]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
md: raid1: kill warning on powerpc_pseries
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_error && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else
670 best_good_sectors = sectors;
671
672 if (best_disk >= 0)
673 /* At least two disks to choose from so failfast is OK */
674 set_bit(R1BIO_FailFast, &r1_bio->state);
675
676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 has_nonrot_disk |= nonrot;
678 pending = atomic_read(&rdev->nr_pending);
679 dist = abs(this_sector - conf->mirrors[disk].head_position);
680 if (choose_first) {
681 best_disk = disk;
682 break;
683 }
684 /* Don't change to another disk for sequential reads */
685 if (conf->mirrors[disk].next_seq_sect == this_sector
686 || dist == 0) {
687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 struct raid1_info *mirror = &conf->mirrors[disk];
689
690 best_disk = disk;
691 /*
692 * If buffered sequential IO size exceeds optimal
693 * iosize, check if there is idle disk. If yes, choose
694 * the idle disk. read_balance could already choose an
695 * idle disk before noticing it's a sequential IO in
696 * this disk. This doesn't matter because this disk
697 * will idle, next time it will be utilized after the
698 * first disk has IO size exceeds optimal iosize. In
699 * this way, iosize of the first disk will be optimal
700 * iosize at least. iosize of the second disk might be
701 * small, but not a big deal since when the second disk
702 * starts IO, the first disk is likely still busy.
703 */
704 if (nonrot && opt_iosize > 0 &&
705 mirror->seq_start != MaxSector &&
706 mirror->next_seq_sect > opt_iosize &&
707 mirror->next_seq_sect - opt_iosize >=
708 mirror->seq_start) {
709 choose_next_idle = 1;
710 continue;
711 }
712 break;
713 }
714
715 if (choose_next_idle)
716 continue;
717
718 if (min_pending > pending) {
719 min_pending = pending;
720 best_pending_disk = disk;
721 }
722
723 if (dist < best_dist) {
724 best_dist = dist;
725 best_dist_disk = disk;
726 }
727 }
728
729 /*
730 * If all disks are rotational, choose the closest disk. If any disk is
731 * non-rotational, choose the disk with less pending request even the
732 * disk is rotational, which might/might not be optimal for raids with
733 * mixed ratation/non-rotational disks depending on workload.
734 */
735 if (best_disk == -1) {
736 if (has_nonrot_disk || min_pending == 0)
737 best_disk = best_pending_disk;
738 else
739 best_disk = best_dist_disk;
740 }
741
742 if (best_disk >= 0) {
743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744 if (!rdev)
745 goto retry;
746 atomic_inc(&rdev->nr_pending);
747 sectors = best_good_sectors;
748
749 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 conf->mirrors[best_disk].seq_start = this_sector;
751
752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753 }
754 rcu_read_unlock();
755 *max_sectors = sectors;
756
757 return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762 struct r1conf *conf = mddev->private;
763 int i, ret = 0;
764
765 if ((bits & (1 << WB_async_congested)) &&
766 conf->pending_count >= max_queued_requests)
767 return 1;
768
769 rcu_read_lock();
770 for (i = 0; i < conf->raid_disks * 2; i++) {
771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773 struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775 BUG_ON(!q);
776
777 /* Note the '|| 1' - when read_balance prefers
778 * non-congested targets, it can be removed
779 */
780 if ((bits & (1 << WB_async_congested)) || 1)
781 ret |= bdi_congested(q->backing_dev_info, bits);
782 else
783 ret &= bdi_congested(q->backing_dev_info, bits);
784 }
785 }
786 rcu_read_unlock();
787 return ret;
788 }
789
790 static void flush_pending_writes(struct r1conf *conf)
791 {
792 /* Any writes that have been queued but are awaiting
793 * bitmap updates get flushed here.
794 */
795 spin_lock_irq(&conf->device_lock);
796
797 if (conf->pending_bio_list.head) {
798 struct bio *bio;
799 bio = bio_list_get(&conf->pending_bio_list);
800 conf->pending_count = 0;
801 spin_unlock_irq(&conf->device_lock);
802 /* flush any pending bitmap writes to
803 * disk before proceeding w/ I/O */
804 bitmap_unplug(conf->mddev->bitmap);
805 wake_up(&conf->wait_barrier);
806
807 while (bio) { /* submit pending writes */
808 struct bio *next = bio->bi_next;
809 struct md_rdev *rdev = (void*)bio->bi_bdev;
810 bio->bi_next = NULL;
811 bio->bi_bdev = rdev->bdev;
812 if (test_bit(Faulty, &rdev->flags)) {
813 bio->bi_error = -EIO;
814 bio_endio(bio);
815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
817 /* Just ignore it */
818 bio_endio(bio);
819 else
820 generic_make_request(bio);
821 bio = next;
822 }
823 } else
824 spin_unlock_irq(&conf->device_lock);
825 }
826
827 /* Barriers....
828 * Sometimes we need to suspend IO while we do something else,
829 * either some resync/recovery, or reconfigure the array.
830 * To do this we raise a 'barrier'.
831 * The 'barrier' is a counter that can be raised multiple times
832 * to count how many activities are happening which preclude
833 * normal IO.
834 * We can only raise the barrier if there is no pending IO.
835 * i.e. if nr_pending == 0.
836 * We choose only to raise the barrier if no-one is waiting for the
837 * barrier to go down. This means that as soon as an IO request
838 * is ready, no other operations which require a barrier will start
839 * until the IO request has had a chance.
840 *
841 * So: regular IO calls 'wait_barrier'. When that returns there
842 * is no backgroup IO happening, It must arrange to call
843 * allow_barrier when it has finished its IO.
844 * backgroup IO calls must call raise_barrier. Once that returns
845 * there is no normal IO happeing. It must arrange to call
846 * lower_barrier when the particular background IO completes.
847 */
848 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
849 {
850 int idx = sector_to_idx(sector_nr);
851
852 spin_lock_irq(&conf->resync_lock);
853
854 /* Wait until no block IO is waiting */
855 wait_event_lock_irq(conf->wait_barrier,
856 !atomic_read(&conf->nr_waiting[idx]),
857 conf->resync_lock);
858
859 /* block any new IO from starting */
860 atomic_inc(&conf->barrier[idx]);
861 /*
862 * In raise_barrier() we firstly increase conf->barrier[idx] then
863 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
864 * increase conf->nr_pending[idx] then check conf->barrier[idx].
865 * A memory barrier here to make sure conf->nr_pending[idx] won't
866 * be fetched before conf->barrier[idx] is increased. Otherwise
867 * there will be a race between raise_barrier() and _wait_barrier().
868 */
869 smp_mb__after_atomic();
870
871 /* For these conditions we must wait:
872 * A: while the array is in frozen state
873 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
874 * existing in corresponding I/O barrier bucket.
875 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
876 * max resync count which allowed on current I/O barrier bucket.
877 */
878 wait_event_lock_irq(conf->wait_barrier,
879 !conf->array_frozen &&
880 !atomic_read(&conf->nr_pending[idx]) &&
881 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
882 conf->resync_lock);
883
884 atomic_inc(&conf->nr_pending[idx]);
885 spin_unlock_irq(&conf->resync_lock);
886 }
887
888 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
889 {
890 int idx = sector_to_idx(sector_nr);
891
892 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
893
894 atomic_dec(&conf->barrier[idx]);
895 atomic_dec(&conf->nr_pending[idx]);
896 wake_up(&conf->wait_barrier);
897 }
898
899 static void _wait_barrier(struct r1conf *conf, int idx)
900 {
901 /*
902 * We need to increase conf->nr_pending[idx] very early here,
903 * then raise_barrier() can be blocked when it waits for
904 * conf->nr_pending[idx] to be 0. Then we can avoid holding
905 * conf->resync_lock when there is no barrier raised in same
906 * barrier unit bucket. Also if the array is frozen, I/O
907 * should be blocked until array is unfrozen.
908 */
909 atomic_inc(&conf->nr_pending[idx]);
910 /*
911 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
912 * check conf->barrier[idx]. In raise_barrier() we firstly increase
913 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
914 * barrier is necessary here to make sure conf->barrier[idx] won't be
915 * fetched before conf->nr_pending[idx] is increased. Otherwise there
916 * will be a race between _wait_barrier() and raise_barrier().
917 */
918 smp_mb__after_atomic();
919
920 /*
921 * Don't worry about checking two atomic_t variables at same time
922 * here. If during we check conf->barrier[idx], the array is
923 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
924 * 0, it is safe to return and make the I/O continue. Because the
925 * array is frozen, all I/O returned here will eventually complete
926 * or be queued, no race will happen. See code comment in
927 * frozen_array().
928 */
929 if (!READ_ONCE(conf->array_frozen) &&
930 !atomic_read(&conf->barrier[idx]))
931 return;
932
933 /*
934 * After holding conf->resync_lock, conf->nr_pending[idx]
935 * should be decreased before waiting for barrier to drop.
936 * Otherwise, we may encounter a race condition because
937 * raise_barrer() might be waiting for conf->nr_pending[idx]
938 * to be 0 at same time.
939 */
940 spin_lock_irq(&conf->resync_lock);
941 atomic_inc(&conf->nr_waiting[idx]);
942 atomic_dec(&conf->nr_pending[idx]);
943 /*
944 * In case freeze_array() is waiting for
945 * get_unqueued_pending() == extra
946 */
947 wake_up(&conf->wait_barrier);
948 /* Wait for the barrier in same barrier unit bucket to drop. */
949 wait_event_lock_irq(conf->wait_barrier,
950 !conf->array_frozen &&
951 !atomic_read(&conf->barrier[idx]),
952 conf->resync_lock);
953 atomic_inc(&conf->nr_pending[idx]);
954 atomic_dec(&conf->nr_waiting[idx]);
955 spin_unlock_irq(&conf->resync_lock);
956 }
957
958 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
959 {
960 int idx = sector_to_idx(sector_nr);
961
962 /*
963 * Very similar to _wait_barrier(). The difference is, for read
964 * I/O we don't need wait for sync I/O, but if the whole array
965 * is frozen, the read I/O still has to wait until the array is
966 * unfrozen. Since there is no ordering requirement with
967 * conf->barrier[idx] here, memory barrier is unnecessary as well.
968 */
969 atomic_inc(&conf->nr_pending[idx]);
970
971 if (!READ_ONCE(conf->array_frozen))
972 return;
973
974 spin_lock_irq(&conf->resync_lock);
975 atomic_inc(&conf->nr_waiting[idx]);
976 atomic_dec(&conf->nr_pending[idx]);
977 /*
978 * In case freeze_array() is waiting for
979 * get_unqueued_pending() == extra
980 */
981 wake_up(&conf->wait_barrier);
982 /* Wait for array to be unfrozen */
983 wait_event_lock_irq(conf->wait_barrier,
984 !conf->array_frozen,
985 conf->resync_lock);
986 atomic_inc(&conf->nr_pending[idx]);
987 atomic_dec(&conf->nr_waiting[idx]);
988 spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void inc_pending(struct r1conf *conf, sector_t bi_sector)
992 {
993 /* The current request requires multiple r1_bio, so
994 * we need to increment the pending count, and the corresponding
995 * window count.
