]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid1.c
db536a68b2ee033430290e7dd5b93e3ac1c22cc0
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
123 */
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
131
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
147 out_free_pages:
148 while (--j >= 0)
149 bio_free_pages(r1_bio->bios[j]);
150
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t start_next_window = r1_bio->start_next_window;
239 sector_t bi_sector = bio->bi_iter.bi_sector;
240
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
247 /*
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
250 */
251 wake_up(&conf->wait_barrier);
252 } else
253 done = 1;
254
255 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 bio->bi_error = -EIO;
257
258 if (done) {
259 bio_endio(bio);
260 /*
261 * Wake up any possible resync thread that waits for the device
262 * to go idle.
263 */
264 allow_barrier(conf, start_next_window, bi_sector);
265 }
266 }
267
268 static void raid_end_bio_io(struct r1bio *r1_bio)
269 {
270 struct bio *bio = r1_bio->master_bio;
271
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 (unsigned long long) bio->bi_iter.bi_sector,
277 (unsigned long long) bio_end_sector(bio) - 1);
278
279 call_bio_endio(r1_bio);
280 }
281 free_r1bio(r1_bio);
282 }
283
284 /*
285 * Update disk head position estimator based on IRQ completion info.
286 */
287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
288 {
289 struct r1conf *conf = r1_bio->mddev->private;
290
291 conf->mirrors[disk].head_position =
292 r1_bio->sector + (r1_bio->sectors);
293 }
294
295 /*
296 * Find the disk number which triggered given bio
297 */
298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
299 {
300 int mirror;
301 struct r1conf *conf = r1_bio->mddev->private;
302 int raid_disks = conf->raid_disks;
303
304 for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 if (r1_bio->bios[mirror] == bio)
306 break;
307
308 BUG_ON(mirror == raid_disks * 2);
309 update_head_pos(mirror, r1_bio);
310
311 return mirror;
312 }
313
314 static void raid1_end_read_request(struct bio *bio)
315 {
316 int uptodate = !bio->bi_error;
317 struct r1bio *r1_bio = bio->bi_private;
318 struct r1conf *conf = r1_bio->mddev->private;
319 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
320
321 /*
322 * this branch is our 'one mirror IO has finished' event handler:
323 */
324 update_head_pos(r1_bio->read_disk, r1_bio);
325
326 if (uptodate)
327 set_bit(R1BIO_Uptodate, &r1_bio->state);
328 else {
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
332 */
333 unsigned long flags;
334 spin_lock_irqsave(&conf->device_lock, flags);
335 if (r1_bio->mddev->degraded == conf->raid_disks ||
336 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 test_bit(In_sync, &rdev->flags)))
338 uptodate = 1;
339 spin_unlock_irqrestore(&conf->device_lock, flags);
340 }
341
342 if (uptodate) {
343 raid_end_bio_io(r1_bio);
344 rdev_dec_pending(rdev, conf->mddev);
345 } else {
346 /*
347 * oops, read error:
348 */
349 char b[BDEVNAME_SIZE];
350 printk_ratelimited(
351 KERN_ERR "md/raid1:%s: %s: "
352 "rescheduling sector %llu\n",
353 mdname(conf->mddev),
354 bdevname(rdev->bdev,
355 b),
356 (unsigned long long)r1_bio->sector);
357 set_bit(R1BIO_ReadError, &r1_bio->state);
358 reschedule_retry(r1_bio);
359 /* don't drop the reference on read_disk yet */
360 }
361 }
362
363 static void close_write(struct r1bio *r1_bio)
364 {
365 /* it really is the end of this request */
366 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
367 /* free extra copy of the data pages */
368 int i = r1_bio->behind_page_count;
369 while (i--)
370 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
371 kfree(r1_bio->behind_bvecs);
372 r1_bio->behind_bvecs = NULL;
373 }
374 /* clear the bitmap if all writes complete successfully */
375 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
376 r1_bio->sectors,
377 !test_bit(R1BIO_Degraded, &r1_bio->state),
378 test_bit(R1BIO_BehindIO, &r1_bio->state));
379 md_write_end(r1_bio->mddev);
380 }
381
382 static void r1_bio_write_done(struct r1bio *r1_bio)
383 {
384 if (!atomic_dec_and_test(&r1_bio->remaining))
385 return;
386
387 if (test_bit(R1BIO_WriteError, &r1_bio->state))
388 reschedule_retry(r1_bio);
389 else {
390 close_write(r1_bio);
391 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else
394 raid_end_bio_io(r1_bio);
395 }
396 }
397
398 static void raid1_end_write_request(struct bio *bio)
399 {
400 struct r1bio *r1_bio = bio->bi_private;
401 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
402 struct r1conf *conf = r1_bio->mddev->private;
403 struct bio *to_put = NULL;
404 int mirror = find_bio_disk(r1_bio, bio);
405 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
406 bool discard_error;
407
408 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (bio->bi_error && !discard_error) {
414 set_bit(WriteErrorSeen, &rdev->flags);
415 if (!test_and_set_bit(WantReplacement, &rdev->flags))
416 set_bit(MD_RECOVERY_NEEDED, &
417 conf->mddev->recovery);
418
419 set_bit(R1BIO_WriteError, &r1_bio->state);
420 } else {
421 /*
422 * Set R1BIO_Uptodate in our master bio, so that we
423 * will return a good error code for to the higher
424 * levels even if IO on some other mirrored buffer
425 * fails.
426 *
427 * The 'master' represents the composite IO operation
428 * to user-side. So if something waits for IO, then it
429 * will wait for the 'master' bio.
430 */
431 sector_t first_bad;
432 int bad_sectors;
433
434 r1_bio->bios[mirror] = NULL;
435 to_put = bio;
436 /*
437 * Do not set R1BIO_Uptodate if the current device is
438 * rebuilding or Faulty. This is because we cannot use
439 * such device for properly reading the data back (we could
440 * potentially use it, if the current write would have felt
441 * before rdev->recovery_offset, but for simplicity we don't
442 * check this here.
443 */
444 if (test_bit(In_sync, &rdev->flags) &&
445 !test_bit(Faulty, &rdev->flags))
446 set_bit(R1BIO_Uptodate, &r1_bio->state);
447
448 /* Maybe we can clear some bad blocks. */
449 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
450 &first_bad, &bad_sectors) && !discard_error) {
451 r1_bio->bios[mirror] = IO_MADE_GOOD;
452 set_bit(R1BIO_MadeGood, &r1_bio->state);
453 }
454 }
455
456 if (behind) {
457 if (test_bit(WriteMostly, &rdev->flags))
458 atomic_dec(&r1_bio->behind_remaining);
459
460 /*
461 * In behind mode, we ACK the master bio once the I/O
462 * has safely reached all non-writemostly
463 * disks. Setting the Returned bit ensures that this
464 * gets done only once -- we don't ever want to return
465 * -EIO here, instead we'll wait
466 */
467 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
468 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
469 /* Maybe we can return now */
470 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
471 struct bio *mbio = r1_bio->master_bio;
472 pr_debug("raid1: behind end write sectors"
473 " %llu-%llu\n",
474 (unsigned long long) mbio->bi_iter.bi_sector,
475 (unsigned long long) bio_end_sector(mbio) - 1);
476 call_bio_endio(r1_bio);
477 }
478 }
479 }
480 if (r1_bio->bios[mirror] == NULL)
481 rdev_dec_pending(rdev, conf->mddev);
482
483 /*
484 * Let's see if all mirrored write operations have finished
485 * already.
