]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
md: raid1: use bio helper in process_checks()
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 /* free extra copy of the data pages */
392 int i = r1_bio->behind_page_count;
393 while (i--)
394 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
395 kfree(r1_bio->behind_bvecs);
396 r1_bio->behind_bvecs = NULL;
397 }
398 /* clear the bitmap if all writes complete successfully */
399 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
400 r1_bio->sectors,
401 !test_bit(R1BIO_Degraded, &r1_bio->state),
402 test_bit(R1BIO_BehindIO, &r1_bio->state));
403 md_write_end(r1_bio->mddev);
404 }
405
406 static void r1_bio_write_done(struct r1bio *r1_bio)
407 {
408 if (!atomic_dec_and_test(&r1_bio->remaining))
409 return;
410
411 if (test_bit(R1BIO_WriteError, &r1_bio->state))
412 reschedule_retry(r1_bio);
413 else {
414 close_write(r1_bio);
415 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
416 reschedule_retry(r1_bio);
417 else
418 raid_end_bio_io(r1_bio);
419 }
420 }
421
422 static void raid1_end_write_request(struct bio *bio)
423 {
424 struct r1bio *r1_bio = bio->bi_private;
425 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
426 struct r1conf *conf = r1_bio->mddev->private;
427 struct bio *to_put = NULL;
428 int mirror = find_bio_disk(r1_bio, bio);
429 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
430 bool discard_error;
431
432 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
433
434 /*
435 * 'one mirror IO has finished' event handler:
436 */
437 if (bio->bi_error && !discard_error) {
438 set_bit(WriteErrorSeen, &rdev->flags);
439 if (!test_and_set_bit(WantReplacement, &rdev->flags))
440 set_bit(MD_RECOVERY_NEEDED, &
441 conf->mddev->recovery);
442
443 if (test_bit(FailFast, &rdev->flags) &&
444 (bio->bi_opf & MD_FAILFAST) &&
445 /* We never try FailFast to WriteMostly devices */
446 !test_bit(WriteMostly, &rdev->flags)) {
447 md_error(r1_bio->mddev, rdev);
448 if (!test_bit(Faulty, &rdev->flags))
449 /* This is the only remaining device,
450 * We need to retry the write without
451 * FailFast
452 */
453 set_bit(R1BIO_WriteError, &r1_bio->state);
454 else {
455 /* Finished with this branch */
456 r1_bio->bios[mirror] = NULL;
457 to_put = bio;
458 }
459 } else
460 set_bit(R1BIO_WriteError, &r1_bio->state);
461 } else {
462 /*
463 * Set R1BIO_Uptodate in our master bio, so that we
464 * will return a good error code for to the higher
465 * levels even if IO on some other mirrored buffer
466 * fails.
467 *
468 * The 'master' represents the composite IO operation
469 * to user-side. So if something waits for IO, then it
470 * will wait for the 'master' bio.
471 */
472 sector_t first_bad;
473 int bad_sectors;
474
475 r1_bio->bios[mirror] = NULL;
476 to_put = bio;
477 /*
478 * Do not set R1BIO_Uptodate if the current device is
479 * rebuilding or Faulty. This is because we cannot use
480 * such device for properly reading the data back (we could
481 * potentially use it, if the current write would have felt
482 * before rdev->recovery_offset, but for simplicity we don't
483 * check this here.
484 */
485 if (test_bit(In_sync, &rdev->flags) &&
486 !test_bit(Faulty, &rdev->flags))
487 set_bit(R1BIO_Uptodate, &r1_bio->state);
488
489 /* Maybe we can clear some bad blocks. */
490 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
491 &first_bad, &bad_sectors) && !discard_error) {
492 r1_bio->bios[mirror] = IO_MADE_GOOD;
493 set_bit(R1BIO_MadeGood, &r1_bio->state);
494 }
495 }
496
497 if (behind) {
498 if (test_bit(WriteMostly, &rdev->flags))
499 atomic_dec(&r1_bio->behind_remaining);
500
501 /*
502 * In behind mode, we ACK the master bio once the I/O
503 * has safely reached all non-writemostly
504 * disks. Setting the Returned bit ensures that this
505 * gets done only once -- we don't ever want to return
506 * -EIO here, instead we'll wait
507 */
508 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
509 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
510 /* Maybe we can return now */
511 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
512 struct bio *mbio = r1_bio->master_bio;
513 pr_debug("raid1: behind end write sectors"
514 " %llu-%llu\n",
515 (unsigned long long) mbio->bi_iter.bi_sector,
516 (unsigned long long) bio_end_sector(mbio) - 1);
517 call_bio_endio(r1_bio);
518 }
519 }
520 }
521 if (r1_bio->bios[mirror] == NULL)
522 rdev_dec_pending(rdev, conf->mddev);
523
524 /*
525 * Let's see if all mirrored write operations have finished
526 * already.
527 */
528 r1_bio_write_done(r1_bio);
529
530 if (to_put)
531 bio_put(to_put);
532 }
533
534 static sector_t align_to_barrier_unit_end(sector_t start_sector,
535 sector_t sectors)
536 {
537 sector_t len;
538
539 WARN_ON(sectors == 0);
540 /*
541 * len is the number of sectors from start_sector to end of the
542 * barrier unit which start_sector belongs to.
543 */
544 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
545 start_sector;
546
547 if (len > sectors)
548 len = sectors;
549
550 return len;
551 }
552
553 /*
554 * This routine returns the disk from which the requested read should
555 * be done. There is a per-array 'next expected sequential IO' sector
556 * number - if this matches on the next IO then we use the last disk.
557 * There is also a per-disk 'last know head position' sector that is
558 * maintained from IRQ contexts, both the normal and the resync IO
559 * completion handlers update this position correctly. If there is no
560 * perfect sequential match then we pick the disk whose head is closest.
561 *
562 * If there are 2 mirrors in the same 2 devices, performance degrades
563 * because position is mirror, not device based.
564 *
565 * The rdev for the device selected will have nr_pending incremented.
566 */
567 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
568 {
569 const sector_t this_sector = r1_bio->sector;
570 int sectors;
571 int best_good_sectors;
572 int best_disk, best_dist_disk, best_pending_disk;
573 int has_nonrot_disk;
574 int disk;
575 sector_t best_dist;
576 unsigned int min_pending;
577 struct md_rdev *rdev;
578 int choose_first;
579 int choose_next_idle;
580
581 rcu_read_lock();
582 /*
583 * Check if we can balance. We can balance on the whole
584 * device if no resync is going on, or below the resync window.
585 * We take the first readable disk when above the resync window.
586 */
587 retry:
588 sectors = r1_bio->sectors;
589 best_disk = -1;
590 best_dist_disk = -1;
591 best_dist = MaxSector;
592 best_pending_disk = -1;
593 min_pending = UINT_MAX;
594 best_good_sectors = 0;
595 has_nonrot_disk = 0;
596 choose_next_idle = 0;
597 clear_bit(R1BIO_FailFast, &r1_bio->state);
598
599 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
600 (mddev_is_clustered(conf->mddev) &&
601 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
602 this_sector + sectors)))
603 choose_first = 1;
604 else
605 choose_first = 0;
606
607 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
608 sector_t dist;
609 sector_t first_bad;
610 int bad_sectors;
611 unsigned int pending;
612 bool nonrot;
613
614 rdev = rcu_dereference(conf->mirrors[disk].rdev);
615 if (r1_bio->bios[disk] == IO_BLOCKED
616 || rdev == NULL
617 || test_bit(Faulty, &rdev->flags))
618 continue;
619 if (!test_bit(In_sync, &rdev->flags) &&
620 rdev->recovery_offset < this_sector + sectors)
621 continue;
622 if (test_bit(WriteMostly, &rdev->flags)) {
623 /* Don't balance among write-mostly, just
624 * use the first as a last resort */
625 if (best_dist_disk < 0) {
626 if (is_badblock(rdev, this_sector, sectors,
627 &first_bad, &bad_sectors)) {
628 if (first_bad <= this_sector)
629 /* Cannot use this */
630 continue;
631 best_good_sectors = first_bad - this_sector;
632 } else
633 best_good_sectors = sectors;
634 best_dist_disk = disk;
635 best_pending_disk = disk;
636 }
637 continue;
638 }
639 /* This is a reasonable device to use. It might
640 * even be best.
641 */
642 if (is_badblock(rdev, this_sector, sectors,
643 &first_bad, &bad_sectors)) {
644 if (best_dist < MaxSector)
645 /* already have a better device */
646 continue;
647 if (first_bad <= this_sector) {
648 /* cannot read here. If this is the 'primary'
649 * device, then we must not read beyond
650 * bad_sectors from another device..
651 */
652 bad_sectors -= (this_sector - first_bad);
653 if (choose_first && sectors > bad_sectors)
654 sectors = bad_sectors;
655 if (best_good_sectors > sectors)
656 best_good_sectors = sectors;
657
658 } else {
659 sector_t good_sectors = first_bad - this_sector;
660 if (good_sectors > best_good_sectors) {
661 best_good_sectors = good_sectors;
662 best_disk = disk;
663 }
664 if (choose_first)
665 break;
666 }
667 continue;
668 } else
669 best_good_sectors = sectors;
670
671 if (best_disk >= 0)
672 /* At least two disks to choose from so failfast is OK */
673 set_bit(R1BIO_FailFast, &r1_bio->state);
674
675 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
676 has_nonrot_disk |= nonrot;
677 pending = atomic_read(&rdev->nr_pending);
678 dist = abs(this_sector - conf->mirrors[disk].head_position);
679 if (choose_first) {
680 best_disk = disk;
681 break;
682 }
683 /* Don't change to another disk for sequential reads */
684 if (conf->mirrors[disk].next_seq_sect == this_sector
685 || dist == 0) {
686 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
687 struct raid1_info *mirror = &conf->mirrors[disk];
688
689 best_disk = disk;
690 /*
691 * If buffered sequential IO size exceeds optimal
692 * iosize, check if there is idle disk. If yes, choose
693 * the idle disk. read_balance could already choose an
694 * idle disk before noticing it's a sequential IO in
695 * this disk. This doesn't matter because this disk
696 * will idle, next time it will be utilized after the
697 * first disk has IO size exceeds optimal iosize. In
698 * this way, iosize of the first disk will be optimal
699 * iosize at least. iosize of the second disk might be
700 * small, but not a big deal since when the second disk
701 * starts IO, the first disk is likely still busy.
702 */
703 if (nonrot && opt_iosize > 0 &&
704 mirror->seq_start != MaxSector &&
705 mirror->next_seq_sect > opt_iosize &&
706 mirror->next_seq_sect - opt_iosize >=
707 mirror->seq_start) {
708 choose_next_idle = 1;
709 continue;
710 }
711 break;
712 }
713
714 if (choose_next_idle)
715 continue;
716
717 if (min_pending > pending) {
718 min_pending = pending;
719 best_pending_disk = disk;
720 }
721
722 if (dist < best_dist) {
723 best_dist = dist;
724 best_dist_disk = disk;
725 }
726 }
727
728 /*
729 * If all disks are rotational, choose the closest disk. If any disk is
730 * non-rotational, choose the disk with less pending request even the
731 * disk is rotational, which might/might not be optimal for raids with
732 * mixed ratation/non-rotational disks depending on workload.
733 */
734 if (best_disk == -1) {
735 if (has_nonrot_disk || min_pending == 0)
736 best_disk = best_pending_disk;
737 else
738 best_disk = best_dist_disk;
739 }
740
741 if (best_disk >= 0) {
742 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
743 if (!rdev)
744 goto retry;
745 atomic_inc(&rdev->nr_pending);
746 sectors = best_good_sectors;
747
748 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
749 conf->mirrors[best_disk].seq_start = this_sector;
750
751 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
752 }
753 rcu_read_unlock();
754 *max_sectors = sectors;
755
756 return best_disk;
757 }
758
759 static int raid1_congested(struct mddev *mddev, int bits)
760 {
761 struct r1conf *conf = mddev->private;
762 int i, ret = 0;
763
764 if ((bits & (1 << WB_async_congested)) &&
765 conf->pending_count >= max_queued_requests)
766 return 1;
767
768 rcu_read_lock();
769 for (i = 0; i < conf->raid_disks * 2; i++) {
770 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
771 if (rdev && !test_bit(Faulty, &rdev->flags)) {
772 struct request_queue *q = bdev_get_queue(rdev->bdev);
773
774 BUG_ON(!q);
775
776 /* Note the '|| 1' - when read_balance prefers
777 * non-congested targets, it can be removed
778 */
779 if ((bits & (1 << WB_async_congested)) || 1)
780 ret |= bdi_congested(q->backing_dev_info, bits);
781 else
782 ret &= bdi_congested(q->backing_dev_info, bits);
783 }
784 }
785 rcu_read_unlock();
786 return ret;
787 }
788
789 static void flush_pending_writes(struct r1conf *conf)
790 {
791 /* Any writes that have been queued but are awaiting
792 * bitmap updates get flushed here.
