]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
0896c772a56068bb9c31626d1a5efc468594d81e
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->raid_bio = r1_bio;
174 bio->bi_private = rp;
175 }
176
177 r1_bio->master_bio = NULL;
178
179 return r1_bio;
180
181 out_free_pages:
182 while (--j >= 0)
183 resync_free_pages(&rps[j]);
184
185 out_free_bio:
186 while (++j < pi->raid_disks)
187 bio_put(r1_bio->bios[j]);
188 kfree(rps);
189
190 out_free_r1bio:
191 r1bio_pool_free(r1_bio, data);
192 return NULL;
193 }
194
195 static void r1buf_pool_free(void *__r1_bio, void *data)
196 {
197 struct pool_info *pi = data;
198 int i;
199 struct r1bio *r1bio = __r1_bio;
200 struct resync_pages *rp = NULL;
201
202 for (i = pi->raid_disks; i--; ) {
203 rp = get_resync_pages(r1bio->bios[i]);
204 resync_free_pages(rp);
205 bio_put(r1bio->bios[i]);
206 }
207
208 /* resync pages array stored in the 1st bio's .bi_private */
209 kfree(rp);
210
211 r1bio_pool_free(r1bio, data);
212 }
213
214 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
215 {
216 int i;
217
218 for (i = 0; i < conf->raid_disks * 2; i++) {
219 struct bio **bio = r1_bio->bios + i;
220 if (!BIO_SPECIAL(*bio))
221 bio_put(*bio);
222 *bio = NULL;
223 }
224 }
225
226 static void free_r1bio(struct r1bio *r1_bio)
227 {
228 struct r1conf *conf = r1_bio->mddev->private;
229
230 put_all_bios(conf, r1_bio);
231 mempool_free(r1_bio, conf->r1bio_pool);
232 }
233
234 static void put_buf(struct r1bio *r1_bio)
235 {
236 struct r1conf *conf = r1_bio->mddev->private;
237 sector_t sect = r1_bio->sector;
238 int i;
239
240 for (i = 0; i < conf->raid_disks * 2; i++) {
241 struct bio *bio = r1_bio->bios[i];
242 if (bio->bi_end_io)
243 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
244 }
245
246 mempool_free(r1_bio, conf->r1buf_pool);
247
248 lower_barrier(conf, sect);
249 }
250
251 static void reschedule_retry(struct r1bio *r1_bio)
252 {
253 unsigned long flags;
254 struct mddev *mddev = r1_bio->mddev;
255 struct r1conf *conf = mddev->private;
256 int idx;
257
258 idx = sector_to_idx(r1_bio->sector);
259 spin_lock_irqsave(&conf->device_lock, flags);
260 list_add(&r1_bio->retry_list, &conf->retry_list);
261 atomic_inc(&conf->nr_queued[idx]);
262 spin_unlock_irqrestore(&conf->device_lock, flags);
263
264 wake_up(&conf->wait_barrier);
265 md_wakeup_thread(mddev->thread);
266 }
267
268 /*
269 * raid_end_bio_io() is called when we have finished servicing a mirrored
270 * operation and are ready to return a success/failure code to the buffer
271 * cache layer.
272 */
273 static void call_bio_endio(struct r1bio *r1_bio)
274 {
275 struct bio *bio = r1_bio->master_bio;
276 struct r1conf *conf = r1_bio->mddev->private;
277
278 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
279 bio->bi_status = BLK_STS_IOERR;
280
281 bio_endio(bio);
282 /*
283 * Wake up any possible resync thread that waits for the device
284 * to go idle.
285 */
286 allow_barrier(conf, r1_bio->sector);
287 }
288
289 static void raid_end_bio_io(struct r1bio *r1_bio)
290 {
291 struct bio *bio = r1_bio->master_bio;
292
293 /* if nobody has done the final endio yet, do it now */
294 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
295 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
296 (bio_data_dir(bio) == WRITE) ? "write" : "read",
297 (unsigned long long) bio->bi_iter.bi_sector,
298 (unsigned long long) bio_end_sector(bio) - 1);
299
300 call_bio_endio(r1_bio);
301 }
302 free_r1bio(r1_bio);
303 }
304
305 /*
306 * Update disk head position estimator based on IRQ completion info.
307 */
308 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
309 {
310 struct r1conf *conf = r1_bio->mddev->private;
311
312 conf->mirrors[disk].head_position =
313 r1_bio->sector + (r1_bio->sectors);
314 }
315
316 /*
317 * Find the disk number which triggered given bio
318 */
319 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
320 {
321 int mirror;
322 struct r1conf *conf = r1_bio->mddev->private;
323 int raid_disks = conf->raid_disks;
324
325 for (mirror = 0; mirror < raid_disks * 2; mirror++)
326 if (r1_bio->bios[mirror] == bio)
327 break;
328
329 BUG_ON(mirror == raid_disks * 2);
330 update_head_pos(mirror, r1_bio);
331
332 return mirror;
333 }
334
335 static void raid1_end_read_request(struct bio *bio)
336 {
337 int uptodate = !bio->bi_status;
338 struct r1bio *r1_bio = bio->bi_private;
339 struct r1conf *conf = r1_bio->mddev->private;
340 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
341
342 /*
343 * this branch is our 'one mirror IO has finished' event handler:
344 */
345 update_head_pos(r1_bio->read_disk, r1_bio);
346
347 if (uptodate)
348 set_bit(R1BIO_Uptodate, &r1_bio->state);
349 else if (test_bit(FailFast, &rdev->flags) &&
350 test_bit(R1BIO_FailFast, &r1_bio->state))
351 /* This was a fail-fast read so we definitely
352 * want to retry */
353 ;
354 else {
355 /* If all other devices have failed, we want to return
356 * the error upwards rather than fail the last device.
357 * Here we redefine "uptodate" to mean "Don't want to retry"
358 */
359 unsigned long flags;
360 spin_lock_irqsave(&conf->device_lock, flags);
361 if (r1_bio->mddev->degraded == conf->raid_disks ||
362 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
363 test_bit(In_sync, &rdev->flags)))
364 uptodate = 1;
365 spin_unlock_irqrestore(&conf->device_lock, flags);
366 }
367
368 if (uptodate) {
369 raid_end_bio_io(r1_bio);
370 rdev_dec_pending(rdev, conf->mddev);
371 } else {
372 /*
373 * oops, read error:
374 */
375 char b[BDEVNAME_SIZE];
376 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
377 mdname(conf->mddev),
378 bdevname(rdev->bdev, b),
379 (unsigned long long)r1_bio->sector);
380 set_bit(R1BIO_ReadError, &r1_bio->state);
381 reschedule_retry(r1_bio);
382 /* don't drop the reference on read_disk yet */
383 }
384 }
385
386 static void close_write(struct r1bio *r1_bio)
387 {
388 /* it really is the end of this request */
389 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
390 bio_free_pages(r1_bio->behind_master_bio);
391 bio_put(r1_bio->behind_master_bio);
392 r1_bio->behind_master_bio = NULL;
393 }
394 /* clear the bitmap if all writes complete successfully */
395 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
396 r1_bio->sectors,
397 !test_bit(R1BIO_Degraded, &r1_bio->state),
398 test_bit(R1BIO_BehindIO, &r1_bio->state));
399 md_write_end(r1_bio->mddev);
400 }
401
402 static void r1_bio_write_done(struct r1bio *r1_bio)
403 {
404 if (!atomic_dec_and_test(&r1_bio->remaining))
405 return;
406
407 if (test_bit(R1BIO_WriteError, &r1_bio->state))
408 reschedule_retry(r1_bio);
409 else {
410 close_write(r1_bio);
411 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
412 reschedule_retry(r1_bio);
413 else
414 raid_end_bio_io(r1_bio);
415 }
416 }
417
418 static void raid1_end_write_request(struct bio *bio)
419 {
420 struct r1bio *r1_bio = bio->bi_private;
421 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
422 struct r1conf *conf = r1_bio->mddev->private;
423 struct bio *to_put = NULL;
424 int mirror = find_bio_disk(r1_bio, bio);
425 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
426 bool discard_error;
427
428 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
429
430 /*
431 * 'one mirror IO has finished' event handler:
432 */
433 if (bio->bi_status && !discard_error) {
434 set_bit(WriteErrorSeen, &rdev->flags);
435 if (!test_and_set_bit(WantReplacement, &rdev->flags))
436 set_bit(MD_RECOVERY_NEEDED, &
437 conf->mddev->recovery);
438
439 if (test_bit(FailFast, &rdev->flags) &&
440 (bio->bi_opf & MD_FAILFAST) &&
441 /* We never try FailFast to WriteMostly devices */
442 !test_bit(WriteMostly, &rdev->flags)) {
443 md_error(r1_bio->mddev, rdev);
444 if (!test_bit(Faulty, &rdev->flags))
445 /* This is the only remaining device,
446 * We need to retry the write without
447 * FailFast
448 */
449 set_bit(R1BIO_WriteError, &r1_bio->state);
450 else {
451 /* Finished with this branch */
452 r1_bio->bios[mirror] = NULL;
453 to_put = bio;
454 }
455 } else
456 set_bit(R1BIO_WriteError, &r1_bio->state);
457 } else {
458 /*
459 * Set R1BIO_Uptodate in our master bio, so that we
460 * will return a good error code for to the higher
461 * levels even if IO on some other mirrored buffer
462 * fails.
463 *
464 * The 'master' represents the composite IO operation
465 * to user-side. So if something waits for IO, then it
466 * will wait for the 'master' bio.
467 */
468 sector_t first_bad;
469 int bad_sectors;
470
471 r1_bio->bios[mirror] = NULL;
472 to_put = bio;
473 /*
474 * Do not set R1BIO_Uptodate if the current device is
475 * rebuilding or Faulty. This is because we cannot use
476 * such device for properly reading the data back (we could
477 * potentially use it, if the current write would have felt
478 * before rdev->recovery_offset, but for simplicity we don't
479 * check this here.
480 */
481 if (test_bit(In_sync, &rdev->flags) &&
482 !test_bit(Faulty, &rdev->flags))
483 set_bit(R1BIO_Uptodate, &r1_bio->state);
484
485 /* Maybe we can clear some bad blocks. */
486 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
487 &first_bad, &bad_sectors) && !discard_error) {
488 r1_bio->bios[mirror] = IO_MADE_GOOD;
489 set_bit(R1BIO_MadeGood, &r1_bio->state);
490 }
491 }
492
493 if (behind) {
494 /* we release behind master bio when all write are done */
495 if (r1_bio->behind_master_bio == bio)
496 to_put = NULL;
497
498 if (test_bit(WriteMostly, &rdev->flags))
499 atomic_dec(&r1_bio->behind_remaining);
500
501 /*
502 * In behind mode, we ACK the master bio once the I/O
503 * has safely reached all non-writemostly
504 * disks. Setting the Returned bit ensures that this
505 * gets done only once -- we don't ever want to return
506 * -EIO here, instead we'll wait
507 */
508 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
509 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
510 /* Maybe we can return now */
511 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
512 struct bio *mbio = r1_bio->master_bio;
513 pr_debug("raid1: behind end write sectors"
514 " %llu-%llu\n",
515 (unsigned long long) mbio->bi_iter.bi_sector,
516 (unsigned long long) bio_end_sector(mbio) - 1);
517 call_bio_endio(r1_bio);
518 }
519 }
520 }
521 if (r1_bio->bios[mirror] == NULL)
522 rdev_dec_pending(rdev, conf->mddev);
523
524 /*
525 * Let's see if all mirrored write operations have finished
526 * already.
527 */
528 r1_bio_write_done(r1_bio);
529
530 if (to_put)
531 bio_put(to_put);
532 }
533
534 static sector_t align_to_barrier_unit_end(sector_t start_sector,
535 sector_t sectors)
536 {
537 sector_t len;
538
539 WARN_ON(sectors == 0);
540 /*
541 * len is the number of sectors from start_sector to end of the
542 * barrier unit which start_sector belongs to.
543 */
544 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
545 start_sector;
546
547 if (len > sectors)
548 len = sectors;
549
550 return len;
551 }
552
553 /*
554 * This routine returns the disk from which the requested read should
555 * be done. There is a per-array 'next expected sequential IO' sector
556 * number - if this matches on the next IO then we use the last disk.
557 * There is also a per-disk 'last know head position' sector that is
558 * maintained from IRQ contexts, both the normal and the resync IO
559 * completion handlers update this position correctly. If there is no
560 * perfect sequential match then we pick the disk whose head is closest.
561 *
562 * If there are 2 mirrors in the same 2 devices, performance degrades
563 * because position is mirror, not device based.
564 *
565 * The rdev for the device selected will have nr_pending incremented.
566 */
567 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
568 {
569 const sector_t this_sector = r1_bio->sector;
570 int sectors;
571 int best_good_sectors;
572 int best_disk, best_dist_disk, best_pending_disk;
573 int has_nonrot_disk;
574 int disk;
575 sector_t best_dist;
576 unsigned int min_pending;
577 struct md_rdev *rdev;
578 int choose_first;
579 int choose_next_idle;
580
581 rcu_read_lock();
582 /*
583 * Check if we can balance. We can balance on the whole
584 * device if no resync is going on, or below the resync window.