486 */
487 r1_bio_write_done(r1_bio);
488
489 if (to_put)
490 bio_put(to_put);
491 }
492
493 /*
494 * This routine returns the disk from which the requested read should
495 * be done. There is a per-array 'next expected sequential IO' sector
496 * number - if this matches on the next IO then we use the last disk.
497 * There is also a per-disk 'last know head position' sector that is
498 * maintained from IRQ contexts, both the normal and the resync IO
499 * completion handlers update this position correctly. If there is no
500 * perfect sequential match then we pick the disk whose head is closest.
501 *
502 * If there are 2 mirrors in the same 2 devices, performance degrades
503 * because position is mirror, not device based.
504 *
505 * The rdev for the device selected will have nr_pending incremented.
506 */
507 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
508 {
509 const sector_t this_sector = r1_bio->sector;
510 int sectors;
511 int best_good_sectors;
512 int best_disk, best_dist_disk, best_pending_disk;
513 int has_nonrot_disk;
514 int disk;
515 sector_t best_dist;
516 unsigned int min_pending;
517 struct md_rdev *rdev;
518 int choose_first;
519 int choose_next_idle;
520
521 rcu_read_lock();
522 /*
523 * Check if we can balance. We can balance on the whole
524 * device if no resync is going on, or below the resync window.
525 * We take the first readable disk when above the resync window.
526 */
527 retry:
528 sectors = r1_bio->sectors;
529 best_disk = -1;
530 best_dist_disk = -1;
531 best_dist = MaxSector;
532 best_pending_disk = -1;
533 min_pending = UINT_MAX;
534 best_good_sectors = 0;
535 has_nonrot_disk = 0;
536 choose_next_idle = 0;
537
538 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
539 (mddev_is_clustered(conf->mddev) &&
540 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
541 this_sector + sectors)))
542 choose_first = 1;
543 else
544 choose_first = 0;
545
546 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
547 sector_t dist;
548 sector_t first_bad;
549 int bad_sectors;
550 unsigned int pending;
551 bool nonrot;
552
553 rdev = rcu_dereference(conf->mirrors[disk].rdev);
554 if (r1_bio->bios[disk] == IO_BLOCKED
555 || rdev == NULL
556 || test_bit(Faulty, &rdev->flags))
557 continue;
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
560 continue;
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
564 if (best_dist_disk < 0) {
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad <= this_sector)
568 /* Cannot use this */
569 continue;
570 best_good_sectors = first_bad - this_sector;
571 } else
572 best_good_sectors = sectors;
573 best_dist_disk = disk;
574 best_pending_disk = disk;
575 }
576 continue;
577 }
578 /* This is a reasonable device to use. It might
579 * even be best.
580 */
581 if (is_badblock(rdev, this_sector, sectors,
582 &first_bad, &bad_sectors)) {
583 if (best_dist < MaxSector)
584 /* already have a better device */
585 continue;
586 if (first_bad <= this_sector) {
587 /* cannot read here. If this is the 'primary'
588 * device, then we must not read beyond
589 * bad_sectors from another device..
590 */
591 bad_sectors -= (this_sector - first_bad);
592 if (choose_first && sectors > bad_sectors)
593 sectors = bad_sectors;
594 if (best_good_sectors > sectors)
595 best_good_sectors = sectors;
596
597 } else {
598 sector_t good_sectors = first_bad - this_sector;
599 if (good_sectors > best_good_sectors) {
600 best_good_sectors = good_sectors;
601 best_disk = disk;
602 }
603 if (choose_first)
604 break;
605 }
606 continue;
607 } else
608 best_good_sectors = sectors;
609
610 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
611 has_nonrot_disk |= nonrot;
612 pending = atomic_read(&rdev->nr_pending);
613 dist = abs(this_sector - conf->mirrors[disk].head_position);
614 if (choose_first) {
615 best_disk = disk;
616 break;
617 }
618 /* Don't change to another disk for sequential reads */
619 if (conf->mirrors[disk].next_seq_sect == this_sector
620 || dist == 0) {
621 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
622 struct raid1_info *mirror = &conf->mirrors[disk];
623
624 best_disk = disk;
625 /*
626 * If buffered sequential IO size exceeds optimal
627 * iosize, check if there is idle disk. If yes, choose
628 * the idle disk. read_balance could already choose an
629 * idle disk before noticing it's a sequential IO in
630 * this disk. This doesn't matter because this disk
631 * will idle, next time it will be utilized after the
632 * first disk has IO size exceeds optimal iosize. In
633 * this way, iosize of the first disk will be optimal
634 * iosize at least. iosize of the second disk might be
635 * small, but not a big deal since when the second disk
636 * starts IO, the first disk is likely still busy.
637 */
638 if (nonrot && opt_iosize > 0 &&
639 mirror->seq_start != MaxSector &&
640 mirror->next_seq_sect > opt_iosize &&
641 mirror->next_seq_sect - opt_iosize >=
642 mirror->seq_start) {
643 choose_next_idle = 1;
644 continue;
645 }
646 break;
647 }
648 /* If device is idle, use it */
649 if (pending == 0) {
650 best_disk = disk;
651 break;
652 }
653
654 if (choose_next_idle)
655 continue;
656
657 if (min_pending > pending) {
658 min_pending = pending;
659 best_pending_disk = disk;
660 }
661
662 if (dist < best_dist) {
663 best_dist = dist;
664 best_dist_disk = disk;
665 }
666 }
667
668 /*
669 * If all disks are rotational, choose the closest disk. If any disk is
670 * non-rotational, choose the disk with less pending request even the
671 * disk is rotational, which might/might not be optimal for raids with
672 * mixed ratation/non-rotational disks depending on workload.
673 */
674 if (best_disk == -1) {
675 if (has_nonrot_disk)
676 best_disk = best_pending_disk;
677 else
678 best_disk = best_dist_disk;
679 }
680
681 if (best_disk >= 0) {
682 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
683 if (!rdev)
684 goto retry;
685 atomic_inc(&rdev->nr_pending);
686 sectors = best_good_sectors;
687
688 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
689 conf->mirrors[best_disk].seq_start = this_sector;
690
691 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
692 }
693 rcu_read_unlock();
694 *max_sectors = sectors;
695
696 return best_disk;
697 }
698
699 static int raid1_congested(struct mddev *mddev, int bits)
700 {
701 struct r1conf *conf = mddev->private;
702 int i, ret = 0;
703
704 if ((bits & (1 << WB_async_congested)) &&
705 conf->pending_count >= max_queued_requests)
706 return 1;
707
708 rcu_read_lock();
709 for (i = 0; i < conf->raid_disks * 2; i++) {
710 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
711 if (rdev && !test_bit(Faulty, &rdev->flags)) {
712 struct request_queue *q = bdev_get_queue(rdev->bdev);
713
714 BUG_ON(!q);
715
716 /* Note the '|| 1' - when read_balance prefers
717 * non-congested targets, it can be removed
718 */
719 if ((bits & (1 << WB_async_congested)) || 1)
720 ret |= bdi_congested(&q->backing_dev_info, bits);
721 else
722 ret &= bdi_congested(&q->backing_dev_info, bits);
723 }
724 }
725 rcu_read_unlock();
726 return ret;
727 }
728
729 static void flush_pending_writes(struct r1conf *conf)
730 {
731 /* Any writes that have been queued but are awaiting
732 * bitmap updates get flushed here.
