]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid1.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_status = BLK_STS_IOERR;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_status;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_status && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else {
670 if ((sectors > best_good_sectors) && (best_disk >= 0))
671 best_disk = -1;
672 best_good_sectors = sectors;
673 }
674
675 if (best_disk >= 0)
676 /* At least two disks to choose from so failfast is OK */
677 set_bit(R1BIO_FailFast, &r1_bio->state);
678
679 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
680 has_nonrot_disk |= nonrot;
681 pending = atomic_read(&rdev->nr_pending);
682 dist = abs(this_sector - conf->mirrors[disk].head_position);
683 if (choose_first) {
684 best_disk = disk;
685 break;
686 }
687 /* Don't change to another disk for sequential reads */
688 if (conf->mirrors[disk].next_seq_sect == this_sector
689 || dist == 0) {
690 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
691 struct raid1_info *mirror = &conf->mirrors[disk];
692
693 best_disk = disk;
694 /*
695 * If buffered sequential IO size exceeds optimal
696 * iosize, check if there is idle disk. If yes, choose
697 * the idle disk. read_balance could already choose an
698 * idle disk before noticing it's a sequential IO in
699 * this disk. This doesn't matter because this disk
700 * will idle, next time it will be utilized after the
701 * first disk has IO size exceeds optimal iosize. In
702 * this way, iosize of the first disk will be optimal
703 * iosize at least. iosize of the second disk might be
704 * small, but not a big deal since when the second disk
705 * starts IO, the first disk is likely still busy.
706 */
707 if (nonrot && opt_iosize > 0 &&
708 mirror->seq_start != MaxSector &&
709 mirror->next_seq_sect > opt_iosize &&
710 mirror->next_seq_sect - opt_iosize >=
711 mirror->seq_start) {
712 choose_next_idle = 1;
713 continue;
714 }
715 break;
716 }
717
718 if (choose_next_idle)
719 continue;
720
721 if (min_pending > pending) {
722 min_pending = pending;
723 best_pending_disk = disk;
724 }
725
726 if (dist < best_dist) {
727 best_dist = dist;
728 best_dist_disk = disk;
729 }
730 }
731
732 /*
733 * If all disks are rotational, choose the closest disk. If any disk is
734 * non-rotational, choose the disk with less pending request even the
735 * disk is rotational, which might/might not be optimal for raids with
736 * mixed ratation/non-rotational disks depending on workload.
737 */
738 if (best_disk == -1) {
739 if (has_nonrot_disk || min_pending == 0)
740 best_disk = best_pending_disk;
741 else
742 best_disk = best_dist_disk;
743 }
744
745 if (best_disk >= 0) {
746 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
747 if (!rdev)
748 goto retry;
749 atomic_inc(&rdev->nr_pending);
750 sectors = best_good_sectors;
751
752 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
753 conf->mirrors[best_disk].seq_start = this_sector;
754
755 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
756 }
757 rcu_read_unlock();
758 *max_sectors = sectors;
759
760 return best_disk;
761 }
762
763 static int raid1_congested(struct mddev *mddev, int bits)
764 {
765 struct r1conf *conf = mddev->private;
766 int i, ret = 0;
767
768 if ((bits & (1 << WB_async_congested)) &&
769 conf->pending_count >= max_queued_requests)
770 return 1;
771
772 rcu_read_lock();
773 for (i = 0; i < conf->raid_disks * 2; i++) {
774 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
775 if (rdev && !test_bit(Faulty, &rdev->flags)) {
776 struct request_queue *q = bdev_get_queue(rdev->bdev);
777
778 BUG_ON(!q);
779
780 /* Note the '|| 1' - when read_balance prefers
781 * non-congested targets, it can be removed
782 */
783 if ((bits & (1 << WB_async_congested)) || 1)
784 ret |= bdi_congested(q->backing_dev_info, bits);
785 else
786 ret &= bdi_congested(q->backing_dev_info, bits);
787 }
788 }
789 rcu_read_unlock();
790 return ret;
791 }
792
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 bitmap_unplug(conf->mddev->bitmap);
797 wake_up(&conf->wait_barrier);
798
799 while (bio) { /* submit pending writes */
800 struct bio *next = bio->bi_next;
801 struct md_rdev *rdev = (void*)bio->bi_bdev;
802 bio->bi_next = NULL;
803 bio->bi_bdev = rdev->bdev;
804 if (test_bit(Faulty, &rdev->flags)) {
805 bio->bi_status = BLK_STS_IOERR;
806 bio_endio(bio);
807 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
809 /* Just ignore it */
810 bio_endio(bio);
811 else
812 generic_make_request(bio);
813 bio = next;
814 }
815 }
816
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819 /* Any writes that have been queued but are awaiting
820 * bitmap updates get flushed here.
821 */
822 spin_lock_irq(&conf->device_lock);
823
824 if (conf->pending_bio_list.head) {
825 struct bio *bio;
826 bio = bio_list_get(&conf->pending_bio_list);
827 conf->pending_count = 0;
828 spin_unlock_irq(&conf->device_lock);
829 flush_bio_list(conf, bio);
830 } else
831 spin_unlock_irq(&conf->device_lock);
832 }
833
834 /* Barriers....
835 * Sometimes we need to suspend IO while we do something else,
836 * either some resync/recovery, or reconfigure the array.
837 * To do this we raise a 'barrier'.
838 * The 'barrier' is a counter that can be raised multiple times
839 * to count how many activities are happening which preclude
840 * normal IO.
841 * We can only raise the barrier if there is no pending IO.
842 * i.e. if nr_pending == 0.
843 * We choose only to raise the barrier if no-one is waiting for the
844 * barrier to go down. This means that as soon as an IO request
845 * is ready, no other operations which require a barrier will start
846 * until the IO request has had a chance.
847 *
848 * So: regular IO calls 'wait_barrier'. When that returns there
849 * is no backgroup IO happening, It must arrange to call
850 * allow_barrier when it has finished its IO.
851 * backgroup IO calls must call raise_barrier. Once that returns
852 * there is no normal IO happeing. It must arrange to call
853 * lower_barrier when the particular background IO completes.
854 */
855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
856 {
857 int idx = sector_to_idx(sector_nr);
858
859 spin_lock_irq(&conf->resync_lock);
860
861 /* Wait until no block IO is waiting */
862 wait_event_lock_irq(conf->wait_barrier,
863 !atomic_read(&conf->nr_waiting[idx]),
864 conf->resync_lock);
865
866 /* block any new IO from starting */
867 atomic_inc(&conf->barrier[idx]);
868 /*
869 * In raise_barrier() we firstly increase conf->barrier[idx] then
870 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
871 * increase conf->nr_pending[idx] then check conf->barrier[idx].
872 * A memory barrier here to make sure conf->nr_pending[idx] won't
873 * be fetched before conf->barrier[idx] is increased. Otherwise
874 * there will be a race between raise_barrier() and _wait_barrier().
875 */
876 smp_mb__after_atomic();
877
878 /* For these conditions we must wait:
879 * A: while the array is in frozen state
880 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
881 * existing in corresponding I/O barrier bucket.
882 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
883 * max resync count which allowed on current I/O barrier bucket.
884 */
885 wait_event_lock_irq(conf->wait_barrier,
886 !conf->array_frozen &&
887 !atomic_read(&conf->nr_pending[idx]) &&
888 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
889 conf->resync_lock);
890
891 atomic_inc(&conf->nr_sync_pending);
892 spin_unlock_irq(&conf->resync_lock);
893 }
894
895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
896 {
897 int idx = sector_to_idx(sector_nr);
898
899 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
900
901 atomic_dec(&conf->barrier[idx]);
902 atomic_dec(&conf->nr_sync_pending);
903 wake_up(&conf->wait_barrier);
904 }
905
906 static void _wait_barrier(struct r1conf *conf, int idx)
907 {
908 /*
909 * We need to increase conf->nr_pending[idx] very early here,
910 * then raise_barrier() can be blocked when it waits for
911 * conf->nr_pending[idx] to be 0. Then we can avoid holding
912 * conf->resync_lock when there is no barrier raised in same
913 * barrier unit bucket. Also if the array is frozen, I/O
914 * should be blocked until array is unfrozen.
915 */
916 atomic_inc(&conf->nr_pending[idx]);
917 /*
918 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
919 * check conf->barrier[idx]. In raise_barrier() we firstly increase
920 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
921 * barrier is necessary here to make sure conf->barrier[idx] won't be
922 * fetched before conf->nr_pending[idx] is increased. Otherwise there
923 * will be a race between _wait_barrier() and raise_barrier().
924 */
925 smp_mb__after_atomic();
926
927 /*
928 * Don't worry about checking two atomic_t variables at same time
929 * here. If during we check conf->barrier[idx], the array is
930 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
931 * 0, it is safe to return and make the I/O continue. Because the
932 * array is frozen, all I/O returned here will eventually complete
933 * or be queued, no race will happen. See code comment in
934 * frozen_array().
935 */
936 if (!READ_ONCE(conf->array_frozen) &&
937 !atomic_read(&conf->barrier[idx]))
938 return;
939
940 /*
941 * After holding conf->resync_lock, conf->nr_pending[idx]
942 * should be decreased before waiting for barrier to drop.
943 * Otherwise, we may encounter a race condition because
944 * raise_barrer() might be waiting for conf->nr_pending[idx]
945 * to be 0 at same time.
946 */
947 spin_lock_irq(&conf->resync_lock);
948 atomic_inc(&conf->nr_waiting[idx]);
949 atomic_dec(&conf->nr_pending[idx]);
950 /*
951 * In case freeze_array() is waiting for
952 * get_unqueued_pending() == extra
953 */
954 wake_up(&conf->wait_barrier);
955 /* Wait for the barrier in same barrier unit bucket to drop. */
956 wait_event_lock_irq(conf->wait_barrier,
957 !conf->array_frozen &&
958 !atomic_read(&conf->barrier[idx]),
959 conf->resync_lock);
960 atomic_inc(&conf->nr_pending[idx]);
961 atomic_dec(&conf->nr_waiting[idx]);
962 spin_unlock_irq(&conf->resync_lock);
963 }
964
965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
966 {
967 int idx = sector_to_idx(sector_nr);
968
969 /*
970 * Very similar to _wait_barrier(). The difference is, for read
971 * I/O we don't need wait for sync I/O, but if the whole array
972 * is frozen, the read I/O still has to wait until the array is
973 * unfrozen. Since there is no ordering requirement with
974 * conf->barrier[idx] here, memory barrier is unnecessary as well.
