]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
block: replace bi_bdev with a gendisk pointer and partitions index
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 struct pool_info *pi = data;
119 struct r1bio *r1_bio;
120 struct bio *bio;
121 int need_pages;
122 int j;
123 struct resync_pages *rps;
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 if (!r1_bio)
127 return NULL;
128
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
148 */
149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 need_pages = pi->raid_disks;
151 else
152 need_pages = 1;
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
156 bio = r1_bio->bios[j];
157
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
174 out_free_pages:
175 while (--j >= 0)
176 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179 while (++j < pi->raid_disks)
180 bio_put(r1_bio->bios[j]);
181 kfree(rps);
182
183 out_free_r1bio:
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 struct pool_info *pi = data;
191 int i;
192 struct r1bio *r1bio = __r1_bio;
193 struct resync_pages *rp = NULL;
194
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
198 bio_put(r1bio->bios[i]);
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
203
204 r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 int i;
210
211 for (i = 0; i < conf->raid_disks * 2; i++) {
212 struct bio **bio = r1_bio->bios + i;
213 if (!BIO_SPECIAL(*bio))
214 bio_put(*bio);
215 *bio = NULL;
216 }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 struct r1conf *conf = r1_bio->mddev->private;
222
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230 sector_t sect = r1_bio->sector;
231 int i;
232
233 for (i = 0; i < conf->raid_disks * 2; i++) {
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
241 lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 unsigned long flags;
247 struct mddev *mddev = r1_bio->mddev;
248 struct r1conf *conf = mddev->private;
249 int idx;
250
251 idx = sector_to_idx(r1_bio->sector);
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
254 atomic_inc(&conf->nr_queued[idx]);
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
257 wake_up(&conf->wait_barrier);
258 md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 struct bio *bio = r1_bio->master_bio;
269 struct r1conf *conf = r1_bio->mddev->private;
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 bio->bi_status = BLK_STS_IOERR;
273
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 struct bio *bio = r1_bio->master_bio;
285
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
292
293 call_bio_endio(r1_bio);
294 }
295 free_r1bio(r1_bio);
296 }
297
298 /*
299 * Update disk head position estimator based on IRQ completion info.
300 */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 struct r1conf *conf = r1_bio->mddev->private;
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310 * Find the disk number which triggered given bio
311 */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 int mirror;
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
317
318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
322 BUG_ON(mirror == raid_disks * 2);
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 int uptodate = !bio->bi_status;
331 struct r1bio *r1_bio = bio->bi_private;
332 struct r1conf *conf = r1_bio->mddev->private;
333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
338 update_head_pos(r1_bio->read_disk, r1_bio);
339
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
351 */
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 test_bit(In_sync, &rdev->flags)))
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
360
361 if (uptodate) {
362 raid_end_bio_io(r1_bio);
363 rdev_dec_pending(rdev, conf->mddev);
364 } else {
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
373 set_bit(R1BIO_ReadError, &r1_bio->state);
374 reschedule_retry(r1_bio);
375 /* don't drop the reference on read_disk yet */
376 }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
408 }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 struct r1bio *r1_bio = bio->bi_private;
414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 struct r1conf *conf = r1_bio->mddev->private;
416 struct bio *to_put = NULL;
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 bool discard_error;
420
421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
426 if (bio->bi_status && !discard_error) {
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
450 } else {
451 /*
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
460 */
461 sector_t first_bad;
462 int bad_sectors;
463
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
476 set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 &first_bad, &bad_sectors) && !discard_error) {
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
486 if (behind) {
487 if (test_bit(WriteMostly, &rdev->flags))
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
506 call_bio_endio(r1_bio);
507 }
508 }
509 }
510 if (r1_bio->bios[mirror] == NULL)
511 rdev_dec_pending(rdev, conf->mddev);
512
513 /*
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
517 r1_bio_write_done(r1_bio);
518
519 if (to_put)
520 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525 {
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540 }
541
542 /*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 const sector_t this_sector = r1_bio->sector;
559 int sectors;
560 int best_good_sectors;
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
563 int disk;
564 sector_t best_dist;
565 unsigned int min_pending;
566 struct md_rdev *rdev;
567 int choose_first;
568 int choose_next_idle;
569
570 rcu_read_lock();
571 /*
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
577 sectors = r1_bio->sectors;
578 best_disk = -1;
579 best_dist_disk = -1;
580 best_dist = MaxSector;
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
583 best_good_sectors = 0;
584 has_nonrot_disk = 0;
585 choose_next_idle = 0;
586 clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
595
596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 sector_t dist;
598 sector_t first_bad;
599 int bad_sectors;
600 unsigned int pending;
601 bool nonrot;
602
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
606 || test_bit(Faulty, &rdev->flags))
607 continue;
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
610 continue;
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk < 0) {
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
617 if (first_bad <= this_sector)
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
623 best_dist_disk = disk;
624 best_pending_disk = disk;
625 }
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
660 best_good_sectors = sectors;
661 }
662
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
669 pending = atomic_read(&rdev->nr_pending);
670 dist = abs(this_sector - conf->mirrors[disk].head_position);
671 if (choose_first) {
672 best_disk = disk;
673 break;
674 }
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
705
706 if (choose_next_idle)
707 continue;
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
714 if (dist < best_dist) {
715 best_dist = dist;
716 best_dist_disk = disk;
717 }
718 }
719
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
727 if (has_nonrot_disk || min_pending == 0)
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
738 sectors = best_good_sectors;
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 }
745 rcu_read_unlock();
746 *max_sectors = sectors;
747
748 return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 struct r1conf *conf = mddev->private;
754 int i, ret = 0;
755
756 if ((bits & (1 << WB_async_congested)) &&
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
760 rcu_read_lock();
761 for (i = 0; i < conf->raid_disks * 2; i++) {
762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766 BUG_ON(!q);
767
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
771 if ((bits & (1 << WB_async_congested)) || 1)
772 ret |= bdi_congested(q->backing_dev_info, bits);
773 else
774 ret &= bdi_congested(q->backing_dev_info, bits);
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
789 struct md_rdev *rdev = (void *)bio->bi_disk;
790 bio->bi_next = NULL;
791 bio_set_dev(bio, rdev->bdev);
792 if (test_bit(Faulty, &rdev->flags)) {
793 bio_io_error(bio);
794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 !blk_queue_discard(bio->bi_disk->queue)))
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
808 */
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
812 struct bio *bio;
813 bio = bio_list_get(&conf->pending_bio_list);
814 conf->pending_count = 0;
815 spin_unlock_irq(&conf->device_lock);
816 flush_bio_list(conf, bio);
817 } else
818 spin_unlock_irq(&conf->device_lock);
819 }
820
821 /* Barriers....
822 * Sometimes we need to suspend IO while we do something else,
823 * either some resync/recovery, or reconfigure the array.
824 * To do this we raise a 'barrier'.
825 * The 'barrier' is a counter that can be raised multiple times
826 * to count how many activities are happening which preclude
827 * normal IO.
828 * We can only raise the barrier if there is no pending IO.
829 * i.e. if nr_pending == 0.
830 * We choose only to raise the barrier if no-one is waiting for the
831 * barrier to go down. This means that as soon as an IO request
832 * is ready, no other operations which require a barrier will start
833 * until the IO request has had a chance.
834 *
835 * So: regular IO calls 'wait_barrier'. When that returns there
836 * is no backgroup IO happening, It must arrange to call
837 * allow_barrier when it has finished its IO.
838 * backgroup IO calls must call raise_barrier. Once that returns
839 * there is no normal IO happeing. It must arrange to call
840 * lower_barrier when the particular background IO completes.
841 */
842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
843 {
844 int idx = sector_to_idx(sector_nr);
845
846 spin_lock_irq(&conf->resync_lock);
847
848 /* Wait until no block IO is waiting */
849 wait_event_lock_irq(conf->wait_barrier,
850 !atomic_read(&conf->nr_waiting[idx]),
851 conf->resync_lock);
852
853 /* block any new IO from starting */
854 atomic_inc(&conf->barrier[idx]);
855 /*
856 * In raise_barrier() we firstly increase conf->barrier[idx] then
857 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858 * increase conf->nr_pending[idx] then check conf->barrier[idx].
859 * A memory barrier here to make sure conf->nr_pending[idx] won't
860 * be fetched before conf->barrier[idx] is increased. Otherwise
861 * there will be a race between raise_barrier() and _wait_barrier().
862 */
863 smp_mb__after_atomic();
864
865 /* For these conditions we must wait:
866 * A: while the array is in frozen state
867 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868 * existing in corresponding I/O barrier bucket.
869 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870 * max resync count which allowed on current I/O barrier bucket.
871 */
872 wait_event_lock_irq(conf->wait_barrier,
873 !conf->array_frozen &&
874 !atomic_read(&conf->nr_pending[idx]) &&
875 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
876 conf->resync_lock);
877
878 atomic_inc(&conf->nr_sync_pending);
879 spin_unlock_irq(&conf->resync_lock);
880 }
881
882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
883 {
884 int idx = sector_to_idx(sector_nr);
885
886 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
887
888 atomic_dec(&conf->barrier[idx]);
889 atomic_dec(&conf->nr_sync_pending);
890 wake_up(&conf->wait_barrier);
891 }
892
893 static void _wait_barrier(struct r1conf *conf, int idx)
894 {
895 /*
896 * We need to increase conf->nr_pending[idx] very early here,
897 * then raise_barrier() can be blocked when it waits for
898 * conf->nr_pending[idx] to be 0. Then we can avoid holding
899 * conf->resync_lock when there is no barrier raised in same
900 * barrier unit bucket. Also if the array is frozen, I/O
901 * should be blocked until array is unfrozen.
902 */
903 atomic_inc(&conf->nr_pending[idx]);
904 /*
905 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906 * check conf->barrier[idx]. In raise_barrier() we firstly increase
907 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908 * barrier is necessary here to make sure conf->barrier[idx] won't be
909 * fetched before conf->nr_pending[idx] is increased. Otherwise there
910 * will be a race between _wait_barrier() and raise_barrier().
911 */
912 smp_mb__after_atomic();
913
914 /*
915 * Don't worry about checking two atomic_t variables at same time
916 * here. If during we check conf->barrier[idx], the array is
917 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918 * 0, it is safe to return and make the I/O continue. Because the
919 * array is frozen, all I/O returned here will eventually complete
920 * or be queued, no race will happen. See code comment in
921 * frozen_array().
922 */
923 if (!READ_ONCE(conf->array_frozen) &&
924 !atomic_read(&conf->barrier[idx]))
925 return;
926
927 /*
928 * After holding conf->resync_lock, conf->nr_pending[idx]
929 * should be decreased before waiting for barrier to drop.
930 * Otherwise, we may encounter a race condition because
931 * raise_barrer() might be waiting for conf->nr_pending[idx]
932 * to be 0 at same time.
