]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid1.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
49 (1L << MD_JOURNAL_CLEAN) | \
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 struct pool_info *pi = data;
119 struct r1bio *r1_bio;
120 struct bio *bio;
121 int need_pages;
122 int j;
123 struct resync_pages *rps;
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 if (!r1_bio)
127 return NULL;
128
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
148 */
149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 need_pages = pi->raid_disks;
151 else
152 need_pages = 1;
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
156 bio = r1_bio->bios[j];
157
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
174 out_free_pages:
175 while (--j >= 0)
176 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179 while (++j < pi->raid_disks)
180 bio_put(r1_bio->bios[j]);
181 kfree(rps);
182
183 out_free_r1bio:
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 struct pool_info *pi = data;
191 int i;
192 struct r1bio *r1bio = __r1_bio;
193 struct resync_pages *rp = NULL;
194
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
198 bio_put(r1bio->bios[i]);
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
203
204 r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 int i;
210
211 for (i = 0; i < conf->raid_disks * 2; i++) {
212 struct bio **bio = r1_bio->bios + i;
213 if (!BIO_SPECIAL(*bio))
214 bio_put(*bio);
215 *bio = NULL;
216 }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 struct r1conf *conf = r1_bio->mddev->private;
222
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230 sector_t sect = r1_bio->sector;
231 int i;
232
233 for (i = 0; i < conf->raid_disks * 2; i++) {
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
241 lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 unsigned long flags;
247 struct mddev *mddev = r1_bio->mddev;
248 struct r1conf *conf = mddev->private;
249 int idx;
250
251 idx = sector_to_idx(r1_bio->sector);
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
254 atomic_inc(&conf->nr_queued[idx]);
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
257 wake_up(&conf->wait_barrier);
258 md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 struct bio *bio = r1_bio->master_bio;
269 struct r1conf *conf = r1_bio->mddev->private;
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 bio->bi_status = BLK_STS_IOERR;
273
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 struct bio *bio = r1_bio->master_bio;
285
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
292
293 call_bio_endio(r1_bio);
294 }
295 free_r1bio(r1_bio);
296 }
297
298 /*
299 * Update disk head position estimator based on IRQ completion info.
300 */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 struct r1conf *conf = r1_bio->mddev->private;
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310 * Find the disk number which triggered given bio
311 */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 int mirror;
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
317
318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
322 BUG_ON(mirror == raid_disks * 2);
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 int uptodate = !bio->bi_status;
331 struct r1bio *r1_bio = bio->bi_private;
332 struct r1conf *conf = r1_bio->mddev->private;
333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
338 update_head_pos(r1_bio->read_disk, r1_bio);
339
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
351 */
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 test_bit(In_sync, &rdev->flags)))
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
360
361 if (uptodate) {
362 raid_end_bio_io(r1_bio);
363 rdev_dec_pending(rdev, conf->mddev);
364 } else {
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
373 set_bit(R1BIO_ReadError, &r1_bio->state);
374 reschedule_retry(r1_bio);
375 /* don't drop the reference on read_disk yet */
376 }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
408 }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 struct r1bio *r1_bio = bio->bi_private;
414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 struct r1conf *conf = r1_bio->mddev->private;
416 struct bio *to_put = NULL;
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 bool discard_error;
420
421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
426 if (bio->bi_status && !discard_error) {
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
450 } else {
451 /*
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
460 */
461 sector_t first_bad;
462 int bad_sectors;
463
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
476 set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 &first_bad, &bad_sectors) && !discard_error) {
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
486 if (behind) {
487 if (test_bit(WriteMostly, &rdev->flags))
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
506 call_bio_endio(r1_bio);
507 }
508 }
509 }
510 if (r1_bio->bios[mirror] == NULL)
511 rdev_dec_pending(rdev, conf->mddev);
512
513 /*
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
517 r1_bio_write_done(r1_bio);
518
519 if (to_put)
520 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525 {
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540 }
541
542 /*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 const sector_t this_sector = r1_bio->sector;
559 int sectors;
560 int best_good_sectors;
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
563 int disk;
564 sector_t best_dist;
565 unsigned int min_pending;
566 struct md_rdev *rdev;
567 int choose_first;
568 int choose_next_idle;
569
570 rcu_read_lock();
571 /*
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
577 sectors = r1_bio->sectors;
578 best_disk = -1;
579 best_dist_disk = -1;
580 best_dist = MaxSector;
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
583 best_good_sectors = 0;
584 has_nonrot_disk = 0;
585 choose_next_idle = 0;
586 clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
595
596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 sector_t dist;
598 sector_t first_bad;
599 int bad_sectors;
600 unsigned int pending;
601 bool nonrot;
602
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
606 || test_bit(Faulty, &rdev->flags))
607 continue;
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
610 continue;
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk < 0) {
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
617 if (first_bad <= this_sector)
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
623 best_dist_disk = disk;
624 best_pending_disk = disk;
625 }
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
660 best_good_sectors = sectors;
661 }
662
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
669 pending = atomic_read(&rdev->nr_pending);
670 dist = abs(this_sector - conf->mirrors[disk].head_position);
671 if (choose_first) {
672 best_disk = disk;
673 break;
674 }
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
705
706 if (choose_next_idle)
707 continue;
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
714 if (dist < best_dist) {
715 best_dist = dist;
716 best_dist_disk = disk;
717 }
718 }
719
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
727 if (has_nonrot_disk || min_pending == 0)
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
738 sectors = best_good_sectors;
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 }
745 rcu_read_unlock();
746 *max_sectors = sectors;
747
748 return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 struct r1conf *conf = mddev->private;
754 int i, ret = 0;
755
756 if ((bits & (1 << WB_async_congested)) &&
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
760 rcu_read_lock();
761 for (i = 0; i < conf->raid_disks * 2; i++) {
762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766 BUG_ON(!q);
767
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
771 if ((bits & (1 << WB_async_congested)) || 1)
772 ret |= bdi_congested(q->backing_dev_info, bits);
773 else
774 ret &= bdi_congested(q->backing_dev_info, bits);
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
789 struct md_rdev *rdev = (void *)bio->bi_disk;
790 bio->bi_next = NULL;
791 bio_set_dev(bio, rdev->bdev);
792 if (test_bit(Faulty, &rdev->flags)) {
793 bio_io_error(bio);
794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 !blk_queue_discard(bio->bi_disk->queue)))
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
808 */
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
812 struct blk_plug plug;
813 struct bio *bio;
814
815 bio = bio_list_get(&conf->pending_bio_list);
816 conf->pending_count = 0;
817 spin_unlock_irq(&conf->device_lock);
818 blk_start_plug(&plug);
819 flush_bio_list(conf, bio);
820 blk_finish_plug(&plug);
821 } else
822 spin_unlock_irq(&conf->device_lock);
823 }
824
825 /* Barriers....
826 * Sometimes we need to suspend IO while we do something else,
827 * either some resync/recovery, or reconfigure the array.
828 * To do this we raise a 'barrier'.
829 * The 'barrier' is a counter that can be raised multiple times
830 * to count how many activities are happening which preclude
831 * normal IO.
832 * We can only raise the barrier if there is no pending IO.
833 * i.e. if nr_pending == 0.
834 * We choose only to raise the barrier if no-one is waiting for the
835 * barrier to go down. This means that as soon as an IO request
836 * is ready, no other operations which require a barrier will start
837 * until the IO request has had a chance.
838 *
839 * So: regular IO calls 'wait_barrier'. When that returns there
840 * is no backgroup IO happening, It must arrange to call
841 * allow_barrier when it has finished its IO.
842 * backgroup IO calls must call raise_barrier. Once that returns
843 * there is no normal IO happeing. It must arrange to call
844 * lower_barrier when the particular background IO completes.
845 */
846 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
847 {
848 int idx = sector_to_idx(sector_nr);
849
850 spin_lock_irq(&conf->resync_lock);
851
852 /* Wait until no block IO is waiting */
853 wait_event_lock_irq(conf->wait_barrier,
854 !atomic_read(&conf->nr_waiting[idx]),
855 conf->resync_lock);
856
857 /* block any new IO from starting */
858 atomic_inc(&conf->barrier[idx]);
859 /*
860 * In raise_barrier() we firstly increase conf->barrier[idx] then
861 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
862 * increase conf->nr_pending[idx] then check conf->barrier[idx].
863 * A memory barrier here to make sure conf->nr_pending[idx] won't
864 * be fetched before conf->barrier[idx] is increased. Otherwise
865 * there will be a race between raise_barrier() and _wait_barrier().
866 */
867 smp_mb__after_atomic();
868
869 /* For these conditions we must wait:
870 * A: while the array is in frozen state
871 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
872 * existing in corresponding I/O barrier bucket.
873 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
874 * max resync count which allowed on current I/O barrier bucket.
875 */
876 wait_event_lock_irq(conf->wait_barrier,
877 !conf->array_frozen &&
878 !atomic_read(&conf->nr_pending[idx]) &&
879 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
880 conf->resync_lock);
881
882 atomic_inc(&conf->nr_sync_pending);
883 spin_unlock_irq(&conf->resync_lock);
884 }
885
886 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
887 {
888 int idx = sector_to_idx(sector_nr);
889
890 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
891
892 atomic_dec(&conf->barrier[idx]);
893 atomic_dec(&conf->nr_sync_pending);
894 wake_up(&conf->wait_barrier);
895 }
896
897 static void _wait_barrier(struct r1conf *conf, int idx)
898 {
899 /*
900 * We need to increase conf->nr_pending[idx] very early here,
901 * then raise_barrier() can be blocked when it waits for
902 * conf->nr_pending[idx] to be 0. Then we can avoid holding
903 * conf->resync_lock when there is no barrier raised in same
904 * barrier unit bucket. Also if the array is frozen, I/O
905 * should be blocked until array is unfrozen.
906 */
907 atomic_inc(&conf->nr_pending[idx]);
908 /*
909 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
910 * check conf->barrier[idx]. In raise_barrier() we firstly increase
911 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
912 * barrier is necessary here to make sure conf->barrier[idx] won't be
913 * fetched before conf->nr_pending[idx] is increased. Otherwise there
914 * will be a race between _wait_barrier() and raise_barrier().
915 */
916 smp_mb__after_atomic();
917
918 /*
919 * Don't worry about checking two atomic_t variables at same time
920 * here. If during we check conf->barrier[idx], the array is
921 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
922 * 0, it is safe to return and make the I/O continue. Because the
923 * array is frozen, all I/O returned here will eventually complete
924 * or be queued, no race will happen. See code comment in
925 * frozen_array().
926 */
927 if (!READ_ONCE(conf->array_frozen) &&
928 !atomic_read(&conf->barrier[idx]))
929 return;
930
931 /*
932 * After holding conf->resync_lock, conf->nr_pending[idx]
933 * should be decreased before waiting for barrier to drop.
934 * Otherwise, we may encounter a race condition because
935 * raise_barrer() might be waiting for conf->nr_pending[idx]
936 * to be 0 at same time.
