960 rcu_read_unlock();
1961 return 0;
1962 }
1963
1964 static LIST_HEAD(pending_raid_disks);
1965
1966 /*
1967 * Try to register data integrity profile for an mddev
1968 *
1969 * This is called when an array is started and after a disk has been kicked
1970 * from the array. It only succeeds if all working and active component devices
1971 * are integrity capable with matching profiles.
1972 */
1973 int md_integrity_register(struct mddev *mddev)
1974 {
1975 struct md_rdev *rdev, *reference = NULL;
1976
1977 if (list_empty(&mddev->disks))
1978 return 0; /* nothing to do */
1979 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1980 return 0; /* shouldn't register, or already is */
1981 rdev_for_each(rdev, mddev) {
1982 /* skip spares and non-functional disks */
1983 if (test_bit(Faulty, &rdev->flags))
1984 continue;
1985 if (rdev->raid_disk < 0)
1986 continue;
1987 if (!reference) {
1988 /* Use the first rdev as the reference */
1989 reference = rdev;
1990 continue;
1991 }
1992 /* does this rdev's profile match the reference profile? */
1993 if (blk_integrity_compare(reference->bdev->bd_disk,
1994 rdev->bdev->bd_disk) < 0)
1995 return -EINVAL;
1996 }
1997 if (!reference || !bdev_get_integrity(reference->bdev))
1998 return 0;
1999 /*
2000 * All component devices are integrity capable and have matching
2001 * profiles, register the common profile for the md device.
2002 */
2003 blk_integrity_register(mddev->gendisk,
2004 bdev_get_integrity(reference->bdev));
2005
2006 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2007 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2008 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2009 mdname(mddev));
2010 return -EINVAL;
2011 }
2012 return 0;
2013 }
2014 EXPORT_SYMBOL(md_integrity_register);
2015
2016 /*
2017 * Attempt to add an rdev, but only if it is consistent with the current
2018 * integrity profile
2019 */
2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 struct blk_integrity *bi_rdev;
2023 struct blk_integrity *bi_mddev;
2024 char name[BDEVNAME_SIZE];
2025
2026 if (!mddev->gendisk)
2027 return 0;
2028
2029 bi_rdev = bdev_get_integrity(rdev->bdev);
2030 bi_mddev = blk_get_integrity(mddev->gendisk);
2031
2032 if (!bi_mddev) /* nothing to do */
2033 return 0;
2034
2035 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2036 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2037 mdname(mddev), bdevname(rdev->bdev, name));
2038 return -ENXIO;
2039 }
2040
2041 return 0;
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 char b[BDEVNAME_SIZE];
2048 struct kobject *ko;
2049 int err;
2050
2051 /* prevent duplicates */
2052 if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 return -EEXIST;
2054
2055 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 if (!test_bit(Journal, &rdev->flags) &&
2057 rdev->sectors &&
2058 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2059 if (mddev->pers) {
2060 /* Cannot change size, so fail
2061 * If mddev->level <= 0, then we don't care
2062 * about aligning sizes (e.g. linear)
2063 */
2064 if (mddev->level > 0)
2065 return -ENOSPC;
2066 } else
2067 mddev->dev_sectors = rdev->sectors;
2068 }
2069
2070 /* Verify rdev->desc_nr is unique.
2071 * If it is -1, assign a free number, else
2072 * check number is not in use
2073 */
2074 rcu_read_lock();
2075 if (rdev->desc_nr < 0) {
2076 int choice = 0;
2077 if (mddev->pers)
2078 choice = mddev->raid_disks;
2079 while (md_find_rdev_nr_rcu(mddev, choice))
2080 choice++;
2081 rdev->desc_nr = choice;
2082 } else {
2083 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2084 rcu_read_unlock();
2085 return -EBUSY;
2086 }
2087 }
2088 rcu_read_unlock();
2089 if (!test_bit(Journal, &rdev->flags) &&
2090 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2091 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2092 mdname(mddev), mddev->max_disks);
2093 return -EBUSY;
2094 }
2095 bdevname(rdev->bdev,b);
2096 strreplace(b, '/', '!');
2097
2098 rdev->mddev = mddev;
2099 printk(KERN_INFO "md: bind<%s>\n", b);
2100
2101 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2102 goto fail;
2103
2104 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2105 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2106 /* failure here is OK */;
2107 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2108
2109 list_add_rcu(&rdev->same_set, &mddev->disks);
2110 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2111
2112 /* May as well allow recovery to be retried once */
2113 mddev->recovery_disabled++;
2114
2115 return 0;
2116
2117 fail:
2118 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2119 b, mdname(mddev));
2120 return err;
2121 }
2122
2123 static void md_delayed_delete(struct work_struct *ws)
2124 {
2125 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2126 kobject_del(&rdev->kobj);
2127 kobject_put(&rdev->kobj);
2128 }
2129
2130 static void unbind_rdev_from_array(struct md_rdev *rdev)
2131 {
2132 char b[BDEVNAME_SIZE];
2133
2134 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2135 list_del_rcu(&rdev->same_set);
2136 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2137 rdev->mddev = NULL;
2138 sysfs_remove_link(&rdev->kobj, "block");
2139 sysfs_put(rdev->sysfs_state);
2140 rdev->sysfs_state = NULL;
2141 rdev->badblocks.count = 0;
2142 /* We need to delay this, otherwise we can deadlock when
2143 * writing to 'remove' to "dev/state". We also need
2144 * to delay it due to rcu usage.
2145 */
2146 synchronize_rcu();
2147 INIT_WORK(&rdev->del_work, md_delayed_delete);
2148 kobject_get(&rdev->kobj);
2149 queue_work(md_misc_wq, &rdev->del_work);
2150 }
2151
2152 /*
2153 * prevent the device from being mounted, repartitioned or
2154 * otherwise reused by a RAID array (or any other kernel
2155 * subsystem), by bd_claiming the device.
2156 */
2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2158 {
2159 int err = 0;
2160 struct block_device *bdev;
2161 char b[BDEVNAME_SIZE];
2162
2163 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2164 shared ? (struct md_rdev *)lock_rdev : rdev);
2165 if (IS_ERR(bdev)) {
2166 printk(KERN_ERR "md: could not open %s.\n",
2167 __bdevname(dev, b));
2168 return PTR_ERR(bdev);
2169 }
2170 rdev->bdev = bdev;
2171 return err;
2172 }
2173
2174 static void unlock_rdev(struct md_rdev *rdev)
2175 {
2176 struct block_device *bdev = rdev->bdev;
2177 rdev->bdev = NULL;
2178 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2179 }
2180
2181 void md_autodetect_dev(dev_t dev);
2182
2183 static void export_rdev(struct md_rdev *rdev)
2184 {
2185 char b[BDEVNAME_SIZE];
2186
2187 printk(KERN_INFO "md: export_rdev(%s)\n",
2188 bdevname(rdev->bdev,b));
2189 md_rdev_clear(rdev);
2190 #ifndef MODULE
2191 if (test_bit(AutoDetected, &rdev->flags))
2192 md_autodetect_dev(rdev->bdev->bd_dev);
2193 #endif
2194 unlock_rdev(rdev);
2195 kobject_put(&rdev->kobj);
2196 }
2197
2198 void md_kick_rdev_from_array(struct md_rdev *rdev)
2199 {
2200 unbind_rdev_from_array(rdev);
2201 export_rdev(rdev);
2202 }
2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2204
2205 static void export_array(struct mddev *mddev)
2206 {
2207 struct md_rdev *rdev;
2208
2209 while (!list_empty(&mddev->disks)) {
2210 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2211 same_set);
2212 md_kick_rdev_from_array(rdev);
2213 }
2214 mddev->raid_disks = 0;
2215 mddev->major_version = 0;
2216 }
2217
2218 static void sync_sbs(struct mddev *mddev, int nospares)
2219 {
2220 /* Update each superblock (in-memory image), but
2221 * if we are allowed to, skip spares which already
2222 * have the right event counter, or have one earlier
2223 * (which would mean they aren't being marked as dirty
2224 * with the rest of the array)
2225 */
2226 struct md_rdev *rdev;
2227 rdev_for_each(rdev, mddev) {
2228 if (rdev->sb_events == mddev->events ||
2229 (nospares &&
2230 rdev->raid_disk < 0 &&
2231 rdev->sb_events+1 == mddev->events)) {
2232 /* Don't update this superblock */
2233 rdev->sb_loaded = 2;
2234 } else {
2235 sync_super(mddev, rdev);
2236 rdev->sb_loaded = 1;
2237 }
2238 }
2239 }
2240
2241 static bool does_sb_need_changing(struct mddev *mddev)
2242 {
2243 struct md_rdev *rdev;
2244 struct mdp_superblock_1 *sb;
2245 int role;
2246
2247 /* Find a good rdev */
2248 rdev_for_each(rdev, mddev)
2249 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2250 break;
2251
2252 /* No good device found. */
2253 if (!rdev)
2254 return false;
2255
2256 sb = page_address(rdev->sb_page);
2257 /* Check if a device has become faulty or a spare become active */
2258 rdev_for_each(rdev, mddev) {
2259 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2260 /* Device activated? */
2261 if (role == 0xffff && rdev->raid_disk >=0 &&
2262 !test_bit(Faulty, &rdev->flags))
2263 return true;
2264 /* Device turned faulty? */
2265 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2266 return true;
2267 }
2268
2269 /* Check if any mddev parameters have changed */
2270 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2271 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2272 (mddev->layout != le64_to_cpu(sb->layout)) ||
2273 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2274 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2275 return true;
2276
2277 return false;
2278 }
2279
2280 void md_update_sb(struct mddev *mddev, int force_change)
2281 {
2282 struct md_rdev *rdev;
2283 int sync_req;
2284 int nospares = 0;
2285 int any_badblocks_changed = 0;
2286 int ret = -1;
2287
2288 if (mddev->ro) {
2289 if (force_change)
2290 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2291 return;
2292 }
2293
2294 repeat:
2295 if (mddev_is_clustered(mddev)) {
2296 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2297 force_change = 1;
2298 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2299 nospares = 1;
2300 ret = md_cluster_ops->metadata_update_start(mddev);
2301 /* Has someone else has updated the sb */
2302 if (!does_sb_need_changing(mddev)) {
2303 if (ret == 0)
2304 md_cluster_ops->metadata_update_cancel(mddev);
2305 bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2306 BIT(MD_CHANGE_DEVS) |
2307 BIT(MD_CHANGE_CLEAN));
2308 return;
2309 }
2310 }
2311
2312 /* First make sure individual recovery_offsets are correct */
2313 rdev_for_each(rdev, mddev) {
2314 if (rdev->raid_disk >= 0 &&
2315 mddev->delta_disks >= 0 &&
2316 !test_bit(Journal, &rdev->flags) &&
2317 !test_bit(In_sync, &rdev->flags) &&
2318 mddev->curr_resync_completed > rdev->recovery_offset)
2319 rdev->recovery_offset = mddev->curr_resync_completed;
2320
2321 }
2322 if (!mddev->persistent) {
2323 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2324 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2325 if (!mddev->external) {
2326 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2327 rdev_for_each(rdev, mddev) {
2328 if (rdev->badblocks.changed) {
2329 rdev->badblocks.changed = 0;
2330 ack_all_badblocks(&rdev->badblocks);
2331 md_error(mddev, rdev);
2332 }
2333 clear_bit(Blocked, &rdev->flags);
2334 clear_bit(BlockedBadBlocks, &rdev->flags);
2335 wake_up(&rdev->blocked_wait);
2336 }
2337 }
2338 wake_up(&mddev->sb_wait);
2339 return;
2340 }
2341
2342 spin_lock(&mddev->lock);
2343
2344 mddev->utime = ktime_get_real_seconds();
2345
2346 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2347 force_change = 1;
2348 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2349 /* just a clean<-> dirty transition, possibly leave spares alone,
2350 * though if events isn't the right even/odd, we will have to do
2351 * spares after all
2352 */
2353 nospares = 1;
2354 if (force_change)
2355 nospares = 0;
2356 if (mddev->degraded)
2357 /* If the array is degraded, then skipping spares is both
2358 * dangerous and fairly pointless.
2359 * Dangerous because a device that was removed from the array
2360 * might have a event_count that still looks up-to-date,
2361 * so it can be re-added without a resync.
2362 * Pointless because if there are any spares to skip,
2363 * then a recovery will happen and soon that array won't
2364 * be degraded any more and the spare can go back to sleep then.
2365 */
2366 nospares = 0;
2367
2368 sync_req = mddev->in_sync;
2369
2370 /* If this is just a dirty<->clean transition, and the array is clean
2371 * and 'events' is odd, we can roll back to the previous clean state */
2372 if (nospares
2373 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2374 && mddev->can_decrease_events
2375 && mddev->events != 1) {
2376 mddev->events--;
2377 mddev->can_decrease_events = 0;
2378 } else {
2379 /* otherwise we have to go forward and ... */
2380 mddev->events ++;
2381 mddev->can_decrease_events = nospares;
2382 }
2383
2384 /*
2385 * This 64-bit counter should never wrap.
2386 * Either we are in around ~1 trillion A.C., assuming
2387 * 1 reboot per second, or we have a bug...
2388 */
2389 WARN_ON(mddev->events == 0);
2390
2391 rdev_for_each(rdev, mddev) {
2392 if (rdev->badblocks.changed)
2393 any_badblocks_changed++;
2394 if (test_bit(Faulty, &rdev->flags))
2395 set_bit(FaultRecorded, &rdev->flags);
2396 }
2397
2398 sync_sbs(mddev, nospares);
2399 spin_unlock(&mddev->lock);
2400
2401 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2402 mdname(mddev), mddev->in_sync);
2403
2404 bitmap_update_sb(mddev->bitmap);
2405 rdev_for_each(rdev, mddev) {
2406 char b[BDEVNAME_SIZE];
2407
2408 if (rdev->sb_loaded != 1)
2409 continue; /* no noise on spare devices */
2410
2411 if (!test_bit(Faulty, &rdev->flags)) {
2412 md_super_write(mddev,rdev,
2413 rdev->sb_start, rdev->sb_size,
2414 rdev->sb_page);
2415 pr_debug("md: (write) %s's sb offset: %llu\n",
2416 bdevname(rdev->bdev, b),
2417 (unsigned long long)rdev->sb_start);
2418 rdev->sb_events = mddev->events;
2419 if (rdev->badblocks.size) {
2420 md_super_write(mddev, rdev,
2421 rdev->badblocks.sector,
2422 rdev->badblocks.size << 9,
2423 rdev->bb_page);
2424 rdev->badblocks.size = 0;
2425 }
2426
2427 } else
2428 pr_debug("md: %s (skipping faulty)\n",
2429 bdevname(rdev->bdev, b));
2430
2431 if (mddev->level == LEVEL_MULTIPATH)
2432 /* only need to write one superblock... */
2433 break;
2434 }
2435 md_super_wait(mddev);
2436 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2437
2438 if (mddev_is_clustered(mddev) && ret == 0)
2439 md_cluster_ops->metadata_update_finish(mddev);
2440
2441 if (mddev->in_sync != sync_req ||
2442 !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2443 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN)))
2444 /* have to write it out again */
2445 goto repeat;
2446 wake_up(&mddev->sb_wait);
2447 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2448 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2449
2450 rdev_for_each(rdev, mddev) {
2451 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2452 clear_bit(Blocked, &rdev->flags);
2453
2454 if (any_badblocks_changed)
2455 ack_all_badblocks(&rdev->badblocks);
2456 clear_bit(BlockedBadBlocks, &rdev->flags);
2457 wake_up(&rdev->blocked_wait);
2458 }
2459 }
2460 EXPORT_SYMBOL(md_update_sb);
2461
2462 static int add_bound_rdev(struct md_rdev *rdev)
2463 {
2464 struct mddev *mddev = rdev->mddev;
2465 int err = 0;
2466 bool add_journal = test_bit(Journal, &rdev->flags);
2467
2468 if (!mddev->pers->hot_remove_disk || add_journal) {
2469 /* If there is hot_add_disk but no hot_remove_disk
2470 * then added disks for geometry changes,
2471 * and should be added immediately.
2472 */
2473 super_types[mddev->major_version].
2474 validate_super(mddev, rdev);
2475 if (add_journal)
2476 mddev_suspend(mddev);
2477 err = mddev->pers->hot_add_disk(mddev, rdev);
2478 if (add_journal)
2479 mddev_resume(mddev);
2480 if (err) {
2481 md_kick_rdev_from_array(rdev);
2482 return err;
2483 }
2484 }
2485 sysfs_notify_dirent_safe(rdev->sysfs_state);
2486
2487 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2488 if (mddev->degraded)
2489 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2490 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2491 md_new_event(mddev);
2492 md_wakeup_thread(mddev->thread);
2493 return 0;
2494 }
2495
2496 /* words written to sysfs files may, or may not, be \n terminated.
2497 * We want to accept with case. For this we use cmd_match.
2498 */
2499 static int cmd_match(const char *cmd, const char *str)
2500 {
2501 /* See if cmd, written into a sysfs file, matches
2502 * str. They must either be the same, or cmd can
2503 * have a trailing newline
2504 */
2505 while (*cmd && *str && *cmd == *str) {
2506 cmd++;
2507 str++;
2508 }
2509 if (*cmd == '\n')
2510 cmd++;
2511 if (*str || *cmd)
2512 return 0;
2513 return 1;
2514 }
2515
2516 struct rdev_sysfs_entry {
2517 struct attribute attr;
2518 ssize_t (*show)(struct md_rdev *, char *);
2519 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2520 };
2521
2522 static ssize_t
2523 state_show(struct md_rdev *rdev, char *page)
2524 {
2525 char *sep = "";
2526 size_t len = 0;
2527 unsigned long flags = ACCESS_ONCE(rdev->flags);
2528
2529 if (test_bit(Faulty, &flags) ||
2530 rdev->badblocks.unacked_exist) {
2531 len+= sprintf(page+len, "%sfaulty",sep);
2532 sep = ",";
2533 }
2534 if (test_bit(In_sync, &flags)) {
2535 len += sprintf(page+len, "%sin_sync",sep);
2536 sep = ",";
2537 }
2538 if (test_bit(Journal, &flags)) {
2539 len += sprintf(page+len, "%sjournal",sep);
2540 sep = ",";
2541 }
2542 if (test_bit(WriteMostly, &flags)) {
2543 len += sprintf(page+len, "%swrite_mostly",sep);
2544 sep = ",";
2545 }
2546 if (test_bit(Blocked, &flags) ||
2547 (rdev->badblocks.unacked_exist
2548 && !test_bit(Faulty, &flags))) {
2549 len += sprintf(page+len, "%sblocked", sep);
2550 sep = ",";
2551 }
2552 if (!test_bit(Faulty, &flags) &&
2553 !test_bit(Journal, &flags) &&
2554 !test_bit(In_sync, &flags)) {
2555 len += sprintf(page+len, "%sspare", sep);
2556 sep = ",";
2557 }
2558 if (test_bit(WriteErrorSeen, &flags)) {
2559 len += sprintf(page+len, "%swrite_error", sep);
2560 sep = ",";
2561 }
2562 if (test_bit(WantReplacement, &flags)) {
2563 len += sprintf(page+len, "%swant_replacement", sep);
2564 sep = ",";
2565 }
2566 if (test_bit(Replacement, &flags)) {
2567 len += sprintf(page+len, "%sreplacement", sep);
2568 sep = ",";
2569 }
2570
2571 return len+sprintf(page+len, "\n");
2572 }
2573
2574 static ssize_t
2575 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2576 {
2577 /* can write
2578 * faulty - simulates an error
2579 * remove - disconnects the device
2580 * writemostly - sets write_mostly
2581 * -writemostly - clears write_mostly
2582 * blocked - sets the Blocked flags
2583 * -blocked - clears the Blocked and possibly simulates an error
2584 * insync - sets Insync providing device isn't active
2585 * -insync - clear Insync for a device with a slot assigned,
2586 * so that it gets rebuilt based on bitmap
2587 * write_error - sets WriteErrorSeen
2588 * -write_error - clears WriteErrorSeen
2589 */
2590 int err = -EINVAL;
2591 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2592 md_error(rdev->mddev, rdev);
2593 if (test_bit(Faulty, &rdev->flags))
2594 err = 0;
2595 else
2596 err = -EBUSY;
2597 } else if (cmd_match(buf, "remove")) {
2598 if (rdev->raid_disk >= 0)
2599 err = -EBUSY;
2600 else {
2601 struct mddev *mddev = rdev->mddev;
2602 err = 0;
2603 if (mddev_is_clustered(mddev))
2604 err = md_cluster_ops->remove_disk(mddev, rdev);
2605
2606 if (err == 0) {
2607 md_kick_rdev_from_array(rdev);
2608 if (mddev->pers)
2609 md_update_sb(mddev, 1);
2610 md_new_event(mddev);
2611 }
2612 }
2613 } else if (cmd_match(buf, "writemostly")) {
2614 set_bit(WriteMostly, &rdev->flags);
2615 err = 0;
2616 } else if (cmd_match(buf, "-writemostly")) {
2617 clear_bit(WriteMostly, &rdev->flags);
2618 err = 0;
2619 } else if (cmd_match(buf, "blocked")) {
2620 set_bit(Blocked, &rdev->flags);
2621 err = 0;
2622 } else if (cmd_match(buf, "-blocked")) {
2623 if (!test_bit(Faulty, &rdev->flags) &&
2624 rdev->badblocks.unacked_exist) {
2625 /* metadata handler doesn't understand badblocks,
2626 * so we need to fail the device
2627 */
2628 md_error(rdev->mddev, rdev);
2629 }
2630 clear_bit(Blocked, &rdev->flags);
2631 clear_bit(BlockedBadBlocks, &rdev->flags);
2632 wake_up(&rdev->blocked_wait);
2633 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2634 md_wakeup_thread(rdev->mddev->thread);
2635
2636 err = 0;
2637 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2638 set_bit(In_sync, &rdev->flags);
2639 err = 0;
2640 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2641 !test_bit(Journal, &rdev->flags)) {
2642 if (rdev->mddev->pers == NULL) {
2643 clear_bit(In_sync, &rdev->flags);
2644 rdev->saved_raid_disk = rdev->raid_disk;
2645 rdev->raid_disk = -1;
2646 err = 0;
2647 }
2648 } else if (cmd_match(buf, "write_error")) {
2649 set_bit(WriteErrorSeen, &rdev->flags);
2650 err = 0;
2651 } else if (cmd_match(buf, "-write_error")) {
2652 clear_bit(WriteErrorSeen, &rdev->flags);
2653 err = 0;
2654 } else if (cmd_match(buf, "want_replacement")) {
2655 /* Any non-spare device that is not a replacement can
2656 * become want_replacement at any time, but we then need to
2657 * check if recovery is needed.
2658 */
2659 if (rdev->raid_disk >= 0 &&
2660 !test_bit(Journal, &rdev->flags) &&
2661 !test_bit(Replacement, &rdev->flags))
2662 set_bit(WantReplacement, &rdev->flags);
2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2664 md_wakeup_thread(rdev->mddev->thread);
2665 err = 0;
2666 } else if (cmd_match(buf, "-want_replacement")) {
2667 /* Clearing 'want_replacement' is always allowed.
2668 * Once replacements starts it is too late though.
2669 */
2670 err = 0;
2671 clear_bit(WantReplacement, &rdev->flags);
2672 } else if (cmd_match(buf, "replacement")) {
2673 /* Can only set a device as a replacement when array has not
2674 * yet been started. Once running, replacement is automatic
2675 * from spares, or by assigning 'slot'.
2676 */
2677 if (rdev->mddev->pers)
2678 err = -EBUSY;
2679 else {
2680 set_bit(Replacement, &rdev->flags);
2681 err = 0;
2682 }
2683 } else if (cmd_match(buf, "-replacement")) {
2684 /* Similarly, can only clear Replacement before start */
2685 if (rdev->mddev->pers)
2686 err = -EBUSY;
2687 else {
2688 clear_bit(Replacement, &rdev->flags);
2689 err = 0;
2690 }
2691 } else if (cmd_match(buf, "re-add")) {
2692 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2693 /* clear_bit is performed _after_ all the devices
2694 * have their local Faulty bit cleared. If any writes
2695 * happen in the meantime in the local node, they
2696 * will land in the local bitmap, which will be synced
2697 * by this node eventually
2698 */
2699 if (!mddev_is_clustered(rdev->mddev) ||
2700 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2701 clear_bit(Faulty, &rdev->flags);
2702 err = add_bound_rdev(rdev);
2703 }
2704 } else
2705 err = -EBUSY;
2706 }
2707 if (!err)
2708 sysfs_notify_dirent_safe(rdev->sysfs_state);
2709 return err ? err : len;
2710 }
2711 static struct rdev_sysfs_entry rdev_state =
2712 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2713
2714 static ssize_t
2715 errors_show(struct md_rdev *rdev, char *page)
2716 {
2717 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2718 }
2719
2720 static ssize_t
2721 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2722 {
2723 unsigned int n;
2724 int rv;
2725
2726 rv = kstrtouint(buf, 10, &n);
2727 if (rv < 0)
2728 return rv;
2729 atomic_set(&rdev->corrected_errors, n);
2730 return len;
2731 }
2732 static struct rdev_sysfs_entry rdev_errors =
2733 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2734
2735 static ssize_t
2736 slot_show(struct md_rdev *rdev, char *page)
2737 {
2738 if (test_bit(Journal, &rdev->flags))
2739 return sprintf(page, "journal\n");
2740 else if (rdev->raid_disk < 0)
2741 return sprintf(page, "none\n");
2742 else
2743 return sprintf(page, "%d\n", rdev->raid_disk);
2744 }
2745
2746 static ssize_t
2747 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2748 {
2749 int slot;
2750 int err;
2751
2752 if (test_bit(Journal, &rdev->flags))
2753 return -EBUSY;
2754 if (strncmp(buf, "none", 4)==0)
2755 slot = -1;
2756 else {
2757 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2758 if (err < 0)
2759 return err;
2760 }
2761 if (rdev->mddev->pers && slot == -1) {
2762 /* Setting 'slot' on an active array requires also
2763 * updating the 'rd%d' link, and communicating
2764 * with the personality with ->hot_*_disk.
2765 * For now we only support removing
2766 * failed/spare devices. This normally happens automatically,
2767 * but not when the metadata is externally managed.
2768 */
2769 if (rdev->raid_disk == -1)
2770 return -EEXIST;
2771 /* personality does all needed checks */
2772 if (rdev->mddev->pers->hot_remove_disk == NULL)
2773 return -EINVAL;
2774 clear_bit(Blocked, &rdev->flags);
2775 remove_and_add_spares(rdev->mddev, rdev);
2776 if (rdev->raid_disk >= 0)
2777 return -EBUSY;
2778 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2779 md_wakeup_thread(rdev->mddev->thread);
2780 } else if (rdev->mddev->pers) {
2781 /* Activating a spare .. or possibly reactivating
2782 * if we ever get bitmaps working here.
