]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
block: Abstract out bvec iterator
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int i, j;
101
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 if (!r1_bio)
104 return NULL;
105
106 /*
107 * Allocate bios : 1 for reading, n-1 for writing
108 */
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 if (!bio)
112 goto out_free_bio;
113 r1_bio->bios[j] = bio;
114 }
115 /*
116 * Allocate RESYNC_PAGES data pages and attach them to
117 * the first bio.
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
120 */
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 j = pi->raid_disks;
123 else
124 j = 1;
125 while(j--) {
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
128
129 if (bio_alloc_pages(bio, gfp_flags))
130 goto out_free_bio;
131 }
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 }
139
140 r1_bio->master_bio = NULL;
141
142 return r1_bio;
143
144 out_free_bio:
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
148 return NULL;
149 }
150
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153 struct pool_info *pi = data;
154 int i,j;
155 struct r1bio *r1bio = __r1_bio;
156
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
159 if (j == 0 ||
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163 }
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
166
167 r1bio_pool_free(r1bio, data);
168 }
169
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172 int i;
173
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
177 bio_put(*bio);
178 *bio = NULL;
179 }
180 }
181
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184 struct r1conf *conf = r1_bio->mddev->private;
185
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
188 }
189
190 static void put_buf(struct r1bio *r1_bio)
191 {
192 struct r1conf *conf = r1_bio->mddev->private;
193 int i;
194
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
197 if (bio->bi_end_io)
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199 }
200
201 mempool_free(r1_bio, conf->r1buf_pool);
202
203 lower_barrier(conf);
204 }
205
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208 unsigned long flags;
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
211
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
214 conf->nr_queued ++;
215 spin_unlock_irqrestore(&conf->device_lock, flags);
216
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
225 */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228 struct bio *bio = r1_bio->master_bio;
229 int done;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_iter.bi_sector;
233
234 if (bio->bi_phys_segments) {
235 unsigned long flags;
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240 /*
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
243 */
244 wake_up(&conf->wait_barrier);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf, start_next_window, bi_sector);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_iter.bi_sector,
269 (unsigned long long) bio_end_sector(bio) - 1);
270
271 call_bio_endio(r1_bio);
272 }
273 free_r1bio(r1_bio);
274 }
275
276 /*
277 * Update disk head position estimator based on IRQ completion info.
278 */
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
280 {
281 struct r1conf *conf = r1_bio->mddev->private;
282
283 conf->mirrors[disk].head_position =
284 r1_bio->sector + (r1_bio->sectors);
285 }
286
287 /*
288 * Find the disk number which triggered given bio
289 */
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
291 {
292 int mirror;
293 struct r1conf *conf = r1_bio->mddev->private;
294 int raid_disks = conf->raid_disks;
295
296 for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 if (r1_bio->bios[mirror] == bio)
298 break;
299
300 BUG_ON(mirror == raid_disks * 2);
301 update_head_pos(mirror, r1_bio);
302
303 return mirror;
304 }
305
306 static void raid1_end_read_request(struct bio *bio, int error)
307 {
308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 struct r1bio *r1_bio = bio->bi_private;
310 int mirror;
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 mirror = r1_bio->read_disk;
314 /*
315 * this branch is our 'one mirror IO has finished' event handler:
316 */
317 update_head_pos(mirror, r1_bio);
318
319 if (uptodate)
320 set_bit(R1BIO_Uptodate, &r1_bio->state);
321 else {
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
325 */
326 unsigned long flags;
327 spin_lock_irqsave(&conf->device_lock, flags);
328 if (r1_bio->mddev->degraded == conf->raid_disks ||
329 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
331 uptodate = 1;
332 spin_unlock_irqrestore(&conf->device_lock, flags);
333 }
334
335 if (uptodate) {
336 raid_end_bio_io(r1_bio);
337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338 } else {
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 /* don't drop the reference on read_disk yet */
353 }
354 }
355
356 static void close_write(struct r1bio *r1_bio)
357 {
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 /* free extra copy of the data pages */
361 int i = r1_bio->behind_page_count;
362 while (i--)
363 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 kfree(r1_bio->behind_bvecs);
365 r1_bio->behind_bvecs = NULL;
366 }
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369 r1_bio->sectors,
370 !test_bit(R1BIO_Degraded, &r1_bio->state),
371 test_bit(R1BIO_BehindIO, &r1_bio->state));
372 md_write_end(r1_bio->mddev);
373 }
374
375 static void r1_bio_write_done(struct r1bio *r1_bio)
376 {
377 if (!atomic_dec_and_test(&r1_bio->remaining))
378 return;
379
380 if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 reschedule_retry(r1_bio);
382 else {
383 close_write(r1_bio);
384 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else
387 raid_end_bio_io(r1_bio);
388 }
389 }
390
391 static void raid1_end_write_request(struct bio *bio, int error)
392 {
393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 struct r1bio *r1_bio = bio->bi_private;
395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 struct r1conf *conf = r1_bio->mddev->private;
397 struct bio *to_put = NULL;
398
399 mirror = find_bio_disk(r1_bio, bio);
400
401 /*
402 * 'one mirror IO has finished' event handler:
403 */
404 if (!uptodate) {
405 set_bit(WriteErrorSeen,
406 &conf->mirrors[mirror].rdev->flags);
407 if (!test_and_set_bit(WantReplacement,
408 &conf->mirrors[mirror].rdev->flags))
409 set_bit(MD_RECOVERY_NEEDED, &
410 conf->mddev->recovery);
411
412 set_bit(R1BIO_WriteError, &r1_bio->state);
413 } else {
414 /*
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
418 * fails.
419 *
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
423 */
424 sector_t first_bad;
425 int bad_sectors;
426
427 r1_bio->bios[mirror] = NULL;
428 to_put = bio;
429 /*
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
435 * check this here.
436 */
437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 set_bit(R1BIO_Uptodate, &r1_bio->state);
440
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf->mirrors[mirror].rdev,
443 r1_bio->sector, r1_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 r1_bio->bios[mirror] = IO_MADE_GOOD;
446 set_bit(R1BIO_MadeGood, &r1_bio->state);
447 }
448 }
449
450 if (behind) {
451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 atomic_dec(&r1_bio->behind_remaining);
453
454 /*
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
460 */
461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 struct bio *mbio = r1_bio->master_bio;
466 pr_debug("raid1: behind end write sectors"
467 " %llu-%llu\n",
468 (unsigned long long) mbio->bi_iter.bi_sector,
469 (unsigned long long) bio_end_sector(mbio) - 1);
470 call_bio_endio(r1_bio);
471 }
472 }
473 }
474 if (r1_bio->bios[mirror] == NULL)
475 rdev_dec_pending(conf->mirrors[mirror].rdev,
476 conf->mddev);
477
478 /*
479 * Let's see if all mirrored write operations have finished
480 * already.
481 */
482 r1_bio_write_done(r1_bio);
483
484 if (to_put)
485 bio_put(to_put);
486 }
487
488
489 /*
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
497 *
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
500 *
501 * The rdev for the device selected will have nr_pending incremented.
502 */
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
504 {
505 const sector_t this_sector = r1_bio->sector;
506 int sectors;
507 int best_good_sectors;
508 int best_disk, best_dist_disk, best_pending_disk;
509 int has_nonrot_disk;
510 int disk;
511 sector_t best_dist;
512 unsigned int min_pending;
513 struct md_rdev *rdev;
514 int choose_first;
515 int choose_next_idle;
516
517 rcu_read_lock();
518 /*
519 * Check if we can balance. We can balance on the whole
520 * device if no resync is going on, or below the resync window.
521 * We take the first readable disk when above the resync window.
522 */
523 retry:
524 sectors = r1_bio->sectors;
525 best_disk = -1;
526 best_dist_disk = -1;
527 best_dist = MaxSector;
528 best_pending_disk = -1;
529 min_pending = UINT_MAX;
530 best_good_sectors = 0;
531 has_nonrot_disk = 0;
532 choose_next_idle = 0;
533
534 if (conf->mddev->recovery_cp < MaxSector &&
535 (this_sector + sectors >= conf->next_resync))
536 choose_first = 1;
537 else
538 choose_first = 0;
539
540 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
541 sector_t dist;
542 sector_t first_bad;
543 int bad_sectors;
544 unsigned int pending;
545 bool nonrot;
546
547 rdev = rcu_dereference(conf->mirrors[disk].rdev);
548 if (r1_bio->bios[disk] == IO_BLOCKED
549 || rdev == NULL
550 || test_bit(Unmerged, &rdev->flags)
551 || test_bit(Faulty, &rdev->flags))
552 continue;
553 if (!test_bit(In_sync, &rdev->flags) &&
554 rdev->recovery_offset < this_sector + sectors)
555 continue;
556 if (test_bit(WriteMostly, &rdev->flags)) {
557 /* Don't balance among write-mostly, just
558 * use the first as a last resort */
559 if (best_disk < 0) {
560 if (is_badblock(rdev, this_sector, sectors,
561 &first_bad, &bad_sectors)) {
562 if (first_bad < this_sector)
563 /* Cannot use this */
564 continue;
565 best_good_sectors = first_bad - this_sector;
566 } else
567 best_good_sectors = sectors;
568 best_disk = disk;
569 }
570 continue;
571 }
572 /* This is a reasonable device to use. It might
573 * even be best.
574 */
575 if (is_badblock(rdev, this_sector, sectors,
576 &first_bad, &bad_sectors)) {
577 if (best_dist < MaxSector)
578 /* already have a better device */
579 continue;
580 if (first_bad <= this_sector) {
581 /* cannot read here. If this is the 'primary'
582 * device, then we must not read beyond
583 * bad_sectors from another device..
584 */
585 bad_sectors -= (this_sector - first_bad);
586 if (choose_first && sectors > bad_sectors)
587 sectors = bad_sectors;
588 if (best_good_sectors > sectors)
589 best_good_sectors = sectors;
590
591 } else {
592 sector_t good_sectors = first_bad - this_sector;
593 if (good_sectors > best_good_sectors) {
594 best_good_sectors = good_sectors;
595 best_disk = disk;
596 }
597 if (choose_first)
598 break;
599 }
600 continue;
601 } else
602 best_good_sectors = sectors;
603
604 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605 has_nonrot_disk |= nonrot;
606 pending = atomic_read(&rdev->nr_pending);
607 dist = abs(this_sector - conf->mirrors[disk].head_position);
608 if (choose_first) {
609 best_disk = disk;
610 break;
611 }
612 /* Don't change to another disk for sequential reads */
613 if (conf->mirrors[disk].next_seq_sect == this_sector
614 || dist == 0) {
615 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616 struct raid1_info *mirror = &conf->mirrors[disk];
617
618 best_disk = disk;
619 /*
620 * If buffered sequential IO size exceeds optimal
621 * iosize, check if there is idle disk. If yes, choose
622 * the idle disk. read_balance could already choose an
623 * idle disk before noticing it's a sequential IO in
624 * this disk. This doesn't matter because this disk
625 * will idle, next time it will be utilized after the
626 * first disk has IO size exceeds optimal iosize. In
627 * this way, iosize of the first disk will be optimal
628 * iosize at least. iosize of the second disk might be
629 * small, but not a big deal since when the second disk
630 * starts IO, the first disk is likely still busy.
