]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid1.c
block: Consolidate duplicated bio_trim() implementations
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct r1bio *r1_bio;
96 struct bio *bio;
97 int i, j;
98
99 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
100 if (!r1_bio)
101 return NULL;
102
103 /*
104 * Allocate bios : 1 for reading, n-1 for writing
105 */
106 for (j = pi->raid_disks ; j-- ; ) {
107 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
108 if (!bio)
109 goto out_free_bio;
110 r1_bio->bios[j] = bio;
111 }
112 /*
113 * Allocate RESYNC_PAGES data pages and attach them to
114 * the first bio.
115 * If this is a user-requested check/repair, allocate
116 * RESYNC_PAGES for each bio.
117 */
118 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
119 j = pi->raid_disks;
120 else
121 j = 1;
122 while(j--) {
123 bio = r1_bio->bios[j];
124 bio->bi_vcnt = RESYNC_PAGES;
125
126 if (bio_alloc_pages(bio, gfp_flags))
127 goto out_free_bio;
128 }
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 }
136
137 r1_bio->master_bio = NULL;
138
139 return r1_bio;
140
141 out_free_bio:
142 while (++j < pi->raid_disks)
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
146 }
147
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 struct pool_info *pi = data;
151 int i,j;
152 struct r1bio *r1bio = __r1_bio;
153
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 }
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
163
164 r1bio_pool_free(r1bio, data);
165 }
166
167 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
168 {
169 int i;
170
171 for (i = 0; i < conf->raid_disks * 2; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (!BIO_SPECIAL(*bio))
174 bio_put(*bio);
175 *bio = NULL;
176 }
177 }
178
179 static void free_r1bio(struct r1bio *r1_bio)
180 {
181 struct r1conf *conf = r1_bio->mddev->private;
182
183 put_all_bios(conf, r1_bio);
184 mempool_free(r1_bio, conf->r1bio_pool);
185 }
186
187 static void put_buf(struct r1bio *r1_bio)
188 {
189 struct r1conf *conf = r1_bio->mddev->private;
190 int i;
191
192 for (i = 0; i < conf->raid_disks * 2; i++) {
193 struct bio *bio = r1_bio->bios[i];
194 if (bio->bi_end_io)
195 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
196 }
197
198 mempool_free(r1_bio, conf->r1buf_pool);
199
200 lower_barrier(conf);
201 }
202
203 static void reschedule_retry(struct r1bio *r1_bio)
204 {
205 unsigned long flags;
206 struct mddev *mddev = r1_bio->mddev;
207 struct r1conf *conf = mddev->private;
208
209 spin_lock_irqsave(&conf->device_lock, flags);
210 list_add(&r1_bio->retry_list, &conf->retry_list);
211 conf->nr_queued ++;
212 spin_unlock_irqrestore(&conf->device_lock, flags);
213
214 wake_up(&conf->wait_barrier);
215 md_wakeup_thread(mddev->thread);
216 }
217
218 /*
219 * raid_end_bio_io() is called when we have finished servicing a mirrored
220 * operation and are ready to return a success/failure code to the buffer
221 * cache layer.
222 */
223 static void call_bio_endio(struct r1bio *r1_bio)
224 {
225 struct bio *bio = r1_bio->master_bio;
226 int done;
227 struct r1conf *conf = r1_bio->mddev->private;
228
229 if (bio->bi_phys_segments) {
230 unsigned long flags;
231 spin_lock_irqsave(&conf->device_lock, flags);
232 bio->bi_phys_segments--;
233 done = (bio->bi_phys_segments == 0);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235 } else
236 done = 1;
237
238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239 clear_bit(BIO_UPTODATE, &bio->bi_flags);
240 if (done) {
241 bio_endio(bio, 0);
242 /*
243 * Wake up any possible resync thread that waits for the device
244 * to go idle.
245 */
246 allow_barrier(conf);
247 }
248 }
249
250 static void raid_end_bio_io(struct r1bio *r1_bio)
251 {
252 struct bio *bio = r1_bio->master_bio;
253
254 /* if nobody has done the final endio yet, do it now */
255 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
256 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
257 (bio_data_dir(bio) == WRITE) ? "write" : "read",
258 (unsigned long long) bio->bi_sector,
259 (unsigned long long) bio->bi_sector +
260 bio_sectors(bio) - 1);
261
262 call_bio_endio(r1_bio);
263 }
264 free_r1bio(r1_bio);
265 }
266
267 /*
268 * Update disk head position estimator based on IRQ completion info.
269 */
270 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
271 {
272 struct r1conf *conf = r1_bio->mddev->private;
273
274 conf->mirrors[disk].head_position =
275 r1_bio->sector + (r1_bio->sectors);
276 }
277
278 /*
279 * Find the disk number which triggered given bio
280 */
281 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
282 {
283 int mirror;
284 struct r1conf *conf = r1_bio->mddev->private;
285 int raid_disks = conf->raid_disks;
286
287 for (mirror = 0; mirror < raid_disks * 2; mirror++)
288 if (r1_bio->bios[mirror] == bio)
289 break;
290
291 BUG_ON(mirror == raid_disks * 2);
292 update_head_pos(mirror, r1_bio);
293
294 return mirror;
295 }
296
297 static void raid1_end_read_request(struct bio *bio, int error)
298 {
299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
300 struct r1bio *r1_bio = bio->bi_private;
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303
304 mirror = r1_bio->read_disk;
305 /*
306 * this branch is our 'one mirror IO has finished' event handler:
307 */
308 update_head_pos(mirror, r1_bio);
309
310 if (uptodate)
311 set_bit(R1BIO_Uptodate, &r1_bio->state);
312 else {
313 /* If all other devices have failed, we want to return
314 * the error upwards rather than fail the last device.
315 * Here we redefine "uptodate" to mean "Don't want to retry"
316 */
317 unsigned long flags;
318 spin_lock_irqsave(&conf->device_lock, flags);
319 if (r1_bio->mddev->degraded == conf->raid_disks ||
320 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
321 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
322 uptodate = 1;
323 spin_unlock_irqrestore(&conf->device_lock, flags);
324 }
325
326 if (uptodate) {
327 raid_end_bio_io(r1_bio);
328 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
329 } else {
330 /*
331 * oops, read error:
332 */
333 char b[BDEVNAME_SIZE];
334 printk_ratelimited(
335 KERN_ERR "md/raid1:%s: %s: "
336 "rescheduling sector %llu\n",
337 mdname(conf->mddev),
338 bdevname(conf->mirrors[mirror].rdev->bdev,
339 b),
340 (unsigned long long)r1_bio->sector);
341 set_bit(R1BIO_ReadError, &r1_bio->state);
342 reschedule_retry(r1_bio);
343 /* don't drop the reference on read_disk yet */
344 }
345 }
346
347 static void close_write(struct r1bio *r1_bio)
348 {
349 /* it really is the end of this request */
350 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
351 /* free extra copy of the data pages */
352 int i = r1_bio->behind_page_count;
353 while (i--)
354 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
355 kfree(r1_bio->behind_bvecs);
356 r1_bio->behind_bvecs = NULL;
357 }
358 /* clear the bitmap if all writes complete successfully */
359 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
360 r1_bio->sectors,
361 !test_bit(R1BIO_Degraded, &r1_bio->state),
362 test_bit(R1BIO_BehindIO, &r1_bio->state));
363 md_write_end(r1_bio->mddev);
364 }
365
366 static void r1_bio_write_done(struct r1bio *r1_bio)
367 {
368 if (!atomic_dec_and_test(&r1_bio->remaining))
369 return;
370
371 if (test_bit(R1BIO_WriteError, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else {
374 close_write(r1_bio);
375 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
376 reschedule_retry(r1_bio);
377 else
378 raid_end_bio_io(r1_bio);
379 }
380 }
381
382 static void raid1_end_write_request(struct bio *bio, int error)
383 {
384 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
385 struct r1bio *r1_bio = bio->bi_private;
386 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
387 struct r1conf *conf = r1_bio->mddev->private;
388 struct bio *to_put = NULL;
389
390 mirror = find_bio_disk(r1_bio, bio);
391
392 /*
393 * 'one mirror IO has finished' event handler:
394 */
395 if (!uptodate) {
396 set_bit(WriteErrorSeen,
397 &conf->mirrors[mirror].rdev->flags);
398 if (!test_and_set_bit(WantReplacement,
399 &conf->mirrors[mirror].rdev->flags))
400 set_bit(MD_RECOVERY_NEEDED, &
401 conf->mddev->recovery);
402
403 set_bit(R1BIO_WriteError, &r1_bio->state);
404 } else {
405 /*
406 * Set R1BIO_Uptodate in our master bio, so that we
407 * will return a good error code for to the higher
408 * levels even if IO on some other mirrored buffer
409 * fails.
410 *
411 * The 'master' represents the composite IO operation
412 * to user-side. So if something waits for IO, then it
413 * will wait for the 'master' bio.
414 */
415 sector_t first_bad;
416 int bad_sectors;
417
418 r1_bio->bios[mirror] = NULL;
419 to_put = bio;
420 /*
421 * Do not set R1BIO_Uptodate if the current device is
422 * rebuilding or Faulty. This is because we cannot use
423 * such device for properly reading the data back (we could
424 * potentially use it, if the current write would have felt
425 * before rdev->recovery_offset, but for simplicity we don't
426 * check this here.