793 */
794 spin_lock_irq(&conf->device_lock);
795
796 if (conf->pending_bio_list.head) {
797 struct bio *bio;
798 bio = bio_list_get(&conf->pending_bio_list);
799 conf->pending_count = 0;
800 spin_unlock_irq(&conf->device_lock);
801 /* flush any pending bitmap writes to
802 * disk before proceeding w/ I/O */
803 bitmap_unplug(conf->mddev->bitmap);
804 wake_up(&conf->wait_barrier);
805
806 while (bio) { /* submit pending writes */
807 struct bio *next = bio->bi_next;
808 struct md_rdev *rdev = (void*)bio->bi_bdev;
809 bio->bi_next = NULL;
810 bio->bi_bdev = rdev->bdev;
811 if (test_bit(Faulty, &rdev->flags)) {
812 bio->bi_error = -EIO;
813 bio_endio(bio);
814 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
815 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
816 /* Just ignore it */
817 bio_endio(bio);
818 else
819 generic_make_request(bio);
820 bio = next;
821 }
822 } else
823 spin_unlock_irq(&conf->device_lock);
824 }
825
826 /* Barriers....
827 * Sometimes we need to suspend IO while we do something else,
828 * either some resync/recovery, or reconfigure the array.
829 * To do this we raise a 'barrier'.
830 * The 'barrier' is a counter that can be raised multiple times
831 * to count how many activities are happening which preclude
832 * normal IO.
833 * We can only raise the barrier if there is no pending IO.
834 * i.e. if nr_pending == 0.
835 * We choose only to raise the barrier if no-one is waiting for the
836 * barrier to go down. This means that as soon as an IO request
837 * is ready, no other operations which require a barrier will start
838 * until the IO request has had a chance.
839 *
840 * So: regular IO calls 'wait_barrier'. When that returns there
841 * is no backgroup IO happening, It must arrange to call
842 * allow_barrier when it has finished its IO.
843 * backgroup IO calls must call raise_barrier. Once that returns
844 * there is no normal IO happeing. It must arrange to call
845 * lower_barrier when the particular background IO completes.
846 */
847 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
848 {
849 int idx = sector_to_idx(sector_nr);
850
851 spin_lock_irq(&conf->resync_lock);
852
853 /* Wait until no block IO is waiting */
854 wait_event_lock_irq(conf->wait_barrier,
855 !atomic_read(&conf->nr_waiting[idx]),
856 conf->resync_lock);
857
858 /* block any new IO from starting */
859 atomic_inc(&conf->barrier[idx]);
860 /*
861 * In raise_barrier() we firstly increase conf->barrier[idx] then
862 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
863 * increase conf->nr_pending[idx] then check conf->barrier[idx].
864 * A memory barrier here to make sure conf->nr_pending[idx] won't
865 * be fetched before conf->barrier[idx] is increased. Otherwise
866 * there will be a race between raise_barrier() and _wait_barrier().
867 */
868 smp_mb__after_atomic();
869
870 /* For these conditions we must wait:
871 * A: while the array is in frozen state
872 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
873 * existing in corresponding I/O barrier bucket.
874 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
875 * max resync count which allowed on current I/O barrier bucket.
876 */
877 wait_event_lock_irq(conf->wait_barrier,
878 !conf->array_frozen &&
879 !atomic_read(&conf->nr_pending[idx]) &&
880 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
881 conf->resync_lock);
882
883 atomic_inc(&conf->nr_pending[idx]);
884 spin_unlock_irq(&conf->resync_lock);
885 }
886
887 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
888 {
889 int idx = sector_to_idx(sector_nr);
890
891 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
892
893 atomic_dec(&conf->barrier[idx]);
894 atomic_dec(&conf->nr_pending[idx]);
895 wake_up(&conf->wait_barrier);
896 }
897
898 static void _wait_barrier(struct r1conf *conf, int idx)
899 {
900 /*
901 * We need to increase conf->nr_pending[idx] very early here,
902 * then raise_barrier() can be blocked when it waits for
903 * conf->nr_pending[idx] to be 0. Then we can avoid holding
904 * conf->resync_lock when there is no barrier raised in same
905 * barrier unit bucket. Also if the array is frozen, I/O
906 * should be blocked until array is unfrozen.
907 */
908 atomic_inc(&conf->nr_pending[idx]);
909 /*
910 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
911 * check conf->barrier[idx]. In raise_barrier() we firstly increase
912 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
913 * barrier is necessary here to make sure conf->barrier[idx] won't be
914 * fetched before conf->nr_pending[idx] is increased. Otherwise there
915 * will be a race between _wait_barrier() and raise_barrier().
916 */
917 smp_mb__after_atomic();
918
919 /*
920 * Don't worry about checking two atomic_t variables at same time
921 * here. If during we check conf->barrier[idx], the array is
922 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
923 * 0, it is safe to return and make the I/O continue. Because the
924 * array is frozen, all I/O returned here will eventually complete
925 * or be queued, no race will happen. See code comment in
926 * frozen_array().
927 */
928 if (!READ_ONCE(conf->array_frozen) &&
929 !atomic_read(&conf->barrier[idx]))
930 return;
931
932 /*
933 * After holding conf->resync_lock, conf->nr_pending[idx]
934 * should be decreased before waiting for barrier to drop.
935 * Otherwise, we may encounter a race condition because
936 * raise_barrer() might be waiting for conf->nr_pending[idx]
937 * to be 0 at same time.
938 */
939 spin_lock_irq(&conf->resync_lock);
940 atomic_inc(&conf->nr_waiting[idx]);
941 atomic_dec(&conf->nr_pending[idx]);
942 /*
943 * In case freeze_array() is waiting for
944 * get_unqueued_pending() == extra
945 */
946 wake_up(&conf->wait_barrier);
947 /* Wait for the barrier in same barrier unit bucket to drop. */
948 wait_event_lock_irq(conf->wait_barrier,
949 !conf->array_frozen &&
950 !atomic_read(&conf->barrier[idx]),
951 conf->resync_lock);
952 atomic_inc(&conf->nr_pending[idx]);
953 atomic_dec(&conf->nr_waiting[idx]);
954 spin_unlock_irq(&conf->resync_lock);
955 }
956
957 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
958 {
959 int idx = sector_to_idx(sector_nr);
960
961 /*
962 * Very similar to _wait_barrier(). The difference is, for read
963 * I/O we don't need wait for sync I/O, but if the whole array
964 * is frozen, the read I/O still has to wait until the array is
965 * unfrozen. Since there is no ordering requirement with
966 * conf->barrier[idx] here, memory barrier is unnecessary as well.
967 */
968 atomic_inc(&conf->nr_pending[idx]);
969
970 if (!READ_ONCE(conf->array_frozen))
971 return;
972
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
976 /*
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
979 */
980 wake_up(&conf->wait_barrier);
981 /* Wait for array to be unfrozen */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->array_frozen,
984 conf->resync_lock);
985 atomic_inc(&conf->nr_pending[idx]);
986 atomic_dec(&conf->nr_waiting[idx]);
987 spin_unlock_irq(&conf->resync_lock);
988 }
989
990 static void inc_pending(struct r1conf *conf, sector_t bi_sector)
991 {
992 /* The current request requires multiple r1_bio, so
993 * we need to increment the pending count, and the corresponding
994 * window count.
995 */
996 int idx = sector_to_idx(bi_sector);
997 atomic_inc(&conf->nr_pending[idx]);
998 }
999
1000 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1001 {
1002 int idx = sector_to_idx(sector_nr);
1003
1004 _wait_barrier(conf, idx);
1005 }
1006
1007 static void wait_all_barriers(struct r1conf *conf)
1008 {
1009 int idx;
1010
1011 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012 _wait_barrier(conf, idx);
1013 }
1014
1015 static void _allow_barrier(struct r1conf *conf, int idx)
1016 {
1017 atomic_dec(&conf->nr_pending[idx]);
1018 wake_up(&conf->wait_barrier);
1019 }
1020
1021 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1022 {
1023 int idx = sector_to_idx(sector_nr);
1024
1025 _allow_barrier(conf, idx);
1026 }
1027
1028 static void allow_all_barriers(struct r1conf *conf)
1029 {
1030 int idx;
1031
1032 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1033 _allow_barrier(conf, idx);
1034 }
1035
1036 /* conf->resync_lock should be held */
1037 static int get_unqueued_pending(struct r1conf *conf)
1038 {
1039 int idx, ret;
1040
1041 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1042 ret += atomic_read(&conf->nr_pending[idx]) -
1043 atomic_read(&conf->nr_queued[idx]);
1044
1045 return ret;
1046 }
1047
1048 static void freeze_array(struct r1conf *conf, int extra)
1049 {
1050 /* Stop sync I/O and normal I/O and wait for everything to
1051 * go quiet.
1052 * This is called in two situations:
1053 * 1) management command handlers (reshape, remove disk, quiesce).
1054 * 2) one normal I/O request failed.
1055
1056 * After array_frozen is set to 1, new sync IO will be blocked at
1057 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1058 * or wait_read_barrier(). The flying I/Os will either complete or be
1059 * queued. When everything goes quite, there are only queued I/Os left.
1060
1061 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1062 * barrier bucket index which this I/O request hits. When all sync and
1063 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1064 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1065 * in handle_read_error(), we may call freeze_array() before trying to
1066 * fix the read error. In this case, the error read I/O is not queued,
1067 * so get_unqueued_pending() == 1.
1068 *
1069 * Therefore before this function returns, we need to wait until
1070 * get_unqueued_pendings(conf) gets equal to extra. For
1071 * normal I/O context, extra is 1, in rested situations extra is 0.
1072 */
1073 spin_lock_irq(&conf->resync_lock);
1074 conf->array_frozen = 1;
1075 raid1_log(conf->mddev, "wait freeze");
1076 wait_event_lock_irq_cmd(
1077 conf->wait_barrier,
1078 get_unqueued_pending(conf) == extra,
1079 conf->resync_lock,
1080 flush_pending_writes(conf));
1081 spin_unlock_irq(&conf->resync_lock);
1082 }
1083 static void unfreeze_array(struct r1conf *conf)
1084 {
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1087 conf->array_frozen = 0;
1088 spin_unlock_irq(&conf->resync_lock);
1089 wake_up(&conf->wait_barrier);
1090 }
1091
1092 /* duplicate the data pages for behind I/O
1093 */
1094 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1095 {
1096 int i;
1097 struct bio_vec *bvec;
1098 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1099 GFP_NOIO);
1100 if (unlikely(!bvecs))
1101 return;
1102
1103 bio_for_each_segment_all(bvec, bio, i) {
1104 bvecs[i] = *bvec;
1105 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1106 if (unlikely(!bvecs[i].bv_page))
1107 goto do_sync_io;
1108 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1109 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1110 kunmap(bvecs[i].bv_page);
1111 kunmap(bvec->bv_page);
1112 }
1113 r1_bio->behind_bvecs = bvecs;
1114 r1_bio->behind_page_count = bio->bi_vcnt;
1115 set_bit(R1BIO_BehindIO, &r1_bio->state);
1116 return;
1117
1118 do_sync_io:
1119 for (i = 0; i < bio->bi_vcnt; i++)
1120 if (bvecs[i].bv_page)
1121 put_page(bvecs[i].bv_page);
1122 kfree(bvecs);
1123 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1124 bio->bi_iter.bi_size);
1125 }
1126
1127 struct raid1_plug_cb {
1128 struct blk_plug_cb cb;
1129 struct bio_list pending;
1130 int pending_cnt;
1131 };
1132
1133 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1134 {
1135 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1136 cb);
1137 struct mddev *mddev = plug->cb.data;
1138 struct r1conf *conf = mddev->private;
1139 struct bio *bio;
1140
1141 if (from_schedule || current->bio_list) {
1142 spin_lock_irq(&conf->device_lock);
1143 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1144 conf->pending_count += plug->pending_cnt;
1145 spin_unlock_irq(&conf->device_lock);
1146 wake_up(&conf->wait_barrier);
1147 md_wakeup_thread(mddev->thread);
1148 kfree(plug);
1149 return;
1150 }
1151
1152 /* we aren't scheduling, so we can do the write-out directly. */
1153 bio = bio_list_get(&plug->pending);
1154 bitmap_unplug(mddev->bitmap);
1155 wake_up(&conf->wait_barrier);
1156
1157 while (bio) { /* submit pending writes */
1158 struct bio *next = bio->bi_next;
1159 struct md_rdev *rdev = (void*)bio->bi_bdev;
1160 bio->bi_next = NULL;
1161 bio->bi_bdev = rdev->bdev;
1162 if (test_bit(Faulty, &rdev->flags)) {
1163 bio->bi_error = -EIO;
1164 bio_endio(bio);
1165 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1166 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1167 /* Just ignore it */
1168 bio_endio(bio);
1169 else
1170 generic_make_request(bio);
1171 bio = next;
1172 }
1173 kfree(plug);
1174 }
1175
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1178 {
1179 struct r1conf *conf = mddev->private;
1180 struct r1bio *r1_bio;
1181
1182 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183
1184 r1_bio->master_bio = bio;
1185 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 r1_bio->state = 0;
1187 r1_bio->mddev = mddev;
1188 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1189
1190 return r1_bio;
1191 }
1192
1193 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1194 {
1195 struct r1conf *conf = mddev->private;
1196 struct raid1_info *mirror;
1197 struct r1bio *r1_bio;
1198 struct bio *read_bio;
1199 struct bitmap *bitmap = mddev->bitmap;
1200 const int op = bio_op(bio);
1201 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1202 int sectors_handled;
1203 int max_sectors;
1204 int rdisk;
1205
1206 /*
1207 * Still need barrier for READ in case that whole
1208 * array is frozen.
