]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid1.c
Merge tag 'powerpc-5.12-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61 {
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80 }
81
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 return get_resync_pages(bio)->raid_bio;
128 }
129
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
178 */
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
181 else
182 need_pages = 1;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
186 bio = r1_bio->bios[j];
187
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
204 out_free_pages:
205 while (--j >= 0)
206 resync_free_pages(&rps[j]);
207
208 out_free_bio:
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
211 kfree(rps);
212
213 out_free_r1bio:
214 rbio_pool_free(r1_bio, data);
215 return NULL;
216 }
217
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 struct pool_info *pi = data;
221 int i;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
224
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r1bio, data);
235 }
236
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 }
247 }
248
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 struct r1conf *conf = r1_bio->mddev->private;
252
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
261 int i;
262
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
268
269 mempool_free(r1_bio, &conf->r1buf_pool);
270
271 lower_barrier(conf, sect);
272 }
273
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 unsigned long flags;
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
279 int idx;
280
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 struct bio *bio = r1_bio->master_bio;
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
302
303 bio_endio(bio);
304 }
305
306 static void raid_end_bio_io(struct r1bio *r1_bio)
307 {
308 struct bio *bio = r1_bio->master_bio;
309 struct r1conf *conf = r1_bio->mddev->private;
310
311 /* if nobody has done the final endio yet, do it now */
312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 (bio_data_dir(bio) == WRITE) ? "write" : "read",
315 (unsigned long long) bio->bi_iter.bi_sector,
316 (unsigned long long) bio_end_sector(bio) - 1);
317
318 call_bio_endio(r1_bio);
319 }
320 /*
321 * Wake up any possible resync thread that waits for the device
322 * to go idle. All I/Os, even write-behind writes, are done.
323 */
324 allow_barrier(conf, r1_bio->sector);
325
326 free_r1bio(r1_bio);
327 }
328
329 /*
330 * Update disk head position estimator based on IRQ completion info.
331 */
332 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333 {
334 struct r1conf *conf = r1_bio->mddev->private;
335
336 conf->mirrors[disk].head_position =
337 r1_bio->sector + (r1_bio->sectors);
338 }
339
340 /*
341 * Find the disk number which triggered given bio
342 */
343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344 {
345 int mirror;
346 struct r1conf *conf = r1_bio->mddev->private;
347 int raid_disks = conf->raid_disks;
348
349 for (mirror = 0; mirror < raid_disks * 2; mirror++)
350 if (r1_bio->bios[mirror] == bio)
351 break;
352
353 BUG_ON(mirror == raid_disks * 2);
354 update_head_pos(mirror, r1_bio);
355
356 return mirror;
357 }
358
359 static void raid1_end_read_request(struct bio *bio)
360 {
361 int uptodate = !bio->bi_status;
362 struct r1bio *r1_bio = bio->bi_private;
363 struct r1conf *conf = r1_bio->mddev->private;
364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365
366 /*
367 * this branch is our 'one mirror IO has finished' event handler:
368 */
369 update_head_pos(r1_bio->read_disk, r1_bio);
370
371 if (uptodate)
372 set_bit(R1BIO_Uptodate, &r1_bio->state);
373 else if (test_bit(FailFast, &rdev->flags) &&
374 test_bit(R1BIO_FailFast, &r1_bio->state))
375 /* This was a fail-fast read so we definitely
376 * want to retry */
377 ;
378 else {
379 /* If all other devices have failed, we want to return
380 * the error upwards rather than fail the last device.
381 * Here we redefine "uptodate" to mean "Don't want to retry"
382 */
383 unsigned long flags;
384 spin_lock_irqsave(&conf->device_lock, flags);
385 if (r1_bio->mddev->degraded == conf->raid_disks ||
386 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387 test_bit(In_sync, &rdev->flags)))
388 uptodate = 1;
389 spin_unlock_irqrestore(&conf->device_lock, flags);
390 }
391
392 if (uptodate) {
393 raid_end_bio_io(r1_bio);
394 rdev_dec_pending(rdev, conf->mddev);
395 } else {
396 /*
397 * oops, read error:
398 */
399 char b[BDEVNAME_SIZE];
400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401 mdname(conf->mddev),
402 bdevname(rdev->bdev, b),
403 (unsigned long long)r1_bio->sector);
404 set_bit(R1BIO_ReadError, &r1_bio->state);
405 reschedule_retry(r1_bio);
406 /* don't drop the reference on read_disk yet */
407 }
408 }
409
410 static void close_write(struct r1bio *r1_bio)
411 {
412 /* it really is the end of this request */
413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414 bio_free_pages(r1_bio->behind_master_bio);
415 bio_put(r1_bio->behind_master_bio);
416 r1_bio->behind_master_bio = NULL;
417 }
418 /* clear the bitmap if all writes complete successfully */
419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420 r1_bio->sectors,
421 !test_bit(R1BIO_Degraded, &r1_bio->state),
422 test_bit(R1BIO_BehindIO, &r1_bio->state));
423 md_write_end(r1_bio->mddev);
424 }
425
426 static void r1_bio_write_done(struct r1bio *r1_bio)
427 {
428 if (!atomic_dec_and_test(&r1_bio->remaining))
429 return;
430
431 if (test_bit(R1BIO_WriteError, &r1_bio->state))
432 reschedule_retry(r1_bio);
433 else {
434 close_write(r1_bio);
435 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else
438 raid_end_bio_io(r1_bio);
439 }
440 }
441
442 static void raid1_end_write_request(struct bio *bio)
443 {
444 struct r1bio *r1_bio = bio->bi_private;
445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446 struct r1conf *conf = r1_bio->mddev->private;
447 struct bio *to_put = NULL;
448 int mirror = find_bio_disk(r1_bio, bio);
449 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450 bool discard_error;
451 sector_t lo = r1_bio->sector;
452 sector_t hi = r1_bio->sector + r1_bio->sectors;
453
454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455
456 /*
457 * 'one mirror IO has finished' event handler:
458 */
459 if (bio->bi_status && !discard_error) {
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED, &
463 conf->mddev->recovery);
464
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST) &&
467 /* We never try FailFast to WriteMostly devices */
468 !test_bit(WriteMostly, &rdev->flags)) {
469 md_error(r1_bio->mddev, rdev);
470 }
471
472 /*
473 * When the device is faulty, it is not necessary to
474 * handle write error.
475 * For failfast, this is the only remaining device,
476 * We need to retry the write without FailFast.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
480 else {
481 /* Finished with this branch */
482 r1_bio->bios[mirror] = NULL;
483 to_put = bio;
484 }
485 } else {
486 /*
487 * Set R1BIO_Uptodate in our master bio, so that we
488 * will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer
490 * fails.
491 *
492 * The 'master' represents the composite IO operation
493 * to user-side. So if something waits for IO, then it
494 * will wait for the 'master' bio.
495 */
496 sector_t first_bad;
497 int bad_sectors;
498
499 r1_bio->bios[mirror] = NULL;
500 to_put = bio;
501 /*
502 * Do not set R1BIO_Uptodate if the current device is
503 * rebuilding or Faulty. This is because we cannot use
504 * such device for properly reading the data back (we could
505 * potentially use it, if the current write would have felt
506 * before rdev->recovery_offset, but for simplicity we don't
507 * check this here.
508 */
509 if (test_bit(In_sync, &rdev->flags) &&
510 !test_bit(Faulty, &rdev->flags))
511 set_bit(R1BIO_Uptodate, &r1_bio->state);
512
513 /* Maybe we can clear some bad blocks. */
514 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
515 &first_bad, &bad_sectors) && !discard_error) {
516 r1_bio->bios[mirror] = IO_MADE_GOOD;
517 set_bit(R1BIO_MadeGood, &r1_bio->state);
518 }
519 }
520
521 if (behind) {
522 if (test_bit(CollisionCheck, &rdev->flags))
523 remove_serial(rdev, lo, hi);
524 if (test_bit(WriteMostly, &rdev->flags))
525 atomic_dec(&r1_bio->behind_remaining);
526
527 /*
528 * In behind mode, we ACK the master bio once the I/O
529 * has safely reached all non-writemostly
530 * disks. Setting the Returned bit ensures that this
531 * gets done only once -- we don't ever want to return
532 * -EIO here, instead we'll wait
533 */
534 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536 /* Maybe we can return now */
537 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538 struct bio *mbio = r1_bio->master_bio;
539 pr_debug("raid1: behind end write sectors"
540 " %llu-%llu\n",
541 (unsigned long long) mbio->bi_iter.bi_sector,
542 (unsigned long long) bio_end_sector(mbio) - 1);
543 call_bio_endio(r1_bio);
544 }
545 }
546 } else if (rdev->mddev->serialize_policy)
547 remove_serial(rdev, lo, hi);
548 if (r1_bio->bios[mirror] == NULL)
549 rdev_dec_pending(rdev, conf->mddev);
550
551 /*
552 * Let's see if all mirrored write operations have finished
553 * already.
554 */
555 r1_bio_write_done(r1_bio);
556
557 if (to_put)
558 bio_put(to_put);
559 }
560
561 static sector_t align_to_barrier_unit_end(sector_t start_sector,
562 sector_t sectors)
563 {
564 sector_t len;
565
566 WARN_ON(sectors == 0);
567 /*
568 * len is the number of sectors from start_sector to end of the
569 * barrier unit which start_sector belongs to.
570 */
571 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572 start_sector;
573
574 if (len > sectors)
575 len = sectors;
576
577 return len;
578 }
579
580 /*
581 * This routine returns the disk from which the requested read should
582 * be done. There is a per-array 'next expected sequential IO' sector
583 * number - if this matches on the next IO then we use the last disk.
584 * There is also a per-disk 'last know head position' sector that is
585 * maintained from IRQ contexts, both the normal and the resync IO
586 * completion handlers update this position correctly. If there is no
587 * perfect sequential match then we pick the disk whose head is closest.
588 *
589 * If there are 2 mirrors in the same 2 devices, performance degrades
590 * because position is mirror, not device based.
591 *
592 * The rdev for the device selected will have nr_pending incremented.
593 */
594 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595 {
596 const sector_t this_sector = r1_bio->sector;
597 int sectors;
598 int best_good_sectors;
599 int best_disk, best_dist_disk, best_pending_disk;
600 int has_nonrot_disk;
601 int disk;
602 sector_t best_dist;
603 unsigned int min_pending;
604 struct md_rdev *rdev;
605 int choose_first;
606 int choose_next_idle;
607
608 rcu_read_lock();
609 /*
610 * Check if we can balance. We can balance on the whole
611 * device if no resync is going on, or below the resync window.
612 * We take the first readable disk when above the resync window.
613 */
614 retry:
615 sectors = r1_bio->sectors;
616 best_disk = -1;
617 best_dist_disk = -1;
618 best_dist = MaxSector;
619 best_pending_disk = -1;
620 min_pending = UINT_MAX;
621 best_good_sectors = 0;
622 has_nonrot_disk = 0;
623 choose_next_idle = 0;
624 clear_bit(R1BIO_FailFast, &r1_bio->state);
625
626 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627 (mddev_is_clustered(conf->mddev) &&
628 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
629 this_sector + sectors)))
630 choose_first = 1;
631 else
632 choose_first = 0;
633
634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 sector_t dist;
636 sector_t first_bad;
637 int bad_sectors;
638 unsigned int pending;
639 bool nonrot;
640
641 rdev = rcu_dereference(conf->mirrors[disk].rdev);
642 if (r1_bio->bios[disk] == IO_BLOCKED
643 || rdev == NULL
644 || test_bit(Faulty, &rdev->flags))
645 continue;
646 if (!test_bit(In_sync, &rdev->flags) &&
647 rdev->recovery_offset < this_sector + sectors)
648 continue;
649 if (test_bit(WriteMostly, &rdev->flags)) {
650 /* Don't balance among write-mostly, just
651 * use the first as a last resort */
652 if (best_dist_disk < 0) {
653 if (is_badblock(rdev, this_sector, sectors,
654 &first_bad, &bad_sectors)) {
655 if (first_bad <= this_sector)
656 /* Cannot use this */
657 continue;
658 best_good_sectors = first_bad - this_sector;
659 } else
660 best_good_sectors = sectors;
661 best_dist_disk = disk;
662 best_pending_disk = disk;
663 }
664 continue;
665 }
666 /* This is a reasonable device to use. It might
667 * even be best.