933 */
934 spin_lock_irq(&conf->resync_lock);
935 atomic_inc(&conf->nr_waiting[idx]);
936 atomic_dec(&conf->nr_pending[idx]);
937 /*
938 * In case freeze_array() is waiting for
939 * get_unqueued_pending() == extra
940 */
941 wake_up(&conf->wait_barrier);
942 /* Wait for the barrier in same barrier unit bucket to drop. */
943 wait_event_lock_irq(conf->wait_barrier,
944 !conf->array_frozen &&
945 !atomic_read(&conf->barrier[idx]),
946 conf->resync_lock);
947 atomic_inc(&conf->nr_pending[idx]);
948 atomic_dec(&conf->nr_waiting[idx]);
949 spin_unlock_irq(&conf->resync_lock);
950 }
951
952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
953 {
954 int idx = sector_to_idx(sector_nr);
955
956 /*
957 * Very similar to _wait_barrier(). The difference is, for read
958 * I/O we don't need wait for sync I/O, but if the whole array
959 * is frozen, the read I/O still has to wait until the array is
960 * unfrozen. Since there is no ordering requirement with
961 * conf->barrier[idx] here, memory barrier is unnecessary as well.
962 */
963 atomic_inc(&conf->nr_pending[idx]);
964
965 if (!READ_ONCE(conf->array_frozen))
966 return;
967
968 spin_lock_irq(&conf->resync_lock);
969 atomic_inc(&conf->nr_waiting[idx]);
970 atomic_dec(&conf->nr_pending[idx]);
971 /*
972 * In case freeze_array() is waiting for
973 * get_unqueued_pending() == extra
974 */
975 wake_up(&conf->wait_barrier);
976 /* Wait for array to be unfrozen */
977 wait_event_lock_irq(conf->wait_barrier,
978 !conf->array_frozen,
979 conf->resync_lock);
980 atomic_inc(&conf->nr_pending[idx]);
981 atomic_dec(&conf->nr_waiting[idx]);
982 spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
986 {
987 int idx = sector_to_idx(sector_nr);
988
989 _wait_barrier(conf, idx);
990 }
991
992 static void wait_all_barriers(struct r1conf *conf)
993 {
994 int idx;
995
996 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
997 _wait_barrier(conf, idx);
998 }
999
1000 static void _allow_barrier(struct r1conf *conf, int idx)
1001 {
1002 atomic_dec(&conf->nr_pending[idx]);
1003 wake_up(&conf->wait_barrier);
1004 }
1005
1006 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007 {
1008 int idx = sector_to_idx(sector_nr);
1009
1010 _allow_barrier(conf, idx);
1011 }
1012
1013 static void allow_all_barriers(struct r1conf *conf)
1014 {
1015 int idx;
1016
1017 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 _allow_barrier(conf, idx);
1019 }
1020
1021 /* conf->resync_lock should be held */
1022 static int get_unqueued_pending(struct r1conf *conf)
1023 {
1024 int idx, ret;
1025
1026 ret = atomic_read(&conf->nr_sync_pending);
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 ret += atomic_read(&conf->nr_pending[idx]) -
1029 atomic_read(&conf->nr_queued[idx]);
1030
1031 return ret;
1032 }
1033
1034 static void freeze_array(struct r1conf *conf, int extra)
1035 {
1036 /* Stop sync I/O and normal I/O and wait for everything to
1037 * go quiet.
1038 * This is called in two situations:
1039 * 1) management command handlers (reshape, remove disk, quiesce).
1040 * 2) one normal I/O request failed.
1041
1042 * After array_frozen is set to 1, new sync IO will be blocked at
1043 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044 * or wait_read_barrier(). The flying I/Os will either complete or be
1045 * queued. When everything goes quite, there are only queued I/Os left.
1046
1047 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048 * barrier bucket index which this I/O request hits. When all sync and
1049 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051 * in handle_read_error(), we may call freeze_array() before trying to
1052 * fix the read error. In this case, the error read I/O is not queued,
1053 * so get_unqueued_pending() == 1.
1054 *
1055 * Therefore before this function returns, we need to wait until
1056 * get_unqueued_pendings(conf) gets equal to extra. For
1057 * normal I/O context, extra is 1, in rested situations extra is 0.
1058 */
1059 spin_lock_irq(&conf->resync_lock);
1060 conf->array_frozen = 1;
1061 raid1_log(conf->mddev, "wait freeze");
1062 wait_event_lock_irq_cmd(
1063 conf->wait_barrier,
1064 get_unqueued_pending(conf) == extra,
1065 conf->resync_lock,
1066 flush_pending_writes(conf));
1067 spin_unlock_irq(&conf->resync_lock);
1068 }
1069 static void unfreeze_array(struct r1conf *conf)
1070 {
1071 /* reverse the effect of the freeze */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->array_frozen = 0;
1074 spin_unlock_irq(&conf->resync_lock);
1075 wake_up(&conf->wait_barrier);
1076 }
1077
1078 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1079 struct bio *bio)
1080 {
1081 int size = bio->bi_iter.bi_size;
1082 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 int i = 0;
1084 struct bio *behind_bio = NULL;
1085
1086 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087 if (!behind_bio)
1088 return;
1089
1090 /* discard op, we don't support writezero/writesame yet */
1091 if (!bio_has_data(bio)) {
1092 behind_bio->bi_iter.bi_size = size;
1093 goto skip_copy;
1094 }
1095
1096 while (i < vcnt && size) {
1097 struct page *page;
1098 int len = min_t(int, PAGE_SIZE, size);
1099
1100 page = alloc_page(GFP_NOIO);
1101 if (unlikely(!page))
1102 goto free_pages;
1103
1104 bio_add_page(behind_bio, page, len, 0);
1105
1106 size -= len;
1107 i++;
1108 }
1109
1110 bio_copy_data(behind_bio, bio);
1111 skip_copy:
1112 r1_bio->behind_master_bio = behind_bio;;
1113 set_bit(R1BIO_BehindIO, &r1_bio->state);
1114
1115 return;
1116
1117 free_pages:
1118 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119 bio->bi_iter.bi_size);
1120 bio_free_pages(behind_bio);
1121 bio_put(behind_bio);
1122 }
1123
1124 struct raid1_plug_cb {
1125 struct blk_plug_cb cb;
1126 struct bio_list pending;
1127 int pending_cnt;
1128 };
1129
1130 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131 {
1132 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133 cb);
1134 struct mddev *mddev = plug->cb.data;
1135 struct r1conf *conf = mddev->private;
1136 struct bio *bio;
1137
1138 if (from_schedule || current->bio_list) {
1139 spin_lock_irq(&conf->device_lock);
1140 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141 conf->pending_count += plug->pending_cnt;
1142 spin_unlock_irq(&conf->device_lock);
1143 wake_up(&conf->wait_barrier);
1144 md_wakeup_thread(mddev->thread);
1145 kfree(plug);
1146 return;
1147 }
1148
1149 /* we aren't scheduling, so we can do the write-out directly. */
1150 bio = bio_list_get(&plug->pending);
1151 flush_bio_list(conf, bio);
1152 kfree(plug);
1153 }
1154
1155 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156 {
1157 r1_bio->master_bio = bio;
1158 r1_bio->sectors = bio_sectors(bio);
1159 r1_bio->state = 0;
1160 r1_bio->mddev = mddev;
1161 r1_bio->sector = bio->bi_iter.bi_sector;
1162 }
1163
1164 static inline struct r1bio *
1165 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1166 {
1167 struct r1conf *conf = mddev->private;
1168 struct r1bio *r1_bio;
1169
1170 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1171 /* Ensure no bio records IO_BLOCKED */
1172 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173 init_r1bio(r1_bio, mddev, bio);
1174 return r1_bio;
1175 }
1176
1177 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1178 int max_read_sectors, struct r1bio *r1_bio)
1179 {
1180 struct r1conf *conf = mddev->private;
1181 struct raid1_info *mirror;
1182 struct bio *read_bio;
1183 struct bitmap *bitmap = mddev->bitmap;
1184 const int op = bio_op(bio);
1185 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1186 int max_sectors;
1187 int rdisk;
1188 bool print_msg = !!r1_bio;
1189 char b[BDEVNAME_SIZE];
1190
1191 /*
1192 * If r1_bio is set, we are blocking the raid1d thread
1193 * so there is a tiny risk of deadlock. So ask for
1194 * emergency memory if needed.
1195 */
1196 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1197
1198 if (print_msg) {
1199 /* Need to get the block device name carefully */
1200 struct md_rdev *rdev;
1201 rcu_read_lock();
1202 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203 if (rdev)
1204 bdevname(rdev->bdev, b);
1205 else
1206 strcpy(b, "???");
1207 rcu_read_unlock();
1208 }
1209
1210 /*
1211 * Still need barrier for READ in case that whole
1212 * array is frozen.
1213 */
1214 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215
1216 if (!r1_bio)
1217 r1_bio = alloc_r1bio(mddev, bio);
1218 else
1219 init_r1bio(r1_bio, mddev, bio);
1220 r1_bio->sectors = max_read_sectors;
1221
1222 /*
1223 * make_request() can abort the operation when read-ahead is being
1224 * used and no empty request is available.
1225 */
1226 rdisk = read_balance(conf, r1_bio, &max_sectors);
1227
1228 if (rdisk < 0) {
1229 /* couldn't find anywhere to read from */
1230 if (print_msg) {
1231 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232 mdname(mddev),
1233 b,
1234 (unsigned long long)r1_bio->sector);
1235 }
1236 raid_end_bio_io(r1_bio);
1237 return;
1238 }
1239 mirror = conf->mirrors + rdisk;
1240
1241 if (print_msg)
1242 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 mdname(mddev),
1244 (unsigned long long)r1_bio->sector,
1245 bdevname(mirror->rdev->bdev, b));
1246
1247 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248 bitmap) {
1249 /*
1250 * Reading from a write-mostly device must take care not to
1251 * over-take any writes that are 'behind'
1252 */
1253 raid1_log(mddev, "wait behind writes");
1254 wait_event(bitmap->behind_wait,
1255 atomic_read(&bitmap->behind_writes) == 0);
1256 }
1257
1258 if (max_sectors < bio_sectors(bio)) {
1259 struct bio *split = bio_split(bio, max_sectors,
1260 gfp, conf->bio_split);
1261 bio_chain(split, bio);
1262 generic_make_request(bio);
1263 bio = split;
1264 r1_bio->master_bio = bio;
1265 r1_bio->sectors = max_sectors;
1266 }
1267
1268 r1_bio->read_disk = rdisk;
1269
1270 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1271
1272 r1_bio->bios[rdisk] = read_bio;
1273
1274 read_bio->bi_iter.bi_sector = r1_bio->sector +
1275 mirror->rdev->data_offset;
1276 bio_set_dev(read_bio, mirror->rdev->bdev);
1277 read_bio->bi_end_io = raid1_end_read_request;
1278 bio_set_op_attrs(read_bio, op, do_sync);
1279 if (test_bit(FailFast, &mirror->rdev->flags) &&
1280 test_bit(R1BIO_FailFast, &r1_bio->state))
1281 read_bio->bi_opf |= MD_FAILFAST;
1282 read_bio->bi_private = r1_bio;
1283
1284 if (mddev->gendisk)
1285 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1286 disk_devt(mddev->gendisk), r1_bio->sector);
1287
1288 generic_make_request(read_bio);
1289 }
1290
1291 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1292 int max_write_sectors)
1293 {
1294 struct r1conf *conf = mddev->private;
1295 struct r1bio *r1_bio;
1296 int i, disks;
1297 struct bitmap *bitmap = mddev->bitmap;
1298 unsigned long flags;
1299 struct md_rdev *blocked_rdev;
1300 struct blk_plug_cb *cb;
1301 struct raid1_plug_cb *plug = NULL;
1302 int first_clone;
1303 int max_sectors;
1304
1305 /*
1306 * Register the new request and wait if the reconstruction
1307 * thread has put up a bar for new requests.
