]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
ad0468c42d23c3cccb739874874322531903b38b
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
121 */
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
129
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
165
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 }
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 int i;
182
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
188 }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 struct r1conf *conf = r1_bio->mddev->private;
194
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
203
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
212 lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
265 allow_barrier(conf, start_next_window, bi_sector);
266 }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 struct bio *bio = r1_bio->master_bio;
272
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
279
280 call_bio_endio(r1_bio);
281 }
282 free_r1bio(r1_bio);
283 }
284
285 /*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 struct r1conf *conf = r1_bio->mddev->private;
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297 * Find the disk number which triggered given bio
298 */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
304
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
321
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
326 update_head_pos(mirror, r1_bio);
327
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
334 */
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
343
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
362 }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
397 }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
407
408 mirror = find_bio_disk(r1_bio, bio);
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
423 /*
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
432 */
433 sector_t first_bad;
434 int bad_sectors;
435
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
480 }
481 }
482 }
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
486
487 /*
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
491 r1_bio_write_done(r1_bio);
492
493 if (to_put)
494 bio_put(to_put);
495 }
496
497
498 /*
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
506 *
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
509 *
510 * The rdev for the device selected will have nr_pending incremented.
511 */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514 const sector_t this_sector = r1_bio->sector;
515 int sectors;
516 int best_good_sectors;
517 int best_disk, best_dist_disk, best_pending_disk;
518 int has_nonrot_disk;
519 int disk;
520 sector_t best_dist;
521 unsigned int min_pending;
522 struct md_rdev *rdev;
523 int choose_first;
524 int choose_next_idle;
525
526 rcu_read_lock();
527 /*
528 * Check if we can balance. We can balance on the whole
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
531 */
532 retry:
533 sectors = r1_bio->sectors;
534 best_disk = -1;
535 best_dist_disk = -1;
536 best_dist = MaxSector;
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
539 best_good_sectors = 0;
540 has_nonrot_disk = 0;
541 choose_next_idle = 0;
542
543 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
544
545 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
546 sector_t dist;
547 sector_t first_bad;
548 int bad_sectors;
549 unsigned int pending;
550 bool nonrot;
551
552 rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 if (r1_bio->bios[disk] == IO_BLOCKED
554 || rdev == NULL
555 || test_bit(Unmerged, &rdev->flags)
556 || test_bit(Faulty, &rdev->flags))
557 continue;
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
560 continue;
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
564 if (best_disk < 0) {
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad < this_sector)
568 /* Cannot use this */
569 continue;
570 best_good_sectors = first_bad - this_sector;
571 } else
572 best_good_sectors = sectors;
573 best_disk = disk;
574 }
575 continue;
576 }
577 /* This is a reasonable device to use. It might
578 * even be best.
579 */
580 if (is_badblock(rdev, this_sector, sectors,
581 &first_bad, &bad_sectors)) {
582 if (best_dist < MaxSector)
583 /* already have a better device */
584 continue;
585 if (first_bad <= this_sector) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
589 */
590 bad_sectors -= (this_sector - first_bad);
591 if (choose_first && sectors > bad_sectors)
592 sectors = bad_sectors;
593 if (best_good_sectors > sectors)
594 best_good_sectors = sectors;
595
596 } else {
597 sector_t good_sectors = first_bad - this_sector;
598 if (good_sectors > best_good_sectors) {
599 best_good_sectors = good_sectors;
600 best_disk = disk;
601 }
602 if (choose_first)
603 break;
604 }
605 continue;
606 } else
607 best_good_sectors = sectors;
608
609 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 has_nonrot_disk |= nonrot;
611 pending = atomic_read(&rdev->nr_pending);
612 dist = abs(this_sector - conf->mirrors[disk].head_position);
613 if (choose_first) {
614 best_disk = disk;
615 break;
616 }
617 /* Don't change to another disk for sequential reads */
618 if (conf->mirrors[disk].next_seq_sect == this_sector
619 || dist == 0) {
620 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 struct raid1_info *mirror = &conf->mirrors[disk];
622
623 best_disk = disk;
624 /*
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
636 */
637 if (nonrot && opt_iosize > 0 &&
638 mirror->seq_start != MaxSector &&
639 mirror->next_seq_sect > opt_iosize &&
640 mirror->next_seq_sect - opt_iosize >=
641 mirror->seq_start) {
642 choose_next_idle = 1;
643 continue;
644 }
645 break;
646 }
647 /* If device is idle, use it */
648 if (pending == 0) {
649 best_disk = disk;
650 break;
651 }
652
653 if (choose_next_idle)
654 continue;
655
656 if (min_pending > pending) {
657 min_pending = pending;
658 best_pending_disk = disk;
659 }
660
661 if (dist < best_dist) {
662 best_dist = dist;
663 best_dist_disk = disk;
664 }
665 }
666
667 /*
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
672 */
673 if (best_disk == -1) {
674 if (has_nonrot_disk)
675 best_disk = best_pending_disk;
676 else
677 best_disk = best_dist_disk;
678 }
679
680 if (best_disk >= 0) {
681 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 if (!rdev)
683 goto retry;
684 atomic_inc(&rdev->nr_pending);
685 if (test_bit(Faulty, &rdev->flags)) {
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
688 */
689 rdev_dec_pending(rdev, conf->mddev);
690 goto retry;
691 }
692 sectors = best_good_sectors;
693
694 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 conf->mirrors[best_disk].seq_start = this_sector;
696
697 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 }
699 rcu_read_unlock();
700 *max_sectors = sectors;
701
702 return best_disk;
703 }
704
705 static int raid1_mergeable_bvec(struct request_queue *q,
706 struct bvec_merge_data *bvm,
707 struct bio_vec *biovec)
708 {
709 struct mddev *mddev = q->queuedata;
710 struct r1conf *conf = mddev->private;
711 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 int max = biovec->bv_len;
713
714 if (mddev->merge_check_needed) {
715 int disk;
716 rcu_read_lock();
717 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 struct md_rdev *rdev = rcu_dereference(
719 conf->mirrors[disk].rdev);
720 if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 struct request_queue *q =
722 bdev_get_queue(rdev->bdev);
723 if (q->merge_bvec_fn) {
724 bvm->bi_sector = sector +
725 rdev->data_offset;
726 bvm->bi_bdev = rdev->bdev;
727 max = min(max, q->merge_bvec_fn(
728 q, bvm, biovec));
729 }
730 }
731 }
732 rcu_read_unlock();
733 }
734 return max;
735
736 }
737
738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740 struct r1conf *conf = mddev->private;
741 int i, ret = 0;
742
743 if ((bits & (1 << BDI_async_congested)) &&
744 conf->pending_count >= max_queued_requests)
745 return 1;
746
747 rcu_read_lock();
748 for (i = 0; i < conf->raid_disks * 2; i++) {
749 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 struct request_queue *q = bdev_get_queue(rdev->bdev);
752
753 BUG_ON(!q);
754
755 /* Note the '|| 1' - when read_balance prefers
756 * non-congested targets, it can be removed
757 */
758 if ((bits & (1<<BDI_async_congested)) || 1)
759 ret |= bdi_congested(&q->backing_dev_info, bits);
760 else
761 ret &= bdi_congested(&q->backing_dev_info, bits);
762 }
763 }
764 rcu_read_unlock();
765 return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768
769 static int raid1_congested(void *data, int bits)
770 {
771 struct mddev *mddev = data;
772
773 return mddev_congested(mddev, bits) ||
774 md_raid1_congested(mddev, bits);
775 }
776
777 static void flush_pending_writes(struct r1conf *conf)
778 {
779 /* Any writes that have been queued but are awaiting
780 * bitmap updates get flushed here.
781 */
782 spin_lock_irq(&conf->device_lock);
783
784 if (conf->pending_bio_list.head) {
785 struct bio *bio;
786 bio = bio_list_get(&conf->pending_bio_list);
787 conf->pending_count = 0;
788 spin_unlock_irq(&conf->device_lock);
789 /* flush any pending bitmap writes to
790 * disk before proceeding w/ I/O */
791 bitmap_unplug(conf->mddev->bitmap);
792 wake_up(&conf->wait_barrier);
793
794 while (bio) { /* submit pending writes */
795 struct bio *next = bio->bi_next;
796 bio->bi_next = NULL;
797 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 /* Just ignore it */
800 bio_endio(bio, 0);
801 else
802 generic_make_request(bio);
803 bio = next;
804 }
805 } else
806 spin_unlock_irq(&conf->device_lock);
807 }
808
809 /* Barriers....
810 * Sometimes we need to suspend IO while we do something else,
811 * either some resync/recovery, or reconfigure the array.
812 * To do this we raise a 'barrier'.
813 * The 'barrier' is a counter that can be raised multiple times
814 * to count how many activities are happening which preclude
815 * normal IO.
816 * We can only raise the barrier if there is no pending IO.
817 * i.e. if nr_pending == 0.
818 * We choose only to raise the barrier if no-one is waiting for the
819 * barrier to go down. This means that as soon as an IO request
820 * is ready, no other operations which require a barrier will start
821 * until the IO request has had a chance.
822 *
823 * So: regular IO calls 'wait_barrier'. When that returns there
824 * is no backgroup IO happening, It must arrange to call
825 * allow_barrier when it has finished its IO.
826 * backgroup IO calls must call raise_barrier. Once that returns
827 * there is no normal IO happeing. It must arrange to call
828 * lower_barrier when the particular background IO completes.
829 */
830 static void raise_barrier(struct r1conf *conf)
831 {
832 spin_lock_irq(&conf->resync_lock);
833
834 /* Wait until no block IO is waiting */
835 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836 conf->resync_lock);
837
838 /* block any new IO from starting */
839 conf->barrier++;
840
841 /* For these conditions we must wait:
842 * A: while the array is in frozen state
843 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844 * the max count which allowed.
845 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846 * next resync will reach to the window which normal bios are
847 * handling.
848 */
849 wait_event_lock_irq(conf->wait_barrier,
850 !conf->array_frozen &&
851 conf->barrier < RESYNC_DEPTH &&
852 (conf->start_next_window >=
853 conf->next_resync + RESYNC_SECTORS),
854 conf->resync_lock);
855
856 spin_unlock_irq(&conf->resync_lock);
857 }
858
859 static void lower_barrier(struct r1conf *conf)
860 {
861 unsigned long flags;
862 BUG_ON(conf->barrier <= 0);
863 spin_lock_irqsave(&conf->resync_lock, flags);
864 conf->barrier--;
865 spin_unlock_irqrestore(&conf->resync_lock, flags);
866 wake_up(&conf->wait_barrier);
867 }
868
869 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
870 {
871 bool wait = false;
872
873 if (conf->array_frozen || !bio)
874 wait = true;
875 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
876 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
877 wait = true;
878 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
879 >= bio_end_sector(bio)) ||
880 (conf->next_resync + NEXT_NORMALIO_DISTANCE
881 <= bio->bi_iter.bi_sector))
882 wait = false;
883 else
884 wait = true;
885 }
886
887 return wait;
888 }
889
890 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
891 {
892 sector_t sector = 0;
893
894 spin_lock_irq(&conf->resync_lock);
895 if (need_to_wait_for_sync(conf, bio)) {
896 conf->nr_waiting++;
897 /* Wait for the barrier to drop.