668 */
669 if (is_badblock(rdev, this_sector, sectors,
670 &first_bad, &bad_sectors)) {
671 if (best_dist < MaxSector)
672 /* already have a better device */
673 continue;
674 if (first_bad <= this_sector) {
675 /* cannot read here. If this is the 'primary'
676 * device, then we must not read beyond
677 * bad_sectors from another device..
678 */
679 bad_sectors -= (this_sector - first_bad);
680 if (choose_first && sectors > bad_sectors)
681 sectors = bad_sectors;
682 if (best_good_sectors > sectors)
683 best_good_sectors = sectors;
684
685 } else {
686 sector_t good_sectors = first_bad - this_sector;
687 if (good_sectors > best_good_sectors) {
688 best_good_sectors = good_sectors;
689 best_disk = disk;
690 }
691 if (choose_first)
692 break;
693 }
694 continue;
695 } else {
696 if ((sectors > best_good_sectors) && (best_disk >= 0))
697 best_disk = -1;
698 best_good_sectors = sectors;
699 }
700
701 if (best_disk >= 0)
702 /* At least two disks to choose from so failfast is OK */
703 set_bit(R1BIO_FailFast, &r1_bio->state);
704
705 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706 has_nonrot_disk |= nonrot;
707 pending = atomic_read(&rdev->nr_pending);
708 dist = abs(this_sector - conf->mirrors[disk].head_position);
709 if (choose_first) {
710 best_disk = disk;
711 break;
712 }
713 /* Don't change to another disk for sequential reads */
714 if (conf->mirrors[disk].next_seq_sect == this_sector
715 || dist == 0) {
716 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717 struct raid1_info *mirror = &conf->mirrors[disk];
718
719 best_disk = disk;
720 /*
721 * If buffered sequential IO size exceeds optimal
722 * iosize, check if there is idle disk. If yes, choose
723 * the idle disk. read_balance could already choose an
724 * idle disk before noticing it's a sequential IO in
725 * this disk. This doesn't matter because this disk
726 * will idle, next time it will be utilized after the
727 * first disk has IO size exceeds optimal iosize. In
728 * this way, iosize of the first disk will be optimal
729 * iosize at least. iosize of the second disk might be
730 * small, but not a big deal since when the second disk
731 * starts IO, the first disk is likely still busy.
732 */
733 if (nonrot && opt_iosize > 0 &&
734 mirror->seq_start != MaxSector &&
735 mirror->next_seq_sect > opt_iosize &&
736 mirror->next_seq_sect - opt_iosize >=
737 mirror->seq_start) {
738 choose_next_idle = 1;
739 continue;
740 }
741 break;
742 }
743
744 if (choose_next_idle)
745 continue;
746
747 if (min_pending > pending) {
748 min_pending = pending;
749 best_pending_disk = disk;
750 }
751
752 if (dist < best_dist) {
753 best_dist = dist;
754 best_dist_disk = disk;
755 }
756 }
757
758 /*
759 * If all disks are rotational, choose the closest disk. If any disk is
760 * non-rotational, choose the disk with less pending request even the
761 * disk is rotational, which might/might not be optimal for raids with
762 * mixed ratation/non-rotational disks depending on workload.
763 */
764 if (best_disk == -1) {
765 if (has_nonrot_disk || min_pending == 0)
766 best_disk = best_pending_disk;
767 else
768 best_disk = best_dist_disk;
769 }
770
771 if (best_disk >= 0) {
772 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
773 if (!rdev)
774 goto retry;
775 atomic_inc(&rdev->nr_pending);
776 sectors = best_good_sectors;
777
778 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779 conf->mirrors[best_disk].seq_start = this_sector;
780
781 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782 }
783 rcu_read_unlock();
784 *max_sectors = sectors;
785
786 return best_disk;
787 }
788
789 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
790 {
791 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
792 md_bitmap_unplug(conf->mddev->bitmap);
793 wake_up(&conf->wait_barrier);
794
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
797 struct md_rdev *rdev = (void *)bio->bi_bdev;
798 bio->bi_next = NULL;
799 bio_set_dev(bio, rdev->bdev);
800 if (test_bit(Faulty, &rdev->flags)) {
801 bio_io_error(bio);
802 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
803 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
804 /* Just ignore it */
805 bio_endio(bio);
806 else
807 submit_bio_noacct(bio);
808 bio = next;
809 cond_resched();
810 }
811 }
812
813 static void flush_pending_writes(struct r1conf *conf)
814 {
815 /* Any writes that have been queued but are awaiting
816 * bitmap updates get flushed here.
817 */
818 spin_lock_irq(&conf->device_lock);
819
820 if (conf->pending_bio_list.head) {
821 struct blk_plug plug;
822 struct bio *bio;
823
824 bio = bio_list_get(&conf->pending_bio_list);
825 conf->pending_count = 0;
826 spin_unlock_irq(&conf->device_lock);
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
838 blk_start_plug(&plug);
839 flush_bio_list(conf, bio);
840 blk_finish_plug(&plug);
841 } else
842 spin_unlock_irq(&conf->device_lock);
843 }
844
845 /* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 {
871 int idx = sector_to_idx(sector_nr);
872
873 spin_lock_irq(&conf->resync_lock);
874
875 /* Wait until no block IO is waiting */
876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
878 conf->resync_lock);
879
880 /* block any new IO from starting */
881 atomic_inc(&conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
891
892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
898 */
899 wait_event_lock_irq(conf->wait_barrier,
900 (!conf->array_frozen &&
901 !atomic_read(&conf->nr_pending[idx]) &&
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 conf->resync_lock);
905
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(&conf->barrier[idx]);
908 spin_unlock_irq(&conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
913 atomic_inc(&conf->nr_sync_pending);
914 spin_unlock_irq(&conf->resync_lock);
915
916 return 0;
917 }
918
919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 {
921 int idx = sector_to_idx(sector_nr);
922
923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925 atomic_dec(&conf->barrier[idx]);
926 atomic_dec(&conf->nr_sync_pending);
927 wake_up(&conf->wait_barrier);
928 }
929
930 static void _wait_barrier(struct r1conf *conf, int idx)
931 {
932 /*
933 * We need to increase conf->nr_pending[idx] very early here,
934 * then raise_barrier() can be blocked when it waits for
935 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 * conf->resync_lock when there is no barrier raised in same
937 * barrier unit bucket. Also if the array is frozen, I/O
938 * should be blocked until array is unfrozen.
939 */
940 atomic_inc(&conf->nr_pending[idx]);
941 /*
942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 * will be a race between _wait_barrier() and raise_barrier().
948 */
949 smp_mb__after_atomic();
950
951 /*
952 * Don't worry about checking two atomic_t variables at same time
953 * here. If during we check conf->barrier[idx], the array is
954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 * 0, it is safe to return and make the I/O continue. Because the
956 * array is frozen, all I/O returned here will eventually complete
957 * or be queued, no race will happen. See code comment in
958 * frozen_array().
959 */
960 if (!READ_ONCE(conf->array_frozen) &&
961 !atomic_read(&conf->barrier[idx]))
962 return;
963
964 /*
965 * After holding conf->resync_lock, conf->nr_pending[idx]
966 * should be decreased before waiting for barrier to drop.
967 * Otherwise, we may encounter a race condition because
968 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 * to be 0 at same time.
970 */
971 spin_lock_irq(&conf->resync_lock);
972 atomic_inc(&conf->nr_waiting[idx]);
973 atomic_dec(&conf->nr_pending[idx]);
974 /*
975 * In case freeze_array() is waiting for
976 * get_unqueued_pending() == extra
977 */
978 wake_up(&conf->wait_barrier);
979 /* Wait for the barrier in same barrier unit bucket to drop. */
980 wait_event_lock_irq(conf->wait_barrier,
981 !conf->array_frozen &&
982 !atomic_read(&conf->barrier[idx]),
983 conf->resync_lock);
984 atomic_inc(&conf->nr_pending[idx]);
985 atomic_dec(&conf->nr_waiting[idx]);
986 spin_unlock_irq(&conf->resync_lock);
987 }
988
989 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
990 {
991 int idx = sector_to_idx(sector_nr);
992
993 /*
994 * Very similar to _wait_barrier(). The difference is, for read
995 * I/O we don't need wait for sync I/O, but if the whole array
996 * is frozen, the read I/O still has to wait until the array is
997 * unfrozen. Since there is no ordering requirement with
998 * conf->barrier[idx] here, memory barrier is unnecessary as well.
999 */
1000 atomic_inc(&conf->nr_pending[idx]);
1001
1002 if (!READ_ONCE(conf->array_frozen))
1003 return;
1004
1005 spin_lock_irq(&conf->resync_lock);
1006 atomic_inc(&conf->nr_waiting[idx]);
1007 atomic_dec(&conf->nr_pending[idx]);
1008 /*
1009 * In case freeze_array() is waiting for
1010 * get_unqueued_pending() == extra
1011 */
1012 wake_up(&conf->wait_barrier);
1013 /* Wait for array to be unfrozen */
1014 wait_event_lock_irq(conf->wait_barrier,
1015 !conf->array_frozen,
1016 conf->resync_lock);
1017 atomic_inc(&conf->nr_pending[idx]);
1018 atomic_dec(&conf->nr_waiting[idx]);
1019 spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 int idx = sector_to_idx(sector_nr);
1025
1026 _wait_barrier(conf, idx);
1027 }
1028
1029 static void _allow_barrier(struct r1conf *conf, int idx)
1030 {
1031 atomic_dec(&conf->nr_pending[idx]);
1032 wake_up(&conf->wait_barrier);
1033 }
1034
1035 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036 {
1037 int idx = sector_to_idx(sector_nr);
1038
1039 _allow_barrier(conf, idx);
1040 }
1041
1042 /* conf->resync_lock should be held */
1043 static int get_unqueued_pending(struct r1conf *conf)
1044 {
1045 int idx, ret;
1046
1047 ret = atomic_read(&conf->nr_sync_pending);
1048 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1049 ret += atomic_read(&conf->nr_pending[idx]) -
1050 atomic_read(&conf->nr_queued[idx]);
1051
1052 return ret;
1053 }
1054
1055 static void freeze_array(struct r1conf *conf, int extra)
1056 {
1057 /* Stop sync I/O and normal I/O and wait for everything to
1058 * go quiet.
1059 * This is called in two situations:
1060 * 1) management command handlers (reshape, remove disk, quiesce).
1061 * 2) one normal I/O request failed.
1062
1063 * After array_frozen is set to 1, new sync IO will be blocked at
1064 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065 * or wait_read_barrier(). The flying I/Os will either complete or be
1066 * queued. When everything goes quite, there are only queued I/Os left.
1067
1068 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069 * barrier bucket index which this I/O request hits. When all sync and
1070 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072 * in handle_read_error(), we may call freeze_array() before trying to
1073 * fix the read error. In this case, the error read I/O is not queued,
1074 * so get_unqueued_pending() == 1.