975 */
976 atomic_inc(&conf->nr_pending[idx]);
977
978 if (!READ_ONCE(conf->array_frozen))
979 return;
980
981 spin_lock_irq(&conf->resync_lock);
982 atomic_inc(&conf->nr_waiting[idx]);
983 atomic_dec(&conf->nr_pending[idx]);
984 /*
985 * In case freeze_array() is waiting for
986 * get_unqueued_pending() == extra
987 */
988 wake_up(&conf->wait_barrier);
989 /* Wait for array to be unfrozen */
990 wait_event_lock_irq(conf->wait_barrier,
991 !conf->array_frozen,
992 conf->resync_lock);
993 atomic_inc(&conf->nr_pending[idx]);
994 atomic_dec(&conf->nr_waiting[idx]);
995 spin_unlock_irq(&conf->resync_lock);
996 }
997
998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000 int idx = sector_to_idx(sector_nr);
1001
1002 _wait_barrier(conf, idx);
1003 }
1004
1005 static void wait_all_barriers(struct r1conf *conf)
1006 {
1007 int idx;
1008
1009 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1010 _wait_barrier(conf, idx);
1011 }
1012
1013 static void _allow_barrier(struct r1conf *conf, int idx)
1014 {
1015 atomic_dec(&conf->nr_pending[idx]);
1016 wake_up(&conf->wait_barrier);
1017 }
1018
1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 int idx = sector_to_idx(sector_nr);
1022
1023 _allow_barrier(conf, idx);
1024 }
1025
1026 static void allow_all_barriers(struct r1conf *conf)
1027 {
1028 int idx;
1029
1030 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1031 _allow_barrier(conf, idx);
1032 }
1033
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037 int idx, ret;
1038
1039 ret = atomic_read(&conf->nr_sync_pending);
1040 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041 ret += atomic_read(&conf->nr_pending[idx]) -
1042 atomic_read(&conf->nr_queued[idx]);
1043
1044 return ret;
1045 }
1046
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049 /* Stop sync I/O and normal I/O and wait for everything to
1050 * go quiet.
1051 * This is called in two situations:
1052 * 1) management command handlers (reshape, remove disk, quiesce).
1053 * 2) one normal I/O request failed.
1054
1055 * After array_frozen is set to 1, new sync IO will be blocked at
1056 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057 * or wait_read_barrier(). The flying I/Os will either complete or be
1058 * queued. When everything goes quite, there are only queued I/Os left.
1059
1060 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061 * barrier bucket index which this I/O request hits. When all sync and
1062 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064 * in handle_read_error(), we may call freeze_array() before trying to
1065 * fix the read error. In this case, the error read I/O is not queued,
1066 * so get_unqueued_pending() == 1.
1067 *
1068 * Therefore before this function returns, we need to wait until
1069 * get_unqueued_pendings(conf) gets equal to extra. For
1070 * normal I/O context, extra is 1, in rested situations extra is 0.
1071 */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->array_frozen = 1;
1074 raid1_log(conf->mddev, "wait freeze");
1075 wait_event_lock_irq_cmd(
1076 conf->wait_barrier,
1077 get_unqueued_pending(conf) == extra,
1078 conf->resync_lock,
1079 flush_pending_writes(conf));
1080 spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084 /* reverse the effect of the freeze */
1085 spin_lock_irq(&conf->resync_lock);
1086 conf->array_frozen = 0;
1087 spin_unlock_irq(&conf->resync_lock);
1088 wake_up(&conf->wait_barrier);
1089 }
1090
1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1092 struct bio *bio)
1093 {
1094 int size = bio->bi_iter.bi_size;
1095 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096 int i = 0;
1097 struct bio *behind_bio = NULL;
1098
1099 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100 if (!behind_bio)
1101 goto fail;
1102
1103 /* discard op, we don't support writezero/writesame yet */
1104 if (!bio_has_data(bio))
1105 goto skip_copy;
1106
1107 while (i < vcnt && size) {
1108 struct page *page;
1109 int len = min_t(int, PAGE_SIZE, size);
1110
1111 page = alloc_page(GFP_NOIO);
1112 if (unlikely(!page))
1113 goto free_pages;
1114
1115 bio_add_page(behind_bio, page, len, 0);
1116
1117 size -= len;
1118 i++;
1119 }
1120
1121 bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123 r1_bio->behind_master_bio = behind_bio;;
1124 set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126 return behind_bio;
1127
1128 free_pages:
1129 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130 bio->bi_iter.bi_size);
1131 bio_free_pages(behind_bio);
1132 fail:
1133 return behind_bio;
1134 }
1135
1136 struct raid1_plug_cb {
1137 struct blk_plug_cb cb;
1138 struct bio_list pending;
1139 int pending_cnt;
1140 };
1141
1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1143 {
1144 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1145 cb);
1146 struct mddev *mddev = plug->cb.data;
1147 struct r1conf *conf = mddev->private;
1148 struct bio *bio;
1149
1150 if (from_schedule || current->bio_list) {
1151 spin_lock_irq(&conf->device_lock);
1152 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1153 conf->pending_count += plug->pending_cnt;
1154 spin_unlock_irq(&conf->device_lock);
1155 wake_up(&conf->wait_barrier);
1156 md_wakeup_thread(mddev->thread);
1157 kfree(plug);
1158 return;
1159 }
1160
1161 /* we aren't scheduling, so we can do the write-out directly. */
1162 bio = bio_list_get(&plug->pending);
1163 flush_bio_list(conf, bio);
1164 kfree(plug);
1165 }
1166
1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1168 {
1169 r1_bio->master_bio = bio;
1170 r1_bio->sectors = bio_sectors(bio);
1171 r1_bio->state = 0;
1172 r1_bio->mddev = mddev;
1173 r1_bio->sector = bio->bi_iter.bi_sector;
1174 }
1175
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1178 {
1179 struct r1conf *conf = mddev->private;
1180 struct r1bio *r1_bio;
1181
1182 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183 /* Ensure no bio records IO_BLOCKED */
1184 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1185 init_r1bio(r1_bio, mddev, bio);
1186 return r1_bio;
1187 }
1188
1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1190 int max_read_sectors, struct r1bio *r1_bio)
1191 {
1192 struct r1conf *conf = mddev->private;
1193 struct raid1_info *mirror;
1194 struct bio *read_bio;
1195 struct bitmap *bitmap = mddev->bitmap;
1196 const int op = bio_op(bio);
1197 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198 int max_sectors;
1199 int rdisk;
1200 bool print_msg = !!r1_bio;
1201 char b[BDEVNAME_SIZE];
1202
1203 /*
1204 * If r1_bio is set, we are blocking the raid1d thread
1205 * so there is a tiny risk of deadlock. So ask for
1206 * emergency memory if needed.
1207 */
1208 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1209
1210 if (print_msg) {
1211 /* Need to get the block device name carefully */
1212 struct md_rdev *rdev;
1213 rcu_read_lock();
1214 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1215 if (rdev)
1216 bdevname(rdev->bdev, b);
1217 else
1218 strcpy(b, "???");
1219 rcu_read_unlock();
1220 }
1221
1222 /*
1223 * Still need barrier for READ in case that whole
1224 * array is frozen.
1225 */
1226 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1227
1228 if (!r1_bio)
1229 r1_bio = alloc_r1bio(mddev, bio);
1230 else
1231 init_r1bio(r1_bio, mddev, bio);
1232 r1_bio->sectors = max_read_sectors;
1233
1234 /*
1235 * make_request() can abort the operation when read-ahead is being
1236 * used and no empty request is available.
1237 */
1238 rdisk = read_balance(conf, r1_bio, &max_sectors);
1239
1240 if (rdisk < 0) {
1241 /* couldn't find anywhere to read from */
1242 if (print_msg) {
1243 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1244 mdname(mddev),
1245 b,
1246 (unsigned long long)r1_bio->sector);
1247 }
1248 raid_end_bio_io(r1_bio);
1249 return;
1250 }
1251 mirror = conf->mirrors + rdisk;
1252
1253 if (print_msg)
1254 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1255 mdname(mddev),
1256 (unsigned long long)r1_bio->sector,
1257 bdevname(mirror->rdev->bdev, b));
1258
1259 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1260 bitmap) {
1261 /*
1262 * Reading from a write-mostly device must take care not to
1263 * over-take any writes that are 'behind'
1264 */
1265 raid1_log(mddev, "wait behind writes");
1266 wait_event(bitmap->behind_wait,
1267 atomic_read(&bitmap->behind_writes) == 0);
1268 }
1269
1270 if (max_sectors < bio_sectors(bio)) {
1271 struct bio *split = bio_split(bio, max_sectors,
1272 gfp, conf->bio_split);
1273 bio_chain(split, bio);
1274 generic_make_request(bio);
1275 bio = split;
1276 r1_bio->master_bio = bio;
1277 r1_bio->sectors = max_sectors;
1278 }
1279
1280 r1_bio->read_disk = rdisk;
1281
1282 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1283
1284 r1_bio->bios[rdisk] = read_bio;
1285
1286 read_bio->bi_iter.bi_sector = r1_bio->sector +
1287 mirror->rdev->data_offset;
1288 read_bio->bi_bdev = mirror->rdev->bdev;
1289 read_bio->bi_end_io = raid1_end_read_request;
1290 bio_set_op_attrs(read_bio, op, do_sync);
1291 if (test_bit(FailFast, &mirror->rdev->flags) &&
1292 test_bit(R1BIO_FailFast, &r1_bio->state))
1293 read_bio->bi_opf |= MD_FAILFAST;
1294 read_bio->bi_private = r1_bio;
1295
1296 if (mddev->gendisk)
1297 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1298 read_bio, disk_devt(mddev->gendisk),
1299 r1_bio->sector);
1300
1301 generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305 int max_write_sectors)
1306 {
1307 struct r1conf *conf = mddev->private;
1308 struct r1bio *r1_bio;
1309 int i, disks;
1310 struct bitmap *bitmap = mddev->bitmap;
1311 unsigned long flags;
1312 struct md_rdev *blocked_rdev;
1313 struct blk_plug_cb *cb;
1314 struct raid1_plug_cb *plug = NULL;
1315 int first_clone;
1316 int max_sectors;
1317
1318 /*
1319 * Register the new request and wait if the reconstruction
1320 * thread has put up a bar for new requests.
1321 * Continue immediately if no resync is active currently.
1322 */
1323
1324
1325 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1326 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1327 (mddev_is_clustered(mddev) &&
1328 md_cluster_ops->area_resyncing(mddev, WRITE,
1329 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1330
1331 /*
1332 * As the suspend_* range is controlled by userspace, we want
1333 * an interruptible wait.
1334 */
1335 DEFINE_WAIT(w);
1336 for (;;) {
1337 sigset_t full, old;
1338 prepare_to_wait(&conf->wait_barrier,
1339 &w, TASK_INTERRUPTIBLE);
1340 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1341 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1342 (mddev_is_clustered(mddev) &&
1343 !md_cluster_ops->area_resyncing(mddev, WRITE,
1344 bio->bi_iter.bi_sector,
1345 bio_end_sector(bio))))
1346 break;
1347 sigfillset(&full);
1348 sigprocmask(SIG_BLOCK, &full, &old);
1349 schedule();
1350 sigprocmask(SIG_SETMASK, &old, NULL);
1351 }
1352 finish_wait(&conf->wait_barrier, &w);
1353 }
1354 wait_barrier(conf, bio->bi_iter.bi_sector);
1355
1356 r1_bio = alloc_r1bio(mddev, bio);
1357 r1_bio->sectors = max_write_sectors;
1358
1359 if (conf->pending_count >= max_queued_requests) {
1360 md_wakeup_thread(mddev->thread);
1361 raid1_log(mddev, "wait queued");
1362 wait_event(conf->wait_barrier,
1363 conf->pending_count < max_queued_requests);
1364 }
1365 /* first select target devices under rcu_lock and
1366 * inc refcount on their rdev. Record them by setting
1367 * bios[x] to bio
1368 * If there are known/acknowledged bad blocks on any device on
1369 * which we have seen a write error, we want to avoid writing those
1370 * blocks.