996 */
997 int idx = sector_to_idx(bi_sector);
998 atomic_inc(&conf->nr_pending[idx]);
999 }
1000
1001 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1002 {
1003 int idx = sector_to_idx(sector_nr);
1004
1005 _wait_barrier(conf, idx);
1006 }
1007
1008 static void wait_all_barriers(struct r1conf *conf)
1009 {
1010 int idx;
1011
1012 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1013 _wait_barrier(conf, idx);
1014 }
1015
1016 static void _allow_barrier(struct r1conf *conf, int idx)
1017 {
1018 atomic_dec(&conf->nr_pending[idx]);
1019 wake_up(&conf->wait_barrier);
1020 }
1021
1022 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 int idx = sector_to_idx(sector_nr);
1025
1026 _allow_barrier(conf, idx);
1027 }
1028
1029 static void allow_all_barriers(struct r1conf *conf)
1030 {
1031 int idx;
1032
1033 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1034 _allow_barrier(conf, idx);
1035 }
1036
1037 /* conf->resync_lock should be held */
1038 static int get_unqueued_pending(struct r1conf *conf)
1039 {
1040 int idx, ret;
1041
1042 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1043 ret += atomic_read(&conf->nr_pending[idx]) -
1044 atomic_read(&conf->nr_queued[idx]);
1045
1046 return ret;
1047 }
1048
1049 static void freeze_array(struct r1conf *conf, int extra)
1050 {
1051 /* Stop sync I/O and normal I/O and wait for everything to
1052 * go quiet.
1053 * This is called in two situations:
1054 * 1) management command handlers (reshape, remove disk, quiesce).
1055 * 2) one normal I/O request failed.
1056
1057 * After array_frozen is set to 1, new sync IO will be blocked at
1058 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1059 * or wait_read_barrier(). The flying I/Os will either complete or be
1060 * queued. When everything goes quite, there are only queued I/Os left.
1061
1062 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1063 * barrier bucket index which this I/O request hits. When all sync and
1064 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1065 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1066 * in handle_read_error(), we may call freeze_array() before trying to
1067 * fix the read error. In this case, the error read I/O is not queued,
1068 * so get_unqueued_pending() == 1.
1069 *
1070 * Therefore before this function returns, we need to wait until
1071 * get_unqueued_pendings(conf) gets equal to extra. For
1072 * normal I/O context, extra is 1, in rested situations extra is 0.
1073 */
1074 spin_lock_irq(&conf->resync_lock);
1075 conf->array_frozen = 1;
1076 raid1_log(conf->mddev, "wait freeze");
1077 wait_event_lock_irq_cmd(
1078 conf->wait_barrier,
1079 get_unqueued_pending(conf) == extra,
1080 conf->resync_lock,
1081 flush_pending_writes(conf));
1082 spin_unlock_irq(&conf->resync_lock);
1083 }
1084 static void unfreeze_array(struct r1conf *conf)
1085 {
1086 /* reverse the effect of the freeze */
1087 spin_lock_irq(&conf->resync_lock);
1088 conf->array_frozen = 0;
1089 spin_unlock_irq(&conf->resync_lock);
1090 wake_up(&conf->wait_barrier);
1091 }
1092
1093 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1094 struct bio *bio,
1095 int offset, int size)
1096 {
1097 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1098 int i = 0;
1099 struct bio *behind_bio = NULL;
1100
1101 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1102 if (!behind_bio)
1103 goto fail;
1104
1105 /* discard op, we don't support writezero/writesame yet */
1106 if (!bio_has_data(bio))
1107 goto skip_copy;
1108
1109 while (i < vcnt && size) {
1110 struct page *page;
1111 int len = min_t(int, PAGE_SIZE, size);
1112
1113 page = alloc_page(GFP_NOIO);
1114 if (unlikely(!page))
1115 goto free_pages;
1116
1117 bio_add_page(behind_bio, page, len, 0);
1118
1119 size -= len;
1120 i++;
1121 }
1122
1123 bio_copy_data_partial(behind_bio, bio, offset,
1124 behind_bio->bi_iter.bi_size);
1125 skip_copy:
1126 r1_bio->behind_master_bio = behind_bio;;
1127 set_bit(R1BIO_BehindIO, &r1_bio->state);
1128
1129 return behind_bio;
1130
1131 free_pages:
1132 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1133 bio->bi_iter.bi_size);
1134 bio_free_pages(behind_bio);
1135 fail:
1136 return behind_bio;
1137 }
1138
1139 struct raid1_plug_cb {
1140 struct blk_plug_cb cb;
1141 struct bio_list pending;
1142 int pending_cnt;
1143 };
1144
1145 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1146 {
1147 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1148 cb);
1149 struct mddev *mddev = plug->cb.data;
1150 struct r1conf *conf = mddev->private;
1151 struct bio *bio;
1152
1153 if (from_schedule || current->bio_list) {
1154 spin_lock_irq(&conf->device_lock);
1155 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1156 conf->pending_count += plug->pending_cnt;
1157 spin_unlock_irq(&conf->device_lock);
1158 wake_up(&conf->wait_barrier);
1159 md_wakeup_thread(mddev->thread);
1160 kfree(plug);
1161 return;
1162 }
1163
1164 /* we aren't scheduling, so we can do the write-out directly. */
1165 bio = bio_list_get(&plug->pending);
1166 bitmap_unplug(mddev->bitmap);
1167 wake_up(&conf->wait_barrier);
1168
1169 while (bio) { /* submit pending writes */
1170 struct bio *next = bio->bi_next;
1171 struct md_rdev *rdev = (void*)bio->bi_bdev;
1172 bio->bi_next = NULL;
1173 bio->bi_bdev = rdev->bdev;
1174 if (test_bit(Faulty, &rdev->flags)) {
1175 bio->bi_error = -EIO;
1176 bio_endio(bio);
1177 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1178 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1179 /* Just ignore it */
1180 bio_endio(bio);
1181 else
1182 generic_make_request(bio);
1183 bio = next;
1184 }
1185 kfree(plug);
1186 }
1187
1188 static inline struct r1bio *
1189 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1190 {
1191 struct r1conf *conf = mddev->private;
1192 struct r1bio *r1_bio;
1193
1194 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1195
1196 r1_bio->master_bio = bio;
1197 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1198 r1_bio->state = 0;
1199 r1_bio->mddev = mddev;
1200 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1201
1202 return r1_bio;
1203 }
1204
1205 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1206 {
1207 struct r1conf *conf = mddev->private;
1208 struct raid1_info *mirror;
1209 struct r1bio *r1_bio;
1210 struct bio *read_bio;
1211 struct bitmap *bitmap = mddev->bitmap;
1212 const int op = bio_op(bio);
1213 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1214 int sectors_handled;
1215 int max_sectors;
1216 int rdisk;
1217
1218 /*
1219 * Still need barrier for READ in case that whole
1220 * array is frozen.
1221 */
1222 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1223
1224 r1_bio = alloc_r1bio(mddev, bio, 0);
1225
1226 /*
1227 * make_request() can abort the operation when read-ahead is being
1228 * used and no empty request is available.
1229 */
1230 read_again:
1231 rdisk = read_balance(conf, r1_bio, &max_sectors);
1232
1233 if (rdisk < 0) {
1234 /* couldn't find anywhere to read from */
1235 raid_end_bio_io(r1_bio);
1236 return;
1237 }
1238 mirror = conf->mirrors + rdisk;
1239
1240 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1241 bitmap) {
1242 /*
1243 * Reading from a write-mostly device must take care not to
1244 * over-take any writes that are 'behind'
1245 */
1246 raid1_log(mddev, "wait behind writes");
1247 wait_event(bitmap->behind_wait,
1248 atomic_read(&bitmap->behind_writes) == 0);
1249 }
1250 r1_bio->read_disk = rdisk;
1251
1252 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1253 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1254 max_sectors);
1255
1256 r1_bio->bios[rdisk] = read_bio;
1257
1258 read_bio->bi_iter.bi_sector = r1_bio->sector +
1259 mirror->rdev->data_offset;
1260 read_bio->bi_bdev = mirror->rdev->bdev;
1261 read_bio->bi_end_io = raid1_end_read_request;
1262 bio_set_op_attrs(read_bio, op, do_sync);
1263 if (test_bit(FailFast, &mirror->rdev->flags) &&
1264 test_bit(R1BIO_FailFast, &r1_bio->state))
1265 read_bio->bi_opf |= MD_FAILFAST;
1266 read_bio->bi_private = r1_bio;
1267
1268 if (mddev->gendisk)
1269 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1270 read_bio, disk_devt(mddev->gendisk),
1271 r1_bio->sector);
1272
1273 if (max_sectors < r1_bio->sectors) {
1274 /*
1275 * could not read all from this device, so we will need another
1276 * r1_bio.
1277 */
1278 sectors_handled = (r1_bio->sector + max_sectors
1279 - bio->bi_iter.bi_sector);
1280 r1_bio->sectors = max_sectors;
1281 bio_inc_remaining(bio);
1282
1283 /*
1284 * Cannot call generic_make_request directly as that will be
1285 * queued in __make_request and subsequent mempool_alloc might
1286 * block waiting for it. So hand bio over to raid1d.
1287 */
1288 reschedule_retry(r1_bio);
1289
1290 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1291 goto read_again;
1292 } else
1293 generic_make_request(read_bio);
1294 }
1295
1296 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1297 {
1298 struct r1conf *conf = mddev->private;
1299 struct r1bio *r1_bio;
1300 int i, disks;
1301 struct bitmap *bitmap = mddev->bitmap;
1302 unsigned long flags;
1303 struct md_rdev *blocked_rdev;
1304 struct blk_plug_cb *cb;
1305 struct raid1_plug_cb *plug = NULL;
1306 int first_clone;
1307 int sectors_handled;
1308 int max_sectors;
1309 sector_t offset;
1310
1311 /*
1312 * Register the new request and wait if the reconstruction
1313 * thread has put up a bar for new requests.
1314 * Continue immediately if no resync is active currently.
1315 */
1316
1317 md_write_start(mddev, bio); /* wait on superblock update early */
1318
1319 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1320 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1321 (mddev_is_clustered(mddev) &&
1322 md_cluster_ops->area_resyncing(mddev, WRITE,
1323 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1324
1325 /*
1326 * As the suspend_* range is controlled by userspace, we want
1327 * an interruptible wait.
1328 */
1329 DEFINE_WAIT(w);
1330 for (;;) {
1331 flush_signals(current);
1332 prepare_to_wait(&conf->wait_barrier,
1333 &w, TASK_INTERRUPTIBLE);
1334 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1335 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1336 (mddev_is_clustered(mddev) &&
1337 !md_cluster_ops->area_resyncing(mddev, WRITE,
1338 bio->bi_iter.bi_sector,
1339 bio_end_sector(bio))))
1340 break;
1341 schedule();
1342 }
1343 finish_wait(&conf->wait_barrier, &w);
1344 }
1345 wait_barrier(conf, bio->bi_iter.bi_sector);
1346
1347 r1_bio = alloc_r1bio(mddev, bio, 0);
1348
1349 if (conf->pending_count >= max_queued_requests) {
1350 md_wakeup_thread(mddev->thread);
1351 raid1_log(mddev, "wait queued");
1352 wait_event(conf->wait_barrier,
1353 conf->pending_count < max_queued_requests);
1354 }
1355 /* first select target devices under rcu_lock and
1356 * inc refcount on their rdev. Record them by setting
1357 * bios[x] to bio
1358 * If there are known/acknowledged bad blocks on any device on
1359 * which we have seen a write error, we want to avoid writing those
1360 * blocks.
1361 * This potentially requires several writes to write around
1362 * the bad blocks. Each set of writes gets it's own r1bio
1363 * with a set of bios attached.