1075 *
1076 * Therefore before this function returns, we need to wait until
1077 * get_unqueued_pendings(conf) gets equal to extra. For
1078 * normal I/O context, extra is 1, in rested situations extra is 0.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->array_frozen = 1;
1082 raid1_log(conf->mddev, "wait freeze");
1083 wait_event_lock_irq_cmd(
1084 conf->wait_barrier,
1085 get_unqueued_pending(conf) == extra,
1086 conf->resync_lock,
1087 flush_pending_writes(conf));
1088 spin_unlock_irq(&conf->resync_lock);
1089 }
1090 static void unfreeze_array(struct r1conf *conf)
1091 {
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf->resync_lock);
1094 conf->array_frozen = 0;
1095 spin_unlock_irq(&conf->resync_lock);
1096 wake_up(&conf->wait_barrier);
1097 }
1098
1099 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1100 struct bio *bio)
1101 {
1102 int size = bio->bi_iter.bi_size;
1103 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104 int i = 0;
1105 struct bio *behind_bio = NULL;
1106
1107 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1108 if (!behind_bio)
1109 return;
1110
1111 /* discard op, we don't support writezero/writesame yet */
1112 if (!bio_has_data(bio)) {
1113 behind_bio->bi_iter.bi_size = size;
1114 goto skip_copy;
1115 }
1116
1117 behind_bio->bi_write_hint = bio->bi_write_hint;
1118
1119 while (i < vcnt && size) {
1120 struct page *page;
1121 int len = min_t(int, PAGE_SIZE, size);
1122
1123 page = alloc_page(GFP_NOIO);
1124 if (unlikely(!page))
1125 goto free_pages;
1126
1127 bio_add_page(behind_bio, page, len, 0);
1128
1129 size -= len;
1130 i++;
1131 }
1132
1133 bio_copy_data(behind_bio, bio);
1134 skip_copy:
1135 r1_bio->behind_master_bio = behind_bio;
1136 set_bit(R1BIO_BehindIO, &r1_bio->state);
1137
1138 return;
1139
1140 free_pages:
1141 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142 bio->bi_iter.bi_size);
1143 bio_free_pages(behind_bio);
1144 bio_put(behind_bio);
1145 }
1146
1147 struct raid1_plug_cb {
1148 struct blk_plug_cb cb;
1149 struct bio_list pending;
1150 int pending_cnt;
1151 };
1152
1153 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154 {
1155 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156 cb);
1157 struct mddev *mddev = plug->cb.data;
1158 struct r1conf *conf = mddev->private;
1159 struct bio *bio;
1160
1161 if (from_schedule || current->bio_list) {
1162 spin_lock_irq(&conf->device_lock);
1163 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164 conf->pending_count += plug->pending_cnt;
1165 spin_unlock_irq(&conf->device_lock);
1166 wake_up(&conf->wait_barrier);
1167 md_wakeup_thread(mddev->thread);
1168 kfree(plug);
1169 return;
1170 }
1171
1172 /* we aren't scheduling, so we can do the write-out directly. */
1173 bio = bio_list_get(&plug->pending);
1174 flush_bio_list(conf, bio);
1175 kfree(plug);
1176 }
1177
1178 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179 {
1180 r1_bio->master_bio = bio;
1181 r1_bio->sectors = bio_sectors(bio);
1182 r1_bio->state = 0;
1183 r1_bio->mddev = mddev;
1184 r1_bio->sector = bio->bi_iter.bi_sector;
1185 }
1186
1187 static inline struct r1bio *
1188 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1189 {
1190 struct r1conf *conf = mddev->private;
1191 struct r1bio *r1_bio;
1192
1193 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1194 /* Ensure no bio records IO_BLOCKED */
1195 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196 init_r1bio(r1_bio, mddev, bio);
1197 return r1_bio;
1198 }
1199
1200 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1201 int max_read_sectors, struct r1bio *r1_bio)
1202 {
1203 struct r1conf *conf = mddev->private;
1204 struct raid1_info *mirror;
1205 struct bio *read_bio;
1206 struct bitmap *bitmap = mddev->bitmap;
1207 const int op = bio_op(bio);
1208 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1209 int max_sectors;
1210 int rdisk;
1211 bool print_msg = !!r1_bio;
1212 char b[BDEVNAME_SIZE];
1213
1214 /*
1215 * If r1_bio is set, we are blocking the raid1d thread
1216 * so there is a tiny risk of deadlock. So ask for
1217 * emergency memory if needed.
1218 */
1219 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1220
1221 if (print_msg) {
1222 /* Need to get the block device name carefully */
1223 struct md_rdev *rdev;
1224 rcu_read_lock();
1225 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226 if (rdev)
1227 bdevname(rdev->bdev, b);
1228 else
1229 strcpy(b, "???");
1230 rcu_read_unlock();
1231 }
1232
1233 /*
1234 * Still need barrier for READ in case that whole
1235 * array is frozen.
1236 */
1237 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238
1239 if (!r1_bio)
1240 r1_bio = alloc_r1bio(mddev, bio);
1241 else
1242 init_r1bio(r1_bio, mddev, bio);
1243 r1_bio->sectors = max_read_sectors;
1244
1245 /*
1246 * make_request() can abort the operation when read-ahead is being
1247 * used and no empty request is available.
1248 */
1249 rdisk = read_balance(conf, r1_bio, &max_sectors);
1250
1251 if (rdisk < 0) {
1252 /* couldn't find anywhere to read from */
1253 if (print_msg) {
1254 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255 mdname(mddev),
1256 b,
1257 (unsigned long long)r1_bio->sector);
1258 }
1259 raid_end_bio_io(r1_bio);
1260 return;
1261 }
1262 mirror = conf->mirrors + rdisk;
1263
1264 if (print_msg)
1265 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266 mdname(mddev),
1267 (unsigned long long)r1_bio->sector,
1268 bdevname(mirror->rdev->bdev, b));
1269
1270 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271 bitmap) {
1272 /*
1273 * Reading from a write-mostly device must take care not to
1274 * over-take any writes that are 'behind'
1275 */
1276 raid1_log(mddev, "wait behind writes");
1277 wait_event(bitmap->behind_wait,
1278 atomic_read(&bitmap->behind_writes) == 0);
1279 }
1280
1281 if (max_sectors < bio_sectors(bio)) {
1282 struct bio *split = bio_split(bio, max_sectors,
1283 gfp, &conf->bio_split);
1284 bio_chain(split, bio);
1285 submit_bio_noacct(bio);
1286 bio = split;
1287 r1_bio->master_bio = bio;
1288 r1_bio->sectors = max_sectors;
1289 }
1290
1291 r1_bio->read_disk = rdisk;
1292
1293 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1294
1295 r1_bio->bios[rdisk] = read_bio;
1296
1297 read_bio->bi_iter.bi_sector = r1_bio->sector +
1298 mirror->rdev->data_offset;
1299 bio_set_dev(read_bio, mirror->rdev->bdev);
1300 read_bio->bi_end_io = raid1_end_read_request;
1301 bio_set_op_attrs(read_bio, op, do_sync);
1302 if (test_bit(FailFast, &mirror->rdev->flags) &&
1303 test_bit(R1BIO_FailFast, &r1_bio->state))
1304 read_bio->bi_opf |= MD_FAILFAST;
1305 read_bio->bi_private = r1_bio;
1306
1307 if (mddev->gendisk)
1308 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1309 r1_bio->sector);
1310
1311 submit_bio_noacct(read_bio);
1312 }
1313
1314 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315 int max_write_sectors)
1316 {
1317 struct r1conf *conf = mddev->private;
1318 struct r1bio *r1_bio;
1319 int i, disks;
1320 struct bitmap *bitmap = mddev->bitmap;
1321 unsigned long flags;
1322 struct md_rdev *blocked_rdev;
1323 struct blk_plug_cb *cb;
1324 struct raid1_plug_cb *plug = NULL;
1325 int first_clone;
1326 int max_sectors;
1327
1328 if (mddev_is_clustered(mddev) &&
1329 md_cluster_ops->area_resyncing(mddev, WRITE,
1330 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1331
1332 DEFINE_WAIT(w);
1333 for (;;) {
1334 prepare_to_wait(&conf->wait_barrier,
1335 &w, TASK_IDLE);
1336 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1337 bio->bi_iter.bi_sector,
1338 bio_end_sector(bio)))
1339 break;
1340 schedule();
1341 }
1342 finish_wait(&conf->wait_barrier, &w);
1343 }
1344
1345 /*
1346 * Register the new request and wait if the reconstruction
1347 * thread has put up a bar for new requests.
1348 * Continue immediately if no resync is active currently.
1349 */
1350 wait_barrier(conf, bio->bi_iter.bi_sector);
1351
1352 r1_bio = alloc_r1bio(mddev, bio);
1353 r1_bio->sectors = max_write_sectors;
1354
1355 if (conf->pending_count >= max_queued_requests) {
1356 md_wakeup_thread(mddev->thread);
1357 raid1_log(mddev, "wait queued");
1358 wait_event(conf->wait_barrier,
1359 conf->pending_count < max_queued_requests);
1360 }
1361 /* first select target devices under rcu_lock and
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
1364 * If there are known/acknowledged bad blocks on any device on
1365 * which we have seen a write error, we want to avoid writing those
1366 * blocks.
1367 * This potentially requires several writes to write around
1368 * the bad blocks. Each set of writes gets it's own r1bio
1369 * with a set of bios attached.
1370 */
1371
1372 disks = conf->raid_disks * 2;
1373 retry_write:
1374 blocked_rdev = NULL;
1375 rcu_read_lock();
1376 max_sectors = r1_bio->sectors;
1377 for (i = 0; i < disks; i++) {
1378 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 atomic_inc(&rdev->nr_pending);
1381 blocked_rdev = rdev;
1382 break;
1383 }
1384 r1_bio->bios[i] = NULL;
1385 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1386 if (i < conf->raid_disks)
1387 set_bit(R1BIO_Degraded, &r1_bio->state);
1388 continue;
1389 }
1390
1391 atomic_inc(&rdev->nr_pending);
1392 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393 sector_t first_bad;
1394 int bad_sectors;
1395 int is_bad;
1396
1397 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1398 &first_bad, &bad_sectors);
1399 if (is_bad < 0) {
1400 /* mustn't write here until the bad block is
1401 * acknowledged*/
1402 set_bit(BlockedBadBlocks, &rdev->flags);
1403 blocked_rdev = rdev;
1404 break;
1405 }
1406 if (is_bad && first_bad <= r1_bio->sector) {
1407 /* Cannot write here at all */
1408 bad_sectors -= (r1_bio->sector - first_bad);
1409 if (bad_sectors < max_sectors)
1410 /* mustn't write more than bad_sectors
1411 * to other devices yet
1412 */
1413 max_sectors = bad_sectors;
1414 rdev_dec_pending(rdev, mddev);
1415 /* We don't set R1BIO_Degraded as that
1416 * only applies if the disk is
1417 * missing, so it might be re-added,
1418 * and we want to know to recover this
1419 * chunk.
1420 * In this case the device is here,
1421 * and the fact that this chunk is not
1422 * in-sync is recorded in the bad
1423 * block log
1424 */
1425 continue;
1426 }
1427 if (is_bad) {
1428 int good_sectors = first_bad - r1_bio->sector;
1429 if (good_sectors < max_sectors)
1430 max_sectors = good_sectors;
1431 }
1432 }
1433 r1_bio->bios[i] = bio;
1434 }
1435 rcu_read_unlock();
1436
1437 if (unlikely(blocked_rdev)) {
1438 /* Wait for this device to become unblocked */
1439 int j;
1440
1441 for (j = 0; j < i; j++)
1442 if (r1_bio->bios[j])
1443 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1444 r1_bio->state = 0;
1445 allow_barrier(conf, bio->bi_iter.bi_sector);
1446 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1447 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1448 wait_barrier(conf, bio->bi_iter.bi_sector);
1449 goto retry_write;
1450 }
1451
1452 if (max_sectors < bio_sectors(bio)) {
1453 struct bio *split = bio_split(bio, max_sectors,
1454 GFP_NOIO, &conf->bio_split);
1455 bio_chain(split, bio);
1456 submit_bio_noacct(bio);
1457 bio = split;
1458 r1_bio->master_bio = bio;
1459 r1_bio->sectors = max_sectors;
1460 }
1461
1462 atomic_set(&r1_bio->remaining, 1);
1463 atomic_set(&r1_bio->behind_remaining, 0);
1464
1465 first_clone = 1;
1466
1467 for (i = 0; i < disks; i++) {
1468 struct bio *mbio = NULL;
1469 struct md_rdev *rdev = conf->mirrors[i].rdev;
1470 if (!r1_bio->bios[i])
1471 continue;
1472
1473 if (first_clone) {
1474 /* do behind I/O ?