1308 * Continue immediately if no resync is active currently.
1309 */
1310
1311
1312 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1313 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1314 (mddev_is_clustered(mddev) &&
1315 md_cluster_ops->area_resyncing(mddev, WRITE,
1316 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1317
1318 /*
1319 * As the suspend_* range is controlled by userspace, we want
1320 * an interruptible wait.
1321 */
1322 DEFINE_WAIT(w);
1323 for (;;) {
1324 sigset_t full, old;
1325 prepare_to_wait(&conf->wait_barrier,
1326 &w, TASK_INTERRUPTIBLE);
1327 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1328 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1329 (mddev_is_clustered(mddev) &&
1330 !md_cluster_ops->area_resyncing(mddev, WRITE,
1331 bio->bi_iter.bi_sector,
1332 bio_end_sector(bio))))
1333 break;
1334 sigfillset(&full);
1335 sigprocmask(SIG_BLOCK, &full, &old);
1336 schedule();
1337 sigprocmask(SIG_SETMASK, &old, NULL);
1338 }
1339 finish_wait(&conf->wait_barrier, &w);
1340 }
1341 wait_barrier(conf, bio->bi_iter.bi_sector);
1342
1343 r1_bio = alloc_r1bio(mddev, bio);
1344 r1_bio->sectors = max_write_sectors;
1345
1346 if (conf->pending_count >= max_queued_requests) {
1347 md_wakeup_thread(mddev->thread);
1348 raid1_log(mddev, "wait queued");
1349 wait_event(conf->wait_barrier,
1350 conf->pending_count < max_queued_requests);
1351 }
1352 /* first select target devices under rcu_lock and
1353 * inc refcount on their rdev. Record them by setting
1354 * bios[x] to bio
1355 * If there are known/acknowledged bad blocks on any device on
1356 * which we have seen a write error, we want to avoid writing those
1357 * blocks.
1358 * This potentially requires several writes to write around
1359 * the bad blocks. Each set of writes gets it's own r1bio
1360 * with a set of bios attached.
1361 */
1362
1363 disks = conf->raid_disks * 2;
1364 retry_write:
1365 blocked_rdev = NULL;
1366 rcu_read_lock();
1367 max_sectors = r1_bio->sectors;
1368 for (i = 0; i < disks; i++) {
1369 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1370 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1371 atomic_inc(&rdev->nr_pending);
1372 blocked_rdev = rdev;
1373 break;
1374 }
1375 r1_bio->bios[i] = NULL;
1376 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1377 if (i < conf->raid_disks)
1378 set_bit(R1BIO_Degraded, &r1_bio->state);
1379 continue;
1380 }
1381
1382 atomic_inc(&rdev->nr_pending);
1383 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1384 sector_t first_bad;
1385 int bad_sectors;
1386 int is_bad;
1387
1388 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1389 &first_bad, &bad_sectors);
1390 if (is_bad < 0) {
1391 /* mustn't write here until the bad block is
1392 * acknowledged*/
1393 set_bit(BlockedBadBlocks, &rdev->flags);
1394 blocked_rdev = rdev;
1395 break;
1396 }
1397 if (is_bad && first_bad <= r1_bio->sector) {
1398 /* Cannot write here at all */
1399 bad_sectors -= (r1_bio->sector - first_bad);
1400 if (bad_sectors < max_sectors)
1401 /* mustn't write more than bad_sectors
1402 * to other devices yet
1403 */
1404 max_sectors = bad_sectors;
1405 rdev_dec_pending(rdev, mddev);
1406 /* We don't set R1BIO_Degraded as that
1407 * only applies if the disk is
1408 * missing, so it might be re-added,
1409 * and we want to know to recover this
1410 * chunk.
1411 * In this case the device is here,
1412 * and the fact that this chunk is not
1413 * in-sync is recorded in the bad
1414 * block log
1415 */
1416 continue;
1417 }
1418 if (is_bad) {
1419 int good_sectors = first_bad - r1_bio->sector;
1420 if (good_sectors < max_sectors)
1421 max_sectors = good_sectors;
1422 }
1423 }
1424 r1_bio->bios[i] = bio;
1425 }
1426 rcu_read_unlock();
1427
1428 if (unlikely(blocked_rdev)) {
1429 /* Wait for this device to become unblocked */
1430 int j;
1431
1432 for (j = 0; j < i; j++)
1433 if (r1_bio->bios[j])
1434 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1435 r1_bio->state = 0;
1436 allow_barrier(conf, bio->bi_iter.bi_sector);
1437 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1438 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1439 wait_barrier(conf, bio->bi_iter.bi_sector);
1440 goto retry_write;
1441 }
1442
1443 if (max_sectors < bio_sectors(bio)) {
1444 struct bio *split = bio_split(bio, max_sectors,
1445 GFP_NOIO, conf->bio_split);
1446 bio_chain(split, bio);
1447 generic_make_request(bio);
1448 bio = split;
1449 r1_bio->master_bio = bio;
1450 r1_bio->sectors = max_sectors;
1451 }
1452
1453 atomic_set(&r1_bio->remaining, 1);
1454 atomic_set(&r1_bio->behind_remaining, 0);
1455
1456 first_clone = 1;
1457
1458 for (i = 0; i < disks; i++) {
1459 struct bio *mbio = NULL;
1460 if (!r1_bio->bios[i])
1461 continue;
1462
1463
1464 if (first_clone) {
1465 /* do behind I/O ?
1466 * Not if there are too many, or cannot
1467 * allocate memory, or a reader on WriteMostly
1468 * is waiting for behind writes to flush */
1469 if (bitmap &&
1470 (atomic_read(&bitmap->behind_writes)
1471 < mddev->bitmap_info.max_write_behind) &&
1472 !waitqueue_active(&bitmap->behind_wait)) {
1473 alloc_behind_master_bio(r1_bio, bio);
1474 }
1475
1476 bitmap_startwrite(bitmap, r1_bio->sector,
1477 r1_bio->sectors,
1478 test_bit(R1BIO_BehindIO,
1479 &r1_bio->state));
1480 first_clone = 0;
1481 }
1482
1483 if (r1_bio->behind_master_bio)
1484 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1485 GFP_NOIO, mddev->bio_set);
1486 else
1487 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1488
1489 if (r1_bio->behind_master_bio) {
1490 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1491 atomic_inc(&r1_bio->behind_remaining);
1492 }
1493
1494 r1_bio->bios[i] = mbio;
1495
1496 mbio->bi_iter.bi_sector = (r1_bio->sector +
1497 conf->mirrors[i].rdev->data_offset);
1498 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1499 mbio->bi_end_io = raid1_end_write_request;
1500 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1501 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1502 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1503 conf->raid_disks - mddev->degraded > 1)
1504 mbio->bi_opf |= MD_FAILFAST;
1505 mbio->bi_private = r1_bio;
1506
1507 atomic_inc(&r1_bio->remaining);
1508
1509 if (mddev->gendisk)
1510 trace_block_bio_remap(mbio->bi_disk->queue,
1511 mbio, disk_devt(mddev->gendisk),
1512 r1_bio->sector);
1513 /* flush_pending_writes() needs access to the rdev so...*/
1514 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1515
1516 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1517 if (cb)
1518 plug = container_of(cb, struct raid1_plug_cb, cb);
1519 else
1520 plug = NULL;
1521 if (plug) {
1522 bio_list_add(&plug->pending, mbio);
1523 plug->pending_cnt++;
1524 } else {
1525 spin_lock_irqsave(&conf->device_lock, flags);
1526 bio_list_add(&conf->pending_bio_list, mbio);
1527 conf->pending_count++;
1528 spin_unlock_irqrestore(&conf->device_lock, flags);
1529 md_wakeup_thread(mddev->thread);
1530 }
1531 }
1532
1533 r1_bio_write_done(r1_bio);
1534
1535 /* In case raid1d snuck in to freeze_array */
1536 wake_up(&conf->wait_barrier);
1537 }
1538
1539 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1540 {
1541 sector_t sectors;
1542
1543 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1544 md_flush_request(mddev, bio);
1545 return true;
1546 }
1547
1548 /*
1549 * There is a limit to the maximum size, but
1550 * the read/write handler might find a lower limit
1551 * due to bad blocks. To avoid multiple splits,
1552 * we pass the maximum number of sectors down
1553 * and let the lower level perform the split.
1554 */
1555 sectors = align_to_barrier_unit_end(
1556 bio->bi_iter.bi_sector, bio_sectors(bio));
1557
1558 if (bio_data_dir(bio) == READ)
1559 raid1_read_request(mddev, bio, sectors, NULL);
1560 else {
1561 if (!md_write_start(mddev,bio))
1562 return false;
1563 raid1_write_request(mddev, bio, sectors);
1564 }
1565 return true;
1566 }
1567
1568 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1569 {
1570 struct r1conf *conf = mddev->private;
1571 int i;
1572
1573 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1574 conf->raid_disks - mddev->degraded);
1575 rcu_read_lock();
1576 for (i = 0; i < conf->raid_disks; i++) {
1577 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1578 seq_printf(seq, "%s",
1579 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1580 }
1581 rcu_read_unlock();
1582 seq_printf(seq, "]");
1583 }
1584
1585 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1586 {
1587 char b[BDEVNAME_SIZE];
1588 struct r1conf *conf = mddev->private;
1589 unsigned long flags;
1590
1591 /*
1592 * If it is not operational, then we have already marked it as dead
1593 * else if it is the last working disks, ignore the error, let the
1594 * next level up know.
1595 * else mark the drive as failed
1596 */
1597 spin_lock_irqsave(&conf->device_lock, flags);
1598 if (test_bit(In_sync, &rdev->flags)
1599 && (conf->raid_disks - mddev->degraded) == 1) {
1600 /*
1601 * Don't fail the drive, act as though we were just a
1602 * normal single drive.
1603 * However don't try a recovery from this drive as
1604 * it is very likely to fail.
1605 */
1606 conf->recovery_disabled = mddev->recovery_disabled;
1607 spin_unlock_irqrestore(&conf->device_lock, flags);
1608 return;
1609 }
1610 set_bit(Blocked, &rdev->flags);
1611 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1612 mddev->degraded++;
1613 set_bit(Faulty, &rdev->flags);
1614 } else
1615 set_bit(Faulty, &rdev->flags);
1616 spin_unlock_irqrestore(&conf->device_lock, flags);
1617 /*
1618 * if recovery is running, make sure it aborts.