1209 */
1210 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1211
1212 r1_bio = alloc_r1bio(mddev, bio, 0);
1213
1214 /*
1215 * make_request() can abort the operation when read-ahead is being
1216 * used and no empty request is available.
1217 */
1218 read_again:
1219 rdisk = read_balance(conf, r1_bio, &max_sectors);
1220
1221 if (rdisk < 0) {
1222 /* couldn't find anywhere to read from */
1223 raid_end_bio_io(r1_bio);
1224 return;
1225 }
1226 mirror = conf->mirrors + rdisk;
1227
1228 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1229 bitmap) {
1230 /*
1231 * Reading from a write-mostly device must take care not to
1232 * over-take any writes that are 'behind'
1233 */
1234 raid1_log(mddev, "wait behind writes");
1235 wait_event(bitmap->behind_wait,
1236 atomic_read(&bitmap->behind_writes) == 0);
1237 }
1238 r1_bio->read_disk = rdisk;
1239
1240 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1241 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1242 max_sectors);
1243
1244 r1_bio->bios[rdisk] = read_bio;
1245
1246 read_bio->bi_iter.bi_sector = r1_bio->sector +
1247 mirror->rdev->data_offset;
1248 read_bio->bi_bdev = mirror->rdev->bdev;
1249 read_bio->bi_end_io = raid1_end_read_request;
1250 bio_set_op_attrs(read_bio, op, do_sync);
1251 if (test_bit(FailFast, &mirror->rdev->flags) &&
1252 test_bit(R1BIO_FailFast, &r1_bio->state))
1253 read_bio->bi_opf |= MD_FAILFAST;
1254 read_bio->bi_private = r1_bio;
1255
1256 if (mddev->gendisk)
1257 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1258 read_bio, disk_devt(mddev->gendisk),
1259 r1_bio->sector);
1260
1261 if (max_sectors < r1_bio->sectors) {
1262 /*
1263 * could not read all from this device, so we will need another
1264 * r1_bio.
1265 */
1266 sectors_handled = (r1_bio->sector + max_sectors
1267 - bio->bi_iter.bi_sector);
1268 r1_bio->sectors = max_sectors;
1269 bio_inc_remaining(bio);
1270
1271 /*
1272 * Cannot call generic_make_request directly as that will be
1273 * queued in __make_request and subsequent mempool_alloc might
1274 * block waiting for it. So hand bio over to raid1d.
1275 */
1276 reschedule_retry(r1_bio);
1277
1278 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1279 goto read_again;
1280 } else
1281 generic_make_request(read_bio);
1282 }
1283
1284 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1285 {
1286 struct r1conf *conf = mddev->private;
1287 struct r1bio *r1_bio;
1288 int i, disks;
1289 struct bitmap *bitmap = mddev->bitmap;
1290 unsigned long flags;
1291 struct md_rdev *blocked_rdev;
1292 struct blk_plug_cb *cb;
1293 struct raid1_plug_cb *plug = NULL;
1294 int first_clone;
1295 int sectors_handled;
1296 int max_sectors;
1297
1298 /*
1299 * Register the new request and wait if the reconstruction
1300 * thread has put up a bar for new requests.
1301 * Continue immediately if no resync is active currently.
1302 */
1303
1304 md_write_start(mddev, bio); /* wait on superblock update early */
1305
1306 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1307 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1308 (mddev_is_clustered(mddev) &&
1309 md_cluster_ops->area_resyncing(mddev, WRITE,
1310 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1311
1312 /*
1313 * As the suspend_* range is controlled by userspace, we want
1314 * an interruptible wait.
1315 */
1316 DEFINE_WAIT(w);
1317 for (;;) {
1318 flush_signals(current);
1319 prepare_to_wait(&conf->wait_barrier,
1320 &w, TASK_INTERRUPTIBLE);
1321 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1322 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1323 (mddev_is_clustered(mddev) &&
1324 !md_cluster_ops->area_resyncing(mddev, WRITE,
1325 bio->bi_iter.bi_sector,
1326 bio_end_sector(bio))))
1327 break;
1328 schedule();
1329 }
1330 finish_wait(&conf->wait_barrier, &w);
1331 }
1332 wait_barrier(conf, bio->bi_iter.bi_sector);
1333
1334 r1_bio = alloc_r1bio(mddev, bio, 0);
1335
1336 if (conf->pending_count >= max_queued_requests) {
1337 md_wakeup_thread(mddev->thread);
1338 raid1_log(mddev, "wait queued");
1339 wait_event(conf->wait_barrier,
1340 conf->pending_count < max_queued_requests);
1341 }
1342 /* first select target devices under rcu_lock and
1343 * inc refcount on their rdev. Record them by setting
1344 * bios[x] to bio
1345 * If there are known/acknowledged bad blocks on any device on
1346 * which we have seen a write error, we want to avoid writing those
1347 * blocks.
1348 * This potentially requires several writes to write around
1349 * the bad blocks. Each set of writes gets it's own r1bio
1350 * with a set of bios attached.
1351 */
1352
1353 disks = conf->raid_disks * 2;
1354 retry_write:
1355 blocked_rdev = NULL;
1356 rcu_read_lock();
1357 max_sectors = r1_bio->sectors;
1358 for (i = 0; i < disks; i++) {
1359 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1360 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1361 atomic_inc(&rdev->nr_pending);
1362 blocked_rdev = rdev;
1363 break;
1364 }
1365 r1_bio->bios[i] = NULL;
1366 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1367 if (i < conf->raid_disks)
1368 set_bit(R1BIO_Degraded, &r1_bio->state);
1369 continue;
1370 }
1371
1372 atomic_inc(&rdev->nr_pending);
1373 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1374 sector_t first_bad;
1375 int bad_sectors;
1376 int is_bad;
1377
1378 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1379 &first_bad, &bad_sectors);
1380 if (is_bad < 0) {
1381 /* mustn't write here until the bad block is
1382 * acknowledged*/
1383 set_bit(BlockedBadBlocks, &rdev->flags);
1384 blocked_rdev = rdev;
1385 break;
1386 }
1387 if (is_bad && first_bad <= r1_bio->sector) {
1388 /* Cannot write here at all */
1389 bad_sectors -= (r1_bio->sector - first_bad);
1390 if (bad_sectors < max_sectors)
1391 /* mustn't write more than bad_sectors
1392 * to other devices yet
1393 */
1394 max_sectors = bad_sectors;
1395 rdev_dec_pending(rdev, mddev);
1396 /* We don't set R1BIO_Degraded as that
1397 * only applies if the disk is
1398 * missing, so it might be re-added,
1399 * and we want to know to recover this
1400 * chunk.
1401 * In this case the device is here,
1402 * and the fact that this chunk is not
1403 * in-sync is recorded in the bad
1404 * block log
1405 */
1406 continue;
1407 }
1408 if (is_bad) {
1409 int good_sectors = first_bad - r1_bio->sector;
1410 if (good_sectors < max_sectors)
1411 max_sectors = good_sectors;
1412 }
1413 }
1414 r1_bio->bios[i] = bio;
1415 }
1416 rcu_read_unlock();
1417
1418 if (unlikely(blocked_rdev)) {
1419 /* Wait for this device to become unblocked */
1420 int j;
1421
1422 for (j = 0; j < i; j++)
1423 if (r1_bio->bios[j])
1424 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1425 r1_bio->state = 0;
1426 allow_barrier(conf, bio->bi_iter.bi_sector);
1427 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1428 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1429 wait_barrier(conf, bio->bi_iter.bi_sector);
1430 goto retry_write;
1431 }
1432
1433 if (max_sectors < r1_bio->sectors)
1434 r1_bio->sectors = max_sectors;
1435
1436 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1437
1438 atomic_set(&r1_bio->remaining, 1);
1439 atomic_set(&r1_bio->behind_remaining, 0);
1440
1441 first_clone = 1;
1442 for (i = 0; i < disks; i++) {
1443 struct bio *mbio = NULL;
1444 sector_t offset;
1445 if (!r1_bio->bios[i])
1446 continue;
1447
1448 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1449
1450 if (first_clone) {
1451 /* do behind I/O ?
1452 * Not if there are too many, or cannot
1453 * allocate memory, or a reader on WriteMostly
1454 * is waiting for behind writes to flush */
1455 if (bitmap &&
1456 (atomic_read(&bitmap->behind_writes)
1457 < mddev->bitmap_info.max_write_behind) &&
1458 !waitqueue_active(&bitmap->behind_wait)) {
1459 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1460 mddev->bio_set,
1461 offset << 9,
1462 max_sectors << 9);
1463 alloc_behind_pages(mbio, r1_bio);
1464 }
1465
1466 bitmap_startwrite(bitmap, r1_bio->sector,
1467 r1_bio->sectors,
1468 test_bit(R1BIO_BehindIO,
1469 &r1_bio->state));
1470 first_clone = 0;
1471 }
1472
1473 if (!mbio) {
1474 if (r1_bio->behind_bvecs)
1475 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1476 mddev->bio_set,
1477 offset << 9,
1478 max_sectors << 9);
1479 else {
1480 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1481 bio_trim(mbio, offset, max_sectors);
1482 }
1483 }
1484
1485 if (r1_bio->behind_bvecs) {
1486 struct bio_vec *bvec;
1487 int j;
1488
1489 /*
1490 * We trimmed the bio, so _all is legit
1491 */
1492 bio_for_each_segment_all(bvec, mbio, j)
1493 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1494 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1495 atomic_inc(&r1_bio->behind_remaining);
1496 }
1497
1498 r1_bio->bios[i] = mbio;
1499
1500 mbio->bi_iter.bi_sector = (r1_bio->sector +
1501 conf->mirrors[i].rdev->data_offset);
1502 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1503 mbio->bi_end_io = raid1_end_write_request;
1504 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1505 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1506 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1507 conf->raid_disks - mddev->degraded > 1)
1508 mbio->bi_opf |= MD_FAILFAST;
1509 mbio->bi_private = r1_bio;
1510
1511 atomic_inc(&r1_bio->remaining);
1512
1513 if (mddev->gendisk)
1514 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1515 mbio, disk_devt(mddev->gendisk),
1516 r1_bio->sector);
1517 /* flush_pending_writes() needs access to the rdev so...*/
1518 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1519
1520 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1521 if (cb)
1522 plug = container_of(cb, struct raid1_plug_cb, cb);
1523 else
1524 plug = NULL;
1525 spin_lock_irqsave(&conf->device_lock, flags);
1526 if (plug) {
1527 bio_list_add(&plug->pending, mbio);
1528 plug->pending_cnt++;
1529 } else {
1530 bio_list_add(&conf->pending_bio_list, mbio);
1531 conf->pending_count++;
1532 }
1533 spin_unlock_irqrestore(&conf->device_lock, flags);
1534 if (!plug)
1535 md_wakeup_thread(mddev->thread);
1536 }
1537 /* Mustn't call r1_bio_write_done before this next test,
1538 * as it could result in the bio being freed.