898 * However if there are already pending
899 * requests (preventing the barrier from
900 * rising completely), and the
901 * pre-process bio queue isn't empty,
902 * then don't wait, as we need to empty
903 * that queue to get the nr_pending
904 * count down.
905 */
906 wait_event_lock_irq(conf->wait_barrier,
907 !conf->array_frozen &&
908 (!conf->barrier ||
909 ((conf->start_next_window <
910 conf->next_resync + RESYNC_SECTORS) &&
911 current->bio_list &&
912 !bio_list_empty(current->bio_list))),
913 conf->resync_lock);
914 conf->nr_waiting--;
915 }
916
917 if (bio && bio_data_dir(bio) == WRITE) {
918 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
919 <= bio->bi_iter.bi_sector) {
920 if (conf->start_next_window == MaxSector)
921 conf->start_next_window =
922 conf->next_resync +
923 NEXT_NORMALIO_DISTANCE;
924
925 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
926 <= bio->bi_iter.bi_sector)
927 conf->next_window_requests++;
928 else
929 conf->current_window_requests++;
930 sector = conf->start_next_window;
931 }
932 }
933
934 conf->nr_pending++;
935 spin_unlock_irq(&conf->resync_lock);
936 return sector;
937 }
938
939 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
940 sector_t bi_sector)
941 {
942 unsigned long flags;
943
944 spin_lock_irqsave(&conf->resync_lock, flags);
945 conf->nr_pending--;
946 if (start_next_window) {
947 if (start_next_window == conf->start_next_window) {
948 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
949 <= bi_sector)
950 conf->next_window_requests--;
951 else
952 conf->current_window_requests--;
953 } else
954 conf->current_window_requests--;
955
956 if (!conf->current_window_requests) {
957 if (conf->next_window_requests) {
958 conf->current_window_requests =
959 conf->next_window_requests;
960 conf->next_window_requests = 0;
961 conf->start_next_window +=
962 NEXT_NORMALIO_DISTANCE;
963 } else
964 conf->start_next_window = MaxSector;
965 }
966 }
967 spin_unlock_irqrestore(&conf->resync_lock, flags);
968 wake_up(&conf->wait_barrier);
969 }
970
971 static void freeze_array(struct r1conf *conf, int extra)
972 {
973 /* stop syncio and normal IO and wait for everything to
974 * go quite.
975 * We wait until nr_pending match nr_queued+extra
976 * This is called in the context of one normal IO request
977 * that has failed. Thus any sync request that might be pending
978 * will be blocked by nr_pending, and we need to wait for
979 * pending IO requests to complete or be queued for re-try.
980 * Thus the number queued (nr_queued) plus this request (extra)
981 * must match the number of pending IOs (nr_pending) before
982 * we continue.
983 */
984 spin_lock_irq(&conf->resync_lock);
985 conf->array_frozen = 1;
986 wait_event_lock_irq_cmd(conf->wait_barrier,
987 conf->nr_pending == conf->nr_queued+extra,
988 conf->resync_lock,
989 flush_pending_writes(conf));
990 spin_unlock_irq(&conf->resync_lock);
991 }
992 static void unfreeze_array(struct r1conf *conf)
993 {
994 /* reverse the effect of the freeze */
995 spin_lock_irq(&conf->resync_lock);
996 conf->array_frozen = 0;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001
1002 /* duplicate the data pages for behind I/O
1003 */
1004 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1005 {
1006 int i;
1007 struct bio_vec *bvec;
1008 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1009 GFP_NOIO);
1010 if (unlikely(!bvecs))
1011 return;
1012
1013 bio_for_each_segment_all(bvec, bio, i) {
1014 bvecs[i] = *bvec;
1015 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1016 if (unlikely(!bvecs[i].bv_page))
1017 goto do_sync_io;
1018 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1019 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1020 kunmap(bvecs[i].bv_page);
1021 kunmap(bvec->bv_page);
1022 }
1023 r1_bio->behind_bvecs = bvecs;
1024 r1_bio->behind_page_count = bio->bi_vcnt;
1025 set_bit(R1BIO_BehindIO, &r1_bio->state);
1026 return;
1027
1028 do_sync_io:
1029 for (i = 0; i < bio->bi_vcnt; i++)
1030 if (bvecs[i].bv_page)
1031 put_page(bvecs[i].bv_page);
1032 kfree(bvecs);
1033 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1034 bio->bi_iter.bi_size);
1035 }
1036
1037 struct raid1_plug_cb {
1038 struct blk_plug_cb cb;
1039 struct bio_list pending;
1040 int pending_cnt;
1041 };
1042
1043 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1044 {
1045 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1046 cb);
1047 struct mddev *mddev = plug->cb.data;
1048 struct r1conf *conf = mddev->private;
1049 struct bio *bio;
1050
1051 if (from_schedule || current->bio_list) {
1052 spin_lock_irq(&conf->device_lock);
1053 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1054 conf->pending_count += plug->pending_cnt;
1055 spin_unlock_irq(&conf->device_lock);
1056 wake_up(&conf->wait_barrier);
1057 md_wakeup_thread(mddev->thread);
1058 kfree(plug);
1059 return;
1060 }
1061
1062 /* we aren't scheduling, so we can do the write-out directly. */
1063 bio = bio_list_get(&plug->pending);
1064 bitmap_unplug(mddev->bitmap);
1065 wake_up(&conf->wait_barrier);
1066
1067 while (bio) { /* submit pending writes */
1068 struct bio *next = bio->bi_next;
1069 bio->bi_next = NULL;
1070 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1071 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1072 /* Just ignore it */
1073 bio_endio(bio, 0);
1074 else
1075 generic_make_request(bio);
1076 bio = next;
1077 }
1078 kfree(plug);
1079 }
1080
1081 static void make_request(struct mddev *mddev, struct bio * bio)
1082 {
1083 struct r1conf *conf = mddev->private;
1084 struct raid1_info *mirror;
1085 struct r1bio *r1_bio;
1086 struct bio *read_bio;
1087 int i, disks;
1088 struct bitmap *bitmap;
1089 unsigned long flags;
1090 const int rw = bio_data_dir(bio);
1091 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1092 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1093 const unsigned long do_discard = (bio->bi_rw
1094 & (REQ_DISCARD | REQ_SECURE));
1095 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1096 struct md_rdev *blocked_rdev;
1097 struct blk_plug_cb *cb;
1098 struct raid1_plug_cb *plug = NULL;
1099 int first_clone;
1100 int sectors_handled;
1101 int max_sectors;
1102 sector_t start_next_window;
1103
1104 /*
1105 * Register the new request and wait if the reconstruction
1106 * thread has put up a bar for new requests.
1107 * Continue immediately if no resync is active currently.
1108 */
1109
1110 md_write_start(mddev, bio); /* wait on superblock update early */
1111
1112 if (bio_data_dir(bio) == WRITE &&
1113 bio_end_sector(bio) > mddev->suspend_lo &&
1114 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1115 /* As the suspend_* range is controlled by
1116 * userspace, we want an interruptible
1117 * wait.
1118 */
1119 DEFINE_WAIT(w);
1120 for (;;) {
1121 flush_signals(current);
1122 prepare_to_wait(&conf->wait_barrier,
1123 &w, TASK_INTERRUPTIBLE);
1124 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1125 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1126 break;
1127 schedule();
1128 }
1129 finish_wait(&conf->wait_barrier, &w);
1130 }
1131
1132 start_next_window = wait_barrier(conf, bio);
1133
1134 bitmap = mddev->bitmap;
1135
1136 /*
1137 * make_request() can abort the operation when READA is being
1138 * used and no empty request is available.
1139 *
1140 */
1141 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1142
1143 r1_bio->master_bio = bio;
1144 r1_bio->sectors = bio_sectors(bio);
1145 r1_bio->state = 0;
1146 r1_bio->mddev = mddev;
1147 r1_bio->sector = bio->bi_iter.bi_sector;
1148
1149 /* We might need to issue multiple reads to different
1150 * devices if there are bad blocks around, so we keep
1151 * track of the number of reads in bio->bi_phys_segments.
1152 * If this is 0, there is only one r1_bio and no locking
1153 * will be needed when requests complete. If it is
1154 * non-zero, then it is the number of not-completed requests.
1155 */
1156 bio->bi_phys_segments = 0;
1157 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158
1159 if (rw == READ) {
1160 /*
1161 * read balancing logic:
1162 */
1163 int rdisk;
1164
1165 read_again:
1166 rdisk = read_balance(conf, r1_bio, &max_sectors);
1167
1168 if (rdisk < 0) {
1169 /* couldn't find anywhere to read from */
1170 raid_end_bio_io(r1_bio);
1171 return;
1172 }
1173 mirror = conf->mirrors + rdisk;
1174
1175 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1176 bitmap) {
1177 /* Reading from a write-mostly device must
1178 * take care not to over-take any writes
1179 * that are 'behind'
1180 */
1181 wait_event(bitmap->behind_wait,
1182 atomic_read(&bitmap->behind_writes) == 0);
1183 }
1184 r1_bio->read_disk = rdisk;
1185 r1_bio->start_next_window = 0;
1186
1187 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1188 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1189 max_sectors);
1190
1191 r1_bio->bios[rdisk] = read_bio;
1192
1193 read_bio->bi_iter.bi_sector = r1_bio->sector +
1194 mirror->rdev->data_offset;
1195 read_bio->bi_bdev = mirror->rdev->bdev;
1196 read_bio->bi_end_io = raid1_end_read_request;
1197 read_bio->bi_rw = READ | do_sync;
1198 read_bio->bi_private = r1_bio;
1199
1200 if (max_sectors < r1_bio->sectors) {
1201 /* could not read all from this device, so we will
1202 * need another r1_bio.
1203 */
1204
1205 sectors_handled = (r1_bio->sector + max_sectors
1206 - bio->bi_iter.bi_sector);
1207 r1_bio->sectors = max_sectors;
1208 spin_lock_irq(&conf->device_lock);
1209 if (bio->bi_phys_segments == 0)
1210 bio->bi_phys_segments = 2;
1211 else
1212 bio->bi_phys_segments++;
1213 spin_unlock_irq(&conf->device_lock);
1214 /* Cannot call generic_make_request directly
1215 * as that will be queued in __make_request
1216 * and subsequent mempool_alloc might block waiting
1217 * for it. So hand bio over to raid1d.