585 * We take the first readable disk when above the resync window.
586 */
587 retry:
588 sectors = r1_bio->sectors;
589 best_disk = -1;
590 best_dist_disk = -1;
591 best_dist = MaxSector;
592 best_pending_disk = -1;
593 min_pending = UINT_MAX;
594 best_good_sectors = 0;
595 has_nonrot_disk = 0;
596 choose_next_idle = 0;
597 clear_bit(R1BIO_FailFast, &r1_bio->state);
598
599 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
600 (mddev_is_clustered(conf->mddev) &&
601 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
602 this_sector + sectors)))
603 choose_first = 1;
604 else
605 choose_first = 0;
606
607 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
608 sector_t dist;
609 sector_t first_bad;
610 int bad_sectors;
611 unsigned int pending;
612 bool nonrot;
613
614 rdev = rcu_dereference(conf->mirrors[disk].rdev);
615 if (r1_bio->bios[disk] == IO_BLOCKED
616 || rdev == NULL
617 || test_bit(Faulty, &rdev->flags))
618 continue;
619 if (!test_bit(In_sync, &rdev->flags) &&
620 rdev->recovery_offset < this_sector + sectors)
621 continue;
622 if (test_bit(WriteMostly, &rdev->flags)) {
623 /* Don't balance among write-mostly, just
624 * use the first as a last resort */
625 if (best_dist_disk < 0) {
626 if (is_badblock(rdev, this_sector, sectors,
627 &first_bad, &bad_sectors)) {
628 if (first_bad <= this_sector)
629 /* Cannot use this */
630 continue;
631 best_good_sectors = first_bad - this_sector;
632 } else
633 best_good_sectors = sectors;
634 best_dist_disk = disk;
635 best_pending_disk = disk;
636 }
637 continue;
638 }
639 /* This is a reasonable device to use. It might
640 * even be best.
641 */
642 if (is_badblock(rdev, this_sector, sectors,
643 &first_bad, &bad_sectors)) {
644 if (best_dist < MaxSector)
645 /* already have a better device */
646 continue;
647 if (first_bad <= this_sector) {
648 /* cannot read here. If this is the 'primary'
649 * device, then we must not read beyond
650 * bad_sectors from another device..
651 */
652 bad_sectors -= (this_sector - first_bad);
653 if (choose_first && sectors > bad_sectors)
654 sectors = bad_sectors;
655 if (best_good_sectors > sectors)
656 best_good_sectors = sectors;
657
658 } else {
659 sector_t good_sectors = first_bad - this_sector;
660 if (good_sectors > best_good_sectors) {
661 best_good_sectors = good_sectors;
662 best_disk = disk;
663 }
664 if (choose_first)
665 break;
666 }
667 continue;
668 } else {
669 if ((sectors > best_good_sectors) && (best_disk >= 0))
670 best_disk = -1;
671 best_good_sectors = sectors;
672 }
673
674 if (best_disk >= 0)
675 /* At least two disks to choose from so failfast is OK */
676 set_bit(R1BIO_FailFast, &r1_bio->state);
677
678 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
679 has_nonrot_disk |= nonrot;
680 pending = atomic_read(&rdev->nr_pending);
681 dist = abs(this_sector - conf->mirrors[disk].head_position);
682 if (choose_first) {
683 best_disk = disk;
684 break;
685 }
686 /* Don't change to another disk for sequential reads */
687 if (conf->mirrors[disk].next_seq_sect == this_sector
688 || dist == 0) {
689 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
690 struct raid1_info *mirror = &conf->mirrors[disk];
691
692 best_disk = disk;
693 /*
694 * If buffered sequential IO size exceeds optimal
695 * iosize, check if there is idle disk. If yes, choose
696 * the idle disk. read_balance could already choose an
697 * idle disk before noticing it's a sequential IO in
698 * this disk. This doesn't matter because this disk
699 * will idle, next time it will be utilized after the
700 * first disk has IO size exceeds optimal iosize. In
701 * this way, iosize of the first disk will be optimal
702 * iosize at least. iosize of the second disk might be
703 * small, but not a big deal since when the second disk
704 * starts IO, the first disk is likely still busy.
705 */
706 if (nonrot && opt_iosize > 0 &&
707 mirror->seq_start != MaxSector &&
708 mirror->next_seq_sect > opt_iosize &&
709 mirror->next_seq_sect - opt_iosize >=
710 mirror->seq_start) {
711 choose_next_idle = 1;
712 continue;
713 }
714 break;
715 }
716
717 if (choose_next_idle)
718 continue;
719
720 if (min_pending > pending) {
721 min_pending = pending;
722 best_pending_disk = disk;
723 }
724
725 if (dist < best_dist) {
726 best_dist = dist;
727 best_dist_disk = disk;
728 }
729 }
730
731 /*
732 * If all disks are rotational, choose the closest disk. If any disk is
733 * non-rotational, choose the disk with less pending request even the
734 * disk is rotational, which might/might not be optimal for raids with
735 * mixed ratation/non-rotational disks depending on workload.
736 */
737 if (best_disk == -1) {
738 if (has_nonrot_disk || min_pending == 0)
739 best_disk = best_pending_disk;
740 else
741 best_disk = best_dist_disk;
742 }
743
744 if (best_disk >= 0) {
745 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
746 if (!rdev)
747 goto retry;
748 atomic_inc(&rdev->nr_pending);
749 sectors = best_good_sectors;
750
751 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
752 conf->mirrors[best_disk].seq_start = this_sector;
753
754 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
755 }
756 rcu_read_unlock();
757 *max_sectors = sectors;
758
759 return best_disk;
760 }
761
762 static int raid1_congested(struct mddev *mddev, int bits)
763 {
764 struct r1conf *conf = mddev->private;
765 int i, ret = 0;
766
767 if ((bits & (1 << WB_async_congested)) &&
768 conf->pending_count >= max_queued_requests)
769 return 1;
770
771 rcu_read_lock();
772 for (i = 0; i < conf->raid_disks * 2; i++) {
773 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
774 if (rdev && !test_bit(Faulty, &rdev->flags)) {
775 struct request_queue *q = bdev_get_queue(rdev->bdev);
776
777 BUG_ON(!q);
778
779 /* Note the '|| 1' - when read_balance prefers
780 * non-congested targets, it can be removed
781 */
782 if ((bits & (1 << WB_async_congested)) || 1)
783 ret |= bdi_congested(q->backing_dev_info, bits);
784 else
785 ret &= bdi_congested(q->backing_dev_info, bits);
786 }
787 }
788 rcu_read_unlock();
789 return ret;
790 }
791
792 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
793 {
794 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
795 bitmap_unplug(conf->mddev->bitmap);
796 wake_up(&conf->wait_barrier);
797
798 while (bio) { /* submit pending writes */
799 struct bio *next = bio->bi_next;
800 struct md_rdev *rdev = (void*)bio->bi_bdev;
801 bio->bi_next = NULL;
802 bio->bi_bdev = rdev->bdev;
803 if (test_bit(Faulty, &rdev->flags)) {
804 bio->bi_status = BLK_STS_IOERR;
805 bio_endio(bio);
806 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
807 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
808 /* Just ignore it */
809 bio_endio(bio);
810 else
811 generic_make_request(bio);
812 bio = next;
813 }
814 }
815
816 static void flush_pending_writes(struct r1conf *conf)
817 {
818 /* Any writes that have been queued but are awaiting
819 * bitmap updates get flushed here.
820 */
821 spin_lock_irq(&conf->device_lock);
822
823 if (conf->pending_bio_list.head) {
824 struct bio *bio;
825 bio = bio_list_get(&conf->pending_bio_list);
826 conf->pending_count = 0;
827 spin_unlock_irq(&conf->device_lock);
828 flush_bio_list(conf, bio);
829 } else
830 spin_unlock_irq(&conf->device_lock);
831 }
832
833 /* Barriers....
834 * Sometimes we need to suspend IO while we do something else,
835 * either some resync/recovery, or reconfigure the array.
836 * To do this we raise a 'barrier'.
837 * The 'barrier' is a counter that can be raised multiple times
838 * to count how many activities are happening which preclude
839 * normal IO.
840 * We can only raise the barrier if there is no pending IO.
841 * i.e. if nr_pending == 0.
842 * We choose only to raise the barrier if no-one is waiting for the
843 * barrier to go down. This means that as soon as an IO request
844 * is ready, no other operations which require a barrier will start
845 * until the IO request has had a chance.
846 *
847 * So: regular IO calls 'wait_barrier'. When that returns there
848 * is no backgroup IO happening, It must arrange to call
849 * allow_barrier when it has finished its IO.
850 * backgroup IO calls must call raise_barrier. Once that returns
851 * there is no normal IO happeing. It must arrange to call
852 * lower_barrier when the particular background IO completes.
853 */
854 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
855 {
856 int idx = sector_to_idx(sector_nr);
857
858 spin_lock_irq(&conf->resync_lock);
859
860 /* Wait until no block IO is waiting */
861 wait_event_lock_irq(conf->wait_barrier,
862 !atomic_read(&conf->nr_waiting[idx]),
863 conf->resync_lock);
864
865 /* block any new IO from starting */
866 atomic_inc(&conf->barrier[idx]);
867 /*
868 * In raise_barrier() we firstly increase conf->barrier[idx] then
869 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
870 * increase conf->nr_pending[idx] then check conf->barrier[idx].
871 * A memory barrier here to make sure conf->nr_pending[idx] won't
872 * be fetched before conf->barrier[idx] is increased. Otherwise
873 * there will be a race between raise_barrier() and _wait_barrier().
874 */
875 smp_mb__after_atomic();
876
877 /* For these conditions we must wait:
878 * A: while the array is in frozen state
879 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
880 * existing in corresponding I/O barrier bucket.
881 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
882 * max resync count which allowed on current I/O barrier bucket.
883 */
884 wait_event_lock_irq(conf->wait_barrier,
885 !conf->array_frozen &&
886 !atomic_read(&conf->nr_pending[idx]) &&
887 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
888 conf->resync_lock);
889
890 atomic_inc(&conf->nr_sync_pending);
891 spin_unlock_irq(&conf->resync_lock);
892 }
893
894 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
895 {
896 int idx = sector_to_idx(sector_nr);
897
898 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
899
900 atomic_dec(&conf->barrier[idx]);
901 atomic_dec(&conf->nr_sync_pending);
902 wake_up(&conf->wait_barrier);
903 }
904
905 static void _wait_barrier(struct r1conf *conf, int idx)
906 {
907 /*
908 * We need to increase conf->nr_pending[idx] very early here,
909 * then raise_barrier() can be blocked when it waits for
910 * conf->nr_pending[idx] to be 0. Then we can avoid holding
911 * conf->resync_lock when there is no barrier raised in same
912 * barrier unit bucket. Also if the array is frozen, I/O
913 * should be blocked until array is unfrozen.
914 */
915 atomic_inc(&conf->nr_pending[idx]);
916 /*
917 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
918 * check conf->barrier[idx]. In raise_barrier() we firstly increase
919 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
920 * barrier is necessary here to make sure conf->barrier[idx] won't be
921 * fetched before conf->nr_pending[idx] is increased. Otherwise there
922 * will be a race between _wait_barrier() and raise_barrier().
923 */
924 smp_mb__after_atomic();
925
926 /*
927 * Don't worry about checking two atomic_t variables at same time
928 * here. If during we check conf->barrier[idx], the array is
929 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
930 * 0, it is safe to return and make the I/O continue. Because the
931 * array is frozen, all I/O returned here will eventually complete
932 * or be queued, no race will happen. See code comment in
933 * frozen_array().
934 */
935 if (!READ_ONCE(conf->array_frozen) &&
936 !atomic_read(&conf->barrier[idx]))
937 return;
938
939 /*
940 * After holding conf->resync_lock, conf->nr_pending[idx]
941 * should be decreased before waiting for barrier to drop.
942 * Otherwise, we may encounter a race condition because
943 * raise_barrer() might be waiting for conf->nr_pending[idx]
944 * to be 0 at same time.
945 */
946 spin_lock_irq(&conf->resync_lock);
947 atomic_inc(&conf->nr_waiting[idx]);
948 atomic_dec(&conf->nr_pending[idx]);
949 /*
950 * In case freeze_array() is waiting for
951 * get_unqueued_pending() == extra
952 */
953 wake_up(&conf->wait_barrier);
954 /* Wait for the barrier in same barrier unit bucket to drop. */
955 wait_event_lock_irq(conf->wait_barrier,
956 !conf->array_frozen &&
957 !atomic_read(&conf->barrier[idx]),
958 conf->resync_lock);
959 atomic_inc(&conf->nr_pending[idx]);
960 atomic_dec(&conf->nr_waiting[idx]);
961 spin_unlock_irq(&conf->resync_lock);
962 }
963
964 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
965 {
966 int idx = sector_to_idx(sector_nr);
967
968 /*
969 * Very similar to _wait_barrier(). The difference is, for read
970 * I/O we don't need wait for sync I/O, but if the whole array
971 * is frozen, the read I/O still has to wait until the array is
972 * unfrozen. Since there is no ordering requirement with
973 * conf->barrier[idx] here, memory barrier is unnecessary as well.