427 */
428 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
429 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 bio_sectors(mbio) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
502 int disk;
503 sector_t best_dist;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
506 int choose_first;
507 int choose_next_idle;
508
509 rcu_read_lock();
510 /*
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
516 sectors = r1_bio->sectors;
517 best_disk = -1;
518 best_dist_disk = -1;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
523 has_nonrot_disk = 0;
524 choose_next_idle = 0;
525
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
528 choose_first = 1;
529 else
530 choose_first = 0;
531
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 sector_t dist;
534 sector_t first_bad;
535 int bad_sectors;
536 unsigned int pending;
537 bool nonrot;
538
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
544 continue;
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
547 continue;
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
560 best_disk = disk;
561 }
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
600 if (choose_first) {
601 best_disk = disk;
602 break;
603 }
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
648 if (dist < best_dist) {
649 best_dist = dist;
650 best_dist_disk = disk;
651 }
652 }
653
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
676 rdev_dec_pending(rdev, conf->mddev);
677 goto retry;
678 }
679 sectors = best_good_sectors;
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 }
686 rcu_read_unlock();
687 *max_sectors = sectors;
688
689 return best_disk;
690 }
691
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695 {
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723 }
724
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 struct r1conf *conf = mddev->private;
728 int i, ret = 0;
729
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
734 rcu_read_lock();
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
739
740 BUG_ON(!q);
741
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755
756 static int raid1_congested(void *data, int bits)
757 {
758 struct mddev *mddev = data;
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762 }
763
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
768 */
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
790 bio = next;
791 }
792 } else
793 spin_unlock_irq(&conf->device_lock);
794 }
795
796 /* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
816 */
817 #define RESYNC_DEPTH 32
818
819 static void raise_barrier(struct r1conf *conf)
820 {
821 spin_lock_irq(&conf->resync_lock);
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 conf->resync_lock);
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
830 /* Now wait for all pending IO to complete */
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833 conf->resync_lock);
834
835 spin_unlock_irq(&conf->resync_lock);
836 }
837
838 static void lower_barrier(struct r1conf *conf)
839 {
840 unsigned long flags;
841 BUG_ON(conf->barrier <= 0);
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846 }
847
848 static void wait_barrier(struct r1conf *conf)
849 {
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
867 conf->resync_lock);
868 conf->nr_waiting--;
869 }
870 conf->nr_pending++;
871 spin_unlock_irq(&conf->resync_lock);
872 }
873
874 static void allow_barrier(struct r1conf *conf)
875 {
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881 }
882
883 static void freeze_array(struct r1conf *conf, int extra)
884 {
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
888 * wait until nr_pending match nr_queued+extra
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (extra)
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+extra,
902 conf->resync_lock,
903 flush_pending_writes(conf));
904 spin_unlock_irq(&conf->resync_lock);
905 }
906 static void unfreeze_array(struct r1conf *conf)
907 {
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914 }
915
916
917 /* duplicate the data pages for behind I/O
918 */
919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
920 {
921 int i;
922 struct bio_vec *bvec;
923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
924 GFP_NOIO);
925 if (unlikely(!bvecs))
926 return;
927
928 bio_for_each_segment_all(bvec, bio, i) {
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
932 goto do_sync_io;
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
936 kunmap(bvec->bv_page);
937 }
938 r1_bio->behind_bvecs = bvecs;
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
942
943 do_sync_io:
944 for (i = 0; i < bio->bi_vcnt; i++)
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
949 }
950
951 struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955 };
956
957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958 {
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
965 if (from_schedule || current->bio_list) {
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
970 wake_up(&conf->wait_barrier);
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
984 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
986 /* Just ignore it */
987 bio_endio(bio, 0);
988 else
989 generic_make_request(bio);
990 bio = next;
991 }
992 kfree(plug);
993 }
994
995 static void make_request(struct mddev *mddev, struct bio * bio)
996 {
997 struct r1conf *conf = mddev->private;
998 struct raid1_info *mirror;
999 struct r1bio *r1_bio;
1000 struct bio *read_bio;
1001 int i, disks;
1002 struct bitmap *bitmap;
1003 unsigned long flags;
1004 const int rw = bio_data_dir(bio);
1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1007 const unsigned long do_discard = (bio->bi_rw
1008 & (REQ_DISCARD | REQ_SECURE));
1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1010 struct md_rdev *blocked_rdev;
1011 struct blk_plug_cb *cb;
1012 struct raid1_plug_cb *plug = NULL;
1013 int first_clone;
1014 int sectors_handled;
1015 int max_sectors;
1016
1017 /*
1018 * Register the new request and wait if the reconstruction
1019 * thread has put up a bar for new requests.
1020 * Continue immediately if no resync is active currently.
1021 */
1022
1023 md_write_start(mddev, bio); /* wait on superblock update early */
1024
1025 if (bio_data_dir(bio) == WRITE &&
1026 bio_end_sector(bio) > mddev->suspend_lo &&
1027 bio->bi_sector < mddev->suspend_hi) {
1028 /* As the suspend_* range is controlled by
1029 * userspace, we want an interruptible
1030 * wait.
1031 */
1032 DEFINE_WAIT(w);
1033 for (;;) {
1034 flush_signals(current);
1035 prepare_to_wait(&conf->wait_barrier,
1036 &w, TASK_INTERRUPTIBLE);
1037 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1038 bio->bi_sector >= mddev->suspend_hi)
1039 break;
1040 schedule();
1041 }
1042 finish_wait(&conf->wait_barrier, &w);
1043 }
1044
1045 wait_barrier(conf);
1046
1047 bitmap = mddev->bitmap;
1048
1049 /*
1050 * make_request() can abort the operation when READA is being
1051 * used and no empty request is available.
1052 *
1053 */
1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1055
1056 r1_bio->master_bio = bio;
1057 r1_bio->sectors = bio_sectors(bio);
1058 r1_bio->state = 0;
1059 r1_bio->mddev = mddev;
1060 r1_bio->sector = bio->bi_sector;
1061
1062 /* We might need to issue multiple reads to different
1063 * devices if there are bad blocks around, so we keep
1064 * track of the number of reads in bio->bi_phys_segments.
1065 * If this is 0, there is only one r1_bio and no locking
1066 * will be needed when requests complete. If it is
1067 * non-zero, then it is the number of not-completed requests.
1068 */
1069 bio->bi_phys_segments = 0;
1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1071
1072 if (rw == READ) {
1073 /*
1074 * read balancing logic:
1075 */
1076 int rdisk;
1077
1078 read_again:
1079 rdisk = read_balance(conf, r1_bio, &max_sectors);
1080
1081 if (rdisk < 0) {
1082 /* couldn't find anywhere to read from */
1083 raid_end_bio_io(r1_bio);
1084 return;
1085 }
1086 mirror = conf->mirrors + rdisk;
1087
1088 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1089 bitmap) {
1090 /* Reading from a write-mostly device must
1091 * take care not to over-take any writes
1092 * that are 'behind'
1093 */
1094 wait_event(bitmap->behind_wait,
1095 atomic_read(&bitmap->behind_writes) == 0);
1096 }
1097 r1_bio->read_disk = rdisk;
1098
1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1100 bio_trim(read_bio, r1_bio->sector - bio->bi_sector,
1101 max_sectors);
1102
1103 r1_bio->bios[rdisk] = read_bio;
1104
1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1106 read_bio->bi_bdev = mirror->rdev->bdev;
1107 read_bio->bi_end_io = raid1_end_read_request;
1108 read_bio->bi_rw = READ | do_sync;
1109 read_bio->bi_private = r1_bio;
1110
1111 if (max_sectors < r1_bio->sectors) {
1112 /* could not read all from this device, so we will
1113 * need another r1_bio.
1114 */
1115
1116 sectors_handled = (r1_bio->sector + max_sectors
1117 - bio->bi_sector);
1118 r1_bio->sectors = max_sectors;
1119 spin_lock_irq(&conf->device_lock);
1120 if (bio->bi_phys_segments == 0)
1121 bio->bi_phys_segments = 2;
1122 else
1123 bio->bi_phys_segments++;
1124 spin_unlock_irq(&conf->device_lock);
1125 /* Cannot call generic_make_request directly
1126 * as that will be queued in __make_request
1127 * and subsequent mempool_alloc might block waiting
1128 * for it. So hand bio over to raid1d.
1129 */
1130 reschedule_retry(r1_bio);
1131
1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133
1134 r1_bio->master_bio = bio;
1135 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1136 r1_bio->state = 0;
1137 r1_bio->mddev = mddev;
1138 r1_bio->sector = bio->bi_sector + sectors_handled;
1139 goto read_again;
1140 } else
1141 generic_make_request(read_bio);
1142 return;
1143 }
1144
1145 /*
1146 * WRITE:
1147 */
1148 if (conf->pending_count >= max_queued_requests) {
1149 md_wakeup_thread(mddev->thread);
1150 wait_event(conf->wait_barrier,
1151 conf->pending_count < max_queued_requests);
1152 }
1153 /* first select target devices under rcu_lock and
1154 * inc refcount on their rdev. Record them by setting
1155 * bios[x] to bio
1156 * If there are known/acknowledged bad blocks on any device on
1157 * which we have seen a write error, we want to avoid writing those
1158 * blocks.
1159 * This potentially requires several writes to write around
1160 * the bad blocks. Each set of writes gets it's own r1bio
1161 * with a set of bios attached.
1162 */
1163
1164 disks = conf->raid_disks * 2;
1165 retry_write:
1166 blocked_rdev = NULL;
1167 rcu_read_lock();
1168 max_sectors = r1_bio->sectors;
1169 for (i = 0; i < disks; i++) {
1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 atomic_inc(&rdev->nr_pending);
1173 blocked_rdev = rdev;
1174 break;
1175 }
1176 r1_bio->bios[i] = NULL;
1177 if (!rdev || test_bit(Faulty, &rdev->flags)
1178 || test_bit(Unmerged, &rdev->flags)) {
1179 if (i < conf->raid_disks)
1180 set_bit(R1BIO_Degraded, &r1_bio->state);
1181 continue;
1182 }
1183
1184 atomic_inc(&rdev->nr_pending);
1185 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1186 sector_t first_bad;
1187 int bad_sectors;
1188 int is_bad;
1189
1190 is_bad = is_badblock(rdev, r1_bio->sector,
1191 max_sectors,
1192 &first_bad, &bad_sectors);
1193 if (is_bad < 0) {
1194 /* mustn't write here until the bad block is
1195 * acknowledged*/
1196 set_bit(BlockedBadBlocks, &rdev->flags);
1197 blocked_rdev = rdev;
1198 break;
1199 }
1200 if (is_bad && first_bad <= r1_bio->sector) {
1201 /* Cannot write here at all */
1202 bad_sectors -= (r1_bio->sector - first_bad);
1203 if (bad_sectors < max_sectors)
1204 /* mustn't write more than bad_sectors
1205 * to other devices yet
1206 */
1207 max_sectors = bad_sectors;
1208 rdev_dec_pending(rdev, mddev);
1209 /* We don't set R1BIO_Degraded as that
1210 * only applies if the disk is
1211 * missing, so it might be re-added,
1212 * and we want to know to recover this
1213 * chunk.