1371 * This potentially requires several writes to write around
1372 * the bad blocks. Each set of writes gets it's own r1bio
1373 * with a set of bios attached.
1374 */
1375
1376 disks = conf->raid_disks * 2;
1377 retry_write:
1378 blocked_rdev = NULL;
1379 rcu_read_lock();
1380 max_sectors = r1_bio->sectors;
1381 for (i = 0; i < disks; i++) {
1382 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1383 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1384 atomic_inc(&rdev->nr_pending);
1385 blocked_rdev = rdev;
1386 break;
1387 }
1388 r1_bio->bios[i] = NULL;
1389 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1390 if (i < conf->raid_disks)
1391 set_bit(R1BIO_Degraded, &r1_bio->state);
1392 continue;
1393 }
1394
1395 atomic_inc(&rdev->nr_pending);
1396 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1397 sector_t first_bad;
1398 int bad_sectors;
1399 int is_bad;
1400
1401 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1402 &first_bad, &bad_sectors);
1403 if (is_bad < 0) {
1404 /* mustn't write here until the bad block is
1405 * acknowledged*/
1406 set_bit(BlockedBadBlocks, &rdev->flags);
1407 blocked_rdev = rdev;
1408 break;
1409 }
1410 if (is_bad && first_bad <= r1_bio->sector) {
1411 /* Cannot write here at all */
1412 bad_sectors -= (r1_bio->sector - first_bad);
1413 if (bad_sectors < max_sectors)
1414 /* mustn't write more than bad_sectors
1415 * to other devices yet
1416 */
1417 max_sectors = bad_sectors;
1418 rdev_dec_pending(rdev, mddev);
1419 /* We don't set R1BIO_Degraded as that
1420 * only applies if the disk is
1421 * missing, so it might be re-added,
1422 * and we want to know to recover this
1423 * chunk.
1424 * In this case the device is here,
1425 * and the fact that this chunk is not
1426 * in-sync is recorded in the bad
1427 * block log
1428 */
1429 continue;
1430 }
1431 if (is_bad) {
1432 int good_sectors = first_bad - r1_bio->sector;
1433 if (good_sectors < max_sectors)
1434 max_sectors = good_sectors;
1435 }
1436 }
1437 r1_bio->bios[i] = bio;
1438 }
1439 rcu_read_unlock();
1440
1441 if (unlikely(blocked_rdev)) {
1442 /* Wait for this device to become unblocked */
1443 int j;
1444
1445 for (j = 0; j < i; j++)
1446 if (r1_bio->bios[j])
1447 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1448 r1_bio->state = 0;
1449 allow_barrier(conf, bio->bi_iter.bi_sector);
1450 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1451 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1452 wait_barrier(conf, bio->bi_iter.bi_sector);
1453 goto retry_write;
1454 }
1455
1456 if (max_sectors < bio_sectors(bio)) {
1457 struct bio *split = bio_split(bio, max_sectors,
1458 GFP_NOIO, conf->bio_split);
1459 bio_chain(split, bio);
1460 generic_make_request(bio);
1461 bio = split;
1462 r1_bio->master_bio = bio;
1463 r1_bio->sectors = max_sectors;
1464 }
1465
1466 atomic_set(&r1_bio->remaining, 1);
1467 atomic_set(&r1_bio->behind_remaining, 0);
1468
1469 first_clone = 1;
1470
1471 for (i = 0; i < disks; i++) {
1472 struct bio *mbio = NULL;
1473 if (!r1_bio->bios[i])
1474 continue;
1475
1476
1477 if (first_clone) {
1478 /* do behind I/O ?
1479 * Not if there are too many, or cannot
1480 * allocate memory, or a reader on WriteMostly
1481 * is waiting for behind writes to flush */
1482 if (bitmap &&
1483 (atomic_read(&bitmap->behind_writes)
1484 < mddev->bitmap_info.max_write_behind) &&
1485 !waitqueue_active(&bitmap->behind_wait)) {
1486 mbio = alloc_behind_master_bio(r1_bio, bio);
1487 }
1488
1489 bitmap_startwrite(bitmap, r1_bio->sector,
1490 r1_bio->sectors,
1491 test_bit(R1BIO_BehindIO,
1492 &r1_bio->state));
1493 first_clone = 0;
1494 }
1495
1496 if (!mbio) {
1497 if (r1_bio->behind_master_bio)
1498 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1499 GFP_NOIO,
1500 mddev->bio_set);
1501 else
1502 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1503 }
1504
1505 if (r1_bio->behind_master_bio) {
1506 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1507 atomic_inc(&r1_bio->behind_remaining);
1508 }
1509
1510 r1_bio->bios[i] = mbio;
1511
1512 mbio->bi_iter.bi_sector = (r1_bio->sector +
1513 conf->mirrors[i].rdev->data_offset);
1514 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1515 mbio->bi_end_io = raid1_end_write_request;
1516 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1517 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1518 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1519 conf->raid_disks - mddev->degraded > 1)
1520 mbio->bi_opf |= MD_FAILFAST;
1521 mbio->bi_private = r1_bio;
1522
1523 atomic_inc(&r1_bio->remaining);
1524
1525 if (mddev->gendisk)
1526 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1527 mbio, disk_devt(mddev->gendisk),
1528 r1_bio->sector);
1529 /* flush_pending_writes() needs access to the rdev so...*/
1530 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1531
1532 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1533 if (cb)
1534 plug = container_of(cb, struct raid1_plug_cb, cb);
1535 else
1536 plug = NULL;
1537 if (plug) {
1538 bio_list_add(&plug->pending, mbio);
1539 plug->pending_cnt++;
1540 } else {
1541 spin_lock_irqsave(&conf->device_lock, flags);
1542 bio_list_add(&conf->pending_bio_list, mbio);
1543 conf->pending_count++;
1544 spin_unlock_irqrestore(&conf->device_lock, flags);
1545 md_wakeup_thread(mddev->thread);
1546 }
1547 }
1548
1549 r1_bio_write_done(r1_bio);
1550
1551 /* In case raid1d snuck in to freeze_array */
1552 wake_up(&conf->wait_barrier);
1553 }
1554
1555 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 sector_t sectors;
1558
1559 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560 md_flush_request(mddev, bio);
1561 return true;
1562 }
1563
1564 /*
1565 * There is a limit to the maximum size, but
1566 * the read/write handler might find a lower limit
1567 * due to bad blocks. To avoid multiple splits,
1568 * we pass the maximum number of sectors down
1569 * and let the lower level perform the split.
1570 */
1571 sectors = align_to_barrier_unit_end(
1572 bio->bi_iter.bi_sector, bio_sectors(bio));
1573
1574 if (bio_data_dir(bio) == READ)
1575 raid1_read_request(mddev, bio, sectors, NULL);
1576 else {
1577 if (!md_write_start(mddev,bio))
1578 return false;
1579 raid1_write_request(mddev, bio, sectors);
1580 }
1581 return true;
1582 }
1583
1584 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1585 {
1586 struct r1conf *conf = mddev->private;
1587 int i;
1588
1589 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1590 conf->raid_disks - mddev->degraded);
1591 rcu_read_lock();
1592 for (i = 0; i < conf->raid_disks; i++) {
1593 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1594 seq_printf(seq, "%s",
1595 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1596 }
1597 rcu_read_unlock();
1598 seq_printf(seq, "]");
1599 }
1600
1601 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603 char b[BDEVNAME_SIZE];
1604 struct r1conf *conf = mddev->private;
1605 unsigned long flags;
1606
1607 /*
1608 * If it is not operational, then we have already marked it as dead
1609 * else if it is the last working disks, ignore the error, let the
1610 * next level up know.
1611 * else mark the drive as failed
1612 */
1613 spin_lock_irqsave(&conf->device_lock, flags);
1614 if (test_bit(In_sync, &rdev->flags)
1615 && (conf->raid_disks - mddev->degraded) == 1) {
1616 /*
1617 * Don't fail the drive, act as though we were just a
1618 * normal single drive.
1619 * However don't try a recovery from this drive as
1620 * it is very likely to fail.
1621 */
1622 conf->recovery_disabled = mddev->recovery_disabled;
1623 spin_unlock_irqrestore(&conf->device_lock, flags);
1624 return;
1625 }
1626 set_bit(Blocked, &rdev->flags);
1627 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628 mddev->degraded++;
1629 set_bit(Faulty, &rdev->flags);
1630 } else
1631 set_bit(Faulty, &rdev->flags);
1632 spin_unlock_irqrestore(&conf->device_lock, flags);
1633 /*
1634 * if recovery is running, make sure it aborts.
1635 */
1636 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1637 set_mask_bits(&mddev->sb_flags, 0,
1638 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1639 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1640 "md/raid1:%s: Operation continuing on %d devices.\n",
1641 mdname(mddev), bdevname(rdev->bdev, b),
1642 mdname(mddev), conf->raid_disks - mddev->degraded);
1643 }
1644
1645 static void print_conf(struct r1conf *conf)
1646 {
1647 int i;
1648
1649 pr_debug("RAID1 conf printout:\n");
1650 if (!conf) {
1651 pr_debug("(!conf)\n");
1652 return;
1653 }
1654 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1655 conf->raid_disks);
1656
1657 rcu_read_lock();
1658 for (i = 0; i < conf->raid_disks; i++) {
1659 char b[BDEVNAME_SIZE];
1660 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1661 if (rdev)
1662 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1663 i, !test_bit(In_sync, &rdev->flags),
1664 !test_bit(Faulty, &rdev->flags),
1665 bdevname(rdev->bdev,b));
1666 }
1667 rcu_read_unlock();
1668 }
1669
1670 static void close_sync(struct r1conf *conf)
1671 {
1672 wait_all_barriers(conf);
1673 allow_all_barriers(conf);
1674
1675 mempool_destroy(conf->r1buf_pool);
1676 conf->r1buf_pool = NULL;
1677 }
1678
1679 static int raid1_spare_active(struct mddev *mddev)
1680 {
1681 int i;
1682 struct r1conf *conf = mddev->private;
1683 int count = 0;
1684 unsigned long flags;
1685
1686 /*
1687 * Find all failed disks within the RAID1 configuration
1688 * and mark them readable.
1689 * Called under mddev lock, so rcu protection not needed.
1690 * device_lock used to avoid races with raid1_end_read_request
1691 * which expects 'In_sync' flags and ->degraded to be consistent.
