]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid1.c
md: raid1: improve write behind
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_error && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else
670 best_good_sectors = sectors;
671
672 if (best_disk >= 0)
673 /* At least two disks to choose from so failfast is OK */
674 set_bit(R1BIO_FailFast, &r1_bio->state);
675
676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 has_nonrot_disk |= nonrot;
678 pending = atomic_read(&rdev->nr_pending);
679 dist = abs(this_sector - conf->mirrors[disk].head_position);
680 if (choose_first) {
681 best_disk = disk;
682 break;
683 }
684 /* Don't change to another disk for sequential reads */
685 if (conf->mirrors[disk].next_seq_sect == this_sector
686 || dist == 0) {
687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 struct raid1_info *mirror = &conf->mirrors[disk];
689
690 best_disk = disk;
691 /*
692 * If buffered sequential IO size exceeds optimal
693 * iosize, check if there is idle disk. If yes, choose
694 * the idle disk. read_balance could already choose an
695 * idle disk before noticing it's a sequential IO in
696 * this disk. This doesn't matter because this disk
697 * will idle, next time it will be utilized after the
698 * first disk has IO size exceeds optimal iosize. In
699 * this way, iosize of the first disk will be optimal
700 * iosize at least. iosize of the second disk might be
701 * small, but not a big deal since when the second disk
702 * starts IO, the first disk is likely still busy.
703 */
704 if (nonrot && opt_iosize > 0 &&
705 mirror->seq_start != MaxSector &&
706 mirror->next_seq_sect > opt_iosize &&
707 mirror->next_seq_sect - opt_iosize >=
708 mirror->seq_start) {
709 choose_next_idle = 1;
710 continue;
711 }
712 break;
713 }
714
715 if (choose_next_idle)
716 continue;
717
718 if (min_pending > pending) {
719 min_pending = pending;
720 best_pending_disk = disk;
721 }
722
723 if (dist < best_dist) {
724 best_dist = dist;
725 best_dist_disk = disk;
726 }
727 }
728
729 /*
730 * If all disks are rotational, choose the closest disk. If any disk is
731 * non-rotational, choose the disk with less pending request even the
732 * disk is rotational, which might/might not be optimal for raids with
733 * mixed ratation/non-rotational disks depending on workload.
734 */
735 if (best_disk == -1) {
736 if (has_nonrot_disk || min_pending == 0)
737 best_disk = best_pending_disk;
738 else
739 best_disk = best_dist_disk;
740 }
741
742 if (best_disk >= 0) {
743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744 if (!rdev)
745 goto retry;
746 atomic_inc(&rdev->nr_pending);
747 sectors = best_good_sectors;
748
749 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 conf->mirrors[best_disk].seq_start = this_sector;
751
752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753 }
754 rcu_read_unlock();
755 *max_sectors = sectors;
756
757 return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762 struct r1conf *conf = mddev->private;
763 int i, ret = 0;
764
765 if ((bits & (1 << WB_async_congested)) &&
766 conf->pending_count >= max_queued_requests)
767 return 1;
768
769 rcu_read_lock();
770 for (i = 0; i < conf->raid_disks * 2; i++) {
771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773 struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775 BUG_ON(!q);
776
777 /* Note the '|| 1' - when read_balance prefers
778 * non-congested targets, it can be removed
779 */
780 if ((bits & (1 << WB_async_congested)) || 1)
781 ret |= bdi_congested(q->backing_dev_info, bits);
782 else
783 ret &= bdi_congested(q->backing_dev_info, bits);
784 }
785 }
786 rcu_read_unlock();
787 return ret;
788 }
789
790 static void flush_pending_writes(struct r1conf *conf)
791 {
792 /* Any writes that have been queued but are awaiting
793 * bitmap updates get flushed here.
794 */
795 spin_lock_irq(&conf->device_lock);
796
797 if (conf->pending_bio_list.head) {
798 struct bio *bio;
799 bio = bio_list_get(&conf->pending_bio_list);
800 conf->pending_count = 0;
801 spin_unlock_irq(&conf->device_lock);
802 /* flush any pending bitmap writes to
803 * disk before proceeding w/ I/O */
804 bitmap_unplug(conf->mddev->bitmap);
805 wake_up(&conf->wait_barrier);
806
807 while (bio) { /* submit pending writes */
808 struct bio *next = bio->bi_next;
809 struct md_rdev *rdev = (void*)bio->bi_bdev;
810 bio->bi_next = NULL;
811 bio->bi_bdev = rdev->bdev;
812 if (test_bit(Faulty, &rdev->flags)) {
813 bio->bi_error = -EIO;
814 bio_endio(bio);
815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
817 /* Just ignore it */
818 bio_endio(bio);
819 else
820 generic_make_request(bio);
821 bio = next;
822 }
823 } else
824 spin_unlock_irq(&conf->device_lock);
825 }
826
827 /* Barriers....
828 * Sometimes we need to suspend IO while we do something else,
829 * either some resync/recovery, or reconfigure the array.
830 * To do this we raise a 'barrier'.
831 * The 'barrier' is a counter that can be raised multiple times
832 * to count how many activities are happening which preclude
833 * normal IO.
834 * We can only raise the barrier if there is no pending IO.
835 * i.e. if nr_pending == 0.
836 * We choose only to raise the barrier if no-one is waiting for the
837 * barrier to go down. This means that as soon as an IO request
838 * is ready, no other operations which require a barrier will start
839 * until the IO request has had a chance.
840 *
841 * So: regular IO calls 'wait_barrier'. When that returns there
842 * is no backgroup IO happening, It must arrange to call
843 * allow_barrier when it has finished its IO.
844 * backgroup IO calls must call raise_barrier. Once that returns
845 * there is no normal IO happeing. It must arrange to call
846 * lower_barrier when the particular background IO completes.
847 */
848 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
849 {
850 int idx = sector_to_idx(sector_nr);
851
852 spin_lock_irq(&conf->resync_lock);
853
854 /* Wait until no block IO is waiting */
855 wait_event_lock_irq(conf->wait_barrier,
856 !atomic_read(&conf->nr_waiting[idx]),
857 conf->resync_lock);
858
859 /* block any new IO from starting */
860 atomic_inc(&conf->barrier[idx]);
861 /*
862 * In raise_barrier() we firstly increase conf->barrier[idx] then
863 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
864 * increase conf->nr_pending[idx] then check conf->barrier[idx].
865 * A memory barrier here to make sure conf->nr_pending[idx] won't
866 * be fetched before conf->barrier[idx] is increased. Otherwise
867 * there will be a race between raise_barrier() and _wait_barrier().
868 */
869 smp_mb__after_atomic();
870
871 /* For these conditions we must wait:
872 * A: while the array is in frozen state
873 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
874 * existing in corresponding I/O barrier bucket.
875 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
876 * max resync count which allowed on current I/O barrier bucket.
877 */
878 wait_event_lock_irq(conf->wait_barrier,
879 !conf->array_frozen &&
880 !atomic_read(&conf->nr_pending[idx]) &&
881 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
882 conf->resync_lock);
883
884 atomic_inc(&conf->nr_pending[idx]);
885 spin_unlock_irq(&conf->resync_lock);
886 }
887
888 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
889 {
890 int idx = sector_to_idx(sector_nr);
891
892 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
893
894 atomic_dec(&conf->barrier[idx]);
895 atomic_dec(&conf->nr_pending[idx]);
896 wake_up(&conf->wait_barrier);
897 }
898
899 static void _wait_barrier(struct r1conf *conf, int idx)
900 {
901 /*
902 * We need to increase conf->nr_pending[idx] very early here,
903 * then raise_barrier() can be blocked when it waits for
904 * conf->nr_pending[idx] to be 0. Then we can avoid holding
905 * conf->resync_lock when there is no barrier raised in same
906 * barrier unit bucket. Also if the array is frozen, I/O
907 * should be blocked until array is unfrozen.
908 */
909 atomic_inc(&conf->nr_pending[idx]);
910 /*
911 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
912 * check conf->barrier[idx]. In raise_barrier() we firstly increase
913 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
914 * barrier is necessary here to make sure conf->barrier[idx] won't be
915 * fetched before conf->nr_pending[idx] is increased. Otherwise there
916 * will be a race between _wait_barrier() and raise_barrier().
917 */
918 smp_mb__after_atomic();
919
920 /*
921 * Don't worry about checking two atomic_t variables at same time
922 * here. If during we check conf->barrier[idx], the array is
923 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
924 * 0, it is safe to return and make the I/O continue. Because the
925 * array is frozen, all I/O returned here will eventually complete
926 * or be queued, no race will happen. See code comment in
927 * frozen_array().
928 */
929 if (!READ_ONCE(conf->array_frozen) &&
930 !atomic_read(&conf->barrier[idx]))
931 return;
932
933 /*
934 * After holding conf->resync_lock, conf->nr_pending[idx]
935 * should be decreased before waiting for barrier to drop.
936 * Otherwise, we may encounter a race condition because
937 * raise_barrer() might be waiting for conf->nr_pending[idx]
938 * to be 0 at same time.
939 */
940 spin_lock_irq(&conf->resync_lock);
941 atomic_inc(&conf->nr_waiting[idx]);
942 atomic_dec(&conf->nr_pending[idx]);
943 /*
944 * In case freeze_array() is waiting for
945 * get_unqueued_pending() == extra
946 */
947 wake_up(&conf->wait_barrier);
948 /* Wait for the barrier in same barrier unit bucket to drop. */
949 wait_event_lock_irq(conf->wait_barrier,
950 !conf->array_frozen &&
951 !atomic_read(&conf->barrier[idx]),
952 conf->resync_lock);
953 atomic_inc(&conf->nr_pending[idx]);
954 atomic_dec(&conf->nr_waiting[idx]);
955 spin_unlock_irq(&conf->resync_lock);
956 }
957
958 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
959 {
960 int idx = sector_to_idx(sector_nr);
961
962 /*
963 * Very similar to _wait_barrier(). The difference is, for read
964 * I/O we don't need wait for sync I/O, but if the whole array
965 * is frozen, the read I/O still has to wait until the array is
966 * unfrozen. Since there is no ordering requirement with
967 * conf->barrier[idx] here, memory barrier is unnecessary as well.
968 */
969 atomic_inc(&conf->nr_pending[idx]);
970
971 if (!READ_ONCE(conf->array_frozen))
972 return;
973
974 spin_lock_irq(&conf->resync_lock);
975 atomic_inc(&conf->nr_waiting[idx]);
976 atomic_dec(&conf->nr_pending[idx]);
977 /*
978 * In case freeze_array() is waiting for
979 * get_unqueued_pending() == extra
980 */
981 wake_up(&conf->wait_barrier);
982 /* Wait for array to be unfrozen */
983 wait_event_lock_irq(conf->wait_barrier,
984 !conf->array_frozen,
985 conf->resync_lock);
986 atomic_inc(&conf->nr_pending[idx]);
987 atomic_dec(&conf->nr_waiting[idx]);
988 spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void inc_pending(struct r1conf *conf, sector_t bi_sector)
992 {
993 /* The current request requires multiple r1_bio, so
994 * we need to increment the pending count, and the corresponding
995 * window count.