733 */
734 spin_lock_irq(&conf->device_lock);
735
736 if (conf->pending_bio_list.head) {
737 struct bio *bio;
738 bio = bio_list_get(&conf->pending_bio_list);
739 conf->pending_count = 0;
740 spin_unlock_irq(&conf->device_lock);
741 /* flush any pending bitmap writes to
742 * disk before proceeding w/ I/O */
743 bitmap_unplug(conf->mddev->bitmap);
744 wake_up(&conf->wait_barrier);
745
746 while (bio) { /* submit pending writes */
747 struct bio *next = bio->bi_next;
748 bio->bi_next = NULL;
749 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
750 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
751 /* Just ignore it */
752 bio_endio(bio);
753 else
754 generic_make_request(bio);
755 bio = next;
756 }
757 } else
758 spin_unlock_irq(&conf->device_lock);
759 }
760
761 /* Barriers....
762 * Sometimes we need to suspend IO while we do something else,
763 * either some resync/recovery, or reconfigure the array.
764 * To do this we raise a 'barrier'.
765 * The 'barrier' is a counter that can be raised multiple times
766 * to count how many activities are happening which preclude
767 * normal IO.
768 * We can only raise the barrier if there is no pending IO.
769 * i.e. if nr_pending == 0.
770 * We choose only to raise the barrier if no-one is waiting for the
771 * barrier to go down. This means that as soon as an IO request
772 * is ready, no other operations which require a barrier will start
773 * until the IO request has had a chance.
774 *
775 * So: regular IO calls 'wait_barrier'. When that returns there
776 * is no backgroup IO happening, It must arrange to call
777 * allow_barrier when it has finished its IO.
778 * backgroup IO calls must call raise_barrier. Once that returns
779 * there is no normal IO happeing. It must arrange to call
780 * lower_barrier when the particular background IO completes.
781 */
782 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
783 {
784 spin_lock_irq(&conf->resync_lock);
785
786 /* Wait until no block IO is waiting */
787 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
788 conf->resync_lock);
789
790 /* block any new IO from starting */
791 conf->barrier++;
792 conf->next_resync = sector_nr;
793
794 /* For these conditions we must wait:
795 * A: while the array is in frozen state
796 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
797 * the max count which allowed.
798 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
799 * next resync will reach to the window which normal bios are
800 * handling.
801 * D: while there are any active requests in the current window.
802 */
803 wait_event_lock_irq(conf->wait_barrier,
804 !conf->array_frozen &&
805 conf->barrier < RESYNC_DEPTH &&
806 conf->current_window_requests == 0 &&
807 (conf->start_next_window >=
808 conf->next_resync + RESYNC_SECTORS),
809 conf->resync_lock);
810
811 conf->nr_pending++;
812 spin_unlock_irq(&conf->resync_lock);
813 }
814
815 static void lower_barrier(struct r1conf *conf)
816 {
817 unsigned long flags;
818 BUG_ON(conf->barrier <= 0);
819 spin_lock_irqsave(&conf->resync_lock, flags);
820 conf->barrier--;
821 conf->nr_pending--;
822 spin_unlock_irqrestore(&conf->resync_lock, flags);
823 wake_up(&conf->wait_barrier);
824 }
825
826 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
827 {
828 bool wait = false;
829
830 if (conf->array_frozen || !bio)
831 wait = true;
832 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
833 if ((conf->mddev->curr_resync_completed
834 >= bio_end_sector(bio)) ||
835 (conf->next_resync + NEXT_NORMALIO_DISTANCE
836 <= bio->bi_iter.bi_sector))
837 wait = false;
838 else
839 wait = true;
840 }
841
842 return wait;
843 }
844
845 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
846 {
847 sector_t sector = 0;
848
849 spin_lock_irq(&conf->resync_lock);
850 if (need_to_wait_for_sync(conf, bio)) {
851 conf->nr_waiting++;
852 /* Wait for the barrier to drop.
853 * However if there are already pending
854 * requests (preventing the barrier from
855 * rising completely), and the
856 * per-process bio queue isn't empty,
857 * then don't wait, as we need to empty
858 * that queue to allow conf->start_next_window
859 * to increase.
860 */
861 wait_event_lock_irq(conf->wait_barrier,
862 !conf->array_frozen &&
863 (!conf->barrier ||
864 ((conf->start_next_window <
865 conf->next_resync + RESYNC_SECTORS) &&
866 current->bio_list &&
867 !bio_list_empty(current->bio_list))),
868 conf->resync_lock);
869 conf->nr_waiting--;
870 }
871
872 if (bio && bio_data_dir(bio) == WRITE) {
873 if (bio->bi_iter.bi_sector >= conf->next_resync) {
874 if (conf->start_next_window == MaxSector)
875 conf->start_next_window =
876 conf->next_resync +
877 NEXT_NORMALIO_DISTANCE;
878
879 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
880 <= bio->bi_iter.bi_sector)
881 conf->next_window_requests++;
882 else
883 conf->current_window_requests++;
884 sector = conf->start_next_window;
885 }
886 }
887
888 conf->nr_pending++;
889 spin_unlock_irq(&conf->resync_lock);
890 return sector;
891 }
892
893 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
894 sector_t bi_sector)
895 {
896 unsigned long flags;
897
898 spin_lock_irqsave(&conf->resync_lock, flags);
899 conf->nr_pending--;
900 if (start_next_window) {
901 if (start_next_window == conf->start_next_window) {
902 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
903 <= bi_sector)
904 conf->next_window_requests--;
905 else
906 conf->current_window_requests--;
907 } else
908 conf->current_window_requests--;
909
910 if (!conf->current_window_requests) {
911 if (conf->next_window_requests) {
912 conf->current_window_requests =
913 conf->next_window_requests;
914 conf->next_window_requests = 0;
915 conf->start_next_window +=
916 NEXT_NORMALIO_DISTANCE;
917 } else
918 conf->start_next_window = MaxSector;
919 }
920 }
921 spin_unlock_irqrestore(&conf->resync_lock, flags);
922 wake_up(&conf->wait_barrier);
923 }
924
925 static void freeze_array(struct r1conf *conf, int extra)
926 {
927 /* stop syncio and normal IO and wait for everything to
928 * go quite.