1214 * In this case the device is here,
1215 * and the fact that this chunk is not
1216 * in-sync is recorded in the bad
1217 * block log
1218 */
1219 continue;
1220 }
1221 if (is_bad) {
1222 int good_sectors = first_bad - r1_bio->sector;
1223 if (good_sectors < max_sectors)
1224 max_sectors = good_sectors;
1225 }
1226 }
1227 r1_bio->bios[i] = bio;
1228 }
1229 rcu_read_unlock();
1230
1231 if (unlikely(blocked_rdev)) {
1232 /* Wait for this device to become unblocked */
1233 int j;
1234
1235 for (j = 0; j < i; j++)
1236 if (r1_bio->bios[j])
1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1238 r1_bio->state = 0;
1239 allow_barrier(conf);
1240 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1241 wait_barrier(conf);
1242 goto retry_write;
1243 }
1244
1245 if (max_sectors < r1_bio->sectors) {
1246 /* We are splitting this write into multiple parts, so
1247 * we need to prepare for allocating another r1_bio.
1248 */
1249 r1_bio->sectors = max_sectors;
1250 spin_lock_irq(&conf->device_lock);
1251 if (bio->bi_phys_segments == 0)
1252 bio->bi_phys_segments = 2;
1253 else
1254 bio->bi_phys_segments++;
1255 spin_unlock_irq(&conf->device_lock);
1256 }
1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1258
1259 atomic_set(&r1_bio->remaining, 1);
1260 atomic_set(&r1_bio->behind_remaining, 0);
1261
1262 first_clone = 1;
1263 for (i = 0; i < disks; i++) {
1264 struct bio *mbio;
1265 if (!r1_bio->bios[i])
1266 continue;
1267
1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1269 bio_trim(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1270
1271 if (first_clone) {
1272 /* do behind I/O ?
1273 * Not if there are too many, or cannot
1274 * allocate memory, or a reader on WriteMostly
1275 * is waiting for behind writes to flush */
1276 if (bitmap &&
1277 (atomic_read(&bitmap->behind_writes)
1278 < mddev->bitmap_info.max_write_behind) &&
1279 !waitqueue_active(&bitmap->behind_wait))
1280 alloc_behind_pages(mbio, r1_bio);
1281
1282 bitmap_startwrite(bitmap, r1_bio->sector,
1283 r1_bio->sectors,
1284 test_bit(R1BIO_BehindIO,
1285 &r1_bio->state));
1286 first_clone = 0;
1287 }
1288 if (r1_bio->behind_bvecs) {
1289 struct bio_vec *bvec;
1290 int j;
1291
1292 /*
1293 * We trimmed the bio, so _all is legit
1294 */
1295 bio_for_each_segment_all(bvec, mbio, j)
1296 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1297 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1298 atomic_inc(&r1_bio->behind_remaining);
1299 }
1300
1301 r1_bio->bios[i] = mbio;
1302
1303 mbio->bi_sector = (r1_bio->sector +
1304 conf->mirrors[i].rdev->data_offset);
1305 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1306 mbio->bi_end_io = raid1_end_write_request;
1307 mbio->bi_rw =
1308 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1309 mbio->bi_private = r1_bio;
1310
1311 atomic_inc(&r1_bio->remaining);
1312
1313 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1314 if (cb)
1315 plug = container_of(cb, struct raid1_plug_cb, cb);
1316 else
1317 plug = NULL;
1318 spin_lock_irqsave(&conf->device_lock, flags);
1319 if (plug) {
1320 bio_list_add(&plug->pending, mbio);
1321 plug->pending_cnt++;
1322 } else {
1323 bio_list_add(&conf->pending_bio_list, mbio);
1324 conf->pending_count++;
1325 }
1326 spin_unlock_irqrestore(&conf->device_lock, flags);
1327 if (!plug)
1328 md_wakeup_thread(mddev->thread);
1329 }
1330 /* Mustn't call r1_bio_write_done before this next test,
1331 * as it could result in the bio being freed.
1332 */
1333 if (sectors_handled < bio_sectors(bio)) {
1334 r1_bio_write_done(r1_bio);
1335 /* We need another r1_bio. It has already been counted
1336 * in bio->bi_phys_segments
1337 */
1338 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1339 r1_bio->master_bio = bio;
1340 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1341 r1_bio->state = 0;
1342 r1_bio->mddev = mddev;
1343 r1_bio->sector = bio->bi_sector + sectors_handled;
1344 goto retry_write;
1345 }
1346
1347 r1_bio_write_done(r1_bio);
1348
1349 /* In case raid1d snuck in to freeze_array */
1350 wake_up(&conf->wait_barrier);
1351 }
1352
1353 static void status(struct seq_file *seq, struct mddev *mddev)
1354 {
1355 struct r1conf *conf = mddev->private;
1356 int i;
1357
1358 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1359 conf->raid_disks - mddev->degraded);
1360 rcu_read_lock();
1361 for (i = 0; i < conf->raid_disks; i++) {
1362 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1363 seq_printf(seq, "%s",
1364 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1365 }
1366 rcu_read_unlock();
1367 seq_printf(seq, "]");
1368 }
1369
1370
1371 static void error(struct mddev *mddev, struct md_rdev *rdev)
1372 {
1373 char b[BDEVNAME_SIZE];
1374 struct r1conf *conf = mddev->private;
1375
1376 /*
1377 * If it is not operational, then we have already marked it as dead
1378 * else if it is the last working disks, ignore the error, let the
1379 * next level up know.
1380 * else mark the drive as failed
1381 */
1382 if (test_bit(In_sync, &rdev->flags)
1383 && (conf->raid_disks - mddev->degraded) == 1) {
1384 /*
1385 * Don't fail the drive, act as though we were just a
1386 * normal single drive.
1387 * However don't try a recovery from this drive as
1388 * it is very likely to fail.
1389 */
1390 conf->recovery_disabled = mddev->recovery_disabled;
1391 return;
1392 }
1393 set_bit(Blocked, &rdev->flags);
1394 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1395 unsigned long flags;
1396 spin_lock_irqsave(&conf->device_lock, flags);
1397 mddev->degraded++;
1398 set_bit(Faulty, &rdev->flags);
1399 spin_unlock_irqrestore(&conf->device_lock, flags);
1400 /*
1401 * if recovery is running, make sure it aborts.
1402 */
1403 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1404 } else
1405 set_bit(Faulty, &rdev->flags);
1406 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1407 printk(KERN_ALERT
1408 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1409 "md/raid1:%s: Operation continuing on %d devices.\n",
1410 mdname(mddev), bdevname(rdev->bdev, b),
1411 mdname(mddev), conf->raid_disks - mddev->degraded);
1412 }
1413
1414 static void print_conf(struct r1conf *conf)
1415 {
1416 int i;
1417
1418 printk(KERN_DEBUG "RAID1 conf printout:\n");
1419 if (!conf) {
1420 printk(KERN_DEBUG "(!conf)\n");
1421 return;
1422 }
1423 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1424 conf->raid_disks);
1425
1426 rcu_read_lock();
1427 for (i = 0; i < conf->raid_disks; i++) {
1428 char b[BDEVNAME_SIZE];
1429 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1430 if (rdev)
1431 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1432 i, !test_bit(In_sync, &rdev->flags),
1433 !test_bit(Faulty, &rdev->flags),
1434 bdevname(rdev->bdev,b));
1435 }
1436 rcu_read_unlock();
1437 }
1438
1439 static void close_sync(struct r1conf *conf)
1440 {
1441 wait_barrier(conf);
1442 allow_barrier(conf);
1443
1444 mempool_destroy(conf->r1buf_pool);
1445 conf->r1buf_pool = NULL;
1446 }
1447
1448 static int raid1_spare_active(struct mddev *mddev)
1449 {
1450 int i;
1451 struct r1conf *conf = mddev->private;
1452 int count = 0;
1453 unsigned long flags;
1454
1455 /*
1456 * Find all failed disks within the RAID1 configuration
1457 * and mark them readable.
1458 * Called under mddev lock, so rcu protection not needed.
1459 */
1460 for (i = 0; i < conf->raid_disks; i++) {
1461 struct md_rdev *rdev = conf->mirrors[i].rdev;
1462 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1463 if (repl
1464 && repl->recovery_offset == MaxSector
1465 && !test_bit(Faulty, &repl->flags)
1466 && !test_and_set_bit(In_sync, &repl->flags)) {
1467 /* replacement has just become active */
1468 if (!rdev ||
1469 !test_and_clear_bit(In_sync, &rdev->flags))
1470 count++;
1471 if (rdev) {
1472 /* Replaced device not technically
1473 * faulty, but we need to be sure
1474 * it gets removed and never re-added
1475 */
1476 set_bit(Faulty, &rdev->flags);
1477 sysfs_notify_dirent_safe(
1478 rdev->sysfs_state);
1479 }
1480 }
1481 if (rdev
1482 && rdev->recovery_offset == MaxSector
1483 && !test_bit(Faulty, &rdev->flags)
1484 && !test_and_set_bit(In_sync, &rdev->flags)) {
1485 count++;
1486 sysfs_notify_dirent_safe(rdev->sysfs_state);
1487 }
1488 }
1489 spin_lock_irqsave(&conf->device_lock, flags);
1490 mddev->degraded -= count;
1491 spin_unlock_irqrestore(&conf->device_lock, flags);
1492
1493 print_conf(conf);
1494 return count;
1495 }
1496
1497
1498 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1499 {
1500 struct r1conf *conf = mddev->private;
1501 int err = -EEXIST;
1502 int mirror = 0;
1503 struct raid1_info *p;
1504 int first = 0;
1505 int last = conf->raid_disks - 1;
1506 struct request_queue *q = bdev_get_queue(rdev->bdev);
1507
1508 if (mddev->recovery_disabled == conf->recovery_disabled)
1509 return -EBUSY;
1510
1511 if (rdev->raid_disk >= 0)
1512 first = last = rdev->raid_disk;
1513
1514 if (q->merge_bvec_fn) {
1515 set_bit(Unmerged, &rdev->flags);
1516 mddev->merge_check_needed = 1;
1517 }
1518
1519 for (mirror = first; mirror <= last; mirror++) {
1520 p = conf->mirrors+mirror;
1521 if (!p->rdev) {
1522
1523 if (mddev->gendisk)
1524 disk_stack_limits(mddev->gendisk, rdev->bdev,
1525 rdev->data_offset << 9);
1526
1527 p->head_position = 0;
1528 rdev->raid_disk = mirror;
1529 err = 0;
1530 /* As all devices are equivalent, we don't need a full recovery
1531 * if this was recently any drive of the array
1532 */
1533 if (rdev->saved_raid_disk < 0)
1534 conf->fullsync = 1;
1535 rcu_assign_pointer(p->rdev, rdev);
1536 break;
1537 }
1538 if (test_bit(WantReplacement, &p->rdev->flags) &&
1539 p[conf->raid_disks].rdev == NULL) {
1540 /* Add this device as a replacement */
1541 clear_bit(In_sync, &rdev->flags);
1542 set_bit(Replacement, &rdev->flags);
1543 rdev->raid_disk = mirror;
1544 err = 0;
1545 conf->fullsync = 1;
1546 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1547 break;
1548 }
1549 }
1550 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1551 /* Some requests might not have seen this new
1552 * merge_bvec_fn. We must wait for them to complete
1553 * before merging the device fully.