1218 */
1219 reschedule_retry(r1_bio);
1220
1221 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1222
1223 r1_bio->master_bio = bio;
1224 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1225 r1_bio->state = 0;
1226 r1_bio->mddev = mddev;
1227 r1_bio->sector = bio->bi_iter.bi_sector +
1228 sectors_handled;
1229 goto read_again;
1230 } else
1231 generic_make_request(read_bio);
1232 return;
1233 }
1234
1235 /*
1236 * WRITE:
1237 */
1238 if (conf->pending_count >= max_queued_requests) {
1239 md_wakeup_thread(mddev->thread);
1240 wait_event(conf->wait_barrier,
1241 conf->pending_count < max_queued_requests);
1242 }
1243 /* first select target devices under rcu_lock and
1244 * inc refcount on their rdev. Record them by setting
1245 * bios[x] to bio
1246 * If there are known/acknowledged bad blocks on any device on
1247 * which we have seen a write error, we want to avoid writing those
1248 * blocks.
1249 * This potentially requires several writes to write around
1250 * the bad blocks. Each set of writes gets it's own r1bio
1251 * with a set of bios attached.
1252 */
1253
1254 disks = conf->raid_disks * 2;
1255 retry_write:
1256 r1_bio->start_next_window = start_next_window;
1257 blocked_rdev = NULL;
1258 rcu_read_lock();
1259 max_sectors = r1_bio->sectors;
1260 for (i = 0; i < disks; i++) {
1261 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1262 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1263 atomic_inc(&rdev->nr_pending);
1264 blocked_rdev = rdev;
1265 break;
1266 }
1267 r1_bio->bios[i] = NULL;
1268 if (!rdev || test_bit(Faulty, &rdev->flags)
1269 || test_bit(Unmerged, &rdev->flags)) {
1270 if (i < conf->raid_disks)
1271 set_bit(R1BIO_Degraded, &r1_bio->state);
1272 continue;
1273 }
1274
1275 atomic_inc(&rdev->nr_pending);
1276 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1277 sector_t first_bad;
1278 int bad_sectors;
1279 int is_bad;
1280
1281 is_bad = is_badblock(rdev, r1_bio->sector,
1282 max_sectors,
1283 &first_bad, &bad_sectors);
1284 if (is_bad < 0) {
1285 /* mustn't write here until the bad block is
1286 * acknowledged*/
1287 set_bit(BlockedBadBlocks, &rdev->flags);
1288 blocked_rdev = rdev;
1289 break;
1290 }
1291 if (is_bad && first_bad <= r1_bio->sector) {
1292 /* Cannot write here at all */
1293 bad_sectors -= (r1_bio->sector - first_bad);
1294 if (bad_sectors < max_sectors)
1295 /* mustn't write more than bad_sectors
1296 * to other devices yet
1297 */
1298 max_sectors = bad_sectors;
1299 rdev_dec_pending(rdev, mddev);
1300 /* We don't set R1BIO_Degraded as that
1301 * only applies if the disk is
1302 * missing, so it might be re-added,
1303 * and we want to know to recover this
1304 * chunk.
1305 * In this case the device is here,
1306 * and the fact that this chunk is not
1307 * in-sync is recorded in the bad
1308 * block log
1309 */
1310 continue;
1311 }
1312 if (is_bad) {
1313 int good_sectors = first_bad - r1_bio->sector;
1314 if (good_sectors < max_sectors)
1315 max_sectors = good_sectors;
1316 }
1317 }
1318 r1_bio->bios[i] = bio;
1319 }
1320 rcu_read_unlock();
1321
1322 if (unlikely(blocked_rdev)) {
1323 /* Wait for this device to become unblocked */
1324 int j;
1325 sector_t old = start_next_window;
1326
1327 for (j = 0; j < i; j++)
1328 if (r1_bio->bios[j])
1329 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1330 r1_bio->state = 0;
1331 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1332 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1333 start_next_window = wait_barrier(conf, bio);
1334 /*
1335 * We must make sure the multi r1bios of bio have
1336 * the same value of bi_phys_segments
1337 */
1338 if (bio->bi_phys_segments && old &&
1339 old != start_next_window)
1340 /* Wait for the former r1bio(s) to complete */
1341 wait_event(conf->wait_barrier,
1342 bio->bi_phys_segments == 1);
1343 goto retry_write;
1344 }
1345
1346 if (max_sectors < r1_bio->sectors) {
1347 /* We are splitting this write into multiple parts, so
1348 * we need to prepare for allocating another r1_bio.
1349 */
1350 r1_bio->sectors = max_sectors;
1351 spin_lock_irq(&conf->device_lock);
1352 if (bio->bi_phys_segments == 0)
1353 bio->bi_phys_segments = 2;
1354 else
1355 bio->bi_phys_segments++;
1356 spin_unlock_irq(&conf->device_lock);
1357 }
1358 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1359
1360 atomic_set(&r1_bio->remaining, 1);
1361 atomic_set(&r1_bio->behind_remaining, 0);
1362
1363 first_clone = 1;
1364 for (i = 0; i < disks; i++) {
1365 struct bio *mbio;
1366 if (!r1_bio->bios[i])
1367 continue;
1368
1369 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1370 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1371
1372 if (first_clone) {
1373 /* do behind I/O ?
1374 * Not if there are too many, or cannot
1375 * allocate memory, or a reader on WriteMostly
1376 * is waiting for behind writes to flush */
1377 if (bitmap &&
1378 (atomic_read(&bitmap->behind_writes)
1379 < mddev->bitmap_info.max_write_behind) &&
1380 !waitqueue_active(&bitmap->behind_wait))
1381 alloc_behind_pages(mbio, r1_bio);
1382
1383 bitmap_startwrite(bitmap, r1_bio->sector,
1384 r1_bio->sectors,
1385 test_bit(R1BIO_BehindIO,
1386 &r1_bio->state));
1387 first_clone = 0;
1388 }
1389 if (r1_bio->behind_bvecs) {
1390 struct bio_vec *bvec;
1391 int j;
1392
1393 /*
1394 * We trimmed the bio, so _all is legit
1395 */
1396 bio_for_each_segment_all(bvec, mbio, j)
1397 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1398 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1399 atomic_inc(&r1_bio->behind_remaining);
1400 }
1401
1402 r1_bio->bios[i] = mbio;
1403
1404 mbio->bi_iter.bi_sector = (r1_bio->sector +
1405 conf->mirrors[i].rdev->data_offset);
1406 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1407 mbio->bi_end_io = raid1_end_write_request;
1408 mbio->bi_rw =
1409 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1410 mbio->bi_private = r1_bio;
1411
1412 atomic_inc(&r1_bio->remaining);
1413
1414 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1415 if (cb)
1416 plug = container_of(cb, struct raid1_plug_cb, cb);
1417 else
1418 plug = NULL;
1419 spin_lock_irqsave(&conf->device_lock, flags);
1420 if (plug) {
1421 bio_list_add(&plug->pending, mbio);
1422 plug->pending_cnt++;
1423 } else {
1424 bio_list_add(&conf->pending_bio_list, mbio);
1425 conf->pending_count++;
1426 }
1427 spin_unlock_irqrestore(&conf->device_lock, flags);
1428 if (!plug)
1429 md_wakeup_thread(mddev->thread);
1430 }
1431 /* Mustn't call r1_bio_write_done before this next test,
1432 * as it could result in the bio being freed.
1433 */
1434 if (sectors_handled < bio_sectors(bio)) {
1435 r1_bio_write_done(r1_bio);
1436 /* We need another r1_bio. It has already been counted
1437 * in bio->bi_phys_segments
1438 */
1439 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1440 r1_bio->master_bio = bio;
1441 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1442 r1_bio->state = 0;
1443 r1_bio->mddev = mddev;
1444 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1445 goto retry_write;
1446 }
1447
1448 r1_bio_write_done(r1_bio);
1449
1450 /* In case raid1d snuck in to freeze_array */
1451 wake_up(&conf->wait_barrier);
1452 }
1453
1454 static void status(struct seq_file *seq, struct mddev *mddev)
1455 {
1456 struct r1conf *conf = mddev->private;
1457 int i;
1458
1459 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1460 conf->raid_disks - mddev->degraded);
1461 rcu_read_lock();
1462 for (i = 0; i < conf->raid_disks; i++) {
1463 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1464 seq_printf(seq, "%s",
1465 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1466 }
1467 rcu_read_unlock();
1468 seq_printf(seq, "]");
1469 }
1470
1471
1472 static void error(struct mddev *mddev, struct md_rdev *rdev)
1473 {
1474 char b[BDEVNAME_SIZE];
1475 struct r1conf *conf = mddev->private;
1476
1477 /*
1478 * If it is not operational, then we have already marked it as dead
1479 * else if it is the last working disks, ignore the error, let the
1480 * next level up know.
1481 * else mark the drive as failed
1482 */
1483 if (test_bit(In_sync, &rdev->flags)
1484 && (conf->raid_disks - mddev->degraded) == 1) {
1485 /*
1486 * Don't fail the drive, act as though we were just a
1487 * normal single drive.
1488 * However don't try a recovery from this drive as
1489 * it is very likely to fail.
1490 */
1491 conf->recovery_disabled = mddev->recovery_disabled;
1492 return;
1493 }
1494 set_bit(Blocked, &rdev->flags);
1495 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496 unsigned long flags;
1497 spin_lock_irqsave(&conf->device_lock, flags);
1498 mddev->degraded++;
1499 set_bit(Faulty, &rdev->flags);
1500 spin_unlock_irqrestore(&conf->device_lock, flags);
1501 } else
1502 set_bit(Faulty, &rdev->flags);
1503 /*
1504 * if recovery is running, make sure it aborts.
1505 */
1506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1508 printk(KERN_ALERT
1509 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510 "md/raid1:%s: Operation continuing on %d devices.\n",
1511 mdname(mddev), bdevname(rdev->bdev, b),
1512 mdname(mddev), conf->raid_disks - mddev->degraded);
1513 }
1514
1515 static void print_conf(struct r1conf *conf)
1516 {
1517 int i;
1518
1519 printk(KERN_DEBUG "RAID1 conf printout:\n");
1520 if (!conf) {
1521 printk(KERN_DEBUG "(!conf)\n");
1522 return;
1523 }
1524 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1525 conf->raid_disks);
1526
1527 rcu_read_lock();
1528 for (i = 0; i < conf->raid_disks; i++) {
1529 char b[BDEVNAME_SIZE];
1530 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1531 if (rdev)
1532 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1533 i, !test_bit(In_sync, &rdev->flags),
1534 !test_bit(Faulty, &rdev->flags),
1535 bdevname(rdev->bdev,b));
1536 }
1537 rcu_read_unlock();
1538 }
1539
1540 static void close_sync(struct r1conf *conf)
1541 {
1542 wait_barrier(conf, NULL);
1543 allow_barrier(conf, 0, 0);
1544
1545 mempool_destroy(conf->r1buf_pool);
1546 conf->r1buf_pool = NULL;
1547
1548 conf->next_resync = 0;
1549 conf->start_next_window = MaxSector;
1550 }
1551
1552 static int raid1_spare_active(struct mddev *mddev)
1553 {
1554 int i;
1555 struct r1conf *conf = mddev->private;
1556 int count = 0;
1557 unsigned long flags;
1558
1559 /*
1560 * Find all failed disks within the RAID1 configuration
1561 * and mark them readable.