929 * We wait until nr_pending match nr_queued+extra
930 * This is called in the context of one normal IO request
931 * that has failed. Thus any sync request that might be pending
932 * will be blocked by nr_pending, and we need to wait for
933 * pending IO requests to complete or be queued for re-try.
934 * Thus the number queued (nr_queued) plus this request (extra)
935 * must match the number of pending IOs (nr_pending) before
936 * we continue.
937 */
938 spin_lock_irq(&conf->resync_lock);
939 conf->array_frozen = 1;
940 wait_event_lock_irq_cmd(conf->wait_barrier,
941 conf->nr_pending == conf->nr_queued+extra,
942 conf->resync_lock,
943 flush_pending_writes(conf));
944 spin_unlock_irq(&conf->resync_lock);
945 }
946 static void unfreeze_array(struct r1conf *conf)
947 {
948 /* reverse the effect of the freeze */
949 spin_lock_irq(&conf->resync_lock);
950 conf->array_frozen = 0;
951 wake_up(&conf->wait_barrier);
952 spin_unlock_irq(&conf->resync_lock);
953 }
954
955 /* duplicate the data pages for behind I/O
956 */
957 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
958 {
959 int i;
960 struct bio_vec *bvec;
961 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
962 GFP_NOIO);
963 if (unlikely(!bvecs))
964 return;
965
966 bio_for_each_segment_all(bvec, bio, i) {
967 bvecs[i] = *bvec;
968 bvecs[i].bv_page = alloc_page(GFP_NOIO);
969 if (unlikely(!bvecs[i].bv_page))
970 goto do_sync_io;
971 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
972 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
973 kunmap(bvecs[i].bv_page);
974 kunmap(bvec->bv_page);
975 }
976 r1_bio->behind_bvecs = bvecs;
977 r1_bio->behind_page_count = bio->bi_vcnt;
978 set_bit(R1BIO_BehindIO, &r1_bio->state);
979 return;
980
981 do_sync_io:
982 for (i = 0; i < bio->bi_vcnt; i++)
983 if (bvecs[i].bv_page)
984 put_page(bvecs[i].bv_page);
985 kfree(bvecs);
986 pr_debug("%dB behind alloc failed, doing sync I/O\n",
987 bio->bi_iter.bi_size);
988 }
989
990 struct raid1_plug_cb {
991 struct blk_plug_cb cb;
992 struct bio_list pending;
993 int pending_cnt;
994 };
995
996 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
997 {
998 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
999 cb);
1000 struct mddev *mddev = plug->cb.data;
1001 struct r1conf *conf = mddev->private;
1002 struct bio *bio;
1003
1004 if (from_schedule || current->bio_list) {
1005 spin_lock_irq(&conf->device_lock);
1006 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1007 conf->pending_count += plug->pending_cnt;
1008 spin_unlock_irq(&conf->device_lock);
1009 wake_up(&conf->wait_barrier);
1010 md_wakeup_thread(mddev->thread);
1011 kfree(plug);
1012 return;
1013 }
1014
1015 /* we aren't scheduling, so we can do the write-out directly. */
1016 bio = bio_list_get(&plug->pending);
1017 bitmap_unplug(mddev->bitmap);
1018 wake_up(&conf->wait_barrier);
1019
1020 while (bio) { /* submit pending writes */
1021 struct bio *next = bio->bi_next;
1022 bio->bi_next = NULL;
1023 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1024 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1025 /* Just ignore it */
1026 bio_endio(bio);
1027 else
1028 generic_make_request(bio);
1029 bio = next;
1030 }
1031 kfree(plug);
1032 }
1033
1034 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1035 {
1036 struct r1conf *conf = mddev->private;
1037 struct raid1_info *mirror;
1038 struct r1bio *r1_bio;
1039 struct bio *read_bio;
1040 int i, disks;
1041 struct bitmap *bitmap;
1042 unsigned long flags;
1043 const int op = bio_op(bio);
1044 const int rw = bio_data_dir(bio);
1045 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1046 const unsigned long do_flush_fua = (bio->bi_opf &
1047 (REQ_PREFLUSH | REQ_FUA));
1048 struct md_rdev *blocked_rdev;
1049 struct blk_plug_cb *cb;
1050 struct raid1_plug_cb *plug = NULL;
1051 int first_clone;
1052 int sectors_handled;
1053 int max_sectors;
1054 sector_t start_next_window;
1055
1056 /*
1057 * Register the new request and wait if the reconstruction
1058 * thread has put up a bar for new requests.
1059 * Continue immediately if no resync is active currently.
1060 */
1061
1062 md_write_start(mddev, bio); /* wait on superblock update early */
1063
1064 if (bio_data_dir(bio) == WRITE &&
1065 ((bio_end_sector(bio) > mddev->suspend_lo &&
1066 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1067 (mddev_is_clustered(mddev) &&
1068 md_cluster_ops->area_resyncing(mddev, WRITE,
1069 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1070 /* As the suspend_* range is controlled by
1071 * userspace, we want an interruptible
1072 * wait.
1073 */
1074 DEFINE_WAIT(w);
1075 for (;;) {
1076 flush_signals(current);
1077 prepare_to_wait(&conf->wait_barrier,
1078 &w, TASK_INTERRUPTIBLE);
1079 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1080 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1081 (mddev_is_clustered(mddev) &&
1082 !md_cluster_ops->area_resyncing(mddev, WRITE,
1083 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1084 break;
1085 schedule();
1086 }
1087 finish_wait(&conf->wait_barrier, &w);
1088 }
1089
1090 start_next_window = wait_barrier(conf, bio);
1091
1092 bitmap = mddev->bitmap;
1093
1094 /*
1095 * make_request() can abort the operation when read-ahead is being
1096 * used and no empty request is available.
1097 *
1098 */
1099 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1100
1101 r1_bio->master_bio = bio;
1102 r1_bio->sectors = bio_sectors(bio);
1103 r1_bio->state = 0;
1104 r1_bio->mddev = mddev;
1105 r1_bio->sector = bio->bi_iter.bi_sector;
1106
1107 /* We might need to issue multiple reads to different
1108 * devices if there are bad blocks around, so we keep
1109 * track of the number of reads in bio->bi_phys_segments.
1110 * If this is 0, there is only one r1_bio and no locking
1111 * will be needed when requests complete. If it is
1112 * non-zero, then it is the number of not-completed requests.