1475 * Not if there are too many, or cannot
1476 * allocate memory, or a reader on WriteMostly
1477 * is waiting for behind writes to flush */
1478 if (bitmap &&
1479 (atomic_read(&bitmap->behind_writes)
1480 < mddev->bitmap_info.max_write_behind) &&
1481 !waitqueue_active(&bitmap->behind_wait)) {
1482 alloc_behind_master_bio(r1_bio, bio);
1483 }
1484
1485 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486 test_bit(R1BIO_BehindIO, &r1_bio->state));
1487 first_clone = 0;
1488 }
1489
1490 if (r1_bio->behind_master_bio)
1491 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1492 GFP_NOIO, &mddev->bio_set);
1493 else
1494 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1495
1496 if (r1_bio->behind_master_bio) {
1497 if (test_bit(CollisionCheck, &rdev->flags))
1498 wait_for_serialization(rdev, r1_bio);
1499 if (test_bit(WriteMostly, &rdev->flags))
1500 atomic_inc(&r1_bio->behind_remaining);
1501 } else if (mddev->serialize_policy)
1502 wait_for_serialization(rdev, r1_bio);
1503
1504 r1_bio->bios[i] = mbio;
1505
1506 mbio->bi_iter.bi_sector = (r1_bio->sector +
1507 conf->mirrors[i].rdev->data_offset);
1508 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1509 mbio->bi_end_io = raid1_end_write_request;
1510 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1511 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513 conf->raid_disks - mddev->degraded > 1)
1514 mbio->bi_opf |= MD_FAILFAST;
1515 mbio->bi_private = r1_bio;
1516
1517 atomic_inc(&r1_bio->remaining);
1518
1519 if (mddev->gendisk)
1520 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1521 r1_bio->sector);
1522 /* flush_pending_writes() needs access to the rdev so...*/
1523 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1524
1525 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1526 if (cb)
1527 plug = container_of(cb, struct raid1_plug_cb, cb);
1528 else
1529 plug = NULL;
1530 if (plug) {
1531 bio_list_add(&plug->pending, mbio);
1532 plug->pending_cnt++;
1533 } else {
1534 spin_lock_irqsave(&conf->device_lock, flags);
1535 bio_list_add(&conf->pending_bio_list, mbio);
1536 conf->pending_count++;
1537 spin_unlock_irqrestore(&conf->device_lock, flags);
1538 md_wakeup_thread(mddev->thread);
1539 }
1540 }
1541
1542 r1_bio_write_done(r1_bio);
1543
1544 /* In case raid1d snuck in to freeze_array */
1545 wake_up(&conf->wait_barrier);
1546 }
1547
1548 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1549 {
1550 sector_t sectors;
1551
1552 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1553 && md_flush_request(mddev, bio))
1554 return true;
1555
1556 /*
1557 * There is a limit to the maximum size, but
1558 * the read/write handler might find a lower limit
1559 * due to bad blocks. To avoid multiple splits,
1560 * we pass the maximum number of sectors down
1561 * and let the lower level perform the split.
1562 */
1563 sectors = align_to_barrier_unit_end(
1564 bio->bi_iter.bi_sector, bio_sectors(bio));
1565
1566 if (bio_data_dir(bio) == READ)
1567 raid1_read_request(mddev, bio, sectors, NULL);
1568 else {
1569 if (!md_write_start(mddev,bio))
1570 return false;
1571 raid1_write_request(mddev, bio, sectors);
1572 }
1573 return true;
1574 }
1575
1576 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1577 {
1578 struct r1conf *conf = mddev->private;
1579 int i;
1580
1581 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1582 conf->raid_disks - mddev->degraded);
1583 rcu_read_lock();
1584 for (i = 0; i < conf->raid_disks; i++) {
1585 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1586 seq_printf(seq, "%s",
1587 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1588 }
1589 rcu_read_unlock();
1590 seq_printf(seq, "]");
1591 }
1592
1593 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1594 {
1595 char b[BDEVNAME_SIZE];
1596 struct r1conf *conf = mddev->private;
1597 unsigned long flags;
1598
1599 /*
1600 * If it is not operational, then we have already marked it as dead
1601 * else if it is the last working disks with "fail_last_dev == false",
1602 * ignore the error, let the next level up know.
1603 * else mark the drive as failed
1604 */
1605 spin_lock_irqsave(&conf->device_lock, flags);
1606 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1607 && (conf->raid_disks - mddev->degraded) == 1) {
1608 /*
1609 * Don't fail the drive, act as though we were just a
1610 * normal single drive.
1611 * However don't try a recovery from this drive as
1612 * it is very likely to fail.
1613 */
1614 conf->recovery_disabled = mddev->recovery_disabled;
1615 spin_unlock_irqrestore(&conf->device_lock, flags);
1616 return;
1617 }
1618 set_bit(Blocked, &rdev->flags);
1619 if (test_and_clear_bit(In_sync, &rdev->flags))
1620 mddev->degraded++;
1621 set_bit(Faulty, &rdev->flags);
1622 spin_unlock_irqrestore(&conf->device_lock, flags);
1623 /*
1624 * if recovery is running, make sure it aborts.
1625 */
1626 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1627 set_mask_bits(&mddev->sb_flags, 0,
1628 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1629 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1630 "md/raid1:%s: Operation continuing on %d devices.\n",
1631 mdname(mddev), bdevname(rdev->bdev, b),
1632 mdname(mddev), conf->raid_disks - mddev->degraded);
1633 }
1634
1635 static void print_conf(struct r1conf *conf)
1636 {
1637 int i;
1638
1639 pr_debug("RAID1 conf printout:\n");
1640 if (!conf) {
1641 pr_debug("(!conf)\n");
1642 return;
1643 }
1644 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1645 conf->raid_disks);
1646
1647 rcu_read_lock();
1648 for (i = 0; i < conf->raid_disks; i++) {
1649 char b[BDEVNAME_SIZE];
1650 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1651 if (rdev)
1652 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1653 i, !test_bit(In_sync, &rdev->flags),
1654 !test_bit(Faulty, &rdev->flags),
1655 bdevname(rdev->bdev,b));
1656 }
1657 rcu_read_unlock();
1658 }
1659
1660 static void close_sync(struct r1conf *conf)
1661 {
1662 int idx;
1663
1664 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1665 _wait_barrier(conf, idx);
1666 _allow_barrier(conf, idx);
1667 }
1668
1669 mempool_exit(&conf->r1buf_pool);
1670 }
1671
1672 static int raid1_spare_active(struct mddev *mddev)
1673 {
1674 int i;
1675 struct r1conf *conf = mddev->private;
1676 int count = 0;
1677 unsigned long flags;
1678
1679 /*
1680 * Find all failed disks within the RAID1 configuration
1681 * and mark them readable.
1682 * Called under mddev lock, so rcu protection not needed.
1683 * device_lock used to avoid races with raid1_end_read_request
1684 * which expects 'In_sync' flags and ->degraded to be consistent.
1685 */
1686 spin_lock_irqsave(&conf->device_lock, flags);
1687 for (i = 0; i < conf->raid_disks; i++) {
1688 struct md_rdev *rdev = conf->mirrors[i].rdev;
1689 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1690 if (repl
1691 && !test_bit(Candidate, &repl->flags)
1692 && repl->recovery_offset == MaxSector
1693 && !test_bit(Faulty, &repl->flags)
1694 && !test_and_set_bit(In_sync, &repl->flags)) {
1695 /* replacement has just become active */
1696 if (!rdev ||
1697 !test_and_clear_bit(In_sync, &rdev->flags))
1698 count++;
1699 if (rdev) {
1700 /* Replaced device not technically
1701 * faulty, but we need to be sure
1702 * it gets removed and never re-added
1703 */
1704 set_bit(Faulty, &rdev->flags);
1705 sysfs_notify_dirent_safe(
1706 rdev->sysfs_state);
1707 }
1708 }
1709 if (rdev
1710 && rdev->recovery_offset == MaxSector
1711 && !test_bit(Faulty, &rdev->flags)
1712 && !test_and_set_bit(In_sync, &rdev->flags)) {
1713 count++;
1714 sysfs_notify_dirent_safe(rdev->sysfs_state);
1715 }
1716 }
1717 mddev->degraded -= count;
1718 spin_unlock_irqrestore(&conf->device_lock, flags);
1719
1720 print_conf(conf);
1721 return count;
1722 }
1723
1724 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 struct r1conf *conf = mddev->private;
1727 int err = -EEXIST;
1728 int mirror = 0;
1729 struct raid1_info *p;
1730 int first = 0;
1731 int last = conf->raid_disks - 1;
1732
1733 if (mddev->recovery_disabled == conf->recovery_disabled)
1734 return -EBUSY;
1735
1736 if (md_integrity_add_rdev(rdev, mddev))
1737 return -ENXIO;
1738
1739 if (rdev->raid_disk >= 0)
1740 first = last = rdev->raid_disk;
1741
1742 /*
1743 * find the disk ... but prefer rdev->saved_raid_disk
1744 * if possible.
1745 */
1746 if (rdev->saved_raid_disk >= 0 &&
1747 rdev->saved_raid_disk >= first &&
1748 rdev->saved_raid_disk < conf->raid_disks &&
1749 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1750 first = last = rdev->saved_raid_disk;
1751
1752 for (mirror = first; mirror <= last; mirror++) {
1753 p = conf->mirrors + mirror;
1754 if (!p->rdev) {
1755 if (mddev->gendisk)
1756 disk_stack_limits(mddev->gendisk, rdev->bdev,
1757 rdev->data_offset << 9);
1758
1759 p->head_position = 0;
1760 rdev->raid_disk = mirror;
1761 err = 0;
1762 /* As all devices are equivalent, we don't need a full recovery
1763 * if this was recently any drive of the array
1764 */
1765 if (rdev->saved_raid_disk < 0)
1766 conf->fullsync = 1;
1767 rcu_assign_pointer(p->rdev, rdev);
1768 break;
1769 }
1770 if (test_bit(WantReplacement, &p->rdev->flags) &&
1771 p[conf->raid_disks].rdev == NULL) {
1772 /* Add this device as a replacement */
1773 clear_bit(In_sync, &rdev->flags);
1774 set_bit(Replacement, &rdev->flags);
1775 rdev->raid_disk = mirror;
1776 err = 0;
1777 conf->fullsync = 1;
1778 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1779 break;
1780 }
1781 }
1782 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1783 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1784 print_conf(conf);
1785 return err;
1786 }
1787
1788 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1789 {
1790 struct r1conf *conf = mddev->private;
1791 int err = 0;
1792 int number = rdev->raid_disk;
1793 struct raid1_info *p = conf->mirrors + number;
1794
1795 if (rdev != p->rdev)
1796 p = conf->mirrors + conf->raid_disks + number;
1797
1798 print_conf(conf);
1799 if (rdev == p->rdev) {
1800 if (test_bit(In_sync, &rdev->flags) ||
1801 atomic_read(&rdev->nr_pending)) {
1802 err = -EBUSY;
1803 goto abort;
1804 }
1805 /* Only remove non-faulty devices if recovery
1806 * is not possible.
1807 */
1808 if (!test_bit(Faulty, &rdev->flags) &&
1809 mddev->recovery_disabled != conf->recovery_disabled &&
1810 mddev->degraded < conf->raid_disks) {
1811 err = -EBUSY;
1812 goto abort;
1813 }
1814 p->rdev = NULL;
1815 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1816 synchronize_rcu();
1817 if (atomic_read(&rdev->nr_pending)) {
1818 /* lost the race, try later */
1819 err = -EBUSY;
1820 p->rdev = rdev;
1821 goto abort;
1822 }
1823 }
1824 if (conf->mirrors[conf->raid_disks + number].rdev) {
1825 /* We just removed a device that is being replaced.
1826 * Move down the replacement. We drain all IO before
1827 * doing this to avoid confusion.
1828 */
1829 struct md_rdev *repl =
1830 conf->mirrors[conf->raid_disks + number].rdev;
1831 freeze_array(conf, 0);
1832 if (atomic_read(&repl->nr_pending)) {
1833 /* It means that some queued IO of retry_list
1834 * hold repl. Thus, we cannot set replacement
1835 * as NULL, avoiding rdev NULL pointer
1836 * dereference in sync_request_write and
1837 * handle_write_finished.
1838 */
1839 err = -EBUSY;
1840 unfreeze_array(conf);
1841 goto abort;
1842 }
1843 clear_bit(Replacement, &repl->flags);
1844 p->rdev = repl;
1845 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1846 unfreeze_array(conf);
1847 }
1848
1849 clear_bit(WantReplacement, &rdev->flags);
1850 err = md_integrity_register(mddev);
1851 }
1852 abort:
1853
1854 print_conf(conf);
1855 return err;
1856 }
1857
1858 static void end_sync_read(struct bio *bio)
1859 {
1860 struct r1bio *r1_bio = get_resync_r1bio(bio);
1861
1862 update_head_pos(r1_bio->read_disk, r1_bio);
1863
1864 /*
1865 * we have read a block, now it needs to be re-written,
1866 * or re-read if the read failed.