1364 */
1365
1366 disks = conf->raid_disks * 2;
1367 retry_write:
1368 blocked_rdev = NULL;
1369 rcu_read_lock();
1370 max_sectors = r1_bio->sectors;
1371 for (i = 0; i < disks; i++) {
1372 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1373 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1374 atomic_inc(&rdev->nr_pending);
1375 blocked_rdev = rdev;
1376 break;
1377 }
1378 r1_bio->bios[i] = NULL;
1379 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1380 if (i < conf->raid_disks)
1381 set_bit(R1BIO_Degraded, &r1_bio->state);
1382 continue;
1383 }
1384
1385 atomic_inc(&rdev->nr_pending);
1386 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1387 sector_t first_bad;
1388 int bad_sectors;
1389 int is_bad;
1390
1391 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1392 &first_bad, &bad_sectors);
1393 if (is_bad < 0) {
1394 /* mustn't write here until the bad block is
1395 * acknowledged*/
1396 set_bit(BlockedBadBlocks, &rdev->flags);
1397 blocked_rdev = rdev;
1398 break;
1399 }
1400 if (is_bad && first_bad <= r1_bio->sector) {
1401 /* Cannot write here at all */
1402 bad_sectors -= (r1_bio->sector - first_bad);
1403 if (bad_sectors < max_sectors)
1404 /* mustn't write more than bad_sectors
1405 * to other devices yet
1406 */
1407 max_sectors = bad_sectors;
1408 rdev_dec_pending(rdev, mddev);
1409 /* We don't set R1BIO_Degraded as that
1410 * only applies if the disk is
1411 * missing, so it might be re-added,
1412 * and we want to know to recover this
1413 * chunk.
1414 * In this case the device is here,
1415 * and the fact that this chunk is not
1416 * in-sync is recorded in the bad
1417 * block log
1418 */
1419 continue;
1420 }
1421 if (is_bad) {
1422 int good_sectors = first_bad - r1_bio->sector;
1423 if (good_sectors < max_sectors)
1424 max_sectors = good_sectors;
1425 }
1426 }
1427 r1_bio->bios[i] = bio;
1428 }
1429 rcu_read_unlock();
1430
1431 if (unlikely(blocked_rdev)) {
1432 /* Wait for this device to become unblocked */
1433 int j;
1434
1435 for (j = 0; j < i; j++)
1436 if (r1_bio->bios[j])
1437 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1438 r1_bio->state = 0;
1439 allow_barrier(conf, bio->bi_iter.bi_sector);
1440 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1441 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1442 wait_barrier(conf, bio->bi_iter.bi_sector);
1443 goto retry_write;
1444 }
1445
1446 if (max_sectors < r1_bio->sectors)
1447 r1_bio->sectors = max_sectors;
1448
1449 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1450
1451 atomic_set(&r1_bio->remaining, 1);
1452 atomic_set(&r1_bio->behind_remaining, 0);
1453
1454 first_clone = 1;
1455
1456 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1457 for (i = 0; i < disks; i++) {
1458 struct bio *mbio = NULL;
1459 if (!r1_bio->bios[i])
1460 continue;
1461
1462
1463 if (first_clone) {
1464 /* do behind I/O ?
1465 * Not if there are too many, or cannot
1466 * allocate memory, or a reader on WriteMostly
1467 * is waiting for behind writes to flush */
1468 if (bitmap &&
1469 (atomic_read(&bitmap->behind_writes)
1470 < mddev->bitmap_info.max_write_behind) &&
1471 !waitqueue_active(&bitmap->behind_wait)) {
1472 mbio = alloc_behind_master_bio(r1_bio, bio,
1473 offset << 9,
1474 max_sectors << 9);
1475 }
1476
1477 bitmap_startwrite(bitmap, r1_bio->sector,
1478 r1_bio->sectors,
1479 test_bit(R1BIO_BehindIO,
1480 &r1_bio->state));
1481 first_clone = 0;
1482 }
1483
1484 if (!mbio) {
1485 if (r1_bio->behind_master_bio)
1486 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1487 GFP_NOIO,
1488 mddev->bio_set);
1489 else {
1490 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1491 bio_trim(mbio, offset, max_sectors);
1492 }
1493 }
1494
1495 if (r1_bio->behind_master_bio) {
1496 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1497 atomic_inc(&r1_bio->behind_remaining);
1498 }
1499
1500 r1_bio->bios[i] = mbio;
1501
1502 mbio->bi_iter.bi_sector = (r1_bio->sector +
1503 conf->mirrors[i].rdev->data_offset);
1504 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1505 mbio->bi_end_io = raid1_end_write_request;
1506 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1507 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1508 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1509 conf->raid_disks - mddev->degraded > 1)
1510 mbio->bi_opf |= MD_FAILFAST;
1511 mbio->bi_private = r1_bio;
1512
1513 atomic_inc(&r1_bio->remaining);
1514
1515 if (mddev->gendisk)
1516 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1517 mbio, disk_devt(mddev->gendisk),
1518 r1_bio->sector);
1519 /* flush_pending_writes() needs access to the rdev so...*/
1520 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1521
1522 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1523 if (cb)
1524 plug = container_of(cb, struct raid1_plug_cb, cb);
1525 else
1526 plug = NULL;
1527 spin_lock_irqsave(&conf->device_lock, flags);
1528 if (plug) {
1529 bio_list_add(&plug->pending, mbio);
1530 plug->pending_cnt++;
1531 } else {
1532 bio_list_add(&conf->pending_bio_list, mbio);
1533 conf->pending_count++;
1534 }
1535 spin_unlock_irqrestore(&conf->device_lock, flags);
1536 if (!plug)
1537 md_wakeup_thread(mddev->thread);
1538 }
1539 /* Mustn't call r1_bio_write_done before this next test,
1540 * as it could result in the bio being freed.
1541 */
1542 if (sectors_handled < bio_sectors(bio)) {
1543 /* We need another r1_bio, which must be counted */
1544 sector_t sect = bio->bi_iter.bi_sector + sectors_handled;
1545
1546 inc_pending(conf, sect);
1547 bio_inc_remaining(bio);
1548 r1_bio_write_done(r1_bio);
1549 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1550 goto retry_write;
1551 }
1552
1553 r1_bio_write_done(r1_bio);
1554
1555 /* In case raid1d snuck in to freeze_array */
1556 wake_up(&conf->wait_barrier);
1557 }
1558
1559 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1560 {
1561 struct bio *split;
1562 sector_t sectors;
1563
1564 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1565 md_flush_request(mddev, bio);
1566 return;
1567 }
1568
1569 /* if bio exceeds barrier unit boundary, split it */
1570 do {
1571 sectors = align_to_barrier_unit_end(
1572 bio->bi_iter.bi_sector, bio_sectors(bio));
1573 if (sectors < bio_sectors(bio)) {
1574 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1575 bio_chain(split, bio);
1576 } else {
1577 split = bio;
1578 }
1579
1580 if (bio_data_dir(split) == READ) {
1581 raid1_read_request(mddev, split);
1582
1583 /*
1584 * If a bio is splitted, the first part of bio will
1585 * pass barrier but the bio is queued in
1586 * current->bio_list (see generic_make_request). If
1587 * there is a raise_barrier() called here, the second
1588 * part of bio can't pass barrier. But since the first
1589 * part bio isn't dispatched to underlaying disks yet,
1590 * the barrier is never released, hence raise_barrier
1591 * will alays wait. We have a deadlock.
1592 * Note, this only happens in read path. For write
1593 * path, the first part of bio is dispatched in a
1594 * schedule() call (because of blk plug) or offloaded
1595 * to raid10d.
1596 * Quitting from the function immediately can change
1597 * the bio order queued in bio_list and avoid the deadlock.
1598 */
1599 if (split != bio) {
1600 generic_make_request(bio);
1601 break;
1602 }
1603 } else
1604 raid1_write_request(mddev, split);
1605 } while (split != bio);
1606 }
1607
1608 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610 struct r1conf *conf = mddev->private;
1611 int i;
1612
1613 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1614 conf->raid_disks - mddev->degraded);
1615 rcu_read_lock();
1616 for (i = 0; i < conf->raid_disks; i++) {
1617 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1618 seq_printf(seq, "%s",
1619 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1620 }
1621 rcu_read_unlock();
1622 seq_printf(seq, "]");
1623 }
1624
1625 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1626 {
1627 char b[BDEVNAME_SIZE];
1628 struct r1conf *conf = mddev->private;
1629 unsigned long flags;
1630
1631 /*
1632 * If it is not operational, then we have already marked it as dead
1633 * else if it is the last working disks, ignore the error, let the
1634 * next level up know.
1635 * else mark the drive as failed
1636 */
1637 spin_lock_irqsave(&conf->device_lock, flags);
1638 if (test_bit(In_sync, &rdev->flags)
1639 && (conf->raid_disks - mddev->degraded) == 1) {
1640 /*
1641 * Don't fail the drive, act as though we were just a
1642 * normal single drive.
1643 * However don't try a recovery from this drive as
1644 * it is very likely to fail.
1645 */
1646 conf->recovery_disabled = mddev->recovery_disabled;
1647 spin_unlock_irqrestore(&conf->device_lock, flags);
1648 return;
1649 }
1650 set_bit(Blocked, &rdev->flags);
1651 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1652 mddev->degraded++;
1653 set_bit(Faulty, &rdev->flags);
1654 } else
1655 set_bit(Faulty, &rdev->flags);
1656 spin_unlock_irqrestore(&conf->device_lock, flags);
1657 /*
1658 * if recovery is running, make sure it aborts.
1659 */
1660 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661 set_mask_bits(&mddev->sb_flags, 0,
1662 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1663 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1664 "md/raid1:%s: Operation continuing on %d devices.\n",
1665 mdname(mddev), bdevname(rdev->bdev, b),
1666 mdname(mddev), conf->raid_disks - mddev->degraded);
1667 }
1668
1669 static void print_conf(struct r1conf *conf)
1670 {
1671 int i;
1672
1673 pr_debug("RAID1 conf printout:\n");
1674 if (!conf) {
1675 pr_debug("(!conf)\n");
1676 return;
1677 }
1678 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1679 conf->raid_disks);
1680
1681 rcu_read_lock();
1682 for (i = 0; i < conf->raid_disks; i++) {
1683 char b[BDEVNAME_SIZE];
1684 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1685 if (rdev)
1686 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1687 i, !test_bit(In_sync, &rdev->flags),
1688 !test_bit(Faulty, &rdev->flags),
1689 bdevname(rdev->bdev,b));
1690 }
1691 rcu_read_unlock();
1692 }
1693
1694 static void close_sync(struct r1conf *conf)
1695 {
1696 wait_all_barriers(conf);
1697 allow_all_barriers(conf);
1698
1699 mempool_destroy(conf->r1buf_pool);
1700 conf->r1buf_pool = NULL;
1701 }
1702
1703 static int raid1_spare_active(struct mddev *mddev)
1704 {
1705 int i;
1706 struct r1conf *conf = mddev->private;
1707 int count = 0;
1708 unsigned long flags;
1709
1710 /*
1711 * Find all failed disks within the RAID1 configuration
1712 * and mark them readable.
1713 * Called under mddev lock, so rcu protection not needed.
1714 * device_lock used to avoid races with raid1_end_read_request
1715 * which expects 'In_sync' flags and ->degraded to be consistent.