1554 * First we make sure any code which has tested
1555 * our function has submitted the request, then
1556 * we wait for all outstanding requests to complete.
1557 */
1558 synchronize_sched();
1559 freeze_array(conf, 0);
1560 unfreeze_array(conf);
1561 clear_bit(Unmerged, &rdev->flags);
1562 }
1563 md_integrity_add_rdev(rdev, mddev);
1564 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1565 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1566 print_conf(conf);
1567 return err;
1568 }
1569
1570 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1571 {
1572 struct r1conf *conf = mddev->private;
1573 int err = 0;
1574 int number = rdev->raid_disk;
1575 struct raid1_info *p = conf->mirrors + number;
1576
1577 if (rdev != p->rdev)
1578 p = conf->mirrors + conf->raid_disks + number;
1579
1580 print_conf(conf);
1581 if (rdev == p->rdev) {
1582 if (test_bit(In_sync, &rdev->flags) ||
1583 atomic_read(&rdev->nr_pending)) {
1584 err = -EBUSY;
1585 goto abort;
1586 }
1587 /* Only remove non-faulty devices if recovery
1588 * is not possible.
1589 */
1590 if (!test_bit(Faulty, &rdev->flags) &&
1591 mddev->recovery_disabled != conf->recovery_disabled &&
1592 mddev->degraded < conf->raid_disks) {
1593 err = -EBUSY;
1594 goto abort;
1595 }
1596 p->rdev = NULL;
1597 synchronize_rcu();
1598 if (atomic_read(&rdev->nr_pending)) {
1599 /* lost the race, try later */
1600 err = -EBUSY;
1601 p->rdev = rdev;
1602 goto abort;
1603 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1604 /* We just removed a device that is being replaced.
1605 * Move down the replacement. We drain all IO before
1606 * doing this to avoid confusion.
1607 */
1608 struct md_rdev *repl =
1609 conf->mirrors[conf->raid_disks + number].rdev;
1610 freeze_array(conf, 0);
1611 clear_bit(Replacement, &repl->flags);
1612 p->rdev = repl;
1613 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1614 unfreeze_array(conf);
1615 clear_bit(WantReplacement, &rdev->flags);
1616 } else
1617 clear_bit(WantReplacement, &rdev->flags);
1618 err = md_integrity_register(mddev);
1619 }
1620 abort:
1621
1622 print_conf(conf);
1623 return err;
1624 }
1625
1626
1627 static void end_sync_read(struct bio *bio, int error)
1628 {
1629 struct r1bio *r1_bio = bio->bi_private;
1630
1631 update_head_pos(r1_bio->read_disk, r1_bio);
1632
1633 /*
1634 * we have read a block, now it needs to be re-written,
1635 * or re-read if the read failed.
1636 * We don't do much here, just schedule handling by raid1d
1637 */
1638 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1639 set_bit(R1BIO_Uptodate, &r1_bio->state);
1640
1641 if (atomic_dec_and_test(&r1_bio->remaining))
1642 reschedule_retry(r1_bio);
1643 }
1644
1645 static void end_sync_write(struct bio *bio, int error)
1646 {
1647 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1648 struct r1bio *r1_bio = bio->bi_private;
1649 struct mddev *mddev = r1_bio->mddev;
1650 struct r1conf *conf = mddev->private;
1651 int mirror=0;
1652 sector_t first_bad;
1653 int bad_sectors;
1654
1655 mirror = find_bio_disk(r1_bio, bio);
1656
1657 if (!uptodate) {
1658 sector_t sync_blocks = 0;
1659 sector_t s = r1_bio->sector;
1660 long sectors_to_go = r1_bio->sectors;
1661 /* make sure these bits doesn't get cleared. */
1662 do {
1663 bitmap_end_sync(mddev->bitmap, s,
1664 &sync_blocks, 1);
1665 s += sync_blocks;
1666 sectors_to_go -= sync_blocks;
1667 } while (sectors_to_go > 0);
1668 set_bit(WriteErrorSeen,
1669 &conf->mirrors[mirror].rdev->flags);
1670 if (!test_and_set_bit(WantReplacement,
1671 &conf->mirrors[mirror].rdev->flags))
1672 set_bit(MD_RECOVERY_NEEDED, &
1673 mddev->recovery);
1674 set_bit(R1BIO_WriteError, &r1_bio->state);
1675 } else if (is_badblock(conf->mirrors[mirror].rdev,
1676 r1_bio->sector,
1677 r1_bio->sectors,
1678 &first_bad, &bad_sectors) &&
1679 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1680 r1_bio->sector,
1681 r1_bio->sectors,
1682 &first_bad, &bad_sectors)
1683 )
1684 set_bit(R1BIO_MadeGood, &r1_bio->state);
1685
1686 if (atomic_dec_and_test(&r1_bio->remaining)) {
1687 int s = r1_bio->sectors;
1688 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1689 test_bit(R1BIO_WriteError, &r1_bio->state))
1690 reschedule_retry(r1_bio);
1691 else {
1692 put_buf(r1_bio);
1693 md_done_sync(mddev, s, uptodate);
1694 }
1695 }
1696 }
1697
1698 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1699 int sectors, struct page *page, int rw)
1700 {
1701 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1702 /* success */
1703 return 1;
1704 if (rw == WRITE) {
1705 set_bit(WriteErrorSeen, &rdev->flags);
1706 if (!test_and_set_bit(WantReplacement,
1707 &rdev->flags))
1708 set_bit(MD_RECOVERY_NEEDED, &
1709 rdev->mddev->recovery);
1710 }
1711 /* need to record an error - either for the block or the device */
1712 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1713 md_error(rdev->mddev, rdev);
1714 return 0;
1715 }
1716
1717 static int fix_sync_read_error(struct r1bio *r1_bio)
1718 {
1719 /* Try some synchronous reads of other devices to get
1720 * good data, much like with normal read errors. Only
1721 * read into the pages we already have so we don't
1722 * need to re-issue the read request.
1723 * We don't need to freeze the array, because being in an
1724 * active sync request, there is no normal IO, and
1725 * no overlapping syncs.
1726 * We don't need to check is_badblock() again as we
1727 * made sure that anything with a bad block in range
1728 * will have bi_end_io clear.
1729 */
1730 struct mddev *mddev = r1_bio->mddev;
1731 struct r1conf *conf = mddev->private;
1732 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1733 sector_t sect = r1_bio->sector;
1734 int sectors = r1_bio->sectors;
1735 int idx = 0;
1736
1737 while(sectors) {
1738 int s = sectors;
1739 int d = r1_bio->read_disk;
1740 int success = 0;
1741 struct md_rdev *rdev;
1742 int start;
1743
1744 if (s > (PAGE_SIZE>>9))
1745 s = PAGE_SIZE >> 9;
1746 do {
1747 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1748 /* No rcu protection needed here devices
1749 * can only be removed when no resync is
1750 * active, and resync is currently active
1751 */
1752 rdev = conf->mirrors[d].rdev;
1753 if (sync_page_io(rdev, sect, s<<9,
1754 bio->bi_io_vec[idx].bv_page,
1755 READ, false)) {
1756 success = 1;
1757 break;
1758 }
1759 }
1760 d++;
1761 if (d == conf->raid_disks * 2)
1762 d = 0;
1763 } while (!success && d != r1_bio->read_disk);
1764
1765 if (!success) {
1766 char b[BDEVNAME_SIZE];
1767 int abort = 0;
1768 /* Cannot read from anywhere, this block is lost.
1769 * Record a bad block on each device. If that doesn't
1770 * work just disable and interrupt the recovery.
1771 * Don't fail devices as that won't really help.
1772 */
1773 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1774 " for block %llu\n",
1775 mdname(mddev),
1776 bdevname(bio->bi_bdev, b),
1777 (unsigned long long)r1_bio->sector);
1778 for (d = 0; d < conf->raid_disks * 2; d++) {
1779 rdev = conf->mirrors[d].rdev;
1780 if (!rdev || test_bit(Faulty, &rdev->flags))
1781 continue;
1782 if (!rdev_set_badblocks(rdev, sect, s, 0))
1783 abort = 1;
1784 }
1785 if (abort) {
1786 conf->recovery_disabled =
1787 mddev->recovery_disabled;
1788 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1789 md_done_sync(mddev, r1_bio->sectors, 0);
1790 put_buf(r1_bio);
1791 return 0;
1792 }
1793 /* Try next page */
1794 sectors -= s;
1795 sect += s;
1796 idx++;
1797 continue;
1798 }
1799
1800 start = d;
1801 /* write it back and re-read */
1802 while (d != r1_bio->read_disk) {
1803 if (d == 0)
1804 d = conf->raid_disks * 2;
1805 d--;
1806 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1807 continue;
1808 rdev = conf->mirrors[d].rdev;
1809 if (r1_sync_page_io(rdev, sect, s,
1810 bio->bi_io_vec[idx].bv_page,
1811 WRITE) == 0) {
1812 r1_bio->bios[d]->bi_end_io = NULL;
1813 rdev_dec_pending(rdev, mddev);
1814 }
1815 }
1816 d = start;
1817 while (d != r1_bio->read_disk) {
1818 if (d == 0)
1819 d = conf->raid_disks * 2;
1820 d--;
1821 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1822 continue;
1823 rdev = conf->mirrors[d].rdev;
1824 if (r1_sync_page_io(rdev, sect, s,
1825 bio->bi_io_vec[idx].bv_page,
1826 READ) != 0)
1827 atomic_add(s, &rdev->corrected_errors);
1828 }
1829 sectors -= s;
1830 sect += s;
1831 idx ++;
1832 }
1833 set_bit(R1BIO_Uptodate, &r1_bio->state);
1834 set_bit(BIO_UPTODATE, &bio->bi_flags);
1835 return 1;
1836 }
1837
1838 static int process_checks(struct r1bio *r1_bio)
1839 {
1840 /* We have read all readable devices. If we haven't
1841 * got the block, then there is no hope left.