1619 */
1620 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1621 set_mask_bits(&mddev->sb_flags, 0,
1622 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1623 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1624 "md/raid1:%s: Operation continuing on %d devices.\n",
1625 mdname(mddev), bdevname(rdev->bdev, b),
1626 mdname(mddev), conf->raid_disks - mddev->degraded);
1627 }
1628
1629 static void print_conf(struct r1conf *conf)
1630 {
1631 int i;
1632
1633 pr_debug("RAID1 conf printout:\n");
1634 if (!conf) {
1635 pr_debug("(!conf)\n");
1636 return;
1637 }
1638 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1639 conf->raid_disks);
1640
1641 rcu_read_lock();
1642 for (i = 0; i < conf->raid_disks; i++) {
1643 char b[BDEVNAME_SIZE];
1644 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1645 if (rdev)
1646 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1647 i, !test_bit(In_sync, &rdev->flags),
1648 !test_bit(Faulty, &rdev->flags),
1649 bdevname(rdev->bdev,b));
1650 }
1651 rcu_read_unlock();
1652 }
1653
1654 static void close_sync(struct r1conf *conf)
1655 {
1656 wait_all_barriers(conf);
1657 allow_all_barriers(conf);
1658
1659 mempool_destroy(conf->r1buf_pool);
1660 conf->r1buf_pool = NULL;
1661 }
1662
1663 static int raid1_spare_active(struct mddev *mddev)
1664 {
1665 int i;
1666 struct r1conf *conf = mddev->private;
1667 int count = 0;
1668 unsigned long flags;
1669
1670 /*
1671 * Find all failed disks within the RAID1 configuration
1672 * and mark them readable.
1673 * Called under mddev lock, so rcu protection not needed.
1674 * device_lock used to avoid races with raid1_end_read_request
1675 * which expects 'In_sync' flags and ->degraded to be consistent.
1676 */
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 for (i = 0; i < conf->raid_disks; i++) {
1679 struct md_rdev *rdev = conf->mirrors[i].rdev;
1680 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1681 if (repl
1682 && !test_bit(Candidate, &repl->flags)
1683 && repl->recovery_offset == MaxSector
1684 && !test_bit(Faulty, &repl->flags)
1685 && !test_and_set_bit(In_sync, &repl->flags)) {
1686 /* replacement has just become active */
1687 if (!rdev ||
1688 !test_and_clear_bit(In_sync, &rdev->flags))
1689 count++;
1690 if (rdev) {
1691 /* Replaced device not technically
1692 * faulty, but we need to be sure
1693 * it gets removed and never re-added
1694 */
1695 set_bit(Faulty, &rdev->flags);
1696 sysfs_notify_dirent_safe(
1697 rdev->sysfs_state);
1698 }
1699 }
1700 if (rdev
1701 && rdev->recovery_offset == MaxSector
1702 && !test_bit(Faulty, &rdev->flags)
1703 && !test_and_set_bit(In_sync, &rdev->flags)) {
1704 count++;
1705 sysfs_notify_dirent_safe(rdev->sysfs_state);
1706 }
1707 }
1708 mddev->degraded -= count;
1709 spin_unlock_irqrestore(&conf->device_lock, flags);
1710
1711 print_conf(conf);
1712 return count;
1713 }
1714
1715 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1716 {
1717 struct r1conf *conf = mddev->private;
1718 int err = -EEXIST;
1719 int mirror = 0;
1720 struct raid1_info *p;
1721 int first = 0;
1722 int last = conf->raid_disks - 1;
1723
1724 if (mddev->recovery_disabled == conf->recovery_disabled)
1725 return -EBUSY;
1726
1727 if (md_integrity_add_rdev(rdev, mddev))
1728 return -ENXIO;
1729
1730 if (rdev->raid_disk >= 0)
1731 first = last = rdev->raid_disk;
1732
1733 /*
1734 * find the disk ... but prefer rdev->saved_raid_disk
1735 * if possible.
1736 */
1737 if (rdev->saved_raid_disk >= 0 &&
1738 rdev->saved_raid_disk >= first &&
1739 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1740 first = last = rdev->saved_raid_disk;
1741
1742 for (mirror = first; mirror <= last; mirror++) {
1743 p = conf->mirrors+mirror;
1744 if (!p->rdev) {
1745
1746 if (mddev->gendisk)
1747 disk_stack_limits(mddev->gendisk, rdev->bdev,
1748 rdev->data_offset << 9);
1749
1750 p->head_position = 0;
1751 rdev->raid_disk = mirror;
1752 err = 0;
1753 /* As all devices are equivalent, we don't need a full recovery
1754 * if this was recently any drive of the array
1755 */
1756 if (rdev->saved_raid_disk < 0)
1757 conf->fullsync = 1;
1758 rcu_assign_pointer(p->rdev, rdev);
1759 break;
1760 }
1761 if (test_bit(WantReplacement, &p->rdev->flags) &&
1762 p[conf->raid_disks].rdev == NULL) {
1763 /* Add this device as a replacement */
1764 clear_bit(In_sync, &rdev->flags);
1765 set_bit(Replacement, &rdev->flags);
1766 rdev->raid_disk = mirror;
1767 err = 0;
1768 conf->fullsync = 1;
1769 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1770 break;
1771 }
1772 }
1773 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1774 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1775 print_conf(conf);
1776 return err;
1777 }
1778
1779 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1780 {
1781 struct r1conf *conf = mddev->private;
1782 int err = 0;
1783 int number = rdev->raid_disk;
1784 struct raid1_info *p = conf->mirrors + number;
1785
1786 if (rdev != p->rdev)
1787 p = conf->mirrors + conf->raid_disks + number;
1788
1789 print_conf(conf);
1790 if (rdev == p->rdev) {
1791 if (test_bit(In_sync, &rdev->flags) ||
1792 atomic_read(&rdev->nr_pending)) {
1793 err = -EBUSY;
1794 goto abort;
1795 }
1796 /* Only remove non-faulty devices if recovery
1797 * is not possible.
1798 */
1799 if (!test_bit(Faulty, &rdev->flags) &&
1800 mddev->recovery_disabled != conf->recovery_disabled &&
1801 mddev->degraded < conf->raid_disks) {
1802 err = -EBUSY;
1803 goto abort;
1804 }
1805 p->rdev = NULL;
1806 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1807 synchronize_rcu();
1808 if (atomic_read(&rdev->nr_pending)) {
1809 /* lost the race, try later */
1810 err = -EBUSY;
1811 p->rdev = rdev;
1812 goto abort;
1813 }
1814 }
1815 if (conf->mirrors[conf->raid_disks + number].rdev) {
1816 /* We just removed a device that is being replaced.
1817 * Move down the replacement. We drain all IO before
1818 * doing this to avoid confusion.
1819 */
1820 struct md_rdev *repl =
1821 conf->mirrors[conf->raid_disks + number].rdev;
1822 freeze_array(conf, 0);
1823 clear_bit(Replacement, &repl->flags);
1824 p->rdev = repl;
1825 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1826 unfreeze_array(conf);
1827 }
1828
1829 clear_bit(WantReplacement, &rdev->flags);
1830 err = md_integrity_register(mddev);
1831 }
1832 abort:
1833
1834 print_conf(conf);
1835 return err;
1836 }
1837
1838 static void end_sync_read(struct bio *bio)
1839 {
1840 struct r1bio *r1_bio = get_resync_r1bio(bio);
1841
1842 update_head_pos(r1_bio->read_disk, r1_bio);
1843
1844 /*
1845 * we have read a block, now it needs to be re-written,
1846 * or re-read if the read failed.
1847 * We don't do much here, just schedule handling by raid1d
1848 */
1849 if (!bio->bi_status)
1850 set_bit(R1BIO_Uptodate, &r1_bio->state);
1851
1852 if (atomic_dec_and_test(&r1_bio->remaining))
1853 reschedule_retry(r1_bio);
1854 }
1855
1856 static void end_sync_write(struct bio *bio)
1857 {
1858 int uptodate = !bio->bi_status;
1859 struct r1bio *r1_bio = get_resync_r1bio(bio);
1860 struct mddev *mddev = r1_bio->mddev;
1861 struct r1conf *conf = mddev->private;
1862 sector_t first_bad;
1863 int bad_sectors;
1864 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1865
1866 if (!uptodate) {
1867 sector_t sync_blocks = 0;
1868 sector_t s = r1_bio->sector;
1869 long sectors_to_go = r1_bio->sectors;
1870 /* make sure these bits doesn't get cleared. */
1871 do {
1872 bitmap_end_sync(mddev->bitmap, s,
1873 &sync_blocks, 1);
1874 s += sync_blocks;
1875 sectors_to_go -= sync_blocks;
1876 } while (sectors_to_go > 0);
1877 set_bit(WriteErrorSeen, &rdev->flags);
1878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1879 set_bit(MD_RECOVERY_NEEDED, &
1880 mddev->recovery);
1881 set_bit(R1BIO_WriteError, &r1_bio->state);
1882 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1883 &first_bad, &bad_sectors) &&
1884 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1885 r1_bio->sector,
1886 r1_bio->sectors,
1887 &first_bad, &bad_sectors)
1888 )
1889 set_bit(R1BIO_MadeGood, &r1_bio->state);
1890
1891 if (atomic_dec_and_test(&r1_bio->remaining)) {
1892 int s = r1_bio->sectors;
1893 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1894 test_bit(R1BIO_WriteError, &r1_bio->state))
1895 reschedule_retry(r1_bio);
1896 else {
1897 put_buf(r1_bio);
1898 md_done_sync(mddev, s, uptodate);
1899 }
1900 }
1901 }
1902
1903 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1904 int sectors, struct page *page, int rw)
1905 {
1906 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1907 /* success */
1908 return 1;
1909 if (rw == WRITE) {
1910 set_bit(WriteErrorSeen, &rdev->flags);
1911 if (!test_and_set_bit(WantReplacement,
1912 &rdev->flags))
1913 set_bit(MD_RECOVERY_NEEDED, &
1914 rdev->mddev->recovery);
1915 }
1916 /* need to record an error - either for the block or the device */
1917 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1918 md_error(rdev->mddev, rdev);
1919 return 0;
1920 }
1921
1922 static int fix_sync_read_error(struct r1bio *r1_bio)
1923 {
1924 /* Try some synchronous reads of other devices to get
1925 * good data, much like with normal read errors. Only
1926 * read into the pages we already have so we don't
1927 * need to re-issue the read request.
1928 * We don't need to freeze the array, because being in an
1929 * active sync request, there is no normal IO, and
1930 * no overlapping syncs.
1931 * We don't need to check is_badblock() again as we
1932 * made sure that anything with a bad block in range
1933 * will have bi_end_io clear.
1934 */
1935 struct mddev *mddev = r1_bio->mddev;
1936 struct r1conf *conf = mddev->private;
1937 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1938 struct page **pages = get_resync_pages(bio)->pages;
1939 sector_t sect = r1_bio->sector;
1940 int sectors = r1_bio->sectors;
1941 int idx = 0;
1942 struct md_rdev *rdev;
1943
1944 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1945 if (test_bit(FailFast, &rdev->flags)) {
1946 /* Don't try recovering from here - just fail it
1947 * ... unless it is the last working device of course */
1948 md_error(mddev, rdev);
1949 if (test_bit(Faulty, &rdev->flags))
1950 /* Don't try to read from here, but make sure
1951 * put_buf does it's thing
1952 */
1953 bio->bi_end_io = end_sync_write;
1954 }
1955
1956 while(sectors) {
1957 int s = sectors;
1958 int d = r1_bio->read_disk;
1959 int success = 0;
1960 int start;
1961
1962 if (s > (PAGE_SIZE>>9))
1963 s = PAGE_SIZE >> 9;
1964 do {
1965 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1966 /* No rcu protection needed here devices
1967 * can only be removed when no resync is
1968 * active, and resync is currently active
1969 */
1970 rdev = conf->mirrors[d].rdev;
1971 if (sync_page_io(rdev, sect, s<<9,
1972 pages[idx],
1973 REQ_OP_READ, 0, false)) {
1974 success = 1;
1975 break;
1976 }
1977 }
1978 d++;
1979 if (d == conf->raid_disks * 2)
1980 d = 0;
1981 } while (!success && d != r1_bio->read_disk);
1982
1983 if (!success) {
1984 char b[BDEVNAME_SIZE];
1985 int abort = 0;
1986 /* Cannot read from anywhere, this block is lost.