2783 */
2784 int err;
2785
2786 if (rdev->raid_disk != -1)
2787 return -EBUSY;
2788
2789 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2790 return -EBUSY;
2791
2792 if (rdev->mddev->pers->hot_add_disk == NULL)
2793 return -EINVAL;
2794
2795 if (slot >= rdev->mddev->raid_disks &&
2796 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2797 return -ENOSPC;
2798
2799 rdev->raid_disk = slot;
2800 if (test_bit(In_sync, &rdev->flags))
2801 rdev->saved_raid_disk = slot;
2802 else
2803 rdev->saved_raid_disk = -1;
2804 clear_bit(In_sync, &rdev->flags);
2805 clear_bit(Bitmap_sync, &rdev->flags);
2806 err = rdev->mddev->pers->
2807 hot_add_disk(rdev->mddev, rdev);
2808 if (err) {
2809 rdev->raid_disk = -1;
2810 return err;
2811 } else
2812 sysfs_notify_dirent_safe(rdev->sysfs_state);
2813 if (sysfs_link_rdev(rdev->mddev, rdev))
2814 /* failure here is OK */;
2815 /* don't wakeup anyone, leave that to userspace. */
2816 } else {
2817 if (slot >= rdev->mddev->raid_disks &&
2818 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2819 return -ENOSPC;
2820 rdev->raid_disk = slot;
2821 /* assume it is working */
2822 clear_bit(Faulty, &rdev->flags);
2823 clear_bit(WriteMostly, &rdev->flags);
2824 set_bit(In_sync, &rdev->flags);
2825 sysfs_notify_dirent_safe(rdev->sysfs_state);
2826 }
2827 return len;
2828 }
2829
2830 static struct rdev_sysfs_entry rdev_slot =
2831 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2832
2833 static ssize_t
2834 offset_show(struct md_rdev *rdev, char *page)
2835 {
2836 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2837 }
2838
2839 static ssize_t
2840 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2841 {
2842 unsigned long long offset;
2843 if (kstrtoull(buf, 10, &offset) < 0)
2844 return -EINVAL;
2845 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2846 return -EBUSY;
2847 if (rdev->sectors && rdev->mddev->external)
2848 /* Must set offset before size, so overlap checks
2849 * can be sane */
2850 return -EBUSY;
2851 rdev->data_offset = offset;
2852 rdev->new_data_offset = offset;
2853 return len;
2854 }
2855
2856 static struct rdev_sysfs_entry rdev_offset =
2857 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2858
2859 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2860 {
2861 return sprintf(page, "%llu\n",
2862 (unsigned long long)rdev->new_data_offset);
2863 }
2864
2865 static ssize_t new_offset_store(struct md_rdev *rdev,
2866 const char *buf, size_t len)
2867 {
2868 unsigned long long new_offset;
2869 struct mddev *mddev = rdev->mddev;
2870
2871 if (kstrtoull(buf, 10, &new_offset) < 0)
2872 return -EINVAL;
2873
2874 if (mddev->sync_thread ||
2875 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2876 return -EBUSY;
2877 if (new_offset == rdev->data_offset)
2878 /* reset is always permitted */
2879 ;
2880 else if (new_offset > rdev->data_offset) {
2881 /* must not push array size beyond rdev_sectors */
2882 if (new_offset - rdev->data_offset
2883 + mddev->dev_sectors > rdev->sectors)
2884 return -E2BIG;
2885 }
2886 /* Metadata worries about other space details. */
2887
2888 /* decreasing the offset is inconsistent with a backwards
2889 * reshape.
2890 */
2891 if (new_offset < rdev->data_offset &&
2892 mddev->reshape_backwards)
2893 return -EINVAL;
2894 /* Increasing offset is inconsistent with forwards
2895 * reshape. reshape_direction should be set to
2896 * 'backwards' first.
2897 */
2898 if (new_offset > rdev->data_offset &&
2899 !mddev->reshape_backwards)
2900 return -EINVAL;
2901
2902 if (mddev->pers && mddev->persistent &&
2903 !super_types[mddev->major_version]
2904 .allow_new_offset(rdev, new_offset))
2905 return -E2BIG;
2906 rdev->new_data_offset = new_offset;
2907 if (new_offset > rdev->data_offset)
2908 mddev->reshape_backwards = 1;
2909 else if (new_offset < rdev->data_offset)
2910 mddev->reshape_backwards = 0;
2911
2912 return len;
2913 }
2914 static struct rdev_sysfs_entry rdev_new_offset =
2915 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2916
2917 static ssize_t
2918 rdev_size_show(struct md_rdev *rdev, char *page)
2919 {
2920 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2921 }
2922
2923 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2924 {
2925 /* check if two start/length pairs overlap */
2926 if (s1+l1 <= s2)
2927 return 0;
2928 if (s2+l2 <= s1)
2929 return 0;
2930 return 1;
2931 }
2932
2933 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2934 {
2935 unsigned long long blocks;
2936 sector_t new;
2937
2938 if (kstrtoull(buf, 10, &blocks) < 0)
2939 return -EINVAL;
2940
2941 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2942 return -EINVAL; /* sector conversion overflow */
2943
2944 new = blocks * 2;
2945 if (new != blocks * 2)
2946 return -EINVAL; /* unsigned long long to sector_t overflow */
2947
2948 *sectors = new;
2949 return 0;
2950 }
2951
2952 static ssize_t
2953 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2954 {
2955 struct mddev *my_mddev = rdev->mddev;
2956 sector_t oldsectors = rdev->sectors;
2957 sector_t sectors;
2958
2959 if (test_bit(Journal, &rdev->flags))
2960 return -EBUSY;
2961 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2962 return -EINVAL;
2963 if (rdev->data_offset != rdev->new_data_offset)
2964 return -EINVAL; /* too confusing */
2965 if (my_mddev->pers && rdev->raid_disk >= 0) {
2966 if (my_mddev->persistent) {
2967 sectors = super_types[my_mddev->major_version].
2968 rdev_size_change(rdev, sectors);
2969 if (!sectors)
2970 return -EBUSY;
2971 } else if (!sectors)
2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2973 rdev->data_offset;
2974 if (!my_mddev->pers->resize)
2975 /* Cannot change size for RAID0 or Linear etc */
2976 return -EINVAL;
2977 }
2978 if (sectors < my_mddev->dev_sectors)
2979 return -EINVAL; /* component must fit device */
2980
2981 rdev->sectors = sectors;
2982 if (sectors > oldsectors && my_mddev->external) {
2983 /* Need to check that all other rdevs with the same
2984 * ->bdev do not overlap. 'rcu' is sufficient to walk
2985 * the rdev lists safely.
2986 * This check does not provide a hard guarantee, it
2987 * just helps avoid dangerous mistakes.
2988 */
2989 struct mddev *mddev;
2990 int overlap = 0;
2991 struct list_head *tmp;
2992
2993 rcu_read_lock();
2994 for_each_mddev(mddev, tmp) {
2995 struct md_rdev *rdev2;
2996
2997 rdev_for_each(rdev2, mddev)
2998 if (rdev->bdev == rdev2->bdev &&
2999 rdev != rdev2 &&
3000 overlaps(rdev->data_offset, rdev->sectors,
3001 rdev2->data_offset,
3002 rdev2->sectors)) {
3003 overlap = 1;
3004 break;
3005 }
3006 if (overlap) {
3007 mddev_put(mddev);
3008 break;
3009 }
3010 }
3011 rcu_read_unlock();
3012 if (overlap) {
3013 /* Someone else could have slipped in a size
3014 * change here, but doing so is just silly.
3015 * We put oldsectors back because we *know* it is
3016 * safe, and trust userspace not to race with
3017 * itself
3018 */
3019 rdev->sectors = oldsectors;
3020 return -EBUSY;
3021 }
3022 }
3023 return len;
3024 }
3025
3026 static struct rdev_sysfs_entry rdev_size =
3027 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3028
3029 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3030 {
3031 unsigned long long recovery_start = rdev->recovery_offset;
3032
3033 if (test_bit(In_sync, &rdev->flags) ||
3034 recovery_start == MaxSector)
3035 return sprintf(page, "none\n");
3036
3037 return sprintf(page, "%llu\n", recovery_start);
3038 }
3039
3040 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3041 {
3042 unsigned long long recovery_start;
3043
3044 if (cmd_match(buf, "none"))
3045 recovery_start = MaxSector;
3046 else if (kstrtoull(buf, 10, &recovery_start))
3047 return -EINVAL;
3048
3049 if (rdev->mddev->pers &&
3050 rdev->raid_disk >= 0)
3051 return -EBUSY;
3052
3053 rdev->recovery_offset = recovery_start;
3054 if (recovery_start == MaxSector)
3055 set_bit(In_sync, &rdev->flags);
3056 else
3057 clear_bit(In_sync, &rdev->flags);
3058 return len;
3059 }
3060
3061 static struct rdev_sysfs_entry rdev_recovery_start =
3062 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3063
3064 /* sysfs access to bad-blocks list.
3065 * We present two files.
3066 * 'bad-blocks' lists sector numbers and lengths of ranges that
3067 * are recorded as bad. The list is truncated to fit within
3068 * the one-page limit of sysfs.
3069 * Writing "sector length" to this file adds an acknowledged
3070 * bad block list.
3071 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3072 * been acknowledged. Writing to this file adds bad blocks
3073 * without acknowledging them. This is largely for testing.
3074 */
3075 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3076 {
3077 return badblocks_show(&rdev->badblocks, page, 0);
3078 }
3079 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3080 {
3081 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3082 /* Maybe that ack was all we needed */
3083 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3084 wake_up(&rdev->blocked_wait);
3085 return rv;
3086 }
3087 static struct rdev_sysfs_entry rdev_bad_blocks =
3088 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3089
3090 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3091 {
3092 return badblocks_show(&rdev->badblocks, page, 1);
3093 }
3094 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3095 {
3096 return badblocks_store(&rdev->badblocks, page, len, 1);
3097 }
3098 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3099 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3100
3101 static struct attribute *rdev_default_attrs[] = {
3102 &rdev_state.attr,
3103 &rdev_errors.attr,
3104 &rdev_slot.attr,
3105 &rdev_offset.attr,
3106 &rdev_new_offset.attr,
3107 &rdev_size.attr,
3108 &rdev_recovery_start.attr,
3109 &rdev_bad_blocks.attr,
3110 &rdev_unack_bad_blocks.attr,
3111 NULL,
3112 };
3113 static ssize_t
3114 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3115 {
3116 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3117 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3118
3119 if (!entry->show)
3120 return -EIO;
3121 if (!rdev->mddev)
3122 return -EBUSY;
3123 return entry->show(rdev, page);
3124 }
3125
3126 static ssize_t
3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3128 const char *page, size_t length)
3129 {
3130 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3131 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3132 ssize_t rv;
3133 struct mddev *mddev = rdev->mddev;
3134
3135 if (!entry->store)
3136 return -EIO;
3137 if (!capable(CAP_SYS_ADMIN))
3138 return -EACCES;
3139 rv = mddev ? mddev_lock(mddev): -EBUSY;
3140 if (!rv) {
3141 if (rdev->mddev == NULL)
3142 rv = -EBUSY;
3143 else
3144 rv = entry->store(rdev, page, length);
3145 mddev_unlock(mddev);
3146 }
3147 return rv;
3148 }
3149
3150 static void rdev_free(struct kobject *ko)
3151 {
3152 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3153 kfree(rdev);
3154 }
3155 static const struct sysfs_ops rdev_sysfs_ops = {
3156 .show = rdev_attr_show,
3157 .store = rdev_attr_store,
3158 };
3159 static struct kobj_type rdev_ktype = {
3160 .release = rdev_free,
3161 .sysfs_ops = &rdev_sysfs_ops,
3162 .default_attrs = rdev_default_attrs,
3163 };
3164
3165 int md_rdev_init(struct md_rdev *rdev)
3166 {
3167 rdev->desc_nr = -1;
3168 rdev->saved_raid_disk = -1;
3169 rdev->raid_disk = -1;
3170 rdev->flags = 0;
3171 rdev->data_offset = 0;
3172 rdev->new_data_offset = 0;
3173 rdev->sb_events = 0;
3174 rdev->last_read_error.tv_sec = 0;
3175 rdev->last_read_error.tv_nsec = 0;
3176 rdev->sb_loaded = 0;
3177 rdev->bb_page = NULL;
3178 atomic_set(&rdev->nr_pending, 0);
3179 atomic_set(&rdev->read_errors, 0);
3180 atomic_set(&rdev->corrected_errors, 0);
3181
3182 INIT_LIST_HEAD(&rdev->same_set);
3183 init_waitqueue_head(&rdev->blocked_wait);
3184
3185 /* Add space to store bad block list.
3186 * This reserves the space even on arrays where it cannot
3187 * be used - I wonder if that matters
3188 */
3189 return badblocks_init(&rdev->badblocks, 0);
3190 }
3191 EXPORT_SYMBOL_GPL(md_rdev_init);
3192 /*
3193 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3194 *
3195 * mark the device faulty if:
3196 *
3197 * - the device is nonexistent (zero size)
3198 * - the device has no valid superblock
3199 *
3200 * a faulty rdev _never_ has rdev->sb set.
3201 */
3202 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3203 {
3204 char b[BDEVNAME_SIZE];
3205 int err;
3206 struct md_rdev *rdev;
3207 sector_t size;
3208
3209 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3210 if (!rdev) {
3211 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3212 return ERR_PTR(-ENOMEM);
3213 }
3214
3215 err = md_rdev_init(rdev);
3216 if (err)
3217 goto abort_free;
3218 err = alloc_disk_sb(rdev);
3219 if (err)
3220 goto abort_free;
3221
3222 err = lock_rdev(rdev, newdev, super_format == -2);
3223 if (err)
3224 goto abort_free;
3225
3226 kobject_init(&rdev->kobj, &rdev_ktype);
3227
3228 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3229 if (!size) {
3230 printk(KERN_WARNING
3231 "md: %s has zero or unknown size, marking faulty!\n",
3232 bdevname(rdev->bdev,b));
3233 err = -EINVAL;
3234 goto abort_free;
3235 }
3236
3237 if (super_format >= 0) {
3238 err = super_types[super_format].
3239 load_super(rdev, NULL, super_minor);
3240 if (err == -EINVAL) {
3241 printk(KERN_WARNING
3242 "md: %s does not have a valid v%d.%d "
3243 "superblock, not importing!\n",
3244 bdevname(rdev->bdev,b),
3245 super_format, super_minor);
3246 goto abort_free;
3247 }
3248 if (err < 0) {
3249 printk(KERN_WARNING
3250 "md: could not read %s's sb, not importing!\n",
3251 bdevname(rdev->bdev,b));
3252 goto abort_free;
3253 }
3254 }
3255
3256 return rdev;
3257
3258 abort_free:
3259 if (rdev->bdev)
3260 unlock_rdev(rdev);
3261 md_rdev_clear(rdev);
3262 kfree(rdev);
3263 return ERR_PTR(err);
3264 }
3265
3266 /*
3267 * Check a full RAID array for plausibility
3268 */
3269
3270 static void analyze_sbs(struct mddev *mddev)
3271 {
3272 int i;
3273 struct md_rdev *rdev, *freshest, *tmp;
3274 char b[BDEVNAME_SIZE];
3275
3276 freshest = NULL;
3277 rdev_for_each_safe(rdev, tmp, mddev)
3278 switch (super_types[mddev->major_version].
3279 load_super(rdev, freshest, mddev->minor_version)) {
3280 case 1:
3281 freshest = rdev;
3282 break;
3283 case 0:
3284 break;
3285 default:
3286 printk( KERN_ERR \
3287 "md: fatal superblock inconsistency in %s"
3288 " -- removing from array\n",
3289 bdevname(rdev->bdev,b));
3290 md_kick_rdev_from_array(rdev);
3291 }
3292
3293 super_types[mddev->major_version].
3294 validate_super(mddev, freshest);
3295
3296 i = 0;
3297 rdev_for_each_safe(rdev, tmp, mddev) {
3298 if (mddev->max_disks &&
3299 (rdev->desc_nr >= mddev->max_disks ||
3300 i > mddev->max_disks)) {
3301 printk(KERN_WARNING
3302 "md: %s: %s: only %d devices permitted\n",
3303 mdname(mddev), bdevname(rdev->bdev, b),
3304 mddev->max_disks);
3305 md_kick_rdev_from_array(rdev);
3306 continue;
3307 }
3308 if (rdev != freshest) {
3309 if (super_types[mddev->major_version].
3310 validate_super(mddev, rdev)) {
3311 printk(KERN_WARNING "md: kicking non-fresh %s"
3312 " from array!\n",
3313 bdevname(rdev->bdev,b));
3314 md_kick_rdev_from_array(rdev);
3315 continue;
3316 }
3317 }
3318 if (mddev->level == LEVEL_MULTIPATH) {
3319 rdev->desc_nr = i++;
3320 rdev->raid_disk = rdev->desc_nr;
3321 set_bit(In_sync, &rdev->flags);
3322 } else if (rdev->raid_disk >=
3323 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3324 !test_bit(Journal, &rdev->flags)) {
3325 rdev->raid_disk = -1;
3326 clear_bit(In_sync, &rdev->flags);
3327 }
3328 }
3329 }
3330
3331 /* Read a fixed-point number.
3332 * Numbers in sysfs attributes should be in "standard" units where
3333 * possible, so time should be in seconds.
3334 * However we internally use a a much smaller unit such as
3335 * milliseconds or jiffies.
3336 * This function takes a decimal number with a possible fractional
3337 * component, and produces an integer which is the result of
3338 * multiplying that number by 10^'scale'.
3339 * all without any floating-point arithmetic.
3340 */
3341 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3342 {
3343 unsigned long result = 0;
3344 long decimals = -1;
3345 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3346 if (*cp == '.')
3347 decimals = 0;
3348 else if (decimals < scale) {
3349 unsigned int value;
3350 value = *cp - '0';
3351 result = result * 10 + value;
3352 if (decimals >= 0)
3353 decimals++;
3354 }
3355 cp++;
3356 }
3357 if (*cp == '\n')
3358 cp++;
3359 if (*cp)
3360 return -EINVAL;
3361 if (decimals < 0)
3362 decimals = 0;
3363 while (decimals < scale) {
3364 result *= 10;
3365 decimals ++;
3366 }
3367 *res = result;
3368 return 0;
3369 }
3370
3371 static ssize_t
3372 safe_delay_show(struct mddev *mddev, char *page)
3373 {
3374 int msec = (mddev->safemode_delay*1000)/HZ;
3375 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3376 }
3377 static ssize_t
3378 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3379 {
3380 unsigned long msec;
3381
3382 if (mddev_is_clustered(mddev)) {
3383 pr_info("md: Safemode is disabled for clustered mode\n");
3384 return -EINVAL;
3385 }
3386
3387 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3388 return -EINVAL;
3389 if (msec == 0)
3390 mddev->safemode_delay = 0;
3391 else {
3392 unsigned long old_delay = mddev->safemode_delay;
3393 unsigned long new_delay = (msec*HZ)/1000;
3394
3395 if (new_delay == 0)
3396 new_delay = 1;
3397 mddev->safemode_delay = new_delay;
3398 if (new_delay < old_delay || old_delay == 0)
3399 mod_timer(&mddev->safemode_timer, jiffies+1);
3400 }
3401 return len;
3402 }
3403 static struct md_sysfs_entry md_safe_delay =
3404 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3405
3406 static ssize_t
3407 level_show(struct mddev *mddev, char *page)
3408 {
3409 struct md_personality *p;
3410 int ret;
3411 spin_lock(&mddev->lock);
3412 p = mddev->pers;
3413 if (p)
3414 ret = sprintf(page, "%s\n", p->name);
3415 else if (mddev->clevel[0])
3416 ret = sprintf(page, "%s\n", mddev->clevel);
3417 else if (mddev->level != LEVEL_NONE)
3418 ret = sprintf(page, "%d\n", mddev->level);
3419 else
3420 ret = 0;
3421 spin_unlock(&mddev->lock);
3422 return ret;
3423 }
3424
3425 static ssize_t
3426 level_store(struct mddev *mddev, const char *buf, size_t len)
3427 {
3428 char clevel[16];
3429 ssize_t rv;
3430 size_t slen = len;
3431 struct md_personality *pers, *oldpers;
3432 long level;
3433 void *priv, *oldpriv;
3434 struct md_rdev *rdev;
3435
3436 if (slen == 0 || slen >= sizeof(clevel))
3437 return -EINVAL;
3438
3439 rv = mddev_lock(mddev);
3440 if (rv)
3441 return rv;
3442
3443 if (mddev->pers == NULL) {
3444 strncpy(mddev->clevel, buf, slen);
3445 if (mddev->clevel[slen-1] == '\n')
3446 slen--;
3447 mddev->clevel[slen] = 0;
3448 mddev->level = LEVEL_NONE;
3449 rv = len;
3450 goto out_unlock;
3451 }
3452 rv = -EROFS;
3453 if (mddev->ro)
3454 goto out_unlock;
3455
3456 /* request to change the personality. Need to ensure:
3457 * - array is not engaged in resync/recovery/reshape
3458 * - old personality can be suspended
3459 * - new personality will access other array.
3460 */
3461
3462 rv = -EBUSY;
3463 if (mddev->sync_thread ||
3464 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3465 mddev->reshape_position != MaxSector ||
3466 mddev->sysfs_active)
3467 goto out_unlock;
3468
3469 rv = -EINVAL;
3470 if (!mddev->pers->quiesce) {
3471 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3472 mdname(mddev), mddev->pers->name);
3473 goto out_unlock;
3474 }
3475
3476 /* Now find the new personality */
3477 strncpy(clevel, buf, slen);
3478 if (clevel[slen-1] == '\n')
3479 slen--;
3480 clevel[slen] = 0;
3481 if (kstrtol(clevel, 10, &level))
3482 level = LEVEL_NONE;
3483
3484 if (request_module("md-%s", clevel) != 0)
3485 request_module("md-level-%s", clevel);
3486 spin_lock(&pers_lock);
3487 pers = find_pers(level, clevel);
3488 if (!pers || !try_module_get(pers->owner)) {
3489 spin_unlock(&pers_lock);
3490 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3491 rv = -EINVAL;
3492 goto out_unlock;
3493 }
3494 spin_unlock(&pers_lock);
3495
3496 if (pers == mddev->pers) {
3497 /* Nothing to do! */
3498 module_put(pers->owner);
3499 rv = len;
3500 goto out_unlock;
3501 }
3502 if (!pers->takeover) {
3503 module_put(pers->owner);
3504 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3505 mdname(mddev), clevel);
3506 rv = -EINVAL;
3507 goto out_unlock;
3508 }
3509
3510 rdev_for_each(rdev, mddev)
3511 rdev->new_raid_disk = rdev->raid_disk;
3512
3513 /* ->takeover must set new_* and/or delta_disks
3514 * if it succeeds, and may set them when it fails.
3515 */
3516 priv = pers->takeover(mddev);
3517 if (IS_ERR(priv)) {
3518 mddev->new_level = mddev->level;
3519 mddev->new_layout = mddev->layout;
3520 mddev->new_chunk_sectors = mddev->chunk_sectors;
3521 mddev->raid_disks -= mddev->delta_disks;
3522 mddev->delta_disks = 0;
3523 mddev->reshape_backwards = 0;
3524 module_put(pers->owner);
3525 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3526 mdname(mddev), clevel);
3527 rv = PTR_ERR(priv);
3528 goto out_unlock;
3529 }
3530
3531 /* Looks like we have a winner */
3532 mddev_suspend(mddev);
3533 mddev_detach(mddev);
3534
3535 spin_lock(&mddev->lock);
3536 oldpers = mddev->pers;
3537 oldpriv = mddev->private;
3538 mddev->pers = pers;
3539 mddev->private = priv;
3540 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3541 mddev->level = mddev->new_level;
3542 mddev->layout = mddev->new_layout;
3543 mddev->chunk_sectors = mddev->new_chunk_sectors;
3544 mddev->delta_disks = 0;
3545 mddev->reshape_backwards = 0;
3546 mddev->degraded = 0;
3547 spin_unlock(&mddev->lock);
3548
3549 if (oldpers->sync_request == NULL &&
3550 mddev->external) {
3551 /* We are converting from a no-redundancy array
3552 * to a redundancy array and metadata is managed
3553 * externally so we need to be sure that writes
3554 * won't block due to a need to transition
3555 * clean->dirty
3556 * until external management is started.