1842 * If we have, then we want to do a comparison
1843 * and skip the write if everything is the same.
1844 * If any blocks failed to read, then we need to
1845 * attempt an over-write
1846 */
1847 struct mddev *mddev = r1_bio->mddev;
1848 struct r1conf *conf = mddev->private;
1849 int primary;
1850 int i;
1851 int vcnt;
1852
1853 /* Fix variable parts of all bios */
1854 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1855 for (i = 0; i < conf->raid_disks * 2; i++) {
1856 int j;
1857 int size;
1858 struct bio *b = r1_bio->bios[i];
1859 if (b->bi_end_io != end_sync_read)
1860 continue;
1861 /* fixup the bio for reuse */
1862 bio_reset(b);
1863 b->bi_vcnt = vcnt;
1864 b->bi_size = r1_bio->sectors << 9;
1865 b->bi_sector = r1_bio->sector +
1866 conf->mirrors[i].rdev->data_offset;
1867 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1868 b->bi_end_io = end_sync_read;
1869 b->bi_private = r1_bio;
1870
1871 size = b->bi_size;
1872 for (j = 0; j < vcnt ; j++) {
1873 struct bio_vec *bi;
1874 bi = &b->bi_io_vec[j];
1875 bi->bv_offset = 0;
1876 if (size > PAGE_SIZE)
1877 bi->bv_len = PAGE_SIZE;
1878 else
1879 bi->bv_len = size;
1880 size -= PAGE_SIZE;
1881 }
1882 }
1883 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1884 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1885 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1886 r1_bio->bios[primary]->bi_end_io = NULL;
1887 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1888 break;
1889 }
1890 r1_bio->read_disk = primary;
1891 for (i = 0; i < conf->raid_disks * 2; i++) {
1892 int j;
1893 struct bio *pbio = r1_bio->bios[primary];
1894 struct bio *sbio = r1_bio->bios[i];
1895
1896 if (sbio->bi_end_io != end_sync_read)
1897 continue;
1898
1899 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1900 for (j = vcnt; j-- ; ) {
1901 struct page *p, *s;
1902 p = pbio->bi_io_vec[j].bv_page;
1903 s = sbio->bi_io_vec[j].bv_page;
1904 if (memcmp(page_address(p),
1905 page_address(s),
1906 sbio->bi_io_vec[j].bv_len))
1907 break;
1908 }
1909 } else
1910 j = 0;
1911 if (j >= 0)
1912 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1913 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1914 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1915 /* No need to write to this device. */
1916 sbio->bi_end_io = NULL;
1917 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1918 continue;
1919 }
1920
1921 bio_copy_data(sbio, pbio);
1922 }
1923 return 0;
1924 }
1925
1926 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1927 {
1928 struct r1conf *conf = mddev->private;
1929 int i;
1930 int disks = conf->raid_disks * 2;
1931 struct bio *bio, *wbio;
1932
1933 bio = r1_bio->bios[r1_bio->read_disk];
1934
1935 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1936 /* ouch - failed to read all of that. */
1937 if (!fix_sync_read_error(r1_bio))
1938 return;
1939
1940 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1941 if (process_checks(r1_bio) < 0)
1942 return;
1943 /*
1944 * schedule writes
1945 */
1946 atomic_set(&r1_bio->remaining, 1);
1947 for (i = 0; i < disks ; i++) {
1948 wbio = r1_bio->bios[i];
1949 if (wbio->bi_end_io == NULL ||
1950 (wbio->bi_end_io == end_sync_read &&
1951 (i == r1_bio->read_disk ||
1952 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1953 continue;
1954
1955 wbio->bi_rw = WRITE;
1956 wbio->bi_end_io = end_sync_write;
1957 atomic_inc(&r1_bio->remaining);
1958 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
1959
1960 generic_make_request(wbio);
1961 }
1962
1963 if (atomic_dec_and_test(&r1_bio->remaining)) {
1964 /* if we're here, all write(s) have completed, so clean up */
1965 int s = r1_bio->sectors;
1966 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1967 test_bit(R1BIO_WriteError, &r1_bio->state))
1968 reschedule_retry(r1_bio);
1969 else {
1970 put_buf(r1_bio);
1971 md_done_sync(mddev, s, 1);
1972 }
1973 }
1974 }
1975
1976 /*
1977 * This is a kernel thread which:
1978 *
1979 * 1. Retries failed read operations on working mirrors.
1980 * 2. Updates the raid superblock when problems encounter.
1981 * 3. Performs writes following reads for array synchronising.
1982 */
1983
1984 static void fix_read_error(struct r1conf *conf, int read_disk,
1985 sector_t sect, int sectors)
1986 {
1987 struct mddev *mddev = conf->mddev;
1988 while(sectors) {
1989 int s = sectors;
1990 int d = read_disk;
1991 int success = 0;
1992 int start;
1993 struct md_rdev *rdev;
1994
1995 if (s > (PAGE_SIZE>>9))
1996 s = PAGE_SIZE >> 9;
1997
1998 do {
1999 /* Note: no rcu protection needed here
2000 * as this is synchronous in the raid1d thread
2001 * which is the thread that might remove
2002 * a device. If raid1d ever becomes multi-threaded....
2003 */
2004 sector_t first_bad;
2005 int bad_sectors;
2006
2007 rdev = conf->mirrors[d].rdev;
2008 if (rdev &&
2009 (test_bit(In_sync, &rdev->flags) ||
2010 (!test_bit(Faulty, &rdev->flags) &&
2011 rdev->recovery_offset >= sect + s)) &&
2012 is_badblock(rdev, sect, s,
2013 &first_bad, &bad_sectors) == 0 &&
2014 sync_page_io(rdev, sect, s<<9,
2015 conf->tmppage, READ, false))
2016 success = 1;
2017 else {
2018 d++;
2019 if (d == conf->raid_disks * 2)
2020 d = 0;
2021 }
2022 } while (!success && d != read_disk);
2023
2024 if (!success) {
2025 /* Cannot read from anywhere - mark it bad */
2026 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2027 if (!rdev_set_badblocks(rdev, sect, s, 0))
2028 md_error(mddev, rdev);
2029 break;
2030 }
2031 /* write it back and re-read */
2032 start = d;
2033 while (d != read_disk) {
2034 if (d==0)
2035 d = conf->raid_disks * 2;
2036 d--;
2037 rdev = conf->mirrors[d].rdev;
2038 if (rdev &&
2039 test_bit(In_sync, &rdev->flags))
2040 r1_sync_page_io(rdev, sect, s,
2041 conf->tmppage, WRITE);
2042 }
2043 d = start;
2044 while (d != read_disk) {
2045 char b[BDEVNAME_SIZE];
2046 if (d==0)
2047 d = conf->raid_disks * 2;
2048 d--;
2049 rdev = conf->mirrors[d].rdev;
2050 if (rdev &&
2051 test_bit(In_sync, &rdev->flags)) {
2052 if (r1_sync_page_io(rdev, sect, s,
2053 conf->tmppage, READ)) {
2054 atomic_add(s, &rdev->corrected_errors);
2055 printk(KERN_INFO
2056 "md/raid1:%s: read error corrected "
2057 "(%d sectors at %llu on %s)\n",
2058 mdname(mddev), s,
2059 (unsigned long long)(sect +
2060 rdev->data_offset),
2061 bdevname(rdev->bdev, b));
2062 }
2063 }
2064 }
2065 sectors -= s;
2066 sect += s;
2067 }
2068 }
2069
2070 static int narrow_write_error(struct r1bio *r1_bio, int i)
2071 {
2072 struct mddev *mddev = r1_bio->mddev;
2073 struct r1conf *conf = mddev->private;
2074 struct md_rdev *rdev = conf->mirrors[i].rdev;
2075
2076 /* bio has the data to be written to device 'i' where
2077 * we just recently had a write error.
2078 * We repeatedly clone the bio and trim down to one block,
2079 * then try the write. Where the write fails we record
2080 * a bad block.
2081 * It is conceivable that the bio doesn't exactly align with
2082 * blocks. We must handle this somehow.
2083 *
2084 * We currently own a reference on the rdev.
2085 */
2086
2087 int block_sectors;
2088 sector_t sector;
2089 int sectors;
2090 int sect_to_write = r1_bio->sectors;
2091 int ok = 1;
2092
2093 if (rdev->badblocks.shift < 0)
2094 return 0;
2095
2096 block_sectors = 1 << rdev->badblocks.shift;
2097 sector = r1_bio->sector;
2098 sectors = ((sector + block_sectors)
2099 & ~(sector_t)(block_sectors - 1))
2100 - sector;
2101
2102 while (sect_to_write) {
2103 struct bio *wbio;
2104 if (sectors > sect_to_write)
2105 sectors = sect_to_write;
2106 /* Write at 'sector' for 'sectors'*/
2107
2108 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2109 unsigned vcnt = r1_bio->behind_page_count;
2110 struct bio_vec *vec = r1_bio->behind_bvecs;
2111
2112 while (!vec->bv_page) {
2113 vec++;
2114 vcnt--;
2115 }
2116
2117 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2118 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2119
2120 wbio->bi_vcnt = vcnt;
2121 } else {
2122 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2123 }
2124
2125 wbio->bi_rw = WRITE;
2126 wbio->bi_sector = r1_bio->sector;
2127 wbio->bi_size = r1_bio->sectors << 9;
2128
2129 bio_trim(wbio, sector - r1_bio->sector, sectors);
2130 wbio->bi_sector += rdev->data_offset;
2131 wbio->bi_bdev = rdev->bdev;
2132 if (submit_bio_wait(WRITE, wbio) == 0)
2133 /* failure! */
2134 ok = rdev_set_badblocks(rdev, sector,
2135 sectors, 0)
2136 && ok;
2137
2138 bio_put(wbio);
2139 sect_to_write -= sectors;
2140 sector += sectors;
2141 sectors = block_sectors;
2142 }
2143 return ok;
2144 }
2145
2146 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2147 {
2148 int m;
2149 int s = r1_bio->sectors;
2150 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2151 struct md_rdev *rdev = conf->mirrors[m].rdev;
2152 struct bio *bio = r1_bio->bios[m];
2153 if (bio->bi_end_io == NULL)
2154 continue;
2155 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2156 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2157 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2158 }
2159 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2160 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2161 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2162 md_error(conf->mddev, rdev);
2163 }
2164 }
2165 put_buf(r1_bio);
2166 md_done_sync(conf->mddev, s, 1);
2167 }
2168
2169 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2170 {
2171 int m;
2172 for (m = 0; m < conf->raid_disks * 2 ; m++)
2173 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2174 struct md_rdev *rdev = conf->mirrors[m].rdev;
2175 rdev_clear_badblocks(rdev,
2176 r1_bio->sector,
2177 r1_bio->sectors, 0);
2178 rdev_dec_pending(rdev, conf->mddev);
2179 } else if (r1_bio->bios[m] != NULL) {
2180 /* This drive got a write error. We need to
2181 * narrow down and record precise write
2182 * errors.