1867 * We don't do much here, just schedule handling by raid1d
1868 */
1869 if (!bio->bi_status)
1870 set_bit(R1BIO_Uptodate, &r1_bio->state);
1871
1872 if (atomic_dec_and_test(&r1_bio->remaining))
1873 reschedule_retry(r1_bio);
1874 }
1875
1876 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1877 {
1878 sector_t sync_blocks = 0;
1879 sector_t s = r1_bio->sector;
1880 long sectors_to_go = r1_bio->sectors;
1881
1882 /* make sure these bits don't get cleared. */
1883 do {
1884 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1885 s += sync_blocks;
1886 sectors_to_go -= sync_blocks;
1887 } while (sectors_to_go > 0);
1888 }
1889
1890 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1891 {
1892 if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 struct mddev *mddev = r1_bio->mddev;
1894 int s = r1_bio->sectors;
1895
1896 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1897 test_bit(R1BIO_WriteError, &r1_bio->state))
1898 reschedule_retry(r1_bio);
1899 else {
1900 put_buf(r1_bio);
1901 md_done_sync(mddev, s, uptodate);
1902 }
1903 }
1904 }
1905
1906 static void end_sync_write(struct bio *bio)
1907 {
1908 int uptodate = !bio->bi_status;
1909 struct r1bio *r1_bio = get_resync_r1bio(bio);
1910 struct mddev *mddev = r1_bio->mddev;
1911 struct r1conf *conf = mddev->private;
1912 sector_t first_bad;
1913 int bad_sectors;
1914 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1915
1916 if (!uptodate) {
1917 abort_sync_write(mddev, r1_bio);
1918 set_bit(WriteErrorSeen, &rdev->flags);
1919 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1920 set_bit(MD_RECOVERY_NEEDED, &
1921 mddev->recovery);
1922 set_bit(R1BIO_WriteError, &r1_bio->state);
1923 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1924 &first_bad, &bad_sectors) &&
1925 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1926 r1_bio->sector,
1927 r1_bio->sectors,
1928 &first_bad, &bad_sectors)
1929 )
1930 set_bit(R1BIO_MadeGood, &r1_bio->state);
1931
1932 put_sync_write_buf(r1_bio, uptodate);
1933 }
1934
1935 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1936 int sectors, struct page *page, int rw)
1937 {
1938 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1939 /* success */
1940 return 1;
1941 if (rw == WRITE) {
1942 set_bit(WriteErrorSeen, &rdev->flags);
1943 if (!test_and_set_bit(WantReplacement,
1944 &rdev->flags))
1945 set_bit(MD_RECOVERY_NEEDED, &
1946 rdev->mddev->recovery);
1947 }
1948 /* need to record an error - either for the block or the device */
1949 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1950 md_error(rdev->mddev, rdev);
1951 return 0;
1952 }
1953
1954 static int fix_sync_read_error(struct r1bio *r1_bio)
1955 {
1956 /* Try some synchronous reads of other devices to get
1957 * good data, much like with normal read errors. Only
1958 * read into the pages we already have so we don't
1959 * need to re-issue the read request.
1960 * We don't need to freeze the array, because being in an
1961 * active sync request, there is no normal IO, and
1962 * no overlapping syncs.
1963 * We don't need to check is_badblock() again as we
1964 * made sure that anything with a bad block in range
1965 * will have bi_end_io clear.
1966 */
1967 struct mddev *mddev = r1_bio->mddev;
1968 struct r1conf *conf = mddev->private;
1969 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1970 struct page **pages = get_resync_pages(bio)->pages;
1971 sector_t sect = r1_bio->sector;
1972 int sectors = r1_bio->sectors;
1973 int idx = 0;
1974 struct md_rdev *rdev;
1975
1976 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1977 if (test_bit(FailFast, &rdev->flags)) {
1978 /* Don't try recovering from here - just fail it
1979 * ... unless it is the last working device of course */
1980 md_error(mddev, rdev);
1981 if (test_bit(Faulty, &rdev->flags))
1982 /* Don't try to read from here, but make sure
1983 * put_buf does it's thing
1984 */
1985 bio->bi_end_io = end_sync_write;
1986 }
1987
1988 while(sectors) {
1989 int s = sectors;
1990 int d = r1_bio->read_disk;
1991 int success = 0;
1992 int start;
1993
1994 if (s > (PAGE_SIZE>>9))
1995 s = PAGE_SIZE >> 9;
1996 do {
1997 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1998 /* No rcu protection needed here devices
1999 * can only be removed when no resync is
2000 * active, and resync is currently active
2001 */
2002 rdev = conf->mirrors[d].rdev;
2003 if (sync_page_io(rdev, sect, s<<9,
2004 pages[idx],
2005 REQ_OP_READ, 0, false)) {
2006 success = 1;
2007 break;
2008 }
2009 }
2010 d++;
2011 if (d == conf->raid_disks * 2)
2012 d = 0;
2013 } while (!success && d != r1_bio->read_disk);
2014
2015 if (!success) {
2016 char b[BDEVNAME_SIZE];
2017 int abort = 0;
2018 /* Cannot read from anywhere, this block is lost.
2019 * Record a bad block on each device. If that doesn't
2020 * work just disable and interrupt the recovery.
2021 * Don't fail devices as that won't really help.
2022 */
2023 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2024 mdname(mddev), bio_devname(bio, b),
2025 (unsigned long long)r1_bio->sector);
2026 for (d = 0; d < conf->raid_disks * 2; d++) {
2027 rdev = conf->mirrors[d].rdev;
2028 if (!rdev || test_bit(Faulty, &rdev->flags))
2029 continue;
2030 if (!rdev_set_badblocks(rdev, sect, s, 0))
2031 abort = 1;
2032 }
2033 if (abort) {
2034 conf->recovery_disabled =
2035 mddev->recovery_disabled;
2036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2037 md_done_sync(mddev, r1_bio->sectors, 0);
2038 put_buf(r1_bio);
2039 return 0;
2040 }
2041 /* Try next page */
2042 sectors -= s;
2043 sect += s;
2044 idx++;
2045 continue;
2046 }
2047
2048 start = d;
2049 /* write it back and re-read */
2050 while (d != r1_bio->read_disk) {
2051 if (d == 0)
2052 d = conf->raid_disks * 2;
2053 d--;
2054 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055 continue;
2056 rdev = conf->mirrors[d].rdev;
2057 if (r1_sync_page_io(rdev, sect, s,
2058 pages[idx],
2059 WRITE) == 0) {
2060 r1_bio->bios[d]->bi_end_io = NULL;
2061 rdev_dec_pending(rdev, mddev);
2062 }
2063 }
2064 d = start;
2065 while (d != r1_bio->read_disk) {
2066 if (d == 0)
2067 d = conf->raid_disks * 2;
2068 d--;
2069 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2070 continue;
2071 rdev = conf->mirrors[d].rdev;
2072 if (r1_sync_page_io(rdev, sect, s,
2073 pages[idx],
2074 READ) != 0)
2075 atomic_add(s, &rdev->corrected_errors);
2076 }
2077 sectors -= s;
2078 sect += s;
2079 idx ++;
2080 }
2081 set_bit(R1BIO_Uptodate, &r1_bio->state);
2082 bio->bi_status = 0;
2083 return 1;
2084 }
2085
2086 static void process_checks(struct r1bio *r1_bio)
2087 {
2088 /* We have read all readable devices. If we haven't
2089 * got the block, then there is no hope left.
2090 * If we have, then we want to do a comparison
2091 * and skip the write if everything is the same.
2092 * If any blocks failed to read, then we need to
2093 * attempt an over-write
2094 */
2095 struct mddev *mddev = r1_bio->mddev;
2096 struct r1conf *conf = mddev->private;
2097 int primary;
2098 int i;
2099 int vcnt;
2100
2101 /* Fix variable parts of all bios */
2102 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2103 for (i = 0; i < conf->raid_disks * 2; i++) {
2104 blk_status_t status;
2105 struct bio *b = r1_bio->bios[i];
2106 struct resync_pages *rp = get_resync_pages(b);
2107 if (b->bi_end_io != end_sync_read)
2108 continue;
2109 /* fixup the bio for reuse, but preserve errno */
2110 status = b->bi_status;
2111 bio_reset(b);
2112 b->bi_status = status;
2113 b->bi_iter.bi_sector = r1_bio->sector +
2114 conf->mirrors[i].rdev->data_offset;
2115 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2116 b->bi_end_io = end_sync_read;
2117 rp->raid_bio = r1_bio;
2118 b->bi_private = rp;
2119
2120 /* initialize bvec table again */
2121 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2122 }
2123 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2124 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2125 !r1_bio->bios[primary]->bi_status) {
2126 r1_bio->bios[primary]->bi_end_io = NULL;
2127 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2128 break;
2129 }
2130 r1_bio->read_disk = primary;
2131 for (i = 0; i < conf->raid_disks * 2; i++) {
2132 int j = 0;
2133 struct bio *pbio = r1_bio->bios[primary];
2134 struct bio *sbio = r1_bio->bios[i];
2135 blk_status_t status = sbio->bi_status;
2136 struct page **ppages = get_resync_pages(pbio)->pages;
2137 struct page **spages = get_resync_pages(sbio)->pages;
2138 struct bio_vec *bi;
2139 int page_len[RESYNC_PAGES] = { 0 };
2140 struct bvec_iter_all iter_all;
2141
2142 if (sbio->bi_end_io != end_sync_read)
2143 continue;
2144 /* Now we can 'fixup' the error value */
2145 sbio->bi_status = 0;
2146
2147 bio_for_each_segment_all(bi, sbio, iter_all)
2148 page_len[j++] = bi->bv_len;
2149
2150 if (!status) {
2151 for (j = vcnt; j-- ; ) {
2152 if (memcmp(page_address(ppages[j]),
2153 page_address(spages[j]),
2154 page_len[j]))
2155 break;
2156 }
2157 } else
2158 j = 0;
2159 if (j >= 0)
2160 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2161 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2162 && !status)) {
2163 /* No need to write to this device. */
2164 sbio->bi_end_io = NULL;
2165 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2166 continue;
2167 }
2168
2169 bio_copy_data(sbio, pbio);
2170 }
2171 }
2172
2173 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2174 {
2175 struct r1conf *conf = mddev->private;
2176 int i;
2177 int disks = conf->raid_disks * 2;
2178 struct bio *wbio;
2179
2180 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2181 /* ouch - failed to read all of that. */
2182 if (!fix_sync_read_error(r1_bio))
2183 return;
2184
2185 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2186 process_checks(r1_bio);
2187
2188 /*
2189 * schedule writes
2190 */
2191 atomic_set(&r1_bio->remaining, 1);
2192 for (i = 0; i < disks ; i++) {
2193 wbio = r1_bio->bios[i];
2194 if (wbio->bi_end_io == NULL ||
2195 (wbio->bi_end_io == end_sync_read &&
2196 (i == r1_bio->read_disk ||
2197 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2198 continue;
2199 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2200 abort_sync_write(mddev, r1_bio);
2201 continue;
2202 }
2203
2204 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2205 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2206 wbio->bi_opf |= MD_FAILFAST;
2207
2208 wbio->bi_end_io = end_sync_write;
2209 atomic_inc(&r1_bio->remaining);
2210 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2211
2212 submit_bio_noacct(wbio);
2213 }
2214
2215 put_sync_write_buf(r1_bio, 1);
2216 }
2217
2218 /*
2219 * This is a kernel thread which:
2220 *
2221 * 1. Retries failed read operations on working mirrors.
2222 * 2. Updates the raid superblock when problems encounter.
2223 * 3. Performs writes following reads for array synchronising.