974 */
975 atomic_inc(&conf->nr_pending[idx]);
976
977 if (!READ_ONCE(conf->array_frozen))
978 return;
979
980 spin_lock_irq(&conf->resync_lock);
981 atomic_inc(&conf->nr_waiting[idx]);
982 atomic_dec(&conf->nr_pending[idx]);
983 /*
984 * In case freeze_array() is waiting for
985 * get_unqueued_pending() == extra
986 */
987 wake_up(&conf->wait_barrier);
988 /* Wait for array to be unfrozen */
989 wait_event_lock_irq(conf->wait_barrier,
990 !conf->array_frozen,
991 conf->resync_lock);
992 atomic_inc(&conf->nr_pending[idx]);
993 atomic_dec(&conf->nr_waiting[idx]);
994 spin_unlock_irq(&conf->resync_lock);
995 }
996
997 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
998 {
999 int idx = sector_to_idx(sector_nr);
1000
1001 _wait_barrier(conf, idx);
1002 }
1003
1004 static void wait_all_barriers(struct r1conf *conf)
1005 {
1006 int idx;
1007
1008 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1009 _wait_barrier(conf, idx);
1010 }
1011
1012 static void _allow_barrier(struct r1conf *conf, int idx)
1013 {
1014 atomic_dec(&conf->nr_pending[idx]);
1015 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1019 {
1020 int idx = sector_to_idx(sector_nr);
1021
1022 _allow_barrier(conf, idx);
1023 }
1024
1025 static void allow_all_barriers(struct r1conf *conf)
1026 {
1027 int idx;
1028
1029 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1030 _allow_barrier(conf, idx);
1031 }
1032
1033 /* conf->resync_lock should be held */
1034 static int get_unqueued_pending(struct r1conf *conf)
1035 {
1036 int idx, ret;
1037
1038 ret = atomic_read(&conf->nr_sync_pending);
1039 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1040 ret += atomic_read(&conf->nr_pending[idx]) -
1041 atomic_read(&conf->nr_queued[idx]);
1042
1043 return ret;
1044 }
1045
1046 static void freeze_array(struct r1conf *conf, int extra)
1047 {
1048 /* Stop sync I/O and normal I/O and wait for everything to
1049 * go quiet.
1050 * This is called in two situations:
1051 * 1) management command handlers (reshape, remove disk, quiesce).
1052 * 2) one normal I/O request failed.
1053
1054 * After array_frozen is set to 1, new sync IO will be blocked at
1055 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1056 * or wait_read_barrier(). The flying I/Os will either complete or be
1057 * queued. When everything goes quite, there are only queued I/Os left.
1058
1059 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1060 * barrier bucket index which this I/O request hits. When all sync and
1061 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1062 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1063 * in handle_read_error(), we may call freeze_array() before trying to
1064 * fix the read error. In this case, the error read I/O is not queued,
1065 * so get_unqueued_pending() == 1.
1066 *
1067 * Therefore before this function returns, we need to wait until
1068 * get_unqueued_pendings(conf) gets equal to extra. For
1069 * normal I/O context, extra is 1, in rested situations extra is 0.
1070 */
1071 spin_lock_irq(&conf->resync_lock);
1072 conf->array_frozen = 1;
1073 raid1_log(conf->mddev, "wait freeze");
1074 wait_event_lock_irq_cmd(
1075 conf->wait_barrier,
1076 get_unqueued_pending(conf) == extra,
1077 conf->resync_lock,
1078 flush_pending_writes(conf));
1079 spin_unlock_irq(&conf->resync_lock);
1080 }
1081 static void unfreeze_array(struct r1conf *conf)
1082 {
1083 /* reverse the effect of the freeze */
1084 spin_lock_irq(&conf->resync_lock);
1085 conf->array_frozen = 0;
1086 spin_unlock_irq(&conf->resync_lock);
1087 wake_up(&conf->wait_barrier);
1088 }
1089
1090 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1091 struct bio *bio)
1092 {
1093 int size = bio->bi_iter.bi_size;
1094 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1095 int i = 0;
1096 struct bio *behind_bio = NULL;
1097
1098 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1099 if (!behind_bio)
1100 goto fail;
1101
1102 /* discard op, we don't support writezero/writesame yet */
1103 if (!bio_has_data(bio))
1104 goto skip_copy;
1105
1106 while (i < vcnt && size) {
1107 struct page *page;
1108 int len = min_t(int, PAGE_SIZE, size);
1109
1110 page = alloc_page(GFP_NOIO);
1111 if (unlikely(!page))
1112 goto free_pages;
1113
1114 bio_add_page(behind_bio, page, len, 0);
1115
1116 size -= len;
1117 i++;
1118 }
1119
1120 bio_copy_data(behind_bio, bio);
1121 skip_copy:
1122 r1_bio->behind_master_bio = behind_bio;;
1123 set_bit(R1BIO_BehindIO, &r1_bio->state);
1124
1125 return behind_bio;
1126
1127 free_pages:
1128 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1129 bio->bi_iter.bi_size);
1130 bio_free_pages(behind_bio);
1131 fail:
1132 return behind_bio;
1133 }
1134
1135 struct raid1_plug_cb {
1136 struct blk_plug_cb cb;
1137 struct bio_list pending;
1138 int pending_cnt;
1139 };
1140
1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142 {
1143 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144 cb);
1145 struct mddev *mddev = plug->cb.data;
1146 struct r1conf *conf = mddev->private;
1147 struct bio *bio;
1148
1149 if (from_schedule || current->bio_list) {
1150 spin_lock_irq(&conf->device_lock);
1151 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152 conf->pending_count += plug->pending_cnt;
1153 spin_unlock_irq(&conf->device_lock);
1154 wake_up(&conf->wait_barrier);
1155 md_wakeup_thread(mddev->thread);
1156 kfree(plug);
1157 return;
1158 }
1159
1160 /* we aren't scheduling, so we can do the write-out directly. */
1161 bio = bio_list_get(&plug->pending);
1162 flush_bio_list(conf, bio);
1163 kfree(plug);
1164 }
1165
1166 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167 {
1168 r1_bio->master_bio = bio;
1169 r1_bio->sectors = bio_sectors(bio);
1170 r1_bio->state = 0;
1171 r1_bio->mddev = mddev;
1172 r1_bio->sector = bio->bi_iter.bi_sector;
1173 }
1174
1175 static inline struct r1bio *
1176 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177 {
1178 struct r1conf *conf = mddev->private;
1179 struct r1bio *r1_bio;
1180
1181 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1182 /* Ensure no bio records IO_BLOCKED */
1183 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184 init_r1bio(r1_bio, mddev, bio);
1185 return r1_bio;
1186 }
1187
1188 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189 int max_read_sectors, struct r1bio *r1_bio)
1190 {
1191 struct r1conf *conf = mddev->private;
1192 struct raid1_info *mirror;
1193 struct bio *read_bio;
1194 struct bitmap *bitmap = mddev->bitmap;
1195 const int op = bio_op(bio);
1196 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197 int max_sectors;
1198 int rdisk;
1199 bool print_msg = !!r1_bio;
1200 char b[BDEVNAME_SIZE];
1201
1202 /*
1203 * If r1_bio is set, we are blocking the raid1d thread
1204 * so there is a tiny risk of deadlock. So ask for
1205 * emergency memory if needed.
1206 */
1207 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209 if (print_msg) {
1210 /* Need to get the block device name carefully */
1211 struct md_rdev *rdev;
1212 rcu_read_lock();
1213 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214 if (rdev)
1215 bdevname(rdev->bdev, b);
1216 else
1217 strcpy(b, "???");
1218 rcu_read_unlock();
1219 }
1220
1221 /*
1222 * Still need barrier for READ in case that whole
1223 * array is frozen.
1224 */
1225 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226
1227 if (!r1_bio)
1228 r1_bio = alloc_r1bio(mddev, bio);
1229 else
1230 init_r1bio(r1_bio, mddev, bio);
1231 r1_bio->sectors = max_read_sectors;
1232
1233 /*
1234 * make_request() can abort the operation when read-ahead is being
1235 * used and no empty request is available.
1236 */
1237 rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239 if (rdisk < 0) {
1240 /* couldn't find anywhere to read from */
1241 if (print_msg) {
1242 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243 mdname(mddev),
1244 b,
1245 (unsigned long long)r1_bio->sector);
1246 }
1247 raid_end_bio_io(r1_bio);
1248 return;
1249 }
1250 mirror = conf->mirrors + rdisk;
1251
1252 if (print_msg)
1253 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254 mdname(mddev),
1255 (unsigned long long)r1_bio->sector,
1256 bdevname(mirror->rdev->bdev, b));
1257
1258 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259 bitmap) {
1260 /*
1261 * Reading from a write-mostly device must take care not to
1262 * over-take any writes that are 'behind'
1263 */
1264 raid1_log(mddev, "wait behind writes");
1265 wait_event(bitmap->behind_wait,
1266 atomic_read(&bitmap->behind_writes) == 0);
1267 }
1268
1269 if (max_sectors < bio_sectors(bio)) {
1270 struct bio *split = bio_split(bio, max_sectors,
1271 gfp, conf->bio_split);
1272 bio_chain(split, bio);
1273 generic_make_request(bio);
1274 bio = split;
1275 r1_bio->master_bio = bio;
1276 r1_bio->sectors = max_sectors;
1277 }
1278
1279 r1_bio->read_disk = rdisk;
1280
1281 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1282
1283 r1_bio->bios[rdisk] = read_bio;
1284
1285 read_bio->bi_iter.bi_sector = r1_bio->sector +
1286 mirror->rdev->data_offset;
1287 read_bio->bi_bdev = mirror->rdev->bdev;
1288 read_bio->bi_end_io = raid1_end_read_request;
1289 bio_set_op_attrs(read_bio, op, do_sync);
1290 if (test_bit(FailFast, &mirror->rdev->flags) &&
1291 test_bit(R1BIO_FailFast, &r1_bio->state))
1292 read_bio->bi_opf |= MD_FAILFAST;
1293 read_bio->bi_private = r1_bio;
1294
1295 if (mddev->gendisk)
1296 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1297 read_bio, disk_devt(mddev->gendisk),
1298 r1_bio->sector);
1299
1300 generic_make_request(read_bio);
1301 }
1302
1303 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1304 int max_write_sectors)
1305 {
1306 struct r1conf *conf = mddev->private;
1307 struct r1bio *r1_bio;
1308 int i, disks;
1309 struct bitmap *bitmap = mddev->bitmap;
1310 unsigned long flags;
1311 struct md_rdev *blocked_rdev;
1312 struct blk_plug_cb *cb;
1313 struct raid1_plug_cb *plug = NULL;
1314 int first_clone;
1315 int max_sectors;
1316
1317 /*
1318 * Register the new request and wait if the reconstruction
1319 * thread has put up a bar for new requests.
1320 * Continue immediately if no resync is active currently.
1321 */
1322
1323
1324 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1325 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1326 (mddev_is_clustered(mddev) &&
1327 md_cluster_ops->area_resyncing(mddev, WRITE,
1328 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1329
1330 /*
1331 * As the suspend_* range is controlled by userspace, we want
1332 * an interruptible wait.
1333 */
1334 DEFINE_WAIT(w);
1335 for (;;) {
1336 sigset_t full, old;
1337 prepare_to_wait(&conf->wait_barrier,
1338 &w, TASK_INTERRUPTIBLE);
1339 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1340 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1341 (mddev_is_clustered(mddev) &&
1342 !md_cluster_ops->area_resyncing(mddev, WRITE,
1343 bio->bi_iter.bi_sector,
1344 bio_end_sector(bio))))
1345 break;
1346 sigfillset(&full);
1347 sigprocmask(SIG_BLOCK, &full, &old);
1348 schedule();
1349 sigprocmask(SIG_SETMASK, &old, NULL);
1350 }
1351 finish_wait(&conf->wait_barrier, &w);
1352 }
1353 wait_barrier(conf, bio->bi_iter.bi_sector);
1354
1355 r1_bio = alloc_r1bio(mddev, bio);
1356 r1_bio->sectors = max_write_sectors;
1357
1358 if (conf->pending_count >= max_queued_requests) {
1359 md_wakeup_thread(mddev->thread);
1360 raid1_log(mddev, "wait queued");
1361 wait_event(conf->wait_barrier,
1362 conf->pending_count < max_queued_requests);
1363 }
1364 /* first select target devices under rcu_lock and
1365 * inc refcount on their rdev. Record them by setting
1366 * bios[x] to bio
1367 * If there are known/acknowledged bad blocks on any device on
1368 * which we have seen a write error, we want to avoid writing those
1369 * blocks.
1370 * This potentially requires several writes to write around
1371 * the bad blocks. Each set of writes gets it's own r1bio
1372 * with a set of bios attached.