1562 * Called under mddev lock, so rcu protection not needed.
1563 */
1564 for (i = 0; i < conf->raid_disks; i++) {
1565 struct md_rdev *rdev = conf->mirrors[i].rdev;
1566 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1567 if (repl
1568 && repl->recovery_offset == MaxSector
1569 && !test_bit(Faulty, &repl->flags)
1570 && !test_and_set_bit(In_sync, &repl->flags)) {
1571 /* replacement has just become active */
1572 if (!rdev ||
1573 !test_and_clear_bit(In_sync, &rdev->flags))
1574 count++;
1575 if (rdev) {
1576 /* Replaced device not technically
1577 * faulty, but we need to be sure
1578 * it gets removed and never re-added
1579 */
1580 set_bit(Faulty, &rdev->flags);
1581 sysfs_notify_dirent_safe(
1582 rdev->sysfs_state);
1583 }
1584 }
1585 if (rdev
1586 && rdev->recovery_offset == MaxSector
1587 && !test_bit(Faulty, &rdev->flags)
1588 && !test_and_set_bit(In_sync, &rdev->flags)) {
1589 count++;
1590 sysfs_notify_dirent_safe(rdev->sysfs_state);
1591 }
1592 }
1593 spin_lock_irqsave(&conf->device_lock, flags);
1594 mddev->degraded -= count;
1595 spin_unlock_irqrestore(&conf->device_lock, flags);
1596
1597 print_conf(conf);
1598 return count;
1599 }
1600
1601
1602 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 struct r1conf *conf = mddev->private;
1605 int err = -EEXIST;
1606 int mirror = 0;
1607 struct raid1_info *p;
1608 int first = 0;
1609 int last = conf->raid_disks - 1;
1610 struct request_queue *q = bdev_get_queue(rdev->bdev);
1611
1612 if (mddev->recovery_disabled == conf->recovery_disabled)
1613 return -EBUSY;
1614
1615 if (rdev->raid_disk >= 0)
1616 first = last = rdev->raid_disk;
1617
1618 if (q->merge_bvec_fn) {
1619 set_bit(Unmerged, &rdev->flags);
1620 mddev->merge_check_needed = 1;
1621 }
1622
1623 for (mirror = first; mirror <= last; mirror++) {
1624 p = conf->mirrors+mirror;
1625 if (!p->rdev) {
1626
1627 if (mddev->gendisk)
1628 disk_stack_limits(mddev->gendisk, rdev->bdev,
1629 rdev->data_offset << 9);
1630
1631 p->head_position = 0;
1632 rdev->raid_disk = mirror;
1633 err = 0;
1634 /* As all devices are equivalent, we don't need a full recovery
1635 * if this was recently any drive of the array
1636 */
1637 if (rdev->saved_raid_disk < 0)
1638 conf->fullsync = 1;
1639 rcu_assign_pointer(p->rdev, rdev);
1640 break;
1641 }
1642 if (test_bit(WantReplacement, &p->rdev->flags) &&
1643 p[conf->raid_disks].rdev == NULL) {
1644 /* Add this device as a replacement */
1645 clear_bit(In_sync, &rdev->flags);
1646 set_bit(Replacement, &rdev->flags);
1647 rdev->raid_disk = mirror;
1648 err = 0;
1649 conf->fullsync = 1;
1650 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1651 break;
1652 }
1653 }
1654 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1655 /* Some requests might not have seen this new
1656 * merge_bvec_fn. We must wait for them to complete
1657 * before merging the device fully.
1658 * First we make sure any code which has tested
1659 * our function has submitted the request, then
1660 * we wait for all outstanding requests to complete.
1661 */
1662 synchronize_sched();
1663 freeze_array(conf, 0);
1664 unfreeze_array(conf);
1665 clear_bit(Unmerged, &rdev->flags);
1666 }
1667 md_integrity_add_rdev(rdev, mddev);
1668 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1669 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1670 print_conf(conf);
1671 return err;
1672 }
1673
1674 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1675 {
1676 struct r1conf *conf = mddev->private;
1677 int err = 0;
1678 int number = rdev->raid_disk;
1679 struct raid1_info *p = conf->mirrors + number;
1680
1681 if (rdev != p->rdev)
1682 p = conf->mirrors + conf->raid_disks + number;
1683
1684 print_conf(conf);
1685 if (rdev == p->rdev) {
1686 if (test_bit(In_sync, &rdev->flags) ||
1687 atomic_read(&rdev->nr_pending)) {
1688 err = -EBUSY;
1689 goto abort;
1690 }
1691 /* Only remove non-faulty devices if recovery
1692 * is not possible.
1693 */
1694 if (!test_bit(Faulty, &rdev->flags) &&
1695 mddev->recovery_disabled != conf->recovery_disabled &&
1696 mddev->degraded < conf->raid_disks) {
1697 err = -EBUSY;
1698 goto abort;
1699 }
1700 p->rdev = NULL;
1701 synchronize_rcu();
1702 if (atomic_read(&rdev->nr_pending)) {
1703 /* lost the race, try later */
1704 err = -EBUSY;
1705 p->rdev = rdev;
1706 goto abort;
1707 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1708 /* We just removed a device that is being replaced.
1709 * Move down the replacement. We drain all IO before
1710 * doing this to avoid confusion.
1711 */
1712 struct md_rdev *repl =
1713 conf->mirrors[conf->raid_disks + number].rdev;
1714 freeze_array(conf, 0);
1715 clear_bit(Replacement, &repl->flags);
1716 p->rdev = repl;
1717 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1718 unfreeze_array(conf);
1719 clear_bit(WantReplacement, &rdev->flags);
1720 } else
1721 clear_bit(WantReplacement, &rdev->flags);
1722 err = md_integrity_register(mddev);
1723 }
1724 abort:
1725
1726 print_conf(conf);
1727 return err;
1728 }
1729
1730
1731 static void end_sync_read(struct bio *bio, int error)
1732 {
1733 struct r1bio *r1_bio = bio->bi_private;
1734
1735 update_head_pos(r1_bio->read_disk, r1_bio);
1736
1737 /*
1738 * we have read a block, now it needs to be re-written,
1739 * or re-read if the read failed.
1740 * We don't do much here, just schedule handling by raid1d
1741 */
1742 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1743 set_bit(R1BIO_Uptodate, &r1_bio->state);
1744
1745 if (atomic_dec_and_test(&r1_bio->remaining))
1746 reschedule_retry(r1_bio);
1747 }
1748
1749 static void end_sync_write(struct bio *bio, int error)
1750 {
1751 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1752 struct r1bio *r1_bio = bio->bi_private;
1753 struct mddev *mddev = r1_bio->mddev;
1754 struct r1conf *conf = mddev->private;
1755 int mirror=0;
1756 sector_t first_bad;
1757 int bad_sectors;
1758
1759 mirror = find_bio_disk(r1_bio, bio);
1760
1761 if (!uptodate) {
1762 sector_t sync_blocks = 0;
1763 sector_t s = r1_bio->sector;
1764 long sectors_to_go = r1_bio->sectors;
1765 /* make sure these bits doesn't get cleared. */
1766 do {
1767 bitmap_end_sync(mddev->bitmap, s,
1768 &sync_blocks, 1);
1769 s += sync_blocks;
1770 sectors_to_go -= sync_blocks;
1771 } while (sectors_to_go > 0);
1772 set_bit(WriteErrorSeen,
1773 &conf->mirrors[mirror].rdev->flags);
1774 if (!test_and_set_bit(WantReplacement,
1775 &conf->mirrors[mirror].rdev->flags))
1776 set_bit(MD_RECOVERY_NEEDED, &
1777 mddev->recovery);
1778 set_bit(R1BIO_WriteError, &r1_bio->state);
1779 } else if (is_badblock(conf->mirrors[mirror].rdev,
1780 r1_bio->sector,
1781 r1_bio->sectors,
1782 &first_bad, &bad_sectors) &&
1783 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1784 r1_bio->sector,
1785 r1_bio->sectors,
1786 &first_bad, &bad_sectors)
1787 )
1788 set_bit(R1BIO_MadeGood, &r1_bio->state);
1789
1790 if (atomic_dec_and_test(&r1_bio->remaining)) {
1791 int s = r1_bio->sectors;
1792 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1793 test_bit(R1BIO_WriteError, &r1_bio->state))
1794 reschedule_retry(r1_bio);
1795 else {
1796 put_buf(r1_bio);
1797 md_done_sync(mddev, s, uptodate);
1798 }
1799 }
1800 }
1801
1802 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1803 int sectors, struct page *page, int rw)
1804 {
1805 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1806 /* success */
1807 return 1;
1808 if (rw == WRITE) {
1809 set_bit(WriteErrorSeen, &rdev->flags);
1810 if (!test_and_set_bit(WantReplacement,
1811 &rdev->flags))
1812 set_bit(MD_RECOVERY_NEEDED, &
1813 rdev->mddev->recovery);
1814 }
1815 /* need to record an error - either for the block or the device */
1816 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1817 md_error(rdev->mddev, rdev);
1818 return 0;
1819 }
1820
1821 static int fix_sync_read_error(struct r1bio *r1_bio)
1822 {
1823 /* Try some synchronous reads of other devices to get
1824 * good data, much like with normal read errors. Only
1825 * read into the pages we already have so we don't
1826 * need to re-issue the read request.
1827 * We don't need to freeze the array, because being in an
1828 * active sync request, there is no normal IO, and
1829 * no overlapping syncs.
1830 * We don't need to check is_badblock() again as we
1831 * made sure that anything with a bad block in range
1832 * will have bi_end_io clear.
1833 */
1834 struct mddev *mddev = r1_bio->mddev;
1835 struct r1conf *conf = mddev->private;
1836 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1837 sector_t sect = r1_bio->sector;
1838 int sectors = r1_bio->sectors;
1839 int idx = 0;
1840
1841 while(sectors) {
1842 int s = sectors;
1843 int d = r1_bio->read_disk;
1844 int success = 0;
1845 struct md_rdev *rdev;
1846 int start;
1847
1848 if (s > (PAGE_SIZE>>9))
1849 s = PAGE_SIZE >> 9;
1850 do {
1851 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1852 /* No rcu protection needed here devices
1853 * can only be removed when no resync is
1854 * active, and resync is currently active
1855 */
1856 rdev = conf->mirrors[d].rdev;
1857 if (sync_page_io(rdev, sect, s<<9,
1858 bio->bi_io_vec[idx].bv_page,
1859 READ, false)) {
1860 success = 1;
1861 break;
1862 }
1863 }
1864 d++;
1865 if (d == conf->raid_disks * 2)
1866 d = 0;
1867 } while (!success && d != r1_bio->read_disk);
1868
1869 if (!success) {
1870 char b[BDEVNAME_SIZE];
1871 int abort = 0;
1872 /* Cannot read from anywhere, this block is lost.