1539 */
1540 if (sectors_handled < bio_sectors(bio)) {
1541 /* We need another r1_bio, which must be counted */
1542 sector_t sect = bio->bi_iter.bi_sector + sectors_handled;
1543
1544 inc_pending(conf, sect);
1545 bio_inc_remaining(bio);
1546 r1_bio_write_done(r1_bio);
1547 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1548 goto retry_write;
1549 }
1550
1551 r1_bio_write_done(r1_bio);
1552
1553 /* In case raid1d snuck in to freeze_array */
1554 wake_up(&conf->wait_barrier);
1555 }
1556
1557 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1558 {
1559 struct bio *split;
1560 sector_t sectors;
1561
1562 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1563 md_flush_request(mddev, bio);
1564 return;
1565 }
1566
1567 /* if bio exceeds barrier unit boundary, split it */
1568 do {
1569 sectors = align_to_barrier_unit_end(
1570 bio->bi_iter.bi_sector, bio_sectors(bio));
1571 if (sectors < bio_sectors(bio)) {
1572 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1573 bio_chain(split, bio);
1574 } else {
1575 split = bio;
1576 }
1577
1578 if (bio_data_dir(split) == READ) {
1579 raid1_read_request(mddev, split);
1580
1581 /*
1582 * If a bio is splitted, the first part of bio will
1583 * pass barrier but the bio is queued in
1584 * current->bio_list (see generic_make_request). If
1585 * there is a raise_barrier() called here, the second
1586 * part of bio can't pass barrier. But since the first
1587 * part bio isn't dispatched to underlaying disks yet,
1588 * the barrier is never released, hence raise_barrier
1589 * will alays wait. We have a deadlock.
1590 * Note, this only happens in read path. For write
1591 * path, the first part of bio is dispatched in a
1592 * schedule() call (because of blk plug) or offloaded
1593 * to raid10d.
1594 * Quitting from the function immediately can change
1595 * the bio order queued in bio_list and avoid the deadlock.
1596 */
1597 if (split != bio) {
1598 generic_make_request(bio);
1599 break;
1600 }
1601 } else
1602 raid1_write_request(mddev, split);
1603 } while (split != bio);
1604 }
1605
1606 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1607 {
1608 struct r1conf *conf = mddev->private;
1609 int i;
1610
1611 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1612 conf->raid_disks - mddev->degraded);
1613 rcu_read_lock();
1614 for (i = 0; i < conf->raid_disks; i++) {
1615 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1616 seq_printf(seq, "%s",
1617 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1618 }
1619 rcu_read_unlock();
1620 seq_printf(seq, "]");
1621 }
1622
1623 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1624 {
1625 char b[BDEVNAME_SIZE];
1626 struct r1conf *conf = mddev->private;
1627 unsigned long flags;
1628
1629 /*
1630 * If it is not operational, then we have already marked it as dead
1631 * else if it is the last working disks, ignore the error, let the
1632 * next level up know.
1633 * else mark the drive as failed
1634 */
1635 spin_lock_irqsave(&conf->device_lock, flags);
1636 if (test_bit(In_sync, &rdev->flags)
1637 && (conf->raid_disks - mddev->degraded) == 1) {
1638 /*
1639 * Don't fail the drive, act as though we were just a
1640 * normal single drive.
1641 * However don't try a recovery from this drive as
1642 * it is very likely to fail.
1643 */
1644 conf->recovery_disabled = mddev->recovery_disabled;
1645 spin_unlock_irqrestore(&conf->device_lock, flags);
1646 return;
1647 }
1648 set_bit(Blocked, &rdev->flags);
1649 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1650 mddev->degraded++;
1651 set_bit(Faulty, &rdev->flags);
1652 } else
1653 set_bit(Faulty, &rdev->flags);
1654 spin_unlock_irqrestore(&conf->device_lock, flags);
1655 /*
1656 * if recovery is running, make sure it aborts.
1657 */
1658 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1659 set_mask_bits(&mddev->sb_flags, 0,
1660 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1662 "md/raid1:%s: Operation continuing on %d devices.\n",
1663 mdname(mddev), bdevname(rdev->bdev, b),
1664 mdname(mddev), conf->raid_disks - mddev->degraded);
1665 }
1666
1667 static void print_conf(struct r1conf *conf)
1668 {
1669 int i;
1670
1671 pr_debug("RAID1 conf printout:\n");
1672 if (!conf) {
1673 pr_debug("(!conf)\n");
1674 return;
1675 }
1676 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1677 conf->raid_disks);
1678
1679 rcu_read_lock();
1680 for (i = 0; i < conf->raid_disks; i++) {
1681 char b[BDEVNAME_SIZE];
1682 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1683 if (rdev)
1684 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1685 i, !test_bit(In_sync, &rdev->flags),
1686 !test_bit(Faulty, &rdev->flags),
1687 bdevname(rdev->bdev,b));
1688 }
1689 rcu_read_unlock();
1690 }
1691
1692 static void close_sync(struct r1conf *conf)
1693 {
1694 wait_all_barriers(conf);
1695 allow_all_barriers(conf);
1696
1697 mempool_destroy(conf->r1buf_pool);
1698 conf->r1buf_pool = NULL;
1699 }
1700
1701 static int raid1_spare_active(struct mddev *mddev)
1702 {
1703 int i;
1704 struct r1conf *conf = mddev->private;
1705 int count = 0;
1706 unsigned long flags;
1707
1708 /*
1709 * Find all failed disks within the RAID1 configuration
1710 * and mark them readable.
1711 * Called under mddev lock, so rcu protection not needed.
1712 * device_lock used to avoid races with raid1_end_read_request
1713 * which expects 'In_sync' flags and ->degraded to be consistent.
1714 */
1715 spin_lock_irqsave(&conf->device_lock, flags);
1716 for (i = 0; i < conf->raid_disks; i++) {
1717 struct md_rdev *rdev = conf->mirrors[i].rdev;
1718 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1719 if (repl
1720 && !test_bit(Candidate, &repl->flags)
1721 && repl->recovery_offset == MaxSector
1722 && !test_bit(Faulty, &repl->flags)
1723 && !test_and_set_bit(In_sync, &repl->flags)) {
1724 /* replacement has just become active */
1725 if (!rdev ||
1726 !test_and_clear_bit(In_sync, &rdev->flags))
1727 count++;
1728 if (rdev) {
1729 /* Replaced device not technically
1730 * faulty, but we need to be sure
1731 * it gets removed and never re-added
1732 */
1733 set_bit(Faulty, &rdev->flags);
1734 sysfs_notify_dirent_safe(
1735 rdev->sysfs_state);
1736 }
1737 }
1738 if (rdev
1739 && rdev->recovery_offset == MaxSector
1740 && !test_bit(Faulty, &rdev->flags)
1741 && !test_and_set_bit(In_sync, &rdev->flags)) {
1742 count++;
1743 sysfs_notify_dirent_safe(rdev->sysfs_state);
1744 }
1745 }
1746 mddev->degraded -= count;
1747 spin_unlock_irqrestore(&conf->device_lock, flags);
1748
1749 print_conf(conf);
1750 return count;
1751 }
1752
1753 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1754 {
1755 struct r1conf *conf = mddev->private;
1756 int err = -EEXIST;
1757 int mirror = 0;
1758 struct raid1_info *p;
1759 int first = 0;
1760 int last = conf->raid_disks - 1;
1761
1762 if (mddev->recovery_disabled == conf->recovery_disabled)
1763 return -EBUSY;
1764
1765 if (md_integrity_add_rdev(rdev, mddev))
1766 return -ENXIO;
1767
1768 if (rdev->raid_disk >= 0)
1769 first = last = rdev->raid_disk;
1770
1771 /*
1772 * find the disk ... but prefer rdev->saved_raid_disk
1773 * if possible.
1774 */
1775 if (rdev->saved_raid_disk >= 0 &&
1776 rdev->saved_raid_disk >= first &&
1777 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1778 first = last = rdev->saved_raid_disk;
1779
1780 for (mirror = first; mirror <= last; mirror++) {
1781 p = conf->mirrors+mirror;
1782 if (!p->rdev) {
1783
1784 if (mddev->gendisk)
1785 disk_stack_limits(mddev->gendisk, rdev->bdev,
1786 rdev->data_offset << 9);
1787
1788 p->head_position = 0;
1789 rdev->raid_disk = mirror;
1790 err = 0;
1791 /* As all devices are equivalent, we don't need a full recovery
1792 * if this was recently any drive of the array
1793 */
1794 if (rdev->saved_raid_disk < 0)
1795 conf->fullsync = 1;
1796 rcu_assign_pointer(p->rdev, rdev);
1797 break;
1798 }
1799 if (test_bit(WantReplacement, &p->rdev->flags) &&
1800 p[conf->raid_disks].rdev == NULL) {
1801 /* Add this device as a replacement */
1802 clear_bit(In_sync, &rdev->flags);
1803 set_bit(Replacement, &rdev->flags);
1804 rdev->raid_disk = mirror;
1805 err = 0;
1806 conf->fullsync = 1;
1807 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1808 break;
1809 }
1810 }
1811 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813 print_conf(conf);
1814 return err;
1815 }
1816
1817 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1818 {
1819 struct r1conf *conf = mddev->private;
1820 int err = 0;
1821 int number = rdev->raid_disk;
1822 struct raid1_info *p = conf->mirrors + number;
1823
1824 if (rdev != p->rdev)
1825 p = conf->mirrors + conf->raid_disks + number;
1826
1827 print_conf(conf);
1828 if (rdev == p->rdev) {
1829 if (test_bit(In_sync, &rdev->flags) ||
1830 atomic_read(&rdev->nr_pending)) {
1831 err = -EBUSY;
1832 goto abort;
1833 }
1834 /* Only remove non-faulty devices if recovery
1835 * is not possible.
1836 */
1837 if (!test_bit(Faulty, &rdev->flags) &&
1838 mddev->recovery_disabled != conf->recovery_disabled &&
1839 mddev->degraded < conf->raid_disks) {
1840 err = -EBUSY;
1841 goto abort;
1842 }
1843 p->rdev = NULL;
1844 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1845 synchronize_rcu();
1846 if (atomic_read(&rdev->nr_pending)) {
1847 /* lost the race, try later */
1848 err = -EBUSY;
1849 p->rdev = rdev;
1850 goto abort;
1851 }
1852 }
1853 if (conf->mirrors[conf->raid_disks + number].rdev) {
1854 /* We just removed a device that is being replaced.
1855 * Move down the replacement. We drain all IO before
1856 * doing this to avoid confusion.
1857 */
1858 struct md_rdev *repl =
1859 conf->mirrors[conf->raid_disks + number].rdev;
1860 freeze_array(conf, 0);
1861 clear_bit(Replacement, &repl->flags);
1862 p->rdev = repl;
1863 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1864 unfreeze_array(conf);
1865 clear_bit(WantReplacement, &rdev->flags);
1866 } else
1867 clear_bit(WantReplacement, &rdev->flags);
1868 err = md_integrity_register(mddev);
1869 }
1870 abort:
1871
1872 print_conf(conf);
1873 return err;
1874 }
1875
1876 static void end_sync_read(struct bio *bio)
1877 {
1878 struct r1bio *r1_bio = get_resync_r1bio(bio);
1879
1880 update_head_pos(r1_bio->read_disk, r1_bio);
1881
1882 /*
1883 * we have read a block, now it needs to be re-written,
1884 * or re-read if the read failed.