2183 */
2184 if (!narrow_write_error(r1_bio, m)) {
2185 md_error(conf->mddev,
2186 conf->mirrors[m].rdev);
2187 /* an I/O failed, we can't clear the bitmap */
2188 set_bit(R1BIO_Degraded, &r1_bio->state);
2189 }
2190 rdev_dec_pending(conf->mirrors[m].rdev,
2191 conf->mddev);
2192 }
2193 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2194 close_write(r1_bio);
2195 raid_end_bio_io(r1_bio);
2196 }
2197
2198 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2199 {
2200 int disk;
2201 int max_sectors;
2202 struct mddev *mddev = conf->mddev;
2203 struct bio *bio;
2204 char b[BDEVNAME_SIZE];
2205 struct md_rdev *rdev;
2206
2207 clear_bit(R1BIO_ReadError, &r1_bio->state);
2208 /* we got a read error. Maybe the drive is bad. Maybe just
2209 * the block and we can fix it.
2210 * We freeze all other IO, and try reading the block from
2211 * other devices. When we find one, we re-write
2212 * and check it that fixes the read error.
2213 * This is all done synchronously while the array is
2214 * frozen
2215 */
2216 if (mddev->ro == 0) {
2217 freeze_array(conf, 1);
2218 fix_read_error(conf, r1_bio->read_disk,
2219 r1_bio->sector, r1_bio->sectors);
2220 unfreeze_array(conf);
2221 } else
2222 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2223 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2224
2225 bio = r1_bio->bios[r1_bio->read_disk];
2226 bdevname(bio->bi_bdev, b);
2227 read_more:
2228 disk = read_balance(conf, r1_bio, &max_sectors);
2229 if (disk == -1) {
2230 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2231 " read error for block %llu\n",
2232 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2233 raid_end_bio_io(r1_bio);
2234 } else {
2235 const unsigned long do_sync
2236 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2237 if (bio) {
2238 r1_bio->bios[r1_bio->read_disk] =
2239 mddev->ro ? IO_BLOCKED : NULL;
2240 bio_put(bio);
2241 }
2242 r1_bio->read_disk = disk;
2243 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 bio_trim(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2245 r1_bio->bios[r1_bio->read_disk] = bio;
2246 rdev = conf->mirrors[disk].rdev;
2247 printk_ratelimited(KERN_ERR
2248 "md/raid1:%s: redirecting sector %llu"
2249 " to other mirror: %s\n",
2250 mdname(mddev),
2251 (unsigned long long)r1_bio->sector,
2252 bdevname(rdev->bdev, b));
2253 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2254 bio->bi_bdev = rdev->bdev;
2255 bio->bi_end_io = raid1_end_read_request;
2256 bio->bi_rw = READ | do_sync;
2257 bio->bi_private = r1_bio;
2258 if (max_sectors < r1_bio->sectors) {
2259 /* Drat - have to split this up more */
2260 struct bio *mbio = r1_bio->master_bio;
2261 int sectors_handled = (r1_bio->sector + max_sectors
2262 - mbio->bi_sector);
2263 r1_bio->sectors = max_sectors;
2264 spin_lock_irq(&conf->device_lock);
2265 if (mbio->bi_phys_segments == 0)
2266 mbio->bi_phys_segments = 2;
2267 else
2268 mbio->bi_phys_segments++;
2269 spin_unlock_irq(&conf->device_lock);
2270 generic_make_request(bio);
2271 bio = NULL;
2272
2273 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2274
2275 r1_bio->master_bio = mbio;
2276 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2277 r1_bio->state = 0;
2278 set_bit(R1BIO_ReadError, &r1_bio->state);
2279 r1_bio->mddev = mddev;
2280 r1_bio->sector = mbio->bi_sector + sectors_handled;
2281
2282 goto read_more;
2283 } else
2284 generic_make_request(bio);
2285 }
2286 }
2287
2288 static void raid1d(struct md_thread *thread)
2289 {
2290 struct mddev *mddev = thread->mddev;
2291 struct r1bio *r1_bio;
2292 unsigned long flags;
2293 struct r1conf *conf = mddev->private;
2294 struct list_head *head = &conf->retry_list;
2295 struct blk_plug plug;
2296
2297 md_check_recovery(mddev);
2298
2299 blk_start_plug(&plug);
2300 for (;;) {
2301
2302 flush_pending_writes(conf);
2303
2304 spin_lock_irqsave(&conf->device_lock, flags);
2305 if (list_empty(head)) {
2306 spin_unlock_irqrestore(&conf->device_lock, flags);
2307 break;
2308 }
2309 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2310 list_del(head->prev);
2311 conf->nr_queued--;
2312 spin_unlock_irqrestore(&conf->device_lock, flags);
2313
2314 mddev = r1_bio->mddev;
2315 conf = mddev->private;
2316 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2317 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2318 test_bit(R1BIO_WriteError, &r1_bio->state))
2319 handle_sync_write_finished(conf, r1_bio);
2320 else
2321 sync_request_write(mddev, r1_bio);
2322 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2323 test_bit(R1BIO_WriteError, &r1_bio->state))
2324 handle_write_finished(conf, r1_bio);
2325 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2326 handle_read_error(conf, r1_bio);
2327 else
2328 /* just a partial read to be scheduled from separate
2329 * context
2330 */
2331 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2332
2333 cond_resched();
2334 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2335 md_check_recovery(mddev);
2336 }
2337 blk_finish_plug(&plug);
2338 }
2339
2340
2341 static int init_resync(struct r1conf *conf)
2342 {
2343 int buffs;
2344
2345 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2346 BUG_ON(conf->r1buf_pool);
2347 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2348 conf->poolinfo);
2349 if (!conf->r1buf_pool)
2350 return -ENOMEM;
2351 conf->next_resync = 0;
2352 return 0;
2353 }
2354
2355 /*
2356 * perform a "sync" on one "block"
2357 *
2358 * We need to make sure that no normal I/O request - particularly write
2359 * requests - conflict with active sync requests.
2360 *
2361 * This is achieved by tracking pending requests and a 'barrier' concept
2362 * that can be installed to exclude normal IO requests.
2363 */
2364
2365 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2366 {
2367 struct r1conf *conf = mddev->private;
2368 struct r1bio *r1_bio;
2369 struct bio *bio;
2370 sector_t max_sector, nr_sectors;
2371 int disk = -1;
2372 int i;
2373 int wonly = -1;
2374 int write_targets = 0, read_targets = 0;
2375 sector_t sync_blocks;
2376 int still_degraded = 0;
2377 int good_sectors = RESYNC_SECTORS;
2378 int min_bad = 0; /* number of sectors that are bad in all devices */
2379
2380 if (!conf->r1buf_pool)
2381 if (init_resync(conf))
2382 return 0;
2383
2384 max_sector = mddev->dev_sectors;
2385 if (sector_nr >= max_sector) {
2386 /* If we aborted, we need to abort the
2387 * sync on the 'current' bitmap chunk (there will
2388 * only be one in raid1 resync.
2389 * We can find the current addess in mddev->curr_resync
2390 */
2391 if (mddev->curr_resync < max_sector) /* aborted */
2392 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2393 &sync_blocks, 1);
2394 else /* completed sync */
2395 conf->fullsync = 0;
2396
2397 bitmap_close_sync(mddev->bitmap);
2398 close_sync(conf);
2399 return 0;
2400 }
2401
2402 if (mddev->bitmap == NULL &&
2403 mddev->recovery_cp == MaxSector &&
2404 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2405 conf->fullsync == 0) {
2406 *skipped = 1;
2407 return max_sector - sector_nr;
2408 }
2409 /* before building a request, check if we can skip these blocks..
2410 * This call the bitmap_start_sync doesn't actually record anything
2411 */
2412 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2413 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2414 /* We can skip this block, and probably several more */
2415 *skipped = 1;
2416 return sync_blocks;
2417 }
2418 /*
2419 * If there is non-resync activity waiting for a turn,
2420 * and resync is going fast enough,
2421 * then let it though before starting on this new sync request.
2422 */
2423 if (!go_faster && conf->nr_waiting)
2424 msleep_interruptible(1000);
2425
2426 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2427 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2428 raise_barrier(conf);
2429
2430 conf->next_resync = sector_nr;
2431
2432 rcu_read_lock();
2433 /*
2434 * If we get a correctably read error during resync or recovery,
2435 * we might want to read from a different device. So we
2436 * flag all drives that could conceivably be read from for READ,
2437 * and any others (which will be non-In_sync devices) for WRITE.
2438 * If a read fails, we try reading from something else for which READ
2439 * is OK.