1873 * Record a bad block on each device. If that doesn't
1874 * work just disable and interrupt the recovery.
1875 * Don't fail devices as that won't really help.
1876 */
1877 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1878 " for block %llu\n",
1879 mdname(mddev),
1880 bdevname(bio->bi_bdev, b),
1881 (unsigned long long)r1_bio->sector);
1882 for (d = 0; d < conf->raid_disks * 2; d++) {
1883 rdev = conf->mirrors[d].rdev;
1884 if (!rdev || test_bit(Faulty, &rdev->flags))
1885 continue;
1886 if (!rdev_set_badblocks(rdev, sect, s, 0))
1887 abort = 1;
1888 }
1889 if (abort) {
1890 conf->recovery_disabled =
1891 mddev->recovery_disabled;
1892 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1893 md_done_sync(mddev, r1_bio->sectors, 0);
1894 put_buf(r1_bio);
1895 return 0;
1896 }
1897 /* Try next page */
1898 sectors -= s;
1899 sect += s;
1900 idx++;
1901 continue;
1902 }
1903
1904 start = d;
1905 /* write it back and re-read */
1906 while (d != r1_bio->read_disk) {
1907 if (d == 0)
1908 d = conf->raid_disks * 2;
1909 d--;
1910 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1911 continue;
1912 rdev = conf->mirrors[d].rdev;
1913 if (r1_sync_page_io(rdev, sect, s,
1914 bio->bi_io_vec[idx].bv_page,
1915 WRITE) == 0) {
1916 r1_bio->bios[d]->bi_end_io = NULL;
1917 rdev_dec_pending(rdev, mddev);
1918 }
1919 }
1920 d = start;
1921 while (d != r1_bio->read_disk) {
1922 if (d == 0)
1923 d = conf->raid_disks * 2;
1924 d--;
1925 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1926 continue;
1927 rdev = conf->mirrors[d].rdev;
1928 if (r1_sync_page_io(rdev, sect, s,
1929 bio->bi_io_vec[idx].bv_page,
1930 READ) != 0)
1931 atomic_add(s, &rdev->corrected_errors);
1932 }
1933 sectors -= s;
1934 sect += s;
1935 idx ++;
1936 }
1937 set_bit(R1BIO_Uptodate, &r1_bio->state);
1938 set_bit(BIO_UPTODATE, &bio->bi_flags);
1939 return 1;
1940 }
1941
1942 static int process_checks(struct r1bio *r1_bio)
1943 {
1944 /* We have read all readable devices. If we haven't
1945 * got the block, then there is no hope left.
1946 * If we have, then we want to do a comparison
1947 * and skip the write if everything is the same.
1948 * If any blocks failed to read, then we need to
1949 * attempt an over-write
1950 */
1951 struct mddev *mddev = r1_bio->mddev;
1952 struct r1conf *conf = mddev->private;
1953 int primary;
1954 int i;
1955 int vcnt;
1956
1957 /* Fix variable parts of all bios */
1958 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1959 for (i = 0; i < conf->raid_disks * 2; i++) {
1960 int j;
1961 int size;
1962 int uptodate;
1963 struct bio *b = r1_bio->bios[i];
1964 if (b->bi_end_io != end_sync_read)
1965 continue;
1966 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1967 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1968 bio_reset(b);
1969 if (!uptodate)
1970 clear_bit(BIO_UPTODATE, &b->bi_flags);
1971 b->bi_vcnt = vcnt;
1972 b->bi_iter.bi_size = r1_bio->sectors << 9;
1973 b->bi_iter.bi_sector = r1_bio->sector +
1974 conf->mirrors[i].rdev->data_offset;
1975 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1976 b->bi_end_io = end_sync_read;
1977 b->bi_private = r1_bio;
1978
1979 size = b->bi_iter.bi_size;
1980 for (j = 0; j < vcnt ; j++) {
1981 struct bio_vec *bi;
1982 bi = &b->bi_io_vec[j];
1983 bi->bv_offset = 0;
1984 if (size > PAGE_SIZE)
1985 bi->bv_len = PAGE_SIZE;
1986 else
1987 bi->bv_len = size;
1988 size -= PAGE_SIZE;
1989 }
1990 }
1991 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1992 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1993 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1994 r1_bio->bios[primary]->bi_end_io = NULL;
1995 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1996 break;
1997 }
1998 r1_bio->read_disk = primary;
1999 for (i = 0; i < conf->raid_disks * 2; i++) {
2000 int j;
2001 struct bio *pbio = r1_bio->bios[primary];
2002 struct bio *sbio = r1_bio->bios[i];
2003 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2004
2005 if (sbio->bi_end_io != end_sync_read)
2006 continue;
2007 /* Now we can 'fixup' the BIO_UPTODATE flag */
2008 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2009
2010 if (uptodate) {
2011 for (j = vcnt; j-- ; ) {
2012 struct page *p, *s;
2013 p = pbio->bi_io_vec[j].bv_page;
2014 s = sbio->bi_io_vec[j].bv_page;
2015 if (memcmp(page_address(p),
2016 page_address(s),
2017 sbio->bi_io_vec[j].bv_len))
2018 break;
2019 }
2020 } else
2021 j = 0;
2022 if (j >= 0)
2023 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2024 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2025 && uptodate)) {
2026 /* No need to write to this device. */
2027 sbio->bi_end_io = NULL;
2028 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2029 continue;
2030 }
2031
2032 bio_copy_data(sbio, pbio);
2033 }
2034 return 0;
2035 }
2036
2037 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2038 {
2039 struct r1conf *conf = mddev->private;
2040 int i;
2041 int disks = conf->raid_disks * 2;
2042 struct bio *bio, *wbio;
2043
2044 bio = r1_bio->bios[r1_bio->read_disk];
2045
2046 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2047 /* ouch - failed to read all of that. */
2048 if (!fix_sync_read_error(r1_bio))
2049 return;
2050
2051 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2052 if (process_checks(r1_bio) < 0)
2053 return;
2054 /*
2055 * schedule writes
2056 */
2057 atomic_set(&r1_bio->remaining, 1);
2058 for (i = 0; i < disks ; i++) {
2059 wbio = r1_bio->bios[i];
2060 if (wbio->bi_end_io == NULL ||
2061 (wbio->bi_end_io == end_sync_read &&
2062 (i == r1_bio->read_disk ||
2063 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2064 continue;
2065
2066 wbio->bi_rw = WRITE;
2067 wbio->bi_end_io = end_sync_write;
2068 atomic_inc(&r1_bio->remaining);
2069 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2070
2071 generic_make_request(wbio);
2072 }
2073
2074 if (atomic_dec_and_test(&r1_bio->remaining)) {
2075 /* if we're here, all write(s) have completed, so clean up */
2076 int s = r1_bio->sectors;
2077 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2078 test_bit(R1BIO_WriteError, &r1_bio->state))
2079 reschedule_retry(r1_bio);
2080 else {
2081 put_buf(r1_bio);
2082 md_done_sync(mddev, s, 1);
2083 }
2084 }
2085 }
2086
2087 /*
2088 * This is a kernel thread which:
2089 *
2090 * 1. Retries failed read operations on working mirrors.
2091 * 2. Updates the raid superblock when problems encounter.
2092 * 3. Performs writes following reads for array synchronising.
2093 */
2094
2095 static void fix_read_error(struct r1conf *conf, int read_disk,
2096 sector_t sect, int sectors)
2097 {
2098 struct mddev *mddev = conf->mddev;
2099 while(sectors) {
2100 int s = sectors;
2101 int d = read_disk;
2102 int success = 0;
2103 int start;
2104 struct md_rdev *rdev;
2105
2106 if (s > (PAGE_SIZE>>9))
2107 s = PAGE_SIZE >> 9;
2108
2109 do {
2110 /* Note: no rcu protection needed here
2111 * as this is synchronous in the raid1d thread
2112 * which is the thread that might remove
2113 * a device. If raid1d ever becomes multi-threaded....
2114 */
2115 sector_t first_bad;
2116 int bad_sectors;
2117
2118 rdev = conf->mirrors[d].rdev;
2119 if (rdev &&
2120 (test_bit(In_sync, &rdev->flags) ||
2121 (!test_bit(Faulty, &rdev->flags) &&
2122 rdev->recovery_offset >= sect + s)) &&
2123 is_badblock(rdev, sect, s,
2124 &first_bad, &bad_sectors) == 0 &&
2125 sync_page_io(rdev, sect, s<<9,
2126 conf->tmppage, READ, false))
2127 success = 1;
2128 else {
2129 d++;
2130 if (d == conf->raid_disks * 2)
2131 d = 0;
2132 }
2133 } while (!success && d != read_disk);
2134
2135 if (!success) {
2136 /* Cannot read from anywhere - mark it bad */
2137 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2138 if (!rdev_set_badblocks(rdev, sect, s, 0))
2139 md_error(mddev, rdev);
2140 break;
2141 }
2142 /* write it back and re-read */
2143 start = d;
2144 while (d != read_disk) {
2145 if (d==0)
2146 d = conf->raid_disks * 2;
2147 d--;
2148 rdev = conf->mirrors[d].rdev;
2149 if (rdev &&
2150 test_bit(In_sync, &rdev->flags))
2151 r1_sync_page_io(rdev, sect, s,
2152 conf->tmppage, WRITE);
2153 }
2154 d = start;
2155 while (d != read_disk) {
2156 char b[BDEVNAME_SIZE];
2157 if (d==0)
2158 d = conf->raid_disks * 2;
2159 d--;
2160 rdev = conf->mirrors[d].rdev;
2161 if (rdev &&
2162 test_bit(In_sync, &rdev->flags)) {
2163 if (r1_sync_page_io(rdev, sect, s,
2164 conf->tmppage, READ)) {
2165 atomic_add(s, &rdev->corrected_errors);
2166 printk(KERN_INFO
2167 "md/raid1:%s: read error corrected "
2168 "(%d sectors at %llu on %s)\n",
2169 mdname(mddev), s,
2170 (unsigned long long)(sect +
2171 rdev->data_offset),
2172 bdevname(rdev->bdev, b));
2173 }
2174 }
2175 }
2176 sectors -= s;
2177 sect += s;
2178 }
2179 }
2180
2181 static int narrow_write_error(struct r1bio *r1_bio, int i)
2182 {
2183 struct mddev *mddev = r1_bio->mddev;
2184 struct r1conf *conf = mddev->private;
2185 struct md_rdev *rdev = conf->mirrors[i].rdev;
2186
2187 /* bio has the data to be written to device 'i' where
2188 * we just recently had a write error.