1716 */
1717 spin_lock_irqsave(&conf->device_lock, flags);
1718 for (i = 0; i < conf->raid_disks; i++) {
1719 struct md_rdev *rdev = conf->mirrors[i].rdev;
1720 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1721 if (repl
1722 && !test_bit(Candidate, &repl->flags)
1723 && repl->recovery_offset == MaxSector
1724 && !test_bit(Faulty, &repl->flags)
1725 && !test_and_set_bit(In_sync, &repl->flags)) {
1726 /* replacement has just become active */
1727 if (!rdev ||
1728 !test_and_clear_bit(In_sync, &rdev->flags))
1729 count++;
1730 if (rdev) {
1731 /* Replaced device not technically
1732 * faulty, but we need to be sure
1733 * it gets removed and never re-added
1734 */
1735 set_bit(Faulty, &rdev->flags);
1736 sysfs_notify_dirent_safe(
1737 rdev->sysfs_state);
1738 }
1739 }
1740 if (rdev
1741 && rdev->recovery_offset == MaxSector
1742 && !test_bit(Faulty, &rdev->flags)
1743 && !test_and_set_bit(In_sync, &rdev->flags)) {
1744 count++;
1745 sysfs_notify_dirent_safe(rdev->sysfs_state);
1746 }
1747 }
1748 mddev->degraded -= count;
1749 spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751 print_conf(conf);
1752 return count;
1753 }
1754
1755 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 {
1757 struct r1conf *conf = mddev->private;
1758 int err = -EEXIST;
1759 int mirror = 0;
1760 struct raid1_info *p;
1761 int first = 0;
1762 int last = conf->raid_disks - 1;
1763
1764 if (mddev->recovery_disabled == conf->recovery_disabled)
1765 return -EBUSY;
1766
1767 if (md_integrity_add_rdev(rdev, mddev))
1768 return -ENXIO;
1769
1770 if (rdev->raid_disk >= 0)
1771 first = last = rdev->raid_disk;
1772
1773 /*
1774 * find the disk ... but prefer rdev->saved_raid_disk
1775 * if possible.
1776 */
1777 if (rdev->saved_raid_disk >= 0 &&
1778 rdev->saved_raid_disk >= first &&
1779 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780 first = last = rdev->saved_raid_disk;
1781
1782 for (mirror = first; mirror <= last; mirror++) {
1783 p = conf->mirrors+mirror;
1784 if (!p->rdev) {
1785
1786 if (mddev->gendisk)
1787 disk_stack_limits(mddev->gendisk, rdev->bdev,
1788 rdev->data_offset << 9);
1789
1790 p->head_position = 0;
1791 rdev->raid_disk = mirror;
1792 err = 0;
1793 /* As all devices are equivalent, we don't need a full recovery
1794 * if this was recently any drive of the array
1795 */
1796 if (rdev->saved_raid_disk < 0)
1797 conf->fullsync = 1;
1798 rcu_assign_pointer(p->rdev, rdev);
1799 break;
1800 }
1801 if (test_bit(WantReplacement, &p->rdev->flags) &&
1802 p[conf->raid_disks].rdev == NULL) {
1803 /* Add this device as a replacement */
1804 clear_bit(In_sync, &rdev->flags);
1805 set_bit(Replacement, &rdev->flags);
1806 rdev->raid_disk = mirror;
1807 err = 0;
1808 conf->fullsync = 1;
1809 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1810 break;
1811 }
1812 }
1813 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1814 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1815 print_conf(conf);
1816 return err;
1817 }
1818
1819 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1820 {
1821 struct r1conf *conf = mddev->private;
1822 int err = 0;
1823 int number = rdev->raid_disk;
1824 struct raid1_info *p = conf->mirrors + number;
1825
1826 if (rdev != p->rdev)
1827 p = conf->mirrors + conf->raid_disks + number;
1828
1829 print_conf(conf);
1830 if (rdev == p->rdev) {
1831 if (test_bit(In_sync, &rdev->flags) ||
1832 atomic_read(&rdev->nr_pending)) {
1833 err = -EBUSY;
1834 goto abort;
1835 }
1836 /* Only remove non-faulty devices if recovery
1837 * is not possible.
1838 */
1839 if (!test_bit(Faulty, &rdev->flags) &&
1840 mddev->recovery_disabled != conf->recovery_disabled &&
1841 mddev->degraded < conf->raid_disks) {
1842 err = -EBUSY;
1843 goto abort;
1844 }
1845 p->rdev = NULL;
1846 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1847 synchronize_rcu();
1848 if (atomic_read(&rdev->nr_pending)) {
1849 /* lost the race, try later */
1850 err = -EBUSY;
1851 p->rdev = rdev;
1852 goto abort;
1853 }
1854 }
1855 if (conf->mirrors[conf->raid_disks + number].rdev) {
1856 /* We just removed a device that is being replaced.
1857 * Move down the replacement. We drain all IO before
1858 * doing this to avoid confusion.
1859 */
1860 struct md_rdev *repl =
1861 conf->mirrors[conf->raid_disks + number].rdev;
1862 freeze_array(conf, 0);
1863 clear_bit(Replacement, &repl->flags);
1864 p->rdev = repl;
1865 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1866 unfreeze_array(conf);
1867 clear_bit(WantReplacement, &rdev->flags);
1868 } else
1869 clear_bit(WantReplacement, &rdev->flags);
1870 err = md_integrity_register(mddev);
1871 }
1872 abort:
1873
1874 print_conf(conf);
1875 return err;
1876 }
1877
1878 static void end_sync_read(struct bio *bio)
1879 {
1880 struct r1bio *r1_bio = get_resync_r1bio(bio);
1881
1882 update_head_pos(r1_bio->read_disk, r1_bio);
1883
1884 /*
1885 * we have read a block, now it needs to be re-written,
1886 * or re-read if the read failed.
1887 * We don't do much here, just schedule handling by raid1d
1888 */
1889 if (!bio->bi_error)
1890 set_bit(R1BIO_Uptodate, &r1_bio->state);
1891
1892 if (atomic_dec_and_test(&r1_bio->remaining))
1893 reschedule_retry(r1_bio);
1894 }
1895
1896 static void end_sync_write(struct bio *bio)
1897 {
1898 int uptodate = !bio->bi_error;
1899 struct r1bio *r1_bio = get_resync_r1bio(bio);
1900 struct mddev *mddev = r1_bio->mddev;
1901 struct r1conf *conf = mddev->private;
1902 sector_t first_bad;
1903 int bad_sectors;
1904 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1905
1906 if (!uptodate) {
1907 sector_t sync_blocks = 0;
1908 sector_t s = r1_bio->sector;
1909 long sectors_to_go = r1_bio->sectors;
1910 /* make sure these bits doesn't get cleared. */
1911 do {
1912 bitmap_end_sync(mddev->bitmap, s,
1913 &sync_blocks, 1);
1914 s += sync_blocks;
1915 sectors_to_go -= sync_blocks;
1916 } while (sectors_to_go > 0);
1917 set_bit(WriteErrorSeen, &rdev->flags);
1918 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1919 set_bit(MD_RECOVERY_NEEDED, &
1920 mddev->recovery);
1921 set_bit(R1BIO_WriteError, &r1_bio->state);
1922 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1923 &first_bad, &bad_sectors) &&
1924 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1925 r1_bio->sector,
1926 r1_bio->sectors,
1927 &first_bad, &bad_sectors)
1928 )
1929 set_bit(R1BIO_MadeGood, &r1_bio->state);
1930
1931 if (atomic_dec_and_test(&r1_bio->remaining)) {
1932 int s = r1_bio->sectors;
1933 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1934 test_bit(R1BIO_WriteError, &r1_bio->state))
1935 reschedule_retry(r1_bio);
1936 else {
1937 put_buf(r1_bio);
1938 md_done_sync(mddev, s, uptodate);
1939 }
1940 }
1941 }
1942
1943 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1944 int sectors, struct page *page, int rw)
1945 {
1946 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1947 /* success */
1948 return 1;
1949 if (rw == WRITE) {
1950 set_bit(WriteErrorSeen, &rdev->flags);
1951 if (!test_and_set_bit(WantReplacement,
1952 &rdev->flags))
1953 set_bit(MD_RECOVERY_NEEDED, &
1954 rdev->mddev->recovery);
1955 }
1956 /* need to record an error - either for the block or the device */
1957 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1958 md_error(rdev->mddev, rdev);
1959 return 0;
1960 }
1961
1962 static int fix_sync_read_error(struct r1bio *r1_bio)
1963 {
1964 /* Try some synchronous reads of other devices to get
1965 * good data, much like with normal read errors. Only
1966 * read into the pages we already have so we don't
1967 * need to re-issue the read request.
1968 * We don't need to freeze the array, because being in an
1969 * active sync request, there is no normal IO, and
1970 * no overlapping syncs.
1971 * We don't need to check is_badblock() again as we
1972 * made sure that anything with a bad block in range
1973 * will have bi_end_io clear.
1974 */
1975 struct mddev *mddev = r1_bio->mddev;
1976 struct r1conf *conf = mddev->private;
1977 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1978 struct page **pages = get_resync_pages(bio)->pages;
1979 sector_t sect = r1_bio->sector;
1980 int sectors = r1_bio->sectors;
1981 int idx = 0;
1982 struct md_rdev *rdev;
1983
1984 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1985 if (test_bit(FailFast, &rdev->flags)) {
1986 /* Don't try recovering from here - just fail it
1987 * ... unless it is the last working device of course */
1988 md_error(mddev, rdev);
1989 if (test_bit(Faulty, &rdev->flags))
1990 /* Don't try to read from here, but make sure
1991 * put_buf does it's thing
1992 */
1993 bio->bi_end_io = end_sync_write;
1994 }
1995
1996 while(sectors) {
1997 int s = sectors;
1998 int d = r1_bio->read_disk;
1999 int success = 0;
2000 int start;
2001
2002 if (s > (PAGE_SIZE>>9))
2003 s = PAGE_SIZE >> 9;
2004 do {
2005 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2006 /* No rcu protection needed here devices
2007 * can only be removed when no resync is
2008 * active, and resync is currently active
2009 */
2010 rdev = conf->mirrors[d].rdev;
2011 if (sync_page_io(rdev, sect, s<<9,
2012 pages[idx],
2013 REQ_OP_READ, 0, false)) {
2014 success = 1;
2015 break;
2016 }
2017 }
2018 d++;
2019 if (d == conf->raid_disks * 2)
2020 d = 0;
2021 } while (!success && d != r1_bio->read_disk);
2022
2023 if (!success) {
2024 char b[BDEVNAME_SIZE];
2025 int abort = 0;
2026 /* Cannot read from anywhere, this block is lost.
2027 * Record a bad block on each device. If that doesn't
2028 * work just disable and interrupt the recovery.
2029 * Don't fail devices as that won't really help.