2440 */
2441
2442 r1_bio->mddev = mddev;
2443 r1_bio->sector = sector_nr;
2444 r1_bio->state = 0;
2445 set_bit(R1BIO_IsSync, &r1_bio->state);
2446
2447 for (i = 0; i < conf->raid_disks * 2; i++) {
2448 struct md_rdev *rdev;
2449 bio = r1_bio->bios[i];
2450 bio_reset(bio);
2451
2452 rdev = rcu_dereference(conf->mirrors[i].rdev);
2453 if (rdev == NULL ||
2454 test_bit(Faulty, &rdev->flags)) {
2455 if (i < conf->raid_disks)
2456 still_degraded = 1;
2457 } else if (!test_bit(In_sync, &rdev->flags)) {
2458 bio->bi_rw = WRITE;
2459 bio->bi_end_io = end_sync_write;
2460 write_targets ++;
2461 } else {
2462 /* may need to read from here */
2463 sector_t first_bad = MaxSector;
2464 int bad_sectors;
2465
2466 if (is_badblock(rdev, sector_nr, good_sectors,
2467 &first_bad, &bad_sectors)) {
2468 if (first_bad > sector_nr)
2469 good_sectors = first_bad - sector_nr;
2470 else {
2471 bad_sectors -= (sector_nr - first_bad);
2472 if (min_bad == 0 ||
2473 min_bad > bad_sectors)
2474 min_bad = bad_sectors;
2475 }
2476 }
2477 if (sector_nr < first_bad) {
2478 if (test_bit(WriteMostly, &rdev->flags)) {
2479 if (wonly < 0)
2480 wonly = i;
2481 } else {
2482 if (disk < 0)
2483 disk = i;
2484 }
2485 bio->bi_rw = READ;
2486 bio->bi_end_io = end_sync_read;
2487 read_targets++;
2488 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2489 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2490 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2491 /*
2492 * The device is suitable for reading (InSync),
2493 * but has bad block(s) here. Let's try to correct them,
2494 * if we are doing resync or repair. Otherwise, leave
2495 * this device alone for this sync request.
2496 */
2497 bio->bi_rw = WRITE;
2498 bio->bi_end_io = end_sync_write;
2499 write_targets++;
2500 }
2501 }
2502 if (bio->bi_end_io) {
2503 atomic_inc(&rdev->nr_pending);
2504 bio->bi_sector = sector_nr + rdev->data_offset;
2505 bio->bi_bdev = rdev->bdev;
2506 bio->bi_private = r1_bio;
2507 }
2508 }
2509 rcu_read_unlock();
2510 if (disk < 0)
2511 disk = wonly;
2512 r1_bio->read_disk = disk;
2513
2514 if (read_targets == 0 && min_bad > 0) {
2515 /* These sectors are bad on all InSync devices, so we
2516 * need to mark them bad on all write targets
2517 */
2518 int ok = 1;
2519 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2520 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2521 struct md_rdev *rdev = conf->mirrors[i].rdev;
2522 ok = rdev_set_badblocks(rdev, sector_nr,
2523 min_bad, 0
2524 ) && ok;
2525 }
2526 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2527 *skipped = 1;
2528 put_buf(r1_bio);
2529
2530 if (!ok) {
2531 /* Cannot record the badblocks, so need to
2532 * abort the resync.
2533 * If there are multiple read targets, could just
2534 * fail the really bad ones ???
2535 */
2536 conf->recovery_disabled = mddev->recovery_disabled;
2537 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2538 return 0;
2539 } else
2540 return min_bad;
2541
2542 }
2543 if (min_bad > 0 && min_bad < good_sectors) {
2544 /* only resync enough to reach the next bad->good
2545 * transition */
2546 good_sectors = min_bad;
2547 }
2548
2549 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2550 /* extra read targets are also write targets */
2551 write_targets += read_targets-1;
2552
2553 if (write_targets == 0 || read_targets == 0) {
2554 /* There is nowhere to write, so all non-sync
2555 * drives must be failed - so we are finished
2556 */
2557 sector_t rv;
2558 if (min_bad > 0)
2559 max_sector = sector_nr + min_bad;
2560 rv = max_sector - sector_nr;
2561 *skipped = 1;
2562 put_buf(r1_bio);
2563 return rv;
2564 }
2565
2566 if (max_sector > mddev->resync_max)
2567 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2568 if (max_sector > sector_nr + good_sectors)
2569 max_sector = sector_nr + good_sectors;
2570 nr_sectors = 0;
2571 sync_blocks = 0;
2572 do {
2573 struct page *page;
2574 int len = PAGE_SIZE;
2575 if (sector_nr + (len>>9) > max_sector)
2576 len = (max_sector - sector_nr) << 9;
2577 if (len == 0)
2578 break;
2579 if (sync_blocks == 0) {
2580 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2581 &sync_blocks, still_degraded) &&
2582 !conf->fullsync &&
2583 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2584 break;
2585 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2586 if ((len >> 9) > sync_blocks)
2587 len = sync_blocks<<9;
2588 }
2589
2590 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2591 bio = r1_bio->bios[i];
2592 if (bio->bi_end_io) {
2593 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2594 if (bio_add_page(bio, page, len, 0) == 0) {
2595 /* stop here */
2596 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2597 while (i > 0) {
2598 i--;
2599 bio = r1_bio->bios[i];
2600 if (bio->bi_end_io==NULL)
2601 continue;
2602 /* remove last page from this bio */
2603 bio->bi_vcnt--;
2604 bio->bi_size -= len;
2605 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2606 }
2607 goto bio_full;
2608 }
2609 }
2610 }
2611 nr_sectors += len>>9;
2612 sector_nr += len>>9;
2613 sync_blocks -= (len>>9);
2614 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2615 bio_full:
2616 r1_bio->sectors = nr_sectors;
2617
2618 /* For a user-requested sync, we read all readable devices and do a
2619 * compare
2620 */
2621 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2622 atomic_set(&r1_bio->remaining, read_targets);
2623 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2624 bio = r1_bio->bios[i];
2625 if (bio->bi_end_io == end_sync_read) {
2626 read_targets--;
2627 md_sync_acct(bio->bi_bdev, nr_sectors);
2628 generic_make_request(bio);
2629 }
2630 }
2631 } else {
2632 atomic_set(&r1_bio->remaining, 1);
2633 bio = r1_bio->bios[r1_bio->read_disk];
2634 md_sync_acct(bio->bi_bdev, nr_sectors);
2635 generic_make_request(bio);
2636
2637 }
2638 return nr_sectors;
2639 }
2640
2641 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2642 {
2643 if (sectors)
2644 return sectors;
2645
2646 return mddev->dev_sectors;
2647 }
2648
2649 static struct r1conf *setup_conf(struct mddev *mddev)
2650 {
2651 struct r1conf *conf;
2652 int i;
2653 struct raid1_info *disk;
2654 struct md_rdev *rdev;
2655 int err = -ENOMEM;
2656
2657 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2658 if (!conf)
2659 goto abort;
2660
2661 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2662 * mddev->raid_disks * 2,
2663 GFP_KERNEL);
2664 if (!conf->mirrors)
2665 goto abort;
2666
2667 conf->tmppage = alloc_page(GFP_KERNEL);
2668 if (!conf->tmppage)
2669 goto abort;
2670
2671 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2672 if (!conf->poolinfo)
2673 goto abort;
2674 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2675 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2676 r1bio_pool_free,
2677 conf->poolinfo);
2678 if (!conf->r1bio_pool)
2679 goto abort;
2680
2681 conf->poolinfo->mddev = mddev;
2682
2683 err = -EINVAL;
2684 spin_lock_init(&conf->device_lock);
2685 rdev_for_each(rdev, mddev) {
2686 struct request_queue *q;
2687 int disk_idx = rdev->raid_disk;
2688 if (disk_idx >= mddev->raid_disks
2689 || disk_idx < 0)
2690 continue;
2691 if (test_bit(Replacement, &rdev->flags))
2692 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2693 else
2694 disk = conf->mirrors + disk_idx;
2695
2696 if (disk->rdev)
2697 goto abort;
2698 disk->rdev = rdev;
2699 q = bdev_get_queue(rdev->bdev);
2700 if (q->merge_bvec_fn)
2701 mddev->merge_check_needed = 1;
2702
2703 disk->head_position = 0;
2704 disk->seq_start = MaxSector;
2705 }
2706 conf->raid_disks = mddev->raid_disks;
2707 conf->mddev = mddev;
2708 INIT_LIST_HEAD(&conf->retry_list);
2709
2710 spin_lock_init(&conf->resync_lock);
2711 init_waitqueue_head(&conf->wait_barrier);
2712
2713 bio_list_init(&conf->pending_bio_list);
2714 conf->pending_count = 0;
2715 conf->recovery_disabled = mddev->recovery_disabled - 1;
2716
2717 err = -EIO;
2718 for (i = 0; i < conf->raid_disks * 2; i++) {
2719
2720 disk = conf->mirrors + i;
2721
2722 if (i < conf->raid_disks &&
2723 disk[conf->raid_disks].rdev) {
2724 /* This slot has a replacement. */
2725 if (!disk->rdev) {
2726 /* No original, just make the replacement
2727 * a recovering spare
2728 */
2729 disk->rdev =
2730 disk[conf->raid_disks].rdev;
2731 disk[conf->raid_disks].rdev = NULL;
2732 } else if (!test_bit(In_sync, &disk->rdev->flags))
2733 /* Original is not in_sync - bad */
2734 goto abort;
2735 }
2736
2737 if (!disk->rdev ||
2738 !test_bit(In_sync, &disk->rdev->flags)) {
2739 disk->head_position = 0;
2740 if (disk->rdev &&
2741 (disk->rdev->saved_raid_disk < 0))
2742 conf->fullsync = 1;
2743 }
2744 }
2745
2746 err = -ENOMEM;
2747 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2748 if (!conf->thread) {
2749 printk(KERN_ERR
2750 "md/raid1:%s: couldn't allocate thread\n",
2751 mdname(mddev));
2752 goto abort;
2753 }
2754
2755 return conf;
2756
2757 abort:
2758 if (conf) {
2759 if (conf->r1bio_pool)
2760 mempool_destroy(conf->r1bio_pool);
2761 kfree(conf->mirrors);
2762 safe_put_page(conf->tmppage);
2763 kfree(conf->poolinfo);
2764 kfree(conf);
2765 }
2766 return ERR_PTR(err);
2767 }
2768
2769 static int stop(struct mddev *mddev);
2770 static int run(struct mddev *mddev)
2771 {
2772 struct r1conf *conf;
2773 int i;
2774 struct md_rdev *rdev;
2775 int ret;
2776 bool discard_supported = false;