2189 * We repeatedly clone the bio and trim down to one block,
2190 * then try the write. Where the write fails we record
2191 * a bad block.
2192 * It is conceivable that the bio doesn't exactly align with
2193 * blocks. We must handle this somehow.
2194 *
2195 * We currently own a reference on the rdev.
2196 */
2197
2198 int block_sectors;
2199 sector_t sector;
2200 int sectors;
2201 int sect_to_write = r1_bio->sectors;
2202 int ok = 1;
2203
2204 if (rdev->badblocks.shift < 0)
2205 return 0;
2206
2207 block_sectors = 1 << rdev->badblocks.shift;
2208 sector = r1_bio->sector;
2209 sectors = ((sector + block_sectors)
2210 & ~(sector_t)(block_sectors - 1))
2211 - sector;
2212
2213 while (sect_to_write) {
2214 struct bio *wbio;
2215 if (sectors > sect_to_write)
2216 sectors = sect_to_write;
2217 /* Write at 'sector' for 'sectors'*/
2218
2219 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2220 unsigned vcnt = r1_bio->behind_page_count;
2221 struct bio_vec *vec = r1_bio->behind_bvecs;
2222
2223 while (!vec->bv_page) {
2224 vec++;
2225 vcnt--;
2226 }
2227
2228 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2229 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2230
2231 wbio->bi_vcnt = vcnt;
2232 } else {
2233 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2234 }
2235
2236 wbio->bi_rw = WRITE;
2237 wbio->bi_iter.bi_sector = r1_bio->sector;
2238 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2239
2240 bio_trim(wbio, sector - r1_bio->sector, sectors);
2241 wbio->bi_iter.bi_sector += rdev->data_offset;
2242 wbio->bi_bdev = rdev->bdev;
2243 if (submit_bio_wait(WRITE, wbio) == 0)
2244 /* failure! */
2245 ok = rdev_set_badblocks(rdev, sector,
2246 sectors, 0)
2247 && ok;
2248
2249 bio_put(wbio);
2250 sect_to_write -= sectors;
2251 sector += sectors;
2252 sectors = block_sectors;
2253 }
2254 return ok;
2255 }
2256
2257 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2258 {
2259 int m;
2260 int s = r1_bio->sectors;
2261 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2262 struct md_rdev *rdev = conf->mirrors[m].rdev;
2263 struct bio *bio = r1_bio->bios[m];
2264 if (bio->bi_end_io == NULL)
2265 continue;
2266 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2267 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2268 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2269 }
2270 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2271 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2272 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2273 md_error(conf->mddev, rdev);
2274 }
2275 }
2276 put_buf(r1_bio);
2277 md_done_sync(conf->mddev, s, 1);
2278 }
2279
2280 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2281 {
2282 int m;
2283 for (m = 0; m < conf->raid_disks * 2 ; m++)
2284 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2285 struct md_rdev *rdev = conf->mirrors[m].rdev;
2286 rdev_clear_badblocks(rdev,
2287 r1_bio->sector,
2288 r1_bio->sectors, 0);
2289 rdev_dec_pending(rdev, conf->mddev);
2290 } else if (r1_bio->bios[m] != NULL) {
2291 /* This drive got a write error. We need to
2292 * narrow down and record precise write
2293 * errors.
2294 */
2295 if (!narrow_write_error(r1_bio, m)) {
2296 md_error(conf->mddev,
2297 conf->mirrors[m].rdev);
2298 /* an I/O failed, we can't clear the bitmap */
2299 set_bit(R1BIO_Degraded, &r1_bio->state);
2300 }
2301 rdev_dec_pending(conf->mirrors[m].rdev,
2302 conf->mddev);
2303 }
2304 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2305 close_write(r1_bio);
2306 raid_end_bio_io(r1_bio);
2307 }
2308
2309 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2310 {
2311 int disk;
2312 int max_sectors;
2313 struct mddev *mddev = conf->mddev;
2314 struct bio *bio;
2315 char b[BDEVNAME_SIZE];
2316 struct md_rdev *rdev;
2317
2318 clear_bit(R1BIO_ReadError, &r1_bio->state);
2319 /* we got a read error. Maybe the drive is bad. Maybe just
2320 * the block and we can fix it.
2321 * We freeze all other IO, and try reading the block from
2322 * other devices. When we find one, we re-write
2323 * and check it that fixes the read error.
2324 * This is all done synchronously while the array is
2325 * frozen
2326 */
2327 if (mddev->ro == 0) {
2328 freeze_array(conf, 1);
2329 fix_read_error(conf, r1_bio->read_disk,
2330 r1_bio->sector, r1_bio->sectors);
2331 unfreeze_array(conf);
2332 } else
2333 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2334 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2335
2336 bio = r1_bio->bios[r1_bio->read_disk];
2337 bdevname(bio->bi_bdev, b);
2338 read_more:
2339 disk = read_balance(conf, r1_bio, &max_sectors);
2340 if (disk == -1) {
2341 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2342 " read error for block %llu\n",
2343 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2344 raid_end_bio_io(r1_bio);
2345 } else {
2346 const unsigned long do_sync
2347 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2348 if (bio) {
2349 r1_bio->bios[r1_bio->read_disk] =
2350 mddev->ro ? IO_BLOCKED : NULL;
2351 bio_put(bio);
2352 }
2353 r1_bio->read_disk = disk;
2354 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2355 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2356 max_sectors);
2357 r1_bio->bios[r1_bio->read_disk] = bio;
2358 rdev = conf->mirrors[disk].rdev;
2359 printk_ratelimited(KERN_ERR
2360 "md/raid1:%s: redirecting sector %llu"
2361 " to other mirror: %s\n",
2362 mdname(mddev),
2363 (unsigned long long)r1_bio->sector,
2364 bdevname(rdev->bdev, b));
2365 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2366 bio->bi_bdev = rdev->bdev;
2367 bio->bi_end_io = raid1_end_read_request;
2368 bio->bi_rw = READ | do_sync;
2369 bio->bi_private = r1_bio;
2370 if (max_sectors < r1_bio->sectors) {
2371 /* Drat - have to split this up more */
2372 struct bio *mbio = r1_bio->master_bio;
2373 int sectors_handled = (r1_bio->sector + max_sectors
2374 - mbio->bi_iter.bi_sector);
2375 r1_bio->sectors = max_sectors;
2376 spin_lock_irq(&conf->device_lock);
2377 if (mbio->bi_phys_segments == 0)
2378 mbio->bi_phys_segments = 2;
2379 else
2380 mbio->bi_phys_segments++;
2381 spin_unlock_irq(&conf->device_lock);
2382 generic_make_request(bio);
2383 bio = NULL;
2384
2385 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2386
2387 r1_bio->master_bio = mbio;
2388 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2389 r1_bio->state = 0;
2390 set_bit(R1BIO_ReadError, &r1_bio->state);
2391 r1_bio->mddev = mddev;
2392 r1_bio->sector = mbio->bi_iter.bi_sector +
2393 sectors_handled;
2394
2395 goto read_more;
2396 } else
2397 generic_make_request(bio);
2398 }
2399 }
2400
2401 static void raid1d(struct md_thread *thread)
2402 {
2403 struct mddev *mddev = thread->mddev;
2404 struct r1bio *r1_bio;
2405 unsigned long flags;
2406 struct r1conf *conf = mddev->private;
2407 struct list_head *head = &conf->retry_list;
2408 struct blk_plug plug;
2409
2410 md_check_recovery(mddev);
2411
2412 blk_start_plug(&plug);
2413 for (;;) {
2414
2415 flush_pending_writes(conf);
2416
2417 spin_lock_irqsave(&conf->device_lock, flags);
2418 if (list_empty(head)) {
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2420 break;
2421 }
2422 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2423 list_del(head->prev);
2424 conf->nr_queued--;
2425 spin_unlock_irqrestore(&conf->device_lock, flags);
2426
2427 mddev = r1_bio->mddev;
2428 conf = mddev->private;
2429 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2430 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2431 test_bit(R1BIO_WriteError, &r1_bio->state))
2432 handle_sync_write_finished(conf, r1_bio);
2433 else
2434 sync_request_write(mddev, r1_bio);
2435 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436 test_bit(R1BIO_WriteError, &r1_bio->state))
2437 handle_write_finished(conf, r1_bio);
2438 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2439 handle_read_error(conf, r1_bio);
2440 else
2441 /* just a partial read to be scheduled from separate
2442 * context
2443 */
2444 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2445
2446 cond_resched();
2447 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2448 md_check_recovery(mddev);
2449 }
2450 blk_finish_plug(&plug);
2451 }
2452
2453
2454 static int init_resync(struct r1conf *conf)
2455 {
2456 int buffs;
2457
2458 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459 BUG_ON(conf->r1buf_pool);
2460 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461 conf->poolinfo);
2462 if (!conf->r1buf_pool)
2463 return -ENOMEM;
2464 conf->next_resync = 0;
2465 return 0;
2466 }
2467
2468 /*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2479 {
2480 struct r1conf *conf = mddev->private;
2481 struct r1bio *r1_bio;
2482 struct bio *bio;
2483 sector_t max_sector, nr_sectors;
2484 int disk = -1;
2485 int i;
2486 int wonly = -1;
2487 int write_targets = 0, read_targets = 0;
2488 sector_t sync_blocks;
2489 int still_degraded = 0;
2490 int good_sectors = RESYNC_SECTORS;
2491 int min_bad = 0; /* number of sectors that are bad in all devices */
2492
2493 if (!conf->r1buf_pool)
2494 if (init_resync(conf))
2495 return 0;
2496
2497 max_sector = mddev->dev_sectors;
2498 if (sector_nr >= max_sector) {
2499 /* If we aborted, we need to abort the
2500 * sync on the 'current' bitmap chunk (there will
2501 * only be one in raid1 resync.
2502 * We can find the current addess in mddev->curr_resync
2503 */
2504 if (mddev->curr_resync < max_sector) /* aborted */
2505 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2506 &sync_blocks, 1);
2507 else /* completed sync */
2508 conf->fullsync = 0;
2509
2510 bitmap_close_sync(mddev->bitmap);
2511 close_sync(conf);
2512 return 0;
2513 }
2514
2515 if (mddev->bitmap == NULL &&
2516 mddev->recovery_cp == MaxSector &&
2517 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2518 conf->fullsync == 0) {
2519 *skipped = 1;
2520 return max_sector - sector_nr;
2521 }
2522 /* before building a request, check if we can skip these blocks..