1692 */
1693 spin_lock_irqsave(&conf->device_lock, flags);
1694 for (i = 0; i < conf->raid_disks; i++) {
1695 struct md_rdev *rdev = conf->mirrors[i].rdev;
1696 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1697 if (repl
1698 && !test_bit(Candidate, &repl->flags)
1699 && repl->recovery_offset == MaxSector
1700 && !test_bit(Faulty, &repl->flags)
1701 && !test_and_set_bit(In_sync, &repl->flags)) {
1702 /* replacement has just become active */
1703 if (!rdev ||
1704 !test_and_clear_bit(In_sync, &rdev->flags))
1705 count++;
1706 if (rdev) {
1707 /* Replaced device not technically
1708 * faulty, but we need to be sure
1709 * it gets removed and never re-added
1710 */
1711 set_bit(Faulty, &rdev->flags);
1712 sysfs_notify_dirent_safe(
1713 rdev->sysfs_state);
1714 }
1715 }
1716 if (rdev
1717 && rdev->recovery_offset == MaxSector
1718 && !test_bit(Faulty, &rdev->flags)
1719 && !test_and_set_bit(In_sync, &rdev->flags)) {
1720 count++;
1721 sysfs_notify_dirent_safe(rdev->sysfs_state);
1722 }
1723 }
1724 mddev->degraded -= count;
1725 spin_unlock_irqrestore(&conf->device_lock, flags);
1726
1727 print_conf(conf);
1728 return count;
1729 }
1730
1731 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733 struct r1conf *conf = mddev->private;
1734 int err = -EEXIST;
1735 int mirror = 0;
1736 struct raid1_info *p;
1737 int first = 0;
1738 int last = conf->raid_disks - 1;
1739
1740 if (mddev->recovery_disabled == conf->recovery_disabled)
1741 return -EBUSY;
1742
1743 if (md_integrity_add_rdev(rdev, mddev))
1744 return -ENXIO;
1745
1746 if (rdev->raid_disk >= 0)
1747 first = last = rdev->raid_disk;
1748
1749 /*
1750 * find the disk ... but prefer rdev->saved_raid_disk
1751 * if possible.
1752 */
1753 if (rdev->saved_raid_disk >= 0 &&
1754 rdev->saved_raid_disk >= first &&
1755 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1756 first = last = rdev->saved_raid_disk;
1757
1758 for (mirror = first; mirror <= last; mirror++) {
1759 p = conf->mirrors+mirror;
1760 if (!p->rdev) {
1761
1762 if (mddev->gendisk)
1763 disk_stack_limits(mddev->gendisk, rdev->bdev,
1764 rdev->data_offset << 9);
1765
1766 p->head_position = 0;
1767 rdev->raid_disk = mirror;
1768 err = 0;
1769 /* As all devices are equivalent, we don't need a full recovery
1770 * if this was recently any drive of the array
1771 */
1772 if (rdev->saved_raid_disk < 0)
1773 conf->fullsync = 1;
1774 rcu_assign_pointer(p->rdev, rdev);
1775 break;
1776 }
1777 if (test_bit(WantReplacement, &p->rdev->flags) &&
1778 p[conf->raid_disks].rdev == NULL) {
1779 /* Add this device as a replacement */
1780 clear_bit(In_sync, &rdev->flags);
1781 set_bit(Replacement, &rdev->flags);
1782 rdev->raid_disk = mirror;
1783 err = 0;
1784 conf->fullsync = 1;
1785 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1786 break;
1787 }
1788 }
1789 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1790 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1791 print_conf(conf);
1792 return err;
1793 }
1794
1795 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1796 {
1797 struct r1conf *conf = mddev->private;
1798 int err = 0;
1799 int number = rdev->raid_disk;
1800 struct raid1_info *p = conf->mirrors + number;
1801
1802 if (rdev != p->rdev)
1803 p = conf->mirrors + conf->raid_disks + number;
1804
1805 print_conf(conf);
1806 if (rdev == p->rdev) {
1807 if (test_bit(In_sync, &rdev->flags) ||
1808 atomic_read(&rdev->nr_pending)) {
1809 err = -EBUSY;
1810 goto abort;
1811 }
1812 /* Only remove non-faulty devices if recovery
1813 * is not possible.
1814 */
1815 if (!test_bit(Faulty, &rdev->flags) &&
1816 mddev->recovery_disabled != conf->recovery_disabled &&
1817 mddev->degraded < conf->raid_disks) {
1818 err = -EBUSY;
1819 goto abort;
1820 }
1821 p->rdev = NULL;
1822 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1823 synchronize_rcu();
1824 if (atomic_read(&rdev->nr_pending)) {
1825 /* lost the race, try later */
1826 err = -EBUSY;
1827 p->rdev = rdev;
1828 goto abort;
1829 }
1830 }
1831 if (conf->mirrors[conf->raid_disks + number].rdev) {
1832 /* We just removed a device that is being replaced.
1833 * Move down the replacement. We drain all IO before
1834 * doing this to avoid confusion.
1835 */
1836 struct md_rdev *repl =
1837 conf->mirrors[conf->raid_disks + number].rdev;
1838 freeze_array(conf, 0);
1839 clear_bit(Replacement, &repl->flags);
1840 p->rdev = repl;
1841 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1842 unfreeze_array(conf);
1843 }
1844
1845 clear_bit(WantReplacement, &rdev->flags);
1846 err = md_integrity_register(mddev);
1847 }
1848 abort:
1849
1850 print_conf(conf);
1851 return err;
1852 }
1853
1854 static void end_sync_read(struct bio *bio)
1855 {
1856 struct r1bio *r1_bio = get_resync_r1bio(bio);
1857
1858 update_head_pos(r1_bio->read_disk, r1_bio);
1859
1860 /*
1861 * we have read a block, now it needs to be re-written,
1862 * or re-read if the read failed.
1863 * We don't do much here, just schedule handling by raid1d
1864 */
1865 if (!bio->bi_status)
1866 set_bit(R1BIO_Uptodate, &r1_bio->state);
1867
1868 if (atomic_dec_and_test(&r1_bio->remaining))
1869 reschedule_retry(r1_bio);
1870 }
1871
1872 static void end_sync_write(struct bio *bio)
1873 {
1874 int uptodate = !bio->bi_status;
1875 struct r1bio *r1_bio = get_resync_r1bio(bio);
1876 struct mddev *mddev = r1_bio->mddev;
1877 struct r1conf *conf = mddev->private;
1878 sector_t first_bad;
1879 int bad_sectors;
1880 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1881
1882 if (!uptodate) {
1883 sector_t sync_blocks = 0;
1884 sector_t s = r1_bio->sector;
1885 long sectors_to_go = r1_bio->sectors;
1886 /* make sure these bits doesn't get cleared. */
1887 do {
1888 bitmap_end_sync(mddev->bitmap, s,
1889 &sync_blocks, 1);
1890 s += sync_blocks;
1891 sectors_to_go -= sync_blocks;
1892 } while (sectors_to_go > 0);
1893 set_bit(WriteErrorSeen, &rdev->flags);
1894 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895 set_bit(MD_RECOVERY_NEEDED, &
1896 mddev->recovery);
1897 set_bit(R1BIO_WriteError, &r1_bio->state);
1898 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1899 &first_bad, &bad_sectors) &&
1900 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1901 r1_bio->sector,
1902 r1_bio->sectors,
1903 &first_bad, &bad_sectors)
1904 )
1905 set_bit(R1BIO_MadeGood, &r1_bio->state);
1906
1907 if (atomic_dec_and_test(&r1_bio->remaining)) {
1908 int s = r1_bio->sectors;
1909 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1910 test_bit(R1BIO_WriteError, &r1_bio->state))
1911 reschedule_retry(r1_bio);
1912 else {
1913 put_buf(r1_bio);
1914 md_done_sync(mddev, s, uptodate);
1915 }
1916 }
1917 }
1918
1919 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1920 int sectors, struct page *page, int rw)
1921 {
1922 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1923 /* success */
1924 return 1;
1925 if (rw == WRITE) {
1926 set_bit(WriteErrorSeen, &rdev->flags);
1927 if (!test_and_set_bit(WantReplacement,
1928 &rdev->flags))
1929 set_bit(MD_RECOVERY_NEEDED, &
1930 rdev->mddev->recovery);
1931 }
1932 /* need to record an error - either for the block or the device */
1933 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1934 md_error(rdev->mddev, rdev);
1935 return 0;
1936 }
1937
1938 static int fix_sync_read_error(struct r1bio *r1_bio)
1939 {
1940 /* Try some synchronous reads of other devices to get
1941 * good data, much like with normal read errors. Only
1942 * read into the pages we already have so we don't
1943 * need to re-issue the read request.
1944 * We don't need to freeze the array, because being in an
1945 * active sync request, there is no normal IO, and
1946 * no overlapping syncs.
1947 * We don't need to check is_badblock() again as we
1948 * made sure that anything with a bad block in range
1949 * will have bi_end_io clear.
1950 */
1951 struct mddev *mddev = r1_bio->mddev;
1952 struct r1conf *conf = mddev->private;
1953 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1954 struct page **pages = get_resync_pages(bio)->pages;
1955 sector_t sect = r1_bio->sector;
1956 int sectors = r1_bio->sectors;
1957 int idx = 0;
1958 struct md_rdev *rdev;
1959
1960 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1961 if (test_bit(FailFast, &rdev->flags)) {
1962 /* Don't try recovering from here - just fail it
1963 * ... unless it is the last working device of course */
1964 md_error(mddev, rdev);
1965 if (test_bit(Faulty, &rdev->flags))
1966 /* Don't try to read from here, but make sure
1967 * put_buf does it's thing
1968 */
1969 bio->bi_end_io = end_sync_write;
1970 }
1971
1972 while(sectors) {
1973 int s = sectors;
1974 int d = r1_bio->read_disk;
1975 int success = 0;
1976 int start;
1977
1978 if (s > (PAGE_SIZE>>9))
1979 s = PAGE_SIZE >> 9;
1980 do {
1981 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1982 /* No rcu protection needed here devices
1983 * can only be removed when no resync is
1984 * active, and resync is currently active
1985 */
1986 rdev = conf->mirrors[d].rdev;
1987 if (sync_page_io(rdev, sect, s<<9,
1988 pages[idx],
1989 REQ_OP_READ, 0, false)) {
1990 success = 1;
1991 break;
1992 }
1993 }
1994 d++;
1995 if (d == conf->raid_disks * 2)
1996 d = 0;
1997 } while (!success && d != r1_bio->read_disk);
1998
1999 if (!success) {
2000 char b[BDEVNAME_SIZE];
2001 int abort = 0;
2002 /* Cannot read from anywhere, this block is lost.
2003 * Record a bad block on each device. If that doesn't
2004 * work just disable and interrupt the recovery.
2005 * Don't fail devices as that won't really help.