3557 */
3558 mddev->in_sync = 0;
3559 mddev->safemode_delay = 0;
3560 mddev->safemode = 0;
3561 }
3562
3563 oldpers->free(mddev, oldpriv);
3564
3565 if (oldpers->sync_request == NULL &&
3566 pers->sync_request != NULL) {
3567 /* need to add the md_redundancy_group */
3568 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3569 printk(KERN_WARNING
3570 "md: cannot register extra attributes for %s\n",
3571 mdname(mddev));
3572 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3573 }
3574 if (oldpers->sync_request != NULL &&
3575 pers->sync_request == NULL) {
3576 /* need to remove the md_redundancy_group */
3577 if (mddev->to_remove == NULL)
3578 mddev->to_remove = &md_redundancy_group;
3579 }
3580
3581 rdev_for_each(rdev, mddev) {
3582 if (rdev->raid_disk < 0)
3583 continue;
3584 if (rdev->new_raid_disk >= mddev->raid_disks)
3585 rdev->new_raid_disk = -1;
3586 if (rdev->new_raid_disk == rdev->raid_disk)
3587 continue;
3588 sysfs_unlink_rdev(mddev, rdev);
3589 }
3590 rdev_for_each(rdev, mddev) {
3591 if (rdev->raid_disk < 0)
3592 continue;
3593 if (rdev->new_raid_disk == rdev->raid_disk)
3594 continue;
3595 rdev->raid_disk = rdev->new_raid_disk;
3596 if (rdev->raid_disk < 0)
3597 clear_bit(In_sync, &rdev->flags);
3598 else {
3599 if (sysfs_link_rdev(mddev, rdev))
3600 printk(KERN_WARNING "md: cannot register rd%d"
3601 " for %s after level change\n",
3602 rdev->raid_disk, mdname(mddev));
3603 }
3604 }
3605
3606 if (pers->sync_request == NULL) {
3607 /* this is now an array without redundancy, so
3608 * it must always be in_sync
3609 */
3610 mddev->in_sync = 1;
3611 del_timer_sync(&mddev->safemode_timer);
3612 }
3613 blk_set_stacking_limits(&mddev->queue->limits);
3614 pers->run(mddev);
3615 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3616 mddev_resume(mddev);
3617 if (!mddev->thread)
3618 md_update_sb(mddev, 1);
3619 sysfs_notify(&mddev->kobj, NULL, "level");
3620 md_new_event(mddev);
3621 rv = len;
3622 out_unlock:
3623 mddev_unlock(mddev);
3624 return rv;
3625 }
3626
3627 static struct md_sysfs_entry md_level =
3628 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3629
3630 static ssize_t
3631 layout_show(struct mddev *mddev, char *page)
3632 {
3633 /* just a number, not meaningful for all levels */
3634 if (mddev->reshape_position != MaxSector &&
3635 mddev->layout != mddev->new_layout)
3636 return sprintf(page, "%d (%d)\n",
3637 mddev->new_layout, mddev->layout);
3638 return sprintf(page, "%d\n", mddev->layout);
3639 }
3640
3641 static ssize_t
3642 layout_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644 unsigned int n;
3645 int err;
3646
3647 err = kstrtouint(buf, 10, &n);
3648 if (err < 0)
3649 return err;
3650 err = mddev_lock(mddev);
3651 if (err)
3652 return err;
3653
3654 if (mddev->pers) {
3655 if (mddev->pers->check_reshape == NULL)
3656 err = -EBUSY;
3657 else if (mddev->ro)
3658 err = -EROFS;
3659 else {
3660 mddev->new_layout = n;
3661 err = mddev->pers->check_reshape(mddev);
3662 if (err)
3663 mddev->new_layout = mddev->layout;
3664 }
3665 } else {
3666 mddev->new_layout = n;
3667 if (mddev->reshape_position == MaxSector)
3668 mddev->layout = n;
3669 }
3670 mddev_unlock(mddev);
3671 return err ?: len;
3672 }
3673 static struct md_sysfs_entry md_layout =
3674 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3675
3676 static ssize_t
3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679 if (mddev->raid_disks == 0)
3680 return 0;
3681 if (mddev->reshape_position != MaxSector &&
3682 mddev->delta_disks != 0)
3683 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684 mddev->raid_disks - mddev->delta_disks);
3685 return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689
3690 static ssize_t
3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 unsigned int n;
3694 int err;
3695
3696 err = kstrtouint(buf, 10, &n);
3697 if (err < 0)
3698 return err;
3699
3700 err = mddev_lock(mddev);
3701 if (err)
3702 return err;
3703 if (mddev->pers)
3704 err = update_raid_disks(mddev, n);
3705 else if (mddev->reshape_position != MaxSector) {
3706 struct md_rdev *rdev;
3707 int olddisks = mddev->raid_disks - mddev->delta_disks;
3708
3709 err = -EINVAL;
3710 rdev_for_each(rdev, mddev) {
3711 if (olddisks < n &&
3712 rdev->data_offset < rdev->new_data_offset)
3713 goto out_unlock;
3714 if (olddisks > n &&
3715 rdev->data_offset > rdev->new_data_offset)
3716 goto out_unlock;
3717 }
3718 err = 0;
3719 mddev->delta_disks = n - olddisks;
3720 mddev->raid_disks = n;
3721 mddev->reshape_backwards = (mddev->delta_disks < 0);
3722 } else
3723 mddev->raid_disks = n;
3724 out_unlock:
3725 mddev_unlock(mddev);
3726 return err ? err : len;
3727 }
3728 static struct md_sysfs_entry md_raid_disks =
3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3730
3731 static ssize_t
3732 chunk_size_show(struct mddev *mddev, char *page)
3733 {
3734 if (mddev->reshape_position != MaxSector &&
3735 mddev->chunk_sectors != mddev->new_chunk_sectors)
3736 return sprintf(page, "%d (%d)\n",
3737 mddev->new_chunk_sectors << 9,
3738 mddev->chunk_sectors << 9);
3739 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3740 }
3741
3742 static ssize_t
3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745 unsigned long n;
3746 int err;
3747
3748 err = kstrtoul(buf, 10, &n);
3749 if (err < 0)
3750 return err;
3751
3752 err = mddev_lock(mddev);
3753 if (err)
3754 return err;
3755 if (mddev->pers) {
3756 if (mddev->pers->check_reshape == NULL)
3757 err = -EBUSY;
3758 else if (mddev->ro)
3759 err = -EROFS;
3760 else {
3761 mddev->new_chunk_sectors = n >> 9;
3762 err = mddev->pers->check_reshape(mddev);
3763 if (err)
3764 mddev->new_chunk_sectors = mddev->chunk_sectors;
3765 }
3766 } else {
3767 mddev->new_chunk_sectors = n >> 9;
3768 if (mddev->reshape_position == MaxSector)
3769 mddev->chunk_sectors = n >> 9;
3770 }
3771 mddev_unlock(mddev);
3772 return err ?: len;
3773 }
3774 static struct md_sysfs_entry md_chunk_size =
3775 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3776
3777 static ssize_t
3778 resync_start_show(struct mddev *mddev, char *page)
3779 {
3780 if (mddev->recovery_cp == MaxSector)
3781 return sprintf(page, "none\n");
3782 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3783 }
3784
3785 static ssize_t
3786 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3787 {
3788 unsigned long long n;
3789 int err;
3790
3791 if (cmd_match(buf, "none"))
3792 n = MaxSector;
3793 else {
3794 err = kstrtoull(buf, 10, &n);
3795 if (err < 0)
3796 return err;
3797 if (n != (sector_t)n)
3798 return -EINVAL;
3799 }
3800
3801 err = mddev_lock(mddev);
3802 if (err)
3803 return err;
3804 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3805 err = -EBUSY;
3806
3807 if (!err) {
3808 mddev->recovery_cp = n;
3809 if (mddev->pers)
3810 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3811 }
3812 mddev_unlock(mddev);
3813 return err ?: len;
3814 }
3815 static struct md_sysfs_entry md_resync_start =
3816 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3817 resync_start_show, resync_start_store);
3818
3819 /*
3820 * The array state can be:
3821 *
3822 * clear
3823 * No devices, no size, no level
3824 * Equivalent to STOP_ARRAY ioctl
3825 * inactive
3826 * May have some settings, but array is not active
3827 * all IO results in error
3828 * When written, doesn't tear down array, but just stops it
3829 * suspended (not supported yet)
3830 * All IO requests will block. The array can be reconfigured.
3831 * Writing this, if accepted, will block until array is quiescent
3832 * readonly
3833 * no resync can happen. no superblocks get written.
3834 * write requests fail
3835 * read-auto
3836 * like readonly, but behaves like 'clean' on a write request.
3837 *
3838 * clean - no pending writes, but otherwise active.
3839 * When written to inactive array, starts without resync
3840 * If a write request arrives then
3841 * if metadata is known, mark 'dirty' and switch to 'active'.
3842 * if not known, block and switch to write-pending
3843 * If written to an active array that has pending writes, then fails.
3844 * active
3845 * fully active: IO and resync can be happening.
3846 * When written to inactive array, starts with resync
3847 *
3848 * write-pending
3849 * clean, but writes are blocked waiting for 'active' to be written.
3850 *
3851 * active-idle
3852 * like active, but no writes have been seen for a while (100msec).
3853 *
3854 */
3855 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3856 write_pending, active_idle, bad_word};
3857 static char *array_states[] = {
3858 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3859 "write-pending", "active-idle", NULL };
3860
3861 static int match_word(const char *word, char **list)
3862 {
3863 int n;
3864 for (n=0; list[n]; n++)
3865 if (cmd_match(word, list[n]))
3866 break;
3867 return n;
3868 }
3869
3870 static ssize_t
3871 array_state_show(struct mddev *mddev, char *page)
3872 {
3873 enum array_state st = inactive;
3874
3875 if (mddev->pers)
3876 switch(mddev->ro) {
3877 case 1:
3878 st = readonly;
3879 break;
3880 case 2:
3881 st = read_auto;
3882 break;
3883 case 0:
3884 if (mddev->in_sync)
3885 st = clean;
3886 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3887 st = write_pending;
3888 else if (mddev->safemode)
3889 st = active_idle;
3890 else
3891 st = active;
3892 }
3893 else {
3894 if (list_empty(&mddev->disks) &&
3895 mddev->raid_disks == 0 &&
3896 mddev->dev_sectors == 0)
3897 st = clear;
3898 else
3899 st = inactive;
3900 }
3901 return sprintf(page, "%s\n", array_states[st]);
3902 }
3903
3904 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3905 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3906 static int do_md_run(struct mddev *mddev);
3907 static int restart_array(struct mddev *mddev);
3908
3909 static ssize_t
3910 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3911 {
3912 int err;
3913 enum array_state st = match_word(buf, array_states);
3914
3915 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3916 /* don't take reconfig_mutex when toggling between
3917 * clean and active
3918 */
3919 spin_lock(&mddev->lock);
3920 if (st == active) {
3921 restart_array(mddev);
3922 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3923 wake_up(&mddev->sb_wait);
3924 err = 0;
3925 } else /* st == clean */ {
3926 restart_array(mddev);
3927 if (atomic_read(&mddev->writes_pending) == 0) {
3928 if (mddev->in_sync == 0) {
3929 mddev->in_sync = 1;
3930 if (mddev->safemode == 1)
3931 mddev->safemode = 0;
3932 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3933 }
3934 err = 0;
3935 } else
3936 err = -EBUSY;
3937 }
3938 spin_unlock(&mddev->lock);
3939 return err ?: len;
3940 }
3941 err = mddev_lock(mddev);
3942 if (err)
3943 return err;
3944 err = -EINVAL;
3945 switch(st) {
3946 case bad_word:
3947 break;
3948 case clear:
3949 /* stopping an active array */
3950 err = do_md_stop(mddev, 0, NULL);
3951 break;
3952 case inactive:
3953 /* stopping an active array */
3954 if (mddev->pers)
3955 err = do_md_stop(mddev, 2, NULL);
3956 else
3957 err = 0; /* already inactive */
3958 break;
3959 case suspended:
3960 break; /* not supported yet */
3961 case readonly:
3962 if (mddev->pers)
3963 err = md_set_readonly(mddev, NULL);
3964 else {
3965 mddev->ro = 1;
3966 set_disk_ro(mddev->gendisk, 1);
3967 err = do_md_run(mddev);
3968 }
3969 break;
3970 case read_auto:
3971 if (mddev->pers) {
3972 if (mddev->ro == 0)
3973 err = md_set_readonly(mddev, NULL);
3974 else if (mddev->ro == 1)
3975 err = restart_array(mddev);
3976 if (err == 0) {
3977 mddev->ro = 2;
3978 set_disk_ro(mddev->gendisk, 0);
3979 }
3980 } else {
3981 mddev->ro = 2;
3982 err = do_md_run(mddev);
3983 }
3984 break;
3985 case clean:
3986 if (mddev->pers) {
3987 err = restart_array(mddev);
3988 if (err)
3989 break;
3990 spin_lock(&mddev->lock);
3991 if (atomic_read(&mddev->writes_pending) == 0) {
3992 if (mddev->in_sync == 0) {
3993 mddev->in_sync = 1;
3994 if (mddev->safemode == 1)
3995 mddev->safemode = 0;
3996 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3997 }
3998 err = 0;
3999 } else
4000 err = -EBUSY;
4001 spin_unlock(&mddev->lock);
4002 } else
4003 err = -EINVAL;
4004 break;
4005 case active:
4006 if (mddev->pers) {
4007 err = restart_array(mddev);
4008 if (err)
4009 break;
4010 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4011 wake_up(&mddev->sb_wait);
4012 err = 0;
4013 } else {
4014 mddev->ro = 0;
4015 set_disk_ro(mddev->gendisk, 0);
4016 err = do_md_run(mddev);
4017 }
4018 break;
4019 case write_pending:
4020 case active_idle:
4021 /* these cannot be set */
4022 break;
4023 }
4024
4025 if (!err) {
4026 if (mddev->hold_active == UNTIL_IOCTL)
4027 mddev->hold_active = 0;
4028 sysfs_notify_dirent_safe(mddev->sysfs_state);
4029 }
4030 mddev_unlock(mddev);
4031 return err ?: len;
4032 }
4033 static struct md_sysfs_entry md_array_state =
4034 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4035
4036 static ssize_t
4037 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4038 return sprintf(page, "%d\n",
4039 atomic_read(&mddev->max_corr_read_errors));
4040 }
4041
4042 static ssize_t
4043 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4044 {
4045 unsigned int n;
4046 int rv;
4047
4048 rv = kstrtouint(buf, 10, &n);
4049 if (rv < 0)
4050 return rv;
4051 atomic_set(&mddev->max_corr_read_errors, n);
4052 return len;
4053 }
4054
4055 static struct md_sysfs_entry max_corr_read_errors =
4056 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4057 max_corrected_read_errors_store);
4058
4059 static ssize_t
4060 null_show(struct mddev *mddev, char *page)
4061 {
4062 return -EINVAL;
4063 }
4064
4065 static ssize_t
4066 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4067 {
4068 /* buf must be %d:%d\n? giving major and minor numbers */
4069 /* The new device is added to the array.
4070 * If the array has a persistent superblock, we read the
4071 * superblock to initialise info and check validity.
4072 * Otherwise, only checking done is that in bind_rdev_to_array,
4073 * which mainly checks size.
4074 */
4075 char *e;
4076 int major = simple_strtoul(buf, &e, 10);
4077 int minor;
4078 dev_t dev;
4079 struct md_rdev *rdev;
4080 int err;
4081
4082 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4083 return -EINVAL;
4084 minor = simple_strtoul(e+1, &e, 10);
4085 if (*e && *e != '\n')
4086 return -EINVAL;
4087 dev = MKDEV(major, minor);
4088 if (major != MAJOR(dev) ||
4089 minor != MINOR(dev))
4090 return -EOVERFLOW;
4091
4092 flush_workqueue(md_misc_wq);
4093
4094 err = mddev_lock(mddev);
4095 if (err)
4096 return err;
4097 if (mddev->persistent) {
4098 rdev = md_import_device(dev, mddev->major_version,
4099 mddev->minor_version);
4100 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4101 struct md_rdev *rdev0
4102 = list_entry(mddev->disks.next,
4103 struct md_rdev, same_set);
4104 err = super_types[mddev->major_version]
4105 .load_super(rdev, rdev0, mddev->minor_version);
4106 if (err < 0)
4107 goto out;
4108 }
4109 } else if (mddev->external)
4110 rdev = md_import_device(dev, -2, -1);
4111 else
4112 rdev = md_import_device(dev, -1, -1);
4113
4114 if (IS_ERR(rdev)) {
4115 mddev_unlock(mddev);
4116 return PTR_ERR(rdev);
4117 }
4118 err = bind_rdev_to_array(rdev, mddev);
4119 out:
4120 if (err)
4121 export_rdev(rdev);
4122 mddev_unlock(mddev);
4123 return err ? err : len;
4124 }
4125
4126 static struct md_sysfs_entry md_new_device =
4127 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4128
4129 static ssize_t
4130 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4131 {
4132 char *end;
4133 unsigned long chunk, end_chunk;
4134 int err;
4135
4136 err = mddev_lock(mddev);
4137 if (err)
4138 return err;
4139 if (!mddev->bitmap)
4140 goto out;
4141 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4142 while (*buf) {
4143 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4144 if (buf == end) break;
4145 if (*end == '-') { /* range */
4146 buf = end + 1;
4147 end_chunk = simple_strtoul(buf, &end, 0);
4148 if (buf == end) break;
4149 }
4150 if (*end && !isspace(*end)) break;
4151 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4152 buf = skip_spaces(end);
4153 }
4154 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4155 out:
4156 mddev_unlock(mddev);
4157 return len;
4158 }
4159
4160 static struct md_sysfs_entry md_bitmap =
4161 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4162
4163 static ssize_t
4164 size_show(struct mddev *mddev, char *page)
4165 {
4166 return sprintf(page, "%llu\n",
4167 (unsigned long long)mddev->dev_sectors / 2);
4168 }
4169
4170 static int update_size(struct mddev *mddev, sector_t num_sectors);
4171
4172 static ssize_t
4173 size_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 /* If array is inactive, we can reduce the component size, but
4176 * not increase it (except from 0).
4177 * If array is active, we can try an on-line resize
4178 */
4179 sector_t sectors;
4180 int err = strict_blocks_to_sectors(buf, &sectors);
4181
4182 if (err < 0)
4183 return err;
4184 err = mddev_lock(mddev);
4185 if (err)
4186 return err;
4187 if (mddev->pers) {
4188 err = update_size(mddev, sectors);
4189 md_update_sb(mddev, 1);
4190 } else {
4191 if (mddev->dev_sectors == 0 ||
4192 mddev->dev_sectors > sectors)
4193 mddev->dev_sectors = sectors;
4194 else
4195 err = -ENOSPC;
4196 }
4197 mddev_unlock(mddev);
4198 return err ? err : len;
4199 }
4200
4201 static struct md_sysfs_entry md_size =
4202 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4203
4204 /* Metadata version.
4205 * This is one of
4206 * 'none' for arrays with no metadata (good luck...)
4207 * 'external' for arrays with externally managed metadata,
4208 * or N.M for internally known formats
4209 */
4210 static ssize_t
4211 metadata_show(struct mddev *mddev, char *page)
4212 {
4213 if (mddev->persistent)
4214 return sprintf(page, "%d.%d\n",
4215 mddev->major_version, mddev->minor_version);
4216 else if (mddev->external)
4217 return sprintf(page, "external:%s\n", mddev->metadata_type);
4218 else
4219 return sprintf(page, "none\n");
4220 }
4221
4222 static ssize_t
4223 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4224 {
4225 int major, minor;
4226 char *e;
4227 int err;
4228 /* Changing the details of 'external' metadata is
4229 * always permitted. Otherwise there must be
4230 * no devices attached to the array.
4231 */
4232
4233 err = mddev_lock(mddev);
4234 if (err)
4235 return err;
4236 err = -EBUSY;
4237 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4238 ;
4239 else if (!list_empty(&mddev->disks))
4240 goto out_unlock;
4241
4242 err = 0;
4243 if (cmd_match(buf, "none")) {
4244 mddev->persistent = 0;
4245 mddev->external = 0;
4246 mddev->major_version = 0;
4247 mddev->minor_version = 90;
4248 goto out_unlock;
4249 }
4250 if (strncmp(buf, "external:", 9) == 0) {
4251 size_t namelen = len-9;
4252 if (namelen >= sizeof(mddev->metadata_type))
4253 namelen = sizeof(mddev->metadata_type)-1;
4254 strncpy(mddev->metadata_type, buf+9, namelen);
4255 mddev->metadata_type[namelen] = 0;
4256 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4257 mddev->metadata_type[--namelen] = 0;
4258 mddev->persistent = 0;
4259 mddev->external = 1;
4260 mddev->major_version = 0;
4261 mddev->minor_version = 90;
4262 goto out_unlock;
4263 }
4264 major = simple_strtoul(buf, &e, 10);
4265 err = -EINVAL;
4266 if (e==buf || *e != '.')
4267 goto out_unlock;
4268 buf = e+1;
4269 minor = simple_strtoul(buf, &e, 10);
4270 if (e==buf || (*e && *e != '\n') )
4271 goto out_unlock;
4272 err = -ENOENT;
4273 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4274 goto out_unlock;
4275 mddev->major_version = major;
4276 mddev->minor_version = minor;
4277 mddev->persistent = 1;
4278 mddev->external = 0;
4279 err = 0;
4280 out_unlock:
4281 mddev_unlock(mddev);
4282 return err ?: len;
4283 }
4284
4285 static struct md_sysfs_entry md_metadata =
4286 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4287
4288 static ssize_t
4289 action_show(struct mddev *mddev, char *page)
4290 {
4291 char *type = "idle";
4292 unsigned long recovery = mddev->recovery;
4293 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4294 type = "frozen";
4295 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4296 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4297 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4298 type = "reshape";
4299 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4300 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4301 type = "resync";
4302 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4303 type = "check";
4304 else
4305 type = "repair";
4306 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4307 type = "recover";
4308 else if (mddev->reshape_position != MaxSector)
4309 type = "reshape";
4310 }
4311 return sprintf(page, "%s\n", type);
4312 }
4313
4314 static ssize_t
4315 action_store(struct mddev *mddev, const char *page, size_t len)
4316 {
4317 if (!mddev->pers || !mddev->pers->sync_request)
4318 return -EINVAL;
4319
4320
4321 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4322 if (cmd_match(page, "frozen"))
4323 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324 else
4325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4327 mddev_lock(mddev) == 0) {
4328 flush_workqueue(md_misc_wq);
4329 if (mddev->sync_thread) {
4330 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4331 md_reap_sync_thread(mddev);
4332 }
4333 mddev_unlock(mddev);
4334 }
4335 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4336 return -EBUSY;
4337 else if (cmd_match(page, "resync"))
4338 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4339 else if (cmd_match(page, "recover")) {
4340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4341 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4342 } else if (cmd_match(page, "reshape")) {
4343 int err;
4344 if (mddev->pers->start_reshape == NULL)
4345 return -EINVAL;
4346 err = mddev_lock(mddev);
4347 if (!err) {
4348 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4349 err = -EBUSY;
4350 else {
4351 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4352 err = mddev->pers->start_reshape(mddev);
4353 }
4354 mddev_unlock(mddev);
4355 }
4356 if (err)
4357 return err;
4358 sysfs_notify(&mddev->kobj, NULL, "degraded");
4359 } else {
4360 if (cmd_match(page, "check"))
4361 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4362 else if (!cmd_match(page, "repair"))
4363 return -EINVAL;
4364 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4365 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4366 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4367 }
4368 if (mddev->ro == 2) {
4369 /* A write to sync_action is enough to justify
4370 * canceling read-auto mode
4371 */
4372 mddev->ro = 0;
4373 md_wakeup_thread(mddev->sync_thread);
4374 }
4375 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4376 md_wakeup_thread(mddev->thread);
4377 sysfs_notify_dirent_safe(mddev->sysfs_action);
4378 return len;
4379 }
4380
4381 static struct md_sysfs_entry md_scan_mode =
4382 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4383
4384 static ssize_t
4385 last_sync_action_show(struct mddev *mddev, char *page)
4386 {
4387 return sprintf(page, "%s\n", mddev->last_sync_action);
4388 }
4389
4390 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4391
4392 static ssize_t
4393 mismatch_cnt_show(struct mddev *mddev, char *page)
4394 {
4395 return sprintf(page, "%llu\n",
4396 (unsigned long long)
4397 atomic64_read(&mddev->resync_mismatches));
4398 }
4399
4400 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4401
4402 static ssize_t
4403 sync_min_show(struct mddev *mddev, char *page)
4404 {
4405 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4406 mddev->sync_speed_min ? "local": "system");
4407 }
4408
4409 static ssize_t
4410 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 unsigned int min;
4413 int rv;
4414
4415 if (strncmp(buf, "system", 6)==0) {
4416 min = 0;
4417 } else {
4418 rv = kstrtouint(buf, 10, &min);
4419 if (rv < 0)
4420 return rv;
4421 if (min == 0)
4422 return -EINVAL;
4423 }
4424 mddev->sync_speed_min = min;
4425 return len;
4426 }
4427
4428 static struct md_sysfs_entry md_sync_min =
4429 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4430
4431 static ssize_t
4432 sync_max_show(struct mddev *mddev, char *page)
4433 {
4434 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4435 mddev->sync_speed_max ? "local": "system");
4436 }
4437
4438 static ssize_t
4439 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4440 {
4441 unsigned int max;
4442 int rv;
4443
4444 if (strncmp(buf, "system", 6)==0) {
4445 max = 0;
4446 } else {
4447 rv = kstrtouint(buf, 10, &max);
4448 if (rv < 0)
4449 return rv;
4450 if (max == 0)
4451 return -EINVAL;
4452 }
4453 mddev->sync_speed_max = max;
4454 return len;
4455 }
4456
4457 static struct md_sysfs_entry md_sync_max =
4458 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4459
4460 static ssize_t
4461 degraded_show(struct mddev *mddev, char *page)
4462 {
4463 return sprintf(page, "%d\n", mddev->degraded);
4464 }
4465 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4466
4467 static ssize_t
4468 sync_force_parallel_show(struct mddev *mddev, char *page)
4469 {
4470 return sprintf(page, "%d\n", mddev->parallel_resync);
4471 }
4472
4473 static ssize_t
4474 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476 long n;
4477
4478 if (kstrtol(buf, 10, &n))
4479 return -EINVAL;
4480
4481 if (n != 0 && n != 1)
4482 return -EINVAL;
4483
4484 mddev->parallel_resync = n;
4485
4486 if (mddev->sync_thread)
4487 wake_up(&resync_wait);
4488
4489 return len;
4490 }
4491
4492 /* force parallel resync, even with shared block devices */
4493 static struct md_sysfs_entry md_sync_force_parallel =
4494 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4495 sync_force_parallel_show, sync_force_parallel_store);
4496
4497 static ssize_t
4498 sync_speed_show(struct mddev *mddev, char *page)
4499 {
4500 unsigned long resync, dt, db;
4501 if (mddev->curr_resync == 0)
4502 return sprintf(page, "none\n");
4503 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4504 dt = (jiffies - mddev->resync_mark) / HZ;
4505 if (!dt) dt++;
4506 db = resync - mddev->resync_mark_cnt;
4507 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4508 }
4509
4510 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4511
4512 static ssize_t
4513 sync_completed_show(struct mddev *mddev, char *page)
4514 {
4515 unsigned long long max_sectors, resync;
4516
4517 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 return sprintf(page, "none\n");
4519
4520 if (mddev->curr_resync == 1 ||
4521 mddev->curr_resync == 2)
4522 return sprintf(page, "delayed\n");
4523
4524 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4525 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4526 max_sectors = mddev->resync_max_sectors;
4527 else
4528 max_sectors = mddev->dev_sectors;
4529
4530 resync = mddev->curr_resync_completed;
4531 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4532 }
4533
4534 static struct md_sysfs_entry md_sync_completed =
4535 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4536
4537 static ssize_t
4538 min_sync_show(struct mddev *mddev, char *page)