1987 * Record a bad block on each device. If that doesn't
1988 * work just disable and interrupt the recovery.
1989 * Don't fail devices as that won't really help.
1990 */
1991 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1992 mdname(mddev), bio_devname(bio, b),
1993 (unsigned long long)r1_bio->sector);
1994 for (d = 0; d < conf->raid_disks * 2; d++) {
1995 rdev = conf->mirrors[d].rdev;
1996 if (!rdev || test_bit(Faulty, &rdev->flags))
1997 continue;
1998 if (!rdev_set_badblocks(rdev, sect, s, 0))
1999 abort = 1;
2000 }
2001 if (abort) {
2002 conf->recovery_disabled =
2003 mddev->recovery_disabled;
2004 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2005 md_done_sync(mddev, r1_bio->sectors, 0);
2006 put_buf(r1_bio);
2007 return 0;
2008 }
2009 /* Try next page */
2010 sectors -= s;
2011 sect += s;
2012 idx++;
2013 continue;
2014 }
2015
2016 start = d;
2017 /* write it back and re-read */
2018 while (d != r1_bio->read_disk) {
2019 if (d == 0)
2020 d = conf->raid_disks * 2;
2021 d--;
2022 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2023 continue;
2024 rdev = conf->mirrors[d].rdev;
2025 if (r1_sync_page_io(rdev, sect, s,
2026 pages[idx],
2027 WRITE) == 0) {
2028 r1_bio->bios[d]->bi_end_io = NULL;
2029 rdev_dec_pending(rdev, mddev);
2030 }
2031 }
2032 d = start;
2033 while (d != r1_bio->read_disk) {
2034 if (d == 0)
2035 d = conf->raid_disks * 2;
2036 d--;
2037 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2038 continue;
2039 rdev = conf->mirrors[d].rdev;
2040 if (r1_sync_page_io(rdev, sect, s,
2041 pages[idx],
2042 READ) != 0)
2043 atomic_add(s, &rdev->corrected_errors);
2044 }
2045 sectors -= s;
2046 sect += s;
2047 idx ++;
2048 }
2049 set_bit(R1BIO_Uptodate, &r1_bio->state);
2050 bio->bi_status = 0;
2051 return 1;
2052 }
2053
2054 static void process_checks(struct r1bio *r1_bio)
2055 {
2056 /* We have read all readable devices. If we haven't
2057 * got the block, then there is no hope left.
2058 * If we have, then we want to do a comparison
2059 * and skip the write if everything is the same.
2060 * If any blocks failed to read, then we need to
2061 * attempt an over-write
2062 */
2063 struct mddev *mddev = r1_bio->mddev;
2064 struct r1conf *conf = mddev->private;
2065 int primary;
2066 int i;
2067 int vcnt;
2068
2069 /* Fix variable parts of all bios */
2070 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2071 for (i = 0; i < conf->raid_disks * 2; i++) {
2072 blk_status_t status;
2073 struct bio *b = r1_bio->bios[i];
2074 struct resync_pages *rp = get_resync_pages(b);
2075 if (b->bi_end_io != end_sync_read)
2076 continue;
2077 /* fixup the bio for reuse, but preserve errno */
2078 status = b->bi_status;
2079 bio_reset(b);
2080 b->bi_status = status;
2081 b->bi_iter.bi_sector = r1_bio->sector +
2082 conf->mirrors[i].rdev->data_offset;
2083 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2084 b->bi_end_io = end_sync_read;
2085 rp->raid_bio = r1_bio;
2086 b->bi_private = rp;
2087
2088 /* initialize bvec table again */
2089 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2090 }
2091 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2092 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2093 !r1_bio->bios[primary]->bi_status) {
2094 r1_bio->bios[primary]->bi_end_io = NULL;
2095 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2096 break;
2097 }
2098 r1_bio->read_disk = primary;
2099 for (i = 0; i < conf->raid_disks * 2; i++) {
2100 int j;
2101 struct bio *pbio = r1_bio->bios[primary];
2102 struct bio *sbio = r1_bio->bios[i];
2103 blk_status_t status = sbio->bi_status;
2104 struct page **ppages = get_resync_pages(pbio)->pages;
2105 struct page **spages = get_resync_pages(sbio)->pages;
2106 struct bio_vec *bi;
2107 int page_len[RESYNC_PAGES] = { 0 };
2108
2109 if (sbio->bi_end_io != end_sync_read)
2110 continue;
2111 /* Now we can 'fixup' the error value */
2112 sbio->bi_status = 0;
2113
2114 bio_for_each_segment_all(bi, sbio, j)
2115 page_len[j] = bi->bv_len;
2116
2117 if (!status) {
2118 for (j = vcnt; j-- ; ) {
2119 if (memcmp(page_address(ppages[j]),
2120 page_address(spages[j]),
2121 page_len[j]))
2122 break;
2123 }
2124 } else
2125 j = 0;
2126 if (j >= 0)
2127 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2128 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2129 && !status)) {
2130 /* No need to write to this device. */
2131 sbio->bi_end_io = NULL;
2132 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2133 continue;
2134 }
2135
2136 bio_copy_data(sbio, pbio);
2137 }
2138 }
2139
2140 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2141 {
2142 struct r1conf *conf = mddev->private;
2143 int i;
2144 int disks = conf->raid_disks * 2;
2145 struct bio *wbio;
2146
2147 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2148 /* ouch - failed to read all of that. */
2149 if (!fix_sync_read_error(r1_bio))
2150 return;
2151
2152 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2153 process_checks(r1_bio);
2154
2155 /*
2156 * schedule writes
2157 */
2158 atomic_set(&r1_bio->remaining, 1);
2159 for (i = 0; i < disks ; i++) {
2160 wbio = r1_bio->bios[i];
2161 if (wbio->bi_end_io == NULL ||
2162 (wbio->bi_end_io == end_sync_read &&
2163 (i == r1_bio->read_disk ||
2164 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2165 continue;
2166 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2167 continue;
2168
2169 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2170 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2171 wbio->bi_opf |= MD_FAILFAST;
2172
2173 wbio->bi_end_io = end_sync_write;
2174 atomic_inc(&r1_bio->remaining);
2175 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2176
2177 generic_make_request(wbio);
2178 }
2179
2180 if (atomic_dec_and_test(&r1_bio->remaining)) {
2181 /* if we're here, all write(s) have completed, so clean up */
2182 int s = r1_bio->sectors;
2183 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2184 test_bit(R1BIO_WriteError, &r1_bio->state))
2185 reschedule_retry(r1_bio);
2186 else {
2187 put_buf(r1_bio);
2188 md_done_sync(mddev, s, 1);
2189 }
2190 }
2191 }
2192
2193 /*
2194 * This is a kernel thread which:
2195 *
2196 * 1. Retries failed read operations on working mirrors.
2197 * 2. Updates the raid superblock when problems encounter.
2198 * 3. Performs writes following reads for array synchronising.
2199 */
2200
2201 static void fix_read_error(struct r1conf *conf, int read_disk,
2202 sector_t sect, int sectors)
2203 {
2204 struct mddev *mddev = conf->mddev;
2205 while(sectors) {
2206 int s = sectors;
2207 int d = read_disk;
2208 int success = 0;
2209 int start;
2210 struct md_rdev *rdev;
2211
2212 if (s > (PAGE_SIZE>>9))
2213 s = PAGE_SIZE >> 9;
2214
2215 do {
2216 sector_t first_bad;
2217 int bad_sectors;
2218
2219 rcu_read_lock();
2220 rdev = rcu_dereference(conf->mirrors[d].rdev);
2221 if (rdev &&
2222 (test_bit(In_sync, &rdev->flags) ||
2223 (!test_bit(Faulty, &rdev->flags) &&
2224 rdev->recovery_offset >= sect + s)) &&
2225 is_badblock(rdev, sect, s,
2226 &first_bad, &bad_sectors) == 0) {
2227 atomic_inc(&rdev->nr_pending);
2228 rcu_read_unlock();
2229 if (sync_page_io(rdev, sect, s<<9,
2230 conf->tmppage, REQ_OP_READ, 0, false))
2231 success = 1;
2232 rdev_dec_pending(rdev, mddev);
2233 if (success)
2234 break;
2235 } else
2236 rcu_read_unlock();
2237 d++;
2238 if (d == conf->raid_disks * 2)
2239 d = 0;
2240 } while (!success && d != read_disk);
2241
2242 if (!success) {
2243 /* Cannot read from anywhere - mark it bad */
2244 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2245 if (!rdev_set_badblocks(rdev, sect, s, 0))
2246 md_error(mddev, rdev);
2247 break;
2248 }
2249 /* write it back and re-read */
2250 start = d;
2251 while (d != read_disk) {
2252 if (d==0)
2253 d = conf->raid_disks * 2;
2254 d--;
2255 rcu_read_lock();
2256 rdev = rcu_dereference(conf->mirrors[d].rdev);
2257 if (rdev &&
2258 !test_bit(Faulty, &rdev->flags)) {
2259 atomic_inc(&rdev->nr_pending);
2260 rcu_read_unlock();
2261 r1_sync_page_io(rdev, sect, s,
2262 conf->tmppage, WRITE);
2263 rdev_dec_pending(rdev, mddev);
2264 } else
2265 rcu_read_unlock();
2266 }
2267 d = start;
2268 while (d != read_disk) {
2269 char b[BDEVNAME_SIZE];
2270 if (d==0)
2271 d = conf->raid_disks * 2;
2272 d--;
2273 rcu_read_lock();
2274 rdev = rcu_dereference(conf->mirrors[d].rdev);
2275 if (rdev &&
2276 !test_bit(Faulty, &rdev->flags)) {
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
2279 if (r1_sync_page_io(rdev, sect, s,
2280 conf->tmppage, READ)) {
2281 atomic_add(s, &rdev->corrected_errors);
2282 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2283 mdname(mddev), s,
2284 (unsigned long long)(sect +
2285 rdev->data_offset),
2286 bdevname(rdev->bdev, b));
2287 }
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
2291 }
2292 sectors -= s;
2293 sect += s;
2294 }
2295 }
2296
2297 static int narrow_write_error(struct r1bio *r1_bio, int i)
2298 {
2299 struct mddev *mddev = r1_bio->mddev;
2300 struct r1conf *conf = mddev->private;
2301 struct md_rdev *rdev = conf->mirrors[i].rdev;
2302
2303 /* bio has the data to be written to device 'i' where
2304 * we just recently had a write error.