1113 */
1114 bio->bi_phys_segments = 0;
1115 bio_clear_flag(bio, BIO_SEG_VALID);
1116
1117 if (rw == READ) {
1118 /*
1119 * read balancing logic:
1120 */
1121 int rdisk;
1122
1123 read_again:
1124 rdisk = read_balance(conf, r1_bio, &max_sectors);
1125
1126 if (rdisk < 0) {
1127 /* couldn't find anywhere to read from */
1128 raid_end_bio_io(r1_bio);
1129 return;
1130 }
1131 mirror = conf->mirrors + rdisk;
1132
1133 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1134 bitmap) {
1135 /* Reading from a write-mostly device must
1136 * take care not to over-take any writes
1137 * that are 'behind'
1138 */
1139 wait_event(bitmap->behind_wait,
1140 atomic_read(&bitmap->behind_writes) == 0);
1141 }
1142 r1_bio->read_disk = rdisk;
1143 r1_bio->start_next_window = 0;
1144
1145 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1146 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1147 max_sectors);
1148
1149 r1_bio->bios[rdisk] = read_bio;
1150
1151 read_bio->bi_iter.bi_sector = r1_bio->sector +
1152 mirror->rdev->data_offset;
1153 read_bio->bi_bdev = mirror->rdev->bdev;
1154 read_bio->bi_end_io = raid1_end_read_request;
1155 bio_set_op_attrs(read_bio, op, do_sync);
1156 read_bio->bi_private = r1_bio;
1157
1158 if (max_sectors < r1_bio->sectors) {
1159 /* could not read all from this device, so we will
1160 * need another r1_bio.
1161 */
1162
1163 sectors_handled = (r1_bio->sector + max_sectors
1164 - bio->bi_iter.bi_sector);
1165 r1_bio->sectors = max_sectors;
1166 spin_lock_irq(&conf->device_lock);
1167 if (bio->bi_phys_segments == 0)
1168 bio->bi_phys_segments = 2;
1169 else
1170 bio->bi_phys_segments++;
1171 spin_unlock_irq(&conf->device_lock);
1172 /* Cannot call generic_make_request directly
1173 * as that will be queued in __make_request
1174 * and subsequent mempool_alloc might block waiting
1175 * for it. So hand bio over to raid1d.
1176 */
1177 reschedule_retry(r1_bio);
1178
1179 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1180
1181 r1_bio->master_bio = bio;
1182 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1183 r1_bio->state = 0;
1184 r1_bio->mddev = mddev;
1185 r1_bio->sector = bio->bi_iter.bi_sector +
1186 sectors_handled;
1187 goto read_again;
1188 } else
1189 generic_make_request(read_bio);
1190 return;
1191 }
1192
1193 /*
1194 * WRITE:
1195 */
1196 if (conf->pending_count >= max_queued_requests) {
1197 md_wakeup_thread(mddev->thread);
1198 wait_event(conf->wait_barrier,
1199 conf->pending_count < max_queued_requests);
1200 }
1201 /* first select target devices under rcu_lock and
1202 * inc refcount on their rdev. Record them by setting
1203 * bios[x] to bio
1204 * If there are known/acknowledged bad blocks on any device on
1205 * which we have seen a write error, we want to avoid writing those
1206 * blocks.
1207 * This potentially requires several writes to write around
1208 * the bad blocks. Each set of writes gets it's own r1bio
1209 * with a set of bios attached.
1210 */
1211
1212 disks = conf->raid_disks * 2;
1213 retry_write:
1214 r1_bio->start_next_window = start_next_window;
1215 blocked_rdev = NULL;
1216 rcu_read_lock();
1217 max_sectors = r1_bio->sectors;
1218 for (i = 0; i < disks; i++) {
1219 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1220 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1221 atomic_inc(&rdev->nr_pending);
1222 blocked_rdev = rdev;
1223 break;
1224 }
1225 r1_bio->bios[i] = NULL;
1226 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1227 if (i < conf->raid_disks)
1228 set_bit(R1BIO_Degraded, &r1_bio->state);
1229 continue;
1230 }
1231
1232 atomic_inc(&rdev->nr_pending);
1233 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1234 sector_t first_bad;
1235 int bad_sectors;
1236 int is_bad;
1237
1238 is_bad = is_badblock(rdev, r1_bio->sector,
1239 max_sectors,
1240 &first_bad, &bad_sectors);
1241 if (is_bad < 0) {
1242 /* mustn't write here until the bad block is
1243 * acknowledged*/
1244 set_bit(BlockedBadBlocks, &rdev->flags);
1245 blocked_rdev = rdev;
1246 break;
1247 }
1248 if (is_bad && first_bad <= r1_bio->sector) {
1249 /* Cannot write here at all */
1250 bad_sectors -= (r1_bio->sector - first_bad);
1251 if (bad_sectors < max_sectors)
1252 /* mustn't write more than bad_sectors
1253 * to other devices yet
1254 */
1255 max_sectors = bad_sectors;
1256 rdev_dec_pending(rdev, mddev);
1257 /* We don't set R1BIO_Degraded as that
1258 * only applies if the disk is
1259 * missing, so it might be re-added,
1260 * and we want to know to recover this
1261 * chunk.
1262 * In this case the device is here,
1263 * and the fact that this chunk is not
1264 * in-sync is recorded in the bad
1265 * block log
1266 */
1267 continue;
1268 }
1269 if (is_bad) {
1270 int good_sectors = first_bad - r1_bio->sector;
1271 if (good_sectors < max_sectors)
1272 max_sectors = good_sectors;
1273 }
1274 }
1275 r1_bio->bios[i] = bio;
1276 }
1277 rcu_read_unlock();
1278
1279 if (unlikely(blocked_rdev)) {
1280 /* Wait for this device to become unblocked */
1281 int j;
1282 sector_t old = start_next_window;
1283
1284 for (j = 0; j < i; j++)
1285 if (r1_bio->bios[j])
1286 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1287 r1_bio->state = 0;
1288 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1289 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1290 start_next_window = wait_barrier(conf, bio);
1291 /*
1292 * We must make sure the multi r1bios of bio have
1293 * the same value of bi_phys_segments
1294 */
1295 if (bio->bi_phys_segments && old &&
1296 old != start_next_window)
1297 /* Wait for the former r1bio(s) to complete */
1298 wait_event(conf->wait_barrier,
1299 bio->bi_phys_segments == 1);
1300 goto retry_write;
1301 }
1302
1303 if (max_sectors < r1_bio->sectors) {
1304 /* We are splitting this write into multiple parts, so
1305 * we need to prepare for allocating another r1_bio.
1306 */
1307 r1_bio->sectors = max_sectors;
1308 spin_lock_irq(&conf->device_lock);
1309 if (bio->bi_phys_segments == 0)
1310 bio->bi_phys_segments = 2;
1311 else
1312 bio->bi_phys_segments++;
1313 spin_unlock_irq(&conf->device_lock);
1314 }
1315 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1316
1317 atomic_set(&r1_bio->remaining, 1);
1318 atomic_set(&r1_bio->behind_remaining, 0);
1319
1320 first_clone = 1;
1321 for (i = 0; i < disks; i++) {
1322 struct bio *mbio;
1323 if (!r1_bio->bios[i])
1324 continue;
1325
1326 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1327 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1328
1329 if (first_clone) {
1330 /* do behind I/O ?