631 */
632 if (nonrot && opt_iosize > 0 &&
633 mirror->seq_start != MaxSector &&
634 mirror->next_seq_sect > opt_iosize &&
635 mirror->next_seq_sect - opt_iosize >=
636 mirror->seq_start) {
637 choose_next_idle = 1;
638 continue;
639 }
640 break;
641 }
642 /* If device is idle, use it */
643 if (pending == 0) {
644 best_disk = disk;
645 break;
646 }
647
648 if (choose_next_idle)
649 continue;
650
651 if (min_pending > pending) {
652 min_pending = pending;
653 best_pending_disk = disk;
654 }
655
656 if (dist < best_dist) {
657 best_dist = dist;
658 best_dist_disk = disk;
659 }
660 }
661
662 /*
663 * If all disks are rotational, choose the closest disk. If any disk is
664 * non-rotational, choose the disk with less pending request even the
665 * disk is rotational, which might/might not be optimal for raids with
666 * mixed ratation/non-rotational disks depending on workload.
667 */
668 if (best_disk == -1) {
669 if (has_nonrot_disk)
670 best_disk = best_pending_disk;
671 else
672 best_disk = best_dist_disk;
673 }
674
675 if (best_disk >= 0) {
676 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
677 if (!rdev)
678 goto retry;
679 atomic_inc(&rdev->nr_pending);
680 if (test_bit(Faulty, &rdev->flags)) {
681 /* cannot risk returning a device that failed
682 * before we inc'ed nr_pending
683 */
684 rdev_dec_pending(rdev, conf->mddev);
685 goto retry;
686 }
687 sectors = best_good_sectors;
688
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
691
692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693 }
694 rcu_read_unlock();
695 *max_sectors = sectors;
696
697 return best_disk;
698 }
699
700 static int raid1_mergeable_bvec(struct request_queue *q,
701 struct bvec_merge_data *bvm,
702 struct bio_vec *biovec)
703 {
704 struct mddev *mddev = q->queuedata;
705 struct r1conf *conf = mddev->private;
706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707 int max = biovec->bv_len;
708
709 if (mddev->merge_check_needed) {
710 int disk;
711 rcu_read_lock();
712 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713 struct md_rdev *rdev = rcu_dereference(
714 conf->mirrors[disk].rdev);
715 if (rdev && !test_bit(Faulty, &rdev->flags)) {
716 struct request_queue *q =
717 bdev_get_queue(rdev->bdev);
718 if (q->merge_bvec_fn) {
719 bvm->bi_sector = sector +
720 rdev->data_offset;
721 bvm->bi_bdev = rdev->bdev;
722 max = min(max, q->merge_bvec_fn(
723 q, bvm, biovec));
724 }
725 }
726 }
727 rcu_read_unlock();
728 }
729 return max;
730
731 }
732
733 int md_raid1_congested(struct mddev *mddev, int bits)
734 {
735 struct r1conf *conf = mddev->private;
736 int i, ret = 0;
737
738 if ((bits & (1 << BDI_async_congested)) &&
739 conf->pending_count >= max_queued_requests)
740 return 1;
741
742 rcu_read_lock();
743 for (i = 0; i < conf->raid_disks * 2; i++) {
744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q = bdev_get_queue(rdev->bdev);
747
748 BUG_ON(!q);
749
750 /* Note the '|| 1' - when read_balance prefers
751 * non-congested targets, it can be removed
752 */
753 if ((bits & (1<<BDI_async_congested)) || 1)
754 ret |= bdi_congested(&q->backing_dev_info, bits);
755 else
756 ret &= bdi_congested(&q->backing_dev_info, bits);
757 }
758 }
759 rcu_read_unlock();
760 return ret;
761 }
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
763
764 static int raid1_congested(void *data, int bits)
765 {
766 struct mddev *mddev = data;
767
768 return mddev_congested(mddev, bits) ||
769 md_raid1_congested(mddev, bits);
770 }
771
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
776 */
777 spin_lock_irq(&conf->device_lock);
778
779 if (conf->pending_bio_list.head) {
780 struct bio *bio;
781 bio = bio_list_get(&conf->pending_bio_list);
782 conf->pending_count = 0;
783 spin_unlock_irq(&conf->device_lock);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf->mddev->bitmap);
787 wake_up(&conf->wait_barrier);
788
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
791 bio->bi_next = NULL;
792 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 /* Just ignore it */
795 bio_endio(bio, 0);
796 else
797 generic_make_request(bio);
798 bio = next;
799 }
800 } else
801 spin_unlock_irq(&conf->device_lock);
802 }
803
804 /* Barriers....
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
810 * normal IO.
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
817 *
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
824 */
825 static void raise_barrier(struct r1conf *conf)
826 {
827 spin_lock_irq(&conf->resync_lock);
828
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831 conf->resync_lock);
832
833 /* block any new IO from starting */
834 conf->barrier++;
835
836 /* For these conditions we must wait:
837 * A: while the array is in frozen state
838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 * the max count which allowed.
840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 * next resync will reach to the window which normal bios are
842 * handling.
843 */
844 wait_event_lock_irq(conf->wait_barrier,
845 !conf->array_frozen &&
846 conf->barrier < RESYNC_DEPTH &&
847 (conf->start_next_window >=
848 conf->next_resync + RESYNC_SECTORS),
849 conf->resync_lock);
850
851 spin_unlock_irq(&conf->resync_lock);
852 }
853
854 static void lower_barrier(struct r1conf *conf)
855 {
856 unsigned long flags;
857 BUG_ON(conf->barrier <= 0);
858 spin_lock_irqsave(&conf->resync_lock, flags);
859 conf->barrier--;
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
862 }
863
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866 bool wait = false;
867
868 if (conf->array_frozen || !bio)
869 wait = true;
870 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
872 wait = true;
873 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874 >= bio_end_sector(bio)) ||
875 (conf->next_resync + NEXT_NORMALIO_DISTANCE
876 <= bio->bi_iter.bi_sector))
877 wait = false;
878 else
879 wait = true;
880 }
881
882 return wait;
883 }
884
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
886 {
887 sector_t sector = 0;
888
889 spin_lock_irq(&conf->resync_lock);
890 if (need_to_wait_for_sync(conf, bio)) {
891 conf->nr_waiting++;
892 /* Wait for the barrier to drop.
893 * However if there are already pending
894 * requests (preventing the barrier from
895 * rising completely), and the
896 * pre-process bio queue isn't empty,
897 * then don't wait, as we need to empty
898 * that queue to get the nr_pending
899 * count down.
900 */
901 wait_event_lock_irq(conf->wait_barrier,
902 !conf->array_frozen &&
903 (!conf->barrier ||
904 ((conf->start_next_window <
905 conf->next_resync + RESYNC_SECTORS) &&
906 current->bio_list &&
907 !bio_list_empty(current->bio_list))),
908 conf->resync_lock);
909 conf->nr_waiting--;
910 }
911
912 if (bio && bio_data_dir(bio) == WRITE) {
913 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914 <= bio->bi_iter.bi_sector) {
915 if (conf->start_next_window == MaxSector)
916 conf->start_next_window =
917 conf->next_resync +
918 NEXT_NORMALIO_DISTANCE;
919
920 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921 <= bio->bi_iter.bi_sector)
922 conf->next_window_requests++;
923 else
924 conf->current_window_requests++;
925 }
926 if (bio->bi_iter.bi_sector >= conf->start_next_window)
927 sector = conf->start_next_window;
928 }
929
930 conf->nr_pending++;
931 spin_unlock_irq(&conf->resync_lock);
932 return sector;
933 }
934
935 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
936 sector_t bi_sector)
937 {
938 unsigned long flags;
939
940 spin_lock_irqsave(&conf->resync_lock, flags);
941 conf->nr_pending--;
942 if (start_next_window) {
943 if (start_next_window == conf->start_next_window) {
944 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
945 <= bi_sector)
946 conf->next_window_requests--;
947 else
948 conf->current_window_requests--;
949 } else
950 conf->current_window_requests--;
951
952 if (!conf->current_window_requests) {
953 if (conf->next_window_requests) {
954 conf->current_window_requests =
955 conf->next_window_requests;
956 conf->next_window_requests = 0;
957 conf->start_next_window +=
958 NEXT_NORMALIO_DISTANCE;
959 } else
960 conf->start_next_window = MaxSector;
961 }
962 }
963 spin_unlock_irqrestore(&conf->resync_lock, flags);
964 wake_up(&conf->wait_barrier);
965 }
966
967 static void freeze_array(struct r1conf *conf, int extra)
968 {
969 /* stop syncio and normal IO and wait for everything to
970 * go quite.
971 * We wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
979 */
980 spin_lock_irq(&conf->resync_lock);
981 conf->array_frozen = 1;
982 wait_event_lock_irq_cmd(conf->wait_barrier,
983 conf->nr_pending == conf->nr_queued+extra,
984 conf->resync_lock,
985 flush_pending_writes(conf));
986 spin_unlock_irq(&conf->resync_lock);
987 }
988 static void unfreeze_array(struct r1conf *conf)
989 {
990 /* reverse the effect of the freeze */
991 spin_lock_irq(&conf->resync_lock);
992 conf->array_frozen = 0;
993 wake_up(&conf->wait_barrier);
994 spin_unlock_irq(&conf->resync_lock);
995 }
996
997
998 /* duplicate the data pages for behind I/O
999 */
1000 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1001 {
1002 int i;
1003 struct bio_vec *bvec;
1004 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1005 GFP_NOIO);
1006 if (unlikely(!bvecs))
1007 return;
1008
1009 bio_for_each_segment_all(bvec, bio, i) {
1010 bvecs[i] = *bvec;
1011 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1012 if (unlikely(!bvecs[i].bv_page))
1013 goto do_sync_io;
1014 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1015 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1016 kunmap(bvecs[i].bv_page);
1017 kunmap(bvec->bv_page);
1018 }
1019 r1_bio->behind_bvecs = bvecs;
1020 r1_bio->behind_page_count = bio->bi_vcnt;
1021 set_bit(R1BIO_BehindIO, &r1_bio->state);
1022 return;
1023
1024 do_sync_io:
1025 for (i = 0; i < bio->bi_vcnt; i++)
1026 if (bvecs[i].bv_page)
1027 put_page(bvecs[i].bv_page);
1028 kfree(bvecs);
1029 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1030 bio->bi_iter.bi_size);
1031 }
1032
1033 struct raid1_plug_cb {
1034 struct blk_plug_cb cb;
1035 struct bio_list pending;
1036 int pending_cnt;
1037 };
1038
1039 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040 {
1041 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1042 cb);
1043 struct mddev *mddev = plug->cb.data;
1044 struct r1conf *conf = mddev->private;
1045 struct bio *bio;
1046
1047 if (from_schedule || current->bio_list) {
1048 spin_lock_irq(&conf->device_lock);
1049 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1050 conf->pending_count += plug->pending_cnt;
1051 spin_unlock_irq(&conf->device_lock);
1052 wake_up(&conf->wait_barrier);
1053 md_wakeup_thread(mddev->thread);
1054 kfree(plug);
1055 return;
1056 }
1057
1058 /* we aren't scheduling, so we can do the write-out directly. */
1059 bio = bio_list_get(&plug->pending);
1060 bitmap_unplug(mddev->bitmap);
1061 wake_up(&conf->wait_barrier);
1062
1063 while (bio) { /* submit pending writes */
1064 struct bio *next = bio->bi_next;
1065 bio->bi_next = NULL;
1066 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1067 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1068 /* Just ignore it */
1069 bio_endio(bio, 0);
1070 else
1071 generic_make_request(bio);
1072 bio = next;
1073 }
1074 kfree(plug);
1075 }
1076
1077 static void make_request(struct mddev *mddev, struct bio * bio)
1078 {
1079 struct r1conf *conf = mddev->private;
1080 struct raid1_info *mirror;
1081 struct r1bio *r1_bio;
1082 struct bio *read_bio;
1083 int i, disks;
1084 struct bitmap *bitmap;
1085 unsigned long flags;
1086 const int rw = bio_data_dir(bio);
1087 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1088 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1089 const unsigned long do_discard = (bio->bi_rw
1090 & (REQ_DISCARD | REQ_SECURE));
1091 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1092 struct md_rdev *blocked_rdev;
1093 struct blk_plug_cb *cb;
1094 struct raid1_plug_cb *plug = NULL;
1095 int first_clone;
1096 int sectors_handled;
1097 int max_sectors;
1098 sector_t start_next_window;
1099
1100 /*
1101 * Register the new request and wait if the reconstruction
1102 * thread has put up a bar for new requests.