996 */
997 int idx = sector_to_idx(bi_sector);
998 atomic_inc(&conf->nr_pending[idx]);
999 }
1000
1001 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1002 {
1003 int idx = sector_to_idx(sector_nr);
1004
1005 _wait_barrier(conf, idx);
1006 }
1007
1008 static void wait_all_barriers(struct r1conf *conf)
1009 {
1010 int idx;
1011
1012 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1013 _wait_barrier(conf, idx);
1014 }
1015
1016 static void _allow_barrier(struct r1conf *conf, int idx)
1017 {
1018 atomic_dec(&conf->nr_pending[idx]);
1019 wake_up(&conf->wait_barrier);
1020 }
1021
1022 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 int idx = sector_to_idx(sector_nr);
1025
1026 _allow_barrier(conf, idx);
1027 }
1028
1029 static void allow_all_barriers(struct r1conf *conf)
1030 {
1031 int idx;
1032
1033 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1034 _allow_barrier(conf, idx);
1035 }
1036
1037 /* conf->resync_lock should be held */
1038 static int get_unqueued_pending(struct r1conf *conf)
1039 {
1040 int idx, ret;
1041
1042 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1043 ret += atomic_read(&conf->nr_pending[idx]) -
1044 atomic_read(&conf->nr_queued[idx]);
1045
1046 return ret;
1047 }
1048
1049 static void freeze_array(struct r1conf *conf, int extra)
1050 {
1051 /* Stop sync I/O and normal I/O and wait for everything to
1052 * go quiet.
1053 * This is called in two situations:
1054 * 1) management command handlers (reshape, remove disk, quiesce).
1055 * 2) one normal I/O request failed.
1056
1057 * After array_frozen is set to 1, new sync IO will be blocked at
1058 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1059 * or wait_read_barrier(). The flying I/Os will either complete or be
1060 * queued. When everything goes quite, there are only queued I/Os left.
1061
1062 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1063 * barrier bucket index which this I/O request hits. When all sync and
1064 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1065 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1066 * in handle_read_error(), we may call freeze_array() before trying to
1067 * fix the read error. In this case, the error read I/O is not queued,
1068 * so get_unqueued_pending() == 1.
1069 *
1070 * Therefore before this function returns, we need to wait until
1071 * get_unqueued_pendings(conf) gets equal to extra. For
1072 * normal I/O context, extra is 1, in rested situations extra is 0.
1073 */
1074 spin_lock_irq(&conf->resync_lock);
1075 conf->array_frozen = 1;
1076 raid1_log(conf->mddev, "wait freeze");
1077 wait_event_lock_irq_cmd(
1078 conf->wait_barrier,
1079 get_unqueued_pending(conf) == extra,
1080 conf->resync_lock,
1081 flush_pending_writes(conf));
1082 spin_unlock_irq(&conf->resync_lock);
1083 }
1084 static void unfreeze_array(struct r1conf *conf)
1085 {
1086 /* reverse the effect of the freeze */
1087 spin_lock_irq(&conf->resync_lock);
1088 conf->array_frozen = 0;
1089 spin_unlock_irq(&conf->resync_lock);
1090 wake_up(&conf->wait_barrier);
1091 }
1092
1093 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1094 struct bio *bio,
1095 int offset, int size)
1096 {
1097 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1098 int i = 0;
1099 struct bio *behind_bio = NULL;
1100
1101 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1102 if (!behind_bio)
1103 goto fail;
1104
1105 while (i < vcnt && size) {
1106 struct page *page;
1107 int len = min_t(int, PAGE_SIZE, size);
1108
1109 page = alloc_page(GFP_NOIO);
1110 if (unlikely(!page))
1111 goto free_pages;
1112
1113 bio_add_page(behind_bio, page, len, 0);
1114
1115 size -= len;
1116 i++;
1117 }
1118
1119 bio_copy_data_partial(behind_bio, bio, offset,
1120 behind_bio->bi_iter.bi_size);
1121
1122 r1_bio->behind_master_bio = behind_bio;;
1123 set_bit(R1BIO_BehindIO, &r1_bio->state);
1124
1125 return behind_bio;
1126
1127 free_pages:
1128 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1129 bio->bi_iter.bi_size);
1130 bio_free_pages(behind_bio);
1131 fail:
1132 return behind_bio;
1133 }
1134
1135 struct raid1_plug_cb {
1136 struct blk_plug_cb cb;
1137 struct bio_list pending;
1138 int pending_cnt;
1139 };
1140
1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142 {
1143 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144 cb);
1145 struct mddev *mddev = plug->cb.data;
1146 struct r1conf *conf = mddev->private;
1147 struct bio *bio;
1148
1149 if (from_schedule || current->bio_list) {
1150 spin_lock_irq(&conf->device_lock);
1151 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152 conf->pending_count += plug->pending_cnt;
1153 spin_unlock_irq(&conf->device_lock);
1154 wake_up(&conf->wait_barrier);
1155 md_wakeup_thread(mddev->thread);
1156 kfree(plug);
1157 return;
1158 }
1159
1160 /* we aren't scheduling, so we can do the write-out directly. */
1161 bio = bio_list_get(&plug->pending);
1162 bitmap_unplug(mddev->bitmap);
1163 wake_up(&conf->wait_barrier);
1164
1165 while (bio) { /* submit pending writes */
1166 struct bio *next = bio->bi_next;
1167 struct md_rdev *rdev = (void*)bio->bi_bdev;
1168 bio->bi_next = NULL;
1169 bio->bi_bdev = rdev->bdev;
1170 if (test_bit(Faulty, &rdev->flags)) {
1171 bio->bi_error = -EIO;
1172 bio_endio(bio);
1173 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1174 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1175 /* Just ignore it */
1176 bio_endio(bio);
1177 else
1178 generic_make_request(bio);
1179 bio = next;
1180 }
1181 kfree(plug);
1182 }
1183
1184 static inline struct r1bio *
1185 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1186 {
1187 struct r1conf *conf = mddev->private;
1188 struct r1bio *r1_bio;
1189
1190 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1191
1192 r1_bio->master_bio = bio;
1193 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1194 r1_bio->state = 0;
1195 r1_bio->mddev = mddev;
1196 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1197
1198 return r1_bio;
1199 }
1200
1201 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1202 {
1203 struct r1conf *conf = mddev->private;
1204 struct raid1_info *mirror;
1205 struct r1bio *r1_bio;
1206 struct bio *read_bio;
1207 struct bitmap *bitmap = mddev->bitmap;
1208 const int op = bio_op(bio);
1209 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1210 int sectors_handled;
1211 int max_sectors;
1212 int rdisk;
1213
1214 /*
1215 * Still need barrier for READ in case that whole
1216 * array is frozen.
1217 */
1218 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1219
1220 r1_bio = alloc_r1bio(mddev, bio, 0);
1221
1222 /*
1223 * make_request() can abort the operation when read-ahead is being
1224 * used and no empty request is available.
1225 */
1226 read_again:
1227 rdisk = read_balance(conf, r1_bio, &max_sectors);
1228
1229 if (rdisk < 0) {
1230 /* couldn't find anywhere to read from */
1231 raid_end_bio_io(r1_bio);
1232 return;
1233 }
1234 mirror = conf->mirrors + rdisk;
1235
1236 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1237 bitmap) {
1238 /*
1239 * Reading from a write-mostly device must take care not to
1240 * over-take any writes that are 'behind'
1241 */
1242 raid1_log(mddev, "wait behind writes");
1243 wait_event(bitmap->behind_wait,
1244 atomic_read(&bitmap->behind_writes) == 0);
1245 }
1246 r1_bio->read_disk = rdisk;
1247
1248 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1249 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1250 max_sectors);
1251
1252 r1_bio->bios[rdisk] = read_bio;
1253
1254 read_bio->bi_iter.bi_sector = r1_bio->sector +
1255 mirror->rdev->data_offset;
1256 read_bio->bi_bdev = mirror->rdev->bdev;
1257 read_bio->bi_end_io = raid1_end_read_request;
1258 bio_set_op_attrs(read_bio, op, do_sync);
1259 if (test_bit(FailFast, &mirror->rdev->flags) &&
1260 test_bit(R1BIO_FailFast, &r1_bio->state))
1261 read_bio->bi_opf |= MD_FAILFAST;
1262 read_bio->bi_private = r1_bio;
1263
1264 if (mddev->gendisk)
1265 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1266 read_bio, disk_devt(mddev->gendisk),
1267 r1_bio->sector);
1268
1269 if (max_sectors < r1_bio->sectors) {
1270 /*
1271 * could not read all from this device, so we will need another
1272 * r1_bio.
1273 */
1274 sectors_handled = (r1_bio->sector + max_sectors
1275 - bio->bi_iter.bi_sector);
1276 r1_bio->sectors = max_sectors;
1277 bio_inc_remaining(bio);
1278
1279 /*
1280 * Cannot call generic_make_request directly as that will be
1281 * queued in __make_request and subsequent mempool_alloc might
1282 * block waiting for it. So hand bio over to raid1d.
1283 */
1284 reschedule_retry(r1_bio);
1285
1286 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1287 goto read_again;
1288 } else
1289 generic_make_request(read_bio);
1290 }
1291
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1293 {
1294 struct r1conf *conf = mddev->private;
1295 struct r1bio *r1_bio;
1296 int i, disks;
1297 struct bitmap *bitmap = mddev->bitmap;
1298 unsigned long flags;
1299 struct md_rdev *blocked_rdev;
1300 struct blk_plug_cb *cb;
1301 struct raid1_plug_cb *plug = NULL;
1302 int first_clone;
1303 int sectors_handled;
1304 int max_sectors;
1305 sector_t offset;
1306
1307 /*
1308 * Register the new request and wait if the reconstruction
1309 * thread has put up a bar for new requests.
1310 * Continue immediately if no resync is active currently.
1311 */
1312
1313 md_write_start(mddev, bio); /* wait on superblock update early */
1314
1315 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1316 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1317 (mddev_is_clustered(mddev) &&
1318 md_cluster_ops->area_resyncing(mddev, WRITE,
1319 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1320
1321 /*
1322 * As the suspend_* range is controlled by userspace, we want
1323 * an interruptible wait.
1324 */
1325 DEFINE_WAIT(w);
1326 for (;;) {
1327 flush_signals(current);
1328 prepare_to_wait(&conf->wait_barrier,
1329 &w, TASK_INTERRUPTIBLE);
1330 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1331 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1332 (mddev_is_clustered(mddev) &&
1333 !md_cluster_ops->area_resyncing(mddev, WRITE,
1334 bio->bi_iter.bi_sector,
1335 bio_end_sector(bio))))
1336 break;
1337 schedule();
1338 }
1339 finish_wait(&conf->wait_barrier, &w);
1340 }
1341 wait_barrier(conf, bio->bi_iter.bi_sector);
1342
1343 r1_bio = alloc_r1bio(mddev, bio, 0);
1344
1345 if (conf->pending_count >= max_queued_requests) {
1346 md_wakeup_thread(mddev->thread);
1347 raid1_log(mddev, "wait queued");
1348 wait_event(conf->wait_barrier,
1349 conf->pending_count < max_queued_requests);
1350 }
1351 /* first select target devices under rcu_lock and
1352 * inc refcount on their rdev. Record them by setting
1353 * bios[x] to bio
1354 * If there are known/acknowledged bad blocks on any device on
1355 * which we have seen a write error, we want to avoid writing those
1356 * blocks.
1357 * This potentially requires several writes to write around
1358 * the bad blocks. Each set of writes gets it's own r1bio
1359 * with a set of bios attached.