1373 */
1374
1375 disks = conf->raid_disks * 2;
1376 retry_write:
1377 blocked_rdev = NULL;
1378 rcu_read_lock();
1379 max_sectors = r1_bio->sectors;
1380 for (i = 0; i < disks; i++) {
1381 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1382 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1383 atomic_inc(&rdev->nr_pending);
1384 blocked_rdev = rdev;
1385 break;
1386 }
1387 r1_bio->bios[i] = NULL;
1388 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1389 if (i < conf->raid_disks)
1390 set_bit(R1BIO_Degraded, &r1_bio->state);
1391 continue;
1392 }
1393
1394 atomic_inc(&rdev->nr_pending);
1395 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1396 sector_t first_bad;
1397 int bad_sectors;
1398 int is_bad;
1399
1400 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1401 &first_bad, &bad_sectors);
1402 if (is_bad < 0) {
1403 /* mustn't write here until the bad block is
1404 * acknowledged*/
1405 set_bit(BlockedBadBlocks, &rdev->flags);
1406 blocked_rdev = rdev;
1407 break;
1408 }
1409 if (is_bad && first_bad <= r1_bio->sector) {
1410 /* Cannot write here at all */
1411 bad_sectors -= (r1_bio->sector - first_bad);
1412 if (bad_sectors < max_sectors)
1413 /* mustn't write more than bad_sectors
1414 * to other devices yet
1415 */
1416 max_sectors = bad_sectors;
1417 rdev_dec_pending(rdev, mddev);
1418 /* We don't set R1BIO_Degraded as that
1419 * only applies if the disk is
1420 * missing, so it might be re-added,
1421 * and we want to know to recover this
1422 * chunk.
1423 * In this case the device is here,
1424 * and the fact that this chunk is not
1425 * in-sync is recorded in the bad
1426 * block log
1427 */
1428 continue;
1429 }
1430 if (is_bad) {
1431 int good_sectors = first_bad - r1_bio->sector;
1432 if (good_sectors < max_sectors)
1433 max_sectors = good_sectors;
1434 }
1435 }
1436 r1_bio->bios[i] = bio;
1437 }
1438 rcu_read_unlock();
1439
1440 if (unlikely(blocked_rdev)) {
1441 /* Wait for this device to become unblocked */
1442 int j;
1443
1444 for (j = 0; j < i; j++)
1445 if (r1_bio->bios[j])
1446 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1447 r1_bio->state = 0;
1448 allow_barrier(conf, bio->bi_iter.bi_sector);
1449 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1450 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1451 wait_barrier(conf, bio->bi_iter.bi_sector);
1452 goto retry_write;
1453 }
1454
1455 if (max_sectors < bio_sectors(bio)) {
1456 struct bio *split = bio_split(bio, max_sectors,
1457 GFP_NOIO, conf->bio_split);
1458 bio_chain(split, bio);
1459 generic_make_request(bio);
1460 bio = split;
1461 r1_bio->master_bio = bio;
1462 r1_bio->sectors = max_sectors;
1463 }
1464
1465 atomic_set(&r1_bio->remaining, 1);
1466 atomic_set(&r1_bio->behind_remaining, 0);
1467
1468 first_clone = 1;
1469
1470 for (i = 0; i < disks; i++) {
1471 struct bio *mbio = NULL;
1472 if (!r1_bio->bios[i])
1473 continue;
1474
1475
1476 if (first_clone) {
1477 /* do behind I/O ?
1478 * Not if there are too many, or cannot
1479 * allocate memory, or a reader on WriteMostly
1480 * is waiting for behind writes to flush */
1481 if (bitmap &&
1482 (atomic_read(&bitmap->behind_writes)
1483 < mddev->bitmap_info.max_write_behind) &&
1484 !waitqueue_active(&bitmap->behind_wait)) {
1485 mbio = alloc_behind_master_bio(r1_bio, bio);
1486 }
1487
1488 bitmap_startwrite(bitmap, r1_bio->sector,
1489 r1_bio->sectors,
1490 test_bit(R1BIO_BehindIO,
1491 &r1_bio->state));
1492 first_clone = 0;
1493 }
1494
1495 if (!mbio) {
1496 if (r1_bio->behind_master_bio)
1497 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1498 GFP_NOIO,
1499 mddev->bio_set);
1500 else
1501 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1502 }
1503
1504 if (r1_bio->behind_master_bio) {
1505 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1506 atomic_inc(&r1_bio->behind_remaining);
1507 }
1508
1509 r1_bio->bios[i] = mbio;
1510
1511 mbio->bi_iter.bi_sector = (r1_bio->sector +
1512 conf->mirrors[i].rdev->data_offset);
1513 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1514 mbio->bi_end_io = raid1_end_write_request;
1515 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1516 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1517 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1518 conf->raid_disks - mddev->degraded > 1)
1519 mbio->bi_opf |= MD_FAILFAST;
1520 mbio->bi_private = r1_bio;
1521
1522 atomic_inc(&r1_bio->remaining);
1523
1524 if (mddev->gendisk)
1525 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1526 mbio, disk_devt(mddev->gendisk),
1527 r1_bio->sector);
1528 /* flush_pending_writes() needs access to the rdev so...*/
1529 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1530
1531 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1532 if (cb)
1533 plug = container_of(cb, struct raid1_plug_cb, cb);
1534 else
1535 plug = NULL;
1536 if (plug) {
1537 bio_list_add(&plug->pending, mbio);
1538 plug->pending_cnt++;
1539 } else {
1540 spin_lock_irqsave(&conf->device_lock, flags);
1541 bio_list_add(&conf->pending_bio_list, mbio);
1542 conf->pending_count++;
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 md_wakeup_thread(mddev->thread);
1545 }
1546 }
1547
1548 r1_bio_write_done(r1_bio);
1549
1550 /* In case raid1d snuck in to freeze_array */
1551 wake_up(&conf->wait_barrier);
1552 }
1553
1554 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1555 {
1556 sector_t sectors;
1557
1558 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1559 md_flush_request(mddev, bio);
1560 return true;
1561 }
1562
1563 /*
1564 * There is a limit to the maximum size, but
1565 * the read/write handler might find a lower limit
1566 * due to bad blocks. To avoid multiple splits,
1567 * we pass the maximum number of sectors down
1568 * and let the lower level perform the split.
1569 */
1570 sectors = align_to_barrier_unit_end(
1571 bio->bi_iter.bi_sector, bio_sectors(bio));
1572
1573 if (bio_data_dir(bio) == READ)
1574 raid1_read_request(mddev, bio, sectors, NULL);
1575 else {
1576 if (!md_write_start(mddev,bio))
1577 return false;
1578 raid1_write_request(mddev, bio, sectors);
1579 }
1580 return true;
1581 }
1582
1583 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1584 {
1585 struct r1conf *conf = mddev->private;
1586 int i;
1587
1588 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1589 conf->raid_disks - mddev->degraded);
1590 rcu_read_lock();
1591 for (i = 0; i < conf->raid_disks; i++) {
1592 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1593 seq_printf(seq, "%s",
1594 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1595 }
1596 rcu_read_unlock();
1597 seq_printf(seq, "]");
1598 }
1599
1600 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602 char b[BDEVNAME_SIZE];
1603 struct r1conf *conf = mddev->private;
1604 unsigned long flags;
1605
1606 /*
1607 * If it is not operational, then we have already marked it as dead
1608 * else if it is the last working disks, ignore the error, let the
1609 * next level up know.
1610 * else mark the drive as failed
1611 */
1612 spin_lock_irqsave(&conf->device_lock, flags);
1613 if (test_bit(In_sync, &rdev->flags)
1614 && (conf->raid_disks - mddev->degraded) == 1) {
1615 /*
1616 * Don't fail the drive, act as though we were just a
1617 * normal single drive.
1618 * However don't try a recovery from this drive as
1619 * it is very likely to fail.
1620 */
1621 conf->recovery_disabled = mddev->recovery_disabled;
1622 spin_unlock_irqrestore(&conf->device_lock, flags);
1623 return;
1624 }
1625 set_bit(Blocked, &rdev->flags);
1626 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627 mddev->degraded++;
1628 set_bit(Faulty, &rdev->flags);
1629 } else
1630 set_bit(Faulty, &rdev->flags);
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 /*
1633 * if recovery is running, make sure it aborts.
1634 */
1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_mask_bits(&mddev->sb_flags, 0,
1637 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1638 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1639 "md/raid1:%s: Operation continuing on %d devices.\n",
1640 mdname(mddev), bdevname(rdev->bdev, b),
1641 mdname(mddev), conf->raid_disks - mddev->degraded);
1642 }
1643
1644 static void print_conf(struct r1conf *conf)
1645 {
1646 int i;
1647
1648 pr_debug("RAID1 conf printout:\n");
1649 if (!conf) {
1650 pr_debug("(!conf)\n");
1651 return;
1652 }
1653 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1654 conf->raid_disks);
1655
1656 rcu_read_lock();
1657 for (i = 0; i < conf->raid_disks; i++) {
1658 char b[BDEVNAME_SIZE];
1659 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1660 if (rdev)
1661 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1662 i, !test_bit(In_sync, &rdev->flags),
1663 !test_bit(Faulty, &rdev->flags),
1664 bdevname(rdev->bdev,b));
1665 }
1666 rcu_read_unlock();
1667 }
1668
1669 static void close_sync(struct r1conf *conf)
1670 {
1671 wait_all_barriers(conf);
1672 allow_all_barriers(conf);
1673
1674 mempool_destroy(conf->r1buf_pool);
1675 conf->r1buf_pool = NULL;
1676 }
1677
1678 static int raid1_spare_active(struct mddev *mddev)
1679 {
1680 int i;
1681 struct r1conf *conf = mddev->private;
1682 int count = 0;
1683 unsigned long flags;
1684
1685 /*
1686 * Find all failed disks within the RAID1 configuration
1687 * and mark them readable.
1688 * Called under mddev lock, so rcu protection not needed.
1689 * device_lock used to avoid races with raid1_end_read_request
1690 * which expects 'In_sync' flags and ->degraded to be consistent.
1691 */
1692 spin_lock_irqsave(&conf->device_lock, flags);
1693 for (i = 0; i < conf->raid_disks; i++) {
1694 struct md_rdev *rdev = conf->mirrors[i].rdev;
1695 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1696 if (repl
1697 && !test_bit(Candidate, &repl->flags)
1698 && repl->recovery_offset == MaxSector
1699 && !test_bit(Faulty, &repl->flags)
1700 && !test_and_set_bit(In_sync, &repl->flags)) {
1701 /* replacement has just become active */
1702 if (!rdev ||
1703 !test_and_clear_bit(In_sync, &rdev->flags))
1704 count++;
1705 if (rdev) {
1706 /* Replaced device not technically
1707 * faulty, but we need to be sure
1708 * it gets removed and never re-added
1709 */
1710 set_bit(Faulty, &rdev->flags);
1711 sysfs_notify_dirent_safe(
1712 rdev->sysfs_state);
1713 }
1714 }
1715 if (rdev
1716 && rdev->recovery_offset == MaxSector
1717 && !test_bit(Faulty, &rdev->flags)
1718 && !test_and_set_bit(In_sync, &rdev->flags)) {
1719 count++;
1720 sysfs_notify_dirent_safe(rdev->sysfs_state);
1721 }
1722 }
1723 mddev->degraded -= count;
1724 spin_unlock_irqrestore(&conf->device_lock, flags);
1725
1726 print_conf(conf);
1727 return count;
1728 }
1729
1730 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732 struct r1conf *conf = mddev->private;
1733 int err = -EEXIST;
1734 int mirror = 0;
1735 struct raid1_info *p;
1736 int first = 0;
1737 int last = conf->raid_disks - 1;
1738
1739 if (mddev->recovery_disabled == conf->recovery_disabled)
1740 return -EBUSY;
1741
1742 if (md_integrity_add_rdev(rdev, mddev))
1743 return -ENXIO;
1744
1745 if (rdev->raid_disk >= 0)
1746 first = last = rdev->raid_disk;
1747
1748 /*
1749 * find the disk ... but prefer rdev->saved_raid_disk
1750 * if possible.