1103 * Continue immediately if no resync is active currently.
1104 */
1105
1106 md_write_start(mddev, bio); /* wait on superblock update early */
1107
1108 if (bio_data_dir(bio) == WRITE &&
1109 bio_end_sector(bio) > mddev->suspend_lo &&
1110 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1111 /* As the suspend_* range is controlled by
1112 * userspace, we want an interruptible
1113 * wait.
1114 */
1115 DEFINE_WAIT(w);
1116 for (;;) {
1117 flush_signals(current);
1118 prepare_to_wait(&conf->wait_barrier,
1119 &w, TASK_INTERRUPTIBLE);
1120 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1121 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1122 break;
1123 schedule();
1124 }
1125 finish_wait(&conf->wait_barrier, &w);
1126 }
1127
1128 start_next_window = wait_barrier(conf, bio);
1129
1130 bitmap = mddev->bitmap;
1131
1132 /*
1133 * make_request() can abort the operation when READA is being
1134 * used and no empty request is available.
1135 *
1136 */
1137 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138
1139 r1_bio->master_bio = bio;
1140 r1_bio->sectors = bio_sectors(bio);
1141 r1_bio->state = 0;
1142 r1_bio->mddev = mddev;
1143 r1_bio->sector = bio->bi_iter.bi_sector;
1144
1145 /* We might need to issue multiple reads to different
1146 * devices if there are bad blocks around, so we keep
1147 * track of the number of reads in bio->bi_phys_segments.
1148 * If this is 0, there is only one r1_bio and no locking
1149 * will be needed when requests complete. If it is
1150 * non-zero, then it is the number of not-completed requests.
1151 */
1152 bio->bi_phys_segments = 0;
1153 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154
1155 if (rw == READ) {
1156 /*
1157 * read balancing logic:
1158 */
1159 int rdisk;
1160
1161 read_again:
1162 rdisk = read_balance(conf, r1_bio, &max_sectors);
1163
1164 if (rdisk < 0) {
1165 /* couldn't find anywhere to read from */
1166 raid_end_bio_io(r1_bio);
1167 return;
1168 }
1169 mirror = conf->mirrors + rdisk;
1170
1171 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172 bitmap) {
1173 /* Reading from a write-mostly device must
1174 * take care not to over-take any writes
1175 * that are 'behind'
1176 */
1177 wait_event(bitmap->behind_wait,
1178 atomic_read(&bitmap->behind_writes) == 0);
1179 }
1180 r1_bio->read_disk = rdisk;
1181
1182 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1183 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1184 max_sectors);
1185
1186 r1_bio->bios[rdisk] = read_bio;
1187
1188 read_bio->bi_iter.bi_sector = r1_bio->sector +
1189 mirror->rdev->data_offset;
1190 read_bio->bi_bdev = mirror->rdev->bdev;
1191 read_bio->bi_end_io = raid1_end_read_request;
1192 read_bio->bi_rw = READ | do_sync;
1193 read_bio->bi_private = r1_bio;
1194
1195 if (max_sectors < r1_bio->sectors) {
1196 /* could not read all from this device, so we will
1197 * need another r1_bio.
1198 */
1199
1200 sectors_handled = (r1_bio->sector + max_sectors
1201 - bio->bi_iter.bi_sector);
1202 r1_bio->sectors = max_sectors;
1203 spin_lock_irq(&conf->device_lock);
1204 if (bio->bi_phys_segments == 0)
1205 bio->bi_phys_segments = 2;
1206 else
1207 bio->bi_phys_segments++;
1208 spin_unlock_irq(&conf->device_lock);
1209 /* Cannot call generic_make_request directly
1210 * as that will be queued in __make_request
1211 * and subsequent mempool_alloc might block waiting
1212 * for it. So hand bio over to raid1d.
1213 */
1214 reschedule_retry(r1_bio);
1215
1216 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1217
1218 r1_bio->master_bio = bio;
1219 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1220 r1_bio->state = 0;
1221 r1_bio->mddev = mddev;
1222 r1_bio->sector = bio->bi_iter.bi_sector +
1223 sectors_handled;
1224 goto read_again;
1225 } else
1226 generic_make_request(read_bio);
1227 return;
1228 }
1229
1230 /*
1231 * WRITE:
1232 */
1233 if (conf->pending_count >= max_queued_requests) {
1234 md_wakeup_thread(mddev->thread);
1235 wait_event(conf->wait_barrier,
1236 conf->pending_count < max_queued_requests);
1237 }
1238 /* first select target devices under rcu_lock and
1239 * inc refcount on their rdev. Record them by setting
1240 * bios[x] to bio
1241 * If there are known/acknowledged bad blocks on any device on
1242 * which we have seen a write error, we want to avoid writing those
1243 * blocks.
1244 * This potentially requires several writes to write around
1245 * the bad blocks. Each set of writes gets it's own r1bio
1246 * with a set of bios attached.
1247 */
1248
1249 disks = conf->raid_disks * 2;
1250 retry_write:
1251 r1_bio->start_next_window = start_next_window;
1252 blocked_rdev = NULL;
1253 rcu_read_lock();
1254 max_sectors = r1_bio->sectors;
1255 for (i = 0; i < disks; i++) {
1256 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1257 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1258 atomic_inc(&rdev->nr_pending);
1259 blocked_rdev = rdev;
1260 break;
1261 }
1262 r1_bio->bios[i] = NULL;
1263 if (!rdev || test_bit(Faulty, &rdev->flags)
1264 || test_bit(Unmerged, &rdev->flags)) {
1265 if (i < conf->raid_disks)
1266 set_bit(R1BIO_Degraded, &r1_bio->state);
1267 continue;
1268 }
1269
1270 atomic_inc(&rdev->nr_pending);
1271 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1272 sector_t first_bad;
1273 int bad_sectors;
1274 int is_bad;
1275
1276 is_bad = is_badblock(rdev, r1_bio->sector,
1277 max_sectors,
1278 &first_bad, &bad_sectors);
1279 if (is_bad < 0) {
1280 /* mustn't write here until the bad block is
1281 * acknowledged*/
1282 set_bit(BlockedBadBlocks, &rdev->flags);
1283 blocked_rdev = rdev;
1284 break;
1285 }
1286 if (is_bad && first_bad <= r1_bio->sector) {
1287 /* Cannot write here at all */
1288 bad_sectors -= (r1_bio->sector - first_bad);
1289 if (bad_sectors < max_sectors)
1290 /* mustn't write more than bad_sectors
1291 * to other devices yet
1292 */
1293 max_sectors = bad_sectors;
1294 rdev_dec_pending(rdev, mddev);
1295 /* We don't set R1BIO_Degraded as that
1296 * only applies if the disk is
1297 * missing, so it might be re-added,
1298 * and we want to know to recover this
1299 * chunk.
1300 * In this case the device is here,
1301 * and the fact that this chunk is not
1302 * in-sync is recorded in the bad
1303 * block log
1304 */
1305 continue;
1306 }
1307 if (is_bad) {
1308 int good_sectors = first_bad - r1_bio->sector;
1309 if (good_sectors < max_sectors)
1310 max_sectors = good_sectors;
1311 }
1312 }
1313 r1_bio->bios[i] = bio;
1314 }
1315 rcu_read_unlock();
1316
1317 if (unlikely(blocked_rdev)) {
1318 /* Wait for this device to become unblocked */
1319 int j;
1320 sector_t old = start_next_window;
1321
1322 for (j = 0; j < i; j++)
1323 if (r1_bio->bios[j])
1324 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1325 r1_bio->state = 0;
1326 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1327 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328 start_next_window = wait_barrier(conf, bio);
1329 /*
1330 * We must make sure the multi r1bios of bio have
1331 * the same value of bi_phys_segments
1332 */
1333 if (bio->bi_phys_segments && old &&
1334 old != start_next_window)
1335 /* Wait for the former r1bio(s) to complete */
1336 wait_event(conf->wait_barrier,
1337 bio->bi_phys_segments == 1);
1338 goto retry_write;
1339 }
1340
1341 if (max_sectors < r1_bio->sectors) {
1342 /* We are splitting this write into multiple parts, so
1343 * we need to prepare for allocating another r1_bio.
1344 */
1345 r1_bio->sectors = max_sectors;
1346 spin_lock_irq(&conf->device_lock);
1347 if (bio->bi_phys_segments == 0)
1348 bio->bi_phys_segments = 2;
1349 else
1350 bio->bi_phys_segments++;
1351 spin_unlock_irq(&conf->device_lock);
1352 }
1353 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1354
1355 atomic_set(&r1_bio->remaining, 1);
1356 atomic_set(&r1_bio->behind_remaining, 0);
1357
1358 first_clone = 1;
1359 for (i = 0; i < disks; i++) {
1360 struct bio *mbio;
1361 if (!r1_bio->bios[i])
1362 continue;
1363
1364 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1365 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1366
1367 if (first_clone) {
1368 /* do behind I/O ?
1369 * Not if there are too many, or cannot
1370 * allocate memory, or a reader on WriteMostly
1371 * is waiting for behind writes to flush */
1372 if (bitmap &&
1373 (atomic_read(&bitmap->behind_writes)
1374 < mddev->bitmap_info.max_write_behind) &&
1375 !waitqueue_active(&bitmap->behind_wait))
1376 alloc_behind_pages(mbio, r1_bio);
1377
1378 bitmap_startwrite(bitmap, r1_bio->sector,
1379 r1_bio->sectors,
1380 test_bit(R1BIO_BehindIO,
1381 &r1_bio->state));
1382 first_clone = 0;
1383 }
1384 if (r1_bio->behind_bvecs) {
1385 struct bio_vec *bvec;
1386 int j;
1387
1388 /*
1389 * We trimmed the bio, so _all is legit
1390 */
1391 bio_for_each_segment_all(bvec, mbio, j)
1392 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1393 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1394 atomic_inc(&r1_bio->behind_remaining);
1395 }
1396
1397 r1_bio->bios[i] = mbio;
1398
1399 mbio->bi_iter.bi_sector = (r1_bio->sector +
1400 conf->mirrors[i].rdev->data_offset);
1401 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1402 mbio->bi_end_io = raid1_end_write_request;
1403 mbio->bi_rw =
1404 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1405 mbio->bi_private = r1_bio;
1406
1407 atomic_inc(&r1_bio->remaining);
1408
1409 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1410 if (cb)
1411 plug = container_of(cb, struct raid1_plug_cb, cb);
1412 else
1413 plug = NULL;
1414 spin_lock_irqsave(&conf->device_lock, flags);
1415 if (plug) {
1416 bio_list_add(&plug->pending, mbio);
1417 plug->pending_cnt++;
1418 } else {
1419 bio_list_add(&conf->pending_bio_list, mbio);
1420 conf->pending_count++;
1421 }
1422 spin_unlock_irqrestore(&conf->device_lock, flags);
1423 if (!plug)
1424 md_wakeup_thread(mddev->thread);
1425 }
1426 /* Mustn't call r1_bio_write_done before this next test,
1427 * as it could result in the bio being freed.