1360 */
1361
1362 disks = conf->raid_disks * 2;
1363 retry_write:
1364 blocked_rdev = NULL;
1365 rcu_read_lock();
1366 max_sectors = r1_bio->sectors;
1367 for (i = 0; i < disks; i++) {
1368 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1369 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370 atomic_inc(&rdev->nr_pending);
1371 blocked_rdev = rdev;
1372 break;
1373 }
1374 r1_bio->bios[i] = NULL;
1375 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1376 if (i < conf->raid_disks)
1377 set_bit(R1BIO_Degraded, &r1_bio->state);
1378 continue;
1379 }
1380
1381 atomic_inc(&rdev->nr_pending);
1382 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1383 sector_t first_bad;
1384 int bad_sectors;
1385 int is_bad;
1386
1387 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1388 &first_bad, &bad_sectors);
1389 if (is_bad < 0) {
1390 /* mustn't write here until the bad block is
1391 * acknowledged*/
1392 set_bit(BlockedBadBlocks, &rdev->flags);
1393 blocked_rdev = rdev;
1394 break;
1395 }
1396 if (is_bad && first_bad <= r1_bio->sector) {
1397 /* Cannot write here at all */
1398 bad_sectors -= (r1_bio->sector - first_bad);
1399 if (bad_sectors < max_sectors)
1400 /* mustn't write more than bad_sectors
1401 * to other devices yet
1402 */
1403 max_sectors = bad_sectors;
1404 rdev_dec_pending(rdev, mddev);
1405 /* We don't set R1BIO_Degraded as that
1406 * only applies if the disk is
1407 * missing, so it might be re-added,
1408 * and we want to know to recover this
1409 * chunk.
1410 * In this case the device is here,
1411 * and the fact that this chunk is not
1412 * in-sync is recorded in the bad
1413 * block log
1414 */
1415 continue;
1416 }
1417 if (is_bad) {
1418 int good_sectors = first_bad - r1_bio->sector;
1419 if (good_sectors < max_sectors)
1420 max_sectors = good_sectors;
1421 }
1422 }
1423 r1_bio->bios[i] = bio;
1424 }
1425 rcu_read_unlock();
1426
1427 if (unlikely(blocked_rdev)) {
1428 /* Wait for this device to become unblocked */
1429 int j;
1430
1431 for (j = 0; j < i; j++)
1432 if (r1_bio->bios[j])
1433 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1434 r1_bio->state = 0;
1435 allow_barrier(conf, bio->bi_iter.bi_sector);
1436 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1437 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1438 wait_barrier(conf, bio->bi_iter.bi_sector);
1439 goto retry_write;
1440 }
1441
1442 if (max_sectors < r1_bio->sectors)
1443 r1_bio->sectors = max_sectors;
1444
1445 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1446
1447 atomic_set(&r1_bio->remaining, 1);
1448 atomic_set(&r1_bio->behind_remaining, 0);
1449
1450 first_clone = 1;
1451
1452 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1453 for (i = 0; i < disks; i++) {
1454 struct bio *mbio = NULL;
1455 if (!r1_bio->bios[i])
1456 continue;
1457
1458
1459 if (first_clone) {
1460 /* do behind I/O ?
1461 * Not if there are too many, or cannot
1462 * allocate memory, or a reader on WriteMostly
1463 * is waiting for behind writes to flush */
1464 if (bitmap &&
1465 (atomic_read(&bitmap->behind_writes)
1466 < mddev->bitmap_info.max_write_behind) &&
1467 !waitqueue_active(&bitmap->behind_wait)) {
1468 mbio = alloc_behind_master_bio(r1_bio, bio,
1469 offset << 9,
1470 max_sectors << 9);
1471 }
1472
1473 bitmap_startwrite(bitmap, r1_bio->sector,
1474 r1_bio->sectors,
1475 test_bit(R1BIO_BehindIO,
1476 &r1_bio->state));
1477 first_clone = 0;
1478 }
1479
1480 if (!mbio) {
1481 if (r1_bio->behind_master_bio)
1482 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1483 GFP_NOIO,
1484 mddev->bio_set);
1485 else {
1486 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1487 bio_trim(mbio, offset, max_sectors);
1488 }
1489 }
1490
1491 if (r1_bio->behind_master_bio) {
1492 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1493 atomic_inc(&r1_bio->behind_remaining);
1494 }
1495
1496 r1_bio->bios[i] = mbio;
1497
1498 mbio->bi_iter.bi_sector = (r1_bio->sector +
1499 conf->mirrors[i].rdev->data_offset);
1500 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1501 mbio->bi_end_io = raid1_end_write_request;
1502 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1503 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1504 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1505 conf->raid_disks - mddev->degraded > 1)
1506 mbio->bi_opf |= MD_FAILFAST;
1507 mbio->bi_private = r1_bio;
1508
1509 atomic_inc(&r1_bio->remaining);
1510
1511 if (mddev->gendisk)
1512 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1513 mbio, disk_devt(mddev->gendisk),
1514 r1_bio->sector);
1515 /* flush_pending_writes() needs access to the rdev so...*/
1516 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1517
1518 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1519 if (cb)
1520 plug = container_of(cb, struct raid1_plug_cb, cb);
1521 else
1522 plug = NULL;
1523 spin_lock_irqsave(&conf->device_lock, flags);
1524 if (plug) {
1525 bio_list_add(&plug->pending, mbio);
1526 plug->pending_cnt++;
1527 } else {
1528 bio_list_add(&conf->pending_bio_list, mbio);
1529 conf->pending_count++;
1530 }
1531 spin_unlock_irqrestore(&conf->device_lock, flags);
1532 if (!plug)
1533 md_wakeup_thread(mddev->thread);
1534 }
1535 /* Mustn't call r1_bio_write_done before this next test,
1536 * as it could result in the bio being freed.
1537 */
1538 if (sectors_handled < bio_sectors(bio)) {
1539 /* We need another r1_bio, which must be counted */
1540 sector_t sect = bio->bi_iter.bi_sector + sectors_handled;
1541
1542 inc_pending(conf, sect);
1543 bio_inc_remaining(bio);
1544 r1_bio_write_done(r1_bio);
1545 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1546 goto retry_write;
1547 }
1548
1549 r1_bio_write_done(r1_bio);
1550
1551 /* In case raid1d snuck in to freeze_array */
1552 wake_up(&conf->wait_barrier);
1553 }
1554
1555 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 struct bio *split;
1558 sector_t sectors;
1559
1560 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1561 md_flush_request(mddev, bio);
1562 return;
1563 }
1564
1565 /* if bio exceeds barrier unit boundary, split it */
1566 do {
1567 sectors = align_to_barrier_unit_end(
1568 bio->bi_iter.bi_sector, bio_sectors(bio));
1569 if (sectors < bio_sectors(bio)) {
1570 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1571 bio_chain(split, bio);
1572 } else {
1573 split = bio;
1574 }
1575
1576 if (bio_data_dir(split) == READ) {
1577 raid1_read_request(mddev, split);
1578
1579 /*
1580 * If a bio is splitted, the first part of bio will
1581 * pass barrier but the bio is queued in
1582 * current->bio_list (see generic_make_request). If
1583 * there is a raise_barrier() called here, the second
1584 * part of bio can't pass barrier. But since the first
1585 * part bio isn't dispatched to underlaying disks yet,
1586 * the barrier is never released, hence raise_barrier
1587 * will alays wait. We have a deadlock.
1588 * Note, this only happens in read path. For write
1589 * path, the first part of bio is dispatched in a
1590 * schedule() call (because of blk plug) or offloaded
1591 * to raid10d.
1592 * Quitting from the function immediately can change
1593 * the bio order queued in bio_list and avoid the deadlock.
1594 */
1595 if (split != bio) {
1596 generic_make_request(bio);
1597 break;
1598 }
1599 } else
1600 raid1_write_request(mddev, split);
1601 } while (split != bio);
1602 }
1603
1604 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606 struct r1conf *conf = mddev->private;
1607 int i;
1608
1609 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1610 conf->raid_disks - mddev->degraded);
1611 rcu_read_lock();
1612 for (i = 0; i < conf->raid_disks; i++) {
1613 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1614 seq_printf(seq, "%s",
1615 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1616 }
1617 rcu_read_unlock();
1618 seq_printf(seq, "]");
1619 }
1620
1621 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623 char b[BDEVNAME_SIZE];
1624 struct r1conf *conf = mddev->private;
1625 unsigned long flags;
1626
1627 /*
1628 * If it is not operational, then we have already marked it as dead
1629 * else if it is the last working disks, ignore the error, let the
1630 * next level up know.
1631 * else mark the drive as failed
1632 */
1633 spin_lock_irqsave(&conf->device_lock, flags);
1634 if (test_bit(In_sync, &rdev->flags)
1635 && (conf->raid_disks - mddev->degraded) == 1) {
1636 /*
1637 * Don't fail the drive, act as though we were just a
1638 * normal single drive.
1639 * However don't try a recovery from this drive as
1640 * it is very likely to fail.
1641 */
1642 conf->recovery_disabled = mddev->recovery_disabled;
1643 spin_unlock_irqrestore(&conf->device_lock, flags);
1644 return;
1645 }
1646 set_bit(Blocked, &rdev->flags);
1647 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1648 mddev->degraded++;
1649 set_bit(Faulty, &rdev->flags);
1650 } else
1651 set_bit(Faulty, &rdev->flags);
1652 spin_unlock_irqrestore(&conf->device_lock, flags);
1653 /*
1654 * if recovery is running, make sure it aborts.
1655 */
1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 set_mask_bits(&mddev->sb_flags, 0,
1658 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1659 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1660 "md/raid1:%s: Operation continuing on %d devices.\n",
1661 mdname(mddev), bdevname(rdev->bdev, b),
1662 mdname(mddev), conf->raid_disks - mddev->degraded);
1663 }
1664
1665 static void print_conf(struct r1conf *conf)
1666 {
1667 int i;
1668
1669 pr_debug("RAID1 conf printout:\n");
1670 if (!conf) {
1671 pr_debug("(!conf)\n");
1672 return;
1673 }
1674 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1675 conf->raid_disks);
1676
1677 rcu_read_lock();
1678 for (i = 0; i < conf->raid_disks; i++) {
1679 char b[BDEVNAME_SIZE];
1680 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1681 if (rdev)
1682 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1683 i, !test_bit(In_sync, &rdev->flags),
1684 !test_bit(Faulty, &rdev->flags),
1685 bdevname(rdev->bdev,b));
1686 }
1687 rcu_read_unlock();
1688 }
1689
1690 static void close_sync(struct r1conf *conf)
1691 {
1692 wait_all_barriers(conf);
1693 allow_all_barriers(conf);
1694
1695 mempool_destroy(conf->r1buf_pool);
1696 conf->r1buf_pool = NULL;
1697 }
1698
1699 static int raid1_spare_active(struct mddev *mddev)
1700 {
1701 int i;
1702 struct r1conf *conf = mddev->private;
1703 int count = 0;
1704 unsigned long flags;
1705
1706 /*
1707 * Find all failed disks within the RAID1 configuration
1708 * and mark them readable.
1709 * Called under mddev lock, so rcu protection not needed.
1710 * device_lock used to avoid races with raid1_end_read_request
1711 * which expects 'In_sync' flags and ->degraded to be consistent.