4539 {
4540 return sprintf(page, "%llu\n",
4541 (unsigned long long)mddev->resync_min);
4542 }
4543 static ssize_t
4544 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4545 {
4546 unsigned long long min;
4547 int err;
4548
4549 if (kstrtoull(buf, 10, &min))
4550 return -EINVAL;
4551
4552 spin_lock(&mddev->lock);
4553 err = -EINVAL;
4554 if (min > mddev->resync_max)
4555 goto out_unlock;
4556
4557 err = -EBUSY;
4558 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4559 goto out_unlock;
4560
4561 /* Round down to multiple of 4K for safety */
4562 mddev->resync_min = round_down(min, 8);
4563 err = 0;
4564
4565 out_unlock:
4566 spin_unlock(&mddev->lock);
4567 return err ?: len;
4568 }
4569
4570 static struct md_sysfs_entry md_min_sync =
4571 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4572
4573 static ssize_t
4574 max_sync_show(struct mddev *mddev, char *page)
4575 {
4576 if (mddev->resync_max == MaxSector)
4577 return sprintf(page, "max\n");
4578 else
4579 return sprintf(page, "%llu\n",
4580 (unsigned long long)mddev->resync_max);
4581 }
4582 static ssize_t
4583 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4584 {
4585 int err;
4586 spin_lock(&mddev->lock);
4587 if (strncmp(buf, "max", 3) == 0)
4588 mddev->resync_max = MaxSector;
4589 else {
4590 unsigned long long max;
4591 int chunk;
4592
4593 err = -EINVAL;
4594 if (kstrtoull(buf, 10, &max))
4595 goto out_unlock;
4596 if (max < mddev->resync_min)
4597 goto out_unlock;
4598
4599 err = -EBUSY;
4600 if (max < mddev->resync_max &&
4601 mddev->ro == 0 &&
4602 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4603 goto out_unlock;
4604
4605 /* Must be a multiple of chunk_size */
4606 chunk = mddev->chunk_sectors;
4607 if (chunk) {
4608 sector_t temp = max;
4609
4610 err = -EINVAL;
4611 if (sector_div(temp, chunk))
4612 goto out_unlock;
4613 }
4614 mddev->resync_max = max;
4615 }
4616 wake_up(&mddev->recovery_wait);
4617 err = 0;
4618 out_unlock:
4619 spin_unlock(&mddev->lock);
4620 return err ?: len;
4621 }
4622
4623 static struct md_sysfs_entry md_max_sync =
4624 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4625
4626 static ssize_t
4627 suspend_lo_show(struct mddev *mddev, char *page)
4628 {
4629 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4630 }
4631
4632 static ssize_t
4633 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635 unsigned long long old, new;
4636 int err;
4637
4638 err = kstrtoull(buf, 10, &new);
4639 if (err < 0)
4640 return err;
4641 if (new != (sector_t)new)
4642 return -EINVAL;
4643
4644 err = mddev_lock(mddev);
4645 if (err)
4646 return err;
4647 err = -EINVAL;
4648 if (mddev->pers == NULL ||
4649 mddev->pers->quiesce == NULL)
4650 goto unlock;
4651 old = mddev->suspend_lo;
4652 mddev->suspend_lo = new;
4653 if (new >= old)
4654 /* Shrinking suspended region */
4655 mddev->pers->quiesce(mddev, 2);
4656 else {
4657 /* Expanding suspended region - need to wait */
4658 mddev->pers->quiesce(mddev, 1);
4659 mddev->pers->quiesce(mddev, 0);
4660 }
4661 err = 0;
4662 unlock:
4663 mddev_unlock(mddev);
4664 return err ?: len;
4665 }
4666 static struct md_sysfs_entry md_suspend_lo =
4667 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4668
4669 static ssize_t
4670 suspend_hi_show(struct mddev *mddev, char *page)
4671 {
4672 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4673 }
4674
4675 static ssize_t
4676 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4677 {
4678 unsigned long long old, new;
4679 int err;
4680
4681 err = kstrtoull(buf, 10, &new);
4682 if (err < 0)
4683 return err;
4684 if (new != (sector_t)new)
4685 return -EINVAL;
4686
4687 err = mddev_lock(mddev);
4688 if (err)
4689 return err;
4690 err = -EINVAL;
4691 if (mddev->pers == NULL ||
4692 mddev->pers->quiesce == NULL)
4693 goto unlock;
4694 old = mddev->suspend_hi;
4695 mddev->suspend_hi = new;
4696 if (new <= old)
4697 /* Shrinking suspended region */
4698 mddev->pers->quiesce(mddev, 2);
4699 else {
4700 /* Expanding suspended region - need to wait */
4701 mddev->pers->quiesce(mddev, 1);
4702 mddev->pers->quiesce(mddev, 0);
4703 }
4704 err = 0;
4705 unlock:
4706 mddev_unlock(mddev);
4707 return err ?: len;
4708 }
4709 static struct md_sysfs_entry md_suspend_hi =
4710 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4711
4712 static ssize_t
4713 reshape_position_show(struct mddev *mddev, char *page)
4714 {
4715 if (mddev->reshape_position != MaxSector)
4716 return sprintf(page, "%llu\n",
4717 (unsigned long long)mddev->reshape_position);
4718 strcpy(page, "none\n");
4719 return 5;
4720 }
4721
4722 static ssize_t
4723 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4724 {
4725 struct md_rdev *rdev;
4726 unsigned long long new;
4727 int err;
4728
4729 err = kstrtoull(buf, 10, &new);
4730 if (err < 0)
4731 return err;
4732 if (new != (sector_t)new)
4733 return -EINVAL;
4734 err = mddev_lock(mddev);
4735 if (err)
4736 return err;
4737 err = -EBUSY;
4738 if (mddev->pers)
4739 goto unlock;
4740 mddev->reshape_position = new;
4741 mddev->delta_disks = 0;
4742 mddev->reshape_backwards = 0;
4743 mddev->new_level = mddev->level;
4744 mddev->new_layout = mddev->layout;
4745 mddev->new_chunk_sectors = mddev->chunk_sectors;
4746 rdev_for_each(rdev, mddev)
4747 rdev->new_data_offset = rdev->data_offset;
4748 err = 0;
4749 unlock:
4750 mddev_unlock(mddev);
4751 return err ?: len;
4752 }
4753
4754 static struct md_sysfs_entry md_reshape_position =
4755 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4756 reshape_position_store);
4757
4758 static ssize_t
4759 reshape_direction_show(struct mddev *mddev, char *page)
4760 {
4761 return sprintf(page, "%s\n",
4762 mddev->reshape_backwards ? "backwards" : "forwards");
4763 }
4764
4765 static ssize_t
4766 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4767 {
4768 int backwards = 0;
4769 int err;
4770
4771 if (cmd_match(buf, "forwards"))
4772 backwards = 0;
4773 else if (cmd_match(buf, "backwards"))
4774 backwards = 1;
4775 else
4776 return -EINVAL;
4777 if (mddev->reshape_backwards == backwards)
4778 return len;
4779
4780 err = mddev_lock(mddev);
4781 if (err)
4782 return err;
4783 /* check if we are allowed to change */
4784 if (mddev->delta_disks)
4785 err = -EBUSY;
4786 else if (mddev->persistent &&
4787 mddev->major_version == 0)
4788 err = -EINVAL;
4789 else
4790 mddev->reshape_backwards = backwards;
4791 mddev_unlock(mddev);
4792 return err ?: len;
4793 }
4794
4795 static struct md_sysfs_entry md_reshape_direction =
4796 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4797 reshape_direction_store);
4798
4799 static ssize_t
4800 array_size_show(struct mddev *mddev, char *page)
4801 {
4802 if (mddev->external_size)
4803 return sprintf(page, "%llu\n",
4804 (unsigned long long)mddev->array_sectors/2);
4805 else
4806 return sprintf(page, "default\n");
4807 }
4808
4809 static ssize_t
4810 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4811 {
4812 sector_t sectors;
4813 int err;
4814
4815 err = mddev_lock(mddev);
4816 if (err)
4817 return err;
4818
4819 /* cluster raid doesn't support change array_sectors */
4820 if (mddev_is_clustered(mddev))
4821 return -EINVAL;
4822
4823 if (strncmp(buf, "default", 7) == 0) {
4824 if (mddev->pers)
4825 sectors = mddev->pers->size(mddev, 0, 0);
4826 else
4827 sectors = mddev->array_sectors;
4828
4829 mddev->external_size = 0;
4830 } else {
4831 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4832 err = -EINVAL;
4833 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4834 err = -E2BIG;
4835 else
4836 mddev->external_size = 1;
4837 }
4838
4839 if (!err) {
4840 mddev->array_sectors = sectors;
4841 if (mddev->pers) {
4842 set_capacity(mddev->gendisk, mddev->array_sectors);
4843 revalidate_disk(mddev->gendisk);
4844 }
4845 }
4846 mddev_unlock(mddev);
4847 return err ?: len;
4848 }
4849
4850 static struct md_sysfs_entry md_array_size =
4851 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4852 array_size_store);
4853
4854 static struct attribute *md_default_attrs[] = {
4855 &md_level.attr,
4856 &md_layout.attr,
4857 &md_raid_disks.attr,
4858 &md_chunk_size.attr,
4859 &md_size.attr,
4860 &md_resync_start.attr,
4861 &md_metadata.attr,
4862 &md_new_device.attr,
4863 &md_safe_delay.attr,
4864 &md_array_state.attr,
4865 &md_reshape_position.attr,
4866 &md_reshape_direction.attr,
4867 &md_array_size.attr,
4868 &max_corr_read_errors.attr,
4869 NULL,
4870 };
4871
4872 static struct attribute *md_redundancy_attrs[] = {
4873 &md_scan_mode.attr,
4874 &md_last_scan_mode.attr,
4875 &md_mismatches.attr,
4876 &md_sync_min.attr,
4877 &md_sync_max.attr,
4878 &md_sync_speed.attr,
4879 &md_sync_force_parallel.attr,
4880 &md_sync_completed.attr,
4881 &md_min_sync.attr,
4882 &md_max_sync.attr,
4883 &md_suspend_lo.attr,
4884 &md_suspend_hi.attr,
4885 &md_bitmap.attr,
4886 &md_degraded.attr,
4887 NULL,
4888 };
4889 static struct attribute_group md_redundancy_group = {
4890 .name = NULL,
4891 .attrs = md_redundancy_attrs,
4892 };
4893
4894 static ssize_t
4895 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4896 {
4897 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4898 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4899 ssize_t rv;
4900
4901 if (!entry->show)
4902 return -EIO;
4903 spin_lock(&all_mddevs_lock);
4904 if (list_empty(&mddev->all_mddevs)) {
4905 spin_unlock(&all_mddevs_lock);
4906 return -EBUSY;
4907 }
4908 mddev_get(mddev);
4909 spin_unlock(&all_mddevs_lock);
4910
4911 rv = entry->show(mddev, page);
4912 mddev_put(mddev);
4913 return rv;
4914 }
4915
4916 static ssize_t
4917 md_attr_store(struct kobject *kobj, struct attribute *attr,
4918 const char *page, size_t length)
4919 {
4920 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4921 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4922 ssize_t rv;
4923
4924 if (!entry->store)
4925 return -EIO;
4926 if (!capable(CAP_SYS_ADMIN))
4927 return -EACCES;
4928 spin_lock(&all_mddevs_lock);
4929 if (list_empty(&mddev->all_mddevs)) {
4930 spin_unlock(&all_mddevs_lock);
4931 return -EBUSY;
4932 }
4933 mddev_get(mddev);
4934 spin_unlock(&all_mddevs_lock);
4935 rv = entry->store(mddev, page, length);
4936 mddev_put(mddev);
4937 return rv;
4938 }
4939
4940 static void md_free(struct kobject *ko)
4941 {
4942 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4943
4944 if (mddev->sysfs_state)
4945 sysfs_put(mddev->sysfs_state);
4946
4947 if (mddev->queue)
4948 blk_cleanup_queue(mddev->queue);
4949 if (mddev->gendisk) {
4950 del_gendisk(mddev->gendisk);
4951 put_disk(mddev->gendisk);
4952 }
4953
4954 kfree(mddev);
4955 }
4956
4957 static const struct sysfs_ops md_sysfs_ops = {
4958 .show = md_attr_show,
4959 .store = md_attr_store,
4960 };
4961 static struct kobj_type md_ktype = {
4962 .release = md_free,
4963 .sysfs_ops = &md_sysfs_ops,
4964 .default_attrs = md_default_attrs,
4965 };
4966
4967 int mdp_major = 0;
4968
4969 static void mddev_delayed_delete(struct work_struct *ws)
4970 {
4971 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4972
4973 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4974 kobject_del(&mddev->kobj);
4975 kobject_put(&mddev->kobj);
4976 }
4977
4978 static int md_alloc(dev_t dev, char *name)
4979 {
4980 static DEFINE_MUTEX(disks_mutex);
4981 struct mddev *mddev = mddev_find(dev);
4982 struct gendisk *disk;
4983 int partitioned;
4984 int shift;
4985 int unit;
4986 int error;
4987
4988 if (!mddev)
4989 return -ENODEV;
4990
4991 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4992 shift = partitioned ? MdpMinorShift : 0;
4993 unit = MINOR(mddev->unit) >> shift;
4994
4995 /* wait for any previous instance of this device to be
4996 * completely removed (mddev_delayed_delete).
4997 */
4998 flush_workqueue(md_misc_wq);
4999
5000 mutex_lock(&disks_mutex);
5001 error = -EEXIST;
5002 if (mddev->gendisk)
5003 goto abort;
5004
5005 if (name) {
5006 /* Need to ensure that 'name' is not a duplicate.
5007 */
5008 struct mddev *mddev2;
5009 spin_lock(&all_mddevs_lock);
5010
5011 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5012 if (mddev2->gendisk &&
5013 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5014 spin_unlock(&all_mddevs_lock);
5015 goto abort;
5016 }
5017 spin_unlock(&all_mddevs_lock);
5018 }
5019
5020 error = -ENOMEM;
5021 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5022 if (!mddev->queue)
5023 goto abort;
5024 mddev->queue->queuedata = mddev;
5025
5026 blk_queue_make_request(mddev->queue, md_make_request);
5027 blk_set_stacking_limits(&mddev->queue->limits);
5028
5029 disk = alloc_disk(1 << shift);
5030 if (!disk) {
5031 blk_cleanup_queue(mddev->queue);
5032 mddev->queue = NULL;
5033 goto abort;
5034 }
5035 disk->major = MAJOR(mddev->unit);
5036 disk->first_minor = unit << shift;
5037 if (name)
5038 strcpy(disk->disk_name, name);
5039 else if (partitioned)
5040 sprintf(disk->disk_name, "md_d%d", unit);
5041 else
5042 sprintf(disk->disk_name, "md%d", unit);
5043 disk->fops = &md_fops;
5044 disk->private_data = mddev;
5045 disk->queue = mddev->queue;
5046 blk_queue_write_cache(mddev->queue, true, true);
5047 /* Allow extended partitions. This makes the
5048 * 'mdp' device redundant, but we can't really
5049 * remove it now.
5050 */
5051 disk->flags |= GENHD_FL_EXT_DEVT;
5052 mddev->gendisk = disk;
5053 /* As soon as we call add_disk(), another thread could get
5054 * through to md_open, so make sure it doesn't get too far
5055 */
5056 mutex_lock(&mddev->open_mutex);
5057 add_disk(disk);
5058
5059 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5060 &disk_to_dev(disk)->kobj, "%s", "md");
5061 if (error) {
5062 /* This isn't possible, but as kobject_init_and_add is marked
5063 * __must_check, we must do something with the result
5064 */
5065 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5066 disk->disk_name);
5067 error = 0;
5068 }
5069 if (mddev->kobj.sd &&
5070 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5071 printk(KERN_DEBUG "pointless warning\n");
5072 mutex_unlock(&mddev->open_mutex);
5073 abort:
5074 mutex_unlock(&disks_mutex);
5075 if (!error && mddev->kobj.sd) {
5076 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5077 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5078 }
5079 mddev_put(mddev);
5080 return error;
5081 }
5082
5083 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5084 {
5085 md_alloc(dev, NULL);
5086 return NULL;
5087 }
5088
5089 static int add_named_array(const char *val, struct kernel_param *kp)
5090 {
5091 /* val must be "md_*" where * is not all digits.
5092 * We allocate an array with a large free minor number, and
5093 * set the name to val. val must not already be an active name.
5094 */
5095 int len = strlen(val);
5096 char buf[DISK_NAME_LEN];
5097
5098 while (len && val[len-1] == '\n')
5099 len--;
5100 if (len >= DISK_NAME_LEN)
5101 return -E2BIG;
5102 strlcpy(buf, val, len+1);
5103 if (strncmp(buf, "md_", 3) != 0)
5104 return -EINVAL;
5105 return md_alloc(0, buf);
5106 }
5107
5108 static void md_safemode_timeout(unsigned long data)
5109 {
5110 struct mddev *mddev = (struct mddev *) data;
5111
5112 if (!atomic_read(&mddev->writes_pending)) {
5113 mddev->safemode = 1;
5114 if (mddev->external)
5115 sysfs_notify_dirent_safe(mddev->sysfs_state);
5116 }
5117 md_wakeup_thread(mddev->thread);
5118 }
5119
5120 static int start_dirty_degraded;
5121
5122 int md_run(struct mddev *mddev)
5123 {
5124 int err;
5125 struct md_rdev *rdev;
5126 struct md_personality *pers;
5127
5128 if (list_empty(&mddev->disks))
5129 /* cannot run an array with no devices.. */
5130 return -EINVAL;
5131
5132 if (mddev->pers)
5133 return -EBUSY;
5134 /* Cannot run until previous stop completes properly */
5135 if (mddev->sysfs_active)
5136 return -EBUSY;
5137
5138 /*
5139 * Analyze all RAID superblock(s)
5140 */
5141 if (!mddev->raid_disks) {
5142 if (!mddev->persistent)
5143 return -EINVAL;
5144 analyze_sbs(mddev);
5145 }
5146
5147 if (mddev->level != LEVEL_NONE)
5148 request_module("md-level-%d", mddev->level);
5149 else if (mddev->clevel[0])
5150 request_module("md-%s", mddev->clevel);
5151
5152 /*
5153 * Drop all container device buffers, from now on
5154 * the only valid external interface is through the md
5155 * device.
5156 */
5157 rdev_for_each(rdev, mddev) {
5158 if (test_bit(Faulty, &rdev->flags))
5159 continue;
5160 sync_blockdev(rdev->bdev);
5161 invalidate_bdev(rdev->bdev);
5162
5163 /* perform some consistency tests on the device.
5164 * We don't want the data to overlap the metadata,
5165 * Internal Bitmap issues have been handled elsewhere.
5166 */
5167 if (rdev->meta_bdev) {
5168 /* Nothing to check */;
5169 } else if (rdev->data_offset < rdev->sb_start) {
5170 if (mddev->dev_sectors &&
5171 rdev->data_offset + mddev->dev_sectors
5172 > rdev->sb_start) {
5173 printk("md: %s: data overlaps metadata\n",
5174 mdname(mddev));
5175 return -EINVAL;
5176 }
5177 } else {
5178 if (rdev->sb_start + rdev->sb_size/512
5179 > rdev->data_offset) {
5180 printk("md: %s: metadata overlaps data\n",
5181 mdname(mddev));
5182 return -EINVAL;
5183 }
5184 }
5185 sysfs_notify_dirent_safe(rdev->sysfs_state);
5186 }
5187
5188 if (mddev->bio_set == NULL)
5189 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5190
5191 spin_lock(&pers_lock);
5192 pers = find_pers(mddev->level, mddev->clevel);
5193 if (!pers || !try_module_get(pers->owner)) {
5194 spin_unlock(&pers_lock);
5195 if (mddev->level != LEVEL_NONE)
5196 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5197 mddev->level);
5198 else
5199 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5200 mddev->clevel);
5201 return -EINVAL;
5202 }
5203 spin_unlock(&pers_lock);
5204 if (mddev->level != pers->level) {
5205 mddev->level = pers->level;
5206 mddev->new_level = pers->level;
5207 }
5208 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5209
5210 if (mddev->reshape_position != MaxSector &&
5211 pers->start_reshape == NULL) {
5212 /* This personality cannot handle reshaping... */
5213 module_put(pers->owner);
5214 return -EINVAL;
5215 }
5216
5217 if (pers->sync_request) {
5218 /* Warn if this is a potentially silly
5219 * configuration.
5220 */
5221 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5222 struct md_rdev *rdev2;
5223 int warned = 0;
5224
5225 rdev_for_each(rdev, mddev)
5226 rdev_for_each(rdev2, mddev) {
5227 if (rdev < rdev2 &&
5228 rdev->bdev->bd_contains ==
5229 rdev2->bdev->bd_contains) {
5230 printk(KERN_WARNING
5231 "%s: WARNING: %s appears to be"
5232 " on the same physical disk as"
5233 " %s.\n",
5234 mdname(mddev),
5235 bdevname(rdev->bdev,b),
5236 bdevname(rdev2->bdev,b2));
5237 warned = 1;
5238 }
5239 }
5240
5241 if (warned)
5242 printk(KERN_WARNING
5243 "True protection against single-disk"
5244 " failure might be compromised.\n");
5245 }
5246
5247 mddev->recovery = 0;
5248 /* may be over-ridden by personality */
5249 mddev->resync_max_sectors = mddev->dev_sectors;
5250
5251 mddev->ok_start_degraded = start_dirty_degraded;
5252
5253 if (start_readonly && mddev->ro == 0)
5254 mddev->ro = 2; /* read-only, but switch on first write */
5255
5256 err = pers->run(mddev);
5257 if (err)
5258 printk(KERN_ERR "md: pers->run() failed ...\n");
5259 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5260 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5261 " but 'external_size' not in effect?\n", __func__);
5262 printk(KERN_ERR
5263 "md: invalid array_size %llu > default size %llu\n",
5264 (unsigned long long)mddev->array_sectors / 2,
5265 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5266 err = -EINVAL;
5267 }
5268 if (err == 0 && pers->sync_request &&
5269 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5270 struct bitmap *bitmap;
5271
5272 bitmap = bitmap_create(mddev, -1);
5273 if (IS_ERR(bitmap)) {
5274 err = PTR_ERR(bitmap);
5275 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5276 mdname(mddev), err);
5277 } else
5278 mddev->bitmap = bitmap;
5279
5280 }
5281 if (err) {
5282 mddev_detach(mddev);
5283 if (mddev->private)
5284 pers->free(mddev, mddev->private);
5285 mddev->private = NULL;
5286 module_put(pers->owner);
5287 bitmap_destroy(mddev);
5288 return err;
5289 }
5290 if (mddev->queue) {
5291 mddev->queue->backing_dev_info.congested_data = mddev;
5292 mddev->queue->backing_dev_info.congested_fn = md_congested;
5293 }
5294 if (pers->sync_request) {
5295 if (mddev->kobj.sd &&
5296 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5297 printk(KERN_WARNING
5298 "md: cannot register extra attributes for %s\n",
5299 mdname(mddev));
5300 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5301 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5302 mddev->ro = 0;
5303
5304 atomic_set(&mddev->writes_pending,0);
5305 atomic_set(&mddev->max_corr_read_errors,
5306 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5307 mddev->safemode = 0;
5308 if (mddev_is_clustered(mddev))
5309 mddev->safemode_delay = 0;
5310 else
5311 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5312 mddev->in_sync = 1;
5313 smp_wmb();
5314 spin_lock(&mddev->lock);
5315 mddev->pers = pers;
5316 spin_unlock(&mddev->lock);
5317 rdev_for_each(rdev, mddev)
5318 if (rdev->raid_disk >= 0)
5319 if (sysfs_link_rdev(mddev, rdev))
5320 /* failure here is OK */;
5321
5322 if (mddev->degraded && !mddev->ro)
5323 /* This ensures that recovering status is reported immediately
5324 * via sysfs - until a lack of spares is confirmed.
5325 */
5326 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5328
5329 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5330 md_update_sb(mddev, 0);
5331
5332 md_new_event(mddev);
5333 sysfs_notify_dirent_safe(mddev->sysfs_state);
5334 sysfs_notify_dirent_safe(mddev->sysfs_action);
5335 sysfs_notify(&mddev->kobj, NULL, "degraded");
5336 return 0;
5337 }
5338 EXPORT_SYMBOL_GPL(md_run);
5339
5340 static int do_md_run(struct mddev *mddev)
5341 {
5342 int err;
5343
5344 err = md_run(mddev);
5345 if (err)
5346 goto out;
5347 err = bitmap_load(mddev);
5348 if (err) {
5349 bitmap_destroy(mddev);
5350 goto out;
5351 }
5352
5353 if (mddev_is_clustered(mddev))
5354 md_allow_write(mddev);
5355
5356 md_wakeup_thread(mddev->thread);
5357 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5358
5359 set_capacity(mddev->gendisk, mddev->array_sectors);
5360 revalidate_disk(mddev->gendisk);
5361 mddev->changed = 1;
5362 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5363 out:
5364 return err;
5365 }
5366
5367 static int restart_array(struct mddev *mddev)
5368 {
5369 struct gendisk *disk = mddev->gendisk;
5370
5371 /* Complain if it has no devices */
5372 if (list_empty(&mddev->disks))
5373 return -ENXIO;
5374 if (!mddev->pers)
5375 return -EINVAL;
5376 if (!mddev->ro)
5377 return -EBUSY;
5378 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5379 struct md_rdev *rdev;
5380 bool has_journal = false;
5381
5382 rcu_read_lock();
5383 rdev_for_each_rcu(rdev, mddev) {
5384 if (test_bit(Journal, &rdev->flags) &&
5385 !test_bit(Faulty, &rdev->flags)) {
5386 has_journal = true;
5387 break;
5388 }
5389 }
5390 rcu_read_unlock();
5391
5392 /* Don't restart rw with journal missing/faulty */
5393 if (!has_journal)
5394 return -EINVAL;
5395 }
5396
5397 mddev->safemode = 0;
5398 mddev->ro = 0;
5399 set_disk_ro(disk, 0);
5400 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5401 mdname(mddev));
5402 /* Kick recovery or resync if necessary */
5403 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5404 md_wakeup_thread(mddev->thread);
5405 md_wakeup_thread(mddev->sync_thread);
5406 sysfs_notify_dirent_safe(mddev->sysfs_state);
5407 return 0;
5408 }
5409
5410 static void md_clean(struct mddev *mddev)
5411 {
5412 mddev->array_sectors = 0;
5413 mddev->external_size = 0;
5414 mddev->dev_sectors = 0;
5415 mddev->raid_disks = 0;
5416 mddev->recovery_cp = 0;
5417 mddev->resync_min = 0;
5418 mddev->resync_max = MaxSector;
5419 mddev->reshape_position = MaxSector;
5420 mddev->external = 0;
5421 mddev->persistent = 0;
5422 mddev->level = LEVEL_NONE;
5423 mddev->clevel[0] = 0;
5424 mddev->flags = 0;
5425 mddev->ro = 0;
5426 mddev->metadata_type[0] = 0;
5427 mddev->chunk_sectors = 0;
5428 mddev->ctime = mddev->utime = 0;
5429 mddev->layout = 0;
5430 mddev->max_disks = 0;
5431 mddev->events = 0;
5432 mddev->can_decrease_events = 0;
5433 mddev->delta_disks = 0;
5434 mddev->reshape_backwards = 0;
5435 mddev->new_level = LEVEL_NONE;
5436 mddev->new_layout = 0;
5437 mddev->new_chunk_sectors = 0;
5438 mddev->curr_resync = 0;
5439 atomic64_set(&mddev->resync_mismatches, 0);
5440 mddev->suspend_lo = mddev->suspend_hi = 0;
5441 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5442 mddev->recovery = 0;
5443 mddev->in_sync = 0;
5444 mddev->changed = 0;
5445 mddev->degraded = 0;
5446 mddev->safemode = 0;
5447 mddev->private = NULL;
5448 mddev->bitmap_info.offset = 0;
5449 mddev->bitmap_info.default_offset = 0;
5450 mddev->bitmap_info.default_space = 0;
5451 mddev->bitmap_info.chunksize = 0;
5452 mddev->bitmap_info.daemon_sleep = 0;
5453 mddev->bitmap_info.max_write_behind = 0;
5454 }
5455
5456 static void __md_stop_writes(struct mddev *mddev)
5457 {
5458 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5459 flush_workqueue(md_misc_wq);
5460 if (mddev->sync_thread) {
5461 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5462 md_reap_sync_thread(mddev);
5463 }
5464
5465 del_timer_sync(&mddev->safemode_timer);
5466
5467 bitmap_flush(mddev);
5468 md_super_wait(mddev);
5469
5470 if (mddev->ro == 0 &&
5471 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5472 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5473 /* mark array as shutdown cleanly */
5474 if (!mddev_is_clustered(mddev))
5475 mddev->in_sync = 1;
5476 md_update_sb(mddev, 1);
5477 }
5478 }
5479
5480 void md_stop_writes(struct mddev *mddev)
5481 {
5482 mddev_lock_nointr(mddev);
5483 __md_stop_writes(mddev);
5484 mddev_unlock(mddev);
5485 }
5486 EXPORT_SYMBOL_GPL(md_stop_writes);
5487
5488 static void mddev_detach(struct mddev *mddev)
5489 {
5490 struct bitmap *bitmap = mddev->bitmap;
5491 /* wait for behind writes to complete */
5492 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5493 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5494 mdname(mddev));
5495 /* need to kick something here to make sure I/O goes? */
5496 wait_event(bitmap->behind_wait,
5497 atomic_read(&bitmap->behind_writes) == 0);
5498 }
5499 if (mddev->pers && mddev->pers->quiesce) {
5500 mddev->pers->quiesce(mddev, 1);
5501 mddev->pers->quiesce(mddev, 0);
5502 }
5503 md_unregister_thread(&mddev->thread);
5504 if (mddev->queue)
5505 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5506 }
5507
5508 static void __md_stop(struct mddev *mddev)
5509 {
5510 struct md_personality *pers = mddev->pers;
5511 mddev_detach(mddev);
5512 /* Ensure ->event_work is done */
5513 flush_workqueue(md_misc_wq);
5514 spin_lock(&mddev->lock);
5515 mddev->pers = NULL;
5516 spin_unlock(&mddev->lock);
5517 pers->free(mddev, mddev->private);
5518 mddev->private = NULL;
5519 if (pers->sync_request && mddev->to_remove == NULL)
5520 mddev->to_remove = &md_redundancy_group;
5521 module_put(pers->owner);
5522 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5523 }
5524
5525 void md_stop(struct mddev *mddev)
5526 {
5527 /* stop the array and free an attached data structures.