2006 */
2007 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008 mdname(mddev),
2009 bdevname(bio->bi_bdev, b),
2010 (unsigned long long)r1_bio->sector);
2011 for (d = 0; d < conf->raid_disks * 2; d++) {
2012 rdev = conf->mirrors[d].rdev;
2013 if (!rdev || test_bit(Faulty, &rdev->flags))
2014 continue;
2015 if (!rdev_set_badblocks(rdev, sect, s, 0))
2016 abort = 1;
2017 }
2018 if (abort) {
2019 conf->recovery_disabled =
2020 mddev->recovery_disabled;
2021 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2022 md_done_sync(mddev, r1_bio->sectors, 0);
2023 put_buf(r1_bio);
2024 return 0;
2025 }
2026 /* Try next page */
2027 sectors -= s;
2028 sect += s;
2029 idx++;
2030 continue;
2031 }
2032
2033 start = d;
2034 /* write it back and re-read */
2035 while (d != r1_bio->read_disk) {
2036 if (d == 0)
2037 d = conf->raid_disks * 2;
2038 d--;
2039 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040 continue;
2041 rdev = conf->mirrors[d].rdev;
2042 if (r1_sync_page_io(rdev, sect, s,
2043 pages[idx],
2044 WRITE) == 0) {
2045 r1_bio->bios[d]->bi_end_io = NULL;
2046 rdev_dec_pending(rdev, mddev);
2047 }
2048 }
2049 d = start;
2050 while (d != r1_bio->read_disk) {
2051 if (d == 0)
2052 d = conf->raid_disks * 2;
2053 d--;
2054 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055 continue;
2056 rdev = conf->mirrors[d].rdev;
2057 if (r1_sync_page_io(rdev, sect, s,
2058 pages[idx],
2059 READ) != 0)
2060 atomic_add(s, &rdev->corrected_errors);
2061 }
2062 sectors -= s;
2063 sect += s;
2064 idx ++;
2065 }
2066 set_bit(R1BIO_Uptodate, &r1_bio->state);
2067 bio->bi_status = 0;
2068 return 1;
2069 }
2070
2071 static void process_checks(struct r1bio *r1_bio)
2072 {
2073 /* We have read all readable devices. If we haven't
2074 * got the block, then there is no hope left.
2075 * If we have, then we want to do a comparison
2076 * and skip the write if everything is the same.
2077 * If any blocks failed to read, then we need to
2078 * attempt an over-write
2079 */
2080 struct mddev *mddev = r1_bio->mddev;
2081 struct r1conf *conf = mddev->private;
2082 int primary;
2083 int i;
2084 int vcnt;
2085
2086 /* Fix variable parts of all bios */
2087 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2088 for (i = 0; i < conf->raid_disks * 2; i++) {
2089 int j;
2090 int size;
2091 blk_status_t status;
2092 struct bio_vec *bi;
2093 struct bio *b = r1_bio->bios[i];
2094 struct resync_pages *rp = get_resync_pages(b);
2095 if (b->bi_end_io != end_sync_read)
2096 continue;
2097 /* fixup the bio for reuse, but preserve errno */
2098 status = b->bi_status;
2099 bio_reset(b);
2100 b->bi_status = status;
2101 b->bi_vcnt = vcnt;
2102 b->bi_iter.bi_size = r1_bio->sectors << 9;
2103 b->bi_iter.bi_sector = r1_bio->sector +
2104 conf->mirrors[i].rdev->data_offset;
2105 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2106 b->bi_end_io = end_sync_read;
2107 rp->raid_bio = r1_bio;
2108 b->bi_private = rp;
2109
2110 size = b->bi_iter.bi_size;
2111 bio_for_each_segment_all(bi, b, j) {
2112 bi->bv_offset = 0;
2113 if (size > PAGE_SIZE)
2114 bi->bv_len = PAGE_SIZE;
2115 else
2116 bi->bv_len = size;
2117 size -= PAGE_SIZE;
2118 }
2119 }
2120 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2121 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2122 !r1_bio->bios[primary]->bi_status) {
2123 r1_bio->bios[primary]->bi_end_io = NULL;
2124 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2125 break;
2126 }
2127 r1_bio->read_disk = primary;
2128 for (i = 0; i < conf->raid_disks * 2; i++) {
2129 int j;
2130 struct bio *pbio = r1_bio->bios[primary];
2131 struct bio *sbio = r1_bio->bios[i];
2132 blk_status_t status = sbio->bi_status;
2133 struct page **ppages = get_resync_pages(pbio)->pages;
2134 struct page **spages = get_resync_pages(sbio)->pages;
2135 struct bio_vec *bi;
2136 int page_len[RESYNC_PAGES] = { 0 };
2137
2138 if (sbio->bi_end_io != end_sync_read)
2139 continue;
2140 /* Now we can 'fixup' the error value */
2141 sbio->bi_status = 0;
2142
2143 bio_for_each_segment_all(bi, sbio, j)
2144 page_len[j] = bi->bv_len;
2145
2146 if (!status) {
2147 for (j = vcnt; j-- ; ) {
2148 if (memcmp(page_address(ppages[j]),
2149 page_address(spages[j]),
2150 page_len[j]))
2151 break;
2152 }
2153 } else
2154 j = 0;
2155 if (j >= 0)
2156 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2157 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2158 && !status)) {
2159 /* No need to write to this device. */
2160 sbio->bi_end_io = NULL;
2161 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2162 continue;
2163 }
2164
2165 bio_copy_data(sbio, pbio);
2166 }
2167 }
2168
2169 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2170 {
2171 struct r1conf *conf = mddev->private;
2172 int i;
2173 int disks = conf->raid_disks * 2;
2174 struct bio *wbio;
2175
2176 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2177 /* ouch - failed to read all of that. */
2178 if (!fix_sync_read_error(r1_bio))
2179 return;
2180
2181 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2182 process_checks(r1_bio);
2183
2184 /*
2185 * schedule writes
2186 */
2187 atomic_set(&r1_bio->remaining, 1);
2188 for (i = 0; i < disks ; i++) {
2189 wbio = r1_bio->bios[i];
2190 if (wbio->bi_end_io == NULL ||
2191 (wbio->bi_end_io == end_sync_read &&
2192 (i == r1_bio->read_disk ||
2193 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2194 continue;
2195 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2196 continue;
2197
2198 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2200 wbio->bi_opf |= MD_FAILFAST;
2201
2202 wbio->bi_end_io = end_sync_write;
2203 atomic_inc(&r1_bio->remaining);
2204 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2205
2206 generic_make_request(wbio);
2207 }
2208
2209 if (atomic_dec_and_test(&r1_bio->remaining)) {
2210 /* if we're here, all write(s) have completed, so clean up */
2211 int s = r1_bio->sectors;
2212 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2213 test_bit(R1BIO_WriteError, &r1_bio->state))
2214 reschedule_retry(r1_bio);
2215 else {
2216 put_buf(r1_bio);
2217 md_done_sync(mddev, s, 1);
2218 }
2219 }
2220 }
2221
2222 /*
2223 * This is a kernel thread which:
2224 *
2225 * 1. Retries failed read operations on working mirrors.
2226 * 2. Updates the raid superblock when problems encounter.
2227 * 3. Performs writes following reads for array synchronising.
2228 */
2229
2230 static void fix_read_error(struct r1conf *conf, int read_disk,
2231 sector_t sect, int sectors)
2232 {
2233 struct mddev *mddev = conf->mddev;
2234 while(sectors) {
2235 int s = sectors;
2236 int d = read_disk;
2237 int success = 0;
2238 int start;
2239 struct md_rdev *rdev;
2240
2241 if (s > (PAGE_SIZE>>9))
2242 s = PAGE_SIZE >> 9;
2243
2244 do {
2245 sector_t first_bad;
2246 int bad_sectors;
2247
2248 rcu_read_lock();
2249 rdev = rcu_dereference(conf->mirrors[d].rdev);
2250 if (rdev &&
2251 (test_bit(In_sync, &rdev->flags) ||
2252 (!test_bit(Faulty, &rdev->flags) &&
2253 rdev->recovery_offset >= sect + s)) &&
2254 is_badblock(rdev, sect, s,
2255 &first_bad, &bad_sectors) == 0) {
2256 atomic_inc(&rdev->nr_pending);
2257 rcu_read_unlock();
2258 if (sync_page_io(rdev, sect, s<<9,
2259 conf->tmppage, REQ_OP_READ, 0, false))
2260 success = 1;
2261 rdev_dec_pending(rdev, mddev);
2262 if (success)
2263 break;
2264 } else
2265 rcu_read_unlock();
2266 d++;
2267 if (d == conf->raid_disks * 2)
2268 d = 0;
2269 } while (!success && d != read_disk);
2270
2271 if (!success) {
2272 /* Cannot read from anywhere - mark it bad */
2273 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2274 if (!rdev_set_badblocks(rdev, sect, s, 0))
2275 md_error(mddev, rdev);
2276 break;
2277 }
2278 /* write it back and re-read */
2279 start = d;
2280 while (d != read_disk) {
2281 if (d==0)
2282 d = conf->raid_disks * 2;
2283 d--;
2284 rcu_read_lock();
2285 rdev = rcu_dereference(conf->mirrors[d].rdev);
2286 if (rdev &&
2287 !test_bit(Faulty, &rdev->flags)) {
2288 atomic_inc(&rdev->nr_pending);
2289 rcu_read_unlock();
2290 r1_sync_page_io(rdev, sect, s,
2291 conf->tmppage, WRITE);
2292 rdev_dec_pending(rdev, mddev);
2293 } else
2294 rcu_read_unlock();
2295 }
2296 d = start;
2297 while (d != read_disk) {
2298 char b[BDEVNAME_SIZE];
2299 if (d==0)
2300 d = conf->raid_disks * 2;
2301 d--;
2302 rcu_read_lock();
2303 rdev = rcu_dereference(conf->mirrors[d].rdev);
2304 if (rdev &&
2305 !test_bit(Faulty, &rdev->flags)) {
2306 atomic_inc(&rdev->nr_pending);
2307 rcu_read_unlock();
2308 if (r1_sync_page_io(rdev, sect, s,
2309 conf->tmppage, READ)) {
2310 atomic_add(s, &rdev->corrected_errors);
2311 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2312 mdname(mddev), s,
2313 (unsigned long long)(sect +
2314 rdev->data_offset),
2315 bdevname(rdev->bdev, b));
2316 }
2317 rdev_dec_pending(rdev, mddev);
2318 } else
2319 rcu_read_unlock();
2320 }
2321 sectors -= s;
2322 sect += s;
2323 }
2324 }
2325
2326 static int narrow_write_error(struct r1bio *r1_bio, int i)
2327 {
2328 struct mddev *mddev = r1_bio->mddev;
2329 struct r1conf *conf = mddev->private;
2330 struct md_rdev *rdev = conf->mirrors[i].rdev;
2331
2332 /* bio has the data to be written to device 'i' where
2333 * we just recently had a write error.
2334 * We repeatedly clone the bio and trim down to one block,
2335 * then try the write. Where the write fails we record
2336 * a bad block.
2337 * It is conceivable that the bio doesn't exactly align with
2338 * blocks. We must handle this somehow.
2339 *
2340 * We currently own a reference on the rdev.