937 */
938 spin_lock_irq(&conf->resync_lock);
939 atomic_inc(&conf->nr_waiting[idx]);
940 atomic_dec(&conf->nr_pending[idx]);
941 /*
942 * In case freeze_array() is waiting for
943 * get_unqueued_pending() == extra
944 */
945 wake_up(&conf->wait_barrier);
946 /* Wait for the barrier in same barrier unit bucket to drop. */
947 wait_event_lock_irq(conf->wait_barrier,
948 !conf->array_frozen &&
949 !atomic_read(&conf->barrier[idx]),
950 conf->resync_lock);
951 atomic_inc(&conf->nr_pending[idx]);
952 atomic_dec(&conf->nr_waiting[idx]);
953 spin_unlock_irq(&conf->resync_lock);
954 }
955
956 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
957 {
958 int idx = sector_to_idx(sector_nr);
959
960 /*
961 * Very similar to _wait_barrier(). The difference is, for read
962 * I/O we don't need wait for sync I/O, but if the whole array
963 * is frozen, the read I/O still has to wait until the array is
964 * unfrozen. Since there is no ordering requirement with
965 * conf->barrier[idx] here, memory barrier is unnecessary as well.
966 */
967 atomic_inc(&conf->nr_pending[idx]);
968
969 if (!READ_ONCE(conf->array_frozen))
970 return;
971
972 spin_lock_irq(&conf->resync_lock);
973 atomic_inc(&conf->nr_waiting[idx]);
974 atomic_dec(&conf->nr_pending[idx]);
975 /*
976 * In case freeze_array() is waiting for
977 * get_unqueued_pending() == extra
978 */
979 wake_up(&conf->wait_barrier);
980 /* Wait for array to be unfrozen */
981 wait_event_lock_irq(conf->wait_barrier,
982 !conf->array_frozen,
983 conf->resync_lock);
984 atomic_inc(&conf->nr_pending[idx]);
985 atomic_dec(&conf->nr_waiting[idx]);
986 spin_unlock_irq(&conf->resync_lock);
987 }
988
989 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
990 {
991 int idx = sector_to_idx(sector_nr);
992
993 _wait_barrier(conf, idx);
994 }
995
996 static void _allow_barrier(struct r1conf *conf, int idx)
997 {
998 atomic_dec(&conf->nr_pending[idx]);
999 wake_up(&conf->wait_barrier);
1000 }
1001
1002 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1003 {
1004 int idx = sector_to_idx(sector_nr);
1005
1006 _allow_barrier(conf, idx);
1007 }
1008
1009 /* conf->resync_lock should be held */
1010 static int get_unqueued_pending(struct r1conf *conf)
1011 {
1012 int idx, ret;
1013
1014 ret = atomic_read(&conf->nr_sync_pending);
1015 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1016 ret += atomic_read(&conf->nr_pending[idx]) -
1017 atomic_read(&conf->nr_queued[idx]);
1018
1019 return ret;
1020 }
1021
1022 static void freeze_array(struct r1conf *conf, int extra)
1023 {
1024 /* Stop sync I/O and normal I/O and wait for everything to
1025 * go quiet.
1026 * This is called in two situations:
1027 * 1) management command handlers (reshape, remove disk, quiesce).
1028 * 2) one normal I/O request failed.
1029
1030 * After array_frozen is set to 1, new sync IO will be blocked at
1031 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1032 * or wait_read_barrier(). The flying I/Os will either complete or be
1033 * queued. When everything goes quite, there are only queued I/Os left.
1034
1035 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1036 * barrier bucket index which this I/O request hits. When all sync and
1037 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1038 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1039 * in handle_read_error(), we may call freeze_array() before trying to
1040 * fix the read error. In this case, the error read I/O is not queued,
1041 * so get_unqueued_pending() == 1.
1042 *
1043 * Therefore before this function returns, we need to wait until
1044 * get_unqueued_pendings(conf) gets equal to extra. For
1045 * normal I/O context, extra is 1, in rested situations extra is 0.
1046 */
1047 spin_lock_irq(&conf->resync_lock);
1048 conf->array_frozen = 1;
1049 raid1_log(conf->mddev, "wait freeze");
1050 wait_event_lock_irq_cmd(
1051 conf->wait_barrier,
1052 get_unqueued_pending(conf) == extra,
1053 conf->resync_lock,
1054 flush_pending_writes(conf));
1055 spin_unlock_irq(&conf->resync_lock);
1056 }
1057 static void unfreeze_array(struct r1conf *conf)
1058 {
1059 /* reverse the effect of the freeze */
1060 spin_lock_irq(&conf->resync_lock);
1061 conf->array_frozen = 0;
1062 spin_unlock_irq(&conf->resync_lock);
1063 wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1067 struct bio *bio)
1068 {
1069 int size = bio->bi_iter.bi_size;
1070 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1071 int i = 0;
1072 struct bio *behind_bio = NULL;
1073
1074 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1075 if (!behind_bio)
1076 return;
1077
1078 /* discard op, we don't support writezero/writesame yet */
1079 if (!bio_has_data(bio)) {
1080 behind_bio->bi_iter.bi_size = size;
1081 goto skip_copy;
1082 }
1083
1084 while (i < vcnt && size) {
1085 struct page *page;
1086 int len = min_t(int, PAGE_SIZE, size);
1087
1088 page = alloc_page(GFP_NOIO);
1089 if (unlikely(!page))
1090 goto free_pages;
1091
1092 bio_add_page(behind_bio, page, len, 0);
1093
1094 size -= len;
1095 i++;
1096 }
1097
1098 bio_copy_data(behind_bio, bio);
1099 skip_copy:
1100 r1_bio->behind_master_bio = behind_bio;;
1101 set_bit(R1BIO_BehindIO, &r1_bio->state);
1102
1103 return;
1104
1105 free_pages:
1106 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1107 bio->bi_iter.bi_size);
1108 bio_free_pages(behind_bio);
1109 bio_put(behind_bio);
1110 }
1111
1112 struct raid1_plug_cb {
1113 struct blk_plug_cb cb;
1114 struct bio_list pending;
1115 int pending_cnt;
1116 };
1117
1118 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1119 {
1120 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1121 cb);
1122 struct mddev *mddev = plug->cb.data;
1123 struct r1conf *conf = mddev->private;
1124 struct bio *bio;
1125
1126 if (from_schedule || current->bio_list) {
1127 spin_lock_irq(&conf->device_lock);
1128 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1129 conf->pending_count += plug->pending_cnt;
1130 spin_unlock_irq(&conf->device_lock);
1131 wake_up(&conf->wait_barrier);
1132 md_wakeup_thread(mddev->thread);
1133 kfree(plug);
1134 return;
1135 }
1136
1137 /* we aren't scheduling, so we can do the write-out directly. */
1138 bio = bio_list_get(&plug->pending);
1139 flush_bio_list(conf, bio);
1140 kfree(plug);
1141 }
1142
1143 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1144 {
1145 r1_bio->master_bio = bio;
1146 r1_bio->sectors = bio_sectors(bio);
1147 r1_bio->state = 0;
1148 r1_bio->mddev = mddev;
1149 r1_bio->sector = bio->bi_iter.bi_sector;
1150 }
1151
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1154 {
1155 struct r1conf *conf = mddev->private;
1156 struct r1bio *r1_bio;
1157
1158 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159 /* Ensure no bio records IO_BLOCKED */
1160 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1161 init_r1bio(r1_bio, mddev, bio);
1162 return r1_bio;
1163 }
1164
1165 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1166 int max_read_sectors, struct r1bio *r1_bio)
1167 {
1168 struct r1conf *conf = mddev->private;
1169 struct raid1_info *mirror;
1170 struct bio *read_bio;
1171 struct bitmap *bitmap = mddev->bitmap;
1172 const int op = bio_op(bio);
1173 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1174 int max_sectors;
1175 int rdisk;
1176 bool print_msg = !!r1_bio;
1177 char b[BDEVNAME_SIZE];
1178
1179 /*
1180 * If r1_bio is set, we are blocking the raid1d thread
1181 * so there is a tiny risk of deadlock. So ask for
1182 * emergency memory if needed.
1183 */
1184 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1185
1186 if (print_msg) {
1187 /* Need to get the block device name carefully */
1188 struct md_rdev *rdev;
1189 rcu_read_lock();
1190 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1191 if (rdev)
1192 bdevname(rdev->bdev, b);
1193 else
1194 strcpy(b, "???");
1195 rcu_read_unlock();
1196 }
1197
1198 /*
1199 * Still need barrier for READ in case that whole
1200 * array is frozen.
1201 */
1202 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1203
1204 if (!r1_bio)
1205 r1_bio = alloc_r1bio(mddev, bio);
1206 else
1207 init_r1bio(r1_bio, mddev, bio);
1208 r1_bio->sectors = max_read_sectors;
1209
1210 /*
1211 * make_request() can abort the operation when read-ahead is being
1212 * used and no empty request is available.
1213 */
1214 rdisk = read_balance(conf, r1_bio, &max_sectors);
1215
1216 if (rdisk < 0) {
1217 /* couldn't find anywhere to read from */
1218 if (print_msg) {
1219 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1220 mdname(mddev),
1221 b,
1222 (unsigned long long)r1_bio->sector);
1223 }
1224 raid_end_bio_io(r1_bio);
1225 return;
1226 }
1227 mirror = conf->mirrors + rdisk;
1228
1229 if (print_msg)
1230 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1231 mdname(mddev),
1232 (unsigned long long)r1_bio->sector,
1233 bdevname(mirror->rdev->bdev, b));
1234
1235 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1236 bitmap) {
1237 /*
1238 * Reading from a write-mostly device must take care not to
1239 * over-take any writes that are 'behind'
1240 */
1241 raid1_log(mddev, "wait behind writes");
1242 wait_event(bitmap->behind_wait,
1243 atomic_read(&bitmap->behind_writes) == 0);
1244 }
1245
1246 if (max_sectors < bio_sectors(bio)) {
1247 struct bio *split = bio_split(bio, max_sectors,
1248 gfp, conf->bio_split);
1249 bio_chain(split, bio);
1250 generic_make_request(bio);
1251 bio = split;
1252 r1_bio->master_bio = bio;
1253 r1_bio->sectors = max_sectors;
1254 }
1255
1256 r1_bio->read_disk = rdisk;
1257
1258 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1259
1260 r1_bio->bios[rdisk] = read_bio;
1261
1262 read_bio->bi_iter.bi_sector = r1_bio->sector +
1263 mirror->rdev->data_offset;
1264 bio_set_dev(read_bio, mirror->rdev->bdev);
1265 read_bio->bi_end_io = raid1_end_read_request;
1266 bio_set_op_attrs(read_bio, op, do_sync);
1267 if (test_bit(FailFast, &mirror->rdev->flags) &&
1268 test_bit(R1BIO_FailFast, &r1_bio->state))
1269 read_bio->bi_opf |= MD_FAILFAST;
1270 read_bio->bi_private = r1_bio;
1271
1272 if (mddev->gendisk)
1273 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1274 disk_devt(mddev->gendisk), r1_bio->sector);
1275
1276 generic_make_request(read_bio);
1277 }
1278
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1280 int max_write_sectors)
1281 {
1282 struct r1conf *conf = mddev->private;
1283 struct r1bio *r1_bio;
1284 int i, disks;
1285 struct bitmap *bitmap = mddev->bitmap;
1286 unsigned long flags;
1287 struct md_rdev *blocked_rdev;
1288 struct blk_plug_cb *cb;
1289 struct raid1_plug_cb *plug = NULL;
1290 int first_clone;
1291 int max_sectors;
1292
1293 if (mddev_is_clustered(mddev) &&
1294 md_cluster_ops->area_resyncing(mddev, WRITE,
1295 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1296
1297 DEFINE_WAIT(w);
1298 for (;;) {
1299 prepare_to_wait(&conf->wait_barrier,
1300 &w, TASK_IDLE);
1301 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1302 bio->bi_iter.bi_sector,
1303 bio_end_sector(bio)))
1304 break;
1305 schedule();
1306 }
1307 finish_wait(&conf->wait_barrier, &w);
1308 }
1309
1310 /*
1311 * Register the new request and wait if the reconstruction
1312 * thread has put up a bar for new requests.