1885 * We don't do much here, just schedule handling by raid1d
1886 */
1887 if (!bio->bi_error)
1888 set_bit(R1BIO_Uptodate, &r1_bio->state);
1889
1890 if (atomic_dec_and_test(&r1_bio->remaining))
1891 reschedule_retry(r1_bio);
1892 }
1893
1894 static void end_sync_write(struct bio *bio)
1895 {
1896 int uptodate = !bio->bi_error;
1897 struct r1bio *r1_bio = get_resync_r1bio(bio);
1898 struct mddev *mddev = r1_bio->mddev;
1899 struct r1conf *conf = mddev->private;
1900 sector_t first_bad;
1901 int bad_sectors;
1902 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1903
1904 if (!uptodate) {
1905 sector_t sync_blocks = 0;
1906 sector_t s = r1_bio->sector;
1907 long sectors_to_go = r1_bio->sectors;
1908 /* make sure these bits doesn't get cleared. */
1909 do {
1910 bitmap_end_sync(mddev->bitmap, s,
1911 &sync_blocks, 1);
1912 s += sync_blocks;
1913 sectors_to_go -= sync_blocks;
1914 } while (sectors_to_go > 0);
1915 set_bit(WriteErrorSeen, &rdev->flags);
1916 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1917 set_bit(MD_RECOVERY_NEEDED, &
1918 mddev->recovery);
1919 set_bit(R1BIO_WriteError, &r1_bio->state);
1920 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1921 &first_bad, &bad_sectors) &&
1922 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1923 r1_bio->sector,
1924 r1_bio->sectors,
1925 &first_bad, &bad_sectors)
1926 )
1927 set_bit(R1BIO_MadeGood, &r1_bio->state);
1928
1929 if (atomic_dec_and_test(&r1_bio->remaining)) {
1930 int s = r1_bio->sectors;
1931 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932 test_bit(R1BIO_WriteError, &r1_bio->state))
1933 reschedule_retry(r1_bio);
1934 else {
1935 put_buf(r1_bio);
1936 md_done_sync(mddev, s, uptodate);
1937 }
1938 }
1939 }
1940
1941 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1942 int sectors, struct page *page, int rw)
1943 {
1944 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1945 /* success */
1946 return 1;
1947 if (rw == WRITE) {
1948 set_bit(WriteErrorSeen, &rdev->flags);
1949 if (!test_and_set_bit(WantReplacement,
1950 &rdev->flags))
1951 set_bit(MD_RECOVERY_NEEDED, &
1952 rdev->mddev->recovery);
1953 }
1954 /* need to record an error - either for the block or the device */
1955 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1956 md_error(rdev->mddev, rdev);
1957 return 0;
1958 }
1959
1960 static int fix_sync_read_error(struct r1bio *r1_bio)
1961 {
1962 /* Try some synchronous reads of other devices to get
1963 * good data, much like with normal read errors. Only
1964 * read into the pages we already have so we don't
1965 * need to re-issue the read request.
1966 * We don't need to freeze the array, because being in an
1967 * active sync request, there is no normal IO, and
1968 * no overlapping syncs.
1969 * We don't need to check is_badblock() again as we
1970 * made sure that anything with a bad block in range
1971 * will have bi_end_io clear.
1972 */
1973 struct mddev *mddev = r1_bio->mddev;
1974 struct r1conf *conf = mddev->private;
1975 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1976 struct page **pages = get_resync_pages(bio)->pages;
1977 sector_t sect = r1_bio->sector;
1978 int sectors = r1_bio->sectors;
1979 int idx = 0;
1980 struct md_rdev *rdev;
1981
1982 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1983 if (test_bit(FailFast, &rdev->flags)) {
1984 /* Don't try recovering from here - just fail it
1985 * ... unless it is the last working device of course */
1986 md_error(mddev, rdev);
1987 if (test_bit(Faulty, &rdev->flags))
1988 /* Don't try to read from here, but make sure
1989 * put_buf does it's thing
1990 */
1991 bio->bi_end_io = end_sync_write;
1992 }
1993
1994 while(sectors) {
1995 int s = sectors;
1996 int d = r1_bio->read_disk;
1997 int success = 0;
1998 int start;
1999
2000 if (s > (PAGE_SIZE>>9))
2001 s = PAGE_SIZE >> 9;
2002 do {
2003 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2004 /* No rcu protection needed here devices
2005 * can only be removed when no resync is
2006 * active, and resync is currently active
2007 */
2008 rdev = conf->mirrors[d].rdev;
2009 if (sync_page_io(rdev, sect, s<<9,
2010 pages[idx],
2011 REQ_OP_READ, 0, false)) {
2012 success = 1;
2013 break;
2014 }
2015 }
2016 d++;
2017 if (d == conf->raid_disks * 2)
2018 d = 0;
2019 } while (!success && d != r1_bio->read_disk);
2020
2021 if (!success) {
2022 char b[BDEVNAME_SIZE];
2023 int abort = 0;
2024 /* Cannot read from anywhere, this block is lost.
2025 * Record a bad block on each device. If that doesn't
2026 * work just disable and interrupt the recovery.
2027 * Don't fail devices as that won't really help.
2028 */
2029 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2030 mdname(mddev),
2031 bdevname(bio->bi_bdev, b),
2032 (unsigned long long)r1_bio->sector);
2033 for (d = 0; d < conf->raid_disks * 2; d++) {
2034 rdev = conf->mirrors[d].rdev;
2035 if (!rdev || test_bit(Faulty, &rdev->flags))
2036 continue;
2037 if (!rdev_set_badblocks(rdev, sect, s, 0))
2038 abort = 1;
2039 }
2040 if (abort) {
2041 conf->recovery_disabled =
2042 mddev->recovery_disabled;
2043 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044 md_done_sync(mddev, r1_bio->sectors, 0);
2045 put_buf(r1_bio);
2046 return 0;
2047 }
2048 /* Try next page */
2049 sectors -= s;
2050 sect += s;
2051 idx++;
2052 continue;
2053 }
2054
2055 start = d;
2056 /* write it back and re-read */
2057 while (d != r1_bio->read_disk) {
2058 if (d == 0)
2059 d = conf->raid_disks * 2;
2060 d--;
2061 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062 continue;
2063 rdev = conf->mirrors[d].rdev;
2064 if (r1_sync_page_io(rdev, sect, s,
2065 pages[idx],
2066 WRITE) == 0) {
2067 r1_bio->bios[d]->bi_end_io = NULL;
2068 rdev_dec_pending(rdev, mddev);
2069 }
2070 }
2071 d = start;
2072 while (d != r1_bio->read_disk) {
2073 if (d == 0)
2074 d = conf->raid_disks * 2;
2075 d--;
2076 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077 continue;
2078 rdev = conf->mirrors[d].rdev;
2079 if (r1_sync_page_io(rdev, sect, s,
2080 pages[idx],
2081 READ) != 0)
2082 atomic_add(s, &rdev->corrected_errors);
2083 }
2084 sectors -= s;
2085 sect += s;
2086 idx ++;
2087 }
2088 set_bit(R1BIO_Uptodate, &r1_bio->state);
2089 bio->bi_error = 0;
2090 return 1;
2091 }
2092
2093 static void process_checks(struct r1bio *r1_bio)
2094 {
2095 /* We have read all readable devices. If we haven't
2096 * got the block, then there is no hope left.
2097 * If we have, then we want to do a comparison
2098 * and skip the write if everything is the same.
2099 * If any blocks failed to read, then we need to
2100 * attempt an over-write
2101 */
2102 struct mddev *mddev = r1_bio->mddev;
2103 struct r1conf *conf = mddev->private;
2104 int primary;
2105 int i;
2106 int vcnt;
2107
2108 /* Fix variable parts of all bios */
2109 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110 for (i = 0; i < conf->raid_disks * 2; i++) {
2111 int j;
2112 int size;
2113 int error;
2114 struct bio_vec *bi;
2115 struct bio *b = r1_bio->bios[i];
2116 struct resync_pages *rp = get_resync_pages(b);
2117 if (b->bi_end_io != end_sync_read)
2118 continue;
2119 /* fixup the bio for reuse, but preserve errno */
2120 error = b->bi_error;
2121 bio_reset(b);
2122 b->bi_error = error;
2123 b->bi_vcnt = vcnt;
2124 b->bi_iter.bi_size = r1_bio->sectors << 9;
2125 b->bi_iter.bi_sector = r1_bio->sector +
2126 conf->mirrors[i].rdev->data_offset;
2127 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2128 b->bi_end_io = end_sync_read;
2129 rp->raid_bio = r1_bio;
2130 b->bi_private = rp;
2131
2132 size = b->bi_iter.bi_size;
2133 bio_for_each_segment_all(bi, b, j) {
2134 bi->bv_offset = 0;
2135 if (size > PAGE_SIZE)
2136 bi->bv_len = PAGE_SIZE;
2137 else
2138 bi->bv_len = size;
2139 size -= PAGE_SIZE;
2140 }
2141 }
2142 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2143 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2144 !r1_bio->bios[primary]->bi_error) {
2145 r1_bio->bios[primary]->bi_end_io = NULL;
2146 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147 break;
2148 }
2149 r1_bio->read_disk = primary;
2150 for (i = 0; i < conf->raid_disks * 2; i++) {
2151 int j;
2152 struct bio *pbio = r1_bio->bios[primary];
2153 struct bio *sbio = r1_bio->bios[i];
2154 int error = sbio->bi_error;
2155 struct page **ppages = get_resync_pages(pbio)->pages;
2156 struct page **spages = get_resync_pages(sbio)->pages;
2157 struct bio_vec *bi;
2158 int page_len[RESYNC_PAGES];
2159
2160 if (sbio->bi_end_io != end_sync_read)
2161 continue;
2162 /* Now we can 'fixup' the error value */
2163 sbio->bi_error = 0;
2164
2165 bio_for_each_segment_all(bi, sbio, j)
2166 page_len[j] = bi->bv_len;
2167
2168 if (!error) {
2169 for (j = vcnt; j-- ; ) {
2170 if (memcmp(page_address(ppages[j]),
2171 page_address(spages[j]),
2172 page_len[j]))
2173 break;
2174 }
2175 } else
2176 j = 0;
2177 if (j >= 0)
2178 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2179 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2180 && !error)) {
2181 /* No need to write to this device. */
2182 sbio->bi_end_io = NULL;
2183 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2184 continue;
2185 }
2186
2187 bio_copy_data(sbio, pbio);
2188 }
2189 }
2190
2191 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2192 {
2193 struct r1conf *conf = mddev->private;
2194 int i;
2195 int disks = conf->raid_disks * 2;
2196 struct bio *bio, *wbio;
2197
2198 bio = r1_bio->bios[r1_bio->read_disk];
2199
2200 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2201 /* ouch - failed to read all of that. */
2202 if (!fix_sync_read_error(r1_bio))
2203 return;
2204
2205 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2206 process_checks(r1_bio);
2207
2208 /*
2209 * schedule writes
2210 */
2211 atomic_set(&r1_bio->remaining, 1);
2212 for (i = 0; i < disks ; i++) {
2213 wbio = r1_bio->bios[i];
2214 if (wbio->bi_end_io == NULL ||
2215 (wbio->bi_end_io == end_sync_read &&
2216 (i == r1_bio->read_disk ||
2217 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2218 continue;
2219
2220 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2221 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2222 wbio->bi_opf |= MD_FAILFAST;
2223
2224 wbio->bi_end_io = end_sync_write;
2225 atomic_inc(&r1_bio->remaining);
2226 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2227
2228 generic_make_request(wbio);
2229 }
2230
2231 if (atomic_dec_and_test(&r1_bio->remaining)) {
2232 /* if we're here, all write(s) have completed, so clean up */
2233 int s = r1_bio->sectors;
2234 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2235 test_bit(R1BIO_WriteError, &r1_bio->state))
2236 reschedule_retry(r1_bio);
2237 else {
2238 put_buf(r1_bio);
2239 md_done_sync(mddev, s, 1);
2240 }
2241 }
2242 }
2243
2244 /*
2245 * This is a kernel thread which:
2246 *
2247 * 1. Retries failed read operations on working mirrors.
2248 * 2. Updates the raid superblock when problems encounter.
2249 * 3. Performs writes following reads for array synchronising.