2341 */
2342
2343 int block_sectors;
2344 sector_t sector;
2345 int sectors;
2346 int sect_to_write = r1_bio->sectors;
2347 int ok = 1;
2348
2349 if (rdev->badblocks.shift < 0)
2350 return 0;
2351
2352 block_sectors = roundup(1 << rdev->badblocks.shift,
2353 bdev_logical_block_size(rdev->bdev) >> 9);
2354 sector = r1_bio->sector;
2355 sectors = ((sector + block_sectors)
2356 & ~(sector_t)(block_sectors - 1))
2357 - sector;
2358
2359 while (sect_to_write) {
2360 struct bio *wbio;
2361 if (sectors > sect_to_write)
2362 sectors = sect_to_write;
2363 /* Write at 'sector' for 'sectors'*/
2364
2365 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2366 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2367 GFP_NOIO,
2368 mddev->bio_set);
2369 /* We really need a _all clone */
2370 wbio->bi_iter = (struct bvec_iter){ 0 };
2371 } else {
2372 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2373 mddev->bio_set);
2374 }
2375
2376 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2377 wbio->bi_iter.bi_sector = r1_bio->sector;
2378 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2379
2380 bio_trim(wbio, sector - r1_bio->sector, sectors);
2381 wbio->bi_iter.bi_sector += rdev->data_offset;
2382 wbio->bi_bdev = rdev->bdev;
2383
2384 if (submit_bio_wait(wbio) < 0)
2385 /* failure! */
2386 ok = rdev_set_badblocks(rdev, sector,
2387 sectors, 0)
2388 && ok;
2389
2390 bio_put(wbio);
2391 sect_to_write -= sectors;
2392 sector += sectors;
2393 sectors = block_sectors;
2394 }
2395 return ok;
2396 }
2397
2398 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399 {
2400 int m;
2401 int s = r1_bio->sectors;
2402 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2403 struct md_rdev *rdev = conf->mirrors[m].rdev;
2404 struct bio *bio = r1_bio->bios[m];
2405 if (bio->bi_end_io == NULL)
2406 continue;
2407 if (!bio->bi_status &&
2408 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2409 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2410 }
2411 if (bio->bi_status &&
2412 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2413 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2414 md_error(conf->mddev, rdev);
2415 }
2416 }
2417 put_buf(r1_bio);
2418 md_done_sync(conf->mddev, s, 1);
2419 }
2420
2421 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2422 {
2423 int m, idx;
2424 bool fail = false;
2425
2426 for (m = 0; m < conf->raid_disks * 2 ; m++)
2427 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2428 struct md_rdev *rdev = conf->mirrors[m].rdev;
2429 rdev_clear_badblocks(rdev,
2430 r1_bio->sector,
2431 r1_bio->sectors, 0);
2432 rdev_dec_pending(rdev, conf->mddev);
2433 } else if (r1_bio->bios[m] != NULL) {
2434 /* This drive got a write error. We need to
2435 * narrow down and record precise write
2436 * errors.
2437 */
2438 fail = true;
2439 if (!narrow_write_error(r1_bio, m)) {
2440 md_error(conf->mddev,
2441 conf->mirrors[m].rdev);
2442 /* an I/O failed, we can't clear the bitmap */
2443 set_bit(R1BIO_Degraded, &r1_bio->state);
2444 }
2445 rdev_dec_pending(conf->mirrors[m].rdev,
2446 conf->mddev);
2447 }
2448 if (fail) {
2449 spin_lock_irq(&conf->device_lock);
2450 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2451 idx = sector_to_idx(r1_bio->sector);
2452 atomic_inc(&conf->nr_queued[idx]);
2453 spin_unlock_irq(&conf->device_lock);
2454 /*
2455 * In case freeze_array() is waiting for condition
2456 * get_unqueued_pending() == extra to be true.
2457 */
2458 wake_up(&conf->wait_barrier);
2459 md_wakeup_thread(conf->mddev->thread);
2460 } else {
2461 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2462 close_write(r1_bio);
2463 raid_end_bio_io(r1_bio);
2464 }
2465 }
2466
2467 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2468 {
2469 struct mddev *mddev = conf->mddev;
2470 struct bio *bio;
2471 struct md_rdev *rdev;
2472 dev_t bio_dev;
2473 sector_t bio_sector;
2474
2475 clear_bit(R1BIO_ReadError, &r1_bio->state);
2476 /* we got a read error. Maybe the drive is bad. Maybe just
2477 * the block and we can fix it.
2478 * We freeze all other IO, and try reading the block from
2479 * other devices. When we find one, we re-write
2480 * and check it that fixes the read error.
2481 * This is all done synchronously while the array is
2482 * frozen
2483 */
2484
2485 bio = r1_bio->bios[r1_bio->read_disk];
2486 bio_dev = bio->bi_bdev->bd_dev;
2487 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2488 bio_put(bio);
2489 r1_bio->bios[r1_bio->read_disk] = NULL;
2490
2491 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2492 if (mddev->ro == 0
2493 && !test_bit(FailFast, &rdev->flags)) {
2494 freeze_array(conf, 1);
2495 fix_read_error(conf, r1_bio->read_disk,
2496 r1_bio->sector, r1_bio->sectors);
2497 unfreeze_array(conf);
2498 } else {
2499 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2500 }
2501
2502 rdev_dec_pending(rdev, conf->mddev);
2503 allow_barrier(conf, r1_bio->sector);
2504 bio = r1_bio->master_bio;
2505
2506 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2507 r1_bio->state = 0;
2508 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2509 }
2510
2511 static void raid1d(struct md_thread *thread)
2512 {
2513 struct mddev *mddev = thread->mddev;
2514 struct r1bio *r1_bio;
2515 unsigned long flags;
2516 struct r1conf *conf = mddev->private;
2517 struct list_head *head = &conf->retry_list;
2518 struct blk_plug plug;
2519 int idx;
2520
2521 md_check_recovery(mddev);
2522
2523 if (!list_empty_careful(&conf->bio_end_io_list) &&
2524 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2525 LIST_HEAD(tmp);
2526 spin_lock_irqsave(&conf->device_lock, flags);
2527 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2528 list_splice_init(&conf->bio_end_io_list, &tmp);
2529 spin_unlock_irqrestore(&conf->device_lock, flags);
2530 while (!list_empty(&tmp)) {
2531 r1_bio = list_first_entry(&tmp, struct r1bio,
2532 retry_list);
2533 list_del(&r1_bio->retry_list);
2534 idx = sector_to_idx(r1_bio->sector);
2535 atomic_dec(&conf->nr_queued[idx]);
2536 if (mddev->degraded)
2537 set_bit(R1BIO_Degraded, &r1_bio->state);
2538 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2539 close_write(r1_bio);
2540 raid_end_bio_io(r1_bio);
2541 }
2542 }
2543
2544 blk_start_plug(&plug);
2545 for (;;) {
2546
2547 flush_pending_writes(conf);
2548
2549 spin_lock_irqsave(&conf->device_lock, flags);
2550 if (list_empty(head)) {
2551 spin_unlock_irqrestore(&conf->device_lock, flags);
2552 break;
2553 }
2554 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2555 list_del(head->prev);
2556 idx = sector_to_idx(r1_bio->sector);
2557 atomic_dec(&conf->nr_queued[idx]);
2558 spin_unlock_irqrestore(&conf->device_lock, flags);
2559
2560 mddev = r1_bio->mddev;
2561 conf = mddev->private;
2562 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2563 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2564 test_bit(R1BIO_WriteError, &r1_bio->state))
2565 handle_sync_write_finished(conf, r1_bio);
2566 else
2567 sync_request_write(mddev, r1_bio);
2568 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2569 test_bit(R1BIO_WriteError, &r1_bio->state))
2570 handle_write_finished(conf, r1_bio);
2571 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2572 handle_read_error(conf, r1_bio);
2573 else
2574 WARN_ON_ONCE(1);
2575
2576 cond_resched();
2577 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2578 md_check_recovery(mddev);
2579 }
2580 blk_finish_plug(&plug);
2581 }
2582
2583 static int init_resync(struct r1conf *conf)
2584 {
2585 int buffs;
2586
2587 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2588 BUG_ON(conf->r1buf_pool);
2589 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2590 conf->poolinfo);
2591 if (!conf->r1buf_pool)
2592 return -ENOMEM;
2593 return 0;
2594 }
2595
2596 /*
2597 * perform a "sync" on one "block"
2598 *
2599 * We need to make sure that no normal I/O request - particularly write
2600 * requests - conflict with active sync requests.
2601 *
2602 * This is achieved by tracking pending requests and a 'barrier' concept
2603 * that can be installed to exclude normal IO requests.
2604 */
2605
2606 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2607 int *skipped)
2608 {
2609 struct r1conf *conf = mddev->private;
2610 struct r1bio *r1_bio;
2611 struct bio *bio;
2612 sector_t max_sector, nr_sectors;
2613 int disk = -1;
2614 int i;
2615 int wonly = -1;
2616 int write_targets = 0, read_targets = 0;
2617 sector_t sync_blocks;
2618 int still_degraded = 0;
2619 int good_sectors = RESYNC_SECTORS;
2620 int min_bad = 0; /* number of sectors that are bad in all devices */
2621 int idx = sector_to_idx(sector_nr);
2622
2623 if (!conf->r1buf_pool)
2624 if (init_resync(conf))
2625 return 0;
2626
2627 max_sector = mddev->dev_sectors;
2628 if (sector_nr >= max_sector) {
2629 /* If we aborted, we need to abort the
2630 * sync on the 'current' bitmap chunk (there will
2631 * only be one in raid1 resync.
2632 * We can find the current addess in mddev->curr_resync
2633 */
2634 if (mddev->curr_resync < max_sector) /* aborted */
2635 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2636 &sync_blocks, 1);
2637 else /* completed sync */
2638 conf->fullsync = 0;
2639
2640 bitmap_close_sync(mddev->bitmap);
2641 close_sync(conf);
2642
2643 if (mddev_is_clustered(mddev)) {
2644 conf->cluster_sync_low = 0;
2645 conf->cluster_sync_high = 0;
2646 }
2647 return 0;
2648 }
2649
2650 if (mddev->bitmap == NULL &&
2651 mddev->recovery_cp == MaxSector &&
2652 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2653 conf->fullsync == 0) {
2654 *skipped = 1;
2655 return max_sector - sector_nr;
2656 }
2657 /* before building a request, check if we can skip these blocks..
2658 * This call the bitmap_start_sync doesn't actually record anything
2659 */
2660 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2661 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2662 /* We can skip this block, and probably several more */
2663 *skipped = 1;
2664 return sync_blocks;
2665 }
2666
2667 /*
2668 * If there is non-resync activity waiting for a turn, then let it
2669 * though before starting on this new sync request.
2670 */
2671 if (atomic_read(&conf->nr_waiting[idx]))
2672 schedule_timeout_uninterruptible(1);
2673
2674 /* we are incrementing sector_nr below. To be safe, we check against
2675 * sector_nr + two times RESYNC_SECTORS
2676 */
2677
2678 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2679 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2680 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2681
2682 raise_barrier(conf, sector_nr);
2683
2684 rcu_read_lock();
2685 /*
2686 * If we get a correctably read error during resync or recovery,
2687 * we might want to read from a different device. So we
2688 * flag all drives that could conceivably be read from for READ,
2689 * and any others (which will be non-In_sync devices) for WRITE.