1712 */
1713 spin_lock_irqsave(&conf->device_lock, flags);
1714 for (i = 0; i < conf->raid_disks; i++) {
1715 struct md_rdev *rdev = conf->mirrors[i].rdev;
1716 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1717 if (repl
1718 && !test_bit(Candidate, &repl->flags)
1719 && repl->recovery_offset == MaxSector
1720 && !test_bit(Faulty, &repl->flags)
1721 && !test_and_set_bit(In_sync, &repl->flags)) {
1722 /* replacement has just become active */
1723 if (!rdev ||
1724 !test_and_clear_bit(In_sync, &rdev->flags))
1725 count++;
1726 if (rdev) {
1727 /* Replaced device not technically
1728 * faulty, but we need to be sure
1729 * it gets removed and never re-added
1730 */
1731 set_bit(Faulty, &rdev->flags);
1732 sysfs_notify_dirent_safe(
1733 rdev->sysfs_state);
1734 }
1735 }
1736 if (rdev
1737 && rdev->recovery_offset == MaxSector
1738 && !test_bit(Faulty, &rdev->flags)
1739 && !test_and_set_bit(In_sync, &rdev->flags)) {
1740 count++;
1741 sysfs_notify_dirent_safe(rdev->sysfs_state);
1742 }
1743 }
1744 mddev->degraded -= count;
1745 spin_unlock_irqrestore(&conf->device_lock, flags);
1746
1747 print_conf(conf);
1748 return count;
1749 }
1750
1751 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 struct r1conf *conf = mddev->private;
1754 int err = -EEXIST;
1755 int mirror = 0;
1756 struct raid1_info *p;
1757 int first = 0;
1758 int last = conf->raid_disks - 1;
1759
1760 if (mddev->recovery_disabled == conf->recovery_disabled)
1761 return -EBUSY;
1762
1763 if (md_integrity_add_rdev(rdev, mddev))
1764 return -ENXIO;
1765
1766 if (rdev->raid_disk >= 0)
1767 first = last = rdev->raid_disk;
1768
1769 /*
1770 * find the disk ... but prefer rdev->saved_raid_disk
1771 * if possible.
1772 */
1773 if (rdev->saved_raid_disk >= 0 &&
1774 rdev->saved_raid_disk >= first &&
1775 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1776 first = last = rdev->saved_raid_disk;
1777
1778 for (mirror = first; mirror <= last; mirror++) {
1779 p = conf->mirrors+mirror;
1780 if (!p->rdev) {
1781
1782 if (mddev->gendisk)
1783 disk_stack_limits(mddev->gendisk, rdev->bdev,
1784 rdev->data_offset << 9);
1785
1786 p->head_position = 0;
1787 rdev->raid_disk = mirror;
1788 err = 0;
1789 /* As all devices are equivalent, we don't need a full recovery
1790 * if this was recently any drive of the array
1791 */
1792 if (rdev->saved_raid_disk < 0)
1793 conf->fullsync = 1;
1794 rcu_assign_pointer(p->rdev, rdev);
1795 break;
1796 }
1797 if (test_bit(WantReplacement, &p->rdev->flags) &&
1798 p[conf->raid_disks].rdev == NULL) {
1799 /* Add this device as a replacement */
1800 clear_bit(In_sync, &rdev->flags);
1801 set_bit(Replacement, &rdev->flags);
1802 rdev->raid_disk = mirror;
1803 err = 0;
1804 conf->fullsync = 1;
1805 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1806 break;
1807 }
1808 }
1809 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1810 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1811 print_conf(conf);
1812 return err;
1813 }
1814
1815 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1816 {
1817 struct r1conf *conf = mddev->private;
1818 int err = 0;
1819 int number = rdev->raid_disk;
1820 struct raid1_info *p = conf->mirrors + number;
1821
1822 if (rdev != p->rdev)
1823 p = conf->mirrors + conf->raid_disks + number;
1824
1825 print_conf(conf);
1826 if (rdev == p->rdev) {
1827 if (test_bit(In_sync, &rdev->flags) ||
1828 atomic_read(&rdev->nr_pending)) {
1829 err = -EBUSY;
1830 goto abort;
1831 }
1832 /* Only remove non-faulty devices if recovery
1833 * is not possible.
1834 */
1835 if (!test_bit(Faulty, &rdev->flags) &&
1836 mddev->recovery_disabled != conf->recovery_disabled &&
1837 mddev->degraded < conf->raid_disks) {
1838 err = -EBUSY;
1839 goto abort;
1840 }
1841 p->rdev = NULL;
1842 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1843 synchronize_rcu();
1844 if (atomic_read(&rdev->nr_pending)) {
1845 /* lost the race, try later */
1846 err = -EBUSY;
1847 p->rdev = rdev;
1848 goto abort;
1849 }
1850 }
1851 if (conf->mirrors[conf->raid_disks + number].rdev) {
1852 /* We just removed a device that is being replaced.
1853 * Move down the replacement. We drain all IO before
1854 * doing this to avoid confusion.
1855 */
1856 struct md_rdev *repl =
1857 conf->mirrors[conf->raid_disks + number].rdev;
1858 freeze_array(conf, 0);
1859 clear_bit(Replacement, &repl->flags);
1860 p->rdev = repl;
1861 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1862 unfreeze_array(conf);
1863 clear_bit(WantReplacement, &rdev->flags);
1864 } else
1865 clear_bit(WantReplacement, &rdev->flags);
1866 err = md_integrity_register(mddev);
1867 }
1868 abort:
1869
1870 print_conf(conf);
1871 return err;
1872 }
1873
1874 static void end_sync_read(struct bio *bio)
1875 {
1876 struct r1bio *r1_bio = get_resync_r1bio(bio);
1877
1878 update_head_pos(r1_bio->read_disk, r1_bio);
1879
1880 /*
1881 * we have read a block, now it needs to be re-written,
1882 * or re-read if the read failed.
1883 * We don't do much here, just schedule handling by raid1d
1884 */
1885 if (!bio->bi_error)
1886 set_bit(R1BIO_Uptodate, &r1_bio->state);
1887
1888 if (atomic_dec_and_test(&r1_bio->remaining))
1889 reschedule_retry(r1_bio);
1890 }
1891
1892 static void end_sync_write(struct bio *bio)
1893 {
1894 int uptodate = !bio->bi_error;
1895 struct r1bio *r1_bio = get_resync_r1bio(bio);
1896 struct mddev *mddev = r1_bio->mddev;
1897 struct r1conf *conf = mddev->private;
1898 sector_t first_bad;
1899 int bad_sectors;
1900 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1901
1902 if (!uptodate) {
1903 sector_t sync_blocks = 0;
1904 sector_t s = r1_bio->sector;
1905 long sectors_to_go = r1_bio->sectors;
1906 /* make sure these bits doesn't get cleared. */
1907 do {
1908 bitmap_end_sync(mddev->bitmap, s,
1909 &sync_blocks, 1);
1910 s += sync_blocks;
1911 sectors_to_go -= sync_blocks;
1912 } while (sectors_to_go > 0);
1913 set_bit(WriteErrorSeen, &rdev->flags);
1914 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1915 set_bit(MD_RECOVERY_NEEDED, &
1916 mddev->recovery);
1917 set_bit(R1BIO_WriteError, &r1_bio->state);
1918 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1919 &first_bad, &bad_sectors) &&
1920 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1921 r1_bio->sector,
1922 r1_bio->sectors,
1923 &first_bad, &bad_sectors)
1924 )
1925 set_bit(R1BIO_MadeGood, &r1_bio->state);
1926
1927 if (atomic_dec_and_test(&r1_bio->remaining)) {
1928 int s = r1_bio->sectors;
1929 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1930 test_bit(R1BIO_WriteError, &r1_bio->state))
1931 reschedule_retry(r1_bio);
1932 else {
1933 put_buf(r1_bio);
1934 md_done_sync(mddev, s, uptodate);
1935 }
1936 }
1937 }
1938
1939 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1940 int sectors, struct page *page, int rw)
1941 {
1942 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1943 /* success */
1944 return 1;
1945 if (rw == WRITE) {
1946 set_bit(WriteErrorSeen, &rdev->flags);
1947 if (!test_and_set_bit(WantReplacement,
1948 &rdev->flags))
1949 set_bit(MD_RECOVERY_NEEDED, &
1950 rdev->mddev->recovery);
1951 }
1952 /* need to record an error - either for the block or the device */
1953 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1954 md_error(rdev->mddev, rdev);
1955 return 0;
1956 }
1957
1958 static int fix_sync_read_error(struct r1bio *r1_bio)
1959 {
1960 /* Try some synchronous reads of other devices to get
1961 * good data, much like with normal read errors. Only
1962 * read into the pages we already have so we don't
1963 * need to re-issue the read request.
1964 * We don't need to freeze the array, because being in an
1965 * active sync request, there is no normal IO, and
1966 * no overlapping syncs.
1967 * We don't need to check is_badblock() again as we
1968 * made sure that anything with a bad block in range
1969 * will have bi_end_io clear.
1970 */
1971 struct mddev *mddev = r1_bio->mddev;
1972 struct r1conf *conf = mddev->private;
1973 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1974 struct page **pages = get_resync_pages(bio)->pages;
1975 sector_t sect = r1_bio->sector;
1976 int sectors = r1_bio->sectors;
1977 int idx = 0;
1978 struct md_rdev *rdev;
1979
1980 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1981 if (test_bit(FailFast, &rdev->flags)) {
1982 /* Don't try recovering from here - just fail it
1983 * ... unless it is the last working device of course */
1984 md_error(mddev, rdev);
1985 if (test_bit(Faulty, &rdev->flags))
1986 /* Don't try to read from here, but make sure
1987 * put_buf does it's thing
1988 */
1989 bio->bi_end_io = end_sync_write;
1990 }
1991
1992 while(sectors) {
1993 int s = sectors;
1994 int d = r1_bio->read_disk;
1995 int success = 0;
1996 int start;
1997
1998 if (s > (PAGE_SIZE>>9))
1999 s = PAGE_SIZE >> 9;
2000 do {
2001 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2002 /* No rcu protection needed here devices
2003 * can only be removed when no resync is
2004 * active, and resync is currently active
2005 */
2006 rdev = conf->mirrors[d].rdev;
2007 if (sync_page_io(rdev, sect, s<<9,
2008 pages[idx],
2009 REQ_OP_READ, 0, false)) {
2010 success = 1;
2011 break;
2012 }
2013 }
2014 d++;
2015 if (d == conf->raid_disks * 2)
2016 d = 0;
2017 } while (!success && d != r1_bio->read_disk);
2018
2019 if (!success) {
2020 char b[BDEVNAME_SIZE];
2021 int abort = 0;
2022 /* Cannot read from anywhere, this block is lost.
2023 * Record a bad block on each device. If that doesn't
2024 * work just disable and interrupt the recovery.
2025 * Don't fail devices as that won't really help.