5528 * This is called from dm-raid
5529 */
5530 __md_stop(mddev);
5531 bitmap_destroy(mddev);
5532 if (mddev->bio_set)
5533 bioset_free(mddev->bio_set);
5534 }
5535
5536 EXPORT_SYMBOL_GPL(md_stop);
5537
5538 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5539 {
5540 int err = 0;
5541 int did_freeze = 0;
5542
5543 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5544 did_freeze = 1;
5545 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5546 md_wakeup_thread(mddev->thread);
5547 }
5548 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5549 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5550 if (mddev->sync_thread)
5551 /* Thread might be blocked waiting for metadata update
5552 * which will now never happen */
5553 wake_up_process(mddev->sync_thread->tsk);
5554
5555 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5556 return -EBUSY;
5557 mddev_unlock(mddev);
5558 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5559 &mddev->recovery));
5560 wait_event(mddev->sb_wait,
5561 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5562 mddev_lock_nointr(mddev);
5563
5564 mutex_lock(&mddev->open_mutex);
5565 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5566 mddev->sync_thread ||
5567 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5568 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5569 printk("md: %s still in use.\n",mdname(mddev));
5570 if (did_freeze) {
5571 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5572 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5573 md_wakeup_thread(mddev->thread);
5574 }
5575 err = -EBUSY;
5576 goto out;
5577 }
5578 if (mddev->pers) {
5579 __md_stop_writes(mddev);
5580
5581 err = -ENXIO;
5582 if (mddev->ro==1)
5583 goto out;
5584 mddev->ro = 1;
5585 set_disk_ro(mddev->gendisk, 1);
5586 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5587 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5588 md_wakeup_thread(mddev->thread);
5589 sysfs_notify_dirent_safe(mddev->sysfs_state);
5590 err = 0;
5591 }
5592 out:
5593 mutex_unlock(&mddev->open_mutex);
5594 return err;
5595 }
5596
5597 /* mode:
5598 * 0 - completely stop and dis-assemble array
5599 * 2 - stop but do not disassemble array
5600 */
5601 static int do_md_stop(struct mddev *mddev, int mode,
5602 struct block_device *bdev)
5603 {
5604 struct gendisk *disk = mddev->gendisk;
5605 struct md_rdev *rdev;
5606 int did_freeze = 0;
5607
5608 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5609 did_freeze = 1;
5610 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5611 md_wakeup_thread(mddev->thread);
5612 }
5613 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5614 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5615 if (mddev->sync_thread)
5616 /* Thread might be blocked waiting for metadata update
5617 * which will now never happen */
5618 wake_up_process(mddev->sync_thread->tsk);
5619
5620 mddev_unlock(mddev);
5621 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5622 !test_bit(MD_RECOVERY_RUNNING,
5623 &mddev->recovery)));
5624 mddev_lock_nointr(mddev);
5625
5626 mutex_lock(&mddev->open_mutex);
5627 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5628 mddev->sysfs_active ||
5629 mddev->sync_thread ||
5630 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5631 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5632 printk("md: %s still in use.\n",mdname(mddev));
5633 mutex_unlock(&mddev->open_mutex);
5634 if (did_freeze) {
5635 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5636 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5637 md_wakeup_thread(mddev->thread);
5638 }
5639 return -EBUSY;
5640 }
5641 if (mddev->pers) {
5642 if (mddev->ro)
5643 set_disk_ro(disk, 0);
5644
5645 __md_stop_writes(mddev);
5646 __md_stop(mddev);
5647 mddev->queue->backing_dev_info.congested_fn = NULL;
5648
5649 /* tell userspace to handle 'inactive' */
5650 sysfs_notify_dirent_safe(mddev->sysfs_state);
5651
5652 rdev_for_each(rdev, mddev)
5653 if (rdev->raid_disk >= 0)
5654 sysfs_unlink_rdev(mddev, rdev);
5655
5656 set_capacity(disk, 0);
5657 mutex_unlock(&mddev->open_mutex);
5658 mddev->changed = 1;
5659 revalidate_disk(disk);
5660
5661 if (mddev->ro)
5662 mddev->ro = 0;
5663 } else
5664 mutex_unlock(&mddev->open_mutex);
5665 /*
5666 * Free resources if final stop
5667 */
5668 if (mode == 0) {
5669 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5670
5671 bitmap_destroy(mddev);
5672 if (mddev->bitmap_info.file) {
5673 struct file *f = mddev->bitmap_info.file;
5674 spin_lock(&mddev->lock);
5675 mddev->bitmap_info.file = NULL;
5676 spin_unlock(&mddev->lock);
5677 fput(f);
5678 }
5679 mddev->bitmap_info.offset = 0;
5680
5681 export_array(mddev);
5682
5683 md_clean(mddev);
5684 if (mddev->hold_active == UNTIL_STOP)
5685 mddev->hold_active = 0;
5686 }
5687 md_new_event(mddev);
5688 sysfs_notify_dirent_safe(mddev->sysfs_state);
5689 return 0;
5690 }
5691
5692 #ifndef MODULE
5693 static void autorun_array(struct mddev *mddev)
5694 {
5695 struct md_rdev *rdev;
5696 int err;
5697
5698 if (list_empty(&mddev->disks))
5699 return;
5700
5701 printk(KERN_INFO "md: running: ");
5702
5703 rdev_for_each(rdev, mddev) {
5704 char b[BDEVNAME_SIZE];
5705 printk("<%s>", bdevname(rdev->bdev,b));
5706 }
5707 printk("\n");
5708
5709 err = do_md_run(mddev);
5710 if (err) {
5711 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5712 do_md_stop(mddev, 0, NULL);
5713 }
5714 }
5715
5716 /*
5717 * lets try to run arrays based on all disks that have arrived
5718 * until now. (those are in pending_raid_disks)
5719 *
5720 * the method: pick the first pending disk, collect all disks with
5721 * the same UUID, remove all from the pending list and put them into
5722 * the 'same_array' list. Then order this list based on superblock
5723 * update time (freshest comes first), kick out 'old' disks and
5724 * compare superblocks. If everything's fine then run it.
5725 *
5726 * If "unit" is allocated, then bump its reference count
5727 */
5728 static void autorun_devices(int part)
5729 {
5730 struct md_rdev *rdev0, *rdev, *tmp;
5731 struct mddev *mddev;
5732 char b[BDEVNAME_SIZE];
5733
5734 printk(KERN_INFO "md: autorun ...\n");
5735 while (!list_empty(&pending_raid_disks)) {
5736 int unit;
5737 dev_t dev;
5738 LIST_HEAD(candidates);
5739 rdev0 = list_entry(pending_raid_disks.next,
5740 struct md_rdev, same_set);
5741
5742 printk(KERN_INFO "md: considering %s ...\n",
5743 bdevname(rdev0->bdev,b));
5744 INIT_LIST_HEAD(&candidates);
5745 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5746 if (super_90_load(rdev, rdev0, 0) >= 0) {
5747 printk(KERN_INFO "md: adding %s ...\n",
5748 bdevname(rdev->bdev,b));
5749 list_move(&rdev->same_set, &candidates);
5750 }
5751 /*
5752 * now we have a set of devices, with all of them having
5753 * mostly sane superblocks. It's time to allocate the
5754 * mddev.
5755 */
5756 if (part) {
5757 dev = MKDEV(mdp_major,
5758 rdev0->preferred_minor << MdpMinorShift);
5759 unit = MINOR(dev) >> MdpMinorShift;
5760 } else {
5761 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5762 unit = MINOR(dev);
5763 }
5764 if (rdev0->preferred_minor != unit) {
5765 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5766 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5767 break;
5768 }
5769
5770 md_probe(dev, NULL, NULL);
5771 mddev = mddev_find(dev);
5772 if (!mddev || !mddev->gendisk) {
5773 if (mddev)
5774 mddev_put(mddev);
5775 printk(KERN_ERR
5776 "md: cannot allocate memory for md drive.\n");
5777 break;
5778 }
5779 if (mddev_lock(mddev))
5780 printk(KERN_WARNING "md: %s locked, cannot run\n",
5781 mdname(mddev));
5782 else if (mddev->raid_disks || mddev->major_version
5783 || !list_empty(&mddev->disks)) {
5784 printk(KERN_WARNING
5785 "md: %s already running, cannot run %s\n",
5786 mdname(mddev), bdevname(rdev0->bdev,b));
5787 mddev_unlock(mddev);
5788 } else {
5789 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5790 mddev->persistent = 1;
5791 rdev_for_each_list(rdev, tmp, &candidates) {
5792 list_del_init(&rdev->same_set);
5793 if (bind_rdev_to_array(rdev, mddev))
5794 export_rdev(rdev);
5795 }
5796 autorun_array(mddev);
5797 mddev_unlock(mddev);
5798 }
5799 /* on success, candidates will be empty, on error
5800 * it won't...
5801 */
5802 rdev_for_each_list(rdev, tmp, &candidates) {
5803 list_del_init(&rdev->same_set);
5804 export_rdev(rdev);
5805 }
5806 mddev_put(mddev);
5807 }
5808 printk(KERN_INFO "md: ... autorun DONE.\n");
5809 }
5810 #endif /* !MODULE */
5811
5812 static int get_version(void __user *arg)
5813 {
5814 mdu_version_t ver;
5815
5816 ver.major = MD_MAJOR_VERSION;
5817 ver.minor = MD_MINOR_VERSION;
5818 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5819
5820 if (copy_to_user(arg, &ver, sizeof(ver)))
5821 return -EFAULT;
5822
5823 return 0;
5824 }
5825
5826 static int get_array_info(struct mddev *mddev, void __user *arg)
5827 {
5828 mdu_array_info_t info;
5829 int nr,working,insync,failed,spare;
5830 struct md_rdev *rdev;
5831
5832 nr = working = insync = failed = spare = 0;
5833 rcu_read_lock();
5834 rdev_for_each_rcu(rdev, mddev) {
5835 nr++;
5836 if (test_bit(Faulty, &rdev->flags))
5837 failed++;
5838 else {
5839 working++;
5840 if (test_bit(In_sync, &rdev->flags))
5841 insync++;
5842 else
5843 spare++;
5844 }
5845 }
5846 rcu_read_unlock();
5847
5848 info.major_version = mddev->major_version;
5849 info.minor_version = mddev->minor_version;
5850 info.patch_version = MD_PATCHLEVEL_VERSION;
5851 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5852 info.level = mddev->level;
5853 info.size = mddev->dev_sectors / 2;
5854 if (info.size != mddev->dev_sectors / 2) /* overflow */
5855 info.size = -1;
5856 info.nr_disks = nr;
5857 info.raid_disks = mddev->raid_disks;
5858 info.md_minor = mddev->md_minor;
5859 info.not_persistent= !mddev->persistent;
5860
5861 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5862 info.state = 0;
5863 if (mddev->in_sync)
5864 info.state = (1<<MD_SB_CLEAN);
5865 if (mddev->bitmap && mddev->bitmap_info.offset)
5866 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5867 if (mddev_is_clustered(mddev))
5868 info.state |= (1<<MD_SB_CLUSTERED);
5869 info.active_disks = insync;
5870 info.working_disks = working;
5871 info.failed_disks = failed;
5872 info.spare_disks = spare;
5873
5874 info.layout = mddev->layout;
5875 info.chunk_size = mddev->chunk_sectors << 9;
5876
5877 if (copy_to_user(arg, &info, sizeof(info)))
5878 return -EFAULT;
5879
5880 return 0;
5881 }
5882
5883 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5884 {
5885 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5886 char *ptr;
5887 int err;
5888
5889 file = kzalloc(sizeof(*file), GFP_NOIO);
5890 if (!file)
5891 return -ENOMEM;
5892
5893 err = 0;
5894 spin_lock(&mddev->lock);
5895 /* bitmap enabled */
5896 if (mddev->bitmap_info.file) {
5897 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5898 sizeof(file->pathname));
5899 if (IS_ERR(ptr))
5900 err = PTR_ERR(ptr);
5901 else
5902 memmove(file->pathname, ptr,
5903 sizeof(file->pathname)-(ptr-file->pathname));
5904 }
5905 spin_unlock(&mddev->lock);
5906
5907 if (err == 0 &&
5908 copy_to_user(arg, file, sizeof(*file)))
5909 err = -EFAULT;
5910
5911 kfree(file);
5912 return err;
5913 }
5914
5915 static int get_disk_info(struct mddev *mddev, void __user * arg)
5916 {
5917 mdu_disk_info_t info;
5918 struct md_rdev *rdev;
5919
5920 if (copy_from_user(&info, arg, sizeof(info)))
5921 return -EFAULT;
5922
5923 rcu_read_lock();
5924 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5925 if (rdev) {
5926 info.major = MAJOR(rdev->bdev->bd_dev);
5927 info.minor = MINOR(rdev->bdev->bd_dev);
5928 info.raid_disk = rdev->raid_disk;
5929 info.state = 0;
5930 if (test_bit(Faulty, &rdev->flags))
5931 info.state |= (1<<MD_DISK_FAULTY);
5932 else if (test_bit(In_sync, &rdev->flags)) {
5933 info.state |= (1<<MD_DISK_ACTIVE);
5934 info.state |= (1<<MD_DISK_SYNC);
5935 }
5936 if (test_bit(Journal, &rdev->flags))
5937 info.state |= (1<<MD_DISK_JOURNAL);
5938 if (test_bit(WriteMostly, &rdev->flags))
5939 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5940 } else {
5941 info.major = info.minor = 0;
5942 info.raid_disk = -1;
5943 info.state = (1<<MD_DISK_REMOVED);
5944 }
5945 rcu_read_unlock();
5946
5947 if (copy_to_user(arg, &info, sizeof(info)))
5948 return -EFAULT;
5949
5950 return 0;
5951 }
5952
5953 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5954 {
5955 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5956 struct md_rdev *rdev;
5957 dev_t dev = MKDEV(info->major,info->minor);
5958
5959 if (mddev_is_clustered(mddev) &&
5960 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5961 pr_err("%s: Cannot add to clustered mddev.\n",
5962 mdname(mddev));
5963 return -EINVAL;
5964 }
5965
5966 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5967 return -EOVERFLOW;
5968
5969 if (!mddev->raid_disks) {
5970 int err;
5971 /* expecting a device which has a superblock */
5972 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5973 if (IS_ERR(rdev)) {
5974 printk(KERN_WARNING
5975 "md: md_import_device returned %ld\n",
5976 PTR_ERR(rdev));
5977 return PTR_ERR(rdev);
5978 }
5979 if (!list_empty(&mddev->disks)) {
5980 struct md_rdev *rdev0
5981 = list_entry(mddev->disks.next,
5982 struct md_rdev, same_set);
5983 err = super_types[mddev->major_version]
5984 .load_super(rdev, rdev0, mddev->minor_version);
5985 if (err < 0) {
5986 printk(KERN_WARNING
5987 "md: %s has different UUID to %s\n",
5988 bdevname(rdev->bdev,b),
5989 bdevname(rdev0->bdev,b2));
5990 export_rdev(rdev);
5991 return -EINVAL;
5992 }
5993 }
5994 err = bind_rdev_to_array(rdev, mddev);
5995 if (err)
5996 export_rdev(rdev);
5997 return err;
5998 }
5999
6000 /*
6001 * add_new_disk can be used once the array is assembled
6002 * to add "hot spares". They must already have a superblock
6003 * written
6004 */
6005 if (mddev->pers) {
6006 int err;
6007 if (!mddev->pers->hot_add_disk) {
6008 printk(KERN_WARNING
6009 "%s: personality does not support diskops!\n",
6010 mdname(mddev));
6011 return -EINVAL;
6012 }
6013 if (mddev->persistent)
6014 rdev = md_import_device(dev, mddev->major_version,
6015 mddev->minor_version);
6016 else
6017 rdev = md_import_device(dev, -1, -1);
6018 if (IS_ERR(rdev)) {
6019 printk(KERN_WARNING
6020 "md: md_import_device returned %ld\n",
6021 PTR_ERR(rdev));
6022 return PTR_ERR(rdev);
6023 }
6024 /* set saved_raid_disk if appropriate */
6025 if (!mddev->persistent) {
6026 if (info->state & (1<<MD_DISK_SYNC) &&
6027 info->raid_disk < mddev->raid_disks) {
6028 rdev->raid_disk = info->raid_disk;
6029 set_bit(In_sync, &rdev->flags);
6030 clear_bit(Bitmap_sync, &rdev->flags);
6031 } else
6032 rdev->raid_disk = -1;
6033 rdev->saved_raid_disk = rdev->raid_disk;
6034 } else
6035 super_types[mddev->major_version].
6036 validate_super(mddev, rdev);
6037 if ((info->state & (1<<MD_DISK_SYNC)) &&
6038 rdev->raid_disk != info->raid_disk) {
6039 /* This was a hot-add request, but events doesn't
6040 * match, so reject it.
6041 */
6042 export_rdev(rdev);
6043 return -EINVAL;
6044 }
6045
6046 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6047 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6048 set_bit(WriteMostly, &rdev->flags);
6049 else
6050 clear_bit(WriteMostly, &rdev->flags);
6051
6052 if (info->state & (1<<MD_DISK_JOURNAL)) {
6053 struct md_rdev *rdev2;
6054 bool has_journal = false;
6055
6056 /* make sure no existing journal disk */
6057 rdev_for_each(rdev2, mddev) {
6058 if (test_bit(Journal, &rdev2->flags)) {
6059 has_journal = true;
6060 break;
6061 }
6062 }
6063 if (has_journal) {
6064 export_rdev(rdev);
6065 return -EBUSY;
6066 }
6067 set_bit(Journal, &rdev->flags);
6068 }
6069 /*
6070 * check whether the device shows up in other nodes
6071 */
6072 if (mddev_is_clustered(mddev)) {
6073 if (info->state & (1 << MD_DISK_CANDIDATE))
6074 set_bit(Candidate, &rdev->flags);
6075 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6076 /* --add initiated by this node */
6077 err = md_cluster_ops->add_new_disk(mddev, rdev);
6078 if (err) {
6079 export_rdev(rdev);
6080 return err;
6081 }
6082 }
6083 }
6084
6085 rdev->raid_disk = -1;
6086 err = bind_rdev_to_array(rdev, mddev);
6087
6088 if (err)
6089 export_rdev(rdev);
6090
6091 if (mddev_is_clustered(mddev)) {
6092 if (info->state & (1 << MD_DISK_CANDIDATE))
6093 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6094 else {
6095 if (err)
6096 md_cluster_ops->add_new_disk_cancel(mddev);
6097 else
6098 err = add_bound_rdev(rdev);
6099 }
6100
6101 } else if (!err)
6102 err = add_bound_rdev(rdev);
6103
6104 return err;
6105 }
6106
6107 /* otherwise, add_new_disk is only allowed
6108 * for major_version==0 superblocks
6109 */
6110 if (mddev->major_version != 0) {
6111 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6112 mdname(mddev));
6113 return -EINVAL;
6114 }
6115
6116 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6117 int err;
6118 rdev = md_import_device(dev, -1, 0);
6119 if (IS_ERR(rdev)) {
6120 printk(KERN_WARNING
6121 "md: error, md_import_device() returned %ld\n",
6122 PTR_ERR(rdev));
6123 return PTR_ERR(rdev);
6124 }
6125 rdev->desc_nr = info->number;
6126 if (info->raid_disk < mddev->raid_disks)
6127 rdev->raid_disk = info->raid_disk;
6128 else
6129 rdev->raid_disk = -1;
6130
6131 if (rdev->raid_disk < mddev->raid_disks)
6132 if (info->state & (1<<MD_DISK_SYNC))
6133 set_bit(In_sync, &rdev->flags);
6134
6135 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6136 set_bit(WriteMostly, &rdev->flags);
6137
6138 if (!mddev->persistent) {
6139 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6140 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6141 } else
6142 rdev->sb_start = calc_dev_sboffset(rdev);
6143 rdev->sectors = rdev->sb_start;
6144
6145 err = bind_rdev_to_array(rdev, mddev);
6146 if (err) {
6147 export_rdev(rdev);
6148 return err;
6149 }
6150 }
6151
6152 return 0;
6153 }
6154
6155 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6156 {
6157 char b[BDEVNAME_SIZE];
6158 struct md_rdev *rdev;
6159
6160 rdev = find_rdev(mddev, dev);
6161 if (!rdev)
6162 return -ENXIO;
6163
6164 if (rdev->raid_disk < 0)
6165 goto kick_rdev;
6166
6167 clear_bit(Blocked, &rdev->flags);
6168 remove_and_add_spares(mddev, rdev);
6169
6170 if (rdev->raid_disk >= 0)
6171 goto busy;
6172
6173 kick_rdev:
6174 if (mddev_is_clustered(mddev))
6175 md_cluster_ops->remove_disk(mddev, rdev);
6176
6177 md_kick_rdev_from_array(rdev);
6178 md_update_sb(mddev, 1);
6179 md_new_event(mddev);
6180
6181 return 0;
6182 busy:
6183 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6184 bdevname(rdev->bdev,b), mdname(mddev));
6185 return -EBUSY;
6186 }
6187
6188 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6189 {
6190 char b[BDEVNAME_SIZE];
6191 int err;
6192 struct md_rdev *rdev;
6193
6194 if (!mddev->pers)
6195 return -ENODEV;
6196
6197 if (mddev->major_version != 0) {
6198 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6199 " version-0 superblocks.\n",
6200 mdname(mddev));
6201 return -EINVAL;
6202 }
6203 if (!mddev->pers->hot_add_disk) {
6204 printk(KERN_WARNING
6205 "%s: personality does not support diskops!\n",
6206 mdname(mddev));
6207 return -EINVAL;
6208 }
6209
6210 rdev = md_import_device(dev, -1, 0);
6211 if (IS_ERR(rdev)) {
6212 printk(KERN_WARNING
6213 "md: error, md_import_device() returned %ld\n",
6214 PTR_ERR(rdev));
6215 return -EINVAL;
6216 }
6217
6218 if (mddev->persistent)
6219 rdev->sb_start = calc_dev_sboffset(rdev);
6220 else
6221 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6222
6223 rdev->sectors = rdev->sb_start;
6224
6225 if (test_bit(Faulty, &rdev->flags)) {
6226 printk(KERN_WARNING
6227 "md: can not hot-add faulty %s disk to %s!\n",
6228 bdevname(rdev->bdev,b), mdname(mddev));
6229 err = -EINVAL;
6230 goto abort_export;
6231 }
6232
6233 clear_bit(In_sync, &rdev->flags);
6234 rdev->desc_nr = -1;
6235 rdev->saved_raid_disk = -1;
6236 err = bind_rdev_to_array(rdev, mddev);
6237 if (err)
6238 goto abort_export;
6239
6240 /*
6241 * The rest should better be atomic, we can have disk failures
6242 * noticed in interrupt contexts ...
6243 */
6244
6245 rdev->raid_disk = -1;
6246
6247 md_update_sb(mddev, 1);
6248 /*
6249 * Kick recovery, maybe this spare has to be added to the
6250 * array immediately.
6251 */
6252 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6253 md_wakeup_thread(mddev->thread);
6254 md_new_event(mddev);
6255 return 0;
6256
6257 abort_export:
6258 export_rdev(rdev);
6259 return err;
6260 }
6261
6262 static int set_bitmap_file(struct mddev *mddev, int fd)
6263 {
6264 int err = 0;
6265
6266 if (mddev->pers) {
6267 if (!mddev->pers->quiesce || !mddev->thread)
6268 return -EBUSY;
6269 if (mddev->recovery || mddev->sync_thread)
6270 return -EBUSY;
6271 /* we should be able to change the bitmap.. */
6272 }
6273
6274 if (fd >= 0) {
6275 struct inode *inode;
6276 struct file *f;
6277
6278 if (mddev->bitmap || mddev->bitmap_info.file)
6279 return -EEXIST; /* cannot add when bitmap is present */
6280 f = fget(fd);
6281
6282 if (f == NULL) {
6283 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6284 mdname(mddev));
6285 return -EBADF;
6286 }
6287
6288 inode = f->f_mapping->host;
6289 if (!S_ISREG(inode->i_mode)) {
6290 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6291 mdname(mddev));
6292 err = -EBADF;
6293 } else if (!(f->f_mode & FMODE_WRITE)) {
6294 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6295 mdname(mddev));
6296 err = -EBADF;
6297 } else if (atomic_read(&inode->i_writecount) != 1) {
6298 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6299 mdname(mddev));
6300 err = -EBUSY;
6301 }
6302 if (err) {
6303 fput(f);
6304 return err;
6305 }
6306 mddev->bitmap_info.file = f;
6307 mddev->bitmap_info.offset = 0; /* file overrides offset */
6308 } else if (mddev->bitmap == NULL)
6309 return -ENOENT; /* cannot remove what isn't there */
6310 err = 0;
6311 if (mddev->pers) {
6312 mddev->pers->quiesce(mddev, 1);
6313 if (fd >= 0) {
6314 struct bitmap *bitmap;
6315
6316 bitmap = bitmap_create(mddev, -1);
6317 if (!IS_ERR(bitmap)) {
6318 mddev->bitmap = bitmap;
6319 err = bitmap_load(mddev);
6320 } else
6321 err = PTR_ERR(bitmap);
6322 }
6323 if (fd < 0 || err) {
6324 bitmap_destroy(mddev);
6325 fd = -1; /* make sure to put the file */
6326 }
6327 mddev->pers->quiesce(mddev, 0);
6328 }
6329 if (fd < 0) {
6330 struct file *f = mddev->bitmap_info.file;
6331 if (f) {
6332 spin_lock(&mddev->lock);
6333 mddev->bitmap_info.file = NULL;
6334 spin_unlock(&mddev->lock);
6335 fput(f);
6336 }
6337 }
6338
6339 return err;
6340 }
6341
6342 /*
6343 * set_array_info is used two different ways
6344 * The original usage is when creating a new array.