1331 * Not if there are too many, or cannot
1332 * allocate memory, or a reader on WriteMostly
1333 * is waiting for behind writes to flush */
1334 if (bitmap &&
1335 (atomic_read(&bitmap->behind_writes)
1336 < mddev->bitmap_info.max_write_behind) &&
1337 !waitqueue_active(&bitmap->behind_wait))
1338 alloc_behind_pages(mbio, r1_bio);
1339
1340 bitmap_startwrite(bitmap, r1_bio->sector,
1341 r1_bio->sectors,
1342 test_bit(R1BIO_BehindIO,
1343 &r1_bio->state));
1344 first_clone = 0;
1345 }
1346 if (r1_bio->behind_bvecs) {
1347 struct bio_vec *bvec;
1348 int j;
1349
1350 /*
1351 * We trimmed the bio, so _all is legit
1352 */
1353 bio_for_each_segment_all(bvec, mbio, j)
1354 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1355 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1356 atomic_inc(&r1_bio->behind_remaining);
1357 }
1358
1359 r1_bio->bios[i] = mbio;
1360
1361 mbio->bi_iter.bi_sector = (r1_bio->sector +
1362 conf->mirrors[i].rdev->data_offset);
1363 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1364 mbio->bi_end_io = raid1_end_write_request;
1365 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1366 mbio->bi_private = r1_bio;
1367
1368 atomic_inc(&r1_bio->remaining);
1369
1370 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1371 if (cb)
1372 plug = container_of(cb, struct raid1_plug_cb, cb);
1373 else
1374 plug = NULL;
1375 spin_lock_irqsave(&conf->device_lock, flags);
1376 if (plug) {
1377 bio_list_add(&plug->pending, mbio);
1378 plug->pending_cnt++;
1379 } else {
1380 bio_list_add(&conf->pending_bio_list, mbio);
1381 conf->pending_count++;
1382 }
1383 spin_unlock_irqrestore(&conf->device_lock, flags);
1384 if (!plug)
1385 md_wakeup_thread(mddev->thread);
1386 }
1387 /* Mustn't call r1_bio_write_done before this next test,
1388 * as it could result in the bio being freed.
1389 */
1390 if (sectors_handled < bio_sectors(bio)) {
1391 r1_bio_write_done(r1_bio);
1392 /* We need another r1_bio. It has already been counted
1393 * in bio->bi_phys_segments
1394 */
1395 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1396 r1_bio->master_bio = bio;
1397 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1398 r1_bio->state = 0;
1399 r1_bio->mddev = mddev;
1400 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1401 goto retry_write;
1402 }
1403
1404 r1_bio_write_done(r1_bio);
1405
1406 /* In case raid1d snuck in to freeze_array */
1407 wake_up(&conf->wait_barrier);
1408 }
1409
1410 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1411 {
1412 struct r1conf *conf = mddev->private;
1413 int i;
1414
1415 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1416 conf->raid_disks - mddev->degraded);
1417 rcu_read_lock();
1418 for (i = 0; i < conf->raid_disks; i++) {
1419 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1420 seq_printf(seq, "%s",
1421 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1422 }
1423 rcu_read_unlock();
1424 seq_printf(seq, "]");
1425 }
1426
1427 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1428 {
1429 char b[BDEVNAME_SIZE];
1430 struct r1conf *conf = mddev->private;
1431 unsigned long flags;
1432
1433 /*
1434 * If it is not operational, then we have already marked it as dead
1435 * else if it is the last working disks, ignore the error, let the
1436 * next level up know.
1437 * else mark the drive as failed
1438 */
1439 if (test_bit(In_sync, &rdev->flags)
1440 && (conf->raid_disks - mddev->degraded) == 1) {
1441 /*
1442 * Don't fail the drive, act as though we were just a
1443 * normal single drive.
1444 * However don't try a recovery from this drive as
1445 * it is very likely to fail.
1446 */
1447 conf->recovery_disabled = mddev->recovery_disabled;
1448 return;
1449 }
1450 set_bit(Blocked, &rdev->flags);
1451 spin_lock_irqsave(&conf->device_lock, flags);
1452 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1453 mddev->degraded++;
1454 set_bit(Faulty, &rdev->flags);
1455 } else
1456 set_bit(Faulty, &rdev->flags);
1457 spin_unlock_irqrestore(&conf->device_lock, flags);
1458 /*
1459 * if recovery is running, make sure it aborts.
1460 */
1461 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1462 set_mask_bits(&mddev->flags, 0,
1463 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1464 printk(KERN_ALERT
1465 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1466 "md/raid1:%s: Operation continuing on %d devices.\n",
1467 mdname(mddev), bdevname(rdev->bdev, b),
1468 mdname(mddev), conf->raid_disks - mddev->degraded);
1469 }
1470
1471 static void print_conf(struct r1conf *conf)
1472 {
1473 int i;
1474
1475 printk(KERN_DEBUG "RAID1 conf printout:\n");
1476 if (!conf) {
1477 printk(KERN_DEBUG "(!conf)\n");
1478 return;
1479 }
1480 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1481 conf->raid_disks);
1482
1483 rcu_read_lock();
1484 for (i = 0; i < conf->raid_disks; i++) {
1485 char b[BDEVNAME_SIZE];
1486 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1487 if (rdev)
1488 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1489 i, !test_bit(In_sync, &rdev->flags),
1490 !test_bit(Faulty, &rdev->flags),
1491 bdevname(rdev->bdev,b));
1492 }
1493 rcu_read_unlock();
1494 }
1495
1496 static void close_sync(struct r1conf *conf)
1497 {
1498 wait_barrier(conf, NULL);
1499 allow_barrier(conf, 0, 0);
1500
1501 mempool_destroy(conf->r1buf_pool);
1502 conf->r1buf_pool = NULL;
1503
1504 spin_lock_irq(&conf->resync_lock);
1505 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1506 conf->start_next_window = MaxSector;
1507 conf->current_window_requests +=
1508 conf->next_window_requests;
1509 conf->next_window_requests = 0;
1510 spin_unlock_irq(&conf->resync_lock);
1511 }
1512
1513 static int raid1_spare_active(struct mddev *mddev)
1514 {
1515 int i;
1516 struct r1conf *conf = mddev->private;
1517 int count = 0;
1518 unsigned long flags;
1519
1520 /*
1521 * Find all failed disks within the RAID1 configuration
1522 * and mark them readable.
1523 * Called under mddev lock, so rcu protection not needed.
1524 * device_lock used to avoid races with raid1_end_read_request
1525 * which expects 'In_sync' flags and ->degraded to be consistent.