1428 */
1429 if (sectors_handled < bio_sectors(bio)) {
1430 r1_bio_write_done(r1_bio);
1431 /* We need another r1_bio. It has already been counted
1432 * in bio->bi_phys_segments
1433 */
1434 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1435 r1_bio->master_bio = bio;
1436 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1437 r1_bio->state = 0;
1438 r1_bio->mddev = mddev;
1439 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1440 goto retry_write;
1441 }
1442
1443 r1_bio_write_done(r1_bio);
1444
1445 /* In case raid1d snuck in to freeze_array */
1446 wake_up(&conf->wait_barrier);
1447 }
1448
1449 static void status(struct seq_file *seq, struct mddev *mddev)
1450 {
1451 struct r1conf *conf = mddev->private;
1452 int i;
1453
1454 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1455 conf->raid_disks - mddev->degraded);
1456 rcu_read_lock();
1457 for (i = 0; i < conf->raid_disks; i++) {
1458 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1459 seq_printf(seq, "%s",
1460 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1461 }
1462 rcu_read_unlock();
1463 seq_printf(seq, "]");
1464 }
1465
1466
1467 static void error(struct mddev *mddev, struct md_rdev *rdev)
1468 {
1469 char b[BDEVNAME_SIZE];
1470 struct r1conf *conf = mddev->private;
1471
1472 /*
1473 * If it is not operational, then we have already marked it as dead
1474 * else if it is the last working disks, ignore the error, let the
1475 * next level up know.
1476 * else mark the drive as failed
1477 */
1478 if (test_bit(In_sync, &rdev->flags)
1479 && (conf->raid_disks - mddev->degraded) == 1) {
1480 /*
1481 * Don't fail the drive, act as though we were just a
1482 * normal single drive.
1483 * However don't try a recovery from this drive as
1484 * it is very likely to fail.
1485 */
1486 conf->recovery_disabled = mddev->recovery_disabled;
1487 return;
1488 }
1489 set_bit(Blocked, &rdev->flags);
1490 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1491 unsigned long flags;
1492 spin_lock_irqsave(&conf->device_lock, flags);
1493 mddev->degraded++;
1494 set_bit(Faulty, &rdev->flags);
1495 spin_unlock_irqrestore(&conf->device_lock, flags);
1496 /*
1497 * if recovery is running, make sure it aborts.
1498 */
1499 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1500 } else
1501 set_bit(Faulty, &rdev->flags);
1502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1503 printk(KERN_ALERT
1504 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1505 "md/raid1:%s: Operation continuing on %d devices.\n",
1506 mdname(mddev), bdevname(rdev->bdev, b),
1507 mdname(mddev), conf->raid_disks - mddev->degraded);
1508 }
1509
1510 static void print_conf(struct r1conf *conf)
1511 {
1512 int i;
1513
1514 printk(KERN_DEBUG "RAID1 conf printout:\n");
1515 if (!conf) {
1516 printk(KERN_DEBUG "(!conf)\n");
1517 return;
1518 }
1519 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1520 conf->raid_disks);
1521
1522 rcu_read_lock();
1523 for (i = 0; i < conf->raid_disks; i++) {
1524 char b[BDEVNAME_SIZE];
1525 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1526 if (rdev)
1527 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1528 i, !test_bit(In_sync, &rdev->flags),
1529 !test_bit(Faulty, &rdev->flags),
1530 bdevname(rdev->bdev,b));
1531 }
1532 rcu_read_unlock();
1533 }
1534
1535 static void close_sync(struct r1conf *conf)
1536 {
1537 wait_barrier(conf, NULL);
1538 allow_barrier(conf, 0, 0);
1539
1540 mempool_destroy(conf->r1buf_pool);
1541 conf->r1buf_pool = NULL;
1542
1543 conf->next_resync = 0;
1544 conf->start_next_window = MaxSector;
1545 }
1546
1547 static int raid1_spare_active(struct mddev *mddev)
1548 {
1549 int i;
1550 struct r1conf *conf = mddev->private;
1551 int count = 0;
1552 unsigned long flags;
1553
1554 /*
1555 * Find all failed disks within the RAID1 configuration
1556 * and mark them readable.
1557 * Called under mddev lock, so rcu protection not needed.
1558 */
1559 for (i = 0; i < conf->raid_disks; i++) {
1560 struct md_rdev *rdev = conf->mirrors[i].rdev;
1561 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1562 if (repl
1563 && repl->recovery_offset == MaxSector
1564 && !test_bit(Faulty, &repl->flags)
1565 && !test_and_set_bit(In_sync, &repl->flags)) {
1566 /* replacement has just become active */
1567 if (!rdev ||
1568 !test_and_clear_bit(In_sync, &rdev->flags))
1569 count++;
1570 if (rdev) {
1571 /* Replaced device not technically
1572 * faulty, but we need to be sure
1573 * it gets removed and never re-added
1574 */
1575 set_bit(Faulty, &rdev->flags);
1576 sysfs_notify_dirent_safe(
1577 rdev->sysfs_state);
1578 }
1579 }
1580 if (rdev
1581 && rdev->recovery_offset == MaxSector
1582 && !test_bit(Faulty, &rdev->flags)
1583 && !test_and_set_bit(In_sync, &rdev->flags)) {
1584 count++;
1585 sysfs_notify_dirent_safe(rdev->sysfs_state);
1586 }
1587 }
1588 spin_lock_irqsave(&conf->device_lock, flags);
1589 mddev->degraded -= count;
1590 spin_unlock_irqrestore(&conf->device_lock, flags);
1591
1592 print_conf(conf);
1593 return count;
1594 }
1595
1596
1597 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599 struct r1conf *conf = mddev->private;
1600 int err = -EEXIST;
1601 int mirror = 0;
1602 struct raid1_info *p;
1603 int first = 0;
1604 int last = conf->raid_disks - 1;
1605 struct request_queue *q = bdev_get_queue(rdev->bdev);
1606
1607 if (mddev->recovery_disabled == conf->recovery_disabled)
1608 return -EBUSY;
1609
1610 if (rdev->raid_disk >= 0)
1611 first = last = rdev->raid_disk;
1612
1613 if (q->merge_bvec_fn) {
1614 set_bit(Unmerged, &rdev->flags);
1615 mddev->merge_check_needed = 1;
1616 }
1617
1618 for (mirror = first; mirror <= last; mirror++) {
1619 p = conf->mirrors+mirror;
1620 if (!p->rdev) {
1621
1622 if (mddev->gendisk)
1623 disk_stack_limits(mddev->gendisk, rdev->bdev,
1624 rdev->data_offset << 9);
1625
1626 p->head_position = 0;
1627 rdev->raid_disk = mirror;
1628 err = 0;
1629 /* As all devices are equivalent, we don't need a full recovery
1630 * if this was recently any drive of the array
1631 */
1632 if (rdev->saved_raid_disk < 0)
1633 conf->fullsync = 1;
1634 rcu_assign_pointer(p->rdev, rdev);
1635 break;
1636 }
1637 if (test_bit(WantReplacement, &p->rdev->flags) &&
1638 p[conf->raid_disks].rdev == NULL) {
1639 /* Add this device as a replacement */
1640 clear_bit(In_sync, &rdev->flags);
1641 set_bit(Replacement, &rdev->flags);
1642 rdev->raid_disk = mirror;
1643 err = 0;
1644 conf->fullsync = 1;
1645 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1646 break;
1647 }
1648 }
1649 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1650 /* Some requests might not have seen this new
1651 * merge_bvec_fn. We must wait for them to complete
1652 * before merging the device fully.
1653 * First we make sure any code which has tested
1654 * our function has submitted the request, then
1655 * we wait for all outstanding requests to complete.
1656 */
1657 synchronize_sched();
1658 freeze_array(conf, 0);
1659 unfreeze_array(conf);
1660 clear_bit(Unmerged, &rdev->flags);
1661 }
1662 md_integrity_add_rdev(rdev, mddev);
1663 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1664 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1665 print_conf(conf);
1666 return err;
1667 }
1668
1669 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671 struct r1conf *conf = mddev->private;
1672 int err = 0;
1673 int number = rdev->raid_disk;
1674 struct raid1_info *p = conf->mirrors + number;
1675
1676 if (rdev != p->rdev)
1677 p = conf->mirrors + conf->raid_disks + number;
1678
1679 print_conf(conf);
1680 if (rdev == p->rdev) {
1681 if (test_bit(In_sync, &rdev->flags) ||
1682 atomic_read(&rdev->nr_pending)) {
1683 err = -EBUSY;
1684 goto abort;
1685 }
1686 /* Only remove non-faulty devices if recovery
1687 * is not possible.
1688 */
1689 if (!test_bit(Faulty, &rdev->flags) &&
1690 mddev->recovery_disabled != conf->recovery_disabled &&
1691 mddev->degraded < conf->raid_disks) {
1692 err = -EBUSY;
1693 goto abort;
1694 }
1695 p->rdev = NULL;
1696 synchronize_rcu();
1697 if (atomic_read(&rdev->nr_pending)) {
1698 /* lost the race, try later */
1699 err = -EBUSY;
1700 p->rdev = rdev;
1701 goto abort;
1702 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1703 /* We just removed a device that is being replaced.
1704 * Move down the replacement. We drain all IO before
1705 * doing this to avoid confusion.
1706 */
1707 struct md_rdev *repl =
1708 conf->mirrors[conf->raid_disks + number].rdev;
1709 freeze_array(conf, 0);
1710 clear_bit(Replacement, &repl->flags);
1711 p->rdev = repl;
1712 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1713 unfreeze_array(conf);
1714 clear_bit(WantReplacement, &rdev->flags);
1715 } else
1716 clear_bit(WantReplacement, &rdev->flags);
1717 err = md_integrity_register(mddev);
1718 }
1719 abort:
1720
1721 print_conf(conf);
1722 return err;
1723 }
1724
1725
1726 static void end_sync_read(struct bio *bio, int error)
1727 {
1728 struct r1bio *r1_bio = bio->bi_private;
1729
1730 update_head_pos(r1_bio->read_disk, r1_bio);
1731
1732 /*
1733 * we have read a block, now it needs to be re-written,
1734 * or re-read if the read failed.