1751 */
1752 if (rdev->saved_raid_disk >= 0 &&
1753 rdev->saved_raid_disk >= first &&
1754 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1755 first = last = rdev->saved_raid_disk;
1756
1757 for (mirror = first; mirror <= last; mirror++) {
1758 p = conf->mirrors+mirror;
1759 if (!p->rdev) {
1760
1761 if (mddev->gendisk)
1762 disk_stack_limits(mddev->gendisk, rdev->bdev,
1763 rdev->data_offset << 9);
1764
1765 p->head_position = 0;
1766 rdev->raid_disk = mirror;
1767 err = 0;
1768 /* As all devices are equivalent, we don't need a full recovery
1769 * if this was recently any drive of the array
1770 */
1771 if (rdev->saved_raid_disk < 0)
1772 conf->fullsync = 1;
1773 rcu_assign_pointer(p->rdev, rdev);
1774 break;
1775 }
1776 if (test_bit(WantReplacement, &p->rdev->flags) &&
1777 p[conf->raid_disks].rdev == NULL) {
1778 /* Add this device as a replacement */
1779 clear_bit(In_sync, &rdev->flags);
1780 set_bit(Replacement, &rdev->flags);
1781 rdev->raid_disk = mirror;
1782 err = 0;
1783 conf->fullsync = 1;
1784 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1785 break;
1786 }
1787 }
1788 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1789 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1790 print_conf(conf);
1791 return err;
1792 }
1793
1794 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1795 {
1796 struct r1conf *conf = mddev->private;
1797 int err = 0;
1798 int number = rdev->raid_disk;
1799 struct raid1_info *p = conf->mirrors + number;
1800
1801 if (rdev != p->rdev)
1802 p = conf->mirrors + conf->raid_disks + number;
1803
1804 print_conf(conf);
1805 if (rdev == p->rdev) {
1806 if (test_bit(In_sync, &rdev->flags) ||
1807 atomic_read(&rdev->nr_pending)) {
1808 err = -EBUSY;
1809 goto abort;
1810 }
1811 /* Only remove non-faulty devices if recovery
1812 * is not possible.
1813 */
1814 if (!test_bit(Faulty, &rdev->flags) &&
1815 mddev->recovery_disabled != conf->recovery_disabled &&
1816 mddev->degraded < conf->raid_disks) {
1817 err = -EBUSY;
1818 goto abort;
1819 }
1820 p->rdev = NULL;
1821 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1822 synchronize_rcu();
1823 if (atomic_read(&rdev->nr_pending)) {
1824 /* lost the race, try later */
1825 err = -EBUSY;
1826 p->rdev = rdev;
1827 goto abort;
1828 }
1829 }
1830 if (conf->mirrors[conf->raid_disks + number].rdev) {
1831 /* We just removed a device that is being replaced.
1832 * Move down the replacement. We drain all IO before
1833 * doing this to avoid confusion.
1834 */
1835 struct md_rdev *repl =
1836 conf->mirrors[conf->raid_disks + number].rdev;
1837 freeze_array(conf, 0);
1838 clear_bit(Replacement, &repl->flags);
1839 p->rdev = repl;
1840 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1841 unfreeze_array(conf);
1842 }
1843
1844 clear_bit(WantReplacement, &rdev->flags);
1845 err = md_integrity_register(mddev);
1846 }
1847 abort:
1848
1849 print_conf(conf);
1850 return err;
1851 }
1852
1853 static void end_sync_read(struct bio *bio)
1854 {
1855 struct r1bio *r1_bio = get_resync_r1bio(bio);
1856
1857 update_head_pos(r1_bio->read_disk, r1_bio);
1858
1859 /*
1860 * we have read a block, now it needs to be re-written,
1861 * or re-read if the read failed.
1862 * We don't do much here, just schedule handling by raid1d
1863 */
1864 if (!bio->bi_status)
1865 set_bit(R1BIO_Uptodate, &r1_bio->state);
1866
1867 if (atomic_dec_and_test(&r1_bio->remaining))
1868 reschedule_retry(r1_bio);
1869 }
1870
1871 static void end_sync_write(struct bio *bio)
1872 {
1873 int uptodate = !bio->bi_status;
1874 struct r1bio *r1_bio = get_resync_r1bio(bio);
1875 struct mddev *mddev = r1_bio->mddev;
1876 struct r1conf *conf = mddev->private;
1877 sector_t first_bad;
1878 int bad_sectors;
1879 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1880
1881 if (!uptodate) {
1882 sector_t sync_blocks = 0;
1883 sector_t s = r1_bio->sector;
1884 long sectors_to_go = r1_bio->sectors;
1885 /* make sure these bits doesn't get cleared. */
1886 do {
1887 bitmap_end_sync(mddev->bitmap, s,
1888 &sync_blocks, 1);
1889 s += sync_blocks;
1890 sectors_to_go -= sync_blocks;
1891 } while (sectors_to_go > 0);
1892 set_bit(WriteErrorSeen, &rdev->flags);
1893 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1894 set_bit(MD_RECOVERY_NEEDED, &
1895 mddev->recovery);
1896 set_bit(R1BIO_WriteError, &r1_bio->state);
1897 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1898 &first_bad, &bad_sectors) &&
1899 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1900 r1_bio->sector,
1901 r1_bio->sectors,
1902 &first_bad, &bad_sectors)
1903 )
1904 set_bit(R1BIO_MadeGood, &r1_bio->state);
1905
1906 if (atomic_dec_and_test(&r1_bio->remaining)) {
1907 int s = r1_bio->sectors;
1908 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1909 test_bit(R1BIO_WriteError, &r1_bio->state))
1910 reschedule_retry(r1_bio);
1911 else {
1912 put_buf(r1_bio);
1913 md_done_sync(mddev, s, uptodate);
1914 }
1915 }
1916 }
1917
1918 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1919 int sectors, struct page *page, int rw)
1920 {
1921 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1922 /* success */
1923 return 1;
1924 if (rw == WRITE) {
1925 set_bit(WriteErrorSeen, &rdev->flags);
1926 if (!test_and_set_bit(WantReplacement,
1927 &rdev->flags))
1928 set_bit(MD_RECOVERY_NEEDED, &
1929 rdev->mddev->recovery);
1930 }
1931 /* need to record an error - either for the block or the device */
1932 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1933 md_error(rdev->mddev, rdev);
1934 return 0;
1935 }
1936
1937 static int fix_sync_read_error(struct r1bio *r1_bio)
1938 {
1939 /* Try some synchronous reads of other devices to get
1940 * good data, much like with normal read errors. Only
1941 * read into the pages we already have so we don't
1942 * need to re-issue the read request.
1943 * We don't need to freeze the array, because being in an
1944 * active sync request, there is no normal IO, and
1945 * no overlapping syncs.
1946 * We don't need to check is_badblock() again as we
1947 * made sure that anything with a bad block in range
1948 * will have bi_end_io clear.
1949 */
1950 struct mddev *mddev = r1_bio->mddev;
1951 struct r1conf *conf = mddev->private;
1952 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1953 struct page **pages = get_resync_pages(bio)->pages;
1954 sector_t sect = r1_bio->sector;
1955 int sectors = r1_bio->sectors;
1956 int idx = 0;
1957 struct md_rdev *rdev;
1958
1959 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1960 if (test_bit(FailFast, &rdev->flags)) {
1961 /* Don't try recovering from here - just fail it
1962 * ... unless it is the last working device of course */
1963 md_error(mddev, rdev);
1964 if (test_bit(Faulty, &rdev->flags))
1965 /* Don't try to read from here, but make sure
1966 * put_buf does it's thing
1967 */
1968 bio->bi_end_io = end_sync_write;
1969 }
1970
1971 while(sectors) {
1972 int s = sectors;
1973 int d = r1_bio->read_disk;
1974 int success = 0;
1975 int start;
1976
1977 if (s > (PAGE_SIZE>>9))
1978 s = PAGE_SIZE >> 9;
1979 do {
1980 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1981 /* No rcu protection needed here devices
1982 * can only be removed when no resync is
1983 * active, and resync is currently active
1984 */
1985 rdev = conf->mirrors[d].rdev;
1986 if (sync_page_io(rdev, sect, s<<9,
1987 pages[idx],
1988 REQ_OP_READ, 0, false)) {
1989 success = 1;
1990 break;
1991 }
1992 }
1993 d++;
1994 if (d == conf->raid_disks * 2)
1995 d = 0;
1996 } while (!success && d != r1_bio->read_disk);
1997
1998 if (!success) {
1999 char b[BDEVNAME_SIZE];
2000 int abort = 0;
2001 /* Cannot read from anywhere, this block is lost.
2002 * Record a bad block on each device. If that doesn't
2003 * work just disable and interrupt the recovery.
2004 * Don't fail devices as that won't really help.
2005 */
2006 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2007 mdname(mddev),
2008 bdevname(bio->bi_bdev, b),
2009 (unsigned long long)r1_bio->sector);
2010 for (d = 0; d < conf->raid_disks * 2; d++) {
2011 rdev = conf->mirrors[d].rdev;
2012 if (!rdev || test_bit(Faulty, &rdev->flags))
2013 continue;
2014 if (!rdev_set_badblocks(rdev, sect, s, 0))
2015 abort = 1;
2016 }
2017 if (abort) {
2018 conf->recovery_disabled =
2019 mddev->recovery_disabled;
2020 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2021 md_done_sync(mddev, r1_bio->sectors, 0);
2022 put_buf(r1_bio);
2023 return 0;
2024 }
2025 /* Try next page */
2026 sectors -= s;
2027 sect += s;
2028 idx++;
2029 continue;
2030 }
2031
2032 start = d;
2033 /* write it back and re-read */
2034 while (d != r1_bio->read_disk) {
2035 if (d == 0)
2036 d = conf->raid_disks * 2;
2037 d--;
2038 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039 continue;
2040 rdev = conf->mirrors[d].rdev;
2041 if (r1_sync_page_io(rdev, sect, s,
2042 pages[idx],
2043 WRITE) == 0) {
2044 r1_bio->bios[d]->bi_end_io = NULL;
2045 rdev_dec_pending(rdev, mddev);
2046 }
2047 }
2048 d = start;
2049 while (d != r1_bio->read_disk) {
2050 if (d == 0)
2051 d = conf->raid_disks * 2;
2052 d--;
2053 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2054 continue;
2055 rdev = conf->mirrors[d].rdev;
2056 if (r1_sync_page_io(rdev, sect, s,
2057 pages[idx],
2058 READ) != 0)
2059 atomic_add(s, &rdev->corrected_errors);
2060 }
2061 sectors -= s;
2062 sect += s;
2063 idx ++;
2064 }
2065 set_bit(R1BIO_Uptodate, &r1_bio->state);
2066 bio->bi_status = 0;
2067 return 1;
2068 }
2069
2070 static void process_checks(struct r1bio *r1_bio)
2071 {
2072 /* We have read all readable devices. If we haven't
2073 * got the block, then there is no hope left.
2074 * If we have, then we want to do a comparison
2075 * and skip the write if everything is the same.
2076 * If any blocks failed to read, then we need to
2077 * attempt an over-write
2078 */
2079 struct mddev *mddev = r1_bio->mddev;
2080 struct r1conf *conf = mddev->private;
2081 int primary;
2082 int i;
2083 int vcnt;
2084
2085 /* Fix variable parts of all bios */
2086 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2087 for (i = 0; i < conf->raid_disks * 2; i++) {
2088 int j;
2089 int size;
2090 blk_status_t status;
2091 struct bio_vec *bi;
2092 struct bio *b = r1_bio->bios[i];
2093 struct resync_pages *rp = get_resync_pages(b);
2094 if (b->bi_end_io != end_sync_read)
2095 continue;
2096 /* fixup the bio for reuse, but preserve errno */
2097 status = b->bi_status;
2098 bio_reset(b);
2099 b->bi_status = status;
2100 b->bi_vcnt = vcnt;
2101 b->bi_iter.bi_size = r1_bio->sectors << 9;
2102 b->bi_iter.bi_sector = r1_bio->sector +
2103 conf->mirrors[i].rdev->data_offset;
2104 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2105 b->bi_end_io = end_sync_read;
2106 rp->raid_bio = r1_bio;
2107 b->bi_private = rp;
2108
2109 size = b->bi_iter.bi_size;
2110 bio_for_each_segment_all(bi, b, j) {
2111 bi->bv_offset = 0;
2112 if (size > PAGE_SIZE)
2113 bi->bv_len = PAGE_SIZE;
2114 else
2115 bi->bv_len = size;
2116 size -= PAGE_SIZE;
2117 }
2118 }
2119 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2120 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2121 !r1_bio->bios[primary]->bi_status) {
2122 r1_bio->bios[primary]->bi_end_io = NULL;
2123 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2124 break;
2125 }
2126 r1_bio->read_disk = primary;
2127 for (i = 0; i < conf->raid_disks * 2; i++) {
2128 int j;
2129 struct bio *pbio = r1_bio->bios[primary];
2130 struct bio *sbio = r1_bio->bios[i];
2131 blk_status_t status = sbio->bi_status;
2132 struct page **ppages = get_resync_pages(pbio)->pages;
2133 struct page **spages = get_resync_pages(sbio)->pages;
2134 struct bio_vec *bi;
2135 int page_len[RESYNC_PAGES] = { 0 };
2136
2137 if (sbio->bi_end_io != end_sync_read)
2138 continue;
2139 /* Now we can 'fixup' the error value */
2140 sbio->bi_status = 0;
2141
2142 bio_for_each_segment_all(bi, sbio, j)
2143 page_len[j] = bi->bv_len;
2144
2145 if (!status) {
2146 for (j = vcnt; j-- ; ) {
2147 if (memcmp(page_address(ppages[j]),
2148 page_address(spages[j]),
2149 page_len[j]))
2150 break;
2151 }
2152 } else
2153 j = 0;
2154 if (j >= 0)
2155 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2156 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2157 && !status)) {
2158 /* No need to write to this device. */
2159 sbio->bi_end_io = NULL;
2160 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2161 continue;
2162 }
2163
2164 bio_copy_data(sbio, pbio);
2165 }
2166 }
2167
2168 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2169 {
2170 struct r1conf *conf = mddev->private;
2171 int i;
2172 int disks = conf->raid_disks * 2;
2173 struct bio *wbio;
2174
2175 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2176 /* ouch - failed to read all of that. */
2177 if (!fix_sync_read_error(r1_bio))
2178 return;
2179
2180 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2181 process_checks(r1_bio);
2182
2183 /*
2184 * schedule writes
2185 */
2186 atomic_set(&r1_bio->remaining, 1);
2187 for (i = 0; i < disks ; i++) {
2188 wbio = r1_bio->bios[i];
2189 if (wbio->bi_end_io == NULL ||
2190 (wbio->bi_end_io == end_sync_read &&
2191 (i == r1_bio->read_disk ||
2192 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2193 continue;
2194 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2195 continue;
2196
2197 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2198 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2199 wbio->bi_opf |= MD_FAILFAST;
2200
2201 wbio->bi_end_io = end_sync_write;
2202 atomic_inc(&r1_bio->remaining);
2203 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2204
2205 generic_make_request(wbio);
2206 }
2207
2208 if (atomic_dec_and_test(&r1_bio->remaining)) {
2209 /* if we're here, all write(s) have completed, so clean up */
2210 int s = r1_bio->sectors;
2211 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2212 test_bit(R1BIO_WriteError, &r1_bio->state))
2213 reschedule_retry(r1_bio);
2214 else {
2215 put_buf(r1_bio);
2216 md_done_sync(mddev, s, 1);
2217 }
2218 }
2219 }
2220
2221 /*
2222 * This is a kernel thread which:
2223 *
2224 * 1. Retries failed read operations on working mirrors.