2030 */
2031 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2032 mdname(mddev),
2033 bdevname(bio->bi_bdev, b),
2034 (unsigned long long)r1_bio->sector);
2035 for (d = 0; d < conf->raid_disks * 2; d++) {
2036 rdev = conf->mirrors[d].rdev;
2037 if (!rdev || test_bit(Faulty, &rdev->flags))
2038 continue;
2039 if (!rdev_set_badblocks(rdev, sect, s, 0))
2040 abort = 1;
2041 }
2042 if (abort) {
2043 conf->recovery_disabled =
2044 mddev->recovery_disabled;
2045 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2046 md_done_sync(mddev, r1_bio->sectors, 0);
2047 put_buf(r1_bio);
2048 return 0;
2049 }
2050 /* Try next page */
2051 sectors -= s;
2052 sect += s;
2053 idx++;
2054 continue;
2055 }
2056
2057 start = d;
2058 /* write it back and re-read */
2059 while (d != r1_bio->read_disk) {
2060 if (d == 0)
2061 d = conf->raid_disks * 2;
2062 d--;
2063 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064 continue;
2065 rdev = conf->mirrors[d].rdev;
2066 if (r1_sync_page_io(rdev, sect, s,
2067 pages[idx],
2068 WRITE) == 0) {
2069 r1_bio->bios[d]->bi_end_io = NULL;
2070 rdev_dec_pending(rdev, mddev);
2071 }
2072 }
2073 d = start;
2074 while (d != r1_bio->read_disk) {
2075 if (d == 0)
2076 d = conf->raid_disks * 2;
2077 d--;
2078 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2079 continue;
2080 rdev = conf->mirrors[d].rdev;
2081 if (r1_sync_page_io(rdev, sect, s,
2082 pages[idx],
2083 READ) != 0)
2084 atomic_add(s, &rdev->corrected_errors);
2085 }
2086 sectors -= s;
2087 sect += s;
2088 idx ++;
2089 }
2090 set_bit(R1BIO_Uptodate, &r1_bio->state);
2091 bio->bi_error = 0;
2092 return 1;
2093 }
2094
2095 static void process_checks(struct r1bio *r1_bio)
2096 {
2097 /* We have read all readable devices. If we haven't
2098 * got the block, then there is no hope left.
2099 * If we have, then we want to do a comparison
2100 * and skip the write if everything is the same.
2101 * If any blocks failed to read, then we need to
2102 * attempt an over-write
2103 */
2104 struct mddev *mddev = r1_bio->mddev;
2105 struct r1conf *conf = mddev->private;
2106 int primary;
2107 int i;
2108 int vcnt;
2109
2110 /* Fix variable parts of all bios */
2111 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2112 for (i = 0; i < conf->raid_disks * 2; i++) {
2113 int j;
2114 int size;
2115 int error;
2116 struct bio_vec *bi;
2117 struct bio *b = r1_bio->bios[i];
2118 struct resync_pages *rp = get_resync_pages(b);
2119 if (b->bi_end_io != end_sync_read)
2120 continue;
2121 /* fixup the bio for reuse, but preserve errno */
2122 error = b->bi_error;
2123 bio_reset(b);
2124 b->bi_error = error;
2125 b->bi_vcnt = vcnt;
2126 b->bi_iter.bi_size = r1_bio->sectors << 9;
2127 b->bi_iter.bi_sector = r1_bio->sector +
2128 conf->mirrors[i].rdev->data_offset;
2129 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2130 b->bi_end_io = end_sync_read;
2131 rp->raid_bio = r1_bio;
2132 b->bi_private = rp;
2133
2134 size = b->bi_iter.bi_size;
2135 bio_for_each_segment_all(bi, b, j) {
2136 bi->bv_offset = 0;
2137 if (size > PAGE_SIZE)
2138 bi->bv_len = PAGE_SIZE;
2139 else
2140 bi->bv_len = size;
2141 size -= PAGE_SIZE;
2142 }
2143 }
2144 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2145 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2146 !r1_bio->bios[primary]->bi_error) {
2147 r1_bio->bios[primary]->bi_end_io = NULL;
2148 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2149 break;
2150 }
2151 r1_bio->read_disk = primary;
2152 for (i = 0; i < conf->raid_disks * 2; i++) {
2153 int j;
2154 struct bio *pbio = r1_bio->bios[primary];
2155 struct bio *sbio = r1_bio->bios[i];
2156 int error = sbio->bi_error;
2157 struct page **ppages = get_resync_pages(pbio)->pages;
2158 struct page **spages = get_resync_pages(sbio)->pages;
2159 struct bio_vec *bi;
2160 int page_len[RESYNC_PAGES] = { 0 };
2161
2162 if (sbio->bi_end_io != end_sync_read)
2163 continue;
2164 /* Now we can 'fixup' the error value */
2165 sbio->bi_error = 0;
2166
2167 bio_for_each_segment_all(bi, sbio, j)
2168 page_len[j] = bi->bv_len;
2169
2170 if (!error) {
2171 for (j = vcnt; j-- ; ) {
2172 if (memcmp(page_address(ppages[j]),
2173 page_address(spages[j]),
2174 page_len[j]))
2175 break;
2176 }
2177 } else
2178 j = 0;
2179 if (j >= 0)
2180 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2181 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2182 && !error)) {
2183 /* No need to write to this device. */
2184 sbio->bi_end_io = NULL;
2185 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2186 continue;
2187 }
2188
2189 bio_copy_data(sbio, pbio);
2190 }
2191 }
2192
2193 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2194 {
2195 struct r1conf *conf = mddev->private;
2196 int i;
2197 int disks = conf->raid_disks * 2;
2198 struct bio *bio, *wbio;
2199
2200 bio = r1_bio->bios[r1_bio->read_disk];
2201
2202 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2203 /* ouch - failed to read all of that. */
2204 if (!fix_sync_read_error(r1_bio))
2205 return;
2206
2207 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2208 process_checks(r1_bio);
2209
2210 /*
2211 * schedule writes
2212 */
2213 atomic_set(&r1_bio->remaining, 1);
2214 for (i = 0; i < disks ; i++) {
2215 wbio = r1_bio->bios[i];
2216 if (wbio->bi_end_io == NULL ||
2217 (wbio->bi_end_io == end_sync_read &&
2218 (i == r1_bio->read_disk ||
2219 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2220 continue;
2221
2222 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2223 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2224 wbio->bi_opf |= MD_FAILFAST;
2225
2226 wbio->bi_end_io = end_sync_write;
2227 atomic_inc(&r1_bio->remaining);
2228 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2229
2230 generic_make_request(wbio);
2231 }
2232
2233 if (atomic_dec_and_test(&r1_bio->remaining)) {
2234 /* if we're here, all write(s) have completed, so clean up */
2235 int s = r1_bio->sectors;
2236 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2237 test_bit(R1BIO_WriteError, &r1_bio->state))
2238 reschedule_retry(r1_bio);
2239 else {
2240 put_buf(r1_bio);
2241 md_done_sync(mddev, s, 1);
2242 }
2243 }
2244 }
2245
2246 /*
2247 * This is a kernel thread which:
2248 *
2249 * 1. Retries failed read operations on working mirrors.
2250 * 2. Updates the raid superblock when problems encounter.
2251 * 3. Performs writes following reads for array synchronising.
2252 */
2253
2254 static void fix_read_error(struct r1conf *conf, int read_disk,
2255 sector_t sect, int sectors)
2256 {
2257 struct mddev *mddev = conf->mddev;
2258 while(sectors) {
2259 int s = sectors;
2260 int d = read_disk;
2261 int success = 0;
2262 int start;
2263 struct md_rdev *rdev;
2264
2265 if (s > (PAGE_SIZE>>9))
2266 s = PAGE_SIZE >> 9;
2267
2268 do {
2269 sector_t first_bad;
2270 int bad_sectors;
2271
2272 rcu_read_lock();
2273 rdev = rcu_dereference(conf->mirrors[d].rdev);
2274 if (rdev &&
2275 (test_bit(In_sync, &rdev->flags) ||
2276 (!test_bit(Faulty, &rdev->flags) &&
2277 rdev->recovery_offset >= sect + s)) &&
2278 is_badblock(rdev, sect, s,
2279 &first_bad, &bad_sectors) == 0) {
2280 atomic_inc(&rdev->nr_pending);
2281 rcu_read_unlock();
2282 if (sync_page_io(rdev, sect, s<<9,
2283 conf->tmppage, REQ_OP_READ, 0, false))
2284 success = 1;
2285 rdev_dec_pending(rdev, mddev);
2286 if (success)
2287 break;
2288 } else
2289 rcu_read_unlock();
2290 d++;
2291 if (d == conf->raid_disks * 2)
2292 d = 0;
2293 } while (!success && d != read_disk);
2294
2295 if (!success) {
2296 /* Cannot read from anywhere - mark it bad */
2297 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2298 if (!rdev_set_badblocks(rdev, sect, s, 0))
2299 md_error(mddev, rdev);
2300 break;
2301 }
2302 /* write it back and re-read */
2303 start = d;
2304 while (d != read_disk) {
2305 if (d==0)
2306 d = conf->raid_disks * 2;
2307 d--;
2308 rcu_read_lock();
2309 rdev = rcu_dereference(conf->mirrors[d].rdev);
2310 if (rdev &&
2311 !test_bit(Faulty, &rdev->flags)) {
2312 atomic_inc(&rdev->nr_pending);
2313 rcu_read_unlock();
2314 r1_sync_page_io(rdev, sect, s,
2315 conf->tmppage, WRITE);
2316 rdev_dec_pending(rdev, mddev);
2317 } else
2318 rcu_read_unlock();
2319 }
2320 d = start;
2321 while (d != read_disk) {
2322 char b[BDEVNAME_SIZE];
2323 if (d==0)
2324 d = conf->raid_disks * 2;
2325 d--;
2326 rcu_read_lock();
2327 rdev = rcu_dereference(conf->mirrors[d].rdev);
2328 if (rdev &&
2329 !test_bit(Faulty, &rdev->flags)) {
2330 atomic_inc(&rdev->nr_pending);
2331 rcu_read_unlock();
2332 if (r1_sync_page_io(rdev, sect, s,
2333 conf->tmppage, READ)) {
2334 atomic_add(s, &rdev->corrected_errors);
2335 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2336 mdname(mddev), s,
2337 (unsigned long long)(sect +
2338 rdev->data_offset),
2339 bdevname(rdev->bdev, b));
2340 }
2341 rdev_dec_pending(rdev, mddev);
2342 } else
2343 rcu_read_unlock();
2344 }
2345 sectors -= s;
2346 sect += s;
2347 }
2348 }
2349
2350 static int narrow_write_error(struct r1bio *r1_bio, int i)
2351 {
2352 struct mddev *mddev = r1_bio->mddev;
2353 struct r1conf *conf = mddev->private;
2354 struct md_rdev *rdev = conf->mirrors[i].rdev;
2355
2356 /* bio has the data to be written to device 'i' where
2357 * we just recently had a write error.
2358 * We repeatedly clone the bio and trim down to one block,
2359 * then try the write. Where the write fails we record
2360 * a bad block.
2361 * It is conceivable that the bio doesn't exactly align with
2362 * blocks. We must handle this somehow.
2363 *
2364 * We currently own a reference on the rdev.