1313 * Continue immediately if no resync is active currently.
1314 */
1315 wait_barrier(conf, bio->bi_iter.bi_sector);
1316
1317 r1_bio = alloc_r1bio(mddev, bio);
1318 r1_bio->sectors = max_write_sectors;
1319
1320 if (conf->pending_count >= max_queued_requests) {
1321 md_wakeup_thread(mddev->thread);
1322 raid1_log(mddev, "wait queued");
1323 wait_event(conf->wait_barrier,
1324 conf->pending_count < max_queued_requests);
1325 }
1326 /* first select target devices under rcu_lock and
1327 * inc refcount on their rdev. Record them by setting
1328 * bios[x] to bio
1329 * If there are known/acknowledged bad blocks on any device on
1330 * which we have seen a write error, we want to avoid writing those
1331 * blocks.
1332 * This potentially requires several writes to write around
1333 * the bad blocks. Each set of writes gets it's own r1bio
1334 * with a set of bios attached.
1335 */
1336
1337 disks = conf->raid_disks * 2;
1338 retry_write:
1339 blocked_rdev = NULL;
1340 rcu_read_lock();
1341 max_sectors = r1_bio->sectors;
1342 for (i = 0; i < disks; i++) {
1343 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1344 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1345 atomic_inc(&rdev->nr_pending);
1346 blocked_rdev = rdev;
1347 break;
1348 }
1349 r1_bio->bios[i] = NULL;
1350 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1351 if (i < conf->raid_disks)
1352 set_bit(R1BIO_Degraded, &r1_bio->state);
1353 continue;
1354 }
1355
1356 atomic_inc(&rdev->nr_pending);
1357 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1358 sector_t first_bad;
1359 int bad_sectors;
1360 int is_bad;
1361
1362 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1363 &first_bad, &bad_sectors);
1364 if (is_bad < 0) {
1365 /* mustn't write here until the bad block is
1366 * acknowledged*/
1367 set_bit(BlockedBadBlocks, &rdev->flags);
1368 blocked_rdev = rdev;
1369 break;
1370 }
1371 if (is_bad && first_bad <= r1_bio->sector) {
1372 /* Cannot write here at all */
1373 bad_sectors -= (r1_bio->sector - first_bad);
1374 if (bad_sectors < max_sectors)
1375 /* mustn't write more than bad_sectors
1376 * to other devices yet
1377 */
1378 max_sectors = bad_sectors;
1379 rdev_dec_pending(rdev, mddev);
1380 /* We don't set R1BIO_Degraded as that
1381 * only applies if the disk is
1382 * missing, so it might be re-added,
1383 * and we want to know to recover this
1384 * chunk.
1385 * In this case the device is here,
1386 * and the fact that this chunk is not
1387 * in-sync is recorded in the bad
1388 * block log
1389 */
1390 continue;
1391 }
1392 if (is_bad) {
1393 int good_sectors = first_bad - r1_bio->sector;
1394 if (good_sectors < max_sectors)
1395 max_sectors = good_sectors;
1396 }
1397 }
1398 r1_bio->bios[i] = bio;
1399 }
1400 rcu_read_unlock();
1401
1402 if (unlikely(blocked_rdev)) {
1403 /* Wait for this device to become unblocked */
1404 int j;
1405
1406 for (j = 0; j < i; j++)
1407 if (r1_bio->bios[j])
1408 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1409 r1_bio->state = 0;
1410 allow_barrier(conf, bio->bi_iter.bi_sector);
1411 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1412 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1413 wait_barrier(conf, bio->bi_iter.bi_sector);
1414 goto retry_write;
1415 }
1416
1417 if (max_sectors < bio_sectors(bio)) {
1418 struct bio *split = bio_split(bio, max_sectors,
1419 GFP_NOIO, conf->bio_split);
1420 bio_chain(split, bio);
1421 generic_make_request(bio);
1422 bio = split;
1423 r1_bio->master_bio = bio;
1424 r1_bio->sectors = max_sectors;
1425 }
1426
1427 atomic_set(&r1_bio->remaining, 1);
1428 atomic_set(&r1_bio->behind_remaining, 0);
1429
1430 first_clone = 1;
1431
1432 for (i = 0; i < disks; i++) {
1433 struct bio *mbio = NULL;
1434 if (!r1_bio->bios[i])
1435 continue;
1436
1437
1438 if (first_clone) {
1439 /* do behind I/O ?
1440 * Not if there are too many, or cannot
1441 * allocate memory, or a reader on WriteMostly
1442 * is waiting for behind writes to flush */
1443 if (bitmap &&
1444 (atomic_read(&bitmap->behind_writes)
1445 < mddev->bitmap_info.max_write_behind) &&
1446 !waitqueue_active(&bitmap->behind_wait)) {
1447 alloc_behind_master_bio(r1_bio, bio);
1448 }
1449
1450 bitmap_startwrite(bitmap, r1_bio->sector,
1451 r1_bio->sectors,
1452 test_bit(R1BIO_BehindIO,
1453 &r1_bio->state));
1454 first_clone = 0;
1455 }
1456
1457 if (r1_bio->behind_master_bio)
1458 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1459 GFP_NOIO, mddev->bio_set);
1460 else
1461 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462
1463 if (r1_bio->behind_master_bio) {
1464 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1465 atomic_inc(&r1_bio->behind_remaining);
1466 }
1467
1468 r1_bio->bios[i] = mbio;
1469
1470 mbio->bi_iter.bi_sector = (r1_bio->sector +
1471 conf->mirrors[i].rdev->data_offset);
1472 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1473 mbio->bi_end_io = raid1_end_write_request;
1474 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1475 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1476 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1477 conf->raid_disks - mddev->degraded > 1)
1478 mbio->bi_opf |= MD_FAILFAST;
1479 mbio->bi_private = r1_bio;
1480
1481 atomic_inc(&r1_bio->remaining);
1482
1483 if (mddev->gendisk)
1484 trace_block_bio_remap(mbio->bi_disk->queue,
1485 mbio, disk_devt(mddev->gendisk),
1486 r1_bio->sector);
1487 /* flush_pending_writes() needs access to the rdev so...*/
1488 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1489
1490 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1491 if (cb)
1492 plug = container_of(cb, struct raid1_plug_cb, cb);
1493 else
1494 plug = NULL;
1495 if (plug) {
1496 bio_list_add(&plug->pending, mbio);
1497 plug->pending_cnt++;
1498 } else {
1499 spin_lock_irqsave(&conf->device_lock, flags);
1500 bio_list_add(&conf->pending_bio_list, mbio);
1501 conf->pending_count++;
1502 spin_unlock_irqrestore(&conf->device_lock, flags);
1503 md_wakeup_thread(mddev->thread);
1504 }
1505 }
1506
1507 r1_bio_write_done(r1_bio);
1508
1509 /* In case raid1d snuck in to freeze_array */
1510 wake_up(&conf->wait_barrier);
1511 }
1512
1513 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1514 {
1515 sector_t sectors;
1516
1517 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1518 md_flush_request(mddev, bio);
1519 return true;
1520 }
1521
1522 /*
1523 * There is a limit to the maximum size, but
1524 * the read/write handler might find a lower limit
1525 * due to bad blocks. To avoid multiple splits,
1526 * we pass the maximum number of sectors down
1527 * and let the lower level perform the split.
1528 */
1529 sectors = align_to_barrier_unit_end(
1530 bio->bi_iter.bi_sector, bio_sectors(bio));
1531
1532 if (bio_data_dir(bio) == READ)
1533 raid1_read_request(mddev, bio, sectors, NULL);
1534 else {
1535 if (!md_write_start(mddev,bio))
1536 return false;
1537 raid1_write_request(mddev, bio, sectors);
1538 }
1539 return true;
1540 }
1541
1542 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1543 {
1544 struct r1conf *conf = mddev->private;
1545 int i;
1546
1547 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1548 conf->raid_disks - mddev->degraded);
1549 rcu_read_lock();
1550 for (i = 0; i < conf->raid_disks; i++) {
1551 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1552 seq_printf(seq, "%s",
1553 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1554 }
1555 rcu_read_unlock();
1556 seq_printf(seq, "]");
1557 }
1558
1559 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1560 {
1561 char b[BDEVNAME_SIZE];
1562 struct r1conf *conf = mddev->private;
1563 unsigned long flags;
1564
1565 /*
1566 * If it is not operational, then we have already marked it as dead
1567 * else if it is the last working disks, ignore the error, let the
1568 * next level up know.
1569 * else mark the drive as failed
1570 */
1571 spin_lock_irqsave(&conf->device_lock, flags);
1572 if (test_bit(In_sync, &rdev->flags)
1573 && (conf->raid_disks - mddev->degraded) == 1) {
1574 /*
1575 * Don't fail the drive, act as though we were just a
1576 * normal single drive.
1577 * However don't try a recovery from this drive as
1578 * it is very likely to fail.
1579 */
1580 conf->recovery_disabled = mddev->recovery_disabled;
1581 spin_unlock_irqrestore(&conf->device_lock, flags);
1582 return;
1583 }
1584 set_bit(Blocked, &rdev->flags);
1585 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1586 mddev->degraded++;
1587 set_bit(Faulty, &rdev->flags);
1588 } else
1589 set_bit(Faulty, &rdev->flags);
1590 spin_unlock_irqrestore(&conf->device_lock, flags);
1591 /*
1592 * if recovery is running, make sure it aborts.
1593 */
1594 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1595 set_mask_bits(&mddev->sb_flags, 0,
1596 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1597 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1598 "md/raid1:%s: Operation continuing on %d devices.\n",
1599 mdname(mddev), bdevname(rdev->bdev, b),
1600 mdname(mddev), conf->raid_disks - mddev->degraded);
1601 }
1602
1603 static void print_conf(struct r1conf *conf)
1604 {
1605 int i;
1606
1607 pr_debug("RAID1 conf printout:\n");
1608 if (!conf) {
1609 pr_debug("(!conf)\n");
1610 return;
1611 }
1612 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1613 conf->raid_disks);
1614
1615 rcu_read_lock();
1616 for (i = 0; i < conf->raid_disks; i++) {
1617 char b[BDEVNAME_SIZE];
1618 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1619 if (rdev)
1620 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1621 i, !test_bit(In_sync, &rdev->flags),
1622 !test_bit(Faulty, &rdev->flags),
1623 bdevname(rdev->bdev,b));
1624 }
1625 rcu_read_unlock();
1626 }
1627
1628 static void close_sync(struct r1conf *conf)
1629 {
1630 int idx;
1631
1632 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1633 _wait_barrier(conf, idx);
1634 _allow_barrier(conf, idx);
1635 }
1636
1637 mempool_destroy(conf->r1buf_pool);
1638 conf->r1buf_pool = NULL;
1639 }
1640
1641 static int raid1_spare_active(struct mddev *mddev)
1642 {
1643 int i;
1644 struct r1conf *conf = mddev->private;
1645 int count = 0;
1646 unsigned long flags;
1647
1648 /*
1649 * Find all failed disks within the RAID1 configuration
1650 * and mark them readable.