2690 * If a read fails, we try reading from something else for which READ
2691 * is OK.
2692 */
2693
2694 r1_bio->mddev = mddev;
2695 r1_bio->sector = sector_nr;
2696 r1_bio->state = 0;
2697 set_bit(R1BIO_IsSync, &r1_bio->state);
2698 /* make sure good_sectors won't go across barrier unit boundary */
2699 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700
2701 for (i = 0; i < conf->raid_disks * 2; i++) {
2702 struct md_rdev *rdev;
2703 bio = r1_bio->bios[i];
2704
2705 rdev = rcu_dereference(conf->mirrors[i].rdev);
2706 if (rdev == NULL ||
2707 test_bit(Faulty, &rdev->flags)) {
2708 if (i < conf->raid_disks)
2709 still_degraded = 1;
2710 } else if (!test_bit(In_sync, &rdev->flags)) {
2711 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712 bio->bi_end_io = end_sync_write;
2713 write_targets ++;
2714 } else {
2715 /* may need to read from here */
2716 sector_t first_bad = MaxSector;
2717 int bad_sectors;
2718
2719 if (is_badblock(rdev, sector_nr, good_sectors,
2720 &first_bad, &bad_sectors)) {
2721 if (first_bad > sector_nr)
2722 good_sectors = first_bad - sector_nr;
2723 else {
2724 bad_sectors -= (sector_nr - first_bad);
2725 if (min_bad == 0 ||
2726 min_bad > bad_sectors)
2727 min_bad = bad_sectors;
2728 }
2729 }
2730 if (sector_nr < first_bad) {
2731 if (test_bit(WriteMostly, &rdev->flags)) {
2732 if (wonly < 0)
2733 wonly = i;
2734 } else {
2735 if (disk < 0)
2736 disk = i;
2737 }
2738 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739 bio->bi_end_io = end_sync_read;
2740 read_targets++;
2741 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744 /*
2745 * The device is suitable for reading (InSync),
2746 * but has bad block(s) here. Let's try to correct them,
2747 * if we are doing resync or repair. Otherwise, leave
2748 * this device alone for this sync request.
2749 */
2750 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751 bio->bi_end_io = end_sync_write;
2752 write_targets++;
2753 }
2754 }
2755 if (bio->bi_end_io) {
2756 atomic_inc(&rdev->nr_pending);
2757 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758 bio->bi_bdev = rdev->bdev;
2759 if (test_bit(FailFast, &rdev->flags))
2760 bio->bi_opf |= MD_FAILFAST;
2761 }
2762 }
2763 rcu_read_unlock();
2764 if (disk < 0)
2765 disk = wonly;
2766 r1_bio->read_disk = disk;
2767
2768 if (read_targets == 0 && min_bad > 0) {
2769 /* These sectors are bad on all InSync devices, so we
2770 * need to mark them bad on all write targets
2771 */
2772 int ok = 1;
2773 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775 struct md_rdev *rdev = conf->mirrors[i].rdev;
2776 ok = rdev_set_badblocks(rdev, sector_nr,
2777 min_bad, 0
2778 ) && ok;
2779 }
2780 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781 *skipped = 1;
2782 put_buf(r1_bio);
2783
2784 if (!ok) {
2785 /* Cannot record the badblocks, so need to
2786 * abort the resync.
2787 * If there are multiple read targets, could just
2788 * fail the really bad ones ???
2789 */
2790 conf->recovery_disabled = mddev->recovery_disabled;
2791 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792 return 0;
2793 } else
2794 return min_bad;
2795
2796 }
2797 if (min_bad > 0 && min_bad < good_sectors) {
2798 /* only resync enough to reach the next bad->good
2799 * transition */
2800 good_sectors = min_bad;
2801 }
2802
2803 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804 /* extra read targets are also write targets */
2805 write_targets += read_targets-1;
2806
2807 if (write_targets == 0 || read_targets == 0) {
2808 /* There is nowhere to write, so all non-sync
2809 * drives must be failed - so we are finished
2810 */
2811 sector_t rv;
2812 if (min_bad > 0)
2813 max_sector = sector_nr + min_bad;
2814 rv = max_sector - sector_nr;
2815 *skipped = 1;
2816 put_buf(r1_bio);
2817 return rv;
2818 }
2819
2820 if (max_sector > mddev->resync_max)
2821 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822 if (max_sector > sector_nr + good_sectors)
2823 max_sector = sector_nr + good_sectors;
2824 nr_sectors = 0;
2825 sync_blocks = 0;
2826 do {
2827 struct page *page;
2828 int len = PAGE_SIZE;
2829 if (sector_nr + (len>>9) > max_sector)
2830 len = (max_sector - sector_nr) << 9;
2831 if (len == 0)
2832 break;
2833 if (sync_blocks == 0) {
2834 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835 &sync_blocks, still_degraded) &&
2836 !conf->fullsync &&
2837 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838 break;
2839 if ((len >> 9) > sync_blocks)
2840 len = sync_blocks<<9;
2841 }
2842
2843 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844 struct resync_pages *rp;
2845
2846 bio = r1_bio->bios[i];
2847 rp = get_resync_pages(bio);
2848 if (bio->bi_end_io) {
2849 page = resync_fetch_page(rp, rp->idx++);
2850
2851 /*
2852 * won't fail because the vec table is big
2853 * enough to hold all these pages
2854 */
2855 bio_add_page(bio, page, len, 0);
2856 }
2857 }
2858 nr_sectors += len>>9;
2859 sector_nr += len>>9;
2860 sync_blocks -= (len>>9);
2861 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2862
2863 r1_bio->sectors = nr_sectors;
2864
2865 if (mddev_is_clustered(mddev) &&
2866 conf->cluster_sync_high < sector_nr + nr_sectors) {
2867 conf->cluster_sync_low = mddev->curr_resync_completed;
2868 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869 /* Send resync message */
2870 md_cluster_ops->resync_info_update(mddev,
2871 conf->cluster_sync_low,
2872 conf->cluster_sync_high);
2873 }
2874
2875 /* For a user-requested sync, we read all readable devices and do a
2876 * compare
2877 */
2878 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879 atomic_set(&r1_bio->remaining, read_targets);
2880 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881 bio = r1_bio->bios[i];
2882 if (bio->bi_end_io == end_sync_read) {
2883 read_targets--;
2884 md_sync_acct(bio->bi_bdev, nr_sectors);
2885 if (read_targets == 1)
2886 bio->bi_opf &= ~MD_FAILFAST;
2887 generic_make_request(bio);
2888 }
2889 }
2890 } else {
2891 atomic_set(&r1_bio->remaining, 1);
2892 bio = r1_bio->bios[r1_bio->read_disk];
2893 md_sync_acct(bio->bi_bdev, nr_sectors);
2894 if (read_targets == 1)
2895 bio->bi_opf &= ~MD_FAILFAST;
2896 generic_make_request(bio);
2897
2898 }
2899 return nr_sectors;
2900 }
2901
2902 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903 {
2904 if (sectors)
2905 return sectors;
2906
2907 return mddev->dev_sectors;
2908 }
2909
2910 static struct r1conf *setup_conf(struct mddev *mddev)
2911 {
2912 struct r1conf *conf;
2913 int i;
2914 struct raid1_info *disk;
2915 struct md_rdev *rdev;
2916 int err = -ENOMEM;
2917
2918 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919 if (!conf)
2920 goto abort;
2921
2922 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923 sizeof(atomic_t), GFP_KERNEL);
2924 if (!conf->nr_pending)
2925 goto abort;
2926
2927 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928 sizeof(atomic_t), GFP_KERNEL);
2929 if (!conf->nr_waiting)
2930 goto abort;
2931
2932 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933 sizeof(atomic_t), GFP_KERNEL);
2934 if (!conf->nr_queued)
2935 goto abort;
2936
2937 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938 sizeof(atomic_t), GFP_KERNEL);
2939 if (!conf->barrier)
2940 goto abort;
2941
2942 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943 * mddev->raid_disks * 2,
2944 GFP_KERNEL);
2945 if (!conf->mirrors)
2946 goto abort;
2947
2948 conf->tmppage = alloc_page(GFP_KERNEL);
2949 if (!conf->tmppage)
2950 goto abort;
2951
2952 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953 if (!conf->poolinfo)
2954 goto abort;
2955 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957 r1bio_pool_free,
2958 conf->poolinfo);
2959 if (!conf->r1bio_pool)
2960 goto abort;
2961
2962 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963 if (!conf->bio_split)
2964 goto abort;
2965
2966 conf->poolinfo->mddev = mddev;
2967
2968 err = -EINVAL;
2969 spin_lock_init(&conf->device_lock);
2970 rdev_for_each(rdev, mddev) {
2971 int disk_idx = rdev->raid_disk;
2972 if (disk_idx >= mddev->raid_disks
2973 || disk_idx < 0)
2974 continue;
2975 if (test_bit(Replacement, &rdev->flags))
2976 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977 else
2978 disk = conf->mirrors + disk_idx;
2979
2980 if (disk->rdev)
2981 goto abort;
2982 disk->rdev = rdev;
2983 disk->head_position = 0;
2984 disk->seq_start = MaxSector;
2985 }
2986 conf->raid_disks = mddev->raid_disks;
2987 conf->mddev = mddev;
2988 INIT_LIST_HEAD(&conf->retry_list);
2989 INIT_LIST_HEAD(&conf->bio_end_io_list);
2990
2991 spin_lock_init(&conf->resync_lock);
2992 init_waitqueue_head(&conf->wait_barrier);
2993
2994 bio_list_init(&conf->pending_bio_list);
2995 conf->pending_count = 0;
2996 conf->recovery_disabled = mddev->recovery_disabled - 1;
2997
2998 err = -EIO;
2999 for (i = 0; i < conf->raid_disks * 2; i++) {
3000
3001 disk = conf->mirrors + i;
3002
3003 if (i < conf->raid_disks &&
3004 disk[conf->raid_disks].rdev) {
3005 /* This slot has a replacement. */
3006 if (!disk->rdev) {
3007 /* No original, just make the replacement
3008 * a recovering spare
3009 */
3010 disk->rdev =
3011 disk[conf->raid_disks].rdev;
3012 disk[conf->raid_disks].rdev = NULL;
3013 } else if (!test_bit(In_sync, &disk->rdev->flags))
3014 /* Original is not in_sync - bad */
3015 goto abort;
3016 }
3017
3018 if (!disk->rdev ||
3019 !test_bit(In_sync, &disk->rdev->flags)) {
3020 disk->head_position = 0;
3021 if (disk->rdev &&
3022 (disk->rdev->saved_raid_disk < 0))
3023 conf->fullsync = 1;
3024 }
3025 }
3026
3027 err = -ENOMEM;
3028 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3029 if (!conf->thread)
3030 goto abort;
3031