1735 * We don't do much here, just schedule handling by raid1d
1736 */
1737 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1738 set_bit(R1BIO_Uptodate, &r1_bio->state);
1739
1740 if (atomic_dec_and_test(&r1_bio->remaining))
1741 reschedule_retry(r1_bio);
1742 }
1743
1744 static void end_sync_write(struct bio *bio, int error)
1745 {
1746 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1747 struct r1bio *r1_bio = bio->bi_private;
1748 struct mddev *mddev = r1_bio->mddev;
1749 struct r1conf *conf = mddev->private;
1750 int mirror=0;
1751 sector_t first_bad;
1752 int bad_sectors;
1753
1754 mirror = find_bio_disk(r1_bio, bio);
1755
1756 if (!uptodate) {
1757 sector_t sync_blocks = 0;
1758 sector_t s = r1_bio->sector;
1759 long sectors_to_go = r1_bio->sectors;
1760 /* make sure these bits doesn't get cleared. */
1761 do {
1762 bitmap_end_sync(mddev->bitmap, s,
1763 &sync_blocks, 1);
1764 s += sync_blocks;
1765 sectors_to_go -= sync_blocks;
1766 } while (sectors_to_go > 0);
1767 set_bit(WriteErrorSeen,
1768 &conf->mirrors[mirror].rdev->flags);
1769 if (!test_and_set_bit(WantReplacement,
1770 &conf->mirrors[mirror].rdev->flags))
1771 set_bit(MD_RECOVERY_NEEDED, &
1772 mddev->recovery);
1773 set_bit(R1BIO_WriteError, &r1_bio->state);
1774 } else if (is_badblock(conf->mirrors[mirror].rdev,
1775 r1_bio->sector,
1776 r1_bio->sectors,
1777 &first_bad, &bad_sectors) &&
1778 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1779 r1_bio->sector,
1780 r1_bio->sectors,
1781 &first_bad, &bad_sectors)
1782 )
1783 set_bit(R1BIO_MadeGood, &r1_bio->state);
1784
1785 if (atomic_dec_and_test(&r1_bio->remaining)) {
1786 int s = r1_bio->sectors;
1787 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1788 test_bit(R1BIO_WriteError, &r1_bio->state))
1789 reschedule_retry(r1_bio);
1790 else {
1791 put_buf(r1_bio);
1792 md_done_sync(mddev, s, uptodate);
1793 }
1794 }
1795 }
1796
1797 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1798 int sectors, struct page *page, int rw)
1799 {
1800 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1801 /* success */
1802 return 1;
1803 if (rw == WRITE) {
1804 set_bit(WriteErrorSeen, &rdev->flags);
1805 if (!test_and_set_bit(WantReplacement,
1806 &rdev->flags))
1807 set_bit(MD_RECOVERY_NEEDED, &
1808 rdev->mddev->recovery);
1809 }
1810 /* need to record an error - either for the block or the device */
1811 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1812 md_error(rdev->mddev, rdev);
1813 return 0;
1814 }
1815
1816 static int fix_sync_read_error(struct r1bio *r1_bio)
1817 {
1818 /* Try some synchronous reads of other devices to get
1819 * good data, much like with normal read errors. Only
1820 * read into the pages we already have so we don't
1821 * need to re-issue the read request.
1822 * We don't need to freeze the array, because being in an
1823 * active sync request, there is no normal IO, and
1824 * no overlapping syncs.
1825 * We don't need to check is_badblock() again as we
1826 * made sure that anything with a bad block in range
1827 * will have bi_end_io clear.
1828 */
1829 struct mddev *mddev = r1_bio->mddev;
1830 struct r1conf *conf = mddev->private;
1831 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1832 sector_t sect = r1_bio->sector;
1833 int sectors = r1_bio->sectors;
1834 int idx = 0;
1835
1836 while(sectors) {
1837 int s = sectors;
1838 int d = r1_bio->read_disk;
1839 int success = 0;
1840 struct md_rdev *rdev;
1841 int start;
1842
1843 if (s > (PAGE_SIZE>>9))
1844 s = PAGE_SIZE >> 9;
1845 do {
1846 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1847 /* No rcu protection needed here devices
1848 * can only be removed when no resync is
1849 * active, and resync is currently active
1850 */
1851 rdev = conf->mirrors[d].rdev;
1852 if (sync_page_io(rdev, sect, s<<9,
1853 bio->bi_io_vec[idx].bv_page,
1854 READ, false)) {
1855 success = 1;
1856 break;
1857 }
1858 }
1859 d++;
1860 if (d == conf->raid_disks * 2)
1861 d = 0;
1862 } while (!success && d != r1_bio->read_disk);
1863
1864 if (!success) {
1865 char b[BDEVNAME_SIZE];
1866 int abort = 0;
1867 /* Cannot read from anywhere, this block is lost.
1868 * Record a bad block on each device. If that doesn't
1869 * work just disable and interrupt the recovery.
1870 * Don't fail devices as that won't really help.
1871 */
1872 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1873 " for block %llu\n",
1874 mdname(mddev),
1875 bdevname(bio->bi_bdev, b),
1876 (unsigned long long)r1_bio->sector);
1877 for (d = 0; d < conf->raid_disks * 2; d++) {
1878 rdev = conf->mirrors[d].rdev;
1879 if (!rdev || test_bit(Faulty, &rdev->flags))
1880 continue;
1881 if (!rdev_set_badblocks(rdev, sect, s, 0))
1882 abort = 1;
1883 }
1884 if (abort) {
1885 conf->recovery_disabled =
1886 mddev->recovery_disabled;
1887 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1888 md_done_sync(mddev, r1_bio->sectors, 0);
1889 put_buf(r1_bio);
1890 return 0;
1891 }
1892 /* Try next page */
1893 sectors -= s;
1894 sect += s;
1895 idx++;
1896 continue;
1897 }
1898
1899 start = d;
1900 /* write it back and re-read */
1901 while (d != r1_bio->read_disk) {
1902 if (d == 0)
1903 d = conf->raid_disks * 2;
1904 d--;
1905 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1906 continue;
1907 rdev = conf->mirrors[d].rdev;
1908 if (r1_sync_page_io(rdev, sect, s,
1909 bio->bi_io_vec[idx].bv_page,
1910 WRITE) == 0) {
1911 r1_bio->bios[d]->bi_end_io = NULL;
1912 rdev_dec_pending(rdev, mddev);
1913 }
1914 }
1915 d = start;
1916 while (d != r1_bio->read_disk) {
1917 if (d == 0)
1918 d = conf->raid_disks * 2;
1919 d--;
1920 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1921 continue;
1922 rdev = conf->mirrors[d].rdev;
1923 if (r1_sync_page_io(rdev, sect, s,
1924 bio->bi_io_vec[idx].bv_page,
1925 READ) != 0)
1926 atomic_add(s, &rdev->corrected_errors);
1927 }
1928 sectors -= s;
1929 sect += s;
1930 idx ++;
1931 }
1932 set_bit(R1BIO_Uptodate, &r1_bio->state);
1933 set_bit(BIO_UPTODATE, &bio->bi_flags);
1934 return 1;
1935 }
1936
1937 static int process_checks(struct r1bio *r1_bio)
1938 {
1939 /* We have read all readable devices. If we haven't
1940 * got the block, then there is no hope left.
1941 * If we have, then we want to do a comparison
1942 * and skip the write if everything is the same.
1943 * If any blocks failed to read, then we need to
1944 * attempt an over-write
1945 */
1946 struct mddev *mddev = r1_bio->mddev;
1947 struct r1conf *conf = mddev->private;
1948 int primary;
1949 int i;
1950 int vcnt;
1951
1952 /* Fix variable parts of all bios */
1953 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1954 for (i = 0; i < conf->raid_disks * 2; i++) {
1955 int j;
1956 int size;
1957 struct bio *b = r1_bio->bios[i];
1958 if (b->bi_end_io != end_sync_read)
1959 continue;
1960 /* fixup the bio for reuse */
1961 bio_reset(b);
1962 b->bi_vcnt = vcnt;
1963 b->bi_iter.bi_size = r1_bio->sectors << 9;
1964 b->bi_iter.bi_sector = r1_bio->sector +
1965 conf->mirrors[i].rdev->data_offset;
1966 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1967 b->bi_end_io = end_sync_read;
1968 b->bi_private = r1_bio;
1969
1970 size = b->bi_iter.bi_size;
1971 for (j = 0; j < vcnt ; j++) {
1972 struct bio_vec *bi;
1973 bi = &b->bi_io_vec[j];
1974 bi->bv_offset = 0;
1975 if (size > PAGE_SIZE)
1976 bi->bv_len = PAGE_SIZE;
1977 else
1978 bi->bv_len = size;
1979 size -= PAGE_SIZE;
1980 }
1981 }
1982 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1983 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1984 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1985 r1_bio->bios[primary]->bi_end_io = NULL;
1986 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1987 break;
1988 }
1989 r1_bio->read_disk = primary;
1990 for (i = 0; i < conf->raid_disks * 2; i++) {
1991 int j;
1992 struct bio *pbio = r1_bio->bios[primary];
1993 struct bio *sbio = r1_bio->bios[i];
1994
1995 if (sbio->bi_end_io != end_sync_read)
1996 continue;
1997
1998 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1999 for (j = vcnt; j-- ; ) {
2000 struct page *p, *s;
2001 p = pbio->bi_io_vec[j].bv_page;
2002 s = sbio->bi_io_vec[j].bv_page;
2003 if (memcmp(page_address(p),
2004 page_address(s),
2005 sbio->bi_io_vec[j].bv_len))
2006 break;
2007 }
2008 } else
2009 j = 0;
2010 if (j >= 0)
2011 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2012 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2013 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2014 /* No need to write to this device. */
2015 sbio->bi_end_io = NULL;
2016 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2017 continue;
2018 }
2019
2020 bio_copy_data(sbio, pbio);
2021 }
2022 return 0;
2023 }
2024
2025 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2026 {
2027 struct r1conf *conf = mddev->private;
2028 int i;
2029 int disks = conf->raid_disks * 2;
2030 struct bio *bio, *wbio;
2031
2032 bio = r1_bio->bios[r1_bio->read_disk];
2033
2034 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2035 /* ouch - failed to read all of that. */
2036 if (!fix_sync_read_error(r1_bio))
2037 return;
2038
2039 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2040 if (process_checks(r1_bio) < 0)
2041 return;
2042 /*
2043 * schedule writes
2044 */
2045 atomic_set(&r1_bio->remaining, 1);
2046 for (i = 0; i < disks ; i++) {
2047 wbio = r1_bio->bios[i];
2048 if (wbio->bi_end_io == NULL ||
2049 (wbio->bi_end_io == end_sync_read &&
2050 (i == r1_bio->read_disk ||
2051 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2052 continue;
2053
2054 wbio->bi_rw = WRITE;
2055 wbio->bi_end_io = end_sync_write;
2056 atomic_inc(&r1_bio->remaining);
2057 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2058
2059 generic_make_request(wbio);
2060 }
2061
2062 if (atomic_dec_and_test(&r1_bio->remaining)) {
2063 /* if we're here, all write(s) have completed, so clean up */
2064 int s = r1_bio->sectors;
2065 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2066 test_bit(R1BIO_WriteError, &r1_bio->state))
2067 reschedule_retry(r1_bio);
2068 else {
2069 put_buf(r1_bio);
2070 md_done_sync(mddev, s, 1);
2071 }
2072 }
2073 }
2074
2075 /*
2076 * This is a kernel thread which:
2077 *
2078 * 1. Retries failed read operations on working mirrors.
2079 * 2. Updates the raid superblock when problems encounter.
2080 * 3. Performs writes following reads for array synchronising.
2081 */
2082
2083 static void fix_read_error(struct r1conf *conf, int read_disk,
2084 sector_t sect, int sectors)
2085 {
2086 struct mddev *mddev = conf->mddev;
2087 while(sectors) {
2088 int s = sectors;
2089 int d = read_disk;
2090 int success = 0;
2091 int start;
2092 struct md_rdev *rdev;
2093
2094 if (s > (PAGE_SIZE>>9))
2095 s = PAGE_SIZE >> 9;
2096
2097 do {
2098 /* Note: no rcu protection needed here
2099 * as this is synchronous in the raid1d thread
2100 * which is the thread that might remove
2101 * a device. If raid1d ever becomes multi-threaded....