2250 */
2251
2252 static void fix_read_error(struct r1conf *conf, int read_disk,
2253 sector_t sect, int sectors)
2254 {
2255 struct mddev *mddev = conf->mddev;
2256 while(sectors) {
2257 int s = sectors;
2258 int d = read_disk;
2259 int success = 0;
2260 int start;
2261 struct md_rdev *rdev;
2262
2263 if (s > (PAGE_SIZE>>9))
2264 s = PAGE_SIZE >> 9;
2265
2266 do {
2267 sector_t first_bad;
2268 int bad_sectors;
2269
2270 rcu_read_lock();
2271 rdev = rcu_dereference(conf->mirrors[d].rdev);
2272 if (rdev &&
2273 (test_bit(In_sync, &rdev->flags) ||
2274 (!test_bit(Faulty, &rdev->flags) &&
2275 rdev->recovery_offset >= sect + s)) &&
2276 is_badblock(rdev, sect, s,
2277 &first_bad, &bad_sectors) == 0) {
2278 atomic_inc(&rdev->nr_pending);
2279 rcu_read_unlock();
2280 if (sync_page_io(rdev, sect, s<<9,
2281 conf->tmppage, REQ_OP_READ, 0, false))
2282 success = 1;
2283 rdev_dec_pending(rdev, mddev);
2284 if (success)
2285 break;
2286 } else
2287 rcu_read_unlock();
2288 d++;
2289 if (d == conf->raid_disks * 2)
2290 d = 0;
2291 } while (!success && d != read_disk);
2292
2293 if (!success) {
2294 /* Cannot read from anywhere - mark it bad */
2295 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2296 if (!rdev_set_badblocks(rdev, sect, s, 0))
2297 md_error(mddev, rdev);
2298 break;
2299 }
2300 /* write it back and re-read */
2301 start = d;
2302 while (d != read_disk) {
2303 if (d==0)
2304 d = conf->raid_disks * 2;
2305 d--;
2306 rcu_read_lock();
2307 rdev = rcu_dereference(conf->mirrors[d].rdev);
2308 if (rdev &&
2309 !test_bit(Faulty, &rdev->flags)) {
2310 atomic_inc(&rdev->nr_pending);
2311 rcu_read_unlock();
2312 r1_sync_page_io(rdev, sect, s,
2313 conf->tmppage, WRITE);
2314 rdev_dec_pending(rdev, mddev);
2315 } else
2316 rcu_read_unlock();
2317 }
2318 d = start;
2319 while (d != read_disk) {
2320 char b[BDEVNAME_SIZE];
2321 if (d==0)
2322 d = conf->raid_disks * 2;
2323 d--;
2324 rcu_read_lock();
2325 rdev = rcu_dereference(conf->mirrors[d].rdev);
2326 if (rdev &&
2327 !test_bit(Faulty, &rdev->flags)) {
2328 atomic_inc(&rdev->nr_pending);
2329 rcu_read_unlock();
2330 if (r1_sync_page_io(rdev, sect, s,
2331 conf->tmppage, READ)) {
2332 atomic_add(s, &rdev->corrected_errors);
2333 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2334 mdname(mddev), s,
2335 (unsigned long long)(sect +
2336 rdev->data_offset),
2337 bdevname(rdev->bdev, b));
2338 }
2339 rdev_dec_pending(rdev, mddev);
2340 } else
2341 rcu_read_unlock();
2342 }
2343 sectors -= s;
2344 sect += s;
2345 }
2346 }
2347
2348 static int narrow_write_error(struct r1bio *r1_bio, int i)
2349 {
2350 struct mddev *mddev = r1_bio->mddev;
2351 struct r1conf *conf = mddev->private;
2352 struct md_rdev *rdev = conf->mirrors[i].rdev;
2353
2354 /* bio has the data to be written to device 'i' where
2355 * we just recently had a write error.
2356 * We repeatedly clone the bio and trim down to one block,
2357 * then try the write. Where the write fails we record
2358 * a bad block.
2359 * It is conceivable that the bio doesn't exactly align with
2360 * blocks. We must handle this somehow.
2361 *
2362 * We currently own a reference on the rdev.
2363 */
2364
2365 int block_sectors;
2366 sector_t sector;
2367 int sectors;
2368 int sect_to_write = r1_bio->sectors;
2369 int ok = 1;
2370
2371 if (rdev->badblocks.shift < 0)
2372 return 0;
2373
2374 block_sectors = roundup(1 << rdev->badblocks.shift,
2375 bdev_logical_block_size(rdev->bdev) >> 9);
2376 sector = r1_bio->sector;
2377 sectors = ((sector + block_sectors)
2378 & ~(sector_t)(block_sectors - 1))
2379 - sector;
2380
2381 while (sect_to_write) {
2382 struct bio *wbio;
2383 if (sectors > sect_to_write)
2384 sectors = sect_to_write;
2385 /* Write at 'sector' for 'sectors'*/
2386
2387 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2388 unsigned vcnt = r1_bio->behind_page_count;
2389 struct bio_vec *vec = r1_bio->behind_bvecs;
2390
2391 while (!vec->bv_page) {
2392 vec++;
2393 vcnt--;
2394 }
2395
2396 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2397 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2398
2399 wbio->bi_vcnt = vcnt;
2400 } else {
2401 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2402 mddev->bio_set);
2403 }
2404
2405 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2406 wbio->bi_iter.bi_sector = r1_bio->sector;
2407 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2408
2409 bio_trim(wbio, sector - r1_bio->sector, sectors);
2410 wbio->bi_iter.bi_sector += rdev->data_offset;
2411 wbio->bi_bdev = rdev->bdev;
2412
2413 if (submit_bio_wait(wbio) < 0)
2414 /* failure! */
2415 ok = rdev_set_badblocks(rdev, sector,
2416 sectors, 0)
2417 && ok;
2418
2419 bio_put(wbio);
2420 sect_to_write -= sectors;
2421 sector += sectors;
2422 sectors = block_sectors;
2423 }
2424 return ok;
2425 }
2426
2427 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2428 {
2429 int m;
2430 int s = r1_bio->sectors;
2431 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2432 struct md_rdev *rdev = conf->mirrors[m].rdev;
2433 struct bio *bio = r1_bio->bios[m];
2434 if (bio->bi_end_io == NULL)
2435 continue;
2436 if (!bio->bi_error &&
2437 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2438 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2439 }
2440 if (bio->bi_error &&
2441 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2442 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2443 md_error(conf->mddev, rdev);
2444 }
2445 }
2446 put_buf(r1_bio);
2447 md_done_sync(conf->mddev, s, 1);
2448 }
2449
2450 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2451 {
2452 int m, idx;
2453 bool fail = false;
2454
2455 for (m = 0; m < conf->raid_disks * 2 ; m++)
2456 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2457 struct md_rdev *rdev = conf->mirrors[m].rdev;
2458 rdev_clear_badblocks(rdev,
2459 r1_bio->sector,
2460 r1_bio->sectors, 0);
2461 rdev_dec_pending(rdev, conf->mddev);
2462 } else if (r1_bio->bios[m] != NULL) {
2463 /* This drive got a write error. We need to
2464 * narrow down and record precise write
2465 * errors.
2466 */
2467 fail = true;
2468 if (!narrow_write_error(r1_bio, m)) {
2469 md_error(conf->mddev,
2470 conf->mirrors[m].rdev);
2471 /* an I/O failed, we can't clear the bitmap */
2472 set_bit(R1BIO_Degraded, &r1_bio->state);
2473 }
2474 rdev_dec_pending(conf->mirrors[m].rdev,
2475 conf->mddev);
2476 }
2477 if (fail) {
2478 spin_lock_irq(&conf->device_lock);
2479 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2480 idx = sector_to_idx(r1_bio->sector);
2481 atomic_inc(&conf->nr_queued[idx]);
2482 spin_unlock_irq(&conf->device_lock);
2483 /*
2484 * In case freeze_array() is waiting for condition
2485 * get_unqueued_pending() == extra to be true.
2486 */
2487 wake_up(&conf->wait_barrier);
2488 md_wakeup_thread(conf->mddev->thread);
2489 } else {
2490 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2491 close_write(r1_bio);
2492 raid_end_bio_io(r1_bio);
2493 }
2494 }
2495
2496 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2497 {
2498 int disk;
2499 int max_sectors;
2500 struct mddev *mddev = conf->mddev;
2501 struct bio *bio;
2502 char b[BDEVNAME_SIZE];
2503 struct md_rdev *rdev;
2504 dev_t bio_dev;
2505 sector_t bio_sector;
2506
2507 clear_bit(R1BIO_ReadError, &r1_bio->state);
2508 /* we got a read error. Maybe the drive is bad. Maybe just
2509 * the block and we can fix it.
2510 * We freeze all other IO, and try reading the block from
2511 * other devices. When we find one, we re-write
2512 * and check it that fixes the read error.
2513 * This is all done synchronously while the array is
2514 * frozen
2515 */
2516
2517 bio = r1_bio->bios[r1_bio->read_disk];
2518 bdevname(bio->bi_bdev, b);
2519 bio_dev = bio->bi_bdev->bd_dev;
2520 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2521 bio_put(bio);
2522 r1_bio->bios[r1_bio->read_disk] = NULL;
2523
2524 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2525 if (mddev->ro == 0
2526 && !test_bit(FailFast, &rdev->flags)) {
2527 freeze_array(conf, 1);
2528 fix_read_error(conf, r1_bio->read_disk,
2529 r1_bio->sector, r1_bio->sectors);
2530 unfreeze_array(conf);
2531 } else {
2532 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2533 }
2534
2535 rdev_dec_pending(rdev, conf->mddev);
2536
2537 read_more:
2538 disk = read_balance(conf, r1_bio, &max_sectors);
2539 if (disk == -1) {
2540 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2541 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2542 raid_end_bio_io(r1_bio);
2543 } else {
2544 const unsigned long do_sync
2545 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2546 r1_bio->read_disk = disk;
2547 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2548 mddev->bio_set);
2549 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2550 max_sectors);
2551 r1_bio->bios[r1_bio->read_disk] = bio;
2552 rdev = conf->mirrors[disk].rdev;
2553 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2554 mdname(mddev),
2555 (unsigned long long)r1_bio->sector,
2556 bdevname(rdev->bdev, b));
2557 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2558 bio->bi_bdev = rdev->bdev;
2559 bio->bi_end_io = raid1_end_read_request;
2560 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2561 if (test_bit(FailFast, &rdev->flags) &&
2562 test_bit(R1BIO_FailFast, &r1_bio->state))
2563 bio->bi_opf |= MD_FAILFAST;
2564 bio->bi_private = r1_bio;
2565 if (max_sectors < r1_bio->sectors) {
2566 /* Drat - have to split this up more */
2567 struct bio *mbio = r1_bio->master_bio;
2568 int sectors_handled = (r1_bio->sector + max_sectors
2569 - mbio->bi_iter.bi_sector);
2570 r1_bio->sectors = max_sectors;
2571 bio_inc_remaining(mbio);
2572 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2573 bio, bio_dev, bio_sector);
2574 generic_make_request(bio);
2575 bio = NULL;
2576
2577 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2578 set_bit(R1BIO_ReadError, &r1_bio->state);
2579 inc_pending(conf, r1_bio->sector);
2580
2581 goto read_more;
2582 } else {
2583 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2584 bio, bio_dev, bio_sector);
2585 generic_make_request(bio);
2586 }
2587 }
2588 }
2589
2590 static void raid1d(struct md_thread *thread)
2591 {
2592 struct mddev *mddev = thread->mddev;
2593 struct r1bio *r1_bio;
2594 unsigned long flags;
2595 struct r1conf *conf = mddev->private;
2596 struct list_head *head = &conf->retry_list;
2597 struct blk_plug plug;
2598 int idx;
2599
2600 md_check_recovery(mddev);
2601
2602 if (!list_empty_careful(&conf->bio_end_io_list) &&
2603 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2604 LIST_HEAD(tmp);
2605 spin_lock_irqsave(&conf->device_lock, flags);
2606 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2607 list_splice_init(&conf->bio_end_io_list, &tmp);
2608 spin_unlock_irqrestore(&conf->device_lock, flags);
2609 while (!list_empty(&tmp)) {
2610 r1_bio = list_first_entry(&tmp, struct r1bio,
2611 retry_list);
2612 list_del(&r1_bio->retry_list);
2613 idx = sector_to_idx(r1_bio->sector);
2614 atomic_dec(&conf->nr_queued[idx]);
2615 if (mddev->degraded)
2616 set_bit(R1BIO_Degraded, &r1_bio->state);
2617 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2618 close_write(r1_bio);
2619 raid_end_bio_io(r1_bio);
2620 }
2621 }
2622
2623 blk_start_plug(&plug);
2624 for (;;) {
2625
2626 flush_pending_writes(conf);
2627
2628 spin_lock_irqsave(&conf->device_lock, flags);
2629 if (list_empty(head)) {
2630 spin_unlock_irqrestore(&conf->device_lock, flags);
2631 break;
2632 }
2633 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2634 list_del(head->prev);
2635 idx = sector_to_idx(r1_bio->sector);
2636 atomic_dec(&conf->nr_queued[idx]);
2637 spin_unlock_irqrestore(&conf->device_lock, flags);
2638
2639 mddev = r1_bio->mddev;
2640 conf = mddev->private;
2641 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2642 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2643 test_bit(R1BIO_WriteError, &r1_bio->state))
2644 handle_sync_write_finished(conf, r1_bio);
2645 else
2646 sync_request_write(mddev, r1_bio);
2647 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2648 test_bit(R1BIO_WriteError, &r1_bio->state))
2649 handle_write_finished(conf, r1_bio);
2650 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2651 handle_read_error(conf, r1_bio);
2652 else
2653 /* just a partial read to be scheduled from separate
2654 * context
2655 */
2656 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2657
2658 cond_resched();
2659 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2660 md_check_recovery(mddev);
2661 }
2662 blk_finish_plug(&plug);
2663 }
2664
2665 static int init_resync(struct r1conf *conf)
2666 {
2667 int buffs;
2668
2669 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2670 BUG_ON(conf->r1buf_pool);
2671 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2672 conf->poolinfo);
2673 if (!conf->r1buf_pool)
2674 return -ENOMEM;
2675 return 0;
2676 }
2677
2678 /*
2679 * perform a "sync" on one "block"
2680 *
2681 * We need to make sure that no normal I/O request - particularly write
2682 * requests - conflict with active sync requests.