2365 */
2366
2367 int block_sectors;
2368 sector_t sector;
2369 int sectors;
2370 int sect_to_write = r1_bio->sectors;
2371 int ok = 1;
2372
2373 if (rdev->badblocks.shift < 0)
2374 return 0;
2375
2376 block_sectors = roundup(1 << rdev->badblocks.shift,
2377 bdev_logical_block_size(rdev->bdev) >> 9);
2378 sector = r1_bio->sector;
2379 sectors = ((sector + block_sectors)
2380 & ~(sector_t)(block_sectors - 1))
2381 - sector;
2382
2383 while (sect_to_write) {
2384 struct bio *wbio;
2385 if (sectors > sect_to_write)
2386 sectors = sect_to_write;
2387 /* Write at 'sector' for 'sectors'*/
2388
2389 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2390 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2391 GFP_NOIO,
2392 mddev->bio_set);
2393 /* We really need a _all clone */
2394 wbio->bi_iter = (struct bvec_iter){ 0 };
2395 } else {
2396 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2397 mddev->bio_set);
2398 }
2399
2400 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2401 wbio->bi_iter.bi_sector = r1_bio->sector;
2402 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2403
2404 bio_trim(wbio, sector - r1_bio->sector, sectors);
2405 wbio->bi_iter.bi_sector += rdev->data_offset;
2406 wbio->bi_bdev = rdev->bdev;
2407
2408 if (submit_bio_wait(wbio) < 0)
2409 /* failure! */
2410 ok = rdev_set_badblocks(rdev, sector,
2411 sectors, 0)
2412 && ok;
2413
2414 bio_put(wbio);
2415 sect_to_write -= sectors;
2416 sector += sectors;
2417 sectors = block_sectors;
2418 }
2419 return ok;
2420 }
2421
2422 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2423 {
2424 int m;
2425 int s = r1_bio->sectors;
2426 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2427 struct md_rdev *rdev = conf->mirrors[m].rdev;
2428 struct bio *bio = r1_bio->bios[m];
2429 if (bio->bi_end_io == NULL)
2430 continue;
2431 if (!bio->bi_error &&
2432 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2433 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2434 }
2435 if (bio->bi_error &&
2436 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2437 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2438 md_error(conf->mddev, rdev);
2439 }
2440 }
2441 put_buf(r1_bio);
2442 md_done_sync(conf->mddev, s, 1);
2443 }
2444
2445 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2446 {
2447 int m, idx;
2448 bool fail = false;
2449
2450 for (m = 0; m < conf->raid_disks * 2 ; m++)
2451 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2452 struct md_rdev *rdev = conf->mirrors[m].rdev;
2453 rdev_clear_badblocks(rdev,
2454 r1_bio->sector,
2455 r1_bio->sectors, 0);
2456 rdev_dec_pending(rdev, conf->mddev);
2457 } else if (r1_bio->bios[m] != NULL) {
2458 /* This drive got a write error. We need to
2459 * narrow down and record precise write
2460 * errors.
2461 */
2462 fail = true;
2463 if (!narrow_write_error(r1_bio, m)) {
2464 md_error(conf->mddev,
2465 conf->mirrors[m].rdev);
2466 /* an I/O failed, we can't clear the bitmap */
2467 set_bit(R1BIO_Degraded, &r1_bio->state);
2468 }
2469 rdev_dec_pending(conf->mirrors[m].rdev,
2470 conf->mddev);
2471 }
2472 if (fail) {
2473 spin_lock_irq(&conf->device_lock);
2474 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2475 idx = sector_to_idx(r1_bio->sector);
2476 atomic_inc(&conf->nr_queued[idx]);
2477 spin_unlock_irq(&conf->device_lock);
2478 /*
2479 * In case freeze_array() is waiting for condition
2480 * get_unqueued_pending() == extra to be true.
2481 */
2482 wake_up(&conf->wait_barrier);
2483 md_wakeup_thread(conf->mddev->thread);
2484 } else {
2485 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2486 close_write(r1_bio);
2487 raid_end_bio_io(r1_bio);
2488 }
2489 }
2490
2491 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2492 {
2493 int disk;
2494 int max_sectors;
2495 struct mddev *mddev = conf->mddev;
2496 struct bio *bio;
2497 char b[BDEVNAME_SIZE];
2498 struct md_rdev *rdev;
2499 dev_t bio_dev;
2500 sector_t bio_sector;
2501
2502 clear_bit(R1BIO_ReadError, &r1_bio->state);
2503 /* we got a read error. Maybe the drive is bad. Maybe just
2504 * the block and we can fix it.
2505 * We freeze all other IO, and try reading the block from
2506 * other devices. When we find one, we re-write
2507 * and check it that fixes the read error.
2508 * This is all done synchronously while the array is
2509 * frozen
2510 */
2511
2512 bio = r1_bio->bios[r1_bio->read_disk];
2513 bdevname(bio->bi_bdev, b);
2514 bio_dev = bio->bi_bdev->bd_dev;
2515 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2516 bio_put(bio);
2517 r1_bio->bios[r1_bio->read_disk] = NULL;
2518
2519 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2520 if (mddev->ro == 0
2521 && !test_bit(FailFast, &rdev->flags)) {
2522 freeze_array(conf, 1);
2523 fix_read_error(conf, r1_bio->read_disk,
2524 r1_bio->sector, r1_bio->sectors);
2525 unfreeze_array(conf);
2526 } else {
2527 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2528 }
2529
2530 rdev_dec_pending(rdev, conf->mddev);
2531
2532 read_more:
2533 disk = read_balance(conf, r1_bio, &max_sectors);
2534 if (disk == -1) {
2535 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2536 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2537 raid_end_bio_io(r1_bio);
2538 } else {
2539 const unsigned long do_sync
2540 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2541 r1_bio->read_disk = disk;
2542 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2543 mddev->bio_set);
2544 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2545 max_sectors);
2546 r1_bio->bios[r1_bio->read_disk] = bio;
2547 rdev = conf->mirrors[disk].rdev;
2548 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2549 mdname(mddev),
2550 (unsigned long long)r1_bio->sector,
2551 bdevname(rdev->bdev, b));
2552 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2553 bio->bi_bdev = rdev->bdev;
2554 bio->bi_end_io = raid1_end_read_request;
2555 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2556 if (test_bit(FailFast, &rdev->flags) &&
2557 test_bit(R1BIO_FailFast, &r1_bio->state))
2558 bio->bi_opf |= MD_FAILFAST;
2559 bio->bi_private = r1_bio;
2560 if (max_sectors < r1_bio->sectors) {
2561 /* Drat - have to split this up more */
2562 struct bio *mbio = r1_bio->master_bio;
2563 int sectors_handled = (r1_bio->sector + max_sectors
2564 - mbio->bi_iter.bi_sector);
2565 r1_bio->sectors = max_sectors;
2566 bio_inc_remaining(mbio);
2567 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2568 bio, bio_dev, bio_sector);
2569 generic_make_request(bio);
2570 bio = NULL;
2571
2572 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2573 set_bit(R1BIO_ReadError, &r1_bio->state);
2574 inc_pending(conf, r1_bio->sector);
2575
2576 goto read_more;
2577 } else {
2578 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2579 bio, bio_dev, bio_sector);
2580 generic_make_request(bio);
2581 }
2582 }
2583 }
2584
2585 static void raid1d(struct md_thread *thread)
2586 {
2587 struct mddev *mddev = thread->mddev;
2588 struct r1bio *r1_bio;
2589 unsigned long flags;
2590 struct r1conf *conf = mddev->private;
2591 struct list_head *head = &conf->retry_list;
2592 struct blk_plug plug;
2593 int idx;
2594
2595 md_check_recovery(mddev);
2596
2597 if (!list_empty_careful(&conf->bio_end_io_list) &&
2598 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2599 LIST_HEAD(tmp);
2600 spin_lock_irqsave(&conf->device_lock, flags);
2601 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2602 list_splice_init(&conf->bio_end_io_list, &tmp);
2603 spin_unlock_irqrestore(&conf->device_lock, flags);
2604 while (!list_empty(&tmp)) {
2605 r1_bio = list_first_entry(&tmp, struct r1bio,
2606 retry_list);
2607 list_del(&r1_bio->retry_list);
2608 idx = sector_to_idx(r1_bio->sector);
2609 atomic_dec(&conf->nr_queued[idx]);
2610 if (mddev->degraded)
2611 set_bit(R1BIO_Degraded, &r1_bio->state);
2612 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2613 close_write(r1_bio);
2614 raid_end_bio_io(r1_bio);
2615 }
2616 }
2617
2618 blk_start_plug(&plug);
2619 for (;;) {
2620
2621 flush_pending_writes(conf);
2622
2623 spin_lock_irqsave(&conf->device_lock, flags);
2624 if (list_empty(head)) {
2625 spin_unlock_irqrestore(&conf->device_lock, flags);
2626 break;
2627 }
2628 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2629 list_del(head->prev);
2630 idx = sector_to_idx(r1_bio->sector);
2631 atomic_dec(&conf->nr_queued[idx]);
2632 spin_unlock_irqrestore(&conf->device_lock, flags);
2633
2634 mddev = r1_bio->mddev;
2635 conf = mddev->private;
2636 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2637 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2638 test_bit(R1BIO_WriteError, &r1_bio->state))
2639 handle_sync_write_finished(conf, r1_bio);
2640 else
2641 sync_request_write(mddev, r1_bio);
2642 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2643 test_bit(R1BIO_WriteError, &r1_bio->state))
2644 handle_write_finished(conf, r1_bio);
2645 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2646 handle_read_error(conf, r1_bio);
2647 else
2648 /* just a partial read to be scheduled from separate
2649 * context
2650 */
2651 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2652
2653 cond_resched();
2654 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2655 md_check_recovery(mddev);
2656 }
2657 blk_finish_plug(&plug);
2658 }
2659
2660 static int init_resync(struct r1conf *conf)
2661 {
2662 int buffs;
2663
2664 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2665 BUG_ON(conf->r1buf_pool);
2666 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2667 conf->poolinfo);
2668 if (!conf->r1buf_pool)
2669 return -ENOMEM;
2670 return 0;
2671 }
2672
2673 /*
2674 * perform a "sync" on one "block"
2675 *
2676 * We need to make sure that no normal I/O request - particularly write
2677 * requests - conflict with active sync requests.
2678 *
2679 * This is achieved by tracking pending requests and a 'barrier' concept
2680 * that can be installed to exclude normal IO requests.
2681 */
2682
2683 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2684 int *skipped)
2685 {
2686 struct r1conf *conf = mddev->private;
2687 struct r1bio *r1_bio;
2688 struct bio *bio;
2689 sector_t max_sector, nr_sectors;
2690 int disk = -1;
2691 int i;
2692 int wonly = -1;
2693 int write_targets = 0, read_targets = 0;
2694 sector_t sync_blocks;
2695 int still_degraded = 0;
2696 int good_sectors = RESYNC_SECTORS;
2697 int min_bad = 0; /* number of sectors that are bad in all devices */
2698 int idx = sector_to_idx(sector_nr);
2699
2700 if (!conf->r1buf_pool)
2701 if (init_resync(conf))
2702 return 0;
2703
2704 max_sector = mddev->dev_sectors;
2705 if (sector_nr >= max_sector) {
2706 /* If we aborted, we need to abort the
2707 * sync on the 'current' bitmap chunk (there will
2708 * only be one in raid1 resync.
2709 * We can find the current addess in mddev->curr_resync
2710 */
2711 if (mddev->curr_resync < max_sector) /* aborted */
2712 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2713 &sync_blocks, 1);
2714 else /* completed sync */
2715 conf->fullsync = 0;
2716
2717 bitmap_close_sync(mddev->bitmap);
2718 close_sync(conf);
2719
2720 if (mddev_is_clustered(mddev)) {
2721 conf->cluster_sync_low = 0;
2722 conf->cluster_sync_high = 0;
2723 }
2724 return 0;
2725 }
2726
2727 if (mddev->bitmap == NULL &&
2728 mddev->recovery_cp == MaxSector &&
2729 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2730 conf->fullsync == 0) {
2731 *skipped = 1;
2732 return max_sector - sector_nr;
2733 }
2734 /* before building a request, check if we can skip these blocks..