2523 * This call the bitmap_start_sync doesn't actually record anything
2524 */
2525 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2526 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2527 /* We can skip this block, and probably several more */
2528 *skipped = 1;
2529 return sync_blocks;
2530 }
2531 /*
2532 * If there is non-resync activity waiting for a turn,
2533 * and resync is going fast enough,
2534 * then let it though before starting on this new sync request.
2535 */
2536 if (!go_faster && conf->nr_waiting)
2537 msleep_interruptible(1000);
2538
2539 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2540 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2541 raise_barrier(conf);
2542
2543 conf->next_resync = sector_nr;
2544
2545 rcu_read_lock();
2546 /*
2547 * If we get a correctably read error during resync or recovery,
2548 * we might want to read from a different device. So we
2549 * flag all drives that could conceivably be read from for READ,
2550 * and any others (which will be non-In_sync devices) for WRITE.
2551 * If a read fails, we try reading from something else for which READ
2552 * is OK.
2553 */
2554
2555 r1_bio->mddev = mddev;
2556 r1_bio->sector = sector_nr;
2557 r1_bio->state = 0;
2558 set_bit(R1BIO_IsSync, &r1_bio->state);
2559
2560 for (i = 0; i < conf->raid_disks * 2; i++) {
2561 struct md_rdev *rdev;
2562 bio = r1_bio->bios[i];
2563 bio_reset(bio);
2564
2565 rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 if (rdev == NULL ||
2567 test_bit(Faulty, &rdev->flags)) {
2568 if (i < conf->raid_disks)
2569 still_degraded = 1;
2570 } else if (!test_bit(In_sync, &rdev->flags)) {
2571 bio->bi_rw = WRITE;
2572 bio->bi_end_io = end_sync_write;
2573 write_targets ++;
2574 } else {
2575 /* may need to read from here */
2576 sector_t first_bad = MaxSector;
2577 int bad_sectors;
2578
2579 if (is_badblock(rdev, sector_nr, good_sectors,
2580 &first_bad, &bad_sectors)) {
2581 if (first_bad > sector_nr)
2582 good_sectors = first_bad - sector_nr;
2583 else {
2584 bad_sectors -= (sector_nr - first_bad);
2585 if (min_bad == 0 ||
2586 min_bad > bad_sectors)
2587 min_bad = bad_sectors;
2588 }
2589 }
2590 if (sector_nr < first_bad) {
2591 if (test_bit(WriteMostly, &rdev->flags)) {
2592 if (wonly < 0)
2593 wonly = i;
2594 } else {
2595 if (disk < 0)
2596 disk = i;
2597 }
2598 bio->bi_rw = READ;
2599 bio->bi_end_io = end_sync_read;
2600 read_targets++;
2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 /*
2605 * The device is suitable for reading (InSync),
2606 * but has bad block(s) here. Let's try to correct them,
2607 * if we are doing resync or repair. Otherwise, leave
2608 * this device alone for this sync request.
2609 */
2610 bio->bi_rw = WRITE;
2611 bio->bi_end_io = end_sync_write;
2612 write_targets++;
2613 }
2614 }
2615 if (bio->bi_end_io) {
2616 atomic_inc(&rdev->nr_pending);
2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618 bio->bi_bdev = rdev->bdev;
2619 bio->bi_private = r1_bio;
2620 }
2621 }
2622 rcu_read_unlock();
2623 if (disk < 0)
2624 disk = wonly;
2625 r1_bio->read_disk = disk;
2626
2627 if (read_targets == 0 && min_bad > 0) {
2628 /* These sectors are bad on all InSync devices, so we
2629 * need to mark them bad on all write targets
2630 */
2631 int ok = 1;
2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634 struct md_rdev *rdev = conf->mirrors[i].rdev;
2635 ok = rdev_set_badblocks(rdev, sector_nr,
2636 min_bad, 0
2637 ) && ok;
2638 }
2639 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 *skipped = 1;
2641 put_buf(r1_bio);
2642
2643 if (!ok) {
2644 /* Cannot record the badblocks, so need to
2645 * abort the resync.
2646 * If there are multiple read targets, could just
2647 * fail the really bad ones ???
2648 */
2649 conf->recovery_disabled = mddev->recovery_disabled;
2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 return 0;
2652 } else
2653 return min_bad;
2654
2655 }
2656 if (min_bad > 0 && min_bad < good_sectors) {
2657 /* only resync enough to reach the next bad->good
2658 * transition */
2659 good_sectors = min_bad;
2660 }
2661
2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 /* extra read targets are also write targets */
2664 write_targets += read_targets-1;
2665
2666 if (write_targets == 0 || read_targets == 0) {
2667 /* There is nowhere to write, so all non-sync
2668 * drives must be failed - so we are finished
2669 */
2670 sector_t rv;
2671 if (min_bad > 0)
2672 max_sector = sector_nr + min_bad;
2673 rv = max_sector - sector_nr;
2674 *skipped = 1;
2675 put_buf(r1_bio);
2676 return rv;
2677 }
2678
2679 if (max_sector > mddev->resync_max)
2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681 if (max_sector > sector_nr + good_sectors)
2682 max_sector = sector_nr + good_sectors;
2683 nr_sectors = 0;
2684 sync_blocks = 0;
2685 do {
2686 struct page *page;
2687 int len = PAGE_SIZE;
2688 if (sector_nr + (len>>9) > max_sector)
2689 len = (max_sector - sector_nr) << 9;
2690 if (len == 0)
2691 break;
2692 if (sync_blocks == 0) {
2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694 &sync_blocks, still_degraded) &&
2695 !conf->fullsync &&
2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697 break;
2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699 if ((len >> 9) > sync_blocks)
2700 len = sync_blocks<<9;
2701 }
2702
2703 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704 bio = r1_bio->bios[i];
2705 if (bio->bi_end_io) {
2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707 if (bio_add_page(bio, page, len, 0) == 0) {
2708 /* stop here */
2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710 while (i > 0) {
2711 i--;
2712 bio = r1_bio->bios[i];
2713 if (bio->bi_end_io==NULL)
2714 continue;
2715 /* remove last page from this bio */
2716 bio->bi_vcnt--;
2717 bio->bi_iter.bi_size -= len;
2718 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2719 }
2720 goto bio_full;
2721 }
2722 }
2723 }
2724 nr_sectors += len>>9;
2725 sector_nr += len>>9;
2726 sync_blocks -= (len>>9);
2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
2729 r1_bio->sectors = nr_sectors;
2730
2731 /* For a user-requested sync, we read all readable devices and do a
2732 * compare
2733 */
2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 atomic_set(&r1_bio->remaining, read_targets);
2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737 bio = r1_bio->bios[i];
2738 if (bio->bi_end_io == end_sync_read) {
2739 read_targets--;
2740 md_sync_acct(bio->bi_bdev, nr_sectors);
2741 generic_make_request(bio);
2742 }
2743 }
2744 } else {
2745 atomic_set(&r1_bio->remaining, 1);
2746 bio = r1_bio->bios[r1_bio->read_disk];
2747 md_sync_acct(bio->bi_bdev, nr_sectors);
2748 generic_make_request(bio);
2749
2750 }
2751 return nr_sectors;
2752 }
2753
2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755 {
2756 if (sectors)
2757 return sectors;
2758
2759 return mddev->dev_sectors;
2760 }
2761
2762 static struct r1conf *setup_conf(struct mddev *mddev)
2763 {
2764 struct r1conf *conf;
2765 int i;
2766 struct raid1_info *disk;
2767 struct md_rdev *rdev;
2768 int err = -ENOMEM;
2769
2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771 if (!conf)
2772 goto abort;
2773
2774 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775 * mddev->raid_disks * 2,
2776 GFP_KERNEL);
2777 if (!conf->mirrors)
2778 goto abort;
2779
2780 conf->tmppage = alloc_page(GFP_KERNEL);
2781 if (!conf->tmppage)
2782 goto abort;
2783
2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785 if (!conf->poolinfo)
2786 goto abort;
2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789 r1bio_pool_free,
2790 conf->poolinfo);
2791 if (!conf->r1bio_pool)
2792 goto abort;
2793
2794 conf->poolinfo->mddev = mddev;
2795
2796 err = -EINVAL;
2797 spin_lock_init(&conf->device_lock);
2798 rdev_for_each(rdev, mddev) {
2799 struct request_queue *q;
2800 int disk_idx = rdev->raid_disk;
2801 if (disk_idx >= mddev->raid_disks
2802 || disk_idx < 0)
2803 continue;
2804 if (test_bit(Replacement, &rdev->flags))
2805 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806 else
2807 disk = conf->mirrors + disk_idx;
2808
2809 if (disk->rdev)
2810 goto abort;
2811 disk->rdev = rdev;
2812 q = bdev_get_queue(rdev->bdev);
2813 if (q->merge_bvec_fn)
2814 mddev->merge_check_needed = 1;
2815
2816 disk->head_position = 0;
2817 disk->seq_start = MaxSector;
2818 }
2819 conf->raid_disks = mddev->raid_disks;
2820 conf->mddev = mddev;
2821 INIT_LIST_HEAD(&conf->retry_list);
2822
2823 spin_lock_init(&conf->resync_lock);
2824 init_waitqueue_head(&conf->wait_barrier);
2825
2826 bio_list_init(&conf->pending_bio_list);
2827 conf->pending_count = 0;
2828 conf->recovery_disabled = mddev->recovery_disabled - 1;
2829
2830 conf->start_next_window = MaxSector;
2831 conf->current_window_requests = conf->next_window_requests = 0;
2832
2833 err = -EIO;
2834 for (i = 0; i < conf->raid_disks * 2; i++) {
2835
2836 disk = conf->mirrors + i;
2837
2838 if (i < conf->raid_disks &&
2839 disk[conf->raid_disks].rdev) {
2840 /* This slot has a replacement. */
2841 if (!disk->rdev) {
2842 /* No original, just make the replacement
2843 * a recovering spare
2844 */
2845 disk->rdev =
2846 disk[conf->raid_disks].rdev;
2847 disk[conf->raid_disks].rdev = NULL;
2848 } else if (!test_bit(In_sync, &disk->rdev->flags))
2849 /* Original is not in_sync - bad */
2850 goto abort;
2851 }
2852
2853 if (!disk->rdev ||
2854 !test_bit(In_sync, &disk->rdev->flags)) {
2855 disk->head_position = 0;
2856 if (disk->rdev &&
2857 (disk->rdev->saved_raid_disk < 0))
2858 conf->fullsync = 1;
2859 }
2860 }
2861
2862 err = -ENOMEM;
2863 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864 if (!conf->thread) {
2865 printk(KERN_ERR
2866 "md/raid1:%s: couldn't allocate thread\n",
2867 mdname(mddev));
2868 goto abort;