2683 *
2684 * This is achieved by tracking pending requests and a 'barrier' concept
2685 * that can be installed to exclude normal IO requests.
2686 */
2687
2688 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2689 int *skipped)
2690 {
2691 struct r1conf *conf = mddev->private;
2692 struct r1bio *r1_bio;
2693 struct bio *bio;
2694 sector_t max_sector, nr_sectors;
2695 int disk = -1;
2696 int i;
2697 int wonly = -1;
2698 int write_targets = 0, read_targets = 0;
2699 sector_t sync_blocks;
2700 int still_degraded = 0;
2701 int good_sectors = RESYNC_SECTORS;
2702 int min_bad = 0; /* number of sectors that are bad in all devices */
2703 int idx = sector_to_idx(sector_nr);
2704
2705 if (!conf->r1buf_pool)
2706 if (init_resync(conf))
2707 return 0;
2708
2709 max_sector = mddev->dev_sectors;
2710 if (sector_nr >= max_sector) {
2711 /* If we aborted, we need to abort the
2712 * sync on the 'current' bitmap chunk (there will
2713 * only be one in raid1 resync.
2714 * We can find the current addess in mddev->curr_resync
2715 */
2716 if (mddev->curr_resync < max_sector) /* aborted */
2717 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2718 &sync_blocks, 1);
2719 else /* completed sync */
2720 conf->fullsync = 0;
2721
2722 bitmap_close_sync(mddev->bitmap);
2723 close_sync(conf);
2724
2725 if (mddev_is_clustered(mddev)) {
2726 conf->cluster_sync_low = 0;
2727 conf->cluster_sync_high = 0;
2728 }
2729 return 0;
2730 }
2731
2732 if (mddev->bitmap == NULL &&
2733 mddev->recovery_cp == MaxSector &&
2734 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2735 conf->fullsync == 0) {
2736 *skipped = 1;
2737 return max_sector - sector_nr;
2738 }
2739 /* before building a request, check if we can skip these blocks..
2740 * This call the bitmap_start_sync doesn't actually record anything
2741 */
2742 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2743 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2744 /* We can skip this block, and probably several more */
2745 *skipped = 1;
2746 return sync_blocks;
2747 }
2748
2749 /*
2750 * If there is non-resync activity waiting for a turn, then let it
2751 * though before starting on this new sync request.
2752 */
2753 if (atomic_read(&conf->nr_waiting[idx]))
2754 schedule_timeout_uninterruptible(1);
2755
2756 /* we are incrementing sector_nr below. To be safe, we check against
2757 * sector_nr + two times RESYNC_SECTORS
2758 */
2759
2760 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2761 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2762 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2763
2764 raise_barrier(conf, sector_nr);
2765
2766 rcu_read_lock();
2767 /*
2768 * If we get a correctably read error during resync or recovery,
2769 * we might want to read from a different device. So we
2770 * flag all drives that could conceivably be read from for READ,
2771 * and any others (which will be non-In_sync devices) for WRITE.
2772 * If a read fails, we try reading from something else for which READ
2773 * is OK.
2774 */
2775
2776 r1_bio->mddev = mddev;
2777 r1_bio->sector = sector_nr;
2778 r1_bio->state = 0;
2779 set_bit(R1BIO_IsSync, &r1_bio->state);
2780 /* make sure good_sectors won't go across barrier unit boundary */
2781 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2782
2783 for (i = 0; i < conf->raid_disks * 2; i++) {
2784 struct md_rdev *rdev;
2785 bio = r1_bio->bios[i];
2786
2787 rdev = rcu_dereference(conf->mirrors[i].rdev);
2788 if (rdev == NULL ||
2789 test_bit(Faulty, &rdev->flags)) {
2790 if (i < conf->raid_disks)
2791 still_degraded = 1;
2792 } else if (!test_bit(In_sync, &rdev->flags)) {
2793 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2794 bio->bi_end_io = end_sync_write;
2795 write_targets ++;
2796 } else {
2797 /* may need to read from here */
2798 sector_t first_bad = MaxSector;
2799 int bad_sectors;
2800
2801 if (is_badblock(rdev, sector_nr, good_sectors,
2802 &first_bad, &bad_sectors)) {
2803 if (first_bad > sector_nr)
2804 good_sectors = first_bad - sector_nr;
2805 else {
2806 bad_sectors -= (sector_nr - first_bad);
2807 if (min_bad == 0 ||
2808 min_bad > bad_sectors)
2809 min_bad = bad_sectors;
2810 }
2811 }
2812 if (sector_nr < first_bad) {
2813 if (test_bit(WriteMostly, &rdev->flags)) {
2814 if (wonly < 0)
2815 wonly = i;
2816 } else {
2817 if (disk < 0)
2818 disk = i;
2819 }
2820 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2821 bio->bi_end_io = end_sync_read;
2822 read_targets++;
2823 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2824 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2825 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2826 /*
2827 * The device is suitable for reading (InSync),
2828 * but has bad block(s) here. Let's try to correct them,
2829 * if we are doing resync or repair. Otherwise, leave
2830 * this device alone for this sync request.
2831 */
2832 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2833 bio->bi_end_io = end_sync_write;
2834 write_targets++;
2835 }
2836 }
2837 if (bio->bi_end_io) {
2838 atomic_inc(&rdev->nr_pending);
2839 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2840 bio->bi_bdev = rdev->bdev;
2841 if (test_bit(FailFast, &rdev->flags))
2842 bio->bi_opf |= MD_FAILFAST;
2843 }
2844 }
2845 rcu_read_unlock();
2846 if (disk < 0)
2847 disk = wonly;
2848 r1_bio->read_disk = disk;
2849
2850 if (read_targets == 0 && min_bad > 0) {
2851 /* These sectors are bad on all InSync devices, so we
2852 * need to mark them bad on all write targets
2853 */
2854 int ok = 1;
2855 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2856 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2857 struct md_rdev *rdev = conf->mirrors[i].rdev;
2858 ok = rdev_set_badblocks(rdev, sector_nr,
2859 min_bad, 0
2860 ) && ok;
2861 }
2862 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2863 *skipped = 1;
2864 put_buf(r1_bio);
2865
2866 if (!ok) {
2867 /* Cannot record the badblocks, so need to
2868 * abort the resync.
2869 * If there are multiple read targets, could just
2870 * fail the really bad ones ???
2871 */
2872 conf->recovery_disabled = mddev->recovery_disabled;
2873 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2874 return 0;
2875 } else
2876 return min_bad;
2877
2878 }
2879 if (min_bad > 0 && min_bad < good_sectors) {
2880 /* only resync enough to reach the next bad->good
2881 * transition */
2882 good_sectors = min_bad;
2883 }
2884
2885 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2886 /* extra read targets are also write targets */
2887 write_targets += read_targets-1;
2888
2889 if (write_targets == 0 || read_targets == 0) {
2890 /* There is nowhere to write, so all non-sync
2891 * drives must be failed - so we are finished
2892 */
2893 sector_t rv;
2894 if (min_bad > 0)
2895 max_sector = sector_nr + min_bad;
2896 rv = max_sector - sector_nr;
2897 *skipped = 1;
2898 put_buf(r1_bio);
2899 return rv;
2900 }
2901
2902 if (max_sector > mddev->resync_max)
2903 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2904 if (max_sector > sector_nr + good_sectors)
2905 max_sector = sector_nr + good_sectors;
2906 nr_sectors = 0;
2907 sync_blocks = 0;
2908 do {
2909 struct page *page;
2910 int len = PAGE_SIZE;
2911 if (sector_nr + (len>>9) > max_sector)
2912 len = (max_sector - sector_nr) << 9;
2913 if (len == 0)
2914 break;
2915 if (sync_blocks == 0) {
2916 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2917 &sync_blocks, still_degraded) &&
2918 !conf->fullsync &&
2919 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2920 break;
2921 if ((len >> 9) > sync_blocks)
2922 len = sync_blocks<<9;
2923 }
2924
2925 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2926 struct resync_pages *rp;
2927
2928 bio = r1_bio->bios[i];
2929 rp = get_resync_pages(bio);
2930 if (bio->bi_end_io) {
2931 page = resync_fetch_page(rp, rp->idx++);
2932
2933 /*
2934 * won't fail because the vec table is big
2935 * enough to hold all these pages
2936 */
2937 bio_add_page(bio, page, len, 0);
2938 }
2939 }
2940 nr_sectors += len>>9;
2941 sector_nr += len>>9;
2942 sync_blocks -= (len>>9);
2943 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2944
2945 r1_bio->sectors = nr_sectors;
2946
2947 if (mddev_is_clustered(mddev) &&
2948 conf->cluster_sync_high < sector_nr + nr_sectors) {
2949 conf->cluster_sync_low = mddev->curr_resync_completed;
2950 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2951 /* Send resync message */
2952 md_cluster_ops->resync_info_update(mddev,
2953 conf->cluster_sync_low,
2954 conf->cluster_sync_high);
2955 }
2956
2957 /* For a user-requested sync, we read all readable devices and do a
2958 * compare
2959 */
2960 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2961 atomic_set(&r1_bio->remaining, read_targets);
2962 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2963 bio = r1_bio->bios[i];
2964 if (bio->bi_end_io == end_sync_read) {
2965 read_targets--;
2966 md_sync_acct(bio->bi_bdev, nr_sectors);
2967 if (read_targets == 1)
2968 bio->bi_opf &= ~MD_FAILFAST;
2969 generic_make_request(bio);
2970 }
2971 }
2972 } else {
2973 atomic_set(&r1_bio->remaining, 1);
2974 bio = r1_bio->bios[r1_bio->read_disk];
2975 md_sync_acct(bio->bi_bdev, nr_sectors);
2976 if (read_targets == 1)
2977 bio->bi_opf &= ~MD_FAILFAST;
2978 generic_make_request(bio);
2979
2980 }
2981 return nr_sectors;
2982 }
2983
2984 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2985 {
2986 if (sectors)
2987 return sectors;
2988
2989 return mddev->dev_sectors;
2990 }
2991
2992 static struct r1conf *setup_conf(struct mddev *mddev)
2993 {
2994 struct r1conf *conf;
2995 int i;
2996 struct raid1_info *disk;
2997 struct md_rdev *rdev;
2998 int err = -ENOMEM;
2999
3000 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3001 if (!conf)
3002 goto abort;
3003
3004 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3005 sizeof(atomic_t), GFP_KERNEL);
3006 if (!conf->nr_pending)
3007 goto abort;
3008
3009 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3010 sizeof(atomic_t), GFP_KERNEL);
3011 if (!conf->nr_waiting)
3012 goto abort;
3013
3014 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3015 sizeof(atomic_t), GFP_KERNEL);
3016 if (!conf->nr_queued)
3017 goto abort;
3018
3019 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3020 sizeof(atomic_t), GFP_KERNEL);
3021 if (!conf->barrier)
3022 goto abort;
3023
3024 conf->mirrors = kzalloc(sizeof(struct raid1_info)
3025 * mddev->raid_disks * 2,
3026 GFP_KERNEL);
3027 if (!conf->mirrors)
3028 goto abort;
3029
3030 conf->tmppage = alloc_page(GFP_KERNEL);
3031 if (!conf->tmppage)
3032 goto abort;
3033
3034 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3035 if (!conf->poolinfo)
3036 goto abort;
3037 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3038 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3039 r1bio_pool_free,
3040 conf->poolinfo);
3041 if (!conf->r1bio_pool)
3042 goto abort;
3043
3044 conf->poolinfo->mddev = mddev;
3045
3046 err = -EINVAL;
3047 spin_lock_init(&conf->device_lock);
3048 rdev_for_each(rdev, mddev) {
3049 struct request_queue *q;
3050 int disk_idx = rdev->raid_disk;
3051 if (disk_idx >= mddev->raid_disks
3052 || disk_idx < 0)