2225 * 2. Updates the raid superblock when problems encounter.
2226 * 3. Performs writes following reads for array synchronising.
2227 */
2228
2229 static void fix_read_error(struct r1conf *conf, int read_disk,
2230 sector_t sect, int sectors)
2231 {
2232 struct mddev *mddev = conf->mddev;
2233 while(sectors) {
2234 int s = sectors;
2235 int d = read_disk;
2236 int success = 0;
2237 int start;
2238 struct md_rdev *rdev;
2239
2240 if (s > (PAGE_SIZE>>9))
2241 s = PAGE_SIZE >> 9;
2242
2243 do {
2244 sector_t first_bad;
2245 int bad_sectors;
2246
2247 rcu_read_lock();
2248 rdev = rcu_dereference(conf->mirrors[d].rdev);
2249 if (rdev &&
2250 (test_bit(In_sync, &rdev->flags) ||
2251 (!test_bit(Faulty, &rdev->flags) &&
2252 rdev->recovery_offset >= sect + s)) &&
2253 is_badblock(rdev, sect, s,
2254 &first_bad, &bad_sectors) == 0) {
2255 atomic_inc(&rdev->nr_pending);
2256 rcu_read_unlock();
2257 if (sync_page_io(rdev, sect, s<<9,
2258 conf->tmppage, REQ_OP_READ, 0, false))
2259 success = 1;
2260 rdev_dec_pending(rdev, mddev);
2261 if (success)
2262 break;
2263 } else
2264 rcu_read_unlock();
2265 d++;
2266 if (d == conf->raid_disks * 2)
2267 d = 0;
2268 } while (!success && d != read_disk);
2269
2270 if (!success) {
2271 /* Cannot read from anywhere - mark it bad */
2272 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2273 if (!rdev_set_badblocks(rdev, sect, s, 0))
2274 md_error(mddev, rdev);
2275 break;
2276 }
2277 /* write it back and re-read */
2278 start = d;
2279 while (d != read_disk) {
2280 if (d==0)
2281 d = conf->raid_disks * 2;
2282 d--;
2283 rcu_read_lock();
2284 rdev = rcu_dereference(conf->mirrors[d].rdev);
2285 if (rdev &&
2286 !test_bit(Faulty, &rdev->flags)) {
2287 atomic_inc(&rdev->nr_pending);
2288 rcu_read_unlock();
2289 r1_sync_page_io(rdev, sect, s,
2290 conf->tmppage, WRITE);
2291 rdev_dec_pending(rdev, mddev);
2292 } else
2293 rcu_read_unlock();
2294 }
2295 d = start;
2296 while (d != read_disk) {
2297 char b[BDEVNAME_SIZE];
2298 if (d==0)
2299 d = conf->raid_disks * 2;
2300 d--;
2301 rcu_read_lock();
2302 rdev = rcu_dereference(conf->mirrors[d].rdev);
2303 if (rdev &&
2304 !test_bit(Faulty, &rdev->flags)) {
2305 atomic_inc(&rdev->nr_pending);
2306 rcu_read_unlock();
2307 if (r1_sync_page_io(rdev, sect, s,
2308 conf->tmppage, READ)) {
2309 atomic_add(s, &rdev->corrected_errors);
2310 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2311 mdname(mddev), s,
2312 (unsigned long long)(sect +
2313 rdev->data_offset),
2314 bdevname(rdev->bdev, b));
2315 }
2316 rdev_dec_pending(rdev, mddev);
2317 } else
2318 rcu_read_unlock();
2319 }
2320 sectors -= s;
2321 sect += s;
2322 }
2323 }
2324
2325 static int narrow_write_error(struct r1bio *r1_bio, int i)
2326 {
2327 struct mddev *mddev = r1_bio->mddev;
2328 struct r1conf *conf = mddev->private;
2329 struct md_rdev *rdev = conf->mirrors[i].rdev;
2330
2331 /* bio has the data to be written to device 'i' where
2332 * we just recently had a write error.
2333 * We repeatedly clone the bio and trim down to one block,
2334 * then try the write. Where the write fails we record
2335 * a bad block.
2336 * It is conceivable that the bio doesn't exactly align with
2337 * blocks. We must handle this somehow.
2338 *
2339 * We currently own a reference on the rdev.
2340 */
2341
2342 int block_sectors;
2343 sector_t sector;
2344 int sectors;
2345 int sect_to_write = r1_bio->sectors;
2346 int ok = 1;
2347
2348 if (rdev->badblocks.shift < 0)
2349 return 0;
2350
2351 block_sectors = roundup(1 << rdev->badblocks.shift,
2352 bdev_logical_block_size(rdev->bdev) >> 9);
2353 sector = r1_bio->sector;
2354 sectors = ((sector + block_sectors)
2355 & ~(sector_t)(block_sectors - 1))
2356 - sector;
2357
2358 while (sect_to_write) {
2359 struct bio *wbio;
2360 if (sectors > sect_to_write)
2361 sectors = sect_to_write;
2362 /* Write at 'sector' for 'sectors'*/
2363
2364 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2365 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2366 GFP_NOIO,
2367 mddev->bio_set);
2368 /* We really need a _all clone */
2369 wbio->bi_iter = (struct bvec_iter){ 0 };
2370 } else {
2371 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2372 mddev->bio_set);
2373 }
2374
2375 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2376 wbio->bi_iter.bi_sector = r1_bio->sector;
2377 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2378
2379 bio_trim(wbio, sector - r1_bio->sector, sectors);
2380 wbio->bi_iter.bi_sector += rdev->data_offset;
2381 wbio->bi_bdev = rdev->bdev;
2382
2383 if (submit_bio_wait(wbio) < 0)
2384 /* failure! */
2385 ok = rdev_set_badblocks(rdev, sector,
2386 sectors, 0)
2387 && ok;
2388
2389 bio_put(wbio);
2390 sect_to_write -= sectors;
2391 sector += sectors;
2392 sectors = block_sectors;
2393 }
2394 return ok;
2395 }
2396
2397 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2398 {
2399 int m;
2400 int s = r1_bio->sectors;
2401 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2402 struct md_rdev *rdev = conf->mirrors[m].rdev;
2403 struct bio *bio = r1_bio->bios[m];
2404 if (bio->bi_end_io == NULL)
2405 continue;
2406 if (!bio->bi_status &&
2407 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2408 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2409 }
2410 if (bio->bi_status &&
2411 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2412 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2413 md_error(conf->mddev, rdev);
2414 }
2415 }
2416 put_buf(r1_bio);
2417 md_done_sync(conf->mddev, s, 1);
2418 }
2419
2420 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2421 {
2422 int m, idx;
2423 bool fail = false;
2424
2425 for (m = 0; m < conf->raid_disks * 2 ; m++)
2426 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2427 struct md_rdev *rdev = conf->mirrors[m].rdev;
2428 rdev_clear_badblocks(rdev,
2429 r1_bio->sector,
2430 r1_bio->sectors, 0);
2431 rdev_dec_pending(rdev, conf->mddev);
2432 } else if (r1_bio->bios[m] != NULL) {
2433 /* This drive got a write error. We need to
2434 * narrow down and record precise write
2435 * errors.
2436 */
2437 fail = true;
2438 if (!narrow_write_error(r1_bio, m)) {
2439 md_error(conf->mddev,
2440 conf->mirrors[m].rdev);
2441 /* an I/O failed, we can't clear the bitmap */
2442 set_bit(R1BIO_Degraded, &r1_bio->state);
2443 }
2444 rdev_dec_pending(conf->mirrors[m].rdev,
2445 conf->mddev);
2446 }
2447 if (fail) {
2448 spin_lock_irq(&conf->device_lock);
2449 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2450 idx = sector_to_idx(r1_bio->sector);
2451 atomic_inc(&conf->nr_queued[idx]);
2452 spin_unlock_irq(&conf->device_lock);
2453 /*
2454 * In case freeze_array() is waiting for condition
2455 * get_unqueued_pending() == extra to be true.
2456 */
2457 wake_up(&conf->wait_barrier);
2458 md_wakeup_thread(conf->mddev->thread);
2459 } else {
2460 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2461 close_write(r1_bio);
2462 raid_end_bio_io(r1_bio);
2463 }
2464 }
2465
2466 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2467 {
2468 struct mddev *mddev = conf->mddev;
2469 struct bio *bio;
2470 struct md_rdev *rdev;
2471 dev_t bio_dev;
2472 sector_t bio_sector;
2473
2474 clear_bit(R1BIO_ReadError, &r1_bio->state);
2475 /* we got a read error. Maybe the drive is bad. Maybe just
2476 * the block and we can fix it.
2477 * We freeze all other IO, and try reading the block from
2478 * other devices. When we find one, we re-write
2479 * and check it that fixes the read error.
2480 * This is all done synchronously while the array is
2481 * frozen
2482 */
2483
2484 bio = r1_bio->bios[r1_bio->read_disk];
2485 bio_dev = bio->bi_bdev->bd_dev;
2486 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2487 bio_put(bio);
2488 r1_bio->bios[r1_bio->read_disk] = NULL;
2489
2490 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2491 if (mddev->ro == 0
2492 && !test_bit(FailFast, &rdev->flags)) {
2493 freeze_array(conf, 1);
2494 fix_read_error(conf, r1_bio->read_disk,
2495 r1_bio->sector, r1_bio->sectors);
2496 unfreeze_array(conf);
2497 } else {
2498 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2499 }
2500
2501 rdev_dec_pending(rdev, conf->mddev);
2502 allow_barrier(conf, r1_bio->sector);
2503 bio = r1_bio->master_bio;
2504
2505 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2506 r1_bio->state = 0;
2507 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2508 }
2509
2510 static void raid1d(struct md_thread *thread)
2511 {
2512 struct mddev *mddev = thread->mddev;
2513 struct r1bio *r1_bio;
2514 unsigned long flags;
2515 struct r1conf *conf = mddev->private;
2516 struct list_head *head = &conf->retry_list;
2517 struct blk_plug plug;
2518 int idx;
2519
2520 md_check_recovery(mddev);
2521
2522 if (!list_empty_careful(&conf->bio_end_io_list) &&
2523 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2524 LIST_HEAD(tmp);
2525 spin_lock_irqsave(&conf->device_lock, flags);
2526 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2527 list_splice_init(&conf->bio_end_io_list, &tmp);
2528 spin_unlock_irqrestore(&conf->device_lock, flags);
2529 while (!list_empty(&tmp)) {
2530 r1_bio = list_first_entry(&tmp, struct r1bio,
2531 retry_list);
2532 list_del(&r1_bio->retry_list);
2533 idx = sector_to_idx(r1_bio->sector);
2534 atomic_dec(&conf->nr_queued[idx]);
2535 if (mddev->degraded)
2536 set_bit(R1BIO_Degraded, &r1_bio->state);
2537 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2538 close_write(r1_bio);
2539 raid_end_bio_io(r1_bio);
2540 }
2541 }
2542
2543 blk_start_plug(&plug);
2544 for (;;) {
2545
2546 flush_pending_writes(conf);
2547
2548 spin_lock_irqsave(&conf->device_lock, flags);
2549 if (list_empty(head)) {
2550 spin_unlock_irqrestore(&conf->device_lock, flags);
2551 break;
2552 }
2553 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2554 list_del(head->prev);
2555 idx = sector_to_idx(r1_bio->sector);
2556 atomic_dec(&conf->nr_queued[idx]);
2557 spin_unlock_irqrestore(&conf->device_lock, flags);
2558
2559 mddev = r1_bio->mddev;
2560 conf = mddev->private;
2561 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2562 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563 test_bit(R1BIO_WriteError, &r1_bio->state))
2564 handle_sync_write_finished(conf, r1_bio);
2565 else
2566 sync_request_write(mddev, r1_bio);
2567 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2568 test_bit(R1BIO_WriteError, &r1_bio->state))
2569 handle_write_finished(conf, r1_bio);
2570 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2571 handle_read_error(conf, r1_bio);
2572 else
2573 WARN_ON_ONCE(1);
2574
2575 cond_resched();
2576 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2577 md_check_recovery(mddev);
2578 }
2579 blk_finish_plug(&plug);
2580 }
2581
2582 static int init_resync(struct r1conf *conf)
2583 {
2584 int buffs;
2585
2586 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2587 BUG_ON(conf->r1buf_pool);
2588 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2589 conf->poolinfo);
2590 if (!conf->r1buf_pool)
2591 return -ENOMEM;
2592 return 0;
2593 }
2594
2595 /*
2596 * perform a "sync" on one "block"
2597 *
2598 * We need to make sure that no normal I/O request - particularly write
2599 * requests - conflict with active sync requests.