1651 * Called under mddev lock, so rcu protection not needed.
1652 * device_lock used to avoid races with raid1_end_read_request
1653 * which expects 'In_sync' flags and ->degraded to be consistent.
1654 */
1655 spin_lock_irqsave(&conf->device_lock, flags);
1656 for (i = 0; i < conf->raid_disks; i++) {
1657 struct md_rdev *rdev = conf->mirrors[i].rdev;
1658 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1659 if (repl
1660 && !test_bit(Candidate, &repl->flags)
1661 && repl->recovery_offset == MaxSector
1662 && !test_bit(Faulty, &repl->flags)
1663 && !test_and_set_bit(In_sync, &repl->flags)) {
1664 /* replacement has just become active */
1665 if (!rdev ||
1666 !test_and_clear_bit(In_sync, &rdev->flags))
1667 count++;
1668 if (rdev) {
1669 /* Replaced device not technically
1670 * faulty, but we need to be sure
1671 * it gets removed and never re-added
1672 */
1673 set_bit(Faulty, &rdev->flags);
1674 sysfs_notify_dirent_safe(
1675 rdev->sysfs_state);
1676 }
1677 }
1678 if (rdev
1679 && rdev->recovery_offset == MaxSector
1680 && !test_bit(Faulty, &rdev->flags)
1681 && !test_and_set_bit(In_sync, &rdev->flags)) {
1682 count++;
1683 sysfs_notify_dirent_safe(rdev->sysfs_state);
1684 }
1685 }
1686 mddev->degraded -= count;
1687 spin_unlock_irqrestore(&conf->device_lock, flags);
1688
1689 print_conf(conf);
1690 return count;
1691 }
1692
1693 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695 struct r1conf *conf = mddev->private;
1696 int err = -EEXIST;
1697 int mirror = 0;
1698 struct raid1_info *p;
1699 int first = 0;
1700 int last = conf->raid_disks - 1;
1701
1702 if (mddev->recovery_disabled == conf->recovery_disabled)
1703 return -EBUSY;
1704
1705 if (md_integrity_add_rdev(rdev, mddev))
1706 return -ENXIO;
1707
1708 if (rdev->raid_disk >= 0)
1709 first = last = rdev->raid_disk;
1710
1711 /*
1712 * find the disk ... but prefer rdev->saved_raid_disk
1713 * if possible.
1714 */
1715 if (rdev->saved_raid_disk >= 0 &&
1716 rdev->saved_raid_disk >= first &&
1717 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1718 first = last = rdev->saved_raid_disk;
1719
1720 for (mirror = first; mirror <= last; mirror++) {
1721 p = conf->mirrors+mirror;
1722 if (!p->rdev) {
1723
1724 if (mddev->gendisk)
1725 disk_stack_limits(mddev->gendisk, rdev->bdev,
1726 rdev->data_offset << 9);
1727
1728 p->head_position = 0;
1729 rdev->raid_disk = mirror;
1730 err = 0;
1731 /* As all devices are equivalent, we don't need a full recovery
1732 * if this was recently any drive of the array
1733 */
1734 if (rdev->saved_raid_disk < 0)
1735 conf->fullsync = 1;
1736 rcu_assign_pointer(p->rdev, rdev);
1737 break;
1738 }
1739 if (test_bit(WantReplacement, &p->rdev->flags) &&
1740 p[conf->raid_disks].rdev == NULL) {
1741 /* Add this device as a replacement */
1742 clear_bit(In_sync, &rdev->flags);
1743 set_bit(Replacement, &rdev->flags);
1744 rdev->raid_disk = mirror;
1745 err = 0;
1746 conf->fullsync = 1;
1747 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1748 break;
1749 }
1750 }
1751 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1752 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1753 print_conf(conf);
1754 return err;
1755 }
1756
1757 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1758 {
1759 struct r1conf *conf = mddev->private;
1760 int err = 0;
1761 int number = rdev->raid_disk;
1762 struct raid1_info *p = conf->mirrors + number;
1763
1764 if (rdev != p->rdev)
1765 p = conf->mirrors + conf->raid_disks + number;
1766
1767 print_conf(conf);
1768 if (rdev == p->rdev) {
1769 if (test_bit(In_sync, &rdev->flags) ||
1770 atomic_read(&rdev->nr_pending)) {
1771 err = -EBUSY;
1772 goto abort;
1773 }
1774 /* Only remove non-faulty devices if recovery
1775 * is not possible.
1776 */
1777 if (!test_bit(Faulty, &rdev->flags) &&
1778 mddev->recovery_disabled != conf->recovery_disabled &&
1779 mddev->degraded < conf->raid_disks) {
1780 err = -EBUSY;
1781 goto abort;
1782 }
1783 p->rdev = NULL;
1784 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1785 synchronize_rcu();
1786 if (atomic_read(&rdev->nr_pending)) {
1787 /* lost the race, try later */
1788 err = -EBUSY;
1789 p->rdev = rdev;
1790 goto abort;
1791 }
1792 }
1793 if (conf->mirrors[conf->raid_disks + number].rdev) {
1794 /* We just removed a device that is being replaced.
1795 * Move down the replacement. We drain all IO before
1796 * doing this to avoid confusion.
1797 */
1798 struct md_rdev *repl =
1799 conf->mirrors[conf->raid_disks + number].rdev;
1800 freeze_array(conf, 0);
1801 clear_bit(Replacement, &repl->flags);
1802 p->rdev = repl;
1803 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1804 unfreeze_array(conf);
1805 }
1806
1807 clear_bit(WantReplacement, &rdev->flags);
1808 err = md_integrity_register(mddev);
1809 }
1810 abort:
1811
1812 print_conf(conf);
1813 return err;
1814 }
1815
1816 static void end_sync_read(struct bio *bio)
1817 {
1818 struct r1bio *r1_bio = get_resync_r1bio(bio);
1819
1820 update_head_pos(r1_bio->read_disk, r1_bio);
1821
1822 /*
1823 * we have read a block, now it needs to be re-written,
1824 * or re-read if the read failed.
1825 * We don't do much here, just schedule handling by raid1d
1826 */
1827 if (!bio->bi_status)
1828 set_bit(R1BIO_Uptodate, &r1_bio->state);
1829
1830 if (atomic_dec_and_test(&r1_bio->remaining))
1831 reschedule_retry(r1_bio);
1832 }
1833
1834 static void end_sync_write(struct bio *bio)
1835 {
1836 int uptodate = !bio->bi_status;
1837 struct r1bio *r1_bio = get_resync_r1bio(bio);
1838 struct mddev *mddev = r1_bio->mddev;
1839 struct r1conf *conf = mddev->private;
1840 sector_t first_bad;
1841 int bad_sectors;
1842 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1843
1844 if (!uptodate) {
1845 sector_t sync_blocks = 0;
1846 sector_t s = r1_bio->sector;
1847 long sectors_to_go = r1_bio->sectors;
1848 /* make sure these bits doesn't get cleared. */
1849 do {
1850 bitmap_end_sync(mddev->bitmap, s,
1851 &sync_blocks, 1);
1852 s += sync_blocks;
1853 sectors_to_go -= sync_blocks;
1854 } while (sectors_to_go > 0);
1855 set_bit(WriteErrorSeen, &rdev->flags);
1856 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857 set_bit(MD_RECOVERY_NEEDED, &
1858 mddev->recovery);
1859 set_bit(R1BIO_WriteError, &r1_bio->state);
1860 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1861 &first_bad, &bad_sectors) &&
1862 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1863 r1_bio->sector,
1864 r1_bio->sectors,
1865 &first_bad, &bad_sectors)
1866 )
1867 set_bit(R1BIO_MadeGood, &r1_bio->state);
1868
1869 if (atomic_dec_and_test(&r1_bio->remaining)) {
1870 int s = r1_bio->sectors;
1871 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1872 test_bit(R1BIO_WriteError, &r1_bio->state))
1873 reschedule_retry(r1_bio);
1874 else {
1875 put_buf(r1_bio);
1876 md_done_sync(mddev, s, uptodate);
1877 }
1878 }
1879 }
1880
1881 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1882 int sectors, struct page *page, int rw)
1883 {
1884 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1885 /* success */
1886 return 1;
1887 if (rw == WRITE) {
1888 set_bit(WriteErrorSeen, &rdev->flags);
1889 if (!test_and_set_bit(WantReplacement,
1890 &rdev->flags))
1891 set_bit(MD_RECOVERY_NEEDED, &
1892 rdev->mddev->recovery);
1893 }
1894 /* need to record an error - either for the block or the device */
1895 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1896 md_error(rdev->mddev, rdev);
1897 return 0;
1898 }
1899
1900 static int fix_sync_read_error(struct r1bio *r1_bio)
1901 {
1902 /* Try some synchronous reads of other devices to get
1903 * good data, much like with normal read errors. Only
1904 * read into the pages we already have so we don't
1905 * need to re-issue the read request.
1906 * We don't need to freeze the array, because being in an
1907 * active sync request, there is no normal IO, and
1908 * no overlapping syncs.
1909 * We don't need to check is_badblock() again as we
1910 * made sure that anything with a bad block in range
1911 * will have bi_end_io clear.
1912 */
1913 struct mddev *mddev = r1_bio->mddev;
1914 struct r1conf *conf = mddev->private;
1915 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1916 struct page **pages = get_resync_pages(bio)->pages;
1917 sector_t sect = r1_bio->sector;
1918 int sectors = r1_bio->sectors;
1919 int idx = 0;
1920 struct md_rdev *rdev;
1921
1922 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1923 if (test_bit(FailFast, &rdev->flags)) {
1924 /* Don't try recovering from here - just fail it
1925 * ... unless it is the last working device of course */
1926 md_error(mddev, rdev);
1927 if (test_bit(Faulty, &rdev->flags))
1928 /* Don't try to read from here, but make sure
1929 * put_buf does it's thing
1930 */
1931 bio->bi_end_io = end_sync_write;
1932 }
1933
1934 while(sectors) {
1935 int s = sectors;
1936 int d = r1_bio->read_disk;
1937 int success = 0;
1938 int start;
1939
1940 if (s > (PAGE_SIZE>>9))
1941 s = PAGE_SIZE >> 9;
1942 do {
1943 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1944 /* No rcu protection needed here devices
1945 * can only be removed when no resync is
1946 * active, and resync is currently active
1947 */
1948 rdev = conf->mirrors[d].rdev;
1949 if (sync_page_io(rdev, sect, s<<9,
1950 pages[idx],
1951 REQ_OP_READ, 0, false)) {
1952 success = 1;
1953 break;
1954 }
1955 }
1956 d++;
1957 if (d == conf->raid_disks * 2)
1958 d = 0;
1959 } while (!success && d != r1_bio->read_disk);
1960
1961 if (!success) {
1962 char b[BDEVNAME_SIZE];
1963 int abort = 0;
1964 /* Cannot read from anywhere, this block is lost.