6345 * In this usage, raid_disks is > 0 and it together with
6346 * level, size, not_persistent,layout,chunksize determine the
6347 * shape of the array.
6348 * This will always create an array with a type-0.90.0 superblock.
6349 * The newer usage is when assembling an array.
6350 * In this case raid_disks will be 0, and the major_version field is
6351 * use to determine which style super-blocks are to be found on the devices.
6352 * The minor and patch _version numbers are also kept incase the
6353 * super_block handler wishes to interpret them.
6354 */
6355 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6356 {
6357
6358 if (info->raid_disks == 0) {
6359 /* just setting version number for superblock loading */
6360 if (info->major_version < 0 ||
6361 info->major_version >= ARRAY_SIZE(super_types) ||
6362 super_types[info->major_version].name == NULL) {
6363 /* maybe try to auto-load a module? */
6364 printk(KERN_INFO
6365 "md: superblock version %d not known\n",
6366 info->major_version);
6367 return -EINVAL;
6368 }
6369 mddev->major_version = info->major_version;
6370 mddev->minor_version = info->minor_version;
6371 mddev->patch_version = info->patch_version;
6372 mddev->persistent = !info->not_persistent;
6373 /* ensure mddev_put doesn't delete this now that there
6374 * is some minimal configuration.
6375 */
6376 mddev->ctime = ktime_get_real_seconds();
6377 return 0;
6378 }
6379 mddev->major_version = MD_MAJOR_VERSION;
6380 mddev->minor_version = MD_MINOR_VERSION;
6381 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6382 mddev->ctime = ktime_get_real_seconds();
6383
6384 mddev->level = info->level;
6385 mddev->clevel[0] = 0;
6386 mddev->dev_sectors = 2 * (sector_t)info->size;
6387 mddev->raid_disks = info->raid_disks;
6388 /* don't set md_minor, it is determined by which /dev/md* was
6389 * openned
6390 */
6391 if (info->state & (1<<MD_SB_CLEAN))
6392 mddev->recovery_cp = MaxSector;
6393 else
6394 mddev->recovery_cp = 0;
6395 mddev->persistent = ! info->not_persistent;
6396 mddev->external = 0;
6397
6398 mddev->layout = info->layout;
6399 mddev->chunk_sectors = info->chunk_size >> 9;
6400
6401 mddev->max_disks = MD_SB_DISKS;
6402
6403 if (mddev->persistent)
6404 mddev->flags = 0;
6405 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6406
6407 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6408 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6409 mddev->bitmap_info.offset = 0;
6410
6411 mddev->reshape_position = MaxSector;
6412
6413 /*
6414 * Generate a 128 bit UUID
6415 */
6416 get_random_bytes(mddev->uuid, 16);
6417
6418 mddev->new_level = mddev->level;
6419 mddev->new_chunk_sectors = mddev->chunk_sectors;
6420 mddev->new_layout = mddev->layout;
6421 mddev->delta_disks = 0;
6422 mddev->reshape_backwards = 0;
6423
6424 return 0;
6425 }
6426
6427 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6428 {
6429 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6430
6431 if (mddev->external_size)
6432 return;
6433
6434 mddev->array_sectors = array_sectors;
6435 }
6436 EXPORT_SYMBOL(md_set_array_sectors);
6437
6438 static int update_size(struct mddev *mddev, sector_t num_sectors)
6439 {
6440 struct md_rdev *rdev;
6441 int rv;
6442 int fit = (num_sectors == 0);
6443
6444 /* cluster raid doesn't support update size */
6445 if (mddev_is_clustered(mddev))
6446 return -EINVAL;
6447
6448 if (mddev->pers->resize == NULL)
6449 return -EINVAL;
6450 /* The "num_sectors" is the number of sectors of each device that
6451 * is used. This can only make sense for arrays with redundancy.
6452 * linear and raid0 always use whatever space is available. We can only
6453 * consider changing this number if no resync or reconstruction is
6454 * happening, and if the new size is acceptable. It must fit before the
6455 * sb_start or, if that is <data_offset, it must fit before the size
6456 * of each device. If num_sectors is zero, we find the largest size
6457 * that fits.
6458 */
6459 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6460 mddev->sync_thread)
6461 return -EBUSY;
6462 if (mddev->ro)
6463 return -EROFS;
6464
6465 rdev_for_each(rdev, mddev) {
6466 sector_t avail = rdev->sectors;
6467
6468 if (fit && (num_sectors == 0 || num_sectors > avail))
6469 num_sectors = avail;
6470 if (avail < num_sectors)
6471 return -ENOSPC;
6472 }
6473 rv = mddev->pers->resize(mddev, num_sectors);
6474 if (!rv)
6475 revalidate_disk(mddev->gendisk);
6476 return rv;
6477 }
6478
6479 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6480 {
6481 int rv;
6482 struct md_rdev *rdev;
6483 /* change the number of raid disks */
6484 if (mddev->pers->check_reshape == NULL)
6485 return -EINVAL;
6486 if (mddev->ro)
6487 return -EROFS;
6488 if (raid_disks <= 0 ||
6489 (mddev->max_disks && raid_disks >= mddev->max_disks))
6490 return -EINVAL;
6491 if (mddev->sync_thread ||
6492 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6493 mddev->reshape_position != MaxSector)
6494 return -EBUSY;
6495
6496 rdev_for_each(rdev, mddev) {
6497 if (mddev->raid_disks < raid_disks &&
6498 rdev->data_offset < rdev->new_data_offset)
6499 return -EINVAL;
6500 if (mddev->raid_disks > raid_disks &&
6501 rdev->data_offset > rdev->new_data_offset)
6502 return -EINVAL;
6503 }
6504
6505 mddev->delta_disks = raid_disks - mddev->raid_disks;
6506 if (mddev->delta_disks < 0)
6507 mddev->reshape_backwards = 1;
6508 else if (mddev->delta_disks > 0)
6509 mddev->reshape_backwards = 0;
6510
6511 rv = mddev->pers->check_reshape(mddev);
6512 if (rv < 0) {
6513 mddev->delta_disks = 0;
6514 mddev->reshape_backwards = 0;
6515 }
6516 return rv;
6517 }
6518
6519 /*
6520 * update_array_info is used to change the configuration of an
6521 * on-line array.
6522 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6523 * fields in the info are checked against the array.
6524 * Any differences that cannot be handled will cause an error.
6525 * Normally, only one change can be managed at a time.
6526 */
6527 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6528 {
6529 int rv = 0;
6530 int cnt = 0;
6531 int state = 0;
6532
6533 /* calculate expected state,ignoring low bits */
6534 if (mddev->bitmap && mddev->bitmap_info.offset)
6535 state |= (1 << MD_SB_BITMAP_PRESENT);
6536
6537 if (mddev->major_version != info->major_version ||
6538 mddev->minor_version != info->minor_version ||
6539 /* mddev->patch_version != info->patch_version || */
6540 mddev->ctime != info->ctime ||
6541 mddev->level != info->level ||
6542 /* mddev->layout != info->layout || */
6543 mddev->persistent != !info->not_persistent ||
6544 mddev->chunk_sectors != info->chunk_size >> 9 ||
6545 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6546 ((state^info->state) & 0xfffffe00)
6547 )
6548 return -EINVAL;
6549 /* Check there is only one change */
6550 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6551 cnt++;
6552 if (mddev->raid_disks != info->raid_disks)
6553 cnt++;
6554 if (mddev->layout != info->layout)
6555 cnt++;
6556 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6557 cnt++;
6558 if (cnt == 0)
6559 return 0;
6560 if (cnt > 1)
6561 return -EINVAL;
6562
6563 if (mddev->layout != info->layout) {
6564 /* Change layout
6565 * we don't need to do anything at the md level, the
6566 * personality will take care of it all.
6567 */
6568 if (mddev->pers->check_reshape == NULL)
6569 return -EINVAL;
6570 else {
6571 mddev->new_layout = info->layout;
6572 rv = mddev->pers->check_reshape(mddev);
6573 if (rv)
6574 mddev->new_layout = mddev->layout;
6575 return rv;
6576 }
6577 }
6578 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6579 rv = update_size(mddev, (sector_t)info->size * 2);
6580
6581 if (mddev->raid_disks != info->raid_disks)
6582 rv = update_raid_disks(mddev, info->raid_disks);
6583
6584 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6585 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6586 rv = -EINVAL;
6587 goto err;
6588 }
6589 if (mddev->recovery || mddev->sync_thread) {
6590 rv = -EBUSY;
6591 goto err;
6592 }
6593 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6594 struct bitmap *bitmap;
6595 /* add the bitmap */
6596 if (mddev->bitmap) {
6597 rv = -EEXIST;
6598 goto err;
6599 }
6600 if (mddev->bitmap_info.default_offset == 0) {
6601 rv = -EINVAL;
6602 goto err;
6603 }
6604 mddev->bitmap_info.offset =
6605 mddev->bitmap_info.default_offset;
6606 mddev->bitmap_info.space =
6607 mddev->bitmap_info.default_space;
6608 mddev->pers->quiesce(mddev, 1);
6609 bitmap = bitmap_create(mddev, -1);
6610 if (!IS_ERR(bitmap)) {
6611 mddev->bitmap = bitmap;
6612 rv = bitmap_load(mddev);
6613 } else
6614 rv = PTR_ERR(bitmap);
6615 if (rv)
6616 bitmap_destroy(mddev);
6617 mddev->pers->quiesce(mddev, 0);
6618 } else {
6619 /* remove the bitmap */
6620 if (!mddev->bitmap) {
6621 rv = -ENOENT;
6622 goto err;
6623 }
6624 if (mddev->bitmap->storage.file) {
6625 rv = -EINVAL;
6626 goto err;
6627 }
6628 if (mddev->bitmap_info.nodes) {
6629 /* hold PW on all the bitmap lock */
6630 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6631 printk("md: can't change bitmap to none since the"
6632 " array is in use by more than one node\n");
6633 rv = -EPERM;
6634 md_cluster_ops->unlock_all_bitmaps(mddev);
6635 goto err;
6636 }
6637
6638 mddev->bitmap_info.nodes = 0;
6639 md_cluster_ops->leave(mddev);
6640 }
6641 mddev->pers->quiesce(mddev, 1);
6642 bitmap_destroy(mddev);
6643 mddev->pers->quiesce(mddev, 0);
6644 mddev->bitmap_info.offset = 0;
6645 }
6646 }
6647 md_update_sb(mddev, 1);
6648 return rv;
6649 err:
6650 return rv;
6651 }
6652
6653 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6654 {
6655 struct md_rdev *rdev;
6656 int err = 0;
6657
6658 if (mddev->pers == NULL)
6659 return -ENODEV;
6660
6661 rcu_read_lock();
6662 rdev = find_rdev_rcu(mddev, dev);
6663 if (!rdev)
6664 err = -ENODEV;
6665 else {
6666 md_error(mddev, rdev);
6667 if (!test_bit(Faulty, &rdev->flags))
6668 err = -EBUSY;
6669 }
6670 rcu_read_unlock();
6671 return err;
6672 }
6673
6674 /*
6675 * We have a problem here : there is no easy way to give a CHS
6676 * virtual geometry. We currently pretend that we have a 2 heads
6677 * 4 sectors (with a BIG number of cylinders...). This drives
6678 * dosfs just mad... ;-)
6679 */
6680 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6681 {
6682 struct mddev *mddev = bdev->bd_disk->private_data;
6683
6684 geo->heads = 2;
6685 geo->sectors = 4;
6686 geo->cylinders = mddev->array_sectors / 8;
6687 return 0;
6688 }
6689
6690 static inline bool md_ioctl_valid(unsigned int cmd)
6691 {
6692 switch (cmd) {
6693 case ADD_NEW_DISK:
6694 case BLKROSET:
6695 case GET_ARRAY_INFO:
6696 case GET_BITMAP_FILE:
6697 case GET_DISK_INFO:
6698 case HOT_ADD_DISK:
6699 case HOT_REMOVE_DISK:
6700 case RAID_AUTORUN:
6701 case RAID_VERSION:
6702 case RESTART_ARRAY_RW:
6703 case RUN_ARRAY:
6704 case SET_ARRAY_INFO:
6705 case SET_BITMAP_FILE:
6706 case SET_DISK_FAULTY:
6707 case STOP_ARRAY:
6708 case STOP_ARRAY_RO:
6709 case CLUSTERED_DISK_NACK:
6710 return true;
6711 default:
6712 return false;
6713 }
6714 }
6715
6716 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6717 unsigned int cmd, unsigned long arg)
6718 {
6719 int err = 0;
6720 void __user *argp = (void __user *)arg;
6721 struct mddev *mddev = NULL;
6722 int ro;
6723
6724 if (!md_ioctl_valid(cmd))
6725 return -ENOTTY;
6726
6727 switch (cmd) {
6728 case RAID_VERSION:
6729 case GET_ARRAY_INFO:
6730 case GET_DISK_INFO:
6731 break;
6732 default:
6733 if (!capable(CAP_SYS_ADMIN))
6734 return -EACCES;
6735 }
6736
6737 /*
6738 * Commands dealing with the RAID driver but not any
6739 * particular array:
6740 */
6741 switch (cmd) {
6742 case RAID_VERSION:
6743 err = get_version(argp);
6744 goto out;
6745
6746 #ifndef MODULE
6747 case RAID_AUTORUN:
6748 err = 0;
6749 autostart_arrays(arg);
6750 goto out;
6751 #endif
6752 default:;
6753 }
6754
6755 /*
6756 * Commands creating/starting a new array:
6757 */
6758
6759 mddev = bdev->bd_disk->private_data;
6760
6761 if (!mddev) {
6762 BUG();
6763 goto out;
6764 }
6765
6766 /* Some actions do not requires the mutex */
6767 switch (cmd) {
6768 case GET_ARRAY_INFO:
6769 if (!mddev->raid_disks && !mddev->external)
6770 err = -ENODEV;
6771 else
6772 err = get_array_info(mddev, argp);
6773 goto out;
6774
6775 case GET_DISK_INFO:
6776 if (!mddev->raid_disks && !mddev->external)
6777 err = -ENODEV;
6778 else
6779 err = get_disk_info(mddev, argp);
6780 goto out;
6781
6782 case SET_DISK_FAULTY:
6783 err = set_disk_faulty(mddev, new_decode_dev(arg));
6784 goto out;
6785
6786 case GET_BITMAP_FILE:
6787 err = get_bitmap_file(mddev, argp);
6788 goto out;
6789
6790 }
6791
6792 if (cmd == ADD_NEW_DISK)
6793 /* need to ensure md_delayed_delete() has completed */
6794 flush_workqueue(md_misc_wq);
6795
6796 if (cmd == HOT_REMOVE_DISK)
6797 /* need to ensure recovery thread has run */
6798 wait_event_interruptible_timeout(mddev->sb_wait,
6799 !test_bit(MD_RECOVERY_NEEDED,
6800 &mddev->flags),
6801 msecs_to_jiffies(5000));
6802 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6803 /* Need to flush page cache, and ensure no-one else opens
6804 * and writes
6805 */
6806 mutex_lock(&mddev->open_mutex);
6807 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6808 mutex_unlock(&mddev->open_mutex);
6809 err = -EBUSY;
6810 goto out;
6811 }
6812 set_bit(MD_STILL_CLOSED, &mddev->flags);
6813 mutex_unlock(&mddev->open_mutex);
6814 sync_blockdev(bdev);
6815 }
6816 err = mddev_lock(mddev);
6817 if (err) {
6818 printk(KERN_INFO
6819 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6820 err, cmd);
6821 goto out;
6822 }
6823
6824 if (cmd == SET_ARRAY_INFO) {
6825 mdu_array_info_t info;
6826 if (!arg)
6827 memset(&info, 0, sizeof(info));
6828 else if (copy_from_user(&info, argp, sizeof(info))) {
6829 err = -EFAULT;
6830 goto unlock;
6831 }
6832 if (mddev->pers) {
6833 err = update_array_info(mddev, &info);
6834 if (err) {
6835 printk(KERN_WARNING "md: couldn't update"
6836 " array info. %d\n", err);
6837 goto unlock;
6838 }
6839 goto unlock;
6840 }
6841 if (!list_empty(&mddev->disks)) {
6842 printk(KERN_WARNING
6843 "md: array %s already has disks!\n",
6844 mdname(mddev));
6845 err = -EBUSY;
6846 goto unlock;
6847 }
6848 if (mddev->raid_disks) {
6849 printk(KERN_WARNING
6850 "md: array %s already initialised!\n",
6851 mdname(mddev));
6852 err = -EBUSY;
6853 goto unlock;
6854 }
6855 err = set_array_info(mddev, &info);
6856 if (err) {
6857 printk(KERN_WARNING "md: couldn't set"
6858 " array info. %d\n", err);
6859 goto unlock;
6860 }
6861 goto unlock;
6862 }
6863
6864 /*
6865 * Commands querying/configuring an existing array:
6866 */
6867 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6868 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6869 if ((!mddev->raid_disks && !mddev->external)
6870 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6871 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6872 && cmd != GET_BITMAP_FILE) {
6873 err = -ENODEV;
6874 goto unlock;
6875 }
6876
6877 /*
6878 * Commands even a read-only array can execute:
6879 */
6880 switch (cmd) {
6881 case RESTART_ARRAY_RW:
6882 err = restart_array(mddev);
6883 goto unlock;
6884
6885 case STOP_ARRAY:
6886 err = do_md_stop(mddev, 0, bdev);
6887 goto unlock;
6888
6889 case STOP_ARRAY_RO:
6890 err = md_set_readonly(mddev, bdev);
6891 goto unlock;
6892
6893 case HOT_REMOVE_DISK:
6894 err = hot_remove_disk(mddev, new_decode_dev(arg));
6895 goto unlock;
6896
6897 case ADD_NEW_DISK:
6898 /* We can support ADD_NEW_DISK on read-only arrays
6899 * only if we are re-adding a preexisting device.
6900 * So require mddev->pers and MD_DISK_SYNC.
6901 */
6902 if (mddev->pers) {
6903 mdu_disk_info_t info;
6904 if (copy_from_user(&info, argp, sizeof(info)))
6905 err = -EFAULT;
6906 else if (!(info.state & (1<<MD_DISK_SYNC)))
6907 /* Need to clear read-only for this */
6908 break;
6909 else
6910 err = add_new_disk(mddev, &info);
6911 goto unlock;
6912 }
6913 break;
6914
6915 case BLKROSET:
6916 if (get_user(ro, (int __user *)(arg))) {
6917 err = -EFAULT;
6918 goto unlock;
6919 }
6920 err = -EINVAL;
6921
6922 /* if the bdev is going readonly the value of mddev->ro
6923 * does not matter, no writes are coming
6924 */
6925 if (ro)
6926 goto unlock;
6927
6928 /* are we are already prepared for writes? */
6929 if (mddev->ro != 1)
6930 goto unlock;
6931
6932 /* transitioning to readauto need only happen for
6933 * arrays that call md_write_start
6934 */
6935 if (mddev->pers) {
6936 err = restart_array(mddev);
6937 if (err == 0) {
6938 mddev->ro = 2;
6939 set_disk_ro(mddev->gendisk, 0);
6940 }
6941 }
6942 goto unlock;
6943 }
6944
6945 /*
6946 * The remaining ioctls are changing the state of the
6947 * superblock, so we do not allow them on read-only arrays.
6948 */
6949 if (mddev->ro && mddev->pers) {
6950 if (mddev->ro == 2) {
6951 mddev->ro = 0;
6952 sysfs_notify_dirent_safe(mddev->sysfs_state);
6953 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6954 /* mddev_unlock will wake thread */
6955 /* If a device failed while we were read-only, we
6956 * need to make sure the metadata is updated now.
6957 */
6958 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6959 mddev_unlock(mddev);
6960 wait_event(mddev->sb_wait,
6961 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6962 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6963 mddev_lock_nointr(mddev);
6964 }
6965 } else {
6966 err = -EROFS;
6967 goto unlock;
6968 }
6969 }
6970
6971 switch (cmd) {
6972 case ADD_NEW_DISK:
6973 {
6974 mdu_disk_info_t info;
6975 if (copy_from_user(&info, argp, sizeof(info)))
6976 err = -EFAULT;
6977 else
6978 err = add_new_disk(mddev, &info);
6979 goto unlock;
6980 }
6981
6982 case CLUSTERED_DISK_NACK:
6983 if (mddev_is_clustered(mddev))
6984 md_cluster_ops->new_disk_ack(mddev, false);
6985 else
6986 err = -EINVAL;
6987 goto unlock;
6988
6989 case HOT_ADD_DISK:
6990 err = hot_add_disk(mddev, new_decode_dev(arg));
6991 goto unlock;
6992
6993 case RUN_ARRAY:
6994 err = do_md_run(mddev);
6995 goto unlock;
6996
6997 case SET_BITMAP_FILE:
6998 err = set_bitmap_file(mddev, (int)arg);
6999 goto unlock;
7000
7001 default:
7002 err = -EINVAL;
7003 goto unlock;
7004 }
7005
7006 unlock:
7007 if (mddev->hold_active == UNTIL_IOCTL &&
7008 err != -EINVAL)
7009 mddev->hold_active = 0;
7010 mddev_unlock(mddev);
7011 out:
7012 return err;
7013 }
7014 #ifdef CONFIG_COMPAT
7015 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7016 unsigned int cmd, unsigned long arg)
7017 {
7018 switch (cmd) {
7019 case HOT_REMOVE_DISK:
7020 case HOT_ADD_DISK:
7021 case SET_DISK_FAULTY:
7022 case SET_BITMAP_FILE:
7023 /* These take in integer arg, do not convert */
7024 break;
7025 default:
7026 arg = (unsigned long)compat_ptr(arg);
7027 break;
7028 }
7029
7030 return md_ioctl(bdev, mode, cmd, arg);
7031 }
7032 #endif /* CONFIG_COMPAT */
7033
7034 static int md_open(struct block_device *bdev, fmode_t mode)
7035 {
7036 /*
7037 * Succeed if we can lock the mddev, which confirms that
7038 * it isn't being stopped right now.
7039 */
7040 struct mddev *mddev = mddev_find(bdev->bd_dev);
7041 int err;
7042
7043 if (!mddev)
7044 return -ENODEV;
7045
7046 if (mddev->gendisk != bdev->bd_disk) {
7047 /* we are racing with mddev_put which is discarding this
7048 * bd_disk.
7049 */
7050 mddev_put(mddev);
7051 /* Wait until bdev->bd_disk is definitely gone */
7052 flush_workqueue(md_misc_wq);
7053 /* Then retry the open from the top */
7054 return -ERESTARTSYS;
7055 }
7056 BUG_ON(mddev != bdev->bd_disk->private_data);
7057
7058 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7059 goto out;
7060
7061 err = 0;
7062 atomic_inc(&mddev->openers);
7063 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7064 mutex_unlock(&mddev->open_mutex);
7065
7066 check_disk_change(bdev);
7067 out:
7068 return err;
7069 }
7070
7071 static void md_release(struct gendisk *disk, fmode_t mode)
7072 {
7073 struct mddev *mddev = disk->private_data;
7074
7075 BUG_ON(!mddev);
7076 atomic_dec(&mddev->openers);
7077 mddev_put(mddev);
7078 }
7079
7080 static int md_media_changed(struct gendisk *disk)
7081 {
7082 struct mddev *mddev = disk->private_data;
7083
7084 return mddev->changed;
7085 }
7086
7087 static int md_revalidate(struct gendisk *disk)
7088 {
7089 struct mddev *mddev = disk->private_data;
7090
7091 mddev->changed = 0;
7092 return 0;
7093 }
7094 static const struct block_device_operations md_fops =
7095 {
7096 .owner = THIS_MODULE,
7097 .open = md_open,
7098 .release = md_release,
7099 .ioctl = md_ioctl,
7100 #ifdef CONFIG_COMPAT
7101 .compat_ioctl = md_compat_ioctl,
7102 #endif
7103 .getgeo = md_getgeo,
7104 .media_changed = md_media_changed,
7105 .revalidate_disk= md_revalidate,
7106 };
7107
7108 static int md_thread(void *arg)
7109 {
7110 struct md_thread *thread = arg;
7111
7112 /*
7113 * md_thread is a 'system-thread', it's priority should be very
7114 * high. We avoid resource deadlocks individually in each
7115 * raid personality. (RAID5 does preallocation) We also use RR and
7116 * the very same RT priority as kswapd, thus we will never get
7117 * into a priority inversion deadlock.
7118 *
7119 * we definitely have to have equal or higher priority than
7120 * bdflush, otherwise bdflush will deadlock if there are too
7121 * many dirty RAID5 blocks.
7122 */
7123
7124 allow_signal(SIGKILL);
7125 while (!kthread_should_stop()) {
7126
7127 /* We need to wait INTERRUPTIBLE so that
7128 * we don't add to the load-average.