3053 continue;
3054 if (test_bit(Replacement, &rdev->flags))
3055 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3056 else
3057 disk = conf->mirrors + disk_idx;
3058
3059 if (disk->rdev)
3060 goto abort;
3061 disk->rdev = rdev;
3062 q = bdev_get_queue(rdev->bdev);
3063
3064 disk->head_position = 0;
3065 disk->seq_start = MaxSector;
3066 }
3067 conf->raid_disks = mddev->raid_disks;
3068 conf->mddev = mddev;
3069 INIT_LIST_HEAD(&conf->retry_list);
3070 INIT_LIST_HEAD(&conf->bio_end_io_list);
3071
3072 spin_lock_init(&conf->resync_lock);
3073 init_waitqueue_head(&conf->wait_barrier);
3074
3075 bio_list_init(&conf->pending_bio_list);
3076 conf->pending_count = 0;
3077 conf->recovery_disabled = mddev->recovery_disabled - 1;
3078
3079 err = -EIO;
3080 for (i = 0; i < conf->raid_disks * 2; i++) {
3081
3082 disk = conf->mirrors + i;
3083
3084 if (i < conf->raid_disks &&
3085 disk[conf->raid_disks].rdev) {
3086 /* This slot has a replacement. */
3087 if (!disk->rdev) {
3088 /* No original, just make the replacement
3089 * a recovering spare
3090 */
3091 disk->rdev =
3092 disk[conf->raid_disks].rdev;
3093 disk[conf->raid_disks].rdev = NULL;
3094 } else if (!test_bit(In_sync, &disk->rdev->flags))
3095 /* Original is not in_sync - bad */
3096 goto abort;
3097 }
3098
3099 if (!disk->rdev ||
3100 !test_bit(In_sync, &disk->rdev->flags)) {
3101 disk->head_position = 0;
3102 if (disk->rdev &&
3103 (disk->rdev->saved_raid_disk < 0))
3104 conf->fullsync = 1;
3105 }
3106 }
3107
3108 err = -ENOMEM;
3109 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3110 if (!conf->thread)
3111 goto abort;
3112
3113 return conf;
3114
3115 abort:
3116 if (conf) {
3117 mempool_destroy(conf->r1bio_pool);
3118 kfree(conf->mirrors);
3119 safe_put_page(conf->tmppage);
3120 kfree(conf->poolinfo);
3121 kfree(conf->nr_pending);
3122 kfree(conf->nr_waiting);
3123 kfree(conf->nr_queued);
3124 kfree(conf->barrier);
3125 kfree(conf);
3126 }
3127 return ERR_PTR(err);
3128 }
3129
3130 static void raid1_free(struct mddev *mddev, void *priv);
3131 static int raid1_run(struct mddev *mddev)
3132 {
3133 struct r1conf *conf;
3134 int i;
3135 struct md_rdev *rdev;
3136 int ret;
3137 bool discard_supported = false;
3138
3139 if (mddev->level != 1) {
3140 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3141 mdname(mddev), mddev->level);
3142 return -EIO;
3143 }
3144 if (mddev->reshape_position != MaxSector) {
3145 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3146 mdname(mddev));
3147 return -EIO;
3148 }
3149 /*
3150 * copy the already verified devices into our private RAID1
3151 * bookkeeping area. [whatever we allocate in run(),
3152 * should be freed in raid1_free()]
3153 */
3154 if (mddev->private == NULL)
3155 conf = setup_conf(mddev);
3156 else
3157 conf = mddev->private;
3158
3159 if (IS_ERR(conf))
3160 return PTR_ERR(conf);
3161
3162 if (mddev->queue)
3163 blk_queue_max_write_same_sectors(mddev->queue, 0);
3164
3165 rdev_for_each(rdev, mddev) {
3166 if (!mddev->gendisk)
3167 continue;
3168 disk_stack_limits(mddev->gendisk, rdev->bdev,
3169 rdev->data_offset << 9);
3170 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3171 discard_supported = true;
3172 }
3173
3174 mddev->degraded = 0;
3175 for (i=0; i < conf->raid_disks; i++)
3176 if (conf->mirrors[i].rdev == NULL ||
3177 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3178 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3179 mddev->degraded++;
3180
3181 if (conf->raid_disks - mddev->degraded == 1)
3182 mddev->recovery_cp = MaxSector;
3183
3184 if (mddev->recovery_cp != MaxSector)
3185 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3186 mdname(mddev));
3187 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3188 mdname(mddev), mddev->raid_disks - mddev->degraded,
3189 mddev->raid_disks);
3190
3191 /*
3192 * Ok, everything is just fine now
3193 */
3194 mddev->thread = conf->thread;
3195 conf->thread = NULL;
3196 mddev->private = conf;
3197 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3198
3199 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3200
3201 if (mddev->queue) {
3202 if (discard_supported)
3203 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3204 mddev->queue);
3205 else
3206 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3207 mddev->queue);
3208 }
3209
3210 ret = md_integrity_register(mddev);
3211 if (ret) {
3212 md_unregister_thread(&mddev->thread);
3213 raid1_free(mddev, conf);
3214 }
3215 return ret;
3216 }
3217
3218 static void raid1_free(struct mddev *mddev, void *priv)
3219 {
3220 struct r1conf *conf = priv;
3221
3222 mempool_destroy(conf->r1bio_pool);
3223 kfree(conf->mirrors);
3224 safe_put_page(conf->tmppage);
3225 kfree(conf->poolinfo);
3226 kfree(conf->nr_pending);
3227 kfree(conf->nr_waiting);
3228 kfree(conf->nr_queued);
3229 kfree(conf->barrier);
3230 kfree(conf);
3231 }
3232
3233 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3234 {
3235 /* no resync is happening, and there is enough space
3236 * on all devices, so we can resize.
3237 * We need to make sure resync covers any new space.
3238 * If the array is shrinking we should possibly wait until
3239 * any io in the removed space completes, but it hardly seems
3240 * worth it.
3241 */
3242 sector_t newsize = raid1_size(mddev, sectors, 0);
3243 if (mddev->external_size &&
3244 mddev->array_sectors > newsize)
3245 return -EINVAL;
3246 if (mddev->bitmap) {
3247 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3248 if (ret)
3249 return ret;
3250 }
3251 md_set_array_sectors(mddev, newsize);
3252 if (sectors > mddev->dev_sectors &&
3253 mddev->recovery_cp > mddev->dev_sectors) {
3254 mddev->recovery_cp = mddev->dev_sectors;
3255 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3256 }
3257 mddev->dev_sectors = sectors;
3258 mddev->resync_max_sectors = sectors;
3259 return 0;
3260 }
3261
3262 static int raid1_reshape(struct mddev *mddev)
3263 {
3264 /* We need to:
3265 * 1/ resize the r1bio_pool
3266 * 2/ resize conf->mirrors
3267 *
3268 * We allocate a new r1bio_pool if we can.
3269 * Then raise a device barrier and wait until all IO stops.
3270 * Then resize conf->mirrors and swap in the new r1bio pool.
3271 *
3272 * At the same time, we "pack" the devices so that all the missing
3273 * devices have the higher raid_disk numbers.
3274 */
3275 mempool_t *newpool, *oldpool;
3276 struct pool_info *newpoolinfo;
3277 struct raid1_info *newmirrors;
3278 struct r1conf *conf = mddev->private;
3279 int cnt, raid_disks;
3280 unsigned long flags;
3281 int d, d2, err;
3282
3283 /* Cannot change chunk_size, layout, or level */
3284 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3285 mddev->layout != mddev->new_layout ||
3286 mddev->level != mddev->new_level) {
3287 mddev->new_chunk_sectors = mddev->chunk_sectors;
3288 mddev->new_layout = mddev->layout;
3289 mddev->new_level = mddev->level;
3290 return -EINVAL;
3291 }
3292
3293 if (!mddev_is_clustered(mddev)) {
3294 err = md_allow_write(mddev);
3295 if (err)
3296 return err;
3297 }
3298
3299 raid_disks = mddev->raid_disks + mddev->delta_disks;
3300
3301 if (raid_disks < conf->raid_disks) {
3302 cnt=0;
3303 for (d= 0; d < conf->raid_disks; d++)
3304 if (conf->mirrors[d].rdev)
3305 cnt++;
3306 if (cnt > raid_disks)
3307 return -EBUSY;
3308 }
3309
3310 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3311 if (!newpoolinfo)
3312 return -ENOMEM;
3313 newpoolinfo->mddev = mddev;
3314 newpoolinfo->raid_disks = raid_disks * 2;
3315
3316 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3317 r1bio_pool_free, newpoolinfo);
3318 if (!newpool) {
3319 kfree(newpoolinfo);
3320 return -ENOMEM;
3321 }
3322 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3323 GFP_KERNEL);
3324 if (!newmirrors) {
3325 kfree(newpoolinfo);
3326 mempool_destroy(newpool);
3327 return -ENOMEM;
3328 }
3329
3330 freeze_array(conf, 0);
3331
3332 /* ok, everything is stopped */
3333 oldpool = conf->r1bio_pool;
3334 conf->r1bio_pool = newpool;
3335
3336 for (d = d2 = 0; d < conf->raid_disks; d++) {
3337 struct md_rdev *rdev = conf->mirrors[d].rdev;
3338 if (rdev && rdev->raid_disk != d2) {
3339 sysfs_unlink_rdev(mddev, rdev);
3340 rdev->raid_disk = d2;
3341 sysfs_unlink_rdev(mddev, rdev);
3342 if (sysfs_link_rdev(mddev, rdev))
3343 pr_warn("md/raid1:%s: cannot register rd%d\n",
3344 mdname(mddev), rdev->raid_disk);
3345 }
3346 if (rdev)
3347 newmirrors[d2++].rdev = rdev;
3348 }
3349 kfree(conf->mirrors);
3350 conf->mirrors = newmirrors;
3351 kfree(conf->poolinfo);
3352 conf->poolinfo = newpoolinfo;
3353
3354 spin_lock_irqsave(&conf->device_lock, flags);
3355 mddev->degraded += (raid_disks - conf->raid_disks);
3356 spin_unlock_irqrestore(&conf->device_lock, flags);
3357 conf->raid_disks = mddev->raid_disks = raid_disks;
3358 mddev->delta_disks = 0;
3359
3360 unfreeze_array(conf);
3361
3362 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3363 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3364 md_wakeup_thread(mddev->thread);
3365
3366 mempool_destroy(oldpool);
3367 return 0;
3368 }
3369
3370 static void raid1_quiesce(struct mddev *mddev, int state)
3371 {
3372 struct r1conf *conf = mddev->private;
3373
3374 switch(state) {
3375 case 2: /* wake for suspend */
3376 wake_up(&conf->wait_barrier);
3377 break;
3378 case 1:
3379 freeze_array(conf, 0);
3380 break;
3381 case 0:
3382 unfreeze_array(conf);
3383 break;
3384 }
3385 }
3386
3387 static void *raid1_takeover(struct mddev *mddev)
3388 {
3389 /* raid1 can take over:
3390 * raid5 with 2 devices, any layout or chunk size
3391 */
3392 if (mddev->level == 5 && mddev->raid_disks == 2) {
3393 struct r1conf *conf;
3394 mddev->new_level = 1;
3395 mddev->new_layout = 0;
3396 mddev->new_chunk_sectors = 0;
3397 conf = setup_conf(mddev);
3398 if (!IS_ERR(conf)) {
3399 /* Array must appear to be quiesced */
3400 conf->array_frozen = 1;
3401 mddev_clear_unsupported_flags(mddev,
3402 UNSUPPORTED_MDDEV_FLAGS);
3403 }
3404 return conf;
3405 }
3406 return ERR_PTR(-EINVAL);
3407 }
3408
3409 static struct md_personality raid1_personality =
3410 {
3411 .name = "raid1",
3412 .level = 1,
3413 .owner = THIS_MODULE,
3414 .make_request = raid1_make_request,
3415 .run = raid1_run,
3416 .free = raid1_free,
3417 .status = raid1_status,
3418 .error_handler = raid1_error,
3419 .hot_add_disk = raid1_add_disk,
3420 .hot_remove_disk= raid1_remove_disk,
3421 .spare_active = raid1_spare_active,
3422 .sync_request = raid1_sync_request,
3423 .resize = raid1_resize,
3424 .size = raid1_size,
3425 .check_reshape = raid1_reshape,
3426 .quiesce = raid1_quiesce,
3427 .takeover = raid1_takeover,
3428 .congested = raid1_congested,
3429 };
3430
3431 static int __init raid_init(void)
3432 {
3433 return register_md_personality(&raid1_personality);
3434 }
3435
3436 static void raid_exit(void)
3437 {
3438 unregister_md_personality(&raid1_personality);
3439 }
3440
3441 module_init(raid_init);
3442 module_exit(raid_exit);
3443 MODULE_LICENSE("GPL");
3444 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3445 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3446 MODULE_ALIAS("md-raid1");
3447 MODULE_ALIAS("md-level-1");
3448
3449 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);