2224 */
2225
2226 static void fix_read_error(struct r1conf *conf, int read_disk,
2227 sector_t sect, int sectors)
2228 {
2229 struct mddev *mddev = conf->mddev;
2230 while(sectors) {
2231 int s = sectors;
2232 int d = read_disk;
2233 int success = 0;
2234 int start;
2235 struct md_rdev *rdev;
2236
2237 if (s > (PAGE_SIZE>>9))
2238 s = PAGE_SIZE >> 9;
2239
2240 do {
2241 sector_t first_bad;
2242 int bad_sectors;
2243
2244 rcu_read_lock();
2245 rdev = rcu_dereference(conf->mirrors[d].rdev);
2246 if (rdev &&
2247 (test_bit(In_sync, &rdev->flags) ||
2248 (!test_bit(Faulty, &rdev->flags) &&
2249 rdev->recovery_offset >= sect + s)) &&
2250 is_badblock(rdev, sect, s,
2251 &first_bad, &bad_sectors) == 0) {
2252 atomic_inc(&rdev->nr_pending);
2253 rcu_read_unlock();
2254 if (sync_page_io(rdev, sect, s<<9,
2255 conf->tmppage, REQ_OP_READ, 0, false))
2256 success = 1;
2257 rdev_dec_pending(rdev, mddev);
2258 if (success)
2259 break;
2260 } else
2261 rcu_read_unlock();
2262 d++;
2263 if (d == conf->raid_disks * 2)
2264 d = 0;
2265 } while (!success && d != read_disk);
2266
2267 if (!success) {
2268 /* Cannot read from anywhere - mark it bad */
2269 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2270 if (!rdev_set_badblocks(rdev, sect, s, 0))
2271 md_error(mddev, rdev);
2272 break;
2273 }
2274 /* write it back and re-read */
2275 start = d;
2276 while (d != read_disk) {
2277 if (d==0)
2278 d = conf->raid_disks * 2;
2279 d--;
2280 rcu_read_lock();
2281 rdev = rcu_dereference(conf->mirrors[d].rdev);
2282 if (rdev &&
2283 !test_bit(Faulty, &rdev->flags)) {
2284 atomic_inc(&rdev->nr_pending);
2285 rcu_read_unlock();
2286 r1_sync_page_io(rdev, sect, s,
2287 conf->tmppage, WRITE);
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
2291 }
2292 d = start;
2293 while (d != read_disk) {
2294 char b[BDEVNAME_SIZE];
2295 if (d==0)
2296 d = conf->raid_disks * 2;
2297 d--;
2298 rcu_read_lock();
2299 rdev = rcu_dereference(conf->mirrors[d].rdev);
2300 if (rdev &&
2301 !test_bit(Faulty, &rdev->flags)) {
2302 atomic_inc(&rdev->nr_pending);
2303 rcu_read_unlock();
2304 if (r1_sync_page_io(rdev, sect, s,
2305 conf->tmppage, READ)) {
2306 atomic_add(s, &rdev->corrected_errors);
2307 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2308 mdname(mddev), s,
2309 (unsigned long long)(sect +
2310 rdev->data_offset),
2311 bdevname(rdev->bdev, b));
2312 }
2313 rdev_dec_pending(rdev, mddev);
2314 } else
2315 rcu_read_unlock();
2316 }
2317 sectors -= s;
2318 sect += s;
2319 }
2320 }
2321
2322 static int narrow_write_error(struct r1bio *r1_bio, int i)
2323 {
2324 struct mddev *mddev = r1_bio->mddev;
2325 struct r1conf *conf = mddev->private;
2326 struct md_rdev *rdev = conf->mirrors[i].rdev;
2327
2328 /* bio has the data to be written to device 'i' where
2329 * we just recently had a write error.
2330 * We repeatedly clone the bio and trim down to one block,
2331 * then try the write. Where the write fails we record
2332 * a bad block.
2333 * It is conceivable that the bio doesn't exactly align with
2334 * blocks. We must handle this somehow.
2335 *
2336 * We currently own a reference on the rdev.
2337 */
2338
2339 int block_sectors;
2340 sector_t sector;
2341 int sectors;
2342 int sect_to_write = r1_bio->sectors;
2343 int ok = 1;
2344
2345 if (rdev->badblocks.shift < 0)
2346 return 0;
2347
2348 block_sectors = roundup(1 << rdev->badblocks.shift,
2349 bdev_logical_block_size(rdev->bdev) >> 9);
2350 sector = r1_bio->sector;
2351 sectors = ((sector + block_sectors)
2352 & ~(sector_t)(block_sectors - 1))
2353 - sector;
2354
2355 while (sect_to_write) {
2356 struct bio *wbio;
2357 if (sectors > sect_to_write)
2358 sectors = sect_to_write;
2359 /* Write at 'sector' for 'sectors'*/
2360
2361 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2362 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2363 GFP_NOIO,
2364 &mddev->bio_set);
2365 } else {
2366 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2367 &mddev->bio_set);
2368 }
2369
2370 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2371 wbio->bi_iter.bi_sector = r1_bio->sector;
2372 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2373
2374 bio_trim(wbio, sector - r1_bio->sector, sectors);
2375 wbio->bi_iter.bi_sector += rdev->data_offset;
2376 bio_set_dev(wbio, rdev->bdev);
2377
2378 if (submit_bio_wait(wbio) < 0)
2379 /* failure! */
2380 ok = rdev_set_badblocks(rdev, sector,
2381 sectors, 0)
2382 && ok;
2383
2384 bio_put(wbio);
2385 sect_to_write -= sectors;
2386 sector += sectors;
2387 sectors = block_sectors;
2388 }
2389 return ok;
2390 }
2391
2392 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394 int m;
2395 int s = r1_bio->sectors;
2396 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
2398 struct bio *bio = r1_bio->bios[m];
2399 if (bio->bi_end_io == NULL)
2400 continue;
2401 if (!bio->bi_status &&
2402 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2403 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2404 }
2405 if (bio->bi_status &&
2406 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2407 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2408 md_error(conf->mddev, rdev);
2409 }
2410 }
2411 put_buf(r1_bio);
2412 md_done_sync(conf->mddev, s, 1);
2413 }
2414
2415 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2416 {
2417 int m, idx;
2418 bool fail = false;
2419
2420 for (m = 0; m < conf->raid_disks * 2 ; m++)
2421 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2422 struct md_rdev *rdev = conf->mirrors[m].rdev;
2423 rdev_clear_badblocks(rdev,
2424 r1_bio->sector,
2425 r1_bio->sectors, 0);
2426 rdev_dec_pending(rdev, conf->mddev);
2427 } else if (r1_bio->bios[m] != NULL) {
2428 /* This drive got a write error. We need to
2429 * narrow down and record precise write
2430 * errors.
2431 */
2432 fail = true;
2433 if (!narrow_write_error(r1_bio, m)) {
2434 md_error(conf->mddev,
2435 conf->mirrors[m].rdev);
2436 /* an I/O failed, we can't clear the bitmap */
2437 set_bit(R1BIO_Degraded, &r1_bio->state);
2438 }
2439 rdev_dec_pending(conf->mirrors[m].rdev,
2440 conf->mddev);
2441 }
2442 if (fail) {
2443 spin_lock_irq(&conf->device_lock);
2444 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2445 idx = sector_to_idx(r1_bio->sector);
2446 atomic_inc(&conf->nr_queued[idx]);
2447 spin_unlock_irq(&conf->device_lock);
2448 /*
2449 * In case freeze_array() is waiting for condition
2450 * get_unqueued_pending() == extra to be true.
2451 */
2452 wake_up(&conf->wait_barrier);
2453 md_wakeup_thread(conf->mddev->thread);
2454 } else {
2455 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2456 close_write(r1_bio);
2457 raid_end_bio_io(r1_bio);
2458 }
2459 }
2460
2461 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 struct mddev *mddev = conf->mddev;
2464 struct bio *bio;
2465 struct md_rdev *rdev;
2466
2467 clear_bit(R1BIO_ReadError, &r1_bio->state);
2468 /* we got a read error. Maybe the drive is bad. Maybe just
2469 * the block and we can fix it.
2470 * We freeze all other IO, and try reading the block from
2471 * other devices. When we find one, we re-write
2472 * and check it that fixes the read error.
2473 * This is all done synchronously while the array is
2474 * frozen
2475 */
2476
2477 bio = r1_bio->bios[r1_bio->read_disk];
2478 bio_put(bio);
2479 r1_bio->bios[r1_bio->read_disk] = NULL;
2480
2481 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2482 if (mddev->ro == 0
2483 && !test_bit(FailFast, &rdev->flags)) {
2484 freeze_array(conf, 1);
2485 fix_read_error(conf, r1_bio->read_disk,
2486 r1_bio->sector, r1_bio->sectors);
2487 unfreeze_array(conf);
2488 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2489 md_error(mddev, rdev);
2490 } else {
2491 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2492 }
2493
2494 rdev_dec_pending(rdev, conf->mddev);
2495 allow_barrier(conf, r1_bio->sector);
2496 bio = r1_bio->master_bio;
2497
2498 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2499 r1_bio->state = 0;
2500 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2501 }
2502
2503 static void raid1d(struct md_thread *thread)
2504 {
2505 struct mddev *mddev = thread->mddev;
2506 struct r1bio *r1_bio;
2507 unsigned long flags;
2508 struct r1conf *conf = mddev->private;
2509 struct list_head *head = &conf->retry_list;
2510 struct blk_plug plug;
2511 int idx;
2512
2513 md_check_recovery(mddev);
2514
2515 if (!list_empty_careful(&conf->bio_end_io_list) &&
2516 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2517 LIST_HEAD(tmp);
2518 spin_lock_irqsave(&conf->device_lock, flags);
2519 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2520 list_splice_init(&conf->bio_end_io_list, &tmp);
2521 spin_unlock_irqrestore(&conf->device_lock, flags);
2522 while (!list_empty(&tmp)) {
2523 r1_bio = list_first_entry(&tmp, struct r1bio,
2524 retry_list);
2525 list_del(&r1_bio->retry_list);
2526 idx = sector_to_idx(r1_bio->sector);
2527 atomic_dec(&conf->nr_queued[idx]);
2528 if (mddev->degraded)
2529 set_bit(R1BIO_Degraded, &r1_bio->state);
2530 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2531 close_write(r1_bio);
2532 raid_end_bio_io(r1_bio);
2533 }
2534 }
2535
2536 blk_start_plug(&plug);
2537 for (;;) {
2538
2539 flush_pending_writes(conf);
2540
2541 spin_lock_irqsave(&conf->device_lock, flags);
2542 if (list_empty(head)) {
2543 spin_unlock_irqrestore(&conf->device_lock, flags);
2544 break;
2545 }
2546 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2547 list_del(head->prev);
2548 idx = sector_to_idx(r1_bio->sector);
2549 atomic_dec(&conf->nr_queued[idx]);
2550 spin_unlock_irqrestore(&conf->device_lock, flags);
2551
2552 mddev = r1_bio->mddev;
2553 conf = mddev->private;
2554 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2555 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2556 test_bit(R1BIO_WriteError, &r1_bio->state))
2557 handle_sync_write_finished(conf, r1_bio);
2558 else
2559 sync_request_write(mddev, r1_bio);
2560 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2561 test_bit(R1BIO_WriteError, &r1_bio->state))
2562 handle_write_finished(conf, r1_bio);
2563 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2564 handle_read_error(conf, r1_bio);
2565 else
2566 WARN_ON_ONCE(1);
2567
2568 cond_resched();
2569 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2570 md_check_recovery(mddev);
2571 }
2572 blk_finish_plug(&plug);
2573 }
2574
2575 static int init_resync(struct r1conf *conf)
2576 {
2577 int buffs;
2578
2579 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2580 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2581
2582 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2583 r1buf_pool_free, conf->poolinfo);
2584 }
2585
2586 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2587 {
2588 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2589 struct resync_pages *rps;
2590 struct bio *bio;
2591 int i;
2592
2593 for (i = conf->poolinfo->raid_disks; i--; ) {
2594 bio = r1bio->bios[i];
2595 rps = bio->bi_private;
2596 bio_reset(bio);
2597 bio->bi_private = rps;
2598 }
2599 r1bio->master_bio = NULL;
2600 return r1bio;
2601 }
2602
2603 /*
2604 * perform a "sync" on one "block"
2605 *
2606 * We need to make sure that no normal I/O request - particularly write
2607 * requests - conflict with active sync requests.
2608 *
2609 * This is achieved by tracking pending requests and a 'barrier' concept
2610 * that can be installed to exclude normal IO requests.