7129 * That means we need to be sure no signals are
7130 * pending
7131 */
7132 if (signal_pending(current))
7133 flush_signals(current);
7134
7135 wait_event_interruptible_timeout
7136 (thread->wqueue,
7137 test_bit(THREAD_WAKEUP, &thread->flags)
7138 || kthread_should_stop(),
7139 thread->timeout);
7140
7141 clear_bit(THREAD_WAKEUP, &thread->flags);
7142 if (!kthread_should_stop())
7143 thread->run(thread);
7144 }
7145
7146 return 0;
7147 }
7148
7149 void md_wakeup_thread(struct md_thread *thread)
7150 {
7151 if (thread) {
7152 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7153 set_bit(THREAD_WAKEUP, &thread->flags);
7154 wake_up(&thread->wqueue);
7155 }
7156 }
7157 EXPORT_SYMBOL(md_wakeup_thread);
7158
7159 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7160 struct mddev *mddev, const char *name)
7161 {
7162 struct md_thread *thread;
7163
7164 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7165 if (!thread)
7166 return NULL;
7167
7168 init_waitqueue_head(&thread->wqueue);
7169
7170 thread->run = run;
7171 thread->mddev = mddev;
7172 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7173 thread->tsk = kthread_run(md_thread, thread,
7174 "%s_%s",
7175 mdname(thread->mddev),
7176 name);
7177 if (IS_ERR(thread->tsk)) {
7178 kfree(thread);
7179 return NULL;
7180 }
7181 return thread;
7182 }
7183 EXPORT_SYMBOL(md_register_thread);
7184
7185 void md_unregister_thread(struct md_thread **threadp)
7186 {
7187 struct md_thread *thread = *threadp;
7188 if (!thread)
7189 return;
7190 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7191 /* Locking ensures that mddev_unlock does not wake_up a
7192 * non-existent thread
7193 */
7194 spin_lock(&pers_lock);
7195 *threadp = NULL;
7196 spin_unlock(&pers_lock);
7197
7198 kthread_stop(thread->tsk);
7199 kfree(thread);
7200 }
7201 EXPORT_SYMBOL(md_unregister_thread);
7202
7203 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7204 {
7205 if (!rdev || test_bit(Faulty, &rdev->flags))
7206 return;
7207
7208 if (!mddev->pers || !mddev->pers->error_handler)
7209 return;
7210 mddev->pers->error_handler(mddev,rdev);
7211 if (mddev->degraded)
7212 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7213 sysfs_notify_dirent_safe(rdev->sysfs_state);
7214 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7216 md_wakeup_thread(mddev->thread);
7217 if (mddev->event_work.func)
7218 queue_work(md_misc_wq, &mddev->event_work);
7219 md_new_event(mddev);
7220 }
7221 EXPORT_SYMBOL(md_error);
7222
7223 /* seq_file implementation /proc/mdstat */
7224
7225 static void status_unused(struct seq_file *seq)
7226 {
7227 int i = 0;
7228 struct md_rdev *rdev;
7229
7230 seq_printf(seq, "unused devices: ");
7231
7232 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7233 char b[BDEVNAME_SIZE];
7234 i++;
7235 seq_printf(seq, "%s ",
7236 bdevname(rdev->bdev,b));
7237 }
7238 if (!i)
7239 seq_printf(seq, "<none>");
7240
7241 seq_printf(seq, "\n");
7242 }
7243
7244 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7245 {
7246 sector_t max_sectors, resync, res;
7247 unsigned long dt, db;
7248 sector_t rt;
7249 int scale;
7250 unsigned int per_milli;
7251
7252 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7253 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7254 max_sectors = mddev->resync_max_sectors;
7255 else
7256 max_sectors = mddev->dev_sectors;
7257
7258 resync = mddev->curr_resync;
7259 if (resync <= 3) {
7260 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7261 /* Still cleaning up */
7262 resync = max_sectors;
7263 } else
7264 resync -= atomic_read(&mddev->recovery_active);
7265
7266 if (resync == 0) {
7267 if (mddev->recovery_cp < MaxSector) {
7268 seq_printf(seq, "\tresync=PENDING");
7269 return 1;
7270 }
7271 return 0;
7272 }
7273 if (resync < 3) {
7274 seq_printf(seq, "\tresync=DELAYED");
7275 return 1;
7276 }
7277
7278 WARN_ON(max_sectors == 0);
7279 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7280 * in a sector_t, and (max_sectors>>scale) will fit in a
7281 * u32, as those are the requirements for sector_div.
7282 * Thus 'scale' must be at least 10
7283 */
7284 scale = 10;
7285 if (sizeof(sector_t) > sizeof(unsigned long)) {
7286 while ( max_sectors/2 > (1ULL<<(scale+32)))
7287 scale++;
7288 }
7289 res = (resync>>scale)*1000;
7290 sector_div(res, (u32)((max_sectors>>scale)+1));
7291
7292 per_milli = res;
7293 {
7294 int i, x = per_milli/50, y = 20-x;
7295 seq_printf(seq, "[");
7296 for (i = 0; i < x; i++)
7297 seq_printf(seq, "=");
7298 seq_printf(seq, ">");
7299 for (i = 0; i < y; i++)
7300 seq_printf(seq, ".");
7301 seq_printf(seq, "] ");
7302 }
7303 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7304 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7305 "reshape" :
7306 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7307 "check" :
7308 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7309 "resync" : "recovery"))),
7310 per_milli/10, per_milli % 10,
7311 (unsigned long long) resync/2,
7312 (unsigned long long) max_sectors/2);
7313
7314 /*
7315 * dt: time from mark until now
7316 * db: blocks written from mark until now
7317 * rt: remaining time
7318 *
7319 * rt is a sector_t, so could be 32bit or 64bit.
7320 * So we divide before multiply in case it is 32bit and close
7321 * to the limit.
7322 * We scale the divisor (db) by 32 to avoid losing precision
7323 * near the end of resync when the number of remaining sectors
7324 * is close to 'db'.
7325 * We then divide rt by 32 after multiplying by db to compensate.
7326 * The '+1' avoids division by zero if db is very small.
7327 */
7328 dt = ((jiffies - mddev->resync_mark) / HZ);
7329 if (!dt) dt++;
7330 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7331 - mddev->resync_mark_cnt;
7332
7333 rt = max_sectors - resync; /* number of remaining sectors */
7334 sector_div(rt, db/32+1);
7335 rt *= dt;
7336 rt >>= 5;
7337
7338 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7339 ((unsigned long)rt % 60)/6);
7340
7341 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7342 return 1;
7343 }
7344
7345 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7346 {
7347 struct list_head *tmp;
7348 loff_t l = *pos;
7349 struct mddev *mddev;
7350
7351 if (l >= 0x10000)
7352 return NULL;
7353 if (!l--)
7354 /* header */
7355 return (void*)1;
7356
7357 spin_lock(&all_mddevs_lock);
7358 list_for_each(tmp,&all_mddevs)
7359 if (!l--) {
7360 mddev = list_entry(tmp, struct mddev, all_mddevs);
7361 mddev_get(mddev);
7362 spin_unlock(&all_mddevs_lock);
7363 return mddev;
7364 }
7365 spin_unlock(&all_mddevs_lock);
7366 if (!l--)
7367 return (void*)2;/* tail */
7368 return NULL;
7369 }
7370
7371 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7372 {
7373 struct list_head *tmp;
7374 struct mddev *next_mddev, *mddev = v;
7375
7376 ++*pos;
7377 if (v == (void*)2)
7378 return NULL;
7379
7380 spin_lock(&all_mddevs_lock);
7381 if (v == (void*)1)
7382 tmp = all_mddevs.next;
7383 else
7384 tmp = mddev->all_mddevs.next;
7385 if (tmp != &all_mddevs)
7386 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7387 else {
7388 next_mddev = (void*)2;
7389 *pos = 0x10000;
7390 }
7391 spin_unlock(&all_mddevs_lock);
7392
7393 if (v != (void*)1)
7394 mddev_put(mddev);
7395 return next_mddev;
7396
7397 }
7398
7399 static void md_seq_stop(struct seq_file *seq, void *v)
7400 {
7401 struct mddev *mddev = v;
7402
7403 if (mddev && v != (void*)1 && v != (void*)2)
7404 mddev_put(mddev);
7405 }
7406
7407 static int md_seq_show(struct seq_file *seq, void *v)
7408 {
7409 struct mddev *mddev = v;
7410 sector_t sectors;
7411 struct md_rdev *rdev;
7412
7413 if (v == (void*)1) {
7414 struct md_personality *pers;
7415 seq_printf(seq, "Personalities : ");
7416 spin_lock(&pers_lock);
7417 list_for_each_entry(pers, &pers_list, list)
7418 seq_printf(seq, "[%s] ", pers->name);
7419
7420 spin_unlock(&pers_lock);
7421 seq_printf(seq, "\n");
7422 seq->poll_event = atomic_read(&md_event_count);
7423 return 0;
7424 }
7425 if (v == (void*)2) {
7426 status_unused(seq);
7427 return 0;
7428 }
7429
7430 spin_lock(&mddev->lock);
7431 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7432 seq_printf(seq, "%s : %sactive", mdname(mddev),
7433 mddev->pers ? "" : "in");
7434 if (mddev->pers) {
7435 if (mddev->ro==1)
7436 seq_printf(seq, " (read-only)");
7437 if (mddev->ro==2)
7438 seq_printf(seq, " (auto-read-only)");
7439 seq_printf(seq, " %s", mddev->pers->name);
7440 }
7441
7442 sectors = 0;
7443 rcu_read_lock();
7444 rdev_for_each_rcu(rdev, mddev) {
7445 char b[BDEVNAME_SIZE];
7446 seq_printf(seq, " %s[%d]",
7447 bdevname(rdev->bdev,b), rdev->desc_nr);
7448 if (test_bit(WriteMostly, &rdev->flags))
7449 seq_printf(seq, "(W)");
7450 if (test_bit(Journal, &rdev->flags))
7451 seq_printf(seq, "(J)");
7452 if (test_bit(Faulty, &rdev->flags)) {
7453 seq_printf(seq, "(F)");
7454 continue;
7455 }
7456 if (rdev->raid_disk < 0)
7457 seq_printf(seq, "(S)"); /* spare */
7458 if (test_bit(Replacement, &rdev->flags))
7459 seq_printf(seq, "(R)");
7460 sectors += rdev->sectors;
7461 }
7462 rcu_read_unlock();
7463
7464 if (!list_empty(&mddev->disks)) {
7465 if (mddev->pers)
7466 seq_printf(seq, "\n %llu blocks",
7467 (unsigned long long)
7468 mddev->array_sectors / 2);
7469 else
7470 seq_printf(seq, "\n %llu blocks",
7471 (unsigned long long)sectors / 2);
7472 }
7473 if (mddev->persistent) {
7474 if (mddev->major_version != 0 ||
7475 mddev->minor_version != 90) {
7476 seq_printf(seq," super %d.%d",
7477 mddev->major_version,
7478 mddev->minor_version);
7479 }
7480 } else if (mddev->external)
7481 seq_printf(seq, " super external:%s",
7482 mddev->metadata_type);
7483 else
7484 seq_printf(seq, " super non-persistent");
7485
7486 if (mddev->pers) {
7487 mddev->pers->status(seq, mddev);
7488 seq_printf(seq, "\n ");
7489 if (mddev->pers->sync_request) {
7490 if (status_resync(seq, mddev))
7491 seq_printf(seq, "\n ");
7492 }
7493 } else
7494 seq_printf(seq, "\n ");
7495
7496 bitmap_status(seq, mddev->bitmap);
7497
7498 seq_printf(seq, "\n");
7499 }
7500 spin_unlock(&mddev->lock);
7501
7502 return 0;
7503 }
7504
7505 static const struct seq_operations md_seq_ops = {
7506 .start = md_seq_start,
7507 .next = md_seq_next,
7508 .stop = md_seq_stop,
7509 .show = md_seq_show,
7510 };
7511
7512 static int md_seq_open(struct inode *inode, struct file *file)
7513 {
7514 struct seq_file *seq;
7515 int error;
7516
7517 error = seq_open(file, &md_seq_ops);
7518 if (error)
7519 return error;
7520
7521 seq = file->private_data;
7522 seq->poll_event = atomic_read(&md_event_count);
7523 return error;
7524 }
7525
7526 static int md_unloading;
7527 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7528 {
7529 struct seq_file *seq = filp->private_data;
7530 int mask;
7531
7532 if (md_unloading)
7533 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7534 poll_wait(filp, &md_event_waiters, wait);
7535
7536 /* always allow read */
7537 mask = POLLIN | POLLRDNORM;
7538
7539 if (seq->poll_event != atomic_read(&md_event_count))
7540 mask |= POLLERR | POLLPRI;
7541 return mask;
7542 }
7543
7544 static const struct file_operations md_seq_fops = {
7545 .owner = THIS_MODULE,
7546 .open = md_seq_open,
7547 .read = seq_read,
7548 .llseek = seq_lseek,
7549 .release = seq_release_private,
7550 .poll = mdstat_poll,
7551 };
7552
7553 int register_md_personality(struct md_personality *p)
7554 {
7555 printk(KERN_INFO "md: %s personality registered for level %d\n",
7556 p->name, p->level);
7557 spin_lock(&pers_lock);
7558 list_add_tail(&p->list, &pers_list);
7559 spin_unlock(&pers_lock);
7560 return 0;
7561 }
7562 EXPORT_SYMBOL(register_md_personality);
7563
7564 int unregister_md_personality(struct md_personality *p)
7565 {
7566 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7567 spin_lock(&pers_lock);
7568 list_del_init(&p->list);
7569 spin_unlock(&pers_lock);
7570 return 0;
7571 }
7572 EXPORT_SYMBOL(unregister_md_personality);
7573
7574 int register_md_cluster_operations(struct md_cluster_operations *ops,
7575 struct module *module)
7576 {
7577 int ret = 0;
7578 spin_lock(&pers_lock);
7579 if (md_cluster_ops != NULL)
7580 ret = -EALREADY;
7581 else {
7582 md_cluster_ops = ops;
7583 md_cluster_mod = module;
7584 }
7585 spin_unlock(&pers_lock);
7586 return ret;
7587 }
7588 EXPORT_SYMBOL(register_md_cluster_operations);
7589
7590 int unregister_md_cluster_operations(void)
7591 {
7592 spin_lock(&pers_lock);
7593 md_cluster_ops = NULL;
7594 spin_unlock(&pers_lock);
7595 return 0;
7596 }
7597 EXPORT_SYMBOL(unregister_md_cluster_operations);
7598
7599 int md_setup_cluster(struct mddev *mddev, int nodes)
7600 {
7601 int err;
7602
7603 err = request_module("md-cluster");
7604 if (err) {
7605 pr_err("md-cluster module not found.\n");
7606 return -ENOENT;
7607 }
7608
7609 spin_lock(&pers_lock);
7610 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7611 spin_unlock(&pers_lock);
7612 return -ENOENT;
7613 }
7614 spin_unlock(&pers_lock);
7615
7616 return md_cluster_ops->join(mddev, nodes);
7617 }
7618
7619 void md_cluster_stop(struct mddev *mddev)
7620 {
7621 if (!md_cluster_ops)
7622 return;
7623 md_cluster_ops->leave(mddev);
7624 module_put(md_cluster_mod);
7625 }
7626
7627 static int is_mddev_idle(struct mddev *mddev, int init)
7628 {
7629 struct md_rdev *rdev;
7630 int idle;
7631 int curr_events;
7632
7633 idle = 1;
7634 rcu_read_lock();
7635 rdev_for_each_rcu(rdev, mddev) {
7636 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7637 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7638 (int)part_stat_read(&disk->part0, sectors[1]) -
7639 atomic_read(&disk->sync_io);
7640 /* sync IO will cause sync_io to increase before the disk_stats
7641 * as sync_io is counted when a request starts, and
7642 * disk_stats is counted when it completes.
7643 * So resync activity will cause curr_events to be smaller than
7644 * when there was no such activity.
7645 * non-sync IO will cause disk_stat to increase without
7646 * increasing sync_io so curr_events will (eventually)
7647 * be larger than it was before. Once it becomes
7648 * substantially larger, the test below will cause
7649 * the array to appear non-idle, and resync will slow
7650 * down.
7651 * If there is a lot of outstanding resync activity when
7652 * we set last_event to curr_events, then all that activity
7653 * completing might cause the array to appear non-idle
7654 * and resync will be slowed down even though there might
7655 * not have been non-resync activity. This will only
7656 * happen once though. 'last_events' will soon reflect
7657 * the state where there is little or no outstanding
7658 * resync requests, and further resync activity will
7659 * always make curr_events less than last_events.
7660 *
7661 */
7662 if (init || curr_events - rdev->last_events > 64) {
7663 rdev->last_events = curr_events;
7664 idle = 0;
7665 }
7666 }
7667 rcu_read_unlock();
7668 return idle;
7669 }
7670
7671 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7672 {
7673 /* another "blocks" (512byte) blocks have been synced */
7674 atomic_sub(blocks, &mddev->recovery_active);
7675 wake_up(&mddev->recovery_wait);
7676 if (!ok) {
7677 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7678 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7679 md_wakeup_thread(mddev->thread);
7680 // stop recovery, signal do_sync ....
7681 }
7682 }
7683 EXPORT_SYMBOL(md_done_sync);
7684
7685 /* md_write_start(mddev, bi)
7686 * If we need to update some array metadata (e.g. 'active' flag
7687 * in superblock) before writing, schedule a superblock update
7688 * and wait for it to complete.
7689 */
7690 void md_write_start(struct mddev *mddev, struct bio *bi)
7691 {
7692 int did_change = 0;
7693 if (bio_data_dir(bi) != WRITE)
7694 return;
7695
7696 BUG_ON(mddev->ro == 1);
7697 if (mddev->ro == 2) {
7698 /* need to switch to read/write */
7699 mddev->ro = 0;
7700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7701 md_wakeup_thread(mddev->thread);
7702 md_wakeup_thread(mddev->sync_thread);
7703 did_change = 1;
7704 }
7705 atomic_inc(&mddev->writes_pending);
7706 if (mddev->safemode == 1)
7707 mddev->safemode = 0;
7708 if (mddev->in_sync) {
7709 spin_lock(&mddev->lock);
7710 if (mddev->in_sync) {
7711 mddev->in_sync = 0;
7712 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7713 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7714 md_wakeup_thread(mddev->thread);
7715 did_change = 1;
7716 }
7717 spin_unlock(&mddev->lock);
7718 }
7719 if (did_change)
7720 sysfs_notify_dirent_safe(mddev->sysfs_state);
7721 wait_event(mddev->sb_wait,
7722 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7723 }
7724 EXPORT_SYMBOL(md_write_start);
7725
7726 void md_write_end(struct mddev *mddev)
7727 {
7728 if (atomic_dec_and_test(&mddev->writes_pending)) {
7729 if (mddev->safemode == 2)
7730 md_wakeup_thread(mddev->thread);
7731 else if (mddev->safemode_delay)
7732 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7733 }
7734 }
7735 EXPORT_SYMBOL(md_write_end);
7736
7737 /* md_allow_write(mddev)
7738 * Calling this ensures that the array is marked 'active' so that writes
7739 * may proceed without blocking. It is important to call this before
7740 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7741 * Must be called with mddev_lock held.
7742 *
7743 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7744 * is dropped, so return -EAGAIN after notifying userspace.
7745 */
7746 int md_allow_write(struct mddev *mddev)
7747 {
7748 if (!mddev->pers)
7749 return 0;
7750 if (mddev->ro)
7751 return 0;
7752 if (!mddev->pers->sync_request)
7753 return 0;
7754
7755 spin_lock(&mddev->lock);
7756 if (mddev->in_sync) {
7757 mddev->in_sync = 0;
7758 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7759 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7760 if (mddev->safemode_delay &&
7761 mddev->safemode == 0)
7762 mddev->safemode = 1;
7763 spin_unlock(&mddev->lock);
7764 md_update_sb(mddev, 0);
7765 sysfs_notify_dirent_safe(mddev->sysfs_state);
7766 } else
7767 spin_unlock(&mddev->lock);
7768
7769 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7770 return -EAGAIN;
7771 else
7772 return 0;
7773 }
7774 EXPORT_SYMBOL_GPL(md_allow_write);
7775
7776 #define SYNC_MARKS 10
7777 #define SYNC_MARK_STEP (3*HZ)
7778 #define UPDATE_FREQUENCY (5*60*HZ)
7779 void md_do_sync(struct md_thread *thread)
7780 {
7781 struct mddev *mddev = thread->mddev;
7782 struct mddev *mddev2;
7783 unsigned int currspeed = 0,
7784 window;
7785 sector_t max_sectors,j, io_sectors, recovery_done;
7786 unsigned long mark[SYNC_MARKS];
7787 unsigned long update_time;
7788 sector_t mark_cnt[SYNC_MARKS];
7789 int last_mark,m;
7790 struct list_head *tmp;
7791 sector_t last_check;
7792 int skipped = 0;
7793 struct md_rdev *rdev;
7794 char *desc, *action = NULL;
7795 struct blk_plug plug;
7796 int ret;
7797
7798 /* just incase thread restarts... */
7799 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7800 return;
7801 if (mddev->ro) {/* never try to sync a read-only array */
7802 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7803 return;
7804 }
7805
7806 if (mddev_is_clustered(mddev)) {
7807 ret = md_cluster_ops->resync_start(mddev);
7808 if (ret)
7809 goto skip;
7810
7811 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
7812 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7813 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7814 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7815 && ((unsigned long long)mddev->curr_resync_completed
7816 < (unsigned long long)mddev->resync_max_sectors))
7817 goto skip;
7818 }
7819
7820 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7821 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7822 desc = "data-check";
7823 action = "check";
7824 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7825 desc = "requested-resync";
7826 action = "repair";
7827 } else
7828 desc = "resync";
7829 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7830 desc = "reshape";
7831 else
7832 desc = "recovery";
7833
7834 mddev->last_sync_action = action ?: desc;
7835
7836 /* we overload curr_resync somewhat here.
7837 * 0 == not engaged in resync at all
7838 * 2 == checking that there is no conflict with another sync
7839 * 1 == like 2, but have yielded to allow conflicting resync to
7840 * commense
7841 * other == active in resync - this many blocks
7842 *
7843 * Before starting a resync we must have set curr_resync to
7844 * 2, and then checked that every "conflicting" array has curr_resync
7845 * less than ours. When we find one that is the same or higher
7846 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7847 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7848 * This will mean we have to start checking from the beginning again.
7849 *
7850 */
7851
7852 do {
7853 mddev->curr_resync = 2;
7854
7855 try_again:
7856 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7857 goto skip;
7858 for_each_mddev(mddev2, tmp) {
7859 if (mddev2 == mddev)
7860 continue;
7861 if (!mddev->parallel_resync
7862 && mddev2->curr_resync
7863 && match_mddev_units(mddev, mddev2)) {
7864 DEFINE_WAIT(wq);
7865 if (mddev < mddev2 && mddev->curr_resync == 2) {
7866 /* arbitrarily yield */
7867 mddev->curr_resync = 1;
7868 wake_up(&resync_wait);
7869 }
7870 if (mddev > mddev2 && mddev->curr_resync == 1)
7871 /* no need to wait here, we can wait the next
7872 * time 'round when curr_resync == 2
7873 */
7874 continue;
7875 /* We need to wait 'interruptible' so as not to
7876 * contribute to the load average, and not to
7877 * be caught by 'softlockup'
7878 */
7879 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7880 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7881 mddev2->curr_resync >= mddev->curr_resync) {
7882 printk(KERN_INFO "md: delaying %s of %s"
7883 " until %s has finished (they"
7884 " share one or more physical units)\n",
7885 desc, mdname(mddev), mdname(mddev2));
7886 mddev_put(mddev2);
7887 if (signal_pending(current))
7888 flush_signals(current);
7889 schedule();
7890 finish_wait(&resync_wait, &wq);
7891 goto try_again;
7892 }
7893 finish_wait(&resync_wait, &wq);
7894 }
7895 }
7896 } while (mddev->curr_resync < 2);
7897
7898 j = 0;
7899 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7900 /* resync follows the size requested by the personality,
7901 * which defaults to physical size, but can be virtual size
7902 */
7903 max_sectors = mddev->resync_max_sectors;
7904 atomic64_set(&mddev->resync_mismatches, 0);
7905 /* we don't use the checkpoint if there's a bitmap */
7906 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7907 j = mddev->resync_min;
7908 else if (!mddev->bitmap)
7909 j = mddev->recovery_cp;
7910
7911 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7912 max_sectors = mddev->resync_max_sectors;
7913 else {
7914 /* recovery follows the physical size of devices */
7915 max_sectors = mddev->dev_sectors;
7916 j = MaxSector;
7917 rcu_read_lock();
7918 rdev_for_each_rcu(rdev, mddev)
7919 if (rdev->raid_disk >= 0 &&
7920 !test_bit(Journal, &rdev->flags) &&
7921 !test_bit(Faulty, &rdev->flags) &&
7922 !test_bit(In_sync, &rdev->flags) &&
7923 rdev->recovery_offset < j)
7924 j = rdev->recovery_offset;
7925 rcu_read_unlock();
7926
7927 /* If there is a bitmap, we need to make sure all
7928 * writes that started before we added a spare
7929 * complete before we start doing a recovery.
7930 * Otherwise the write might complete and (via
7931 * bitmap_endwrite) set a bit in the bitmap after the
7932 * recovery has checked that bit and skipped that
7933 * region.
7934 */
7935 if (mddev->bitmap) {
7936 mddev->pers->quiesce(mddev, 1);
7937 mddev->pers->quiesce(mddev, 0);
7938 }
7939 }
7940
7941 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7942 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7943 " %d KB/sec/disk.\n", speed_min(mddev));
7944 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7945 "(but not more than %d KB/sec) for %s.\n",
7946 speed_max(mddev), desc);
7947
7948 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7949
7950 io_sectors = 0;
7951 for (m = 0; m < SYNC_MARKS; m++) {
7952 mark[m] = jiffies;
7953 mark_cnt[m] = io_sectors;
7954 }
7955 last_mark = 0;
7956 mddev->resync_mark = mark[last_mark];
7957 mddev->resync_mark_cnt = mark_cnt[last_mark];
7958
7959 /*
7960 * Tune reconstruction:
7961 */
7962 window = 32*(PAGE_SIZE/512);
7963 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7964 window/2, (unsigned long long)max_sectors/2);
7965
7966 atomic_set(&mddev->recovery_active, 0);
7967 last_check = 0;
7968
7969 if (j>2) {
7970 printk(KERN_INFO
7971 "md: resuming %s of %s from checkpoint.\n",
7972 desc, mdname(mddev));
7973 mddev->curr_resync = j;
7974 } else
7975 mddev->curr_resync = 3; /* no longer delayed */
7976 mddev->curr_resync_completed = j;
7977 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7978 md_new_event(mddev);
7979 update_time = jiffies;
7980
7981 blk_start_plug(&plug);
7982 while (j < max_sectors) {
7983 sector_t sectors;
7984
7985 skipped = 0;
7986
7987 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7988 ((mddev->curr_resync > mddev->curr_resync_completed &&
7989 (mddev->curr_resync - mddev->curr_resync_completed)
7990 > (max_sectors >> 4)) ||
7991 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7992 (j - mddev->curr_resync_completed)*2
7993 >= mddev->resync_max - mddev->curr_resync_completed ||
7994 mddev->curr_resync_completed > mddev->resync_max
7995 )) {
7996 /* time to update curr_resync_completed */
7997 wait_event(mddev->recovery_wait,
7998 atomic_read(&mddev->recovery_active) == 0);
7999 mddev->curr_resync_completed = j;
8000 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8001 j > mddev->recovery_cp)
8002 mddev->recovery_cp = j;
8003 update_time = jiffies;
8004 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8005 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8006 }
8007
8008 while (j >= mddev->resync_max &&
8009 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8010 /* As this condition is controlled by user-space,
8011 * we can block indefinitely, so use '_interruptible'
8012 * to avoid triggering warnings.