2777
2778 if (mddev->level != 1) {
2779 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2780 mdname(mddev), mddev->level);
2781 return -EIO;
2782 }
2783 if (mddev->reshape_position != MaxSector) {
2784 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2785 mdname(mddev));
2786 return -EIO;
2787 }
2788 /*
2789 * copy the already verified devices into our private RAID1
2790 * bookkeeping area. [whatever we allocate in run(),
2791 * should be freed in stop()]
2792 */
2793 if (mddev->private == NULL)
2794 conf = setup_conf(mddev);
2795 else
2796 conf = mddev->private;
2797
2798 if (IS_ERR(conf))
2799 return PTR_ERR(conf);
2800
2801 if (mddev->queue)
2802 blk_queue_max_write_same_sectors(mddev->queue, 0);
2803
2804 rdev_for_each(rdev, mddev) {
2805 if (!mddev->gendisk)
2806 continue;
2807 disk_stack_limits(mddev->gendisk, rdev->bdev,
2808 rdev->data_offset << 9);
2809 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2810 discard_supported = true;
2811 }
2812
2813 mddev->degraded = 0;
2814 for (i=0; i < conf->raid_disks; i++)
2815 if (conf->mirrors[i].rdev == NULL ||
2816 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2817 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2818 mddev->degraded++;
2819
2820 if (conf->raid_disks - mddev->degraded == 1)
2821 mddev->recovery_cp = MaxSector;
2822
2823 if (mddev->recovery_cp != MaxSector)
2824 printk(KERN_NOTICE "md/raid1:%s: not clean"
2825 " -- starting background reconstruction\n",
2826 mdname(mddev));
2827 printk(KERN_INFO
2828 "md/raid1:%s: active with %d out of %d mirrors\n",
2829 mdname(mddev), mddev->raid_disks - mddev->degraded,
2830 mddev->raid_disks);
2831
2832 /*
2833 * Ok, everything is just fine now
2834 */
2835 mddev->thread = conf->thread;
2836 conf->thread = NULL;
2837 mddev->private = conf;
2838
2839 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2840
2841 if (mddev->queue) {
2842 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2843 mddev->queue->backing_dev_info.congested_data = mddev;
2844 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2845
2846 if (discard_supported)
2847 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2848 mddev->queue);
2849 else
2850 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2851 mddev->queue);
2852 }
2853
2854 ret = md_integrity_register(mddev);
2855 if (ret)
2856 stop(mddev);
2857 return ret;
2858 }
2859
2860 static int stop(struct mddev *mddev)
2861 {
2862 struct r1conf *conf = mddev->private;
2863 struct bitmap *bitmap = mddev->bitmap;
2864
2865 /* wait for behind writes to complete */
2866 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2867 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2868 mdname(mddev));
2869 /* need to kick something here to make sure I/O goes? */
2870 wait_event(bitmap->behind_wait,
2871 atomic_read(&bitmap->behind_writes) == 0);
2872 }
2873
2874 raise_barrier(conf);
2875 lower_barrier(conf);
2876
2877 md_unregister_thread(&mddev->thread);
2878 if (conf->r1bio_pool)
2879 mempool_destroy(conf->r1bio_pool);
2880 kfree(conf->mirrors);
2881 safe_put_page(conf->tmppage);
2882 kfree(conf->poolinfo);
2883 kfree(conf);
2884 mddev->private = NULL;
2885 return 0;
2886 }
2887
2888 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2889 {
2890 /* no resync is happening, and there is enough space
2891 * on all devices, so we can resize.
2892 * We need to make sure resync covers any new space.
2893 * If the array is shrinking we should possibly wait until
2894 * any io in the removed space completes, but it hardly seems
2895 * worth it.
2896 */
2897 sector_t newsize = raid1_size(mddev, sectors, 0);
2898 if (mddev->external_size &&
2899 mddev->array_sectors > newsize)
2900 return -EINVAL;
2901 if (mddev->bitmap) {
2902 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2903 if (ret)
2904 return ret;
2905 }
2906 md_set_array_sectors(mddev, newsize);
2907 set_capacity(mddev->gendisk, mddev->array_sectors);
2908 revalidate_disk(mddev->gendisk);
2909 if (sectors > mddev->dev_sectors &&
2910 mddev->recovery_cp > mddev->dev_sectors) {
2911 mddev->recovery_cp = mddev->dev_sectors;
2912 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2913 }
2914 mddev->dev_sectors = sectors;
2915 mddev->resync_max_sectors = sectors;
2916 return 0;
2917 }
2918
2919 static int raid1_reshape(struct mddev *mddev)
2920 {
2921 /* We need to:
2922 * 1/ resize the r1bio_pool
2923 * 2/ resize conf->mirrors
2924 *
2925 * We allocate a new r1bio_pool if we can.
2926 * Then raise a device barrier and wait until all IO stops.
2927 * Then resize conf->mirrors and swap in the new r1bio pool.
2928 *
2929 * At the same time, we "pack" the devices so that all the missing
2930 * devices have the higher raid_disk numbers.
2931 */
2932 mempool_t *newpool, *oldpool;
2933 struct pool_info *newpoolinfo;
2934 struct raid1_info *newmirrors;
2935 struct r1conf *conf = mddev->private;
2936 int cnt, raid_disks;
2937 unsigned long flags;
2938 int d, d2, err;
2939
2940 /* Cannot change chunk_size, layout, or level */
2941 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2942 mddev->layout != mddev->new_layout ||
2943 mddev->level != mddev->new_level) {
2944 mddev->new_chunk_sectors = mddev->chunk_sectors;
2945 mddev->new_layout = mddev->layout;
2946 mddev->new_level = mddev->level;
2947 return -EINVAL;
2948 }
2949
2950 err = md_allow_write(mddev);
2951 if (err)
2952 return err;
2953
2954 raid_disks = mddev->raid_disks + mddev->delta_disks;
2955
2956 if (raid_disks < conf->raid_disks) {
2957 cnt=0;
2958 for (d= 0; d < conf->raid_disks; d++)
2959 if (conf->mirrors[d].rdev)
2960 cnt++;
2961 if (cnt > raid_disks)
2962 return -EBUSY;
2963 }
2964
2965 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2966 if (!newpoolinfo)
2967 return -ENOMEM;
2968 newpoolinfo->mddev = mddev;
2969 newpoolinfo->raid_disks = raid_disks * 2;
2970
2971 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2972 r1bio_pool_free, newpoolinfo);
2973 if (!newpool) {
2974 kfree(newpoolinfo);
2975 return -ENOMEM;
2976 }
2977 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2978 GFP_KERNEL);
2979 if (!newmirrors) {
2980 kfree(newpoolinfo);
2981 mempool_destroy(newpool);
2982 return -ENOMEM;
2983 }
2984
2985 freeze_array(conf, 0);
2986
2987 /* ok, everything is stopped */
2988 oldpool = conf->r1bio_pool;
2989 conf->r1bio_pool = newpool;
2990
2991 for (d = d2 = 0; d < conf->raid_disks; d++) {
2992 struct md_rdev *rdev = conf->mirrors[d].rdev;
2993 if (rdev && rdev->raid_disk != d2) {
2994 sysfs_unlink_rdev(mddev, rdev);
2995 rdev->raid_disk = d2;
2996 sysfs_unlink_rdev(mddev, rdev);
2997 if (sysfs_link_rdev(mddev, rdev))
2998 printk(KERN_WARNING
2999 "md/raid1:%s: cannot register rd%d\n",
3000 mdname(mddev), rdev->raid_disk);
3001 }
3002 if (rdev)
3003 newmirrors[d2++].rdev = rdev;
3004 }
3005 kfree(conf->mirrors);
3006 conf->mirrors = newmirrors;
3007 kfree(conf->poolinfo);
3008 conf->poolinfo = newpoolinfo;
3009
3010 spin_lock_irqsave(&conf->device_lock, flags);
3011 mddev->degraded += (raid_disks - conf->raid_disks);
3012 spin_unlock_irqrestore(&conf->device_lock, flags);
3013 conf->raid_disks = mddev->raid_disks = raid_disks;
3014 mddev->delta_disks = 0;
3015
3016 unfreeze_array(conf);
3017
3018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3019 md_wakeup_thread(mddev->thread);
3020
3021 mempool_destroy(oldpool);
3022 return 0;
3023 }
3024
3025 static void raid1_quiesce(struct mddev *mddev, int state)
3026 {
3027 struct r1conf *conf = mddev->private;
3028
3029 switch(state) {
3030 case 2: /* wake for suspend */
3031 wake_up(&conf->wait_barrier);
3032 break;
3033 case 1:
3034 raise_barrier(conf);
3035 break;
3036 case 0:
3037 lower_barrier(conf);
3038 break;
3039 }
3040 }
3041
3042 static void *raid1_takeover(struct mddev *mddev)
3043 {
3044 /* raid1 can take over:
3045 * raid5 with 2 devices, any layout or chunk size
3046 */
3047 if (mddev->level == 5 && mddev->raid_disks == 2) {
3048 struct r1conf *conf;
3049 mddev->new_level = 1;
3050 mddev->new_layout = 0;
3051 mddev->new_chunk_sectors = 0;
3052 conf = setup_conf(mddev);
3053 if (!IS_ERR(conf))
3054 conf->barrier = 1;
3055 return conf;
3056 }
3057 return ERR_PTR(-EINVAL);
3058 }
3059
3060 static struct md_personality raid1_personality =
3061 {
3062 .name = "raid1",
3063 .level = 1,
3064 .owner = THIS_MODULE,
3065 .make_request = make_request,
3066 .run = run,
3067 .stop = stop,
3068 .status = status,
3069 .error_handler = error,
3070 .hot_add_disk = raid1_add_disk,
3071 .hot_remove_disk= raid1_remove_disk,
3072 .spare_active = raid1_spare_active,
3073 .sync_request = sync_request,
3074 .resize = raid1_resize,
3075 .size = raid1_size,
3076 .check_reshape = raid1_reshape,
3077 .quiesce = raid1_quiesce,
3078 .takeover = raid1_takeover,
3079 };
3080
3081 static int __init raid_init(void)
3082 {
3083 return register_md_personality(&raid1_personality);
3084 }
3085
3086 static void raid_exit(void)
3087 {
3088 unregister_md_personality(&raid1_personality);
3089 }
3090
3091 module_init(raid_init);
3092 module_exit(raid_exit);
3093 MODULE_LICENSE("GPL");
3094 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3095 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3096 MODULE_ALIAS("md-raid1");
3097 MODULE_ALIAS("md-level-1");
3098
3099 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);