1526 */
1527 spin_lock_irqsave(&conf->device_lock, flags);
1528 for (i = 0; i < conf->raid_disks; i++) {
1529 struct md_rdev *rdev = conf->mirrors[i].rdev;
1530 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1531 if (repl
1532 && !test_bit(Candidate, &repl->flags)
1533 && repl->recovery_offset == MaxSector
1534 && !test_bit(Faulty, &repl->flags)
1535 && !test_and_set_bit(In_sync, &repl->flags)) {
1536 /* replacement has just become active */
1537 if (!rdev ||
1538 !test_and_clear_bit(In_sync, &rdev->flags))
1539 count++;
1540 if (rdev) {
1541 /* Replaced device not technically
1542 * faulty, but we need to be sure
1543 * it gets removed and never re-added
1544 */
1545 set_bit(Faulty, &rdev->flags);
1546 sysfs_notify_dirent_safe(
1547 rdev->sysfs_state);
1548 }
1549 }
1550 if (rdev
1551 && rdev->recovery_offset == MaxSector
1552 && !test_bit(Faulty, &rdev->flags)
1553 && !test_and_set_bit(In_sync, &rdev->flags)) {
1554 count++;
1555 sysfs_notify_dirent_safe(rdev->sysfs_state);
1556 }
1557 }
1558 mddev->degraded -= count;
1559 spin_unlock_irqrestore(&conf->device_lock, flags);
1560
1561 print_conf(conf);
1562 return count;
1563 }
1564
1565 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 struct r1conf *conf = mddev->private;
1568 int err = -EEXIST;
1569 int mirror = 0;
1570 struct raid1_info *p;
1571 int first = 0;
1572 int last = conf->raid_disks - 1;
1573
1574 if (mddev->recovery_disabled == conf->recovery_disabled)
1575 return -EBUSY;
1576
1577 if (md_integrity_add_rdev(rdev, mddev))
1578 return -ENXIO;
1579
1580 if (rdev->raid_disk >= 0)
1581 first = last = rdev->raid_disk;
1582
1583 /*
1584 * find the disk ... but prefer rdev->saved_raid_disk
1585 * if possible.
1586 */
1587 if (rdev->saved_raid_disk >= 0 &&
1588 rdev->saved_raid_disk >= first &&
1589 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1590 first = last = rdev->saved_raid_disk;
1591
1592 for (mirror = first; mirror <= last; mirror++) {
1593 p = conf->mirrors+mirror;
1594 if (!p->rdev) {
1595
1596 if (mddev->gendisk)
1597 disk_stack_limits(mddev->gendisk, rdev->bdev,
1598 rdev->data_offset << 9);
1599
1600 p->head_position = 0;
1601 rdev->raid_disk = mirror;
1602 err = 0;
1603 /* As all devices are equivalent, we don't need a full recovery
1604 * if this was recently any drive of the array
1605 */
1606 if (rdev->saved_raid_disk < 0)
1607 conf->fullsync = 1;
1608 rcu_assign_pointer(p->rdev, rdev);
1609 break;
1610 }
1611 if (test_bit(WantReplacement, &p->rdev->flags) &&
1612 p[conf->raid_disks].rdev == NULL) {
1613 /* Add this device as a replacement */
1614 clear_bit(In_sync, &rdev->flags);
1615 set_bit(Replacement, &rdev->flags);
1616 rdev->raid_disk = mirror;
1617 err = 0;
1618 conf->fullsync = 1;
1619 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1620 break;
1621 }
1622 }
1623 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1624 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1625 print_conf(conf);
1626 return err;
1627 }
1628
1629 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1630 {
1631 struct r1conf *conf = mddev->private;
1632 int err = 0;
1633 int number = rdev->raid_disk;
1634 struct raid1_info *p = conf->mirrors + number;
1635
1636 if (rdev != p->rdev)
1637 p = conf->mirrors + conf->raid_disks + number;
1638
1639 print_conf(conf);
1640 if (rdev == p->rdev) {
1641 if (test_bit(In_sync, &rdev->flags) ||
1642 atomic_read(&rdev->nr_pending)) {
1643 err = -EBUSY;
1644 goto abort;
1645 }
1646 /* Only remove non-faulty devices if recovery
1647 * is not possible.
1648 */
1649 if (!test_bit(Faulty, &rdev->flags) &&
1650 mddev->recovery_disabled != conf->recovery_disabled &&
1651 mddev->degraded < conf->raid_disks) {
1652 err = -EBUSY;
1653 goto abort;
1654 }
1655 p->rdev = NULL;
1656 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1657 synchronize_rcu();
1658 if (atomic_read(&rdev->nr_pending)) {
1659 /* lost the race, try later */
1660 err = -EBUSY;
1661 p->rdev = rdev;
1662 goto abort;
1663 }
1664 }
1665 if (conf->mirrors[conf->raid_disks + number].rdev) {
1666 /* We just removed a device that is being replaced.
1667 * Move down the replacement. We drain all IO before
1668 * doing this to avoid confusion.
1669 */
1670 struct md_rdev *repl =
1671 conf->mirrors[conf->raid_disks + number].rdev;
1672 freeze_array(conf, 0);
1673 clear_bit(Replacement, &repl->flags);
1674 p->rdev = repl;
1675 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1676 unfreeze_array(conf);
1677 clear_bit(WantReplacement, &rdev->flags);
1678 } else
1679 clear_bit(WantReplacement, &rdev->flags);
1680 err = md_integrity_register(mddev);
1681 }
1682 abort:
1683
1684 print_conf(conf);
1685 return err;
1686 }
1687
1688 static void end_sync_read(struct bio *bio)
1689 {
1690 struct r1bio *r1_bio = bio->bi_private;
1691
1692 update_head_pos(r1_bio->read_disk, r1_bio);
1693
1694 /*
1695 * we have read a block, now it needs to be re-written,
1696 * or re-read if the read failed.
1697 * We don't do much here, just schedule handling by raid1d
1698 */
1699 if (!bio->bi_error)
1700 set_bit(R1BIO_Uptodate, &r1_bio->state);
1701
1702 if (atomic_dec_and_test(&r1_bio->remaining))
1703 reschedule_retry(r1_bio);
1704 }
1705
1706 static void end_sync_write(struct bio *bio)
1707 {
1708 int uptodate = !bio->bi_error;
1709 struct r1bio *r1_bio = bio->bi_private;
1710 struct mddev *mddev = r1_bio->mddev;
1711 struct r1conf *conf = mddev->private;
1712 sector_t first_bad;
1713 int bad_sectors;
1714 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1715
1716 if (!uptodate) {
1717 sector_t sync_blocks = 0;
1718 sector_t s = r1_bio->sector;
1719 long sectors_to_go = r1_bio->sectors;
1720 /* make sure these bits doesn't get cleared. */
1721 do {
1722 bitmap_end_sync(mddev->bitmap, s,
1723 &sync_blocks, 1);
1724 s += sync_blocks;
1725 sectors_to_go -= sync_blocks;
1726 } while (sectors_to_go > 0);
1727 set_bit(WriteErrorSeen, &rdev->flags);
1728 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1729 set_bit(MD_RECOVERY_NEEDED, &
1730 mddev->recovery);
1731 set_bit(R1BIO_WriteError, &r1_bio->state);
1732 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1733 &first_bad, &bad_sectors) &&
1734 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1735 r1_bio->sector,
1736 r1_bio->sectors,
1737 &first_bad, &bad_sectors)
1738 )
1739 set_bit(R1BIO_MadeGood, &r1_bio->state);
1740
1741 if (atomic_dec_and_test(&r1_bio->remaining)) {
1742 int s = r1_bio->sectors;
1743 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1744 test_bit(R1BIO_WriteError, &r1_bio->state))
1745 reschedule_retry(r1_bio);
1746 else {
1747 put_buf(r1_bio);
1748 md_done_sync(mddev, s, uptodate);
1749 }
1750 }
1751 }
1752
1753 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1754 int sectors, struct page *page, int rw)
1755 {
1756 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1757 /* success */
1758 return 1;
1759 if (rw == WRITE) {
1760 set_bit(WriteErrorSeen, &rdev->flags);
1761 if (!test_and_set_bit(WantReplacement,
1762 &rdev->flags))
1763 set_bit(MD_RECOVERY_NEEDED, &
1764 rdev->mddev->recovery);
1765 }
1766 /* need to record an error - either for the block or the device */
1767 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1768 md_error(rdev->mddev, rdev);
1769 return 0;
1770 }
1771
1772 static int fix_sync_read_error(struct r1bio *r1_bio)
1773 {
1774 /* Try some synchronous reads of other devices to get
1775 * good data, much like with normal read errors. Only
1776 * read into the pages we already have so we don't
1777 * need to re-issue the read request.