1965 * Record a bad block on each device. If that doesn't
1966 * work just disable and interrupt the recovery.
1967 * Don't fail devices as that won't really help.
1968 */
1969 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1970 mdname(mddev), bio_devname(bio, b),
1971 (unsigned long long)r1_bio->sector);
1972 for (d = 0; d < conf->raid_disks * 2; d++) {
1973 rdev = conf->mirrors[d].rdev;
1974 if (!rdev || test_bit(Faulty, &rdev->flags))
1975 continue;
1976 if (!rdev_set_badblocks(rdev, sect, s, 0))
1977 abort = 1;
1978 }
1979 if (abort) {
1980 conf->recovery_disabled =
1981 mddev->recovery_disabled;
1982 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1983 md_done_sync(mddev, r1_bio->sectors, 0);
1984 put_buf(r1_bio);
1985 return 0;
1986 }
1987 /* Try next page */
1988 sectors -= s;
1989 sect += s;
1990 idx++;
1991 continue;
1992 }
1993
1994 start = d;
1995 /* write it back and re-read */
1996 while (d != r1_bio->read_disk) {
1997 if (d == 0)
1998 d = conf->raid_disks * 2;
1999 d--;
2000 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2001 continue;
2002 rdev = conf->mirrors[d].rdev;
2003 if (r1_sync_page_io(rdev, sect, s,
2004 pages[idx],
2005 WRITE) == 0) {
2006 r1_bio->bios[d]->bi_end_io = NULL;
2007 rdev_dec_pending(rdev, mddev);
2008 }
2009 }
2010 d = start;
2011 while (d != r1_bio->read_disk) {
2012 if (d == 0)
2013 d = conf->raid_disks * 2;
2014 d--;
2015 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2016 continue;
2017 rdev = conf->mirrors[d].rdev;
2018 if (r1_sync_page_io(rdev, sect, s,
2019 pages[idx],
2020 READ) != 0)
2021 atomic_add(s, &rdev->corrected_errors);
2022 }
2023 sectors -= s;
2024 sect += s;
2025 idx ++;
2026 }
2027 set_bit(R1BIO_Uptodate, &r1_bio->state);
2028 bio->bi_status = 0;
2029 return 1;
2030 }
2031
2032 static void process_checks(struct r1bio *r1_bio)
2033 {
2034 /* We have read all readable devices. If we haven't
2035 * got the block, then there is no hope left.
2036 * If we have, then we want to do a comparison
2037 * and skip the write if everything is the same.
2038 * If any blocks failed to read, then we need to
2039 * attempt an over-write
2040 */
2041 struct mddev *mddev = r1_bio->mddev;
2042 struct r1conf *conf = mddev->private;
2043 int primary;
2044 int i;
2045 int vcnt;
2046
2047 /* Fix variable parts of all bios */
2048 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2049 for (i = 0; i < conf->raid_disks * 2; i++) {
2050 blk_status_t status;
2051 struct bio *b = r1_bio->bios[i];
2052 struct resync_pages *rp = get_resync_pages(b);
2053 if (b->bi_end_io != end_sync_read)
2054 continue;
2055 /* fixup the bio for reuse, but preserve errno */
2056 status = b->bi_status;
2057 bio_reset(b);
2058 b->bi_status = status;
2059 b->bi_iter.bi_sector = r1_bio->sector +
2060 conf->mirrors[i].rdev->data_offset;
2061 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2062 b->bi_end_io = end_sync_read;
2063 rp->raid_bio = r1_bio;
2064 b->bi_private = rp;
2065
2066 /* initialize bvec table again */
2067 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2068 }
2069 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2070 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2071 !r1_bio->bios[primary]->bi_status) {
2072 r1_bio->bios[primary]->bi_end_io = NULL;
2073 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2074 break;
2075 }
2076 r1_bio->read_disk = primary;
2077 for (i = 0; i < conf->raid_disks * 2; i++) {
2078 int j;
2079 struct bio *pbio = r1_bio->bios[primary];
2080 struct bio *sbio = r1_bio->bios[i];
2081 blk_status_t status = sbio->bi_status;
2082 struct page **ppages = get_resync_pages(pbio)->pages;
2083 struct page **spages = get_resync_pages(sbio)->pages;
2084 struct bio_vec *bi;
2085 int page_len[RESYNC_PAGES] = { 0 };
2086
2087 if (sbio->bi_end_io != end_sync_read)
2088 continue;
2089 /* Now we can 'fixup' the error value */
2090 sbio->bi_status = 0;
2091
2092 bio_for_each_segment_all(bi, sbio, j)
2093 page_len[j] = bi->bv_len;
2094
2095 if (!status) {
2096 for (j = vcnt; j-- ; ) {
2097 if (memcmp(page_address(ppages[j]),
2098 page_address(spages[j]),
2099 page_len[j]))
2100 break;
2101 }
2102 } else
2103 j = 0;
2104 if (j >= 0)
2105 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2106 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2107 && !status)) {
2108 /* No need to write to this device. */
2109 sbio->bi_end_io = NULL;
2110 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2111 continue;
2112 }
2113
2114 bio_copy_data(sbio, pbio);
2115 }
2116 }
2117
2118 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2119 {
2120 struct r1conf *conf = mddev->private;
2121 int i;
2122 int disks = conf->raid_disks * 2;
2123 struct bio *wbio;
2124
2125 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2126 /* ouch - failed to read all of that. */
2127 if (!fix_sync_read_error(r1_bio))
2128 return;
2129
2130 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2131 process_checks(r1_bio);
2132
2133 /*
2134 * schedule writes
2135 */
2136 atomic_set(&r1_bio->remaining, 1);
2137 for (i = 0; i < disks ; i++) {
2138 wbio = r1_bio->bios[i];
2139 if (wbio->bi_end_io == NULL ||
2140 (wbio->bi_end_io == end_sync_read &&
2141 (i == r1_bio->read_disk ||
2142 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2143 continue;
2144 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2145 continue;
2146
2147 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2148 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2149 wbio->bi_opf |= MD_FAILFAST;
2150
2151 wbio->bi_end_io = end_sync_write;
2152 atomic_inc(&r1_bio->remaining);
2153 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2154
2155 generic_make_request(wbio);
2156 }
2157
2158 if (atomic_dec_and_test(&r1_bio->remaining)) {
2159 /* if we're here, all write(s) have completed, so clean up */
2160 int s = r1_bio->sectors;
2161 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2162 test_bit(R1BIO_WriteError, &r1_bio->state))
2163 reschedule_retry(r1_bio);
2164 else {
2165 put_buf(r1_bio);
2166 md_done_sync(mddev, s, 1);
2167 }
2168 }
2169 }
2170
2171 /*
2172 * This is a kernel thread which:
2173 *
2174 * 1. Retries failed read operations on working mirrors.
2175 * 2. Updates the raid superblock when problems encounter.
2176 * 3. Performs writes following reads for array synchronising.
2177 */
2178
2179 static void fix_read_error(struct r1conf *conf, int read_disk,
2180 sector_t sect, int sectors)
2181 {
2182 struct mddev *mddev = conf->mddev;
2183 while(sectors) {
2184 int s = sectors;
2185 int d = read_disk;
2186 int success = 0;
2187 int start;
2188 struct md_rdev *rdev;
2189
2190 if (s > (PAGE_SIZE>>9))
2191 s = PAGE_SIZE >> 9;
2192
2193 do {
2194 sector_t first_bad;
2195 int bad_sectors;
2196
2197 rcu_read_lock();
2198 rdev = rcu_dereference(conf->mirrors[d].rdev);
2199 if (rdev &&
2200 (test_bit(In_sync, &rdev->flags) ||
2201 (!test_bit(Faulty, &rdev->flags) &&
2202 rdev->recovery_offset >= sect + s)) &&
2203 is_badblock(rdev, sect, s,
2204 &first_bad, &bad_sectors) == 0) {
2205 atomic_inc(&rdev->nr_pending);
2206 rcu_read_unlock();
2207 if (sync_page_io(rdev, sect, s<<9,
2208 conf->tmppage, REQ_OP_READ, 0, false))
2209 success = 1;
2210 rdev_dec_pending(rdev, mddev);
2211 if (success)
2212 break;
2213 } else
2214 rcu_read_unlock();
2215 d++;
2216 if (d == conf->raid_disks * 2)
2217 d = 0;
2218 } while (!success && d != read_disk);
2219
2220 if (!success) {
2221 /* Cannot read from anywhere - mark it bad */
2222 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2223 if (!rdev_set_badblocks(rdev, sect, s, 0))
2224 md_error(mddev, rdev);
2225 break;
2226 }
2227 /* write it back and re-read */
2228 start = d;
2229 while (d != read_disk) {
2230 if (d==0)
2231 d = conf->raid_disks * 2;
2232 d--;
2233 rcu_read_lock();
2234 rdev = rcu_dereference(conf->mirrors[d].rdev);
2235 if (rdev &&
2236 !test_bit(Faulty, &rdev->flags)) {
2237 atomic_inc(&rdev->nr_pending);
2238 rcu_read_unlock();
2239 r1_sync_page_io(rdev, sect, s,
2240 conf->tmppage, WRITE);
2241 rdev_dec_pending(rdev, mddev);
2242 } else
2243 rcu_read_unlock();
2244 }
2245 d = start;
2246 while (d != read_disk) {
2247 char b[BDEVNAME_SIZE];
2248 if (d==0)
2249 d = conf->raid_disks * 2;
2250 d--;
2251 rcu_read_lock();
2252 rdev = rcu_dereference(conf->mirrors[d].rdev);
2253 if (rdev &&
2254 !test_bit(Faulty, &rdev->flags)) {
2255 atomic_inc(&rdev->nr_pending);
2256 rcu_read_unlock();
2257 if (r1_sync_page_io(rdev, sect, s,
2258 conf->tmppage, READ)) {
2259 atomic_add(s, &rdev->corrected_errors);
2260 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2261 mdname(mddev), s,
2262 (unsigned long long)(sect +
2263 rdev->data_offset),
2264 bdevname(rdev->bdev, b));
2265 }
2266 rdev_dec_pending(rdev, mddev);
2267 } else
2268 rcu_read_unlock();
2269 }
2270 sectors -= s;
2271 sect += s;
2272 }
2273 }
2274
2275 static int narrow_write_error(struct r1bio *r1_bio, int i)
2276 {
2277 struct mddev *mddev = r1_bio->mddev;
2278 struct r1conf *conf = mddev->private;
2279 struct md_rdev *rdev = conf->mirrors[i].rdev;
2280
2281 /* bio has the data to be written to device 'i' where
2282 * we just recently had a write error.
2283 * We repeatedly clone the bio and trim down to one block,
2284 * then try the write. Where the write fails we record
2285 * a bad block.
2286 * It is conceivable that the bio doesn't exactly align with
2287 * blocks. We must handle this somehow.