2026 */
2027 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2028 mdname(mddev),
2029 bdevname(bio->bi_bdev, b),
2030 (unsigned long long)r1_bio->sector);
2031 for (d = 0; d < conf->raid_disks * 2; d++) {
2032 rdev = conf->mirrors[d].rdev;
2033 if (!rdev || test_bit(Faulty, &rdev->flags))
2034 continue;
2035 if (!rdev_set_badblocks(rdev, sect, s, 0))
2036 abort = 1;
2037 }
2038 if (abort) {
2039 conf->recovery_disabled =
2040 mddev->recovery_disabled;
2041 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2042 md_done_sync(mddev, r1_bio->sectors, 0);
2043 put_buf(r1_bio);
2044 return 0;
2045 }
2046 /* Try next page */
2047 sectors -= s;
2048 sect += s;
2049 idx++;
2050 continue;
2051 }
2052
2053 start = d;
2054 /* write it back and re-read */
2055 while (d != r1_bio->read_disk) {
2056 if (d == 0)
2057 d = conf->raid_disks * 2;
2058 d--;
2059 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2060 continue;
2061 rdev = conf->mirrors[d].rdev;
2062 if (r1_sync_page_io(rdev, sect, s,
2063 pages[idx],
2064 WRITE) == 0) {
2065 r1_bio->bios[d]->bi_end_io = NULL;
2066 rdev_dec_pending(rdev, mddev);
2067 }
2068 }
2069 d = start;
2070 while (d != r1_bio->read_disk) {
2071 if (d == 0)
2072 d = conf->raid_disks * 2;
2073 d--;
2074 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2075 continue;
2076 rdev = conf->mirrors[d].rdev;
2077 if (r1_sync_page_io(rdev, sect, s,
2078 pages[idx],
2079 READ) != 0)
2080 atomic_add(s, &rdev->corrected_errors);
2081 }
2082 sectors -= s;
2083 sect += s;
2084 idx ++;
2085 }
2086 set_bit(R1BIO_Uptodate, &r1_bio->state);
2087 bio->bi_error = 0;
2088 return 1;
2089 }
2090
2091 static void process_checks(struct r1bio *r1_bio)
2092 {
2093 /* We have read all readable devices. If we haven't
2094 * got the block, then there is no hope left.
2095 * If we have, then we want to do a comparison
2096 * and skip the write if everything is the same.
2097 * If any blocks failed to read, then we need to
2098 * attempt an over-write
2099 */
2100 struct mddev *mddev = r1_bio->mddev;
2101 struct r1conf *conf = mddev->private;
2102 int primary;
2103 int i;
2104 int vcnt;
2105
2106 /* Fix variable parts of all bios */
2107 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2108 for (i = 0; i < conf->raid_disks * 2; i++) {
2109 int j;
2110 int size;
2111 int error;
2112 struct bio_vec *bi;
2113 struct bio *b = r1_bio->bios[i];
2114 struct resync_pages *rp = get_resync_pages(b);
2115 if (b->bi_end_io != end_sync_read)
2116 continue;
2117 /* fixup the bio for reuse, but preserve errno */
2118 error = b->bi_error;
2119 bio_reset(b);
2120 b->bi_error = error;
2121 b->bi_vcnt = vcnt;
2122 b->bi_iter.bi_size = r1_bio->sectors << 9;
2123 b->bi_iter.bi_sector = r1_bio->sector +
2124 conf->mirrors[i].rdev->data_offset;
2125 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2126 b->bi_end_io = end_sync_read;
2127 rp->raid_bio = r1_bio;
2128 b->bi_private = rp;
2129
2130 size = b->bi_iter.bi_size;
2131 bio_for_each_segment_all(bi, b, j) {
2132 bi->bv_offset = 0;
2133 if (size > PAGE_SIZE)
2134 bi->bv_len = PAGE_SIZE;
2135 else
2136 bi->bv_len = size;
2137 size -= PAGE_SIZE;
2138 }
2139 }
2140 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2141 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2142 !r1_bio->bios[primary]->bi_error) {
2143 r1_bio->bios[primary]->bi_end_io = NULL;
2144 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2145 break;
2146 }
2147 r1_bio->read_disk = primary;
2148 for (i = 0; i < conf->raid_disks * 2; i++) {
2149 int j;
2150 struct bio *pbio = r1_bio->bios[primary];
2151 struct bio *sbio = r1_bio->bios[i];
2152 int error = sbio->bi_error;
2153 struct page **ppages = get_resync_pages(pbio)->pages;
2154 struct page **spages = get_resync_pages(sbio)->pages;
2155 struct bio_vec *bi;
2156 int page_len[RESYNC_PAGES];
2157
2158 if (sbio->bi_end_io != end_sync_read)
2159 continue;
2160 /* Now we can 'fixup' the error value */
2161 sbio->bi_error = 0;
2162
2163 bio_for_each_segment_all(bi, sbio, j)
2164 page_len[j] = bi->bv_len;
2165
2166 if (!error) {
2167 for (j = vcnt; j-- ; ) {
2168 if (memcmp(page_address(ppages[j]),
2169 page_address(spages[j]),
2170 page_len[j]))
2171 break;
2172 }
2173 } else
2174 j = 0;
2175 if (j >= 0)
2176 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2177 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2178 && !error)) {
2179 /* No need to write to this device. */
2180 sbio->bi_end_io = NULL;
2181 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2182 continue;
2183 }
2184
2185 bio_copy_data(sbio, pbio);
2186 }
2187 }
2188
2189 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2190 {
2191 struct r1conf *conf = mddev->private;
2192 int i;
2193 int disks = conf->raid_disks * 2;
2194 struct bio *bio, *wbio;
2195
2196 bio = r1_bio->bios[r1_bio->read_disk];
2197
2198 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2199 /* ouch - failed to read all of that. */
2200 if (!fix_sync_read_error(r1_bio))
2201 return;
2202
2203 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2204 process_checks(r1_bio);
2205
2206 /*
2207 * schedule writes
2208 */
2209 atomic_set(&r1_bio->remaining, 1);
2210 for (i = 0; i < disks ; i++) {
2211 wbio = r1_bio->bios[i];
2212 if (wbio->bi_end_io == NULL ||
2213 (wbio->bi_end_io == end_sync_read &&
2214 (i == r1_bio->read_disk ||
2215 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2216 continue;
2217
2218 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2219 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2220 wbio->bi_opf |= MD_FAILFAST;
2221
2222 wbio->bi_end_io = end_sync_write;
2223 atomic_inc(&r1_bio->remaining);
2224 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2225
2226 generic_make_request(wbio);
2227 }
2228
2229 if (atomic_dec_and_test(&r1_bio->remaining)) {
2230 /* if we're here, all write(s) have completed, so clean up */
2231 int s = r1_bio->sectors;
2232 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2233 test_bit(R1BIO_WriteError, &r1_bio->state))
2234 reschedule_retry(r1_bio);
2235 else {
2236 put_buf(r1_bio);
2237 md_done_sync(mddev, s, 1);
2238 }
2239 }
2240 }
2241
2242 /*
2243 * This is a kernel thread which:
2244 *
2245 * 1. Retries failed read operations on working mirrors.
2246 * 2. Updates the raid superblock when problems encounter.
2247 * 3. Performs writes following reads for array synchronising.
2248 */
2249
2250 static void fix_read_error(struct r1conf *conf, int read_disk,
2251 sector_t sect, int sectors)
2252 {
2253 struct mddev *mddev = conf->mddev;
2254 while(sectors) {
2255 int s = sectors;
2256 int d = read_disk;
2257 int success = 0;
2258 int start;
2259 struct md_rdev *rdev;
2260
2261 if (s > (PAGE_SIZE>>9))
2262 s = PAGE_SIZE >> 9;
2263
2264 do {
2265 sector_t first_bad;
2266 int bad_sectors;
2267
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->mirrors[d].rdev);
2270 if (rdev &&
2271 (test_bit(In_sync, &rdev->flags) ||
2272 (!test_bit(Faulty, &rdev->flags) &&
2273 rdev->recovery_offset >= sect + s)) &&
2274 is_badblock(rdev, sect, s,
2275 &first_bad, &bad_sectors) == 0) {
2276 atomic_inc(&rdev->nr_pending);
2277 rcu_read_unlock();
2278 if (sync_page_io(rdev, sect, s<<9,
2279 conf->tmppage, REQ_OP_READ, 0, false))
2280 success = 1;
2281 rdev_dec_pending(rdev, mddev);
2282 if (success)
2283 break;
2284 } else
2285 rcu_read_unlock();
2286 d++;
2287 if (d == conf->raid_disks * 2)
2288 d = 0;
2289 } while (!success && d != read_disk);
2290
2291 if (!success) {
2292 /* Cannot read from anywhere - mark it bad */
2293 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2294 if (!rdev_set_badblocks(rdev, sect, s, 0))
2295 md_error(mddev, rdev);
2296 break;
2297 }
2298 /* write it back and re-read */
2299 start = d;
2300 while (d != read_disk) {
2301 if (d==0)
2302 d = conf->raid_disks * 2;
2303 d--;
2304 rcu_read_lock();
2305 rdev = rcu_dereference(conf->mirrors[d].rdev);
2306 if (rdev &&
2307 !test_bit(Faulty, &rdev->flags)) {
2308 atomic_inc(&rdev->nr_pending);
2309 rcu_read_unlock();
2310 r1_sync_page_io(rdev, sect, s,
2311 conf->tmppage, WRITE);
2312 rdev_dec_pending(rdev, mddev);
2313 } else
2314 rcu_read_unlock();
2315 }
2316 d = start;
2317 while (d != read_disk) {
2318 char b[BDEVNAME_SIZE];
2319 if (d==0)
2320 d = conf->raid_disks * 2;
2321 d--;
2322 rcu_read_lock();
2323 rdev = rcu_dereference(conf->mirrors[d].rdev);
2324 if (rdev &&
2325 !test_bit(Faulty, &rdev->flags)) {
2326 atomic_inc(&rdev->nr_pending);
2327 rcu_read_unlock();
2328 if (r1_sync_page_io(rdev, sect, s,
2329 conf->tmppage, READ)) {
2330 atomic_add(s, &rdev->corrected_errors);
2331 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2332 mdname(mddev), s,
2333 (unsigned long long)(sect +
2334 rdev->data_offset),
2335 bdevname(rdev->bdev, b));
2336 }
2337 rdev_dec_pending(rdev, mddev);
2338 } else
2339 rcu_read_unlock();
2340 }
2341 sectors -= s;
2342 sect += s;
2343 }
2344 }
2345
2346 static int narrow_write_error(struct r1bio *r1_bio, int i)
2347 {
2348 struct mddev *mddev = r1_bio->mddev;
2349 struct r1conf *conf = mddev->private;
2350 struct md_rdev *rdev = conf->mirrors[i].rdev;
2351
2352 /* bio has the data to be written to device 'i' where
2353 * we just recently had a write error.
2354 * We repeatedly clone the bio and trim down to one block,
2355 * then try the write. Where the write fails we record
2356 * a bad block.
2357 * It is conceivable that the bio doesn't exactly align with
2358 * blocks. We must handle this somehow.
2359 *
2360 * We currently own a reference on the rdev.