2305 * We repeatedly clone the bio and trim down to one block,
2306 * then try the write. Where the write fails we record
2307 * a bad block.
2308 * It is conceivable that the bio doesn't exactly align with
2309 * blocks. We must handle this somehow.
2310 *
2311 * We currently own a reference on the rdev.
2312 */
2313
2314 int block_sectors;
2315 sector_t sector;
2316 int sectors;
2317 int sect_to_write = r1_bio->sectors;
2318 int ok = 1;
2319
2320 if (rdev->badblocks.shift < 0)
2321 return 0;
2322
2323 block_sectors = roundup(1 << rdev->badblocks.shift,
2324 bdev_logical_block_size(rdev->bdev) >> 9);
2325 sector = r1_bio->sector;
2326 sectors = ((sector + block_sectors)
2327 & ~(sector_t)(block_sectors - 1))
2328 - sector;
2329
2330 while (sect_to_write) {
2331 struct bio *wbio;
2332 if (sectors > sect_to_write)
2333 sectors = sect_to_write;
2334 /* Write at 'sector' for 'sectors'*/
2335
2336 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2337 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2338 GFP_NOIO,
2339 mddev->bio_set);
2340 } else {
2341 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2342 mddev->bio_set);
2343 }
2344
2345 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2346 wbio->bi_iter.bi_sector = r1_bio->sector;
2347 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2348
2349 bio_trim(wbio, sector - r1_bio->sector, sectors);
2350 wbio->bi_iter.bi_sector += rdev->data_offset;
2351 bio_set_dev(wbio, rdev->bdev);
2352
2353 if (submit_bio_wait(wbio) < 0)
2354 /* failure! */
2355 ok = rdev_set_badblocks(rdev, sector,
2356 sectors, 0)
2357 && ok;
2358
2359 bio_put(wbio);
2360 sect_to_write -= sectors;
2361 sector += sectors;
2362 sectors = block_sectors;
2363 }
2364 return ok;
2365 }
2366
2367 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2368 {
2369 int m;
2370 int s = r1_bio->sectors;
2371 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2372 struct md_rdev *rdev = conf->mirrors[m].rdev;
2373 struct bio *bio = r1_bio->bios[m];
2374 if (bio->bi_end_io == NULL)
2375 continue;
2376 if (!bio->bi_status &&
2377 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2378 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2379 }
2380 if (bio->bi_status &&
2381 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2382 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2383 md_error(conf->mddev, rdev);
2384 }
2385 }
2386 put_buf(r1_bio);
2387 md_done_sync(conf->mddev, s, 1);
2388 }
2389
2390 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2391 {
2392 int m, idx;
2393 bool fail = false;
2394
2395 for (m = 0; m < conf->raid_disks * 2 ; m++)
2396 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
2398 rdev_clear_badblocks(rdev,
2399 r1_bio->sector,
2400 r1_bio->sectors, 0);
2401 rdev_dec_pending(rdev, conf->mddev);
2402 } else if (r1_bio->bios[m] != NULL) {
2403 /* This drive got a write error. We need to
2404 * narrow down and record precise write
2405 * errors.
2406 */
2407 fail = true;
2408 if (!narrow_write_error(r1_bio, m)) {
2409 md_error(conf->mddev,
2410 conf->mirrors[m].rdev);
2411 /* an I/O failed, we can't clear the bitmap */
2412 set_bit(R1BIO_Degraded, &r1_bio->state);
2413 }
2414 rdev_dec_pending(conf->mirrors[m].rdev,
2415 conf->mddev);
2416 }
2417 if (fail) {
2418 spin_lock_irq(&conf->device_lock);
2419 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2420 idx = sector_to_idx(r1_bio->sector);
2421 atomic_inc(&conf->nr_queued[idx]);
2422 spin_unlock_irq(&conf->device_lock);
2423 /*
2424 * In case freeze_array() is waiting for condition
2425 * get_unqueued_pending() == extra to be true.
2426 */
2427 wake_up(&conf->wait_barrier);
2428 md_wakeup_thread(conf->mddev->thread);
2429 } else {
2430 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2431 close_write(r1_bio);
2432 raid_end_bio_io(r1_bio);
2433 }
2434 }
2435
2436 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2437 {
2438 struct mddev *mddev = conf->mddev;
2439 struct bio *bio;
2440 struct md_rdev *rdev;
2441 sector_t bio_sector;
2442
2443 clear_bit(R1BIO_ReadError, &r1_bio->state);
2444 /* we got a read error. Maybe the drive is bad. Maybe just
2445 * the block and we can fix it.
2446 * We freeze all other IO, and try reading the block from
2447 * other devices. When we find one, we re-write
2448 * and check it that fixes the read error.
2449 * This is all done synchronously while the array is
2450 * frozen
2451 */
2452
2453 bio = r1_bio->bios[r1_bio->read_disk];
2454 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2455 bio_put(bio);
2456 r1_bio->bios[r1_bio->read_disk] = NULL;
2457
2458 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2459 if (mddev->ro == 0
2460 && !test_bit(FailFast, &rdev->flags)) {
2461 freeze_array(conf, 1);
2462 fix_read_error(conf, r1_bio->read_disk,
2463 r1_bio->sector, r1_bio->sectors);
2464 unfreeze_array(conf);
2465 } else {
2466 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2467 }
2468
2469 rdev_dec_pending(rdev, conf->mddev);
2470 allow_barrier(conf, r1_bio->sector);
2471 bio = r1_bio->master_bio;
2472
2473 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2474 r1_bio->state = 0;
2475 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2476 }
2477
2478 static void raid1d(struct md_thread *thread)
2479 {
2480 struct mddev *mddev = thread->mddev;
2481 struct r1bio *r1_bio;
2482 unsigned long flags;
2483 struct r1conf *conf = mddev->private;
2484 struct list_head *head = &conf->retry_list;
2485 struct blk_plug plug;
2486 int idx;
2487
2488 md_check_recovery(mddev);
2489
2490 if (!list_empty_careful(&conf->bio_end_io_list) &&
2491 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2492 LIST_HEAD(tmp);
2493 spin_lock_irqsave(&conf->device_lock, flags);
2494 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2495 list_splice_init(&conf->bio_end_io_list, &tmp);
2496 spin_unlock_irqrestore(&conf->device_lock, flags);
2497 while (!list_empty(&tmp)) {
2498 r1_bio = list_first_entry(&tmp, struct r1bio,
2499 retry_list);
2500 list_del(&r1_bio->retry_list);
2501 idx = sector_to_idx(r1_bio->sector);
2502 atomic_dec(&conf->nr_queued[idx]);
2503 if (mddev->degraded)
2504 set_bit(R1BIO_Degraded, &r1_bio->state);
2505 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2506 close_write(r1_bio);
2507 raid_end_bio_io(r1_bio);
2508 }
2509 }
2510
2511 blk_start_plug(&plug);
2512 for (;;) {
2513
2514 flush_pending_writes(conf);
2515
2516 spin_lock_irqsave(&conf->device_lock, flags);
2517 if (list_empty(head)) {
2518 spin_unlock_irqrestore(&conf->device_lock, flags);
2519 break;
2520 }
2521 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2522 list_del(head->prev);
2523 idx = sector_to_idx(r1_bio->sector);
2524 atomic_dec(&conf->nr_queued[idx]);
2525 spin_unlock_irqrestore(&conf->device_lock, flags);
2526
2527 mddev = r1_bio->mddev;
2528 conf = mddev->private;
2529 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2530 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2531 test_bit(R1BIO_WriteError, &r1_bio->state))
2532 handle_sync_write_finished(conf, r1_bio);
2533 else
2534 sync_request_write(mddev, r1_bio);
2535 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2536 test_bit(R1BIO_WriteError, &r1_bio->state))
2537 handle_write_finished(conf, r1_bio);
2538 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2539 handle_read_error(conf, r1_bio);
2540 else
2541 WARN_ON_ONCE(1);
2542
2543 cond_resched();
2544 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2545 md_check_recovery(mddev);
2546 }
2547 blk_finish_plug(&plug);
2548 }
2549
2550 static int init_resync(struct r1conf *conf)
2551 {
2552 int buffs;
2553
2554 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2555 BUG_ON(conf->r1buf_pool);
2556 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2557 conf->poolinfo);
2558 if (!conf->r1buf_pool)
2559 return -ENOMEM;
2560 return 0;
2561 }
2562
2563 /*
2564 * perform a "sync" on one "block"
2565 *
2566 * We need to make sure that no normal I/O request - particularly write
2567 * requests - conflict with active sync requests.
2568 *
2569 * This is achieved by tracking pending requests and a 'barrier' concept
2570 * that can be installed to exclude normal IO requests.
2571 */
2572
2573 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2574 int *skipped)
2575 {
2576 struct r1conf *conf = mddev->private;
2577 struct r1bio *r1_bio;
2578 struct bio *bio;
2579 sector_t max_sector, nr_sectors;
2580 int disk = -1;
2581 int i;
2582 int wonly = -1;
2583 int write_targets = 0, read_targets = 0;
2584 sector_t sync_blocks;
2585 int still_degraded = 0;
2586 int good_sectors = RESYNC_SECTORS;
2587 int min_bad = 0; /* number of sectors that are bad in all devices */
2588 int idx = sector_to_idx(sector_nr);
2589 int page_idx = 0;
2590
2591 if (!conf->r1buf_pool)
2592 if (init_resync(conf))
2593 return 0;
2594
2595 max_sector = mddev->dev_sectors;
2596 if (sector_nr >= max_sector) {
2597 /* If we aborted, we need to abort the
2598 * sync on the 'current' bitmap chunk (there will
2599 * only be one in raid1 resync.
2600 * We can find the current addess in mddev->curr_resync
2601 */
2602 if (mddev->curr_resync < max_sector) /* aborted */
2603 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2604 &sync_blocks, 1);
2605 else /* completed sync */
2606 conf->fullsync = 0;
2607
2608 bitmap_close_sync(mddev->bitmap);
2609 close_sync(conf);
2610
2611 if (mddev_is_clustered(mddev)) {
2612 conf->cluster_sync_low = 0;
2613 conf->cluster_sync_high = 0;
2614 }
2615 return 0;
2616 }
2617
2618 if (mddev->bitmap == NULL &&
2619 mddev->recovery_cp == MaxSector &&
2620 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2621 conf->fullsync == 0) {
2622 *skipped = 1;
2623 return max_sector - sector_nr;
2624 }
2625 /* before building a request, check if we can skip these blocks..
2626 * This call the bitmap_start_sync doesn't actually record anything
2627 */
2628 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2629 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2630 /* We can skip this block, and probably several more */
2631 *skipped = 1;
2632 return sync_blocks;
2633 }
2634
2635 /*
2636 * If there is non-resync activity waiting for a turn, then let it
2637 * though before starting on this new sync request.
2638 */
2639 if (atomic_read(&conf->nr_waiting[idx]))
2640 schedule_timeout_uninterruptible(1);
2641
2642 /* we are incrementing sector_nr below. To be safe, we check against
2643 * sector_nr + two times RESYNC_SECTORS
2644 */
2645
2646 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2647 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2648 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2649
2650 raise_barrier(conf, sector_nr);
2651
2652 rcu_read_lock();
2653 /*
2654 * If we get a correctably read error during resync or recovery,
2655 * we might want to read from a different device. So we
2656 * flag all drives that could conceivably be read from for READ,
2657 * and any others (which will be non-In_sync devices) for WRITE.