1778 * We don't need to freeze the array, because being in an
1779 * active sync request, there is no normal IO, and
1780 * no overlapping syncs.
1781 * We don't need to check is_badblock() again as we
1782 * made sure that anything with a bad block in range
1783 * will have bi_end_io clear.
1784 */
1785 struct mddev *mddev = r1_bio->mddev;
1786 struct r1conf *conf = mddev->private;
1787 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1788 sector_t sect = r1_bio->sector;
1789 int sectors = r1_bio->sectors;
1790 int idx = 0;
1791
1792 while(sectors) {
1793 int s = sectors;
1794 int d = r1_bio->read_disk;
1795 int success = 0;
1796 struct md_rdev *rdev;
1797 int start;
1798
1799 if (s > (PAGE_SIZE>>9))
1800 s = PAGE_SIZE >> 9;
1801 do {
1802 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1803 /* No rcu protection needed here devices
1804 * can only be removed when no resync is
1805 * active, and resync is currently active
1806 */
1807 rdev = conf->mirrors[d].rdev;
1808 if (sync_page_io(rdev, sect, s<<9,
1809 bio->bi_io_vec[idx].bv_page,
1810 REQ_OP_READ, 0, false)) {
1811 success = 1;
1812 break;
1813 }
1814 }
1815 d++;
1816 if (d == conf->raid_disks * 2)
1817 d = 0;
1818 } while (!success && d != r1_bio->read_disk);
1819
1820 if (!success) {
1821 char b[BDEVNAME_SIZE];
1822 int abort = 0;
1823 /* Cannot read from anywhere, this block is lost.
1824 * Record a bad block on each device. If that doesn't
1825 * work just disable and interrupt the recovery.
1826 * Don't fail devices as that won't really help.
1827 */
1828 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1829 " for block %llu\n",
1830 mdname(mddev),
1831 bdevname(bio->bi_bdev, b),
1832 (unsigned long long)r1_bio->sector);
1833 for (d = 0; d < conf->raid_disks * 2; d++) {
1834 rdev = conf->mirrors[d].rdev;
1835 if (!rdev || test_bit(Faulty, &rdev->flags))
1836 continue;
1837 if (!rdev_set_badblocks(rdev, sect, s, 0))
1838 abort = 1;
1839 }
1840 if (abort) {
1841 conf->recovery_disabled =
1842 mddev->recovery_disabled;
1843 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1844 md_done_sync(mddev, r1_bio->sectors, 0);
1845 put_buf(r1_bio);
1846 return 0;
1847 }
1848 /* Try next page */
1849 sectors -= s;
1850 sect += s;
1851 idx++;
1852 continue;
1853 }
1854
1855 start = d;
1856 /* write it back and re-read */
1857 while (d != r1_bio->read_disk) {
1858 if (d == 0)
1859 d = conf->raid_disks * 2;
1860 d--;
1861 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1862 continue;
1863 rdev = conf->mirrors[d].rdev;
1864 if (r1_sync_page_io(rdev, sect, s,
1865 bio->bi_io_vec[idx].bv_page,
1866 WRITE) == 0) {
1867 r1_bio->bios[d]->bi_end_io = NULL;
1868 rdev_dec_pending(rdev, mddev);
1869 }
1870 }
1871 d = start;
1872 while (d != r1_bio->read_disk) {
1873 if (d == 0)
1874 d = conf->raid_disks * 2;
1875 d--;
1876 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1877 continue;
1878 rdev = conf->mirrors[d].rdev;
1879 if (r1_sync_page_io(rdev, sect, s,
1880 bio->bi_io_vec[idx].bv_page,
1881 READ) != 0)
1882 atomic_add(s, &rdev->corrected_errors);
1883 }
1884 sectors -= s;
1885 sect += s;
1886 idx ++;
1887 }
1888 set_bit(R1BIO_Uptodate, &r1_bio->state);
1889 bio->bi_error = 0;
1890 return 1;
1891 }
1892
1893 static void process_checks(struct r1bio *r1_bio)
1894 {
1895 /* We have read all readable devices. If we haven't
1896 * got the block, then there is no hope left.
1897 * If we have, then we want to do a comparison
1898 * and skip the write if everything is the same.
1899 * If any blocks failed to read, then we need to
1900 * attempt an over-write
1901 */
1902 struct mddev *mddev = r1_bio->mddev;
1903 struct r1conf *conf = mddev->private;
1904 int primary;
1905 int i;
1906 int vcnt;
1907
1908 /* Fix variable parts of all bios */
1909 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1910 for (i = 0; i < conf->raid_disks * 2; i++) {
1911 int j;
1912 int size;
1913 int error;
1914 struct bio *b = r1_bio->bios[i];
1915 if (b->bi_end_io != end_sync_read)
1916 continue;
1917 /* fixup the bio for reuse, but preserve errno */
1918 error = b->bi_error;
1919 bio_reset(b);
1920 b->bi_error = error;
1921 b->bi_vcnt = vcnt;
1922 b->bi_iter.bi_size = r1_bio->sectors << 9;
1923 b->bi_iter.bi_sector = r1_bio->sector +
1924 conf->mirrors[i].rdev->data_offset;
1925 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1926 b->bi_end_io = end_sync_read;
1927 b->bi_private = r1_bio;
1928
1929 size = b->bi_iter.bi_size;
1930 for (j = 0; j < vcnt ; j++) {
1931 struct bio_vec *bi;
1932 bi = &b->bi_io_vec[j];
1933 bi->bv_offset = 0;
1934 if (size > PAGE_SIZE)
1935 bi->bv_len = PAGE_SIZE;
1936 else
1937 bi->bv_len = size;
1938 size -= PAGE_SIZE;
1939 }
1940 }
1941 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1942 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1943 !r1_bio->bios[primary]->bi_error) {
1944 r1_bio->bios[primary]->bi_end_io = NULL;
1945 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1946 break;
1947 }
1948 r1_bio->read_disk = primary;
1949 for (i = 0; i < conf->raid_disks * 2; i++) {
1950 int j;
1951 