2600 *
2601 * This is achieved by tracking pending requests and a 'barrier' concept
2602 * that can be installed to exclude normal IO requests.
2603 */
2604
2605 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2606 int *skipped)
2607 {
2608 struct r1conf *conf = mddev->private;
2609 struct r1bio *r1_bio;
2610 struct bio *bio;
2611 sector_t max_sector, nr_sectors;
2612 int disk = -1;
2613 int i;
2614 int wonly = -1;
2615 int write_targets = 0, read_targets = 0;
2616 sector_t sync_blocks;
2617 int still_degraded = 0;
2618 int good_sectors = RESYNC_SECTORS;
2619 int min_bad = 0; /* number of sectors that are bad in all devices */
2620 int idx = sector_to_idx(sector_nr);
2621 int page_idx = 0;
2622
2623 if (!conf->r1buf_pool)
2624 if (init_resync(conf))
2625 return 0;
2626
2627 max_sector = mddev->dev_sectors;
2628 if (sector_nr >= max_sector) {
2629 /* If we aborted, we need to abort the
2630 * sync on the 'current' bitmap chunk (there will
2631 * only be one in raid1 resync.
2632 * We can find the current addess in mddev->curr_resync
2633 */
2634 if (mddev->curr_resync < max_sector) /* aborted */
2635 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2636 &sync_blocks, 1);
2637 else /* completed sync */
2638 conf->fullsync = 0;
2639
2640 bitmap_close_sync(mddev->bitmap);
2641 close_sync(conf);
2642
2643 if (mddev_is_clustered(mddev)) {
2644 conf->cluster_sync_low = 0;
2645 conf->cluster_sync_high = 0;
2646 }
2647 return 0;
2648 }
2649
2650 if (mddev->bitmap == NULL &&
2651 mddev->recovery_cp == MaxSector &&
2652 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2653 conf->fullsync == 0) {
2654 *skipped = 1;
2655 return max_sector - sector_nr;
2656 }
2657 /* before building a request, check if we can skip these blocks..
2658 * This call the bitmap_start_sync doesn't actually record anything
2659 */
2660 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2661 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2662 /* We can skip this block, and probably several more */
2663 *skipped = 1;
2664 return sync_blocks;
2665 }
2666
2667 /*
2668 * If there is non-resync activity waiting for a turn, then let it
2669 * though before starting on this new sync request.
2670 */
2671 if (atomic_read(&conf->nr_waiting[idx]))
2672 schedule_timeout_uninterruptible(1);
2673
2674 /* we are incrementing sector_nr below. To be safe, we check against
2675 * sector_nr + two times RESYNC_SECTORS
2676 */
2677
2678 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2679 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2680 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2681
2682 raise_barrier(conf, sector_nr);
2683
2684 rcu_read_lock();
2685 /*
2686 * If we get a correctably read error during resync or recovery,
2687 * we might want to read from a different device. So we
2688 * flag all drives that could conceivably be read from for READ,
2689 * and any others (which will be non-In_sync devices) for WRITE.
2690 * If a read fails, we try reading from something else for which READ
2691 * is OK.
2692 */
2693
2694 r1_bio->mddev = mddev;
2695 r1_bio->sector = sector_nr;
2696 r1_bio->state = 0;
2697 set_bit(R1BIO_IsSync, &r1_bio->state);
2698 /* make sure good_sectors won't go across barrier unit boundary */
2699 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700
2701 for (i = 0; i < conf->raid_disks * 2; i++) {
2702 struct md_rdev *rdev;
2703 bio = r1_bio->bios[i];
2704
2705 rdev = rcu_dereference(conf->mirrors[i].rdev);
2706 if (rdev == NULL ||
2707 test_bit(Faulty, &rdev->flags)) {
2708 if (i < conf->raid_disks)
2709 still_degraded = 1;
2710 } else if (!test_bit(In_sync, &rdev->flags)) {
2711 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712 bio->bi_end_io = end_sync_write;
2713 write_targets ++;
2714 } else {
2715 /* may need to read from here */
2716 sector_t first_bad = MaxSector;
2717 int bad_sectors;
2718
2719 if (is_badblock(rdev, sector_nr, good_sectors,
2720 &first_bad, &bad_sectors)) {
2721 if (first_bad > sector_nr)
2722 good_sectors = first_bad - sector_nr;
2723 else {
2724 bad_sectors -= (sector_nr - first_bad);
2725 if (min_bad == 0 ||
2726 min_bad > bad_sectors)
2727 min_bad = bad_sectors;
2728 }
2729 }
2730 if (sector_nr < first_bad) {
2731 if (test_bit(WriteMostly, &rdev->flags)) {
2732 if (wonly < 0)
2733 wonly = i;
2734 } else {
2735 if (disk < 0)
2736 disk = i;
2737 }
2738 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739 bio->bi_end_io = end_sync_read;
2740 read_targets++;
2741 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744 /*
2745 * The device is suitable for reading (InSync),
2746 * but has bad block(s) here. Let's try to correct them,
2747 * if we are doing resync or repair. Otherwise, leave
2748 * this device alone for this sync request.
2749 */
2750 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751 bio->bi_end_io = end_sync_write;
2752 write_targets++;
2753 }
2754 }
2755 if (bio->bi_end_io) {
2756 atomic_inc(&rdev->nr_pending);
2757 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758 bio->bi_bdev = rdev->bdev;
2759 if (test_bit(FailFast, &rdev->flags))
2760 bio->bi_opf |= MD_FAILFAST;
2761 }
2762 }
2763 rcu_read_unlock();
2764 if (disk < 0)
2765 disk = wonly;
2766 r1_bio->read_disk = disk;
2767
2768 if (read_targets == 0 && min_bad > 0) {
2769 /* These sectors are bad on all InSync devices, so we
2770 * need to mark them bad on all write targets
2771 */
2772 int ok = 1;
2773 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775 struct md_rdev *rdev = conf->mirrors[i].rdev;
2776 ok = rdev_set_badblocks(rdev, sector_nr,
2777 min_bad, 0
2778 ) && ok;
2779 }
2780 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781 *skipped = 1;
2782 put_buf(r1_bio);
2783
2784 if (!ok) {
2785 /* Cannot record the badblocks, so need to
2786 * abort the resync.
2787 * If there are multiple read targets, could just
2788 * fail the really bad ones ???
2789 */
2790 conf->recovery_disabled = mddev->recovery_disabled;
2791 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792 return 0;
2793 } else
2794 return min_bad;
2795
2796 }
2797 if (min_bad > 0 && min_bad < good_sectors) {
2798 /* only resync enough to reach the next bad->good
2799 * transition */
2800 good_sectors = min_bad;
2801 }
2802
2803 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804 /* extra read targets are also write targets */
2805 write_targets += read_targets-1;
2806
2807 if (write_targets == 0 || read_targets == 0) {
2808 /* There is nowhere to write, so all non-sync
2809 * drives must be failed - so we are finished
2810 */
2811 sector_t rv;
2812 if (min_bad > 0)
2813 max_sector = sector_nr + min_bad;
2814 rv = max_sector - sector_nr;
2815 *skipped = 1;
2816 put_buf(r1_bio);
2817 return rv;
2818 }
2819
2820 if (max_sector > mddev->resync_max)
2821 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822 if (max_sector > sector_nr + good_sectors)
2823 max_sector = sector_nr + good_sectors;
2824 nr_sectors = 0;
2825 sync_blocks = 0;
2826 do {
2827 struct page *page;
2828 int len = PAGE_SIZE;
2829 if (sector_nr + (len>>9) > max_sector)
2830 len = (max_sector - sector_nr) << 9;
2831 if (len == 0)
2832 break;
2833 if (sync_blocks == 0) {
2834 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835 &sync_blocks, still_degraded) &&
2836 !conf->fullsync &&
2837 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838 break;
2839 if ((len >> 9) > sync_blocks)
2840 len = sync_blocks<<9;
2841 }
2842
2843 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844 struct resync_pages *rp;
2845
2846 bio = r1_bio->bios[i];
2847 rp = get_resync_pages(bio);
2848 if (bio->bi_end_io) {
2849 page = resync_fetch_page(rp, page_idx);
2850
2851 /*
2852 * won't fail because the vec table is big
2853 * enough to hold all these pages
2854 */
2855 bio_add_page(bio, page, len, 0);
2856 }
2857 }
2858 nr_sectors += len>>9;
2859 sector_nr += len>>9;
2860 sync_blocks -= (len>>9);
2861 } while (++page_idx < RESYNC_PAGES);
2862
2863 r1_bio->sectors = nr_sectors;
2864
2865 if (mddev_is_clustered(mddev) &&
2866 conf->cluster_sync_high < sector_nr + nr_sectors) {
2867 conf->cluster_sync_low = mddev->curr_resync_completed;
2868 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869 /* Send resync message */
2870 md_cluster_ops->resync_info_update(mddev,
2871 conf->cluster_sync_low,
2872 conf->cluster_sync_high);
2873 }
2874
2875 /* For a user-requested sync, we read all readable devices and do a
2876 * compare
2877 */
2878 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879 atomic_set(&r1_bio->remaining, read_targets);
2880 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881 bio = r1_bio->bios[i];
2882 if (bio->bi_end_io == end_sync_read) {
2883 read_targets--;
2884 md_sync_acct(bio->bi_bdev, nr_sectors);
2885 if (read_targets == 1)
2886 bio->bi_opf &= ~MD_FAILFAST;
2887 generic_make_request(bio);
2888 }
2889 }
2890 } else {
2891 atomic_set(&r1_bio->remaining, 1);
2892 bio = r1_bio->bios[r1_bio->read_disk];
2893 md_sync_acct(bio->bi_bdev, nr_sectors);
2894 if (read_targets == 1)
2895 bio->bi_opf &= ~MD_FAILFAST;
2896 generic_make_request(bio);
2897
2898 }
2899 return nr_sectors;
2900 }
2901
2902 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903 {
2904 if (sectors)
2905 return sectors;
2906
2907 return mddev->dev_sectors;
2908 }
2909
2910 static struct r1conf *setup_conf(struct mddev *mddev)
2911 {
2912 struct r1conf *conf;
2913 int i;
2914 struct raid1_info *disk;
2915 struct md_rdev *rdev;
2916 int err = -ENOMEM;
2917
2918 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919 if (!conf)
2920 goto abort;
2921
2922 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923 sizeof(atomic_t), GFP_KERNEL);
2924 if (!conf->nr_pending)
2925 goto abort;
2926
2927 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928 sizeof(atomic_t), GFP_KERNEL);
2929 if (!conf->nr_waiting)
2930 goto abort;
2931
2932 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933 sizeof(atomic_t), GFP_KERNEL);
2934 if (!conf->nr_queued)
2935 goto abort;
2936
2937 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938 sizeof(atomic_t), GFP_KERNEL);
2939 if (!conf->barrier)
2940 goto abort;
2941
2942 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943 * mddev->raid_disks * 2,
2944 GFP_KERNEL);
2945 if (!conf->mirrors)
2946 goto abort;
2947
2948 conf->tmppage = alloc_page(GFP_KERNEL);
2949 if (!conf->tmppage)
2950 goto abort;
2951
2952 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953 if (!conf->poolinfo)
2954 goto abort;
2955 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957 r1bio_pool_free,
2958 conf->poolinfo);
2959 if (!conf->r1bio_pool)
2960 goto abort;
2961
2962 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963 if (!conf->bio_split)
2964 goto abort;
2965
2966 conf->poolinfo->mddev = mddev;
2967
2968 err = -EINVAL;
2969 spin_lock_init(&conf->device_lock);
2970 rdev_for_each(rdev, mddev) {
2971 int disk_idx = rdev->raid_disk;
2972 if (disk_idx >= mddev->raid_disks
2973 || disk_idx < 0)
2974 continue;
2975 if (test_bit(Replacement, &rdev->flags))
2976 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977 else