2361 */
2362
2363 int block_sectors;
2364 sector_t sector;
2365 int sectors;
2366 int sect_to_write = r1_bio->sectors;
2367 int ok = 1;
2368
2369 if (rdev->badblocks.shift < 0)
2370 return 0;
2371
2372 block_sectors = roundup(1 << rdev->badblocks.shift,
2373 bdev_logical_block_size(rdev->bdev) >> 9);
2374 sector = r1_bio->sector;
2375 sectors = ((sector + block_sectors)
2376 & ~(sector_t)(block_sectors - 1))
2377 - sector;
2378
2379 while (sect_to_write) {
2380 struct bio *wbio;
2381 if (sectors > sect_to_write)
2382 sectors = sect_to_write;
2383 /* Write at 'sector' for 'sectors'*/
2384
2385 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2386 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2387 GFP_NOIO,
2388 mddev->bio_set);
2389 /* We really need a _all clone */
2390 wbio->bi_iter = (struct bvec_iter){ 0 };
2391 } else {
2392 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2393 mddev->bio_set);
2394 }
2395
2396 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2397 wbio->bi_iter.bi_sector = r1_bio->sector;
2398 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2399
2400 bio_trim(wbio, sector - r1_bio->sector, sectors);
2401 wbio->bi_iter.bi_sector += rdev->data_offset;
2402 wbio->bi_bdev = rdev->bdev;
2403
2404 if (submit_bio_wait(wbio) < 0)
2405 /* failure! */
2406 ok = rdev_set_badblocks(rdev, sector,
2407 sectors, 0)
2408 && ok;
2409
2410 bio_put(wbio);
2411 sect_to_write -= sectors;
2412 sector += sectors;
2413 sectors = block_sectors;
2414 }
2415 return ok;
2416 }
2417
2418 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2419 {
2420 int m;
2421 int s = r1_bio->sectors;
2422 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2423 struct md_rdev *rdev = conf->mirrors[m].rdev;
2424 struct bio *bio = r1_bio->bios[m];
2425 if (bio->bi_end_io == NULL)
2426 continue;
2427 if (!bio->bi_error &&
2428 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2429 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2430 }
2431 if (bio->bi_error &&
2432 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2433 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2434 md_error(conf->mddev, rdev);
2435 }
2436 }
2437 put_buf(r1_bio);
2438 md_done_sync(conf->mddev, s, 1);
2439 }
2440
2441 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2442 {
2443 int m, idx;
2444 bool fail = false;
2445
2446 for (m = 0; m < conf->raid_disks * 2 ; m++)
2447 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2448 struct md_rdev *rdev = conf->mirrors[m].rdev;
2449 rdev_clear_badblocks(rdev,
2450 r1_bio->sector,
2451 r1_bio->sectors, 0);
2452 rdev_dec_pending(rdev, conf->mddev);
2453 } else if (r1_bio->bios[m] != NULL) {
2454 /* This drive got a write error. We need to
2455 * narrow down and record precise write
2456 * errors.
2457 */
2458 fail = true;
2459 if (!narrow_write_error(r1_bio, m)) {
2460 md_error(conf->mddev,
2461 conf->mirrors[m].rdev);
2462 /* an I/O failed, we can't clear the bitmap */
2463 set_bit(R1BIO_Degraded, &r1_bio->state);
2464 }
2465 rdev_dec_pending(conf->mirrors[m].rdev,
2466 conf->mddev);
2467 }
2468 if (fail) {
2469 spin_lock_irq(&conf->device_lock);
2470 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2471 idx = sector_to_idx(r1_bio->sector);
2472 atomic_inc(&conf->nr_queued[idx]);
2473 spin_unlock_irq(&conf->device_lock);
2474 /*
2475 * In case freeze_array() is waiting for condition
2476 * get_unqueued_pending() == extra to be true.
2477 */
2478 wake_up(&conf->wait_barrier);
2479 md_wakeup_thread(conf->mddev->thread);
2480 } else {
2481 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2482 close_write(r1_bio);
2483 raid_end_bio_io(r1_bio);
2484 }
2485 }
2486
2487 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2488 {
2489 int disk;
2490 int max_sectors;
2491 struct mddev *mddev = conf->mddev;
2492 struct bio *bio;
2493 char b[BDEVNAME_SIZE];
2494 struct md_rdev *rdev;
2495 dev_t bio_dev;
2496 sector_t bio_sector;
2497
2498 clear_bit(R1BIO_ReadError, &r1_bio->state);
2499 /* we got a read error. Maybe the drive is bad. Maybe just
2500 * the block and we can fix it.
2501 * We freeze all other IO, and try reading the block from
2502 * other devices. When we find one, we re-write
2503 * and check it that fixes the read error.
2504 * This is all done synchronously while the array is
2505 * frozen
2506 */
2507
2508 bio = r1_bio->bios[r1_bio->read_disk];
2509 bdevname(bio->bi_bdev, b);
2510 bio_dev = bio->bi_bdev->bd_dev;
2511 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2512 bio_put(bio);
2513 r1_bio->bios[r1_bio->read_disk] = NULL;
2514
2515 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2516 if (mddev->ro == 0
2517 && !test_bit(FailFast, &rdev->flags)) {
2518 freeze_array(conf, 1);
2519 fix_read_error(conf, r1_bio->read_disk,
2520 r1_bio->sector, r1_bio->sectors);
2521 unfreeze_array(conf);
2522 } else {
2523 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2524 }
2525
2526 rdev_dec_pending(rdev, conf->mddev);
2527
2528 read_more:
2529 disk = read_balance(conf, r1_bio, &max_sectors);
2530 if (disk == -1) {
2531 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2532 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2533 raid_end_bio_io(r1_bio);
2534 } else {
2535 const unsigned long do_sync
2536 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2537 r1_bio->read_disk = disk;
2538 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2539 mddev->bio_set);
2540 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2541 max_sectors);
2542 r1_bio->bios[r1_bio->read_disk] = bio;
2543 rdev = conf->mirrors[disk].rdev;
2544 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2545 mdname(mddev),
2546 (unsigned long long)r1_bio->sector,
2547 bdevname(rdev->bdev, b));
2548 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2549 bio->bi_bdev = rdev->bdev;
2550 bio->bi_end_io = raid1_end_read_request;
2551 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2552 if (test_bit(FailFast, &rdev->flags) &&
2553 test_bit(R1BIO_FailFast, &r1_bio->state))
2554 bio->bi_opf |= MD_FAILFAST;
2555 bio->bi_private = r1_bio;
2556 if (max_sectors < r1_bio->sectors) {
2557 /* Drat - have to split this up more */
2558 struct bio *mbio = r1_bio->master_bio;
2559 int sectors_handled = (r1_bio->sector + max_sectors
2560 - mbio->bi_iter.bi_sector);
2561 r1_bio->sectors = max_sectors;
2562 bio_inc_remaining(mbio);
2563 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2564 bio, bio_dev, bio_sector);
2565 generic_make_request(bio);
2566 bio = NULL;
2567
2568 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2569 set_bit(R1BIO_ReadError, &r1_bio->state);
2570 inc_pending(conf, r1_bio->sector);
2571
2572 goto read_more;
2573 } else {
2574 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2575 bio, bio_dev, bio_sector);
2576 generic_make_request(bio);
2577 }
2578 }
2579 }
2580
2581 static void raid1d(struct md_thread *thread)
2582 {
2583 struct mddev *mddev = thread->mddev;
2584 struct r1bio *r1_bio;
2585 unsigned long flags;
2586 struct r1conf *conf = mddev->private;
2587 struct list_head *head = &conf->retry_list;
2588 struct blk_plug plug;
2589 int idx;
2590
2591 md_check_recovery(mddev);
2592
2593 if (!list_empty_careful(&conf->bio_end_io_list) &&
2594 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2595 LIST_HEAD(tmp);
2596 spin_lock_irqsave(&conf->device_lock, flags);
2597 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2598 list_splice_init(&conf->bio_end_io_list, &tmp);
2599 spin_unlock_irqrestore(&conf->device_lock, flags);
2600 while (!list_empty(&tmp)) {
2601 r1_bio = list_first_entry(&tmp, struct r1bio,
2602 retry_list);
2603 list_del(&r1_bio->retry_list);
2604 idx = sector_to_idx(r1_bio->sector);
2605 atomic_dec(&conf->nr_queued[idx]);
2606 if (mddev->degraded)
2607 set_bit(R1BIO_Degraded, &r1_bio->state);
2608 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2609 close_write(r1_bio);
2610 raid_end_bio_io(r1_bio);
2611 }
2612 }
2613
2614 blk_start_plug(&plug);
2615 for (;;) {
2616
2617 flush_pending_writes(conf);
2618
2619 spin_lock_irqsave(&conf->device_lock, flags);
2620 if (list_empty(head)) {
2621 spin_unlock_irqrestore(&conf->device_lock, flags);
2622 break;
2623 }
2624 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2625 list_del(head->prev);
2626 idx = sector_to_idx(r1_bio->sector);
2627 atomic_dec(&conf->nr_queued[idx]);
2628 spin_unlock_irqrestore(&conf->device_lock, flags);
2629
2630 mddev = r1_bio->mddev;
2631 conf = mddev->private;
2632 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2633 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2634 test_bit(R1BIO_WriteError, &r1_bio->state))
2635 handle_sync_write_finished(conf, r1_bio);
2636 else
2637 sync_request_write(mddev, r1_bio);
2638 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2639 test_bit(R1BIO_WriteError, &r1_bio->state))
2640 handle_write_finished(conf, r1_bio);
2641 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2642 handle_read_error(conf, r1_bio);
2643 else
2644 /* just a partial read to be scheduled from separate
2645 * context
2646 */
2647 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2648
2649 cond_resched();
2650 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2651 md_check_recovery(mddev);
2652 }
2653 blk_finish_plug(&plug);
2654 }
2655
2656 static int init_resync(struct r1conf *conf)
2657 {
2658 int buffs;
2659
2660 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2661 BUG_ON(conf->r1buf_pool);
2662 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2663 conf->poolinfo);
2664 if (!conf->r1buf_pool)
2665 return -ENOMEM;
2666 return 0;
2667 }
2668
2669 /*
2670 * perform a "sync" on one "block"
2671 *
2672 * We need to make sure that no normal I/O request - particularly write
2673 * requests - conflict with active sync requests.
2674 *
2675 * This is achieved by tracking pending requests and a 'barrier' concept
2676 * that can be installed to exclude normal IO requests.
2677 */
2678
2679 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2680 int *skipped)
2681 {
2682 struct r1conf *conf = mddev->private;
2683 struct r1bio *r1_bio;
2684 struct bio *bio;
2685 sector_t max_sector, nr_sectors;
2686 int disk = -1;
2687 int i;
2688 int wonly = -1;
2689 int write_targets = 0, read_targets = 0;
2690 sector_t sync_blocks;
2691 int still_degraded = 0;
2692 int good_sectors = RESYNC_SECTORS;
2693 int min_bad = 0; /* number of sectors that are bad in all devices */
2694 int idx = sector_to_idx(sector_nr);
2695
2696 if (!conf->r1buf_pool)
2697 if (init_resync(conf))
2698 return 0;
2699
2700 max_sector = mddev->dev_sectors;
2701 if (sector_nr >= max_sector) {
2702 /* If we aborted, we need to abort the
2703 * sync on the 'current' bitmap chunk (there will
2704 * only be one in raid1 resync.
2705 * We can find the current addess in mddev->curr_resync
2706 */
2707 if (mddev->curr_resync < max_sector) /* aborted */
2708 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2709 &sync_blocks, 1);
2710 else /* completed sync */
2711 conf->fullsync = 0;
2712
2713 bitmap_close_sync(mddev->bitmap);
2714 close_sync(conf);
2715
2716 if (mddev_is_clustered(mddev)) {
2717 conf->cluster_sync_low = 0;
2718 conf->cluster_sync_high = 0;
2719 }
2720 return 0;
2721 }
2722
2723 if (mddev->bitmap == NULL &&
2724 mddev->recovery_cp == MaxSector &&
2725 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2726 conf->fullsync == 0) {
2727 *skipped = 1;
2728 return max_sector - sector_nr;
2729 }
2730 /* before building a request, check if we can skip these blocks..