2288 *
2289 * We currently own a reference on the rdev.
2290 */
2291
2292 int block_sectors;
2293 sector_t sector;
2294 int sectors;
2295 int sect_to_write = r1_bio->sectors;
2296 int ok = 1;
2297
2298 if (rdev->badblocks.shift < 0)
2299 return 0;
2300
2301 block_sectors = roundup(1 << rdev->badblocks.shift,
2302 bdev_logical_block_size(rdev->bdev) >> 9);
2303 sector = r1_bio->sector;
2304 sectors = ((sector + block_sectors)
2305 & ~(sector_t)(block_sectors - 1))
2306 - sector;
2307
2308 while (sect_to_write) {
2309 struct bio *wbio;
2310 if (sectors > sect_to_write)
2311 sectors = sect_to_write;
2312 /* Write at 'sector' for 'sectors'*/
2313
2314 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2315 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2316 GFP_NOIO,
2317 mddev->bio_set);
2318 } else {
2319 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2320 mddev->bio_set);
2321 }
2322
2323 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2324 wbio->bi_iter.bi_sector = r1_bio->sector;
2325 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2326
2327 bio_trim(wbio, sector - r1_bio->sector, sectors);
2328 wbio->bi_iter.bi_sector += rdev->data_offset;
2329 bio_set_dev(wbio, rdev->bdev);
2330
2331 if (submit_bio_wait(wbio) < 0)
2332 /* failure! */
2333 ok = rdev_set_badblocks(rdev, sector,
2334 sectors, 0)
2335 && ok;
2336
2337 bio_put(wbio);
2338 sect_to_write -= sectors;
2339 sector += sectors;
2340 sectors = block_sectors;
2341 }
2342 return ok;
2343 }
2344
2345 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2346 {
2347 int m;
2348 int s = r1_bio->sectors;
2349 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2350 struct md_rdev *rdev = conf->mirrors[m].rdev;
2351 struct bio *bio = r1_bio->bios[m];
2352 if (bio->bi_end_io == NULL)
2353 continue;
2354 if (!bio->bi_status &&
2355 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2356 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2357 }
2358 if (bio->bi_status &&
2359 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2360 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2361 md_error(conf->mddev, rdev);
2362 }
2363 }
2364 put_buf(r1_bio);
2365 md_done_sync(conf->mddev, s, 1);
2366 }
2367
2368 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2369 {
2370 int m, idx;
2371 bool fail = false;
2372
2373 for (m = 0; m < conf->raid_disks * 2 ; m++)
2374 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2375 struct md_rdev *rdev = conf->mirrors[m].rdev;
2376 rdev_clear_badblocks(rdev,
2377 r1_bio->sector,
2378 r1_bio->sectors, 0);
2379 rdev_dec_pending(rdev, conf->mddev);
2380 } else if (r1_bio->bios[m] != NULL) {
2381 /* This drive got a write error. We need to
2382 * narrow down and record precise write
2383 * errors.
2384 */
2385 fail = true;
2386 if (!narrow_write_error(r1_bio, m)) {
2387 md_error(conf->mddev,
2388 conf->mirrors[m].rdev);
2389 /* an I/O failed, we can't clear the bitmap */
2390 set_bit(R1BIO_Degraded, &r1_bio->state);
2391 }
2392 rdev_dec_pending(conf->mirrors[m].rdev,
2393 conf->mddev);
2394 }
2395 if (fail) {
2396 spin_lock_irq(&conf->device_lock);
2397 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2398 idx = sector_to_idx(r1_bio->sector);
2399 atomic_inc(&conf->nr_queued[idx]);
2400 spin_unlock_irq(&conf->device_lock);
2401 /*
2402 * In case freeze_array() is waiting for condition
2403 * get_unqueued_pending() == extra to be true.
2404 */
2405 wake_up(&conf->wait_barrier);
2406 md_wakeup_thread(conf->mddev->thread);
2407 } else {
2408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2409 close_write(r1_bio);
2410 raid_end_bio_io(r1_bio);
2411 }
2412 }
2413
2414 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2415 {
2416 struct mddev *mddev = conf->mddev;
2417 struct bio *bio;
2418 struct md_rdev *rdev;
2419 sector_t bio_sector;
2420
2421 clear_bit(R1BIO_ReadError, &r1_bio->state);
2422 /* we got a read error. Maybe the drive is bad. Maybe just
2423 * the block and we can fix it.
2424 * We freeze all other IO, and try reading the block from
2425 * other devices. When we find one, we re-write
2426 * and check it that fixes the read error.
2427 * This is all done synchronously while the array is
2428 * frozen
2429 */
2430
2431 bio = r1_bio->bios[r1_bio->read_disk];
2432 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2433 bio_put(bio);
2434 r1_bio->bios[r1_bio->read_disk] = NULL;
2435
2436 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2437 if (mddev->ro == 0
2438 && !test_bit(FailFast, &rdev->flags)) {
2439 freeze_array(conf, 1);
2440 fix_read_error(conf, r1_bio->read_disk,
2441 r1_bio->sector, r1_bio->sectors);
2442 unfreeze_array(conf);
2443 } else {
2444 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2445 }
2446
2447 rdev_dec_pending(rdev, conf->mddev);
2448 allow_barrier(conf, r1_bio->sector);
2449 bio = r1_bio->master_bio;
2450
2451 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2452 r1_bio->state = 0;
2453 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2454 }
2455
2456 static void raid1d(struct md_thread *thread)
2457 {
2458 struct mddev *mddev = thread->mddev;
2459 struct r1bio *r1_bio;
2460 unsigned long flags;
2461 struct r1conf *conf = mddev->private;
2462 struct list_head *head = &conf->retry_list;
2463 struct blk_plug plug;
2464 int idx;
2465
2466 md_check_recovery(mddev);
2467
2468 if (!list_empty_careful(&conf->bio_end_io_list) &&
2469 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2470 LIST_HEAD(tmp);
2471 spin_lock_irqsave(&conf->device_lock, flags);
2472 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2473 list_splice_init(&conf->bio_end_io_list, &tmp);
2474 spin_unlock_irqrestore(&conf->device_lock, flags);
2475 while (!list_empty(&tmp)) {
2476 r1_bio = list_first_entry(&tmp, struct r1bio,
2477 retry_list);
2478 list_del(&r1_bio->retry_list);
2479 idx = sector_to_idx(r1_bio->sector);
2480 atomic_dec(&conf->nr_queued[idx]);
2481 if (mddev->degraded)
2482 set_bit(R1BIO_Degraded, &r1_bio->state);
2483 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2484 close_write(r1_bio);
2485 raid_end_bio_io(r1_bio);
2486 }
2487 }
2488
2489 blk_start_plug(&plug);
2490 for (;;) {
2491
2492 flush_pending_writes(conf);
2493
2494 spin_lock_irqsave(&conf->device_lock, flags);
2495 if (list_empty(head)) {
2496 spin_unlock_irqrestore(&conf->device_lock, flags);
2497 break;
2498 }
2499 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2500 list_del(head->prev);
2501 idx = sector_to_idx(r1_bio->sector);
2502 atomic_dec(&conf->nr_queued[idx]);
2503 spin_unlock_irqrestore(&conf->device_lock, flags);
2504
2505 mddev = r1_bio->mddev;
2506 conf = mddev->private;
2507 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2508 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2509 test_bit(R1BIO_WriteError, &r1_bio->state))
2510 handle_sync_write_finished(conf, r1_bio);
2511 else
2512 sync_request_write(mddev, r1_bio);
2513 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2514 test_bit(R1BIO_WriteError, &r1_bio->state))
2515 handle_write_finished(conf, r1_bio);
2516 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2517 handle_read_error(conf, r1_bio);
2518 else
2519 WARN_ON_ONCE(1);
2520
2521 cond_resched();
2522 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2523 md_check_recovery(mddev);
2524 }
2525 blk_finish_plug(&plug);
2526 }
2527
2528 static int init_resync(struct r1conf *conf)
2529 {
2530 int buffs;
2531
2532 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2533 BUG_ON(conf->r1buf_pool);
2534 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2535 conf->poolinfo);
2536 if (!conf->r1buf_pool)
2537 return -ENOMEM;
2538 return 0;
2539 }
2540
2541 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2542 {
2543 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 struct resync_pages *rps;
2545 struct bio *bio;
2546 int i;
2547
2548 for (i = conf->poolinfo->raid_disks; i--; ) {
2549 bio = r1bio->bios[i];
2550 rps = bio->bi_private;
2551 bio_reset(bio);
2552 bio->bi_private = rps;
2553 }
2554 r1bio->master_bio = NULL;
2555 return r1bio;
2556 }
2557
2558 /*
2559 * perform a "sync" on one "block"
2560 *
2561 * We need to make sure that no normal I/O request - particularly write
2562 * requests - conflict with active sync requests.
2563 *
2564 * This is achieved by tracking pending requests and a 'barrier' concept
2565 * that can be installed to exclude normal IO requests.
2566 */
2567
2568 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2569 int *skipped)
2570 {
2571 struct r1conf *conf = mddev->private;
2572 struct r1bio *r1_bio;
2573 struct bio *bio;
2574 sector_t max_sector, nr_sectors;
2575 int disk = -1;
2576 int i;
2577 int wonly = -1;
2578 int write_targets = 0, read_targets = 0;
2579 sector_t sync_blocks;
2580 int still_degraded = 0;
2581 int good_sectors = RESYNC_SECTORS;
2582 int min_bad = 0; /* number of sectors that are bad in all devices */
2583 int idx = sector_to_idx(sector_nr);
2584 int page_idx = 0;
2585
2586 if (!conf->r1buf_pool)
2587 if (init_resync(conf))
2588 return 0;
2589
2590 max_sector = mddev->dev_sectors;
2591 if (sector_nr >= max_sector) {
2592 /* If we aborted, we need to abort the
2593 * sync on the 'current' bitmap chunk (there will
2594 * only be one in raid1 resync.
2595 * We can find the current addess in mddev->curr_resync
2596 */
2597 if (mddev->curr_resync < max_sector) /* aborted */
2598 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2599 &sync_blocks, 1);
2600 else /* completed sync */
2601 conf->fullsync = 0;
2602
2603 bitmap_close_sync(mddev->bitmap);
2604 close_sync(conf);
2605
2606 if (mddev_is_clustered(mddev)) {
2607 conf->cluster_sync_low = 0;
2608 conf->cluster_sync_high = 0;
2609 }
2610 return 0;
2611 }
2612
2613 if (mddev->bitmap == NULL &&
2614 mddev->recovery_cp == MaxSector &&
2615 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2616 conf->fullsync == 0) {
2617 *skipped = 1;
2618 return max_sector - sector_nr;
2619 }
2620 /* before building a request, check if we can skip these blocks..
2621 * This call the bitmap_start_sync doesn't actually record anything
2622 */
2623 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2624 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2625 /* We can skip this block, and probably several more */
2626 *skipped = 1;
2627 return sync_blocks;
2628 }
2629
2630 /*
2631 * If there is non-resync activity waiting for a turn, then let it
2632 * though before starting on this new sync request.