2978 disk = conf->mirrors + disk_idx;
2979
2980 if (disk->rdev)
2981 goto abort;
2982 disk->rdev = rdev;
2983 disk->head_position = 0;
2984 disk->seq_start = MaxSector;
2985 }
2986 conf->raid_disks = mddev->raid_disks;
2987 conf->mddev = mddev;
2988 INIT_LIST_HEAD(&conf->retry_list);
2989 INIT_LIST_HEAD(&conf->bio_end_io_list);
2990
2991 spin_lock_init(&conf->resync_lock);
2992 init_waitqueue_head(&conf->wait_barrier);
2993
2994 bio_list_init(&conf->pending_bio_list);
2995 conf->pending_count = 0;
2996 conf->recovery_disabled = mddev->recovery_disabled - 1;
2997
2998 err = -EIO;
2999 for (i = 0; i < conf->raid_disks * 2; i++) {
3000
3001 disk = conf->mirrors + i;
3002
3003 if (i < conf->raid_disks &&
3004 disk[conf->raid_disks].rdev) {
3005 /* This slot has a replacement. */
3006 if (!disk->rdev) {
3007 /* No original, just make the replacement
3008 * a recovering spare
3009 */
3010 disk->rdev =
3011 disk[conf->raid_disks].rdev;
3012 disk[conf->raid_disks].rdev = NULL;
3013 } else if (!test_bit(In_sync, &disk->rdev->flags))
3014 /* Original is not in_sync - bad */
3015 goto abort;
3016 }
3017
3018 if (!disk->rdev ||
3019 !test_bit(In_sync, &disk->rdev->flags)) {
3020 disk->head_position = 0;
3021 if (disk->rdev &&
3022 (disk->rdev->saved_raid_disk < 0))
3023 conf->fullsync = 1;
3024 }
3025 }
3026
3027 err = -ENOMEM;
3028 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3029 if (!conf->thread)
3030 goto abort;
3031
3032 return conf;
3033
3034 abort:
3035 if (conf) {
3036 mempool_destroy(conf->r1bio_pool);
3037 kfree(conf->mirrors);
3038 safe_put_page(conf->tmppage);
3039 kfree(conf->poolinfo);
3040 kfree(conf->nr_pending);
3041 kfree(conf->nr_waiting);
3042 kfree(conf->nr_queued);
3043 kfree(conf->barrier);
3044 if (conf->bio_split)
3045 bioset_free(conf->bio_split);
3046 kfree(conf);
3047 }
3048 return ERR_PTR(err);
3049 }
3050
3051 static void raid1_free(struct mddev *mddev, void *priv);
3052 static int raid1_run(struct mddev *mddev)
3053 {
3054 struct r1conf *conf;
3055 int i;
3056 struct md_rdev *rdev;
3057 int ret;
3058 bool discard_supported = false;
3059
3060 if (mddev->level != 1) {
3061 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062 mdname(mddev), mddev->level);
3063 return -EIO;
3064 }
3065 if (mddev->reshape_position != MaxSector) {
3066 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067 mdname(mddev));
3068 return -EIO;
3069 }
3070 if (mddev_init_writes_pending(mddev) < 0)
3071 return -ENOMEM;
3072 /*
3073 * copy the already verified devices into our private RAID1
3074 * bookkeeping area. [whatever we allocate in run(),
3075 * should be freed in raid1_free()]
3076 */
3077 if (mddev->private == NULL)
3078 conf = setup_conf(mddev);
3079 else
3080 conf = mddev->private;
3081
3082 if (IS_ERR(conf))
3083 return PTR_ERR(conf);
3084
3085 if (mddev->queue) {
3086 blk_queue_max_write_same_sectors(mddev->queue, 0);
3087 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088 }
3089
3090 rdev_for_each(rdev, mddev) {
3091 if (!mddev->gendisk)
3092 continue;
3093 disk_stack_limits(mddev->gendisk, rdev->bdev,
3094 rdev->data_offset << 9);
3095 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096 discard_supported = true;
3097 }
3098
3099 mddev->degraded = 0;
3100 for (i=0; i < conf->raid_disks; i++)
3101 if (conf->mirrors[i].rdev == NULL ||
3102 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104 mddev->degraded++;
3105
3106 if (conf->raid_disks - mddev->degraded == 1)
3107 mddev->recovery_cp = MaxSector;
3108
3109 if (mddev->recovery_cp != MaxSector)
3110 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111 mdname(mddev));
3112 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113 mdname(mddev), mddev->raid_disks - mddev->degraded,
3114 mddev->raid_disks);
3115
3116 /*
3117 * Ok, everything is just fine now
3118 */
3119 mddev->thread = conf->thread;
3120 conf->thread = NULL;
3121 mddev->private = conf;
3122 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123
3124 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125
3126 if (mddev->queue) {
3127 if (discard_supported)
3128 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3129 mddev->queue);
3130 else
3131 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3132 mddev->queue);
3133 }
3134
3135 ret = md_integrity_register(mddev);
3136 if (ret) {
3137 md_unregister_thread(&mddev->thread);
3138 raid1_free(mddev, conf);
3139 }
3140 return ret;
3141 }
3142
3143 static void raid1_free(struct mddev *mddev, void *priv)
3144 {
3145 struct r1conf *conf = priv;
3146
3147 mempool_destroy(conf->r1bio_pool);
3148 kfree(conf->mirrors);
3149 safe_put_page(conf->tmppage);
3150 kfree(conf->poolinfo);
3151 kfree(conf->nr_pending);
3152 kfree(conf->nr_waiting);
3153 kfree(conf->nr_queued);
3154 kfree(conf->barrier);
3155 if (conf->bio_split)
3156 bioset_free(conf->bio_split);
3157 kfree(conf);
3158 }
3159
3160 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161 {
3162 /* no resync is happening, and there is enough space
3163 * on all devices, so we can resize.
3164 * We need to make sure resync covers any new space.
3165 * If the array is shrinking we should possibly wait until
3166 * any io in the removed space completes, but it hardly seems
3167 * worth it.
3168 */
3169 sector_t newsize = raid1_size(mddev, sectors, 0);
3170 if (mddev->external_size &&
3171 mddev->array_sectors > newsize)
3172 return -EINVAL;
3173 if (mddev->bitmap) {
3174 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175 if (ret)
3176 return ret;
3177 }
3178 md_set_array_sectors(mddev, newsize);
3179 if (sectors > mddev->dev_sectors &&
3180 mddev->recovery_cp > mddev->dev_sectors) {
3181 mddev->recovery_cp = mddev->dev_sectors;
3182 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183 }
3184 mddev->dev_sectors = sectors;
3185 mddev->resync_max_sectors = sectors;
3186 return 0;
3187 }
3188
3189 static int raid1_reshape(struct mddev *mddev)
3190 {
3191 /* We need to:
3192 * 1/ resize the r1bio_pool
3193 * 2/ resize conf->mirrors
3194 *
3195 * We allocate a new r1bio_pool if we can.
3196 * Then raise a device barrier and wait until all IO stops.
3197 * Then resize conf->mirrors and swap in the new r1bio pool.
3198 *
3199 * At the same time, we "pack" the devices so that all the missing
3200 * devices have the higher raid_disk numbers.
3201 */
3202 mempool_t *newpool, *oldpool;
3203 struct pool_info *newpoolinfo;
3204 struct raid1_info *newmirrors;
3205 struct r1conf *conf = mddev->private;
3206 int cnt, raid_disks;
3207 unsigned long flags;
3208 int d, d2;
3209
3210 /* Cannot change chunk_size, layout, or level */
3211 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212 mddev->layout != mddev->new_layout ||
3213 mddev->level != mddev->new_level) {
3214 mddev->new_chunk_sectors = mddev->chunk_sectors;
3215 mddev->new_layout = mddev->layout;
3216 mddev->new_level = mddev->level;
3217 return -EINVAL;
3218 }
3219
3220 if (!mddev_is_clustered(mddev))
3221 md_allow_write(mddev);
3222
3223 raid_disks = mddev->raid_disks + mddev->delta_disks;
3224
3225 if (raid_disks < conf->raid_disks) {
3226 cnt=0;
3227 for (d= 0; d < conf->raid_disks; d++)
3228 if (conf->mirrors[d].rdev)
3229 cnt++;
3230 if (cnt > raid_disks)
3231 return -EBUSY;
3232 }
3233
3234 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235 if (!newpoolinfo)
3236 return -ENOMEM;
3237 newpoolinfo->mddev = mddev;
3238 newpoolinfo->raid_disks = raid_disks * 2;
3239
3240 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241 r1bio_pool_free, newpoolinfo);
3242 if (!newpool) {
3243 kfree(newpoolinfo);
3244 return -ENOMEM;
3245 }
3246 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3247 GFP_KERNEL);
3248 if (!newmirrors) {
3249 kfree(newpoolinfo);
3250 mempool_destroy(newpool);
3251 return -ENOMEM;
3252 }
3253
3254 freeze_array(conf, 0);
3255
3256 /* ok, everything is stopped */
3257 oldpool = conf->r1bio_pool;
3258 conf->r1bio_pool = newpool;
3259
3260 for (d = d2 = 0; d < conf->raid_disks; d++) {
3261 struct md_rdev *rdev = conf->mirrors[d].rdev;
3262 if (rdev && rdev->raid_disk != d2) {
3263 sysfs_unlink_rdev(mddev, rdev);
3264 rdev->raid_disk = d2;
3265 sysfs_unlink_rdev(mddev, rdev);
3266 if (sysfs_link_rdev(mddev, rdev))
3267 pr_warn("md/raid1:%s: cannot register rd%d\n",
3268 mdname(mddev), rdev->raid_disk);
3269 }
3270 if (rdev)
3271 newmirrors[d2++].rdev = rdev;
3272 }
3273 kfree(conf->mirrors);
3274 conf->mirrors = newmirrors;
3275 kfree(conf->poolinfo);
3276 conf->poolinfo = newpoolinfo;
3277
3278 spin_lock_irqsave(&conf->device_lock, flags);
3279 mddev->degraded += (raid_disks - conf->raid_disks);
3280 spin_unlock_irqrestore(&conf->device_lock, flags);
3281 conf->raid_disks = mddev->raid_disks = raid_disks;
3282 mddev->delta_disks = 0;
3283
3284 unfreeze_array(conf);
3285
3286 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288 md_wakeup_thread(mddev->thread);
3289
3290 mempool_destroy(oldpool);
3291 return 0;
3292 }
3293
3294 static void raid1_quiesce(struct mddev *mddev, int state)
3295 {
3296 struct r1conf *conf = mddev->private;
3297
3298 switch(state) {
3299 case 2: /* wake for suspend */
3300 wake_up(&conf->wait_barrier);
3301 break;
3302 case 1:
3303 freeze_array(conf, 0);
3304 break;
3305 case 0:
3306 unfreeze_array(conf);
3307 break;
3308 }
3309 }
3310
3311 static void *raid1_takeover(struct mddev *mddev)
3312 {
3313 /* raid1 can take over:
3314 * raid5 with 2 devices, any layout or chunk size
3315 */
3316 if (mddev->level == 5 && mddev->raid_disks == 2) {
3317 struct r1conf *conf;
3318 mddev->new_level = 1;
3319 mddev->new_layout = 0;
3320 mddev->new_chunk_sectors = 0;
3321 conf = setup_conf(mddev);
3322 if (!IS_ERR(conf)) {
3323 /* Array must appear to be quiesced */
3324 conf->array_frozen = 1;
3325 mddev_clear_unsupported_flags(mddev,
3326 UNSUPPORTED_MDDEV_FLAGS);
3327 }
3328 return conf;
3329 }
3330 return ERR_PTR(-EINVAL);
3331 }
3332
3333 static struct md_personality raid1_personality =
3334 {
3335 .name = "raid1",
3336 .level = 1,
3337 .owner = THIS_MODULE,
3338 .make_request = raid1_make_request,
3339 .run = raid1_run,
3340 .free = raid1_free,
3341 .status = raid1_status,
3342 .error_handler = raid1_error,
3343 .hot_add_disk = raid1_add_disk,
3344 .hot_remove_disk= raid1_remove_disk,
3345 .spare_active = raid1_spare_active,
3346 .sync_request = raid1_sync_request,
3347 .resize = raid1_resize,
3348 .size = raid1_size,
3349 .check_reshape = raid1_reshape,
3350 .quiesce = raid1_quiesce,
3351 .takeover = raid1_takeover,
3352 .congested = raid1_congested,
3353 };
3354
3355 static int __init raid_init(void)
3356 {
3357 return register_md_personality(&raid1_personality);
3358 }
3359
3360 static void raid_exit(void)
3361 {
3362 unregister_md_personality(&raid1_personality);
3363 }
3364
3365 module_init(raid_init);
3366 module_exit(raid_exit);
3367 MODULE_LICENSE("GPL");
3368 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3369 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3370 MODULE_ALIAS("md-raid1");
3371 MODULE_ALIAS("md-level-1");
3372
3373 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);