2731 * This call the bitmap_start_sync doesn't actually record anything
2732 */
2733 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2734 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 /* We can skip this block, and probably several more */
2736 *skipped = 1;
2737 return sync_blocks;
2738 }
2739
2740 /*
2741 * If there is non-resync activity waiting for a turn, then let it
2742 * though before starting on this new sync request.
2743 */
2744 if (atomic_read(&conf->nr_waiting[idx]))
2745 schedule_timeout_uninterruptible(1);
2746
2747 /* we are incrementing sector_nr below. To be safe, we check against
2748 * sector_nr + two times RESYNC_SECTORS
2749 */
2750
2751 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2752 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2753 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2754
2755 raise_barrier(conf, sector_nr);
2756
2757 rcu_read_lock();
2758 /*
2759 * If we get a correctably read error during resync or recovery,
2760 * we might want to read from a different device. So we
2761 * flag all drives that could conceivably be read from for READ,
2762 * and any others (which will be non-In_sync devices) for WRITE.
2763 * If a read fails, we try reading from something else for which READ
2764 * is OK.
2765 */
2766
2767 r1_bio->mddev = mddev;
2768 r1_bio->sector = sector_nr;
2769 r1_bio->state = 0;
2770 set_bit(R1BIO_IsSync, &r1_bio->state);
2771 /* make sure good_sectors won't go across barrier unit boundary */
2772 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2773
2774 for (i = 0; i < conf->raid_disks * 2; i++) {
2775 struct md_rdev *rdev;
2776 bio = r1_bio->bios[i];
2777
2778 rdev = rcu_dereference(conf->mirrors[i].rdev);
2779 if (rdev == NULL ||
2780 test_bit(Faulty, &rdev->flags)) {
2781 if (i < conf->raid_disks)
2782 still_degraded = 1;
2783 } else if (!test_bit(In_sync, &rdev->flags)) {
2784 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2785 bio->bi_end_io = end_sync_write;
2786 write_targets ++;
2787 } else {
2788 /* may need to read from here */
2789 sector_t first_bad = MaxSector;
2790 int bad_sectors;
2791
2792 if (is_badblock(rdev, sector_nr, good_sectors,
2793 &first_bad, &bad_sectors)) {
2794 if (first_bad > sector_nr)
2795 good_sectors = first_bad - sector_nr;
2796 else {
2797 bad_sectors -= (sector_nr - first_bad);
2798 if (min_bad == 0 ||
2799 min_bad > bad_sectors)
2800 min_bad = bad_sectors;
2801 }
2802 }
2803 if (sector_nr < first_bad) {
2804 if (test_bit(WriteMostly, &rdev->flags)) {
2805 if (wonly < 0)
2806 wonly = i;
2807 } else {
2808 if (disk < 0)
2809 disk = i;
2810 }
2811 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2812 bio->bi_end_io = end_sync_read;
2813 read_targets++;
2814 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2815 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2816 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2817 /*
2818 * The device is suitable for reading (InSync),
2819 * but has bad block(s) here. Let's try to correct them,
2820 * if we are doing resync or repair. Otherwise, leave
2821 * this device alone for this sync request.
2822 */
2823 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2824 bio->bi_end_io = end_sync_write;
2825 write_targets++;
2826 }
2827 }
2828 if (bio->bi_end_io) {
2829 atomic_inc(&rdev->nr_pending);
2830 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2831 bio->bi_bdev = rdev->bdev;
2832 if (test_bit(FailFast, &rdev->flags))
2833 bio->bi_opf |= MD_FAILFAST;
2834 }
2835 }
2836 rcu_read_unlock();
2837 if (disk < 0)
2838 disk = wonly;
2839 r1_bio->read_disk = disk;
2840
2841 if (read_targets == 0 && min_bad > 0) {
2842 /* These sectors are bad on all InSync devices, so we
2843 * need to mark them bad on all write targets
2844 */
2845 int ok = 1;
2846 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2847 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2848 struct md_rdev *rdev = conf->mirrors[i].rdev;
2849 ok = rdev_set_badblocks(rdev, sector_nr,
2850 min_bad, 0
2851 ) && ok;
2852 }
2853 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2854 *skipped = 1;
2855 put_buf(r1_bio);
2856
2857 if (!ok) {
2858 /* Cannot record the badblocks, so need to
2859 * abort the resync.
2860 * If there are multiple read targets, could just
2861 * fail the really bad ones ???
2862 */
2863 conf->recovery_disabled = mddev->recovery_disabled;
2864 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2865 return 0;
2866 } else
2867 return min_bad;
2868
2869 }
2870 if (min_bad > 0 && min_bad < good_sectors) {
2871 /* only resync enough to reach the next bad->good
2872 * transition */
2873 good_sectors = min_bad;
2874 }
2875
2876 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2877 /* extra read targets are also write targets */
2878 write_targets += read_targets-1;
2879
2880 if (write_targets == 0 || read_targets == 0) {
2881 /* There is nowhere to write, so all non-sync
2882 * drives must be failed - so we are finished
2883 */
2884 sector_t rv;
2885 if (min_bad > 0)
2886 max_sector = sector_nr + min_bad;
2887 rv = max_sector - sector_nr;
2888 *skipped = 1;
2889 put_buf(r1_bio);
2890 return rv;
2891 }
2892
2893 if (max_sector > mddev->resync_max)
2894 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2895 if (max_sector > sector_nr + good_sectors)
2896 max_sector = sector_nr + good_sectors;
2897 nr_sectors = 0;
2898 sync_blocks = 0;
2899 do {
2900 struct page *page;
2901 int len = PAGE_SIZE;
2902 if (sector_nr + (len>>9) > max_sector)
2903 len = (max_sector - sector_nr) << 9;
2904 if (len == 0)
2905 break;
2906 if (sync_blocks == 0) {
2907 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2908 &sync_blocks, still_degraded) &&
2909 !conf->fullsync &&
2910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2911 break;
2912 if ((len >> 9) > sync_blocks)
2913 len = sync_blocks<<9;
2914 }
2915
2916 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2917 struct resync_pages *rp;
2918
2919 bio = r1_bio->bios[i];
2920 rp = get_resync_pages(bio);
2921 if (bio->bi_end_io) {
2922 page = resync_fetch_page(rp, rp->idx++);
2923
2924 /*
2925 * won't fail because the vec table is big
2926 * enough to hold all these pages
2927 */
2928 bio_add_page(bio, page, len, 0);
2929 }
2930 }
2931 nr_sectors += len>>9;
2932 sector_nr += len>>9;
2933 sync_blocks -= (len>>9);
2934 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2935
2936 r1_bio->sectors = nr_sectors;
2937
2938 if (mddev_is_clustered(mddev) &&
2939 conf->cluster_sync_high < sector_nr + nr_sectors) {
2940 conf->cluster_sync_low = mddev->curr_resync_completed;
2941 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2942 /* Send resync message */
2943 md_cluster_ops->resync_info_update(mddev,
2944 conf->cluster_sync_low,
2945 conf->cluster_sync_high);
2946 }
2947
2948 /* For a user-requested sync, we read all readable devices and do a
2949 * compare
2950 */
2951 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2952 atomic_set(&r1_bio->remaining, read_targets);
2953 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2954 bio = r1_bio->bios[i];
2955 if (bio->bi_end_io == end_sync_read) {
2956 read_targets--;
2957 md_sync_acct(bio->bi_bdev, nr_sectors);
2958 if (read_targets == 1)
2959 bio->bi_opf &= ~MD_FAILFAST;
2960 generic_make_request(bio);
2961 }
2962 }
2963 } else {
2964 atomic_set(&r1_bio->remaining, 1);
2965 bio = r1_bio->bios[r1_bio->read_disk];
2966 md_sync_acct(bio->bi_bdev, nr_sectors);
2967 if (read_targets == 1)
2968 bio->bi_opf &= ~MD_FAILFAST;
2969 generic_make_request(bio);
2970
2971 }
2972 return nr_sectors;
2973 }
2974
2975 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2976 {
2977 if (sectors)
2978 return sectors;
2979
2980 return mddev->dev_sectors;
2981 }
2982
2983 static struct r1conf *setup_conf(struct mddev *mddev)
2984 {
2985 struct r1conf *conf;
2986 int i;
2987 struct raid1_info *disk;
2988 struct md_rdev *rdev;
2989 int err = -ENOMEM;
2990
2991 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2992 if (!conf)
2993 goto abort;
2994
2995 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2996 sizeof(atomic_t), GFP_KERNEL);
2997 if (!conf->nr_pending)
2998 goto abort;
2999
3000 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3001 sizeof(atomic_t), GFP_KERNEL);
3002 if (!conf->nr_waiting)
3003 goto abort;
3004
3005 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3006 sizeof(atomic_t), GFP_KERNEL);
3007 if (!conf->nr_queued)
3008 goto abort;
3009
3010 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3011 sizeof(atomic_t), GFP_KERNEL);
3012 if (!conf->barrier)
3013 goto abort;
3014
3015 conf->mirrors = kzalloc(sizeof(struct raid1_info)
3016 * mddev->raid_disks * 2,
3017 GFP_KERNEL);
3018 if (!conf->mirrors)
3019 goto abort;
3020
3021 conf->tmppage = alloc_page(GFP_KERNEL);
3022 if (!conf->tmppage)
3023 goto abort;
3024
3025 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3026 if (!conf->poolinfo)
3027 goto abort;
3028 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3029 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3030 r1bio_pool_free,
3031 conf->poolinfo);
3032 if (!conf->r1bio_pool)
3033 goto abort;
3034
3035 conf->poolinfo->mddev = mddev;
3036
3037 err = -EINVAL;
3038 spin_lock_init(&conf->device_lock);
3039 rdev_for_each(rdev, mddev) {
3040 struct request_queue *q;
3041 int disk_idx = rdev->raid_disk;
3042 if (disk_idx >= mddev->raid_disks
3043 || disk_idx < 0)
3044 continue;
3045 if (test_bit(Replacement, &rdev->flags))
3046 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3047 else
3048 disk = conf->mirrors + disk_idx;
3049
3050 if (disk->rdev)
3051 goto abort;
3052 disk->rdev = rdev;
3053 q = bdev_get_queue(rdev->bdev);
3054
3055 disk->head_position = 0;
3056 disk->seq_start = MaxSector;
3057 }
3058 conf->raid_disks = mddev->raid_disks;
3059 conf->mddev = mddev;
3060 INIT_LIST_HEAD(&conf->retry_list);
3061 INIT_LIST_HEAD(&conf->bio_end_io_list);
3062
3063 spin_lock_init(&conf->resync_lock);
3064 init_waitqueue_head(&conf->wait_barrier);
3065
3066 bio_list_init(&conf->pending_bio_list);
3067 conf->pending_count = 0;
3068 conf->recovery_disabled = mddev->recovery_disabled - 1;
3069
3070 err = -EIO;
3071 for (i = 0; i < conf->raid_disks * 2; i++) {
3072
3073 disk = conf->mirrors + i;
3074
3075 if (i < conf->raid_disks &&