2869 }
2870
2871 return conf;
2872
2873 abort:
2874 if (conf) {
2875 if (conf->r1bio_pool)
2876 mempool_destroy(conf->r1bio_pool);
2877 kfree(conf->mirrors);
2878 safe_put_page(conf->tmppage);
2879 kfree(conf->poolinfo);
2880 kfree(conf);
2881 }
2882 return ERR_PTR(err);
2883 }
2884
2885 static int stop(struct mddev *mddev);
2886 static int run(struct mddev *mddev)
2887 {
2888 struct r1conf *conf;
2889 int i;
2890 struct md_rdev *rdev;
2891 int ret;
2892 bool discard_supported = false;
2893
2894 if (mddev->level != 1) {
2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896 mdname(mddev), mddev->level);
2897 return -EIO;
2898 }
2899 if (mddev->reshape_position != MaxSector) {
2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901 mdname(mddev));
2902 return -EIO;
2903 }
2904 /*
2905 * copy the already verified devices into our private RAID1
2906 * bookkeeping area. [whatever we allocate in run(),
2907 * should be freed in stop()]
2908 */
2909 if (mddev->private == NULL)
2910 conf = setup_conf(mddev);
2911 else
2912 conf = mddev->private;
2913
2914 if (IS_ERR(conf))
2915 return PTR_ERR(conf);
2916
2917 if (mddev->queue)
2918 blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
2920 rdev_for_each(rdev, mddev) {
2921 if (!mddev->gendisk)
2922 continue;
2923 disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 rdev->data_offset << 9);
2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 discard_supported = true;
2927 }
2928
2929 mddev->degraded = 0;
2930 for (i=0; i < conf->raid_disks; i++)
2931 if (conf->mirrors[i].rdev == NULL ||
2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934 mddev->degraded++;
2935
2936 if (conf->raid_disks - mddev->degraded == 1)
2937 mddev->recovery_cp = MaxSector;
2938
2939 if (mddev->recovery_cp != MaxSector)
2940 printk(KERN_NOTICE "md/raid1:%s: not clean"
2941 " -- starting background reconstruction\n",
2942 mdname(mddev));
2943 printk(KERN_INFO
2944 "md/raid1:%s: active with %d out of %d mirrors\n",
2945 mdname(mddev), mddev->raid_disks - mddev->degraded,
2946 mddev->raid_disks);
2947
2948 /*
2949 * Ok, everything is just fine now
2950 */
2951 mddev->thread = conf->thread;
2952 conf->thread = NULL;
2953 mddev->private = conf;
2954
2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956
2957 if (mddev->queue) {
2958 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959 mddev->queue->backing_dev_info.congested_data = mddev;
2960 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2961
2962 if (discard_supported)
2963 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964 mddev->queue);
2965 else
2966 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
2968 }
2969
2970 ret = md_integrity_register(mddev);
2971 if (ret)
2972 stop(mddev);
2973 return ret;
2974 }
2975
2976 static int stop(struct mddev *mddev)
2977 {
2978 struct r1conf *conf = mddev->private;
2979 struct bitmap *bitmap = mddev->bitmap;
2980
2981 /* wait for behind writes to complete */
2982 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2983 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2984 mdname(mddev));
2985 /* need to kick something here to make sure I/O goes? */
2986 wait_event(bitmap->behind_wait,
2987 atomic_read(&bitmap->behind_writes) == 0);
2988 }
2989
2990 freeze_array(conf, 0);
2991 unfreeze_array(conf);
2992
2993 md_unregister_thread(&mddev->thread);
2994 if (conf->r1bio_pool)
2995 mempool_destroy(conf->r1bio_pool);
2996 kfree(conf->mirrors);
2997 safe_put_page(conf->tmppage);
2998 kfree(conf->poolinfo);
2999 kfree(conf);
3000 mddev->private = NULL;
3001 return 0;
3002 }
3003
3004 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3005 {
3006 /* no resync is happening, and there is enough space
3007 * on all devices, so we can resize.
3008 * We need to make sure resync covers any new space.
3009 * If the array is shrinking we should possibly wait until
3010 * any io in the removed space completes, but it hardly seems
3011 * worth it.
3012 */
3013 sector_t newsize = raid1_size(mddev, sectors, 0);
3014 if (mddev->external_size &&
3015 mddev->array_sectors > newsize)
3016 return -EINVAL;
3017 if (mddev->bitmap) {
3018 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3019 if (ret)
3020 return ret;
3021 }
3022 md_set_array_sectors(mddev, newsize);
3023 set_capacity(mddev->gendisk, mddev->array_sectors);
3024 revalidate_disk(mddev->gendisk);
3025 if (sectors > mddev->dev_sectors &&
3026 mddev->recovery_cp > mddev->dev_sectors) {
3027 mddev->recovery_cp = mddev->dev_sectors;
3028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3029 }
3030 mddev->dev_sectors = sectors;
3031 mddev->resync_max_sectors = sectors;
3032 return 0;
3033 }
3034
3035 static int raid1_reshape(struct mddev *mddev)
3036 {
3037 /* We need to:
3038 * 1/ resize the r1bio_pool
3039 * 2/ resize conf->mirrors
3040 *
3041 * We allocate a new r1bio_pool if we can.
3042 * Then raise a device barrier and wait until all IO stops.
3043 * Then resize conf->mirrors and swap in the new r1bio pool.
3044 *
3045 * At the same time, we "pack" the devices so that all the missing
3046 * devices have the higher raid_disk numbers.
3047 */
3048 mempool_t *newpool, *oldpool;
3049 struct pool_info *newpoolinfo;
3050 struct raid1_info *newmirrors;
3051 struct r1conf *conf = mddev->private;
3052 int cnt, raid_disks;
3053 unsigned long flags;
3054 int d, d2, err;
3055
3056 /* Cannot change chunk_size, layout, or level */
3057 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3058 mddev->layout != mddev->new_layout ||
3059 mddev->level != mddev->new_level) {
3060 mddev->new_chunk_sectors = mddev->chunk_sectors;
3061 mddev->new_layout = mddev->layout;
3062 mddev->new_level = mddev->level;
3063 return -EINVAL;
3064 }
3065
3066 err = md_allow_write(mddev);
3067 if (err)
3068 return err;
3069
3070 raid_disks = mddev->raid_disks + mddev->delta_disks;
3071
3072 if (raid_disks < conf->raid_disks) {
3073 cnt=0;
3074 for (d= 0; d < conf->raid_disks; d++)
3075 if (conf->mirrors[d].rdev)
3076 cnt++;
3077 if (cnt > raid_disks)
3078 return -EBUSY;
3079 }
3080
3081 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3082 if (!newpoolinfo)
3083 return -ENOMEM;
3084 newpoolinfo->mddev = mddev;
3085 newpoolinfo->raid_disks = raid_disks * 2;
3086
3087 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088 r1bio_pool_free, newpoolinfo);
3089 if (!newpool) {
3090 kfree(newpoolinfo);
3091 return -ENOMEM;
3092 }
3093 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3094 GFP_KERNEL);
3095 if (!newmirrors) {
3096 kfree(newpoolinfo);
3097 mempool_destroy(newpool);
3098 return -ENOMEM;
3099 }
3100
3101 freeze_array(conf, 0);
3102
3103 /* ok, everything is stopped */
3104 oldpool = conf->r1bio_pool;
3105 conf->r1bio_pool = newpool;
3106
3107 for (d = d2 = 0; d < conf->raid_disks; d++) {
3108 struct md_rdev *rdev = conf->mirrors[d].rdev;
3109 if (rdev && rdev->raid_disk != d2) {
3110 sysfs_unlink_rdev(mddev, rdev);
3111 rdev->raid_disk = d2;
3112 sysfs_unlink_rdev(mddev, rdev);
3113 if (sysfs_link_rdev(mddev, rdev))
3114 printk(KERN_WARNING
3115 "md/raid1:%s: cannot register rd%d\n",
3116 mdname(mddev), rdev->raid_disk);
3117 }
3118 if (rdev)
3119 newmirrors[d2++].rdev = rdev;
3120 }
3121 kfree(conf->mirrors);
3122 conf->mirrors = newmirrors;
3123 kfree(conf->poolinfo);
3124 conf->poolinfo = newpoolinfo;
3125
3126 spin_lock_irqsave(&conf->device_lock, flags);
3127 mddev->degraded += (raid_disks - conf->raid_disks);
3128 spin_unlock_irqrestore(&conf->device_lock, flags);
3129 conf->raid_disks = mddev->raid_disks = raid_disks;
3130 mddev->delta_disks = 0;
3131
3132 unfreeze_array(conf);
3133
3134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135 md_wakeup_thread(mddev->thread);
3136
3137 mempool_destroy(oldpool);
3138 return 0;
3139 }
3140
3141 static void raid1_quiesce(struct mddev *mddev, int state)
3142 {
3143 struct r1conf *conf = mddev->private;
3144
3145 switch(state) {
3146 case 2: /* wake for suspend */
3147 wake_up(&conf->wait_barrier);
3148 break;
3149 case 1:
3150 freeze_array(conf, 0);
3151 break;
3152 case 0:
3153 unfreeze_array(conf);
3154 break;
3155 }
3156 }
3157
3158 static void *raid1_takeover(struct mddev *mddev)
3159 {
3160 /* raid1 can take over:
3161 * raid5 with 2 devices, any layout or chunk size
3162 */
3163 if (mddev->level == 5 && mddev->raid_disks == 2) {
3164 struct r1conf *conf;
3165 mddev->new_level = 1;
3166 mddev->new_layout = 0;
3167 mddev->new_chunk_sectors = 0;
3168 conf = setup_conf(mddev);
3169 if (!IS_ERR(conf))
3170 /* Array must appear to be quiesced */
3171 conf->array_frozen = 1;
3172 return conf;
3173 }
3174 return ERR_PTR(-EINVAL);
3175 }
3176
3177 static struct md_personality raid1_personality =
3178 {
3179 .name = "raid1",
3180 .level = 1,
3181 .owner = THIS_MODULE,
3182 .make_request = make_request,
3183 .run = run,
3184 .stop = stop,
3185 .status = status,
3186 .error_handler = error,
3187 .hot_add_disk = raid1_add_disk,
3188 .hot_remove_disk= raid1_remove_disk,
3189 .spare_active = raid1_spare_active,
3190 .sync_request = sync_request,
3191 .resize = raid1_resize,
3192 .size = raid1_size,
3193 .check_reshape = raid1_reshape,
3194 .quiesce = raid1_quiesce,
3195 .takeover = raid1_takeover,
3196 };
3197
3198 static int __init raid_init(void)
3199 {
3200 return register_md_personality(&raid1_personality);
3201 }
3202
3203 static void raid_exit(void)
3204 {
3205 unregister_md_personality(&raid1_personality);
3206 }
3207
3208 module_init(raid_init);
3209 module_exit(raid_exit);
3210 MODULE_LICENSE("GPL");
3211 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3212 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3213 MODULE_ALIAS("md-raid1");
3214 MODULE_ALIAS("md-level-1");
3215
3216 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);