2633 */
2634 if (atomic_read(&conf->nr_waiting[idx]))
2635 schedule_timeout_uninterruptible(1);
2636
2637 /* we are incrementing sector_nr below. To be safe, we check against
2638 * sector_nr + two times RESYNC_SECTORS
2639 */
2640
2641 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2642 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2643 r1_bio = raid1_alloc_init_r1buf(conf);
2644
2645 raise_barrier(conf, sector_nr);
2646
2647 rcu_read_lock();
2648 /*
2649 * If we get a correctably read error during resync or recovery,
2650 * we might want to read from a different device. So we
2651 * flag all drives that could conceivably be read from for READ,
2652 * and any others (which will be non-In_sync devices) for WRITE.
2653 * If a read fails, we try reading from something else for which READ
2654 * is OK.
2655 */
2656
2657 r1_bio->mddev = mddev;
2658 r1_bio->sector = sector_nr;
2659 r1_bio->state = 0;
2660 set_bit(R1BIO_IsSync, &r1_bio->state);
2661 /* make sure good_sectors won't go across barrier unit boundary */
2662 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2663
2664 for (i = 0; i < conf->raid_disks * 2; i++) {
2665 struct md_rdev *rdev;
2666 bio = r1_bio->bios[i];
2667
2668 rdev = rcu_dereference(conf->mirrors[i].rdev);
2669 if (rdev == NULL ||
2670 test_bit(Faulty, &rdev->flags)) {
2671 if (i < conf->raid_disks)
2672 still_degraded = 1;
2673 } else if (!test_bit(In_sync, &rdev->flags)) {
2674 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2675 bio->bi_end_io = end_sync_write;
2676 write_targets ++;
2677 } else {
2678 /* may need to read from here */
2679 sector_t first_bad = MaxSector;
2680 int bad_sectors;
2681
2682 if (is_badblock(rdev, sector_nr, good_sectors,
2683 &first_bad, &bad_sectors)) {
2684 if (first_bad > sector_nr)
2685 good_sectors = first_bad - sector_nr;
2686 else {
2687 bad_sectors -= (sector_nr - first_bad);
2688 if (min_bad == 0 ||
2689 min_bad > bad_sectors)
2690 min_bad = bad_sectors;
2691 }
2692 }
2693 if (sector_nr < first_bad) {
2694 if (test_bit(WriteMostly, &rdev->flags)) {
2695 if (wonly < 0)
2696 wonly = i;
2697 } else {
2698 if (disk < 0)
2699 disk = i;
2700 }
2701 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2702 bio->bi_end_io = end_sync_read;
2703 read_targets++;
2704 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2705 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2706 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2707 /*
2708 * The device is suitable for reading (InSync),
2709 * but has bad block(s) here. Let's try to correct them,
2710 * if we are doing resync or repair. Otherwise, leave
2711 * this device alone for this sync request.
2712 */
2713 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2714 bio->bi_end_io = end_sync_write;
2715 write_targets++;
2716 }
2717 }
2718 if (bio->bi_end_io) {
2719 atomic_inc(&rdev->nr_pending);
2720 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2721 bio_set_dev(bio, rdev->bdev);
2722 if (test_bit(FailFast, &rdev->flags))
2723 bio->bi_opf |= MD_FAILFAST;
2724 }
2725 }
2726 rcu_read_unlock();
2727 if (disk < 0)
2728 disk = wonly;
2729 r1_bio->read_disk = disk;
2730
2731 if (read_targets == 0 && min_bad > 0) {
2732 /* These sectors are bad on all InSync devices, so we
2733 * need to mark them bad on all write targets
2734 */
2735 int ok = 1;
2736 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2737 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2738 struct md_rdev *rdev = conf->mirrors[i].rdev;
2739 ok = rdev_set_badblocks(rdev, sector_nr,
2740 min_bad, 0
2741 ) && ok;
2742 }
2743 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2744 *skipped = 1;
2745 put_buf(r1_bio);
2746
2747 if (!ok) {
2748 /* Cannot record the badblocks, so need to
2749 * abort the resync.
2750 * If there are multiple read targets, could just
2751 * fail the really bad ones ???
2752 */
2753 conf->recovery_disabled = mddev->recovery_disabled;
2754 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2755 return 0;
2756 } else
2757 return min_bad;
2758
2759 }
2760 if (min_bad > 0 && min_bad < good_sectors) {
2761 /* only resync enough to reach the next bad->good
2762 * transition */
2763 good_sectors = min_bad;
2764 }
2765
2766 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2767 /* extra read targets are also write targets */
2768 write_targets += read_targets-1;
2769
2770 if (write_targets == 0 || read_targets == 0) {
2771 /* There is nowhere to write, so all non-sync
2772 * drives must be failed - so we are finished
2773 */
2774 sector_t rv;
2775 if (min_bad > 0)
2776 max_sector = sector_nr + min_bad;
2777 rv = max_sector - sector_nr;
2778 *skipped = 1;
2779 put_buf(r1_bio);
2780 return rv;
2781 }
2782
2783 if (max_sector > mddev->resync_max)
2784 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2785 if (max_sector > sector_nr + good_sectors)
2786 max_sector = sector_nr + good_sectors;
2787 nr_sectors = 0;
2788 sync_blocks = 0;
2789 do {
2790 struct page *page;
2791 int len = PAGE_SIZE;
2792 if (sector_nr + (len>>9) > max_sector)
2793 len = (max_sector - sector_nr) << 9;
2794 if (len == 0)
2795 break;
2796 if (sync_blocks == 0) {
2797 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2798 &sync_blocks, still_degraded) &&
2799 !conf->fullsync &&
2800 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2801 break;
2802 if ((len >> 9) > sync_blocks)
2803 len = sync_blocks<<9;
2804 }
2805
2806 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2807 struct resync_pages *rp;
2808
2809 bio = r1_bio->bios[i];
2810 rp = get_resync_pages(bio);
2811 if (bio->bi_end_io) {
2812 page = resync_fetch_page(rp, page_idx);
2813
2814 /*
2815 * won't fail because the vec table is big
2816 * enough to hold all these pages
2817 */
2818 bio_add_page(bio, page, len, 0);
2819 }
2820 }
2821 nr_sectors += len>>9;
2822 sector_nr += len>>9;
2823 sync_blocks -= (len>>9);
2824 } while (++page_idx < RESYNC_PAGES);
2825
2826 r1_bio->sectors = nr_sectors;
2827
2828 if (mddev_is_clustered(mddev) &&
2829 conf->cluster_sync_high < sector_nr + nr_sectors) {
2830 conf->cluster_sync_low = mddev->curr_resync_completed;
2831 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2832 /* Send resync message */
2833 md_cluster_ops->resync_info_update(mddev,
2834 conf->cluster_sync_low,
2835 conf->cluster_sync_high);
2836 }
2837
2838 /* For a user-requested sync, we read all readable devices and do a
2839 * compare
2840 */
2841 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2842 atomic_set(&r1_bio->remaining, read_targets);
2843 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2844 bio = r1_bio->bios[i];
2845 if (bio->bi_end_io == end_sync_read) {
2846 read_targets--;
2847 md_sync_acct_bio(bio, nr_sectors);
2848 if (read_targets == 1)
2849 bio->bi_opf &= ~MD_FAILFAST;
2850 generic_make_request(bio);
2851 }
2852 }
2853 } else {
2854 atomic_set(&r1_bio->remaining, 1);
2855 bio = r1_bio->bios[r1_bio->read_disk];
2856 md_sync_acct_bio(bio, nr_sectors);
2857 if (read_targets == 1)
2858 bio->bi_opf &= ~MD_FAILFAST;
2859 generic_make_request(bio);
2860
2861 }
2862 return nr_sectors;
2863 }
2864
2865 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2866 {
2867 if (sectors)
2868 return sectors;
2869
2870 return mddev->dev_sectors;
2871 }
2872
2873 static struct r1conf *setup_conf(struct mddev *mddev)
2874 {
2875 struct r1conf *conf;
2876 int i;
2877 struct raid1_info *disk;
2878 struct md_rdev *rdev;
2879 int err = -ENOMEM;
2880
2881 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2882 if (!conf)
2883 goto abort;
2884
2885 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2886 sizeof(atomic_t), GFP_KERNEL);
2887 if (!conf->nr_pending)
2888 goto abort;
2889
2890 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2891 sizeof(atomic_t), GFP_KERNEL);
2892 if (!conf->nr_waiting)
2893 goto abort;
2894
2895 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2896 sizeof(atomic_t), GFP_KERNEL);
2897 if (!conf->nr_queued)
2898 goto abort;
2899
2900 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2901 sizeof(atomic_t), GFP_KERNEL);
2902 if (!conf->barrier)
2903 goto abort;
2904
2905 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2906 * mddev->raid_disks * 2,
2907 GFP_KERNEL);
2908 if (!conf->mirrors)
2909 goto abort;
2910
2911 conf->tmppage = alloc_page(GFP_KERNEL);
2912 if (!conf->tmppage)
2913 goto abort;
2914
2915 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2916 if (!conf->poolinfo)
2917 goto abort;
2918 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2919 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2920 r1bio_pool_free,
2921 conf->poolinfo);
2922 if (!conf->r1bio_pool)
2923 goto abort;
2924
2925 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2926 if (!conf->bio_split)
2927 goto abort;
2928
2929 conf->poolinfo->mddev = mddev;
2930
2931 err = -EINVAL;
2932 spin_lock_init(&conf->device_lock);
2933 rdev_for_each(rdev, mddev) {
2934 int disk_idx = rdev->raid_disk;
2935 if (disk_idx >= mddev->raid_disks
2936 || disk_idx < 0)
2937 continue;
2938 if (test_bit(Replacement, &rdev->flags))
2939 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2940 else
2941 disk = conf->mirrors + disk_idx;
2942
2943 if (disk->rdev)
2944 goto abort;
2945 disk->rdev = rdev;
2946 disk->head_position = 0;
2947 disk->seq_start = MaxSector;
2948 }
2949 conf->raid_disks = mddev->raid_disks;
2950 conf->mddev = mddev;
2951 INIT_LIST_HEAD(&conf->retry_list);
2952 INIT_LIST_HEAD(&conf->bio_end_io_list);
2953
2954 spin_lock_init(&conf->resync_lock);
2955 init_waitqueue_head(&conf->wait_barrier);
2956
2957 bio_list_init(&conf->pending_bio_list);
2958 conf->pending_count = 0;
2959 conf->recovery_disabled = mddev->recovery_disabled - 1;
2960
2961 err = -EIO;
2962 for (i = 0; i < conf->raid_disks * 2; i++) {
2963
2964 disk = conf->mirrors + i;
2965
2966 if (i < conf->raid_disks &&
2967 disk[conf->raid_disks].rdev) {
2968 /* This slot has a replacement. */
2969 if (!disk->rdev) {
2970 /* No original, just make the replacement
2971 * a recovering spare
2972 */
2973 disk->rdev =