2658 * If a read fails, we try reading from something else for which READ
2659 * is OK.
2660 */
2661
2662 r1_bio->mddev = mddev;
2663 r1_bio->sector = sector_nr;
2664 r1_bio->state = 0;
2665 set_bit(R1BIO_IsSync, &r1_bio->state);
2666 /* make sure good_sectors won't go across barrier unit boundary */
2667 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2668
2669 for (i = 0; i < conf->raid_disks * 2; i++) {
2670 struct md_rdev *rdev;
2671 bio = r1_bio->bios[i];
2672
2673 rdev = rcu_dereference(conf->mirrors[i].rdev);
2674 if (rdev == NULL ||
2675 test_bit(Faulty, &rdev->flags)) {
2676 if (i < conf->raid_disks)
2677 still_degraded = 1;
2678 } else if (!test_bit(In_sync, &rdev->flags)) {
2679 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2680 bio->bi_end_io = end_sync_write;
2681 write_targets ++;
2682 } else {
2683 /* may need to read from here */
2684 sector_t first_bad = MaxSector;
2685 int bad_sectors;
2686
2687 if (is_badblock(rdev, sector_nr, good_sectors,
2688 &first_bad, &bad_sectors)) {
2689 if (first_bad > sector_nr)
2690 good_sectors = first_bad - sector_nr;
2691 else {
2692 bad_sectors -= (sector_nr - first_bad);
2693 if (min_bad == 0 ||
2694 min_bad > bad_sectors)
2695 min_bad = bad_sectors;
2696 }
2697 }
2698 if (sector_nr < first_bad) {
2699 if (test_bit(WriteMostly, &rdev->flags)) {
2700 if (wonly < 0)
2701 wonly = i;
2702 } else {
2703 if (disk < 0)
2704 disk = i;
2705 }
2706 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2707 bio->bi_end_io = end_sync_read;
2708 read_targets++;
2709 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2710 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2711 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2712 /*
2713 * The device is suitable for reading (InSync),
2714 * but has bad block(s) here. Let's try to correct them,
2715 * if we are doing resync or repair. Otherwise, leave
2716 * this device alone for this sync request.
2717 */
2718 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2719 bio->bi_end_io = end_sync_write;
2720 write_targets++;
2721 }
2722 }
2723 if (bio->bi_end_io) {
2724 atomic_inc(&rdev->nr_pending);
2725 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2726 bio_set_dev(bio, rdev->bdev);
2727 if (test_bit(FailFast, &rdev->flags))
2728 bio->bi_opf |= MD_FAILFAST;
2729 }
2730 }
2731 rcu_read_unlock();
2732 if (disk < 0)
2733 disk = wonly;
2734 r1_bio->read_disk = disk;
2735
2736 if (read_targets == 0 && min_bad > 0) {
2737 /* These sectors are bad on all InSync devices, so we
2738 * need to mark them bad on all write targets
2739 */
2740 int ok = 1;
2741 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2742 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2743 struct md_rdev *rdev = conf->mirrors[i].rdev;
2744 ok = rdev_set_badblocks(rdev, sector_nr,
2745 min_bad, 0
2746 ) && ok;
2747 }
2748 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2749 *skipped = 1;
2750 put_buf(r1_bio);
2751
2752 if (!ok) {
2753 /* Cannot record the badblocks, so need to
2754 * abort the resync.
2755 * If there are multiple read targets, could just
2756 * fail the really bad ones ???
2757 */
2758 conf->recovery_disabled = mddev->recovery_disabled;
2759 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2760 return 0;
2761 } else
2762 return min_bad;
2763
2764 }
2765 if (min_bad > 0 && min_bad < good_sectors) {
2766 /* only resync enough to reach the next bad->good
2767 * transition */
2768 good_sectors = min_bad;
2769 }
2770
2771 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2772 /* extra read targets are also write targets */
2773 write_targets += read_targets-1;
2774
2775 if (write_targets == 0 || read_targets == 0) {
2776 /* There is nowhere to write, so all non-sync
2777 * drives must be failed - so we are finished
2778 */
2779 sector_t rv;
2780 if (min_bad > 0)
2781 max_sector = sector_nr + min_bad;
2782 rv = max_sector - sector_nr;
2783 *skipped = 1;
2784 put_buf(r1_bio);
2785 return rv;
2786 }
2787
2788 if (max_sector > mddev->resync_max)
2789 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2790 if (max_sector > sector_nr + good_sectors)
2791 max_sector = sector_nr + good_sectors;
2792 nr_sectors = 0;
2793 sync_blocks = 0;
2794 do {
2795 struct page *page;
2796 int len = PAGE_SIZE;
2797 if (sector_nr + (len>>9) > max_sector)
2798 len = (max_sector - sector_nr) << 9;
2799 if (len == 0)
2800 break;
2801 if (sync_blocks == 0) {
2802 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2803 &sync_blocks, still_degraded) &&
2804 !conf->fullsync &&
2805 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2806 break;
2807 if ((len >> 9) > sync_blocks)
2808 len = sync_blocks<<9;
2809 }
2810
2811 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2812 struct resync_pages *rp;
2813
2814 bio = r1_bio->bios[i];
2815 rp = get_resync_pages(bio);
2816 if (bio->bi_end_io) {
2817 page = resync_fetch_page(rp, page_idx);
2818
2819 /*
2820 * won't fail because the vec table is big
2821 * enough to hold all these pages
2822 */
2823 bio_add_page(bio, page, len, 0);
2824 }
2825 }
2826 nr_sectors += len>>9;
2827 sector_nr += len>>9;
2828 sync_blocks -= (len>>9);
2829 } while (++page_idx < RESYNC_PAGES);
2830
2831 r1_bio->sectors = nr_sectors;
2832
2833 if (mddev_is_clustered(mddev) &&
2834 conf->cluster_sync_high < sector_nr + nr_sectors) {
2835 conf->cluster_sync_low = mddev->curr_resync_completed;
2836 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2837 /* Send resync message */
2838 md_cluster_ops->resync_info_update(mddev,
2839 conf->cluster_sync_low,
2840 conf->cluster_sync_high);
2841 }
2842
2843 /* For a user-requested sync, we read all readable devices and do a
2844 * compare
2845 */
2846 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2847 atomic_set(&r1_bio->remaining, read_targets);
2848 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2849 bio = r1_bio->bios[i];
2850 if (bio->bi_end_io == end_sync_read) {
2851 read_targets--;
2852 md_sync_acct_bio(bio, nr_sectors);
2853 if (read_targets == 1)
2854 bio->bi_opf &= ~MD_FAILFAST;
2855 generic_make_request(bio);
2856 }
2857 }
2858 } else {
2859 atomic_set(&r1_bio->remaining, 1);
2860 bio = r1_bio->bios[r1_bio->read_disk];
2861 md_sync_acct_bio(bio, nr_sectors);
2862 if (read_targets == 1)
2863 bio->bi_opf &= ~MD_FAILFAST;
2864 generic_make_request(bio);
2865
2866 }
2867 return nr_sectors;
2868 }
2869
2870 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2871 {
2872 if (sectors)
2873 return sectors;
2874
2875 return mddev->dev_sectors;
2876 }
2877
2878 static struct r1conf *setup_conf(struct mddev *mddev)
2879 {
2880 struct r1conf *conf;
2881 int i;
2882 struct raid1_info *disk;
2883 struct md_rdev *rdev;
2884 int err = -ENOMEM;
2885
2886 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2887 if (!conf)
2888 goto abort;
2889
2890 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2891 sizeof(atomic_t), GFP_KERNEL);
2892 if (!conf->nr_pending)
2893 goto abort;
2894
2895 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2896 sizeof(atomic_t), GFP_KERNEL);
2897 if (!conf->nr_waiting)
2898 goto abort;
2899
2900 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2901 sizeof(atomic_t), GFP_KERNEL);
2902 if (!conf->nr_queued)
2903 goto abort;
2904
2905 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2906 sizeof(atomic_t), GFP_KERNEL);
2907 if (!conf->barrier)
2908 goto abort;
2909
2910 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2911 * mddev->raid_disks * 2,
2912 GFP_KERNEL);
2913 if (!conf->mirrors)
2914 goto abort;
2915
2916 conf->tmppage = alloc_page(GFP_KERNEL);
2917 if (!conf->tmppage)
2918 goto abort;
2919
2920 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2921 if (!conf->poolinfo)
2922 goto abort;
2923 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2924 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2925 r1bio_pool_free,
2926 conf->poolinfo);
2927 if (!conf->r1bio_pool)
2928 goto abort;
2929
2930 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2931 if (!conf->bio_split)
2932 goto abort;
2933
2934 conf->poolinfo->mddev = mddev;
2935
2936 err = -EINVAL;
2937 spin_lock_init(&conf->device_lock);
2938 rdev_for_each(rdev, mddev) {
2939 int disk_idx = rdev->raid_disk;
2940 if (disk_idx >= mddev->raid_disks
2941 || disk_idx < 0)
2942 continue;
2943 if (test_bit(Replacement, &rdev->flags))
2944 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2945 else
2946 disk = conf->mirrors + disk_idx;
2947
2948 if (disk->rdev)
2949 goto abort;
2950 disk->rdev = rdev;
2951 disk->head_position = 0;
2952 disk->seq_start = MaxSector;
2953 }
2954 conf->raid_disks = mddev->raid_disks;
2955 conf->mddev = mddev;
2956 INIT_LIST_HEAD(&conf->retry_list);
2957 INIT_LIST_HEAD(&conf->bio_end_io_list);
2958
2959 spin_lock_init(&conf->resync_lock);
2960 init_waitqueue_head(&conf->wait_barrier);
2961
2962 bio_list_init(&conf->pending_bio_list);
2963 conf->pending_count = 0;
2964 conf->recovery_disabled = mddev->recovery_disabled - 1;
2965
2966 err = -EIO;
2967 for (i = 0; i < conf->raid_disks * 2; i++) {
2968
2969 disk = conf->mirrors + i;
2970
2971 if (i < conf->raid_disks &&
2972 disk[conf->raid_disks].rdev) {
2973 /* This slot has a replacement. */
2974 if (!disk->rdev) {
2975 /* No original, just make the replacement
2976 * a recovering spare
2977 */
2978 disk->rdev =
2979 disk[conf->raid_disks].rdev;
2980 disk[conf->raid_disks].rdev = NULL;
2981 } else if (!test_bit(In_sync, &disk->rdev->flags))
2982 /* Original is not in_sync - bad */
2983 goto abort;
2984 }
2985
2986 if (!disk->rdev ||
2987 !test_bit(In_sync, &disk->rdev->flags)) {
2988 disk->head_position = 0;
2989 if (disk->rdev &&
2990 (disk->rdev->saved_raid_disk < 0))
2991 conf->fullsync = 1;
2992 }
2993 }
2994
2995 err = -ENOMEM;
2996 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2997 if (!conf->thread)