2735 * This call the bitmap_start_sync doesn't actually record anything
2736 */
2737 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2738 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2739 /* We can skip this block, and probably several more */
2740 *skipped = 1;
2741 return sync_blocks;
2742 }
2743
2744 /*
2745 * If there is non-resync activity waiting for a turn, then let it
2746 * though before starting on this new sync request.
2747 */
2748 if (atomic_read(&conf->nr_waiting[idx]))
2749 schedule_timeout_uninterruptible(1);
2750
2751 /* we are incrementing sector_nr below. To be safe, we check against
2752 * sector_nr + two times RESYNC_SECTORS
2753 */
2754
2755 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2756 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2757 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2758
2759 raise_barrier(conf, sector_nr);
2760
2761 rcu_read_lock();
2762 /*
2763 * If we get a correctably read error during resync or recovery,
2764 * we might want to read from a different device. So we
2765 * flag all drives that could conceivably be read from for READ,
2766 * and any others (which will be non-In_sync devices) for WRITE.
2767 * If a read fails, we try reading from something else for which READ
2768 * is OK.
2769 */
2770
2771 r1_bio->mddev = mddev;
2772 r1_bio->sector = sector_nr;
2773 r1_bio->state = 0;
2774 set_bit(R1BIO_IsSync, &r1_bio->state);
2775 /* make sure good_sectors won't go across barrier unit boundary */
2776 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2777
2778 for (i = 0; i < conf->raid_disks * 2; i++) {
2779 struct md_rdev *rdev;
2780 bio = r1_bio->bios[i];
2781
2782 rdev = rcu_dereference(conf->mirrors[i].rdev);
2783 if (rdev == NULL ||
2784 test_bit(Faulty, &rdev->flags)) {
2785 if (i < conf->raid_disks)
2786 still_degraded = 1;
2787 } else if (!test_bit(In_sync, &rdev->flags)) {
2788 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2789 bio->bi_end_io = end_sync_write;
2790 write_targets ++;
2791 } else {
2792 /* may need to read from here */
2793 sector_t first_bad = MaxSector;
2794 int bad_sectors;
2795
2796 if (is_badblock(rdev, sector_nr, good_sectors,
2797 &first_bad, &bad_sectors)) {
2798 if (first_bad > sector_nr)
2799 good_sectors = first_bad - sector_nr;
2800 else {
2801 bad_sectors -= (sector_nr - first_bad);
2802 if (min_bad == 0 ||
2803 min_bad > bad_sectors)
2804 min_bad = bad_sectors;
2805 }
2806 }
2807 if (sector_nr < first_bad) {
2808 if (test_bit(WriteMostly, &rdev->flags)) {
2809 if (wonly < 0)
2810 wonly = i;
2811 } else {
2812 if (disk < 0)
2813 disk = i;
2814 }
2815 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2816 bio->bi_end_io = end_sync_read;
2817 read_targets++;
2818 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2819 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2820 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2821 /*
2822 * The device is suitable for reading (InSync),
2823 * but has bad block(s) here. Let's try to correct them,
2824 * if we are doing resync or repair. Otherwise, leave
2825 * this device alone for this sync request.
2826 */
2827 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2828 bio->bi_end_io = end_sync_write;
2829 write_targets++;
2830 }
2831 }
2832 if (bio->bi_end_io) {
2833 atomic_inc(&rdev->nr_pending);
2834 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2835 bio->bi_bdev = rdev->bdev;
2836 if (test_bit(FailFast, &rdev->flags))
2837 bio->bi_opf |= MD_FAILFAST;
2838 }
2839 }
2840 rcu_read_unlock();
2841 if (disk < 0)
2842 disk = wonly;
2843 r1_bio->read_disk = disk;
2844
2845 if (read_targets == 0 && min_bad > 0) {
2846 /* These sectors are bad on all InSync devices, so we
2847 * need to mark them bad on all write targets
2848 */
2849 int ok = 1;
2850 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2851 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2852 struct md_rdev *rdev = conf->mirrors[i].rdev;
2853 ok = rdev_set_badblocks(rdev, sector_nr,
2854 min_bad, 0
2855 ) && ok;
2856 }
2857 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2858 *skipped = 1;
2859 put_buf(r1_bio);
2860
2861 if (!ok) {
2862 /* Cannot record the badblocks, so need to
2863 * abort the resync.
2864 * If there are multiple read targets, could just
2865 * fail the really bad ones ???
2866 */
2867 conf->recovery_disabled = mddev->recovery_disabled;
2868 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2869 return 0;
2870 } else
2871 return min_bad;
2872
2873 }
2874 if (min_bad > 0 && min_bad < good_sectors) {
2875 /* only resync enough to reach the next bad->good
2876 * transition */
2877 good_sectors = min_bad;
2878 }
2879
2880 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2881 /* extra read targets are also write targets */
2882 write_targets += read_targets-1;
2883
2884 if (write_targets == 0 || read_targets == 0) {
2885 /* There is nowhere to write, so all non-sync
2886 * drives must be failed - so we are finished
2887 */
2888 sector_t rv;
2889 if (min_bad > 0)
2890 max_sector = sector_nr + min_bad;
2891 rv = max_sector - sector_nr;
2892 *skipped = 1;
2893 put_buf(r1_bio);
2894 return rv;
2895 }
2896
2897 if (max_sector > mddev->resync_max)
2898 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2899 if (max_sector > sector_nr + good_sectors)
2900 max_sector = sector_nr + good_sectors;
2901 nr_sectors = 0;
2902 sync_blocks = 0;
2903 do {
2904 struct page *page;
2905 int len = PAGE_SIZE;
2906 if (sector_nr + (len>>9) > max_sector)
2907 len = (max_sector - sector_nr) << 9;
2908 if (len == 0)
2909 break;
2910 if (sync_blocks == 0) {
2911 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2912 &sync_blocks, still_degraded) &&
2913 !conf->fullsync &&
2914 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2915 break;
2916 if ((len >> 9) > sync_blocks)
2917 len = sync_blocks<<9;
2918 }
2919
2920 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2921 struct resync_pages *rp;
2922
2923 bio = r1_bio->bios[i];
2924 rp = get_resync_pages(bio);
2925 if (bio->bi_end_io) {
2926 page = resync_fetch_page(rp, rp->idx++);
2927
2928 /*
2929 * won't fail because the vec table is big
2930 * enough to hold all these pages
2931 */
2932 bio_add_page(bio, page, len, 0);
2933 }
2934 }
2935 nr_sectors += len>>9;
2936 sector_nr += len>>9;
2937 sync_blocks -= (len>>9);
2938 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2939
2940 r1_bio->sectors = nr_sectors;
2941
2942 if (mddev_is_clustered(mddev) &&
2943 conf->cluster_sync_high < sector_nr + nr_sectors) {
2944 conf->cluster_sync_low = mddev->curr_resync_completed;
2945 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2946 /* Send resync message */
2947 md_cluster_ops->resync_info_update(mddev,
2948 conf->cluster_sync_low,
2949 conf->cluster_sync_high);
2950 }
2951
2952 /* For a user-requested sync, we read all readable devices and do a
2953 * compare
2954 */
2955 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2956 atomic_set(&r1_bio->remaining, read_targets);
2957 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2958 bio = r1_bio->bios[i];
2959 if (bio->bi_end_io == end_sync_read) {
2960 read_targets--;
2961 md_sync_acct(bio->bi_bdev, nr_sectors);
2962 if (read_targets == 1)
2963 bio->bi_opf &= ~MD_FAILFAST;
2964 generic_make_request(bio);
2965 }
2966 }
2967 } else {
2968 atomic_set(&r1_bio->remaining, 1);
2969 bio = r1_bio->bios[r1_bio->read_disk];
2970 md_sync_acct(bio->bi_bdev, nr_sectors);
2971 if (read_targets == 1)
2972 bio->bi_opf &= ~MD_FAILFAST;
2973 generic_make_request(bio);
2974
2975 }
2976 return nr_sectors;
2977 }
2978
2979 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2980 {
2981 if (sectors)
2982 return sectors;
2983
2984 return mddev->dev_sectors;
2985 }
2986
2987 static struct r1conf *setup_conf(struct mddev *mddev)
2988 {
2989 struct r1conf *conf;
2990 int i;
2991 struct raid1_info *disk;
2992 struct md_rdev *rdev;
2993 int err = -ENOMEM;
2994
2995 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2996 if (!conf)
2997 goto abort;
2998
2999 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3000 sizeof(atomic_t), GFP_KERNEL);
3001 if (!conf->nr_pending)
3002 goto abort;
3003
3004 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3005 sizeof(atomic_t), GFP_KERNEL);
3006 if (!conf->nr_waiting)
3007 goto abort;
3008
3009 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3010 sizeof(atomic_t), GFP_KERNEL);
3011 if (!conf->nr_queued)
3012 goto abort;
3013
3014 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3015 sizeof(atomic_t), GFP_KERNEL);
3016 if (!conf->barrier)
3017 goto abort;
3018
3019 conf->mirrors = kzalloc(sizeof(struct raid1_info)
3020 * mddev->raid_disks * 2,
3021 GFP_KERNEL);
3022 if (!conf->mirrors)
3023 goto abort;
3024
3025 conf->tmppage = alloc_page(GFP_KERNEL);
3026 if (!conf->tmppage)
3027 goto abort;
3028
3029 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3030 if (!conf->poolinfo)
3031 goto abort;
3032 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3033 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3034 r1bio_pool_free,
3035 conf->poolinfo);
3036 if (!conf->r1bio_pool)
3037 goto abort;
3038
3039 conf->poolinfo->mddev = mddev;
3040
3041 err = -EINVAL;
3042 spin_lock_init(&conf->device_lock);
3043 rdev_for_each(rdev, mddev) {
3044 struct request_queue *q;
3045 int disk_idx = rdev->raid_disk;
3046 if (disk_idx >= mddev->raid_disks
3047 || disk_idx < 0)
3048 continue;
3049 if (test_bit(Replacement, &rdev->flags))
3050 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3051 else
3052 disk = conf->mirrors + disk_idx;
3053
3054 if (disk->rdev)
3055 goto abort;
3056 disk->rdev = rdev;
3057 q = bdev_get_queue(rdev->bdev);
3058
3059 disk->head_position = 0;
3060 disk->seq_start = MaxSector;
3061 }
3062 conf->raid_disks = mddev->raid_disks;
3063 conf->mddev = mddev;
3064 INIT_LIST_HEAD(&conf->retry_list);
3065 INIT_LIST_HEAD(&conf->bio_end_io_list);
3066
3067 spin_lock_init(&conf->resync_lock);
3068 init_waitqueue_head(&conf->wait_barrier);
3069
3070 bio_list_init(&conf->pending_bio_list);
3071 conf->pending_count = 0;
3072 conf->recovery_disabled = mddev->recovery_disabled - 1;
3073
3074 err = -EIO;
3075 for (i = 0; i < conf->raid_disks * 2; i++) {
3076
3077 disk = conf->mirrors + i;
3078
3079 if (i < conf->raid_disks &&