2974 disk[conf->raid_disks].rdev;
2975 disk[conf->raid_disks].rdev = NULL;
2976 } else if (!test_bit(In_sync, &disk->rdev->flags))
2977 /* Original is not in_sync - bad */
2978 goto abort;
2979 }
2980
2981 if (!disk->rdev ||
2982 !test_bit(In_sync, &disk->rdev->flags)) {
2983 disk->head_position = 0;
2984 if (disk->rdev &&
2985 (disk->rdev->saved_raid_disk < 0))
2986 conf->fullsync = 1;
2987 }
2988 }
2989
2990 err = -ENOMEM;
2991 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2992 if (!conf->thread)
2993 goto abort;
2994
2995 return conf;
2996
2997 abort:
2998 if (conf) {
2999 mempool_destroy(conf->r1bio_pool);
3000 kfree(conf->mirrors);
3001 safe_put_page(conf->tmppage);
3002 kfree(conf->poolinfo);
3003 kfree(conf->nr_pending);
3004 kfree(conf->nr_waiting);
3005 kfree(conf->nr_queued);
3006 kfree(conf->barrier);
3007 if (conf->bio_split)
3008 bioset_free(conf->bio_split);
3009 kfree(conf);
3010 }
3011 return ERR_PTR(err);
3012 }
3013
3014 static void raid1_free(struct mddev *mddev, void *priv);
3015 static int raid1_run(struct mddev *mddev)
3016 {
3017 struct r1conf *conf;
3018 int i;
3019 struct md_rdev *rdev;
3020 int ret;
3021 bool discard_supported = false;
3022
3023 if (mddev->level != 1) {
3024 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3025 mdname(mddev), mddev->level);
3026 return -EIO;
3027 }
3028 if (mddev->reshape_position != MaxSector) {
3029 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3030 mdname(mddev));
3031 return -EIO;
3032 }
3033 if (mddev_init_writes_pending(mddev) < 0)
3034 return -ENOMEM;
3035 /*
3036 * copy the already verified devices into our private RAID1
3037 * bookkeeping area. [whatever we allocate in run(),
3038 * should be freed in raid1_free()]
3039 */
3040 if (mddev->private == NULL)
3041 conf = setup_conf(mddev);
3042 else
3043 conf = mddev->private;
3044
3045 if (IS_ERR(conf))
3046 return PTR_ERR(conf);
3047
3048 if (mddev->queue) {
3049 blk_queue_max_write_same_sectors(mddev->queue, 0);
3050 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3051 }
3052
3053 rdev_for_each(rdev, mddev) {
3054 if (!mddev->gendisk)
3055 continue;
3056 disk_stack_limits(mddev->gendisk, rdev->bdev,
3057 rdev->data_offset << 9);
3058 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3059 discard_supported = true;
3060 }
3061
3062 mddev->degraded = 0;
3063 for (i=0; i < conf->raid_disks; i++)
3064 if (conf->mirrors[i].rdev == NULL ||
3065 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3066 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3067 mddev->degraded++;
3068
3069 if (conf->raid_disks - mddev->degraded == 1)
3070 mddev->recovery_cp = MaxSector;
3071
3072 if (mddev->recovery_cp != MaxSector)
3073 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3074 mdname(mddev));
3075 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3076 mdname(mddev), mddev->raid_disks - mddev->degraded,
3077 mddev->raid_disks);
3078
3079 /*
3080 * Ok, everything is just fine now
3081 */
3082 mddev->thread = conf->thread;
3083 conf->thread = NULL;
3084 mddev->private = conf;
3085 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3086
3087 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3088
3089 if (mddev->queue) {
3090 if (discard_supported)
3091 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3092 mddev->queue);
3093 else
3094 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3095 mddev->queue);
3096 }
3097
3098 ret = md_integrity_register(mddev);
3099 if (ret) {
3100 md_unregister_thread(&mddev->thread);
3101 raid1_free(mddev, conf);
3102 }
3103 return ret;
3104 }
3105
3106 static void raid1_free(struct mddev *mddev, void *priv)
3107 {
3108 struct r1conf *conf = priv;
3109
3110 mempool_destroy(conf->r1bio_pool);
3111 kfree(conf->mirrors);
3112 safe_put_page(conf->tmppage);
3113 kfree(conf->poolinfo);
3114 kfree(conf->nr_pending);
3115 kfree(conf->nr_waiting);
3116 kfree(conf->nr_queued);
3117 kfree(conf->barrier);
3118 if (conf->bio_split)
3119 bioset_free(conf->bio_split);
3120 kfree(conf);
3121 }
3122
3123 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3124 {
3125 /* no resync is happening, and there is enough space
3126 * on all devices, so we can resize.
3127 * We need to make sure resync covers any new space.
3128 * If the array is shrinking we should possibly wait until
3129 * any io in the removed space completes, but it hardly seems
3130 * worth it.
3131 */
3132 sector_t newsize = raid1_size(mddev, sectors, 0);
3133 if (mddev->external_size &&
3134 mddev->array_sectors > newsize)
3135 return -EINVAL;
3136 if (mddev->bitmap) {
3137 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3138 if (ret)
3139 return ret;
3140 }
3141 md_set_array_sectors(mddev, newsize);
3142 if (sectors > mddev->dev_sectors &&
3143 mddev->recovery_cp > mddev->dev_sectors) {
3144 mddev->recovery_cp = mddev->dev_sectors;
3145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3146 }
3147 mddev->dev_sectors = sectors;
3148 mddev->resync_max_sectors = sectors;
3149 return 0;
3150 }
3151
3152 static int raid1_reshape(struct mddev *mddev)
3153 {
3154 /* We need to:
3155 * 1/ resize the r1bio_pool
3156 * 2/ resize conf->mirrors
3157 *
3158 * We allocate a new r1bio_pool if we can.
3159 * Then raise a device barrier and wait until all IO stops.
3160 * Then resize conf->mirrors and swap in the new r1bio pool.
3161 *
3162 * At the same time, we "pack" the devices so that all the missing
3163 * devices have the higher raid_disk numbers.
3164 */
3165 mempool_t *newpool, *oldpool;
3166 struct pool_info *newpoolinfo;
3167 struct raid1_info *newmirrors;
3168 struct r1conf *conf = mddev->private;
3169 int cnt, raid_disks;
3170 unsigned long flags;
3171 int d, d2;
3172
3173 /* Cannot change chunk_size, layout, or level */
3174 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3175 mddev->layout != mddev->new_layout ||
3176 mddev->level != mddev->new_level) {
3177 mddev->new_chunk_sectors = mddev->chunk_sectors;
3178 mddev->new_layout = mddev->layout;
3179 mddev->new_level = mddev->level;
3180 return -EINVAL;
3181 }
3182
3183 if (!mddev_is_clustered(mddev))
3184 md_allow_write(mddev);
3185
3186 raid_disks = mddev->raid_disks + mddev->delta_disks;
3187
3188 if (raid_disks < conf->raid_disks) {
3189 cnt=0;
3190 for (d= 0; d < conf->raid_disks; d++)
3191 if (conf->mirrors[d].rdev)
3192 cnt++;
3193 if (cnt > raid_disks)
3194 return -EBUSY;
3195 }
3196
3197 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3198 if (!newpoolinfo)
3199 return -ENOMEM;
3200 newpoolinfo->mddev = mddev;
3201 newpoolinfo->raid_disks = raid_disks * 2;
3202
3203 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3204 r1bio_pool_free, newpoolinfo);
3205 if (!newpool) {
3206 kfree(newpoolinfo);
3207 return -ENOMEM;
3208 }
3209 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3210 GFP_KERNEL);
3211 if (!newmirrors) {
3212 kfree(newpoolinfo);
3213 mempool_destroy(newpool);
3214 return -ENOMEM;
3215 }
3216
3217 freeze_array(conf, 0);
3218
3219 /* ok, everything is stopped */
3220 oldpool = conf->r1bio_pool;
3221 conf->r1bio_pool = newpool;
3222
3223 for (d = d2 = 0; d < conf->raid_disks; d++) {
3224 struct md_rdev *rdev = conf->mirrors[d].rdev;
3225 if (rdev && rdev->raid_disk != d2) {
3226 sysfs_unlink_rdev(mddev, rdev);
3227 rdev->raid_disk = d2;
3228 sysfs_unlink_rdev(mddev, rdev);
3229 if (sysfs_link_rdev(mddev, rdev))
3230 pr_warn("md/raid1:%s: cannot register rd%d\n",
3231 mdname(mddev), rdev->raid_disk);
3232 }
3233 if (rdev)
3234 newmirrors[d2++].rdev = rdev;
3235 }
3236 kfree(conf->mirrors);
3237 conf->mirrors = newmirrors;
3238 kfree(conf->poolinfo);
3239 conf->poolinfo = newpoolinfo;
3240
3241 spin_lock_irqsave(&conf->device_lock, flags);
3242 mddev->degraded += (raid_disks - conf->raid_disks);
3243 spin_unlock_irqrestore(&conf->device_lock, flags);
3244 conf->raid_disks = mddev->raid_disks = raid_disks;
3245 mddev->delta_disks = 0;
3246
3247 unfreeze_array(conf);
3248
3249 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3251 md_wakeup_thread(mddev->thread);
3252
3253 mempool_destroy(oldpool);
3254 return 0;
3255 }
3256
3257 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3258 {
3259 struct r1conf *conf = mddev->private;
3260
3261 if (quiesce)
3262 freeze_array(conf, 0);
3263 else
3264 unfreeze_array(conf);
3265 }
3266
3267 static void *raid1_takeover(struct mddev *mddev)
3268 {
3269 /* raid1 can take over:
3270 * raid5 with 2 devices, any layout or chunk size
3271 */
3272 if (mddev->level == 5 && mddev->raid_disks == 2) {
3273 struct r1conf *conf;
3274 mddev->new_level = 1;
3275 mddev->new_layout = 0;
3276 mddev->new_chunk_sectors = 0;
3277 conf = setup_conf(mddev);
3278 if (!IS_ERR(conf)) {
3279 /* Array must appear to be quiesced */
3280 conf->array_frozen = 1;
3281 mddev_clear_unsupported_flags(mddev,
3282 UNSUPPORTED_MDDEV_FLAGS);
3283 }
3284 return conf;
3285 }
3286 return ERR_PTR(-EINVAL);
3287 }
3288
3289 static struct md_personality raid1_personality =
3290 {
3291 .name = "raid1",
3292 .level = 1,
3293 .owner = THIS_MODULE,
3294 .make_request = raid1_make_request,
3295 .run = raid1_run,
3296 .free = raid1_free,
3297 .status = raid1_status,
3298 .error_handler = raid1_error,
3299 .hot_add_disk = raid1_add_disk,
3300 .hot_remove_disk= raid1_remove_disk,
3301 .spare_active = raid1_spare_active,
3302 .sync_request = raid1_sync_request,
3303 .resize = raid1_resize,
3304 .size = raid1_size,
3305 .check_reshape = raid1_reshape,
3306 .quiesce = raid1_quiesce,
3307 .takeover = raid1_takeover,
3308 .congested = raid1_congested,
3309 };
3310
3311 static int __init raid_init(void)
3312 {
3313 return register_md_personality(&raid1_personality);
3314 }
3315
3316 static void raid_exit(void)
3317 {
3318 unregister_md_personality(&raid1_personality);
3319 }
3320
3321 module_init(raid_init);
3322 module_exit(raid_exit);
3323 MODULE_LICENSE("GPL");
3324 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3325 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3326 MODULE_ALIAS("md-raid1");
3327 MODULE_ALIAS("md-level-1");
3328
3329 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);