2611 */
2612
2613 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2614 int *skipped)
2615 {
2616 struct r1conf *conf = mddev->private;
2617 struct r1bio *r1_bio;
2618 struct bio *bio;
2619 sector_t max_sector, nr_sectors;
2620 int disk = -1;
2621 int i;
2622 int wonly = -1;
2623 int write_targets = 0, read_targets = 0;
2624 sector_t sync_blocks;
2625 int still_degraded = 0;
2626 int good_sectors = RESYNC_SECTORS;
2627 int min_bad = 0; /* number of sectors that are bad in all devices */
2628 int idx = sector_to_idx(sector_nr);
2629 int page_idx = 0;
2630
2631 if (!mempool_initialized(&conf->r1buf_pool))
2632 if (init_resync(conf))
2633 return 0;
2634
2635 max_sector = mddev->dev_sectors;
2636 if (sector_nr >= max_sector) {
2637 /* If we aborted, we need to abort the
2638 * sync on the 'current' bitmap chunk (there will
2639 * only be one in raid1 resync.
2640 * We can find the current addess in mddev->curr_resync
2641 */
2642 if (mddev->curr_resync < max_sector) /* aborted */
2643 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2644 &sync_blocks, 1);
2645 else /* completed sync */
2646 conf->fullsync = 0;
2647
2648 md_bitmap_close_sync(mddev->bitmap);
2649 close_sync(conf);
2650
2651 if (mddev_is_clustered(mddev)) {
2652 conf->cluster_sync_low = 0;
2653 conf->cluster_sync_high = 0;
2654 }
2655 return 0;
2656 }
2657
2658 if (mddev->bitmap == NULL &&
2659 mddev->recovery_cp == MaxSector &&
2660 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2661 conf->fullsync == 0) {
2662 *skipped = 1;
2663 return max_sector - sector_nr;
2664 }
2665 /* before building a request, check if we can skip these blocks..
2666 * This call the bitmap_start_sync doesn't actually record anything
2667 */
2668 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2669 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2670 /* We can skip this block, and probably several more */
2671 *skipped = 1;
2672 return sync_blocks;
2673 }
2674
2675 /*
2676 * If there is non-resync activity waiting for a turn, then let it
2677 * though before starting on this new sync request.
2678 */
2679 if (atomic_read(&conf->nr_waiting[idx]))
2680 schedule_timeout_uninterruptible(1);
2681
2682 /* we are incrementing sector_nr below. To be safe, we check against
2683 * sector_nr + two times RESYNC_SECTORS
2684 */
2685
2686 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2687 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2688
2689
2690 if (raise_barrier(conf, sector_nr))
2691 return 0;
2692
2693 r1_bio = raid1_alloc_init_r1buf(conf);
2694
2695 rcu_read_lock();
2696 /*
2697 * If we get a correctably read error during resync or recovery,
2698 * we might want to read from a different device. So we
2699 * flag all drives that could conceivably be read from for READ,
2700 * and any others (which will be non-In_sync devices) for WRITE.
2701 * If a read fails, we try reading from something else for which READ
2702 * is OK.
2703 */
2704
2705 r1_bio->mddev = mddev;
2706 r1_bio->sector = sector_nr;
2707 r1_bio->state = 0;
2708 set_bit(R1BIO_IsSync, &r1_bio->state);
2709 /* make sure good_sectors won't go across barrier unit boundary */
2710 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2711
2712 for (i = 0; i < conf->raid_disks * 2; i++) {
2713 struct md_rdev *rdev;
2714 bio = r1_bio->bios[i];
2715
2716 rdev = rcu_dereference(conf->mirrors[i].rdev);
2717 if (rdev == NULL ||
2718 test_bit(Faulty, &rdev->flags)) {
2719 if (i < conf->raid_disks)
2720 still_degraded = 1;
2721 } else if (!test_bit(In_sync, &rdev->flags)) {
2722 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2723 bio->bi_end_io = end_sync_write;
2724 write_targets ++;
2725 } else {
2726 /* may need to read from here */
2727 sector_t first_bad = MaxSector;
2728 int bad_sectors;
2729
2730 if (is_badblock(rdev, sector_nr, good_sectors,
2731 &first_bad, &bad_sectors)) {
2732 if (first_bad > sector_nr)
2733 good_sectors = first_bad - sector_nr;
2734 else {
2735 bad_sectors -= (sector_nr - first_bad);
2736 if (min_bad == 0 ||
2737 min_bad > bad_sectors)
2738 min_bad = bad_sectors;
2739 }
2740 }
2741 if (sector_nr < first_bad) {
2742 if (test_bit(WriteMostly, &rdev->flags)) {
2743 if (wonly < 0)
2744 wonly = i;
2745 } else {
2746 if (disk < 0)
2747 disk = i;
2748 }
2749 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2750 bio->bi_end_io = end_sync_read;
2751 read_targets++;
2752 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2753 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2754 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2755 /*
2756 * The device is suitable for reading (InSync),
2757 * but has bad block(s) here. Let's try to correct them,
2758 * if we are doing resync or repair. Otherwise, leave
2759 * this device alone for this sync request.
2760 */
2761 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2762 bio->bi_end_io = end_sync_write;
2763 write_targets++;
2764 }
2765 }
2766 if (rdev && bio->bi_end_io) {
2767 atomic_inc(&rdev->nr_pending);
2768 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2769 bio_set_dev(bio, rdev->bdev);
2770 if (test_bit(FailFast, &rdev->flags))
2771 bio->bi_opf |= MD_FAILFAST;
2772 }
2773 }
2774 rcu_read_unlock();
2775 if (disk < 0)
2776 disk = wonly;
2777 r1_bio->read_disk = disk;
2778
2779 if (read_targets == 0 && min_bad > 0) {
2780 /* These sectors are bad on all InSync devices, so we
2781 * need to mark them bad on all write targets
2782 */
2783 int ok = 1;
2784 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2785 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2786 struct md_rdev *rdev = conf->mirrors[i].rdev;
2787 ok = rdev_set_badblocks(rdev, sector_nr,
2788 min_bad, 0
2789 ) && ok;
2790 }
2791 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2792 *skipped = 1;
2793 put_buf(r1_bio);
2794
2795 if (!ok) {
2796 /* Cannot record the badblocks, so need to
2797 * abort the resync.
2798 * If there are multiple read targets, could just
2799 * fail the really bad ones ???
2800 */
2801 conf->recovery_disabled = mddev->recovery_disabled;
2802 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2803 return 0;
2804 } else
2805 return min_bad;
2806
2807 }
2808 if (min_bad > 0 && min_bad < good_sectors) {
2809 /* only resync enough to reach the next bad->good
2810 * transition */
2811 good_sectors = min_bad;
2812 }
2813
2814 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2815 /* extra read targets are also write targets */
2816 write_targets += read_targets-1;
2817
2818 if (write_targets == 0 || read_targets == 0) {
2819 /* There is nowhere to write, so all non-sync
2820 * drives must be failed - so we are finished
2821 */
2822 sector_t rv;
2823 if (min_bad > 0)
2824 max_sector = sector_nr + min_bad;
2825 rv = max_sector - sector_nr;
2826 *skipped = 1;
2827 put_buf(r1_bio);
2828 return rv;
2829 }
2830
2831 if (max_sector > mddev->resync_max)
2832 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2833 if (max_sector > sector_nr + good_sectors)
2834 max_sector = sector_nr + good_sectors;
2835 nr_sectors = 0;
2836 sync_blocks = 0;
2837 do {
2838 struct page *page;
2839 int len = PAGE_SIZE;
2840 if (sector_nr + (len>>9) > max_sector)
2841 len = (max_sector - sector_nr) << 9;
2842 if (len == 0)
2843 break;
2844 if (sync_blocks == 0) {
2845 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2846 &sync_blocks, still_degraded) &&
2847 !conf->fullsync &&
2848 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2849 break;
2850 if ((len >> 9) > sync_blocks)
2851 len = sync_blocks<<9;
2852 }
2853
2854 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2855 struct resync_pages *rp;
2856
2857 bio = r1_bio->bios[i];
2858 rp = get_resync_pages(bio);
2859 if (bio->bi_end_io) {
2860 page = resync_fetch_page(rp, page_idx);
2861
2862 /*
2863 * won't fail because the vec table is big
2864 * enough to hold all these pages
2865 */
2866 bio_add_page(bio, page, len, 0);
2867 }
2868 }
2869 nr_sectors += len>>9;
2870 sector_nr += len>>9;
2871 sync_blocks -= (len>>9);
2872 } while (++page_idx < RESYNC_PAGES);
2873
2874 r1_bio->sectors = nr_sectors;
2875
2876 if (mddev_is_clustered(mddev) &&
2877 conf->cluster_sync_high < sector_nr + nr_sectors) {
2878 conf->cluster_sync_low = mddev->curr_resync_completed;
2879 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2880 /* Send resync message */
2881 md_cluster_ops->resync_info_update(mddev,
2882 conf->cluster_sync_low,
2883 conf->cluster_sync_high);
2884 }
2885
2886 /* For a user-requested sync, we read all readable devices and do a
2887 * compare
2888 */
2889 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2890 atomic_set(&r1_bio->remaining, read_targets);
2891 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2892 bio = r1_bio->bios[i];
2893 if (bio->bi_end_io == end_sync_read) {
2894 read_targets--;
2895 md_sync_acct_bio(bio, nr_sectors);
2896 if (read_targets == 1)
2897 bio->bi_opf &= ~MD_FAILFAST;
2898 submit_bio_noacct(bio);
2899 }
2900 }
2901 } else {
2902 atomic_set(&r1_bio->remaining, 1);
2903 bio = r1_bio->bios[r1_bio->read_disk];
2904 md_sync_acct_bio(bio, nr_sectors);
2905 if (read_targets == 1)
2906 bio->bi_opf &= ~MD_FAILFAST;
2907 submit_bio_noacct(bio);
2908 }
2909 return nr_sectors;
2910 }
2911
2912 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2913 {
2914 if (sectors)
2915 return sectors;
2916
2917 return mddev->dev_sectors;
2918 }
2919
2920 static struct r1conf *setup_conf(struct mddev *mddev)
2921 {
2922 struct r1conf *conf;
2923 int i;
2924 struct raid1_info *disk;
2925 struct md_rdev *rdev;
2926 int err = -ENOMEM;
2927
2928 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2929 if (!conf)
2930 goto abort;
2931
2932 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2933 sizeof(atomic_t), GFP_KERNEL);
2934 if (!conf->nr_pending)
2935 goto abort;
2936
2937 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2938 sizeof(atomic_t), GFP_KERNEL);
2939 if (!conf->nr_waiting)
2940 goto abort;
2941
2942 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2943 sizeof(atomic_t), GFP_KERNEL);
2944 if (!conf->nr_queued)
2945 goto abort;
2946
2947 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2948 sizeof(atomic_t), GFP_KERNEL);
2949 if (!conf->barrier)
2950 goto abort;
2951
2952 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2953 mddev->raid_disks, 2),
2954 GFP_KERNEL);
2955 if (!conf->mirrors)
2956 goto abort;
2957
2958 conf->tmppage = alloc_page(GFP_KERNEL);
2959 if (!conf->tmppage)
2960 goto abort;
2961
2962 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2963 if (!conf->poolinfo)
2964 goto abort;
2965 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2966 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2967 rbio_pool_free, conf->poolinfo);
2968 if (err)
2969 goto abort;
2970
2971 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2972 if (err)
2973 goto abort;
2974
2975 conf->poolinfo->mddev = mddev;
2976
2977 err = -EINVAL;
2978 spin_lock_init(&conf->device_lock);
2979 rdev_for_each(rdev, mddev) {
2980 int disk_idx = rdev->raid_disk;
2981 if (disk_idx >= mddev->raid_disks
2982 || disk_idx < 0)
2983 continue;
2984 if (test_bit(Replacement, &rdev->flags))
2985 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2986 else