8013 */
8014 flush_signals(current); /* just in case */
8015 wait_event_interruptible(mddev->recovery_wait,
8016 mddev->resync_max > j
8017 || test_bit(MD_RECOVERY_INTR,
8018 &mddev->recovery));
8019 }
8020
8021 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8022 break;
8023
8024 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8025 if (sectors == 0) {
8026 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8027 break;
8028 }
8029
8030 if (!skipped) { /* actual IO requested */
8031 io_sectors += sectors;
8032 atomic_add(sectors, &mddev->recovery_active);
8033 }
8034
8035 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8036 break;
8037
8038 j += sectors;
8039 if (j > max_sectors)
8040 /* when skipping, extra large numbers can be returned. */
8041 j = max_sectors;
8042 if (j > 2)
8043 mddev->curr_resync = j;
8044 mddev->curr_mark_cnt = io_sectors;
8045 if (last_check == 0)
8046 /* this is the earliest that rebuild will be
8047 * visible in /proc/mdstat
8048 */
8049 md_new_event(mddev);
8050
8051 if (last_check + window > io_sectors || j == max_sectors)
8052 continue;
8053
8054 last_check = io_sectors;
8055 repeat:
8056 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8057 /* step marks */
8058 int next = (last_mark+1) % SYNC_MARKS;
8059
8060 mddev->resync_mark = mark[next];
8061 mddev->resync_mark_cnt = mark_cnt[next];
8062 mark[next] = jiffies;
8063 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8064 last_mark = next;
8065 }
8066
8067 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8068 break;
8069
8070 /*
8071 * this loop exits only if either when we are slower than
8072 * the 'hard' speed limit, or the system was IO-idle for
8073 * a jiffy.
8074 * the system might be non-idle CPU-wise, but we only care
8075 * about not overloading the IO subsystem. (things like an
8076 * e2fsck being done on the RAID array should execute fast)
8077 */
8078 cond_resched();
8079
8080 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8081 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8082 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8083
8084 if (currspeed > speed_min(mddev)) {
8085 if (currspeed > speed_max(mddev)) {
8086 msleep(500);
8087 goto repeat;
8088 }
8089 if (!is_mddev_idle(mddev, 0)) {
8090 /*
8091 * Give other IO more of a chance.
8092 * The faster the devices, the less we wait.
8093 */
8094 wait_event(mddev->recovery_wait,
8095 !atomic_read(&mddev->recovery_active));
8096 }
8097 }
8098 }
8099 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8100 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8101 ? "interrupted" : "done");
8102 /*
8103 * this also signals 'finished resyncing' to md_stop
8104 */
8105 blk_finish_plug(&plug);
8106 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8107
8108 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8109 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8110 mddev->curr_resync > 2) {
8111 mddev->curr_resync_completed = mddev->curr_resync;
8112 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8113 }
8114 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8115
8116 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8117 mddev->curr_resync > 2) {
8118 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8120 if (mddev->curr_resync >= mddev->recovery_cp) {
8121 printk(KERN_INFO
8122 "md: checkpointing %s of %s.\n",
8123 desc, mdname(mddev));
8124 if (test_bit(MD_RECOVERY_ERROR,
8125 &mddev->recovery))
8126 mddev->recovery_cp =
8127 mddev->curr_resync_completed;
8128 else
8129 mddev->recovery_cp =
8130 mddev->curr_resync;
8131 }
8132 } else
8133 mddev->recovery_cp = MaxSector;
8134 } else {
8135 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8136 mddev->curr_resync = MaxSector;
8137 rcu_read_lock();
8138 rdev_for_each_rcu(rdev, mddev)
8139 if (rdev->raid_disk >= 0 &&
8140 mddev->delta_disks >= 0 &&
8141 !test_bit(Journal, &rdev->flags) &&
8142 !test_bit(Faulty, &rdev->flags) &&
8143 !test_bit(In_sync, &rdev->flags) &&
8144 rdev->recovery_offset < mddev->curr_resync)
8145 rdev->recovery_offset = mddev->curr_resync;
8146 rcu_read_unlock();
8147 }
8148 }
8149 skip:
8150 /* set CHANGE_PENDING here since maybe another update is needed,
8151 * so other nodes are informed. It should be harmless for normal
8152 * raid */
8153 set_mask_bits(&mddev->flags, 0,
8154 BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS));
8155
8156 spin_lock(&mddev->lock);
8157 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8158 /* We completed so min/max setting can be forgotten if used. */
8159 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8160 mddev->resync_min = 0;
8161 mddev->resync_max = MaxSector;
8162 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8163 mddev->resync_min = mddev->curr_resync_completed;
8164 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8165 mddev->curr_resync = 0;
8166 spin_unlock(&mddev->lock);
8167
8168 wake_up(&resync_wait);
8169 md_wakeup_thread(mddev->thread);
8170 return;
8171 }
8172 EXPORT_SYMBOL_GPL(md_do_sync);
8173
8174 static int remove_and_add_spares(struct mddev *mddev,
8175 struct md_rdev *this)
8176 {
8177 struct md_rdev *rdev;
8178 int spares = 0;
8179 int removed = 0;
8180
8181 rdev_for_each(rdev, mddev)
8182 if ((this == NULL || rdev == this) &&
8183 rdev->raid_disk >= 0 &&
8184 !test_bit(Blocked, &rdev->flags) &&
8185 (test_bit(Faulty, &rdev->flags) ||
8186 (!test_bit(In_sync, &rdev->flags) &&
8187 !test_bit(Journal, &rdev->flags))) &&
8188 atomic_read(&rdev->nr_pending)==0) {
8189 if (mddev->pers->hot_remove_disk(
8190 mddev, rdev) == 0) {
8191 sysfs_unlink_rdev(mddev, rdev);
8192 rdev->raid_disk = -1;
8193 removed++;
8194 }
8195 }
8196 if (removed && mddev->kobj.sd)
8197 sysfs_notify(&mddev->kobj, NULL, "degraded");
8198
8199 if (this && removed)
8200 goto no_add;
8201
8202 rdev_for_each(rdev, mddev) {
8203 if (this && this != rdev)
8204 continue;
8205 if (test_bit(Candidate, &rdev->flags))
8206 continue;
8207 if (rdev->raid_disk >= 0 &&
8208 !test_bit(In_sync, &rdev->flags) &&
8209 !test_bit(Journal, &rdev->flags) &&
8210 !test_bit(Faulty, &rdev->flags))
8211 spares++;
8212 if (rdev->raid_disk >= 0)
8213 continue;
8214 if (test_bit(Faulty, &rdev->flags))
8215 continue;
8216 if (!test_bit(Journal, &rdev->flags)) {
8217 if (mddev->ro &&
8218 ! (rdev->saved_raid_disk >= 0 &&
8219 !test_bit(Bitmap_sync, &rdev->flags)))
8220 continue;
8221
8222 rdev->recovery_offset = 0;
8223 }
8224 if (mddev->pers->
8225 hot_add_disk(mddev, rdev) == 0) {
8226 if (sysfs_link_rdev(mddev, rdev))
8227 /* failure here is OK */;
8228 if (!test_bit(Journal, &rdev->flags))
8229 spares++;
8230 md_new_event(mddev);
8231 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8232 }
8233 }
8234 no_add:
8235 if (removed)
8236 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8237 return spares;
8238 }
8239
8240 static void md_start_sync(struct work_struct *ws)
8241 {
8242 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8243 int ret = 0;
8244
8245 mddev->sync_thread = md_register_thread(md_do_sync,
8246 mddev,
8247 "resync");
8248 if (!mddev->sync_thread) {
8249 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8250 printk(KERN_ERR "%s: could not start resync"
8251 " thread...\n",
8252 mdname(mddev));
8253 /* leave the spares where they are, it shouldn't hurt */
8254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8256 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8257 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8258 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8259 wake_up(&resync_wait);
8260 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8261 &mddev->recovery))
8262 if (mddev->sysfs_action)
8263 sysfs_notify_dirent_safe(mddev->sysfs_action);
8264 } else
8265 md_wakeup_thread(mddev->sync_thread);
8266 sysfs_notify_dirent_safe(mddev->sysfs_action);
8267 md_new_event(mddev);
8268 }
8269
8270 /*
8271 * This routine is regularly called by all per-raid-array threads to
8272 * deal with generic issues like resync and super-block update.
8273 * Raid personalities that don't have a thread (linear/raid0) do not
8274 * need this as they never do any recovery or update the superblock.
8275 *
8276 * It does not do any resync itself, but rather "forks" off other threads
8277 * to do that as needed.
8278 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8279 * "->recovery" and create a thread at ->sync_thread.
8280 * When the thread finishes it sets MD_RECOVERY_DONE
8281 * and wakeups up this thread which will reap the thread and finish up.
8282 * This thread also removes any faulty devices (with nr_pending == 0).
8283 *
8284 * The overall approach is:
8285 * 1/ if the superblock needs updating, update it.
8286 * 2/ If a recovery thread is running, don't do anything else.
8287 * 3/ If recovery has finished, clean up, possibly marking spares active.
8288 * 4/ If there are any faulty devices, remove them.
8289 * 5/ If array is degraded, try to add spares devices
8290 * 6/ If array has spares or is not in-sync, start a resync thread.
8291 */
8292 void md_check_recovery(struct mddev *mddev)
8293 {
8294 if (mddev->suspended)
8295 return;
8296
8297 if (mddev->bitmap)
8298 bitmap_daemon_work(mddev);
8299
8300 if (signal_pending(current)) {
8301 if (mddev->pers->sync_request && !mddev->external) {
8302 printk(KERN_INFO "md: %s in immediate safe mode\n",
8303 mdname(mddev));
8304 mddev->safemode = 2;
8305 }
8306 flush_signals(current);
8307 }
8308
8309 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8310 return;
8311 if ( ! (
8312 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8313 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8314 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8315 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8316 (mddev->external == 0 && mddev->safemode == 1) ||
8317 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8318 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8319 ))
8320 return;
8321
8322 if (mddev_trylock(mddev)) {
8323 int spares = 0;
8324
8325 if (mddev->ro) {
8326 struct md_rdev *rdev;
8327 if (!mddev->external && mddev->in_sync)
8328 /* 'Blocked' flag not needed as failed devices
8329 * will be recorded if array switched to read/write.
8330 * Leaving it set will prevent the device
8331 * from being removed.
8332 */
8333 rdev_for_each(rdev, mddev)
8334 clear_bit(Blocked, &rdev->flags);
8335 /* On a read-only array we can:
8336 * - remove failed devices
8337 * - add already-in_sync devices if the array itself
8338 * is in-sync.
8339 * As we only add devices that are already in-sync,
8340 * we can activate the spares immediately.
8341 */
8342 remove_and_add_spares(mddev, NULL);
8343 /* There is no thread, but we need to call
8344 * ->spare_active and clear saved_raid_disk
8345 */
8346 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8347 md_reap_sync_thread(mddev);
8348 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8349 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8350 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8351 goto unlock;
8352 }
8353
8354 if (mddev_is_clustered(mddev)) {
8355 struct md_rdev *rdev;
8356 /* kick the device if another node issued a
8357 * remove disk.
8358 */
8359 rdev_for_each(rdev, mddev) {
8360 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8361 rdev->raid_disk < 0)
8362 md_kick_rdev_from_array(rdev);
8363 }
8364
8365 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8366 md_reload_sb(mddev, mddev->good_device_nr);
8367 }
8368
8369 if (!mddev->external) {
8370 int did_change = 0;
8371 spin_lock(&mddev->lock);
8372 if (mddev->safemode &&
8373 !atomic_read(&mddev->writes_pending) &&
8374 !mddev->in_sync &&
8375 mddev->recovery_cp == MaxSector) {
8376 mddev->in_sync = 1;
8377 did_change = 1;
8378 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8379 }
8380 if (mddev->safemode == 1)
8381 mddev->safemode = 0;
8382 spin_unlock(&mddev->lock);
8383 if (did_change)
8384 sysfs_notify_dirent_safe(mddev->sysfs_state);
8385 }
8386
8387 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8388 md_update_sb(mddev, 0);
8389
8390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8391 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8392 /* resync/recovery still happening */
8393 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8394 goto unlock;
8395 }
8396 if (mddev->sync_thread) {
8397 md_reap_sync_thread(mddev);
8398 goto unlock;
8399 }
8400 /* Set RUNNING before clearing NEEDED to avoid
8401 * any transients in the value of "sync_action".
8402 */
8403 mddev->curr_resync_completed = 0;
8404 spin_lock(&mddev->lock);
8405 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8406 spin_unlock(&mddev->lock);
8407 /* Clear some bits that don't mean anything, but
8408 * might be left set
8409 */
8410 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8411 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8412
8413 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8414 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8415 goto not_running;
8416 /* no recovery is running.
8417 * remove any failed drives, then
8418 * add spares if possible.
8419 * Spares are also removed and re-added, to allow
8420 * the personality to fail the re-add.
8421 */
8422
8423 if (mddev->reshape_position != MaxSector) {
8424 if (mddev->pers->check_reshape == NULL ||
8425 mddev->pers->check_reshape(mddev) != 0)
8426 /* Cannot proceed */
8427 goto not_running;
8428 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8429 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8430 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8431 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8432 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8433 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8434 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8435 } else if (mddev->recovery_cp < MaxSector) {
8436 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8437 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8438 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8439 /* nothing to be done ... */
8440 goto not_running;
8441
8442 if (mddev->pers->sync_request) {
8443 if (spares) {
8444 /* We are adding a device or devices to an array
8445 * which has the bitmap stored on all devices.
8446 * So make sure all bitmap pages get written
8447 */
8448 bitmap_write_all(mddev->bitmap);
8449 }
8450 INIT_WORK(&mddev->del_work, md_start_sync);
8451 queue_work(md_misc_wq, &mddev->del_work);
8452 goto unlock;
8453 }
8454 not_running:
8455 if (!mddev->sync_thread) {
8456 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8457 wake_up(&resync_wait);
8458 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8459 &mddev->recovery))
8460 if (mddev->sysfs_action)
8461 sysfs_notify_dirent_safe(mddev->sysfs_action);
8462 }
8463 unlock:
8464 wake_up(&mddev->sb_wait);
8465 mddev_unlock(mddev);
8466 }
8467 }
8468 EXPORT_SYMBOL(md_check_recovery);
8469
8470 void md_reap_sync_thread(struct mddev *mddev)
8471 {
8472 struct md_rdev *rdev;
8473
8474 /* resync has finished, collect result */
8475 md_unregister_thread(&mddev->sync_thread);
8476 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8477 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8478 /* success...*/
8479 /* activate any spares */
8480 if (mddev->pers->spare_active(mddev)) {
8481 sysfs_notify(&mddev->kobj, NULL,
8482 "degraded");
8483 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8484 }
8485 }
8486 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8487 mddev->pers->finish_reshape)
8488 mddev->pers->finish_reshape(mddev);
8489
8490 /* If array is no-longer degraded, then any saved_raid_disk
8491 * information must be scrapped.
8492 */
8493 if (!mddev->degraded)
8494 rdev_for_each(rdev, mddev)
8495 rdev->saved_raid_disk = -1;
8496
8497 md_update_sb(mddev, 1);
8498 /* MD_CHANGE_PENDING should be cleared by md_update_sb, so we can
8499 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
8500 * clustered raid */
8501 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
8502 md_cluster_ops->resync_finish(mddev);
8503 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8504 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8505 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8506 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8507 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8508 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8509 wake_up(&resync_wait);
8510 /* flag recovery needed just to double check */
8511 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8512 sysfs_notify_dirent_safe(mddev->sysfs_action);
8513 md_new_event(mddev);
8514 if (mddev->event_work.func)
8515 queue_work(md_misc_wq, &mddev->event_work);
8516 }
8517 EXPORT_SYMBOL(md_reap_sync_thread);
8518
8519 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8520 {
8521 sysfs_notify_dirent_safe(rdev->sysfs_state);
8522 wait_event_timeout(rdev->blocked_wait,
8523 !test_bit(Blocked, &rdev->flags) &&
8524 !test_bit(BlockedBadBlocks, &rdev->flags),
8525 msecs_to_jiffies(5000));
8526 rdev_dec_pending(rdev, mddev);
8527 }
8528 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8529
8530 void md_finish_reshape(struct mddev *mddev)
8531 {
8532 /* called be personality module when reshape completes. */
8533 struct md_rdev *rdev;
8534
8535 rdev_for_each(rdev, mddev) {
8536 if (rdev->data_offset > rdev->new_data_offset)
8537 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8538 else
8539 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8540 rdev->data_offset = rdev->new_data_offset;
8541 }
8542 }
8543 EXPORT_SYMBOL(md_finish_reshape);
8544
8545 /* Bad block management */
8546
8547 /* Returns 1 on success, 0 on failure */
8548 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8549 int is_new)
8550 {
8551 struct mddev *mddev = rdev->mddev;
8552 int rv;
8553 if (is_new)
8554 s += rdev->new_data_offset;
8555 else
8556 s += rdev->data_offset;
8557 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8558 if (rv == 0) {
8559 /* Make sure they get written out promptly */
8560 sysfs_notify_dirent_safe(rdev->sysfs_state);
8561 set_mask_bits(&mddev->flags, 0,
8562 BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING));
8563 md_wakeup_thread(rdev->mddev->thread);
8564 return 1;
8565 } else
8566 return 0;
8567 }
8568 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8569
8570 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8571 int is_new)
8572 {
8573 if (is_new)
8574 s += rdev->new_data_offset;
8575 else
8576 s += rdev->data_offset;
8577 return badblocks_clear(&rdev->badblocks,
8578 s, sectors);
8579 }
8580 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8581
8582 static int md_notify_reboot(struct notifier_block *this,
8583 unsigned long code, void *x)
8584 {
8585 struct list_head *tmp;
8586 struct mddev *mddev;
8587 int need_delay = 0;
8588
8589 for_each_mddev(mddev, tmp) {
8590 if (mddev_trylock(mddev)) {
8591 if (mddev->pers)
8592 __md_stop_writes(mddev);
8593 if (mddev->persistent)
8594 mddev->safemode = 2;
8595 mddev_unlock(mddev);
8596 }
8597 need_delay = 1;
8598 }
8599 /*
8600 * certain more exotic SCSI devices are known to be
8601 * volatile wrt too early system reboots. While the
8602 * right place to handle this issue is the given
8603 * driver, we do want to have a safe RAID driver ...
8604 */
8605 if (need_delay)
8606 mdelay(1000*1);
8607
8608 return NOTIFY_DONE;
8609 }
8610
8611 static struct notifier_block md_notifier = {
8612 .notifier_call = md_notify_reboot,
8613 .next = NULL,
8614 .priority = INT_MAX, /* before any real devices */
8615 };
8616
8617 static void md_geninit(void)
8618 {
8619 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8620
8621 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8622 }
8623
8624 static int __init md_init(void)
8625 {
8626 int ret = -ENOMEM;
8627
8628 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8629 if (!md_wq)
8630 goto err_wq;
8631
8632 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8633 if (!md_misc_wq)
8634 goto err_misc_wq;
8635
8636 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8637 goto err_md;
8638
8639 if ((ret = register_blkdev(0, "mdp")) < 0)
8640 goto err_mdp;
8641 mdp_major = ret;
8642
8643 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8644 md_probe, NULL, NULL);
8645 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8646 md_probe, NULL, NULL);
8647
8648 register_reboot_notifier(&md_notifier);
8649 raid_table_header = register_sysctl_table(raid_root_table);
8650
8651 md_geninit();
8652 return 0;
8653
8654 err_mdp:
8655 unregister_blkdev(MD_MAJOR, "md");
8656 err_md:
8657 destroy_workqueue(md_misc_wq);
8658 err_misc_wq:
8659 destroy_workqueue(md_wq);
8660 err_wq:
8661 return ret;
8662 }
8663
8664 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8665 {
8666 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8667 struct md_rdev *rdev2;
8668 int role, ret;
8669 char b[BDEVNAME_SIZE];
8670
8671 /* Check for change of roles in the active devices */
8672 rdev_for_each(rdev2, mddev) {
8673 if (test_bit(Faulty, &rdev2->flags))
8674 continue;
8675
8676 /* Check if the roles changed */
8677 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8678
8679 if (test_bit(Candidate, &rdev2->flags)) {
8680 if (role == 0xfffe) {
8681 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8682 md_kick_rdev_from_array(rdev2);
8683 continue;
8684 }
8685 else
8686 clear_bit(Candidate, &rdev2->flags);
8687 }
8688
8689 if (role != rdev2->raid_disk) {
8690 /* got activated */
8691 if (rdev2->raid_disk == -1 && role != 0xffff) {
8692 rdev2->saved_raid_disk = role;
8693 ret = remove_and_add_spares(mddev, rdev2);
8694 pr_info("Activated spare: %s\n",
8695 bdevname(rdev2->bdev,b));
8696 /* wakeup mddev->thread here, so array could
8697 * perform resync with the new activated disk */
8698 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8699 md_wakeup_thread(mddev->thread);
8700
8701 }
8702 /* device faulty
8703 * We just want to do the minimum to mark the disk
8704 * as faulty. The recovery is performed by the
8705 * one who initiated the error.
8706 */
8707 if ((role == 0xfffe) || (role == 0xfffd)) {
8708 md_error(mddev, rdev2);
8709 clear_bit(Blocked, &rdev2->flags);
8710 }
8711 }
8712 }
8713
8714 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8715 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8716
8717 /* Finally set the event to be up to date */
8718 mddev->events = le64_to_cpu(sb->events);
8719 }
8720
8721 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8722 {
8723 int err;
8724 struct page *swapout = rdev->sb_page;
8725 struct mdp_superblock_1 *sb;
8726
8727 /* Store the sb page of the rdev in the swapout temporary
8728 * variable in case we err in the future
8729 */
8730 rdev->sb_page = NULL;
8731 alloc_disk_sb(rdev);
8732 ClearPageUptodate(rdev->sb_page);
8733 rdev->sb_loaded = 0;
8734 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8735
8736 if (err < 0) {
8737 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8738 __func__, __LINE__, rdev->desc_nr, err);
8739 put_page(rdev->sb_page);
8740 rdev->sb_page = swapout;
8741 rdev->sb_loaded = 1;
8742 return err;
8743 }
8744
8745 sb = page_address(rdev->sb_page);
8746 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8747 * is not set
8748 */
8749
8750 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8751 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8752
8753 /* The other node finished recovery, call spare_active to set
8754 * device In_sync and mddev->degraded
8755 */
8756 if (rdev->recovery_offset == MaxSector &&
8757 !test_bit(In_sync, &rdev->flags) &&
8758 mddev->pers->spare_active(mddev))
8759 sysfs_notify(&mddev->kobj, NULL, "degraded");
8760
8761 put_page(swapout);
8762 return 0;
8763 }
8764
8765 void md_reload_sb(struct mddev *mddev, int nr)
8766 {
8767 struct md_rdev *rdev;
8768 int err;
8769
8770 /* Find the rdev */
8771 rdev_for_each_rcu(rdev, mddev) {
8772 if (rdev->desc_nr == nr)
8773 break;
8774 }
8775
8776 if (!rdev || rdev->desc_nr != nr) {
8777 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8778 return;
8779 }
8780
8781 err = read_rdev(mddev, rdev);
8782 if (err < 0)
8783 return;
8784
8785 check_sb_changes(mddev, rdev);
8786
8787 /* Read all rdev's to update recovery_offset */
8788 rdev_for_each_rcu(rdev, mddev)
8789 read_rdev(mddev, rdev);
8790 }
8791 EXPORT_SYMBOL(md_reload_sb);
8792
8793 #ifndef MODULE
8794
8795 /*
8796 * Searches all registered partitions for autorun RAID arrays
8797 * at boot time.
8798 */
8799
8800 static LIST_HEAD(all_detected_devices);
8801 struct detected_devices_node {
8802 struct list_head list;
8803 dev_t dev;
8804 };
8805
8806 void md_autodetect_dev(dev_t dev)
8807 {
8808 struct detected_devices_node *node_detected_dev;
8809
8810 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8811 if (node_detected_dev) {
8812 node_detected_dev->dev = dev;
8813 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8814 } else {
8815 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8816 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8817 }
8818 }
8819
8820 static void autostart_arrays(int part)
8821 {
8822 struct md_rdev *rdev;
8823 struct detected_devices_node *node_detected_dev;
8824 dev_t dev;
8825 int i_scanned, i_passed;
8826
8827 i_scanned = 0;
8828 i_passed = 0;
8829
8830 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8831
8832 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8833 i_scanned++;
8834 node_detected_dev = list_entry(all_detected_devices.next,
8835 struct detected_devices_node, list);
8836 list_del(&node_detected_dev->list);
8837 dev = node_detected_dev->dev;
8838 kfree(node_detected_dev);
8839 rdev = md_import_device(dev,0, 90);
8840 if (IS_ERR(rdev))
8841 continue;
8842
8843 if (test_bit(Faulty, &rdev->flags))
8844 continue;
8845
8846 set_bit(AutoDetected, &rdev->flags);
8847 list_add(&rdev->same_set, &pending_raid_disks);
8848 i_passed++;
8849 }
8850
8851 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8852 i_scanned, i_passed);
8853
8854 autorun_devices(part);
8855 }
8856
8857 #endif /* !MODULE */
8858
8859 static __exit void md_exit(void)
8860 {
8861 struct mddev *mddev;
8862 struct list_head *tmp;
8863 int delay = 1;
8864
8865 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8866 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8867
8868 unregister_blkdev(MD_MAJOR,"md");
8869 unregister_blkdev(mdp_major, "mdp");
8870 unregister_reboot_notifier(&md_notifier);
8871 unregister_sysctl_table(raid_table_header);
8872
8873 /* We cannot unload the modules while some process is
8874 * waiting for us in select() or poll() - wake them up
8875 */
8876 md_unloading = 1;
8877 while (waitqueue_active(&md_event_waiters)) {
8878 /* not safe to leave yet */
8879 wake_up(&md_event_waiters);
8880 msleep(delay);
8881 delay += delay;
8882 }
8883 remove_proc_entry("mdstat", NULL);
8884
8885 for_each_mddev(mddev, tmp) {
8886 export_array(mddev);
8887 mddev->hold_active = 0;
8888 }
8889 destroy_workqueue(md_misc_wq);
8890 destroy_workqueue(md_wq);
8891 }
8892
8893 subsys_initcall(md_init);
8894 module_exit(md_exit)
8895
8896 static int get_ro(char *buffer, struct kernel_param *kp)
8897 {
8898 return sprintf(buffer, "%d", start_readonly);
8899 }
8900 static int set_ro(const char *val, struct kernel_param *kp)
8901 {
8902 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8903 }
8904
8905 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8906 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8907 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8908
8909 MODULE_LICENSE("GPL");
8910 MODULE_DESCRIPTION("MD RAID framework");
8911 MODULE_ALIAS("md");
8912 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);