3076 disk[conf->raid_disks].rdev) {
3077 /* This slot has a replacement. */
3078 if (!disk->rdev) {
3079 /* No original, just make the replacement
3080 * a recovering spare
3081 */
3082 disk->rdev =
3083 disk[conf->raid_disks].rdev;
3084 disk[conf->raid_disks].rdev = NULL;
3085 } else if (!test_bit(In_sync, &disk->rdev->flags))
3086 /* Original is not in_sync - bad */
3087 goto abort;
3088 }
3089
3090 if (!disk->rdev ||
3091 !test_bit(In_sync, &disk->rdev->flags)) {
3092 disk->head_position = 0;
3093 if (disk->rdev &&
3094 (disk->rdev->saved_raid_disk < 0))
3095 conf->fullsync = 1;
3096 }
3097 }
3098
3099 err = -ENOMEM;
3100 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3101 if (!conf->thread)
3102 goto abort;
3103
3104 return conf;
3105
3106 abort:
3107 if (conf) {
3108 mempool_destroy(conf->r1bio_pool);
3109 kfree(conf->mirrors);
3110 safe_put_page(conf->tmppage);
3111 kfree(conf->poolinfo);
3112 kfree(conf->nr_pending);
3113 kfree(conf->nr_waiting);
3114 kfree(conf->nr_queued);
3115 kfree(conf->barrier);
3116 kfree(conf);
3117 }
3118 return ERR_PTR(err);
3119 }
3120
3121 static void raid1_free(struct mddev *mddev, void *priv);
3122 static int raid1_run(struct mddev *mddev)
3123 {
3124 struct r1conf *conf;
3125 int i;
3126 struct md_rdev *rdev;
3127 int ret;
3128 bool discard_supported = false;
3129
3130 if (mddev->level != 1) {
3131 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3132 mdname(mddev), mddev->level);
3133 return -EIO;
3134 }
3135 if (mddev->reshape_position != MaxSector) {
3136 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3137 mdname(mddev));
3138 return -EIO;
3139 }
3140 /*
3141 * copy the already verified devices into our private RAID1
3142 * bookkeeping area. [whatever we allocate in run(),
3143 * should be freed in raid1_free()]
3144 */
3145 if (mddev->private == NULL)
3146 conf = setup_conf(mddev);
3147 else
3148 conf = mddev->private;
3149
3150 if (IS_ERR(conf))
3151 return PTR_ERR(conf);
3152
3153 if (mddev->queue)
3154 blk_queue_max_write_same_sectors(mddev->queue, 0);
3155
3156 rdev_for_each(rdev, mddev) {
3157 if (!mddev->gendisk)
3158 continue;
3159 disk_stack_limits(mddev->gendisk, rdev->bdev,
3160 rdev->data_offset << 9);
3161 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3162 discard_supported = true;
3163 }
3164
3165 mddev->degraded = 0;
3166 for (i=0; i < conf->raid_disks; i++)
3167 if (conf->mirrors[i].rdev == NULL ||
3168 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3169 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3170 mddev->degraded++;
3171
3172 if (conf->raid_disks - mddev->degraded == 1)
3173 mddev->recovery_cp = MaxSector;
3174
3175 if (mddev->recovery_cp != MaxSector)
3176 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3177 mdname(mddev));
3178 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3179 mdname(mddev), mddev->raid_disks - mddev->degraded,
3180 mddev->raid_disks);
3181
3182 /*
3183 * Ok, everything is just fine now
3184 */
3185 mddev->thread = conf->thread;
3186 conf->thread = NULL;
3187 mddev->private = conf;
3188 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3189
3190 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3191
3192 if (mddev->queue) {
3193 if (discard_supported)
3194 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3195 mddev->queue);
3196 else
3197 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3198 mddev->queue);
3199 }
3200
3201 ret = md_integrity_register(mddev);
3202 if (ret) {
3203 md_unregister_thread(&mddev->thread);
3204 raid1_free(mddev, conf);
3205 }
3206 return ret;
3207 }
3208
3209 static void raid1_free(struct mddev *mddev, void *priv)
3210 {
3211 struct r1conf *conf = priv;
3212
3213 mempool_destroy(conf->r1bio_pool);
3214 kfree(conf->mirrors);
3215 safe_put_page(conf->tmppage);
3216 kfree(conf->poolinfo);
3217 kfree(conf->nr_pending);
3218 kfree(conf->nr_waiting);
3219 kfree(conf->nr_queued);
3220 kfree(conf->barrier);
3221 kfree(conf);
3222 }
3223
3224 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3225 {
3226 /* no resync is happening, and there is enough space
3227 * on all devices, so we can resize.
3228 * We need to make sure resync covers any new space.
3229 * If the array is shrinking we should possibly wait until
3230 * any io in the removed space completes, but it hardly seems
3231 * worth it.
3232 */
3233 sector_t newsize = raid1_size(mddev, sectors, 0);
3234 if (mddev->external_size &&
3235 mddev->array_sectors > newsize)
3236 return -EINVAL;
3237 if (mddev->bitmap) {
3238 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3239 if (ret)
3240 return ret;
3241 }
3242 md_set_array_sectors(mddev, newsize);
3243 if (sectors > mddev->dev_sectors &&
3244 mddev->recovery_cp > mddev->dev_sectors) {
3245 mddev->recovery_cp = mddev->dev_sectors;
3246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3247 }
3248 mddev->dev_sectors = sectors;
3249 mddev->resync_max_sectors = sectors;
3250 return 0;
3251 }
3252
3253 static int raid1_reshape(struct mddev *mddev)
3254 {
3255 /* We need to:
3256 * 1/ resize the r1bio_pool
3257 * 2/ resize conf->mirrors
3258 *
3259 * We allocate a new r1bio_pool if we can.
3260 * Then raise a device barrier and wait until all IO stops.
3261 * Then resize conf->mirrors and swap in the new r1bio pool.
3262 *
3263 * At the same time, we "pack" the devices so that all the missing
3264 * devices have the higher raid_disk numbers.
3265 */
3266 mempool_t *newpool, *oldpool;
3267 struct pool_info *newpoolinfo;
3268 struct raid1_info *newmirrors;
3269 struct r1conf *conf = mddev->private;
3270 int cnt, raid_disks;
3271 unsigned long flags;
3272 int d, d2, err;
3273
3274 /* Cannot change chunk_size, layout, or level */
3275 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3276 mddev->layout != mddev->new_layout ||
3277 mddev->level != mddev->new_level) {
3278 mddev->new_chunk_sectors = mddev->chunk_sectors;
3279 mddev->new_layout = mddev->layout;
3280 mddev->new_level = mddev->level;
3281 return -EINVAL;
3282 }
3283
3284 if (!mddev_is_clustered(mddev)) {
3285 err = md_allow_write(mddev);
3286 if (err)
3287 return err;
3288 }
3289
3290 raid_disks = mddev->raid_disks + mddev->delta_disks;
3291
3292 if (raid_disks < conf->raid_disks) {
3293 cnt=0;
3294 for (d= 0; d < conf->raid_disks; d++)
3295 if (conf->mirrors[d].rdev)
3296 cnt++;
3297 if (cnt > raid_disks)
3298 return -EBUSY;
3299 }
3300
3301 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3302 if (!newpoolinfo)
3303 return -ENOMEM;
3304 newpoolinfo->mddev = mddev;
3305 newpoolinfo->raid_disks = raid_disks * 2;
3306
3307 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3308 r1bio_pool_free, newpoolinfo);
3309 if (!newpool) {
3310 kfree(newpoolinfo);
3311 return -ENOMEM;
3312 }
3313 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3314 GFP_KERNEL);
3315 if (!newmirrors) {
3316 kfree(newpoolinfo);
3317 mempool_destroy(newpool);
3318 return -ENOMEM;
3319 }
3320
3321 freeze_array(conf, 0);
3322
3323 /* ok, everything is stopped */
3324 oldpool = conf->r1bio_pool;
3325 conf->r1bio_pool = newpool;
3326
3327 for (d = d2 = 0; d < conf->raid_disks; d++) {
3328 struct md_rdev *rdev = conf->mirrors[d].rdev;
3329 if (rdev && rdev->raid_disk != d2) {
3330 sysfs_unlink_rdev(mddev, rdev);
3331 rdev->raid_disk = d2;
3332 sysfs_unlink_rdev(mddev, rdev);
3333 if (sysfs_link_rdev(mddev, rdev))
3334 pr_warn("md/raid1:%s: cannot register rd%d\n",
3335 mdname(mddev), rdev->raid_disk);
3336 }
3337 if (rdev)
3338 newmirrors[d2++].rdev = rdev;
3339 }
3340 kfree(conf->mirrors);
3341 conf->mirrors = newmirrors;
3342 kfree(conf->poolinfo);
3343 conf->poolinfo = newpoolinfo;
3344
3345 spin_lock_irqsave(&conf->device_lock, flags);
3346 mddev->degraded += (raid_disks - conf->raid_disks);
3347 spin_unlock_irqrestore(&conf->device_lock, flags);
3348 conf->raid_disks = mddev->raid_disks = raid_disks;
3349 mddev->delta_disks = 0;
3350
3351 unfreeze_array(conf);
3352
3353 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3354 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3355 md_wakeup_thread(mddev->thread);
3356
3357 mempool_destroy(oldpool);
3358 return 0;
3359 }
3360
3361 static void raid1_quiesce(struct mddev *mddev, int state)
3362 {
3363 struct r1conf *conf = mddev->private;
3364
3365 switch(state) {
3366 case 2: /* wake for suspend */
3367 wake_up(&conf->wait_barrier);
3368 break;
3369 case 1:
3370 freeze_array(conf, 0);
3371 break;
3372 case 0:
3373 unfreeze_array(conf);
3374 break;
3375 }
3376 }
3377
3378 static void *raid1_takeover(struct mddev *mddev)
3379 {
3380 /* raid1 can take over:
3381 * raid5 with 2 devices, any layout or chunk size
3382 */
3383 if (mddev->level == 5 && mddev->raid_disks == 2) {
3384 struct r1conf *conf;
3385 mddev->new_level = 1;
3386 mddev->new_layout = 0;
3387 mddev->new_chunk_sectors = 0;
3388 conf = setup_conf(mddev);
3389 if (!IS_ERR(conf)) {
3390 /* Array must appear to be quiesced */
3391 conf->array_frozen = 1;
3392 mddev_clear_unsupported_flags(mddev,
3393 UNSUPPORTED_MDDEV_FLAGS);
3394 }
3395 return conf;
3396 }
3397 return ERR_PTR(-EINVAL);
3398 }
3399
3400 static struct md_personality raid1_personality =
3401 {
3402 .name = "raid1",
3403 .level = 1,
3404 .owner = THIS_MODULE,
3405 .make_request = raid1_make_request,
3406 .run = raid1_run,
3407 .free = raid1_free,
3408 .status = raid1_status,
3409 .error_handler = raid1_error,
3410 .hot_add_disk = raid1_add_disk,
3411 .hot_remove_disk= raid1_remove_disk,
3412 .spare_active = raid1_spare_active,
3413 .sync_request = raid1_sync_request,
3414 .resize = raid1_resize,
3415 .size = raid1_size,
3416 .check_reshape = raid1_reshape,
3417 .quiesce = raid1_quiesce,
3418 .takeover = raid1_takeover,
3419 .congested = raid1_congested,
3420 };
3421
3422 static int __init raid_init(void)
3423 {
3424 return register_md_personality(&raid1_personality);
3425 }
3426
3427 static void raid_exit(void)
3428 {
3429 unregister_md_personality(&raid1_personality);
3430 }
3431
3432 module_init(raid_init);
3433 module_exit(raid_exit);
3434 MODULE_LICENSE("GPL");
3435 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3436 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3437 MODULE_ALIAS("md-raid1");
3438 MODULE_ALIAS("md-level-1");
3439
3440 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);