3080 disk[conf->raid_disks].rdev) {
3081 /* This slot has a replacement. */
3082 if (!disk->rdev) {
3083 /* No original, just make the replacement
3084 * a recovering spare
3085 */
3086 disk->rdev =
3087 disk[conf->raid_disks].rdev;
3088 disk[conf->raid_disks].rdev = NULL;
3089 } else if (!test_bit(In_sync, &disk->rdev->flags))
3090 /* Original is not in_sync - bad */
3091 goto abort;
3092 }
3093
3094 if (!disk->rdev ||
3095 !test_bit(In_sync, &disk->rdev->flags)) {
3096 disk->head_position = 0;
3097 if (disk->rdev &&
3098 (disk->rdev->saved_raid_disk < 0))
3099 conf->fullsync = 1;
3100 }
3101 }
3102
3103 err = -ENOMEM;
3104 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3105 if (!conf->thread)
3106 goto abort;
3107
3108 return conf;
3109
3110 abort:
3111 if (conf) {
3112 mempool_destroy(conf->r1bio_pool);
3113 kfree(conf->mirrors);
3114 safe_put_page(conf->tmppage);
3115 kfree(conf->poolinfo);
3116 kfree(conf->nr_pending);
3117 kfree(conf->nr_waiting);
3118 kfree(conf->nr_queued);
3119 kfree(conf->barrier);
3120 kfree(conf);
3121 }
3122 return ERR_PTR(err);
3123 }
3124
3125 static void raid1_free(struct mddev *mddev, void *priv);
3126 static int raid1_run(struct mddev *mddev)
3127 {
3128 struct r1conf *conf;
3129 int i;
3130 struct md_rdev *rdev;
3131 int ret;
3132 bool discard_supported = false;
3133
3134 if (mddev->level != 1) {
3135 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3136 mdname(mddev), mddev->level);
3137 return -EIO;
3138 }
3139 if (mddev->reshape_position != MaxSector) {
3140 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3141 mdname(mddev));
3142 return -EIO;
3143 }
3144 /*
3145 * copy the already verified devices into our private RAID1
3146 * bookkeeping area. [whatever we allocate in run(),
3147 * should be freed in raid1_free()]
3148 */
3149 if (mddev->private == NULL)
3150 conf = setup_conf(mddev);
3151 else
3152 conf = mddev->private;
3153
3154 if (IS_ERR(conf))
3155 return PTR_ERR(conf);
3156
3157 if (mddev->queue)
3158 blk_queue_max_write_same_sectors(mddev->queue, 0);
3159
3160 rdev_for_each(rdev, mddev) {
3161 if (!mddev->gendisk)
3162 continue;
3163 disk_stack_limits(mddev->gendisk, rdev->bdev,
3164 rdev->data_offset << 9);
3165 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3166 discard_supported = true;
3167 }
3168
3169 mddev->degraded = 0;
3170 for (i=0; i < conf->raid_disks; i++)
3171 if (conf->mirrors[i].rdev == NULL ||
3172 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3173 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3174 mddev->degraded++;
3175
3176 if (conf->raid_disks - mddev->degraded == 1)
3177 mddev->recovery_cp = MaxSector;
3178
3179 if (mddev->recovery_cp != MaxSector)
3180 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3181 mdname(mddev));
3182 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3183 mdname(mddev), mddev->raid_disks - mddev->degraded,
3184 mddev->raid_disks);
3185
3186 /*
3187 * Ok, everything is just fine now
3188 */
3189 mddev->thread = conf->thread;
3190 conf->thread = NULL;
3191 mddev->private = conf;
3192 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3193
3194 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3195
3196 if (mddev->queue) {
3197 if (discard_supported)
3198 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3199 mddev->queue);
3200 else
3201 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3202 mddev->queue);
3203 }
3204
3205 ret = md_integrity_register(mddev);
3206 if (ret) {
3207 md_unregister_thread(&mddev->thread);
3208 raid1_free(mddev, conf);
3209 }
3210 return ret;
3211 }
3212
3213 static void raid1_free(struct mddev *mddev, void *priv)
3214 {
3215 struct r1conf *conf = priv;
3216
3217 mempool_destroy(conf->r1bio_pool);
3218 kfree(conf->mirrors);
3219 safe_put_page(conf->tmppage);
3220 kfree(conf->poolinfo);
3221 kfree(conf->nr_pending);
3222 kfree(conf->nr_waiting);
3223 kfree(conf->nr_queued);
3224 kfree(conf->barrier);
3225 kfree(conf);
3226 }
3227
3228 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3229 {
3230 /* no resync is happening, and there is enough space
3231 * on all devices, so we can resize.
3232 * We need to make sure resync covers any new space.
3233 * If the array is shrinking we should possibly wait until
3234 * any io in the removed space completes, but it hardly seems
3235 * worth it.
3236 */
3237 sector_t newsize = raid1_size(mddev, sectors, 0);
3238 if (mddev->external_size &&
3239 mddev->array_sectors > newsize)
3240 return -EINVAL;
3241 if (mddev->bitmap) {
3242 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3243 if (ret)
3244 return ret;
3245 }
3246 md_set_array_sectors(mddev, newsize);
3247 if (sectors > mddev->dev_sectors &&
3248 mddev->recovery_cp > mddev->dev_sectors) {
3249 mddev->recovery_cp = mddev->dev_sectors;
3250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3251 }
3252 mddev->dev_sectors = sectors;
3253 mddev->resync_max_sectors = sectors;
3254 return 0;
3255 }
3256
3257 static int raid1_reshape(struct mddev *mddev)
3258 {
3259 /* We need to:
3260 * 1/ resize the r1bio_pool
3261 * 2/ resize conf->mirrors
3262 *
3263 * We allocate a new r1bio_pool if we can.
3264 * Then raise a device barrier and wait until all IO stops.
3265 * Then resize conf->mirrors and swap in the new r1bio pool.
3266 *
3267 * At the same time, we "pack" the devices so that all the missing
3268 * devices have the higher raid_disk numbers.
3269 */
3270 mempool_t *newpool, *oldpool;
3271 struct pool_info *newpoolinfo;
3272 struct raid1_info *newmirrors;
3273 struct r1conf *conf = mddev->private;
3274 int cnt, raid_disks;
3275 unsigned long flags;
3276 int d, d2, err;
3277
3278 /* Cannot change chunk_size, layout, or level */
3279 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3280 mddev->layout != mddev->new_layout ||
3281 mddev->level != mddev->new_level) {
3282 mddev->new_chunk_sectors = mddev->chunk_sectors;
3283 mddev->new_layout = mddev->layout;
3284 mddev->new_level = mddev->level;
3285 return -EINVAL;
3286 }
3287
3288 if (!mddev_is_clustered(mddev)) {
3289 err = md_allow_write(mddev);
3290 if (err)
3291 return err;
3292 }
3293
3294 raid_disks = mddev->raid_disks + mddev->delta_disks;
3295
3296 if (raid_disks < conf->raid_disks) {
3297 cnt=0;
3298 for (d= 0; d < conf->raid_disks; d++)
3299 if (conf->mirrors[d].rdev)
3300 cnt++;
3301 if (cnt > raid_disks)
3302 return -EBUSY;
3303 }
3304
3305 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3306 if (!newpoolinfo)
3307 return -ENOMEM;
3308 newpoolinfo->mddev = mddev;
3309 newpoolinfo->raid_disks = raid_disks * 2;
3310
3311 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3312 r1bio_pool_free, newpoolinfo);
3313 if (!newpool) {
3314 kfree(newpoolinfo);
3315 return -ENOMEM;
3316 }
3317 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3318 GFP_KERNEL);
3319 if (!newmirrors) {
3320 kfree(newpoolinfo);
3321 mempool_destroy(newpool);
3322 return -ENOMEM;
3323 }
3324
3325 freeze_array(conf, 0);
3326
3327 /* ok, everything is stopped */
3328 oldpool = conf->r1bio_pool;
3329 conf->r1bio_pool = newpool;
3330
3331 for (d = d2 = 0; d < conf->raid_disks; d++) {
3332 struct md_rdev *rdev = conf->mirrors[d].rdev;
3333 if (rdev && rdev->raid_disk != d2) {
3334 sysfs_unlink_rdev(mddev, rdev);
3335 rdev->raid_disk = d2;
3336 sysfs_unlink_rdev(mddev, rdev);
3337 if (sysfs_link_rdev(mddev, rdev))
3338 pr_warn("md/raid1:%s: cannot register rd%d\n",
3339 mdname(mddev), rdev->raid_disk);
3340 }
3341 if (rdev)
3342 newmirrors[d2++].rdev = rdev;
3343 }
3344 kfree(conf->mirrors);
3345 conf->mirrors = newmirrors;
3346 kfree(conf->poolinfo);
3347 conf->poolinfo = newpoolinfo;
3348
3349 spin_lock_irqsave(&conf->device_lock, flags);
3350 mddev->degraded += (raid_disks - conf->raid_disks);
3351 spin_unlock_irqrestore(&conf->device_lock, flags);
3352 conf->raid_disks = mddev->raid_disks = raid_disks;
3353 mddev->delta_disks = 0;
3354
3355 unfreeze_array(conf);
3356
3357 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3358 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3359 md_wakeup_thread(mddev->thread);
3360
3361 mempool_destroy(oldpool);
3362 return 0;
3363 }
3364
3365 static void raid1_quiesce(struct mddev *mddev, int state)
3366 {
3367 struct r1conf *conf = mddev->private;
3368
3369 switch(state) {
3370 case 2: /* wake for suspend */
3371 wake_up(&conf->wait_barrier);
3372 break;
3373 case 1:
3374 freeze_array(conf, 0);
3375 break;
3376 case 0:
3377 unfreeze_array(conf);
3378 break;
3379 }
3380 }
3381
3382 static void *raid1_takeover(struct mddev *mddev)
3383 {
3384 /* raid1 can take over:
3385 * raid5 with 2 devices, any layout or chunk size
3386 */
3387 if (mddev->level == 5 && mddev->raid_disks == 2) {
3388 struct r1conf *conf;
3389 mddev->new_level = 1;
3390 mddev->new_layout = 0;
3391 mddev->new_chunk_sectors = 0;
3392 conf = setup_conf(mddev);
3393 if (!IS_ERR(conf)) {
3394 /* Array must appear to be quiesced */
3395 conf->array_frozen = 1;
3396 mddev_clear_unsupported_flags(mddev,
3397 UNSUPPORTED_MDDEV_FLAGS);
3398 }
3399 return conf;
3400 }
3401 return ERR_PTR(-EINVAL);
3402 }
3403
3404 static struct md_personality raid1_personality =
3405 {
3406 .name = "raid1",
3407 .level = 1,
3408 .owner = THIS_MODULE,
3409 .make_request = raid1_make_request,
3410 .run = raid1_run,
3411 .free = raid1_free,
3412 .status = raid1_status,
3413 .error_handler = raid1_error,
3414 .hot_add_disk = raid1_add_disk,
3415 .hot_remove_disk= raid1_remove_disk,
3416 .spare_active = raid1_spare_active,
3417 .sync_request = raid1_sync_request,
3418 .resize = raid1_resize,
3419 .size = raid1_size,
3420 .check_reshape = raid1_reshape,
3421 .quiesce = raid1_quiesce,
3422 .takeover = raid1_takeover,
3423 .congested = raid1_congested,
3424 };
3425
3426 static int __init raid_init(void)
3427 {
3428 return register_md_personality(&raid1_personality);
3429 }
3430
3431 static void raid_exit(void)
3432 {
3433 unregister_md_personality(&raid1_personality);
3434 }
3435
3436 module_init(raid_init);
3437 module_exit(raid_exit);
3438 MODULE_LICENSE("GPL");
3439 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3440 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3441 MODULE_ALIAS("md-raid1");
3442 MODULE_ALIAS("md-level-1");
3443
3444 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);