2102 */
2103 sector_t first_bad;
2104 int bad_sectors;
2105
2106 rdev = conf->mirrors[d].rdev;
2107 if (rdev &&
2108 (test_bit(In_sync, &rdev->flags) ||
2109 (!test_bit(Faulty, &rdev->flags) &&
2110 rdev->recovery_offset >= sect + s)) &&
2111 is_badblock(rdev, sect, s,
2112 &first_bad, &bad_sectors) == 0 &&
2113 sync_page_io(rdev, sect, s<<9,
2114 conf->tmppage, READ, false))
2115 success = 1;
2116 else {
2117 d++;
2118 if (d == conf->raid_disks * 2)
2119 d = 0;
2120 }
2121 } while (!success && d != read_disk);
2122
2123 if (!success) {
2124 /* Cannot read from anywhere - mark it bad */
2125 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2126 if (!rdev_set_badblocks(rdev, sect, s, 0))
2127 md_error(mddev, rdev);
2128 break;
2129 }
2130 /* write it back and re-read */
2131 start = d;
2132 while (d != read_disk) {
2133 if (d==0)
2134 d = conf->raid_disks * 2;
2135 d--;
2136 rdev = conf->mirrors[d].rdev;
2137 if (rdev &&
2138 test_bit(In_sync, &rdev->flags))
2139 r1_sync_page_io(rdev, sect, s,
2140 conf->tmppage, WRITE);
2141 }
2142 d = start;
2143 while (d != read_disk) {
2144 char b[BDEVNAME_SIZE];
2145 if (d==0)
2146 d = conf->raid_disks * 2;
2147 d--;
2148 rdev = conf->mirrors[d].rdev;
2149 if (rdev &&
2150 test_bit(In_sync, &rdev->flags)) {
2151 if (r1_sync_page_io(rdev, sect, s,
2152 conf->tmppage, READ)) {
2153 atomic_add(s, &rdev->corrected_errors);
2154 printk(KERN_INFO
2155 "md/raid1:%s: read error corrected "
2156 "(%d sectors at %llu on %s)\n",
2157 mdname(mddev), s,
2158 (unsigned long long)(sect +
2159 rdev->data_offset),
2160 bdevname(rdev->bdev, b));
2161 }
2162 }
2163 }
2164 sectors -= s;
2165 sect += s;
2166 }
2167 }
2168
2169 static int narrow_write_error(struct r1bio *r1_bio, int i)
2170 {
2171 struct mddev *mddev = r1_bio->mddev;
2172 struct r1conf *conf = mddev->private;
2173 struct md_rdev *rdev = conf->mirrors[i].rdev;
2174
2175 /* bio has the data to be written to device 'i' where
2176 * we just recently had a write error.
2177 * We repeatedly clone the bio and trim down to one block,
2178 * then try the write. Where the write fails we record
2179 * a bad block.
2180 * It is conceivable that the bio doesn't exactly align with
2181 * blocks. We must handle this somehow.
2182 *
2183 * We currently own a reference on the rdev.
2184 */
2185
2186 int block_sectors;
2187 sector_t sector;
2188 int sectors;
2189 int sect_to_write = r1_bio->sectors;
2190 int ok = 1;
2191
2192 if (rdev->badblocks.shift < 0)
2193 return 0;
2194
2195 block_sectors = 1 << rdev->badblocks.shift;
2196 sector = r1_bio->sector;
2197 sectors = ((sector + block_sectors)
2198 & ~(sector_t)(block_sectors - 1))
2199 - sector;
2200
2201 while (sect_to_write) {
2202 struct bio *wbio;
2203 if (sectors > sect_to_write)
2204 sectors = sect_to_write;
2205 /* Write at 'sector' for 'sectors'*/
2206
2207 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2208 unsigned vcnt = r1_bio->behind_page_count;
2209 struct bio_vec *vec = r1_bio->behind_bvecs;
2210
2211 while (!vec->bv_page) {
2212 vec++;
2213 vcnt--;
2214 }
2215
2216 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2217 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2218
2219 wbio->bi_vcnt = vcnt;
2220 } else {
2221 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2222 }
2223
2224 wbio->bi_rw = WRITE;
2225 wbio->bi_iter.bi_sector = r1_bio->sector;
2226 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2227
2228 bio_trim(wbio, sector - r1_bio->sector, sectors);
2229 wbio->bi_iter.bi_sector += rdev->data_offset;
2230 wbio->bi_bdev = rdev->bdev;
2231 if (submit_bio_wait(WRITE, wbio) == 0)
2232 /* failure! */
2233 ok = rdev_set_badblocks(rdev, sector,
2234 sectors, 0)
2235 && ok;
2236
2237 bio_put(wbio);
2238 sect_to_write -= sectors;
2239 sector += sectors;
2240 sectors = block_sectors;
2241 }
2242 return ok;
2243 }
2244
2245 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2246 {
2247 int m;
2248 int s = r1_bio->sectors;
2249 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2250 struct md_rdev *rdev = conf->mirrors[m].rdev;
2251 struct bio *bio = r1_bio->bios[m];
2252 if (bio->bi_end_io == NULL)
2253 continue;
2254 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2255 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2256 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2257 }
2258 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2259 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2260 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2261 md_error(conf->mddev, rdev);
2262 }
2263 }
2264 put_buf(r1_bio);
2265 md_done_sync(conf->mddev, s, 1);
2266 }
2267
2268 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2269 {
2270 int m;
2271 for (m = 0; m < conf->raid_disks * 2 ; m++)
2272 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2273 struct md_rdev *rdev = conf->mirrors[m].rdev;
2274 rdev_clear_badblocks(rdev,
2275 r1_bio->sector,
2276 r1_bio->sectors, 0);
2277 rdev_dec_pending(rdev, conf->mddev);
2278 } else if (r1_bio->bios[m] != NULL) {
2279 /* This drive got a write error. We need to
2280 * narrow down and record precise write
2281 * errors.
2282 */
2283 if (!narrow_write_error(r1_bio, m)) {
2284 md_error(conf->mddev,
2285 conf->mirrors[m].rdev);
2286 /* an I/O failed, we can't clear the bitmap */
2287 set_bit(R1BIO_Degraded, &r1_bio->state);
2288 }
2289 rdev_dec_pending(conf->mirrors[m].rdev,
2290 conf->mddev);
2291 }
2292 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2293 close_write(r1_bio);
2294 raid_end_bio_io(r1_bio);
2295 }
2296
2297 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2298 {
2299 int disk;
2300 int max_sectors;
2301 struct mddev *mddev = conf->mddev;
2302 struct bio *bio;
2303 char b[BDEVNAME_SIZE];
2304 struct md_rdev *rdev;
2305
2306 clear_bit(R1BIO_ReadError, &r1_bio->state);
2307 /* we got a read error. Maybe the drive is bad. Maybe just
2308 * the block and we can fix it.
2309 * We freeze all other IO, and try reading the block from
2310 * other devices. When we find one, we re-write
2311 * and check it that fixes the read error.
2312 * This is all done synchronously while the array is
2313 * frozen
2314 */
2315 if (mddev->ro == 0) {
2316 freeze_array(conf, 1);
2317 fix_read_error(conf, r1_bio->read_disk,
2318 r1_bio->sector, r1_bio->sectors);
2319 unfreeze_array(conf);
2320 } else
2321 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2322 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2323
2324 bio = r1_bio->bios[r1_bio->read_disk];
2325 bdevname(bio->bi_bdev, b);
2326 read_more:
2327 disk = read_balance(conf, r1_bio, &max_sectors);
2328 if (disk == -1) {
2329 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2330 " read error for block %llu\n",
2331 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2332 raid_end_bio_io(r1_bio);
2333 } else {
2334 const unsigned long do_sync
2335 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2336 if (bio) {
2337 r1_bio->bios[r1_bio->read_disk] =
2338 mddev->ro ? IO_BLOCKED : NULL;
2339 bio_put(bio);
2340 }
2341 r1_bio->read_disk = disk;
2342 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2343 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2344 max_sectors);
2345 r1_bio->bios[r1_bio->read_disk] = bio;
2346 rdev = conf->mirrors[disk].rdev;
2347 printk_ratelimited(KERN_ERR
2348 "md/raid1:%s: redirecting sector %llu"
2349 " to other mirror: %s\n",
2350 mdname(mddev),
2351 (unsigned long long)r1_bio->sector,
2352 bdevname(rdev->bdev, b));
2353 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2354 bio->bi_bdev = rdev->bdev;
2355 bio->bi_end_io = raid1_end_read_request;
2356 bio->bi_rw = READ | do_sync;
2357 bio->bi_private = r1_bio;
2358 if (max_sectors < r1_bio->sectors) {
2359 /* Drat - have to split this up more */
2360 struct bio *mbio = r1_bio->master_bio;
2361 int sectors_handled = (r1_bio->sector + max_sectors
2362 - mbio->bi_iter.bi_sector);
2363 r1_bio->sectors = max_sectors;
2364 spin_lock_irq(&conf->device_lock);
2365 if (mbio->bi_phys_segments == 0)
2366 mbio->bi_phys_segments = 2;
2367 else
2368 mbio->bi_phys_segments++;
2369 spin_unlock_irq(&conf->device_lock);
2370 generic_make_request(bio);
2371 bio = NULL;
2372
2373 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2374
2375 r1_bio->master_bio = mbio;
2376 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2377 r1_bio->state = 0;
2378 set_bit(R1BIO_ReadError, &r1_bio->state);
2379 r1_bio->mddev = mddev;
2380 r1_bio->sector = mbio->bi_iter.bi_sector +
2381 sectors_handled;
2382
2383 goto read_more;
2384 } else
2385 generic_make_request(bio);
2386 }
2387 }
2388
2389 static void raid1d(struct md_thread *thread)
2390 {
2391 struct mddev *mddev = thread->mddev;
2392 struct r1bio *r1_bio;
2393 unsigned long flags;
2394 struct r1conf *conf = mddev->private;
2395 struct list_head *head = &conf->retry_list;
2396 struct blk_plug plug;
2397
2398 md_check_recovery(mddev);
2399
2400 blk_start_plug(&plug);
2401 for (;;) {
2402
2403 flush_pending_writes(conf);
2404
2405 spin_lock_irqsave(&conf->device_lock, flags);
2406 if (list_empty(head)) {
2407 spin_unlock_irqrestore(&conf->device_lock, flags);
2408 break;
2409 }
2410 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2411 list_del(head->prev);
2412 conf->nr_queued--;
2413 spin_unlock_irqrestore(&conf->device_lock, flags);
2414
2415 mddev = r1_bio->mddev;
2416 conf = mddev->private;
2417 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2418 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2419 test_bit(R1BIO_WriteError, &r1_bio->state))
2420 handle_sync_write_finished(conf, r1_bio);
2421 else
2422 sync_request_write(mddev, r1_bio);
2423 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2424 test_bit(R1BIO_WriteError, &r1_bio->state))
2425 handle_write_finished(conf, r1_bio);
2426 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2427 handle_read_error(conf, r1_bio);
2428 else
2429 /* just a partial read to be scheduled from separate
2430 * context
2431 */
2432 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2433
2434 cond_resched();
2435 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2436 md_check_recovery(mddev);
2437 }
2438 blk_finish_plug(&plug);
2439 }
2440
2441
2442 static int init_resync(struct r1conf *conf)
2443 {
2444 int buffs;
2445
2446 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2447 BUG_ON(conf->r1buf_pool);
2448 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2449 conf->poolinfo);
2450 if (!conf->r1buf_pool)
2451 return -ENOMEM;
2452 conf->next_resync = 0;
2453 return 0;
2454 }
2455
2456 /*
2457 * perform a "sync" on one "block"
2458 *
2459 * We need to make sure that no normal I/O request - particularly write
2460 * requests - conflict with active sync requests.
2461 *
2462 * This is achieved by tracking pending requests and a 'barrier' concept
2463 * that can be installed to exclude normal IO requests.
2464 */
2465
2466 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2467 {
2468 struct r1conf *conf = mddev->private;
2469 struct r1bio *r1_bio;
2470 struct bio *bio;
2471 sector_t max_sector, nr_sectors;
2472 int disk = -1;
2473 int i;
2474 int wonly = -1;
2475 int write_targets = 0, read_targets = 0;
2476 sector_t sync_blocks;
2477 int still_degraded = 0;
2478 int good_sectors = RESYNC_SECTORS;
2479 int min_bad = 0; /* number of sectors that are bad in all devices */
2480
2481 if (!conf->r1buf_pool)
2482 if (init_resync(conf))
2483 return 0;
2484
2485 max_sector = mddev->dev_sectors;
2486 if (sector_nr >= max_sector) {
2487 /* If we aborted, we need to abort the
2488 * sync on the 'current' bitmap chunk (there will
2489 * only be one in raid1 resync.