2998 goto abort;
2999
3000 return conf;
3001
3002 abort:
3003 if (conf) {
3004 mempool_destroy(conf->r1bio_pool);
3005 kfree(conf->mirrors);
3006 safe_put_page(conf->tmppage);
3007 kfree(conf->poolinfo);
3008 kfree(conf->nr_pending);
3009 kfree(conf->nr_waiting);
3010 kfree(conf->nr_queued);
3011 kfree(conf->barrier);
3012 if (conf->bio_split)
3013 bioset_free(conf->bio_split);
3014 kfree(conf);
3015 }
3016 return ERR_PTR(err);
3017 }
3018
3019 static void raid1_free(struct mddev *mddev, void *priv);
3020 static int raid1_run(struct mddev *mddev)
3021 {
3022 struct r1conf *conf;
3023 int i;
3024 struct md_rdev *rdev;
3025 int ret;
3026 bool discard_supported = false;
3027
3028 if (mddev->level != 1) {
3029 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3030 mdname(mddev), mddev->level);
3031 return -EIO;
3032 }
3033 if (mddev->reshape_position != MaxSector) {
3034 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3035 mdname(mddev));
3036 return -EIO;
3037 }
3038 if (mddev_init_writes_pending(mddev) < 0)
3039 return -ENOMEM;
3040 /*
3041 * copy the already verified devices into our private RAID1
3042 * bookkeeping area. [whatever we allocate in run(),
3043 * should be freed in raid1_free()]
3044 */
3045 if (mddev->private == NULL)
3046 conf = setup_conf(mddev);
3047 else
3048 conf = mddev->private;
3049
3050 if (IS_ERR(conf))
3051 return PTR_ERR(conf);
3052
3053 if (mddev->queue) {
3054 blk_queue_max_write_same_sectors(mddev->queue, 0);
3055 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3056 }
3057
3058 rdev_for_each(rdev, mddev) {
3059 if (!mddev->gendisk)
3060 continue;
3061 disk_stack_limits(mddev->gendisk, rdev->bdev,
3062 rdev->data_offset << 9);
3063 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3064 discard_supported = true;
3065 }
3066
3067 mddev->degraded = 0;
3068 for (i=0; i < conf->raid_disks; i++)
3069 if (conf->mirrors[i].rdev == NULL ||
3070 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3071 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3072 mddev->degraded++;
3073
3074 if (conf->raid_disks - mddev->degraded == 1)
3075 mddev->recovery_cp = MaxSector;
3076
3077 if (mddev->recovery_cp != MaxSector)
3078 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3079 mdname(mddev));
3080 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3081 mdname(mddev), mddev->raid_disks - mddev->degraded,
3082 mddev->raid_disks);
3083
3084 /*
3085 * Ok, everything is just fine now
3086 */
3087 mddev->thread = conf->thread;
3088 conf->thread = NULL;
3089 mddev->private = conf;
3090 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3091
3092 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3093
3094 if (mddev->queue) {
3095 if (discard_supported)
3096 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3097 mddev->queue);
3098 else
3099 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3100 mddev->queue);
3101 }
3102
3103 ret = md_integrity_register(mddev);
3104 if (ret) {
3105 md_unregister_thread(&mddev->thread);
3106 raid1_free(mddev, conf);
3107 }
3108 return ret;
3109 }
3110
3111 static void raid1_free(struct mddev *mddev, void *priv)
3112 {
3113 struct r1conf *conf = priv;
3114
3115 mempool_destroy(conf->r1bio_pool);
3116 kfree(conf->mirrors);
3117 safe_put_page(conf->tmppage);
3118 kfree(conf->poolinfo);
3119 kfree(conf->nr_pending);
3120 kfree(conf->nr_waiting);
3121 kfree(conf->nr_queued);
3122 kfree(conf->barrier);
3123 if (conf->bio_split)
3124 bioset_free(conf->bio_split);
3125 kfree(conf);
3126 }
3127
3128 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3129 {
3130 /* no resync is happening, and there is enough space
3131 * on all devices, so we can resize.
3132 * We need to make sure resync covers any new space.
3133 * If the array is shrinking we should possibly wait until
3134 * any io in the removed space completes, but it hardly seems
3135 * worth it.
3136 */
3137 sector_t newsize = raid1_size(mddev, sectors, 0);
3138 if (mddev->external_size &&
3139 mddev->array_sectors > newsize)
3140 return -EINVAL;
3141 if (mddev->bitmap) {
3142 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3143 if (ret)
3144 return ret;
3145 }
3146 md_set_array_sectors(mddev, newsize);
3147 if (sectors > mddev->dev_sectors &&
3148 mddev->recovery_cp > mddev->dev_sectors) {
3149 mddev->recovery_cp = mddev->dev_sectors;
3150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3151 }
3152 mddev->dev_sectors = sectors;
3153 mddev->resync_max_sectors = sectors;
3154 return 0;
3155 }
3156
3157 static int raid1_reshape(struct mddev *mddev)
3158 {
3159 /* We need to:
3160 * 1/ resize the r1bio_pool
3161 * 2/ resize conf->mirrors
3162 *
3163 * We allocate a new r1bio_pool if we can.
3164 * Then raise a device barrier and wait until all IO stops.
3165 * Then resize conf->mirrors and swap in the new r1bio pool.
3166 *
3167 * At the same time, we "pack" the devices so that all the missing
3168 * devices have the higher raid_disk numbers.
3169 */
3170 mempool_t *newpool, *oldpool;
3171 struct pool_info *newpoolinfo;
3172 struct raid1_info *newmirrors;
3173 struct r1conf *conf = mddev->private;
3174 int cnt, raid_disks;
3175 unsigned long flags;
3176 int d, d2;
3177
3178 /* Cannot change chunk_size, layout, or level */
3179 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3180 mddev->layout != mddev->new_layout ||
3181 mddev->level != mddev->new_level) {
3182 mddev->new_chunk_sectors = mddev->chunk_sectors;
3183 mddev->new_layout = mddev->layout;
3184 mddev->new_level = mddev->level;
3185 return -EINVAL;
3186 }
3187
3188 if (!mddev_is_clustered(mddev))
3189 md_allow_write(mddev);
3190
3191 raid_disks = mddev->raid_disks + mddev->delta_disks;
3192
3193 if (raid_disks < conf->raid_disks) {
3194 cnt=0;
3195 for (d= 0; d < conf->raid_disks; d++)
3196 if (conf->mirrors[d].rdev)
3197 cnt++;
3198 if (cnt > raid_disks)
3199 return -EBUSY;
3200 }
3201
3202 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3203 if (!newpoolinfo)
3204 return -ENOMEM;
3205 newpoolinfo->mddev = mddev;
3206 newpoolinfo->raid_disks = raid_disks * 2;
3207
3208 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3209 r1bio_pool_free, newpoolinfo);
3210 if (!newpool) {
3211 kfree(newpoolinfo);
3212 return -ENOMEM;
3213 }
3214 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3215 GFP_KERNEL);
3216 if (!newmirrors) {
3217 kfree(newpoolinfo);
3218 mempool_destroy(newpool);
3219 return -ENOMEM;
3220 }
3221
3222 freeze_array(conf, 0);
3223
3224 /* ok, everything is stopped */
3225 oldpool = conf->r1bio_pool;
3226 conf->r1bio_pool = newpool;
3227
3228 for (d = d2 = 0; d < conf->raid_disks; d++) {
3229 struct md_rdev *rdev = conf->mirrors[d].rdev;
3230 if (rdev && rdev->raid_disk != d2) {
3231 sysfs_unlink_rdev(mddev, rdev);
3232 rdev->raid_disk = d2;
3233 sysfs_unlink_rdev(mddev, rdev);
3234 if (sysfs_link_rdev(mddev, rdev))
3235 pr_warn("md/raid1:%s: cannot register rd%d\n",
3236 mdname(mddev), rdev->raid_disk);
3237 }
3238 if (rdev)
3239 newmirrors[d2++].rdev = rdev;
3240 }
3241 kfree(conf->mirrors);
3242 conf->mirrors = newmirrors;
3243 kfree(conf->poolinfo);
3244 conf->poolinfo = newpoolinfo;
3245
3246 spin_lock_irqsave(&conf->device_lock, flags);
3247 mddev->degraded += (raid_disks - conf->raid_disks);
3248 spin_unlock_irqrestore(&conf->device_lock, flags);
3249 conf->raid_disks = mddev->raid_disks = raid_disks;
3250 mddev->delta_disks = 0;
3251
3252 unfreeze_array(conf);
3253
3254 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3255 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3256 md_wakeup_thread(mddev->thread);
3257
3258 mempool_destroy(oldpool);
3259 return 0;
3260 }
3261
3262 static void raid1_quiesce(struct mddev *mddev, int state)
3263 {
3264 struct r1conf *conf = mddev->private;
3265
3266 switch(state) {
3267 case 2: /* wake for suspend */
3268 wake_up(&conf->wait_barrier);
3269 break;
3270 case 1:
3271 freeze_array(conf, 0);
3272 break;
3273 case 0:
3274 unfreeze_array(conf);
3275 break;
3276 }
3277 }
3278
3279 static void *raid1_takeover(struct mddev *mddev)
3280 {
3281 /* raid1 can take over:
3282 * raid5 with 2 devices, any layout or chunk size
3283 */
3284 if (mddev->level == 5 && mddev->raid_disks == 2) {
3285 struct r1conf *conf;
3286 mddev->new_level = 1;
3287 mddev->new_layout = 0;
3288 mddev->new_chunk_sectors = 0;
3289 conf = setup_conf(mddev);
3290 if (!IS_ERR(conf)) {
3291 /* Array must appear to be quiesced */
3292 conf->array_frozen = 1;
3293 mddev_clear_unsupported_flags(mddev,
3294 UNSUPPORTED_MDDEV_FLAGS);
3295 }
3296 return conf;
3297 }
3298 return ERR_PTR(-EINVAL);
3299 }
3300
3301 static struct md_personality raid1_personality =
3302 {
3303 .name = "raid1",
3304 .level = 1,
3305 .owner = THIS_MODULE,
3306 .make_request = raid1_make_request,
3307 .run = raid1_run,
3308 .free = raid1_free,
3309 .status = raid1_status,
3310 .error_handler = raid1_error,
3311 .hot_add_disk = raid1_add_disk,
3312 .hot_remove_disk= raid1_remove_disk,
3313 .spare_active = raid1_spare_active,
3314 .sync_request = raid1_sync_request,
3315 .resize = raid1_resize,
3316 .size = raid1_size,
3317 .check_reshape = raid1_reshape,
3318 .quiesce = raid1_quiesce,
3319 .takeover = raid1_takeover,
3320 .congested = raid1_congested,
3321 };
3322
3323 static int __init raid_init(void)
3324 {
3325 return register_md_personality(&raid1_personality);
3326 }
3327
3328 static void raid_exit(void)
3329 {
3330 unregister_md_personality(&raid1_personality);
3331 }
3332
3333 module_init(raid_init);
3334 module_exit(raid_exit);
3335 MODULE_LICENSE("GPL");
3336 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3337 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3338 MODULE_ALIAS("md-raid1");
3339 MODULE_ALIAS("md-level-1");
3340
3341 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);