3032 return conf;
3033
3034 abort:
3035 if (conf) {
3036 mempool_destroy(conf->r1bio_pool);
3037 kfree(conf->mirrors);
3038 safe_put_page(conf->tmppage);
3039 kfree(conf->poolinfo);
3040 kfree(conf->nr_pending);
3041 kfree(conf->nr_waiting);
3042 kfree(conf->nr_queued);
3043 kfree(conf->barrier);
3044 if (conf->bio_split)
3045 bioset_free(conf->bio_split);
3046 kfree(conf);
3047 }
3048 return ERR_PTR(err);
3049 }
3050
3051 static void raid1_free(struct mddev *mddev, void *priv);
3052 static int raid1_run(struct mddev *mddev)
3053 {
3054 struct r1conf *conf;
3055 int i;
3056 struct md_rdev *rdev;
3057 int ret;
3058 bool discard_supported = false;
3059
3060 if (mddev->level != 1) {
3061 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062 mdname(mddev), mddev->level);
3063 return -EIO;
3064 }
3065 if (mddev->reshape_position != MaxSector) {
3066 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067 mdname(mddev));
3068 return -EIO;
3069 }
3070 if (mddev_init_writes_pending(mddev) < 0)
3071 return -ENOMEM;
3072 /*
3073 * copy the already verified devices into our private RAID1
3074 * bookkeeping area. [whatever we allocate in run(),
3075 * should be freed in raid1_free()]
3076 */
3077 if (mddev->private == NULL)
3078 conf = setup_conf(mddev);
3079 else
3080 conf = mddev->private;
3081
3082 if (IS_ERR(conf))
3083 return PTR_ERR(conf);
3084
3085 if (mddev->queue) {
3086 blk_queue_max_write_same_sectors(mddev->queue, 0);
3087 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088 }
3089
3090 rdev_for_each(rdev, mddev) {
3091 if (!mddev->gendisk)
3092 continue;
3093 disk_stack_limits(mddev->gendisk, rdev->bdev,
3094 rdev->data_offset << 9);
3095 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096 discard_supported = true;
3097 }
3098
3099 mddev->degraded = 0;
3100 for (i=0; i < conf->raid_disks; i++)
3101 if (conf->mirrors[i].rdev == NULL ||
3102 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104 mddev->degraded++;
3105
3106 if (conf->raid_disks - mddev->degraded == 1)
3107 mddev->recovery_cp = MaxSector;
3108
3109 if (mddev->recovery_cp != MaxSector)
3110 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111 mdname(mddev));
3112 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113 mdname(mddev), mddev->raid_disks - mddev->degraded,
3114 mddev->raid_disks);
3115
3116 /*
3117 * Ok, everything is just fine now
3118 */
3119 mddev->thread = conf->thread;
3120 conf->thread = NULL;
3121 mddev->private = conf;
3122 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123
3124 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125
3126 if (mddev->queue) {
3127 if (discard_supported)
3128 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3129 mddev->queue);
3130 else
3131 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3132 mddev->queue);
3133 }
3134
3135 ret = md_integrity_register(mddev);
3136 if (ret) {
3137 md_unregister_thread(&mddev->thread);
3138 raid1_free(mddev, conf);
3139 }
3140 return ret;
3141 }
3142
3143 static void raid1_free(struct mddev *mddev, void *priv)
3144 {
3145 struct r1conf *conf = priv;
3146
3147 mempool_destroy(conf->r1bio_pool);
3148 kfree(conf->mirrors);
3149 safe_put_page(conf->tmppage);
3150 kfree(conf->poolinfo);
3151 kfree(conf->nr_pending);
3152 kfree(conf->nr_waiting);
3153 kfree(conf->nr_queued);
3154 kfree(conf->barrier);
3155 if (conf->bio_split)
3156 bioset_free(conf->bio_split);
3157 kfree(conf);
3158 }
3159
3160 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161 {
3162 /* no resync is happening, and there is enough space
3163 * on all devices, so we can resize.
3164 * We need to make sure resync covers any new space.
3165 * If the array is shrinking we should possibly wait until
3166 * any io in the removed space completes, but it hardly seems
3167 * worth it.
3168 */
3169 sector_t newsize = raid1_size(mddev, sectors, 0);
3170 if (mddev->external_size &&
3171 mddev->array_sectors > newsize)
3172 return -EINVAL;
3173 if (mddev->bitmap) {
3174 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175 if (ret)
3176 return ret;
3177 }
3178 md_set_array_sectors(mddev, newsize);
3179 if (sectors > mddev->dev_sectors &&
3180 mddev->recovery_cp > mddev->dev_sectors) {
3181 mddev->recovery_cp = mddev->dev_sectors;
3182 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183 }
3184 mddev->dev_sectors = sectors;
3185 mddev->resync_max_sectors = sectors;
3186 return 0;
3187 }
3188
3189 static int raid1_reshape(struct mddev *mddev)
3190 {
3191 /* We need to:
3192 * 1/ resize the r1bio_pool
3193 * 2/ resize conf->mirrors
3194 *
3195 * We allocate a new r1bio_pool if we can.
3196 * Then raise a device barrier and wait until all IO stops.
3197 * Then resize conf->mirrors and swap in the new r1bio pool.
3198 *
3199 * At the same time, we "pack" the devices so that all the missing
3200 * devices have the higher raid_disk numbers.
3201 */
3202 mempool_t *newpool, *oldpool;
3203 struct pool_info *newpoolinfo;
3204 struct raid1_info *newmirrors;
3205 struct r1conf *conf = mddev->private;
3206 int cnt, raid_disks;
3207 unsigned long flags;
3208 int d, d2;
3209
3210 /* Cannot change chunk_size, layout, or level */
3211 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212 mddev->layout != mddev->new_layout ||
3213 mddev->level != mddev->new_level) {
3214 mddev->new_chunk_sectors = mddev->chunk_sectors;
3215 mddev->new_layout = mddev->layout;
3216 mddev->new_level = mddev->level;
3217 return -EINVAL;
3218 }
3219
3220 if (!mddev_is_clustered(mddev))
3221 md_allow_write(mddev);
3222
3223 raid_disks = mddev->raid_disks + mddev->delta_disks;
3224
3225 if (raid_disks < conf->raid_disks) {
3226 cnt=0;
3227 for (d= 0; d < conf->raid_disks; d++)
3228 if (conf->mirrors[d].rdev)
3229 cnt++;
3230 if (cnt > raid_disks)
3231 return -EBUSY;
3232 }
3233
3234 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235 if (!newpoolinfo)
3236 return -ENOMEM;
3237 newpoolinfo->mddev = mddev;
3238 newpoolinfo->raid_disks = raid_disks * 2;
3239
3240 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241 r1bio_pool_free, newpoolinfo);
3242 if (!newpool) {
3243 kfree(newpoolinfo);
3244 return -ENOMEM;
3245 }
3246 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3247 GFP_KERNEL);
3248 if (!newmirrors) {
3249 kfree(newpoolinfo);
3250 mempool_destroy(newpool);
3251 return -ENOMEM;
3252 }
3253
3254 freeze_array(conf, 0);
3255
3256 /* ok, everything is stopped */
3257 oldpool = conf->r1bio_pool;
3258 conf->r1bio_pool = newpool;
3259
3260 for (d = d2 = 0; d < conf->raid_disks; d++) {
3261 struct md_rdev *rdev = conf->mirrors[d].rdev;
3262 if (rdev && rdev->raid_disk != d2) {
3263 sysfs_unlink_rdev(mddev, rdev);
3264 rdev->raid_disk = d2;
3265 sysfs_unlink_rdev(mddev, rdev);
3266 if (sysfs_link_rdev(mddev, rdev))
3267 pr_warn("md/raid1:%s: cannot register rd%d\n",
3268 mdname(mddev), rdev->raid_disk);
3269 }
3270 if (rdev)
3271 newmirrors[d2++].rdev = rdev;
3272 }
3273 kfree(conf->mirrors);
3274 conf->mirrors = newmirrors;
3275 kfree(conf->poolinfo);
3276 conf->poolinfo = newpoolinfo;
3277
3278 spin_lock_irqsave(&conf->device_lock, flags);
3279 mddev->degraded += (raid_disks - conf->raid_disks);
3280 spin_unlock_irqrestore(&conf->device_lock, flags);
3281 conf->raid_disks = mddev->raid_disks = raid_disks;
3282 mddev->delta_disks = 0;
3283
3284 unfreeze_array(conf);
3285
3286 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288 md_wakeup_thread(mddev->thread);
3289
3290 mempool_destroy(oldpool);
3291 return 0;
3292 }
3293
3294 static void raid1_quiesce(struct mddev *mddev, int state)
3295 {
3296 struct r1conf *conf = mddev->private;
3297
3298 switch(state) {
3299 case 2: /* wake for suspend */
3300 wake_up(&conf->wait_barrier);
3301 break;
3302 case 1:
3303 freeze_array(conf, 0);
3304 break;
3305 case 0:
3306 unfreeze_array(conf);
3307 break;
3308 }
3309 }
3310
3311 static void *raid1_takeover(struct mddev *mddev)
3312 {
3313 /* raid1 can take over:
3314 * raid5 with 2 devices, any layout or chunk size
3315 */
3316 if (mddev->level == 5 && mddev->raid_disks == 2) {
3317 struct r1conf *conf;
3318 mddev->new_level = 1;
3319 mddev->new_layout = 0;
3320 mddev->new_chunk_sectors = 0;
3321 conf = setup_conf(mddev);
3322 if (!IS_ERR(conf)) {
3323 /* Array must appear to be quiesced */
3324 conf->array_frozen = 1;
3325 mddev_clear_unsupported_flags(mddev,
3326 UNSUPPORTED_MDDEV_FLAGS);
3327 }
3328 return conf;
3329 }
3330 return ERR_PTR(-EINVAL);
3331 }
3332
3333 static struct md_personality raid1_personality =
3334 {
3335 .name = "raid1",
3336 .level = 1,
3337 .owner = THIS_MODULE,
3338 .make_request = raid1_make_request,
3339 .run = raid1_run,
3340 .free = raid1_free,
3341 .status = raid1_status,
3342 .error_handler = raid1_error,
3343 .hot_add_disk = raid1_add_disk,
3344 .hot_remove_disk= raid1_remove_disk,
3345 .spare_active = raid1_spare_active,
3346 .sync_request = raid1_sync_request,
3347 .resize = raid1_resize,
3348 .size = raid1_size,
3349 .check_reshape = raid1_reshape,
3350 .quiesce = raid1_quiesce,
3351 .takeover = raid1_takeover,
3352 .congested = raid1_congested,
3353 };
3354
3355 static int __init raid_init(void)
3356 {
3357 return register_md_personality(&raid1_personality);
3358 }
3359
3360 static void raid_exit(void)
3361 {
3362 unregister_md_personality(&raid1_personality);
3363 }
3364
3365 module_init(raid_init);
3366 module_exit(raid_exit);
3367 MODULE_LICENSE("GPL");
3368 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3369 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3370 MODULE_ALIAS("md-raid1");
3371 MODULE_ALIAS("md-level-1");
3372
3373 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);