2490 * We can find the current addess in mddev->curr_resync
2491 */
2492 if (mddev->curr_resync < max_sector) /* aborted */
2493 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2494 &sync_blocks, 1);
2495 else /* completed sync */
2496 conf->fullsync = 0;
2497
2498 bitmap_close_sync(mddev->bitmap);
2499 close_sync(conf);
2500 return 0;
2501 }
2502
2503 if (mddev->bitmap == NULL &&
2504 mddev->recovery_cp == MaxSector &&
2505 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2506 conf->fullsync == 0) {
2507 *skipped = 1;
2508 return max_sector - sector_nr;
2509 }
2510 /* before building a request, check if we can skip these blocks..
2511 * This call the bitmap_start_sync doesn't actually record anything
2512 */
2513 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2514 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2515 /* We can skip this block, and probably several more */
2516 *skipped = 1;
2517 return sync_blocks;
2518 }
2519 /*
2520 * If there is non-resync activity waiting for a turn,
2521 * and resync is going fast enough,
2522 * then let it though before starting on this new sync request.
2523 */
2524 if (!go_faster && conf->nr_waiting)
2525 msleep_interruptible(1000);
2526
2527 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2528 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2529 raise_barrier(conf);
2530
2531 conf->next_resync = sector_nr;
2532
2533 rcu_read_lock();
2534 /*
2535 * If we get a correctably read error during resync or recovery,
2536 * we might want to read from a different device. So we
2537 * flag all drives that could conceivably be read from for READ,
2538 * and any others (which will be non-In_sync devices) for WRITE.
2539 * If a read fails, we try reading from something else for which READ
2540 * is OK.
2541 */
2542
2543 r1_bio->mddev = mddev;
2544 r1_bio->sector = sector_nr;
2545 r1_bio->state = 0;
2546 set_bit(R1BIO_IsSync, &r1_bio->state);
2547
2548 for (i = 0; i < conf->raid_disks * 2; i++) {
2549 struct md_rdev *rdev;
2550 bio = r1_bio->bios[i];
2551 bio_reset(bio);
2552
2553 rdev = rcu_dereference(conf->mirrors[i].rdev);
2554 if (rdev == NULL ||
2555 test_bit(Faulty, &rdev->flags)) {
2556 if (i < conf->raid_disks)
2557 still_degraded = 1;
2558 } else if (!test_bit(In_sync, &rdev->flags)) {
2559 bio->bi_rw = WRITE;
2560 bio->bi_end_io = end_sync_write;
2561 write_targets ++;
2562 } else {
2563 /* may need to read from here */
2564 sector_t first_bad = MaxSector;
2565 int bad_sectors;
2566
2567 if (is_badblock(rdev, sector_nr, good_sectors,
2568 &first_bad, &bad_sectors)) {
2569 if (first_bad > sector_nr)
2570 good_sectors = first_bad - sector_nr;
2571 else {
2572 bad_sectors -= (sector_nr - first_bad);
2573 if (min_bad == 0 ||
2574 min_bad > bad_sectors)
2575 min_bad = bad_sectors;
2576 }
2577 }
2578 if (sector_nr < first_bad) {
2579 if (test_bit(WriteMostly, &rdev->flags)) {
2580 if (wonly < 0)
2581 wonly = i;
2582 } else {
2583 if (disk < 0)
2584 disk = i;
2585 }
2586 bio->bi_rw = READ;
2587 bio->bi_end_io = end_sync_read;
2588 read_targets++;
2589 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2590 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2591 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2592 /*
2593 * The device is suitable for reading (InSync),
2594 * but has bad block(s) here. Let's try to correct them,
2595 * if we are doing resync or repair. Otherwise, leave
2596 * this device alone for this sync request.
2597 */
2598 bio->bi_rw = WRITE;
2599 bio->bi_end_io = end_sync_write;
2600 write_targets++;
2601 }
2602 }
2603 if (bio->bi_end_io) {
2604 atomic_inc(&rdev->nr_pending);
2605 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2606 bio->bi_bdev = rdev->bdev;
2607 bio->bi_private = r1_bio;
2608 }
2609 }
2610 rcu_read_unlock();
2611 if (disk < 0)
2612 disk = wonly;
2613 r1_bio->read_disk = disk;
2614
2615 if (read_targets == 0 && min_bad > 0) {
2616 /* These sectors are bad on all InSync devices, so we
2617 * need to mark them bad on all write targets
2618 */
2619 int ok = 1;
2620 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2621 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2622 struct md_rdev *rdev = conf->mirrors[i].rdev;
2623 ok = rdev_set_badblocks(rdev, sector_nr,
2624 min_bad, 0
2625 ) && ok;
2626 }
2627 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2628 *skipped = 1;
2629 put_buf(r1_bio);
2630
2631 if (!ok) {
2632 /* Cannot record the badblocks, so need to
2633 * abort the resync.
2634 * If there are multiple read targets, could just
2635 * fail the really bad ones ???
2636 */
2637 conf->recovery_disabled = mddev->recovery_disabled;
2638 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2639 return 0;
2640 } else
2641 return min_bad;
2642
2643 }
2644 if (min_bad > 0 && min_bad < good_sectors) {
2645 /* only resync enough to reach the next bad->good
2646 * transition */
2647 good_sectors = min_bad;
2648 }
2649
2650 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2651 /* extra read targets are also write targets */
2652 write_targets += read_targets-1;
2653
2654 if (write_targets == 0 || read_targets == 0) {
2655 /* There is nowhere to write, so all non-sync
2656 * drives must be failed - so we are finished
2657 */
2658 sector_t rv;
2659 if (min_bad > 0)
2660 max_sector = sector_nr + min_bad;
2661 rv = max_sector - sector_nr;
2662 *skipped = 1;
2663 put_buf(r1_bio);
2664 return rv;
2665 }
2666
2667 if (max_sector > mddev->resync_max)
2668 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2669 if (max_sector > sector_nr + good_sectors)
2670 max_sector = sector_nr + good_sectors;
2671 nr_sectors = 0;
2672 sync_blocks = 0;
2673 do {
2674 struct page *page;
2675 int len = PAGE_SIZE;
2676 if (sector_nr + (len>>9) > max_sector)
2677 len = (max_sector - sector_nr) << 9;
2678 if (len == 0)
2679 break;
2680 if (sync_blocks == 0) {
2681 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2682 &sync_blocks, still_degraded) &&
2683 !conf->fullsync &&
2684 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2685 break;
2686 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2687 if ((len >> 9) > sync_blocks)
2688 len = sync_blocks<<9;
2689 }
2690
2691 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2692 bio = r1_bio->bios[i];
2693 if (bio->bi_end_io) {
2694 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2695 if (bio_add_page(bio, page, len, 0) == 0) {
2696 /* stop here */
2697 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2698 while (i > 0) {
2699 i--;
2700 bio = r1_bio->bios[i];
2701 if (bio->bi_end_io==NULL)
2702 continue;
2703 /* remove last page from this bio */
2704 bio->bi_vcnt--;
2705 bio->bi_iter.bi_size -= len;
2706 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2707 }
2708 goto bio_full;
2709 }
2710 }
2711 }
2712 nr_sectors += len>>9;
2713 sector_nr += len>>9;
2714 sync_blocks -= (len>>9);
2715 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2716 bio_full:
2717 r1_bio->sectors = nr_sectors;
2718
2719 /* For a user-requested sync, we read all readable devices and do a
2720 * compare
2721 */
2722 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2723 atomic_set(&r1_bio->remaining, read_targets);
2724 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2725 bio = r1_bio->bios[i];
2726 if (bio->bi_end_io == end_sync_read) {
2727 read_targets--;
2728 md_sync_acct(bio->bi_bdev, nr_sectors);
2729 generic_make_request(bio);
2730 }
2731 }
2732 } else {
2733 atomic_set(&r1_bio->remaining, 1);
2734 bio = r1_bio->bios[r1_bio->read_disk];
2735 md_sync_acct(bio->bi_bdev, nr_sectors);
2736 generic_make_request(bio);
2737
2738 }
2739 return nr_sectors;
2740 }
2741
2742 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2743 {
2744 if (sectors)
2745 return sectors;
2746
2747 return mddev->dev_sectors;
2748 }
2749
2750 static struct r1conf *setup_conf(struct mddev *mddev)
2751 {
2752 struct r1conf *conf;
2753 int i;
2754 struct raid1_info *disk;
2755 struct md_rdev *rdev;
2756 int err = -ENOMEM;
2757
2758 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2759 if (!conf)
2760 goto abort;
2761
2762 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2763 * mddev->raid_disks * 2,
2764 GFP_KERNEL);
2765 if (!conf->mirrors)
2766 goto abort;
2767
2768 conf->tmppage = alloc_page(GFP_KERNEL);
2769 if (!conf->tmppage)
2770 goto abort;
2771
2772 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2773 if (!conf->poolinfo)
2774 goto abort;
2775 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2776 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2777 r1bio_pool_free,
2778 conf->poolinfo);
2779 if (!conf->r1bio_pool)
2780 goto abort;
2781
2782 conf->poolinfo->mddev = mddev;
2783
2784 err = -EINVAL;
2785 spin_lock_init(&conf->device_lock);
2786 rdev_for_each(rdev, mddev) {
2787 struct request_queue *q;
2788 int disk_idx = rdev->raid_disk;
2789 if (disk_idx >= mddev->raid_disks
2790 || disk_idx < 0)
2791 continue;
2792 if (test_bit(Replacement, &rdev->flags))
2793 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2794 else
2795 disk = conf->mirrors + disk_idx;
2796
2797 if (disk->rdev)
2798 goto abort;
2799 disk->rdev = rdev;
2800 q = bdev_get_queue(rdev->bdev);
2801 if (q->merge_bvec_fn)
2802 mddev->merge_check_needed = 1;
2803
2804 disk->head_position = 0;
2805 disk->seq_start = MaxSector;
2806 }
2807 conf->raid_disks = mddev->raid_disks;
2808 conf->mddev = mddev;
2809 INIT_LIST_HEAD(&conf->retry_list);
2810
2811 spin_lock_init(&conf->resync_lock);
2812 init_waitqueue_head(&conf->wait_barrier);
2813
2814 bio_list_init(&conf->pending_bio_list);
2815 conf->pending_count = 0;
2816 conf->recovery_disabled = mddev->recovery_disabled - 1;
2817
2818 conf->start_next_window = MaxSector;
2819 conf->current_window_requests = conf->next_window_requests = 0;
2820
2821 err = -EIO;
2822 for (i = 0; i < conf->raid_disks * 2; i++) {
2823
2824 disk = conf->mirrors + i;
2825
2826 if (i < conf->raid_disks &&
2827 disk[conf->raid_disks].rdev) {
2828 /* This slot has a replacement. */
2829 if (!disk->rdev) {
2830 /* No original, just make the replacement
2831 * a recovering spare
2832 */
2833 disk->rdev =
2834 disk[conf->raid_disks].rdev;
2835 disk[conf->raid_disks].rdev = NULL;
2836 } else if (!test_bit(In_sync, &disk->rdev->flags))
2837 /* Original is not in_sync - bad */