2987 disk = conf->mirrors + disk_idx;
2988
2989 if (disk->rdev)
2990 goto abort;
2991 disk->rdev = rdev;
2992 disk->head_position = 0;
2993 disk->seq_start = MaxSector;
2994 }
2995 conf->raid_disks = mddev->raid_disks;
2996 conf->mddev = mddev;
2997 INIT_LIST_HEAD(&conf->retry_list);
2998 INIT_LIST_HEAD(&conf->bio_end_io_list);
2999
3000 spin_lock_init(&conf->resync_lock);
3001 init_waitqueue_head(&conf->wait_barrier);
3002
3003 bio_list_init(&conf->pending_bio_list);
3004 conf->pending_count = 0;
3005 conf->recovery_disabled = mddev->recovery_disabled - 1;
3006
3007 err = -EIO;
3008 for (i = 0; i < conf->raid_disks * 2; i++) {
3009
3010 disk = conf->mirrors + i;
3011
3012 if (i < conf->raid_disks &&
3013 disk[conf->raid_disks].rdev) {
3014 /* This slot has a replacement. */
3015 if (!disk->rdev) {
3016 /* No original, just make the replacement
3017 * a recovering spare
3018 */
3019 disk->rdev =
3020 disk[conf->raid_disks].rdev;
3021 disk[conf->raid_disks].rdev = NULL;
3022 } else if (!test_bit(In_sync, &disk->rdev->flags))
3023 /* Original is not in_sync - bad */
3024 goto abort;
3025 }
3026
3027 if (!disk->rdev ||
3028 !test_bit(In_sync, &disk->rdev->flags)) {
3029 disk->head_position = 0;
3030 if (disk->rdev &&
3031 (disk->rdev->saved_raid_disk < 0))
3032 conf->fullsync = 1;
3033 }
3034 }
3035
3036 err = -ENOMEM;
3037 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3038 if (!conf->thread)
3039 goto abort;
3040
3041 return conf;
3042
3043 abort:
3044 if (conf) {
3045 mempool_exit(&conf->r1bio_pool);
3046 kfree(conf->mirrors);
3047 safe_put_page(conf->tmppage);
3048 kfree(conf->poolinfo);
3049 kfree(conf->nr_pending);
3050 kfree(conf->nr_waiting);
3051 kfree(conf->nr_queued);
3052 kfree(conf->barrier);
3053 bioset_exit(&conf->bio_split);
3054 kfree(conf);
3055 }
3056 return ERR_PTR(err);
3057 }
3058
3059 static void raid1_free(struct mddev *mddev, void *priv);
3060 static int raid1_run(struct mddev *mddev)
3061 {
3062 struct r1conf *conf;
3063 int i;
3064 struct md_rdev *rdev;
3065 int ret;
3066 bool discard_supported = false;
3067
3068 if (mddev->level != 1) {
3069 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3070 mdname(mddev), mddev->level);
3071 return -EIO;
3072 }
3073 if (mddev->reshape_position != MaxSector) {
3074 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3075 mdname(mddev));
3076 return -EIO;
3077 }
3078 if (mddev_init_writes_pending(mddev) < 0)
3079 return -ENOMEM;
3080 /*
3081 * copy the already verified devices into our private RAID1
3082 * bookkeeping area. [whatever we allocate in run(),
3083 * should be freed in raid1_free()]
3084 */
3085 if (mddev->private == NULL)
3086 conf = setup_conf(mddev);
3087 else
3088 conf = mddev->private;
3089
3090 if (IS_ERR(conf))
3091 return PTR_ERR(conf);
3092
3093 if (mddev->queue) {
3094 blk_queue_max_write_same_sectors(mddev->queue, 0);
3095 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3096 }
3097
3098 rdev_for_each(rdev, mddev) {
3099 if (!mddev->gendisk)
3100 continue;
3101 disk_stack_limits(mddev->gendisk, rdev->bdev,
3102 rdev->data_offset << 9);
3103 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3104 discard_supported = true;
3105 }
3106
3107 mddev->degraded = 0;
3108 for (i = 0; i < conf->raid_disks; i++)
3109 if (conf->mirrors[i].rdev == NULL ||
3110 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3111 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3112 mddev->degraded++;
3113 /*
3114 * RAID1 needs at least one disk in active
3115 */
3116 if (conf->raid_disks - mddev->degraded < 1) {
3117 ret = -EINVAL;
3118 goto abort;
3119 }
3120
3121 if (conf->raid_disks - mddev->degraded == 1)
3122 mddev->recovery_cp = MaxSector;
3123
3124 if (mddev->recovery_cp != MaxSector)
3125 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3126 mdname(mddev));
3127 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3128 mdname(mddev), mddev->raid_disks - mddev->degraded,
3129 mddev->raid_disks);
3130
3131 /*
3132 * Ok, everything is just fine now
3133 */
3134 mddev->thread = conf->thread;
3135 conf->thread = NULL;
3136 mddev->private = conf;
3137 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3138
3139 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3140
3141 if (mddev->queue) {
3142 if (discard_supported)
3143 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3144 mddev->queue);
3145 else
3146 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3147 mddev->queue);
3148 }
3149
3150 ret = md_integrity_register(mddev);
3151 if (ret) {
3152 md_unregister_thread(&mddev->thread);
3153 goto abort;
3154 }
3155 return 0;
3156
3157 abort:
3158 raid1_free(mddev, conf);
3159 return ret;
3160 }
3161
3162 static void raid1_free(struct mddev *mddev, void *priv)
3163 {
3164 struct r1conf *conf = priv;
3165
3166 mempool_exit(&conf->r1bio_pool);
3167 kfree(conf->mirrors);
3168 safe_put_page(conf->tmppage);
3169 kfree(conf->poolinfo);
3170 kfree(conf->nr_pending);
3171 kfree(conf->nr_waiting);
3172 kfree(conf->nr_queued);
3173 kfree(conf->barrier);
3174 bioset_exit(&conf->bio_split);
3175 kfree(conf);
3176 }
3177
3178 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3179 {
3180 /* no resync is happening, and there is enough space
3181 * on all devices, so we can resize.
3182 * We need to make sure resync covers any new space.
3183 * If the array is shrinking we should possibly wait until
3184 * any io in the removed space completes, but it hardly seems
3185 * worth it.
3186 */
3187 sector_t newsize = raid1_size(mddev, sectors, 0);
3188 if (mddev->external_size &&
3189 mddev->array_sectors > newsize)
3190 return -EINVAL;
3191 if (mddev->bitmap) {
3192 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3193 if (ret)
3194 return ret;
3195 }
3196 md_set_array_sectors(mddev, newsize);
3197 if (sectors > mddev->dev_sectors &&
3198 mddev->recovery_cp > mddev->dev_sectors) {
3199 mddev->recovery_cp = mddev->dev_sectors;
3200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3201 }
3202 mddev->dev_sectors = sectors;
3203 mddev->resync_max_sectors = sectors;
3204 return 0;
3205 }
3206
3207 static int raid1_reshape(struct mddev *mddev)
3208 {
3209 /* We need to:
3210 * 1/ resize the r1bio_pool
3211 * 2/ resize conf->mirrors
3212 *
3213 * We allocate a new r1bio_pool if we can.
3214 * Then raise a device barrier and wait until all IO stops.
3215 * Then resize conf->mirrors and swap in the new r1bio pool.
3216 *
3217 * At the same time, we "pack" the devices so that all the missing
3218 * devices have the higher raid_disk numbers.
3219 */
3220 mempool_t newpool, oldpool;
3221 struct pool_info *newpoolinfo;
3222 struct raid1_info *newmirrors;
3223 struct r1conf *conf = mddev->private;
3224 int cnt, raid_disks;
3225 unsigned long flags;
3226 int d, d2;
3227 int ret;
3228
3229 memset(&newpool, 0, sizeof(newpool));
3230 memset(&oldpool, 0, sizeof(oldpool));
3231
3232 /* Cannot change chunk_size, layout, or level */
3233 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3234 mddev->layout != mddev->new_layout ||
3235 mddev->level != mddev->new_level) {
3236 mddev->new_chunk_sectors = mddev->chunk_sectors;
3237 mddev->new_layout = mddev->layout;
3238 mddev->new_level = mddev->level;
3239 return -EINVAL;
3240 }
3241
3242 if (!mddev_is_clustered(mddev))
3243 md_allow_write(mddev);
3244
3245 raid_disks = mddev->raid_disks + mddev->delta_disks;
3246
3247 if (raid_disks < conf->raid_disks) {
3248 cnt=0;
3249 for (d= 0; d < conf->raid_disks; d++)
3250 if (conf->mirrors[d].rdev)
3251 cnt++;
3252 if (cnt > raid_disks)
3253 return -EBUSY;
3254 }
3255
3256 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3257 if (!newpoolinfo)
3258 return -ENOMEM;
3259 newpoolinfo->mddev = mddev;
3260 newpoolinfo->raid_disks = raid_disks * 2;
3261
3262 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3263 rbio_pool_free, newpoolinfo);
3264 if (ret) {
3265 kfree(newpoolinfo);
3266 return ret;
3267 }
3268 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3269 raid_disks, 2),
3270 GFP_KERNEL);
3271 if (!newmirrors) {
3272 kfree(newpoolinfo);
3273 mempool_exit(&newpool);
3274 return -ENOMEM;
3275 }
3276
3277 freeze_array(conf, 0);
3278
3279 /* ok, everything is stopped */
3280 oldpool = conf->r1bio_pool;
3281 conf->r1bio_pool = newpool;
3282
3283 for (d = d2 = 0; d < conf->raid_disks; d++) {
3284 struct md_rdev *rdev = conf->mirrors[d].rdev;
3285 if (rdev && rdev->raid_disk != d2) {
3286 sysfs_unlink_rdev(mddev, rdev);
3287 rdev->raid_disk = d2;
3288 sysfs_unlink_rdev(mddev, rdev);
3289 if (sysfs_link_rdev(mddev, rdev))
3290 pr_warn("md/raid1:%s: cannot register rd%d\n",
3291 mdname(mddev), rdev->raid_disk);
3292 }
3293 if (rdev)
3294 newmirrors[d2++].rdev = rdev;
3295 }
3296 kfree(conf->mirrors);
3297 conf->mirrors = newmirrors;
3298 kfree(conf->poolinfo);
3299 conf->poolinfo = newpoolinfo;
3300
3301 spin_lock_irqsave(&conf->device_lock, flags);
3302 mddev->degraded += (raid_disks - conf->raid_disks);
3303 spin_unlock_irqrestore(&conf->device_lock, flags);
3304 conf->raid_disks = mddev->raid_disks = raid_disks;
3305 mddev->delta_disks = 0;
3306
3307 unfreeze_array(conf);
3308
3309 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3311 md_wakeup_thread(mddev->thread);
3312
3313 mempool_exit(&oldpool);
3314 return 0;
3315 }
3316
3317 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3318 {
3319 struct r1conf *conf = mddev->private;
3320
3321 if (quiesce)
3322 freeze_array(conf, 0);
3323 else
3324 unfreeze_array(conf);
3325 }
3326
3327 static void *raid1_takeover(struct mddev *mddev)
3328 {
3329 /* raid1 can take over:
3330 * raid5 with 2 devices, any layout or chunk size
3331 */
3332 if (mddev->level == 5 && mddev->raid_disks == 2) {
3333 struct r1conf *conf;
3334 mddev->new_level = 1;
3335 mddev->new_layout = 0;
3336 mddev->new_chunk_sectors = 0;
3337 conf = setup_conf(mddev);
3338 if (!IS_ERR(conf)) {
3339 /* Array must appear to be quiesced */
3340 conf->array_frozen = 1;
3341 mddev_clear_unsupported_flags(mddev,
3342 UNSUPPORTED_MDDEV_FLAGS);
3343 }
3344 return conf;
3345 }
3346 return ERR_PTR(-EINVAL);
3347 }
3348
3349 static struct md_personality raid1_personality =
3350 {
3351 .name = "raid1",
3352 .level = 1,
3353 .owner = THIS_MODULE,
3354 .make_request = raid1_make_request,
3355 .run = raid1_run,
3356 .free = raid1_free,
3357 .status = raid1_status,
3358 .error_handler = raid1_error,
3359 .hot_add_disk = raid1_add_disk,
3360 .hot_remove_disk= raid1_remove_disk,
3361 .spare_active = raid1_spare_active,
3362 .sync_request = raid1_sync_request,
3363 .resize = raid1_resize,
3364 .size = raid1_size,
3365 .check_reshape = raid1_reshape,
3366 .quiesce = raid1_quiesce,
3367 .takeover = raid1_takeover,
3368 };
3369
3370 static int __init raid_init(void)
3371 {
3372 return register_md_personality(&raid1_personality);
3373 }
3374
3375 static void raid_exit(void)
3376 {
3377 unregister_md_personality(&raid1_personality);
3378 }
3379
3380 module_init(raid_init);
3381 module_exit(raid_exit);
3382 MODULE_LICENSE("GPL");
3383 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3384 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3385 MODULE_ALIAS("md-raid1");
3386 MODULE_ALIAS("md-level-1");
3387
3388 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);