2838 goto abort;
2839 }
2840
2841 if (!disk->rdev ||
2842 !test_bit(In_sync, &disk->rdev->flags)) {
2843 disk->head_position = 0;
2844 if (disk->rdev &&
2845 (disk->rdev->saved_raid_disk < 0))
2846 conf->fullsync = 1;
2847 }
2848 }
2849
2850 err = -ENOMEM;
2851 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2852 if (!conf->thread) {
2853 printk(KERN_ERR
2854 "md/raid1:%s: couldn't allocate thread\n",
2855 mdname(mddev));
2856 goto abort;
2857 }
2858
2859 return conf;
2860
2861 abort:
2862 if (conf) {
2863 if (conf->r1bio_pool)
2864 mempool_destroy(conf->r1bio_pool);
2865 kfree(conf->mirrors);
2866 safe_put_page(conf->tmppage);
2867 kfree(conf->poolinfo);
2868 kfree(conf);
2869 }
2870 return ERR_PTR(err);
2871 }
2872
2873 static int stop(struct mddev *mddev);
2874 static int run(struct mddev *mddev)
2875 {
2876 struct r1conf *conf;
2877 int i;
2878 struct md_rdev *rdev;
2879 int ret;
2880 bool discard_supported = false;
2881
2882 if (mddev->level != 1) {
2883 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2884 mdname(mddev), mddev->level);
2885 return -EIO;
2886 }
2887 if (mddev->reshape_position != MaxSector) {
2888 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2889 mdname(mddev));
2890 return -EIO;
2891 }
2892 /*
2893 * copy the already verified devices into our private RAID1
2894 * bookkeeping area. [whatever we allocate in run(),
2895 * should be freed in stop()]
2896 */
2897 if (mddev->private == NULL)
2898 conf = setup_conf(mddev);
2899 else
2900 conf = mddev->private;
2901
2902 if (IS_ERR(conf))
2903 return PTR_ERR(conf);
2904
2905 if (mddev->queue)
2906 blk_queue_max_write_same_sectors(mddev->queue, 0);
2907
2908 rdev_for_each(rdev, mddev) {
2909 if (!mddev->gendisk)
2910 continue;
2911 disk_stack_limits(mddev->gendisk, rdev->bdev,
2912 rdev->data_offset << 9);
2913 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2914 discard_supported = true;
2915 }
2916
2917 mddev->degraded = 0;
2918 for (i=0; i < conf->raid_disks; i++)
2919 if (conf->mirrors[i].rdev == NULL ||
2920 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2921 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2922 mddev->degraded++;
2923
2924 if (conf->raid_disks - mddev->degraded == 1)
2925 mddev->recovery_cp = MaxSector;
2926
2927 if (mddev->recovery_cp != MaxSector)
2928 printk(KERN_NOTICE "md/raid1:%s: not clean"
2929 " -- starting background reconstruction\n",
2930 mdname(mddev));
2931 printk(KERN_INFO
2932 "md/raid1:%s: active with %d out of %d mirrors\n",
2933 mdname(mddev), mddev->raid_disks - mddev->degraded,
2934 mddev->raid_disks);
2935
2936 /*
2937 * Ok, everything is just fine now
2938 */
2939 mddev->thread = conf->thread;
2940 conf->thread = NULL;
2941 mddev->private = conf;
2942
2943 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2944
2945 if (mddev->queue) {
2946 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2947 mddev->queue->backing_dev_info.congested_data = mddev;
2948 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2949
2950 if (discard_supported)
2951 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2952 mddev->queue);
2953 else
2954 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2955 mddev->queue);
2956 }
2957
2958 ret = md_integrity_register(mddev);
2959 if (ret)
2960 stop(mddev);
2961 return ret;
2962 }
2963
2964 static int stop(struct mddev *mddev)
2965 {
2966 struct r1conf *conf = mddev->private;
2967 struct bitmap *bitmap = mddev->bitmap;
2968
2969 /* wait for behind writes to complete */
2970 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2971 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2972 mdname(mddev));
2973 /* need to kick something here to make sure I/O goes? */
2974 wait_event(bitmap->behind_wait,
2975 atomic_read(&bitmap->behind_writes) == 0);
2976 }
2977
2978 freeze_array(conf, 0);
2979 unfreeze_array(conf);
2980
2981 md_unregister_thread(&mddev->thread);
2982 if (conf->r1bio_pool)
2983 mempool_destroy(conf->r1bio_pool);
2984 kfree(conf->mirrors);
2985 safe_put_page(conf->tmppage);
2986 kfree(conf->poolinfo);
2987 kfree(conf);
2988 mddev->private = NULL;
2989 return 0;
2990 }
2991
2992 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2993 {
2994 /* no resync is happening, and there is enough space
2995 * on all devices, so we can resize.
2996 * We need to make sure resync covers any new space.
2997 * If the array is shrinking we should possibly wait until
2998 * any io in the removed space completes, but it hardly seems
2999 * worth it.
3000 */
3001 sector_t newsize = raid1_size(mddev, sectors, 0);
3002 if (mddev->external_size &&
3003 mddev->array_sectors > newsize)
3004 return -EINVAL;
3005 if (mddev->bitmap) {
3006 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3007 if (ret)
3008 return ret;
3009 }
3010 md_set_array_sectors(mddev, newsize);
3011 set_capacity(mddev->gendisk, mddev->array_sectors);
3012 revalidate_disk(mddev->gendisk);
3013 if (sectors > mddev->dev_sectors &&
3014 mddev->recovery_cp > mddev->dev_sectors) {
3015 mddev->recovery_cp = mddev->dev_sectors;
3016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3017 }
3018 mddev->dev_sectors = sectors;
3019 mddev->resync_max_sectors = sectors;
3020 return 0;
3021 }
3022
3023 static int raid1_reshape(struct mddev *mddev)
3024 {
3025 /* We need to:
3026 * 1/ resize the r1bio_pool
3027 * 2/ resize conf->mirrors
3028 *
3029 * We allocate a new r1bio_pool if we can.
3030 * Then raise a device barrier and wait until all IO stops.
3031 * Then resize conf->mirrors and swap in the new r1bio pool.
3032 *
3033 * At the same time, we "pack" the devices so that all the missing
3034 * devices have the higher raid_disk numbers.
3035 */
3036 mempool_t *newpool, *oldpool;
3037 struct pool_info *newpoolinfo;
3038 struct raid1_info *newmirrors;
3039 struct r1conf *conf = mddev->private;
3040 int cnt, raid_disks;
3041 unsigned long flags;
3042 int d, d2, err;
3043
3044 /* Cannot change chunk_size, layout, or level */
3045 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3046 mddev->layout != mddev->new_layout ||
3047 mddev->level != mddev->new_level) {
3048 mddev->new_chunk_sectors = mddev->chunk_sectors;
3049 mddev->new_layout = mddev->layout;
3050 mddev->new_level = mddev->level;
3051 return -EINVAL;
3052 }
3053
3054 err = md_allow_write(mddev);
3055 if (err)
3056 return err;
3057
3058 raid_disks = mddev->raid_disks + mddev->delta_disks;
3059
3060 if (raid_disks < conf->raid_disks) {
3061 cnt=0;
3062 for (d= 0; d < conf->raid_disks; d++)
3063 if (conf->mirrors[d].rdev)
3064 cnt++;
3065 if (cnt > raid_disks)
3066 return -EBUSY;
3067 }
3068
3069 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3070 if (!newpoolinfo)
3071 return -ENOMEM;
3072 newpoolinfo->mddev = mddev;
3073 newpoolinfo->raid_disks = raid_disks * 2;
3074
3075 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3076 r1bio_pool_free, newpoolinfo);
3077 if (!newpool) {
3078 kfree(newpoolinfo);
3079 return -ENOMEM;
3080 }
3081 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3082 GFP_KERNEL);
3083 if (!newmirrors) {
3084 kfree(newpoolinfo);
3085 mempool_destroy(newpool);
3086 return -ENOMEM;
3087 }
3088
3089 freeze_array(conf, 0);
3090
3091 /* ok, everything is stopped */
3092 oldpool = conf->r1bio_pool;
3093 conf->r1bio_pool = newpool;
3094
3095 for (d = d2 = 0; d < conf->raid_disks; d++) {
3096 struct md_rdev *rdev = conf->mirrors[d].rdev;
3097 if (rdev && rdev->raid_disk != d2) {
3098 sysfs_unlink_rdev(mddev, rdev);
3099 rdev->raid_disk = d2;
3100 sysfs_unlink_rdev(mddev, rdev);
3101 if (sysfs_link_rdev(mddev, rdev))
3102 printk(KERN_WARNING
3103 "md/raid1:%s: cannot register rd%d\n",
3104 mdname(mddev), rdev->raid_disk);
3105 }
3106 if (rdev)
3107 newmirrors[d2++].rdev = rdev;
3108 }
3109 kfree(conf->mirrors);
3110 conf->mirrors = newmirrors;
3111 kfree(conf->poolinfo);
3112 conf->poolinfo = newpoolinfo;
3113
3114 spin_lock_irqsave(&conf->device_lock, flags);
3115 mddev->degraded += (raid_disks - conf->raid_disks);
3116 spin_unlock_irqrestore(&conf->device_lock, flags);
3117 conf->raid_disks = mddev->raid_disks = raid_disks;
3118 mddev->delta_disks = 0;
3119
3120 unfreeze_array(conf);
3121
3122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3123 md_wakeup_thread(mddev->thread);
3124
3125 mempool_destroy(oldpool);
3126 return 0;
3127 }
3128
3129 static void raid1_quiesce(struct mddev *mddev, int state)
3130 {
3131 struct r1conf *conf = mddev->private;
3132
3133 switch(state) {
3134 case 2: /* wake for suspend */
3135 wake_up(&conf->wait_barrier);
3136 break;
3137 case 1:
3138 freeze_array(conf, 0);
3139 break;
3140 case 0:
3141 unfreeze_array(conf);
3142 break;
3143 }
3144 }
3145
3146 static void *raid1_takeover(struct mddev *mddev)
3147 {
3148 /* raid1 can take over:
3149 * raid5 with 2 devices, any layout or chunk size
3150 */
3151 if (mddev->level == 5 && mddev->raid_disks == 2) {
3152 struct r1conf *conf;
3153 mddev->new_level = 1;
3154 mddev->new_layout = 0;
3155 mddev->new_chunk_sectors = 0;
3156 conf = setup_conf(mddev);
3157 if (!IS_ERR(conf))
3158 /* Array must appear to be quiesced */
3159 conf->array_frozen = 1;
3160 return conf;
3161 }
3162 return ERR_PTR(-EINVAL);
3163 }
3164
3165 static struct md_personality raid1_personality =
3166 {
3167 .name = "raid1",
3168 .level = 1,
3169 .owner = THIS_MODULE,
3170 .make_request = make_request,
3171 .run = run,
3172 .stop = stop,
3173 .status = status,
3174 .error_handler = error,
3175 .hot_add_disk = raid1_add_disk,
3176 .hot_remove_disk= raid1_remove_disk,
3177 .spare_active = raid1_spare_active,
3178 .sync_request = sync_request,
3179 .resize = raid1_resize,
3180 .size = raid1_size,
3181 .check_reshape = raid1_reshape,
3182 .quiesce = raid1_quiesce,
3183 .takeover = raid1_takeover,
3184 };
3185
3186 static int __init raid_init(void)
3187 {
3188 return register_md_personality(&raid1_personality);
3189 }
3190
3191 static void raid_exit(void)
3192 {
3193 unregister_md_personality(&raid1_personality);
3194 }
3195
3196 module_init(raid_init);
3197 module_exit(raid_exit);
3198 MODULE_LICENSE("GPL");
3199 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3200 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3201 MODULE_ALIAS("md-raid1");
3202 MODULE_ALIAS("md-level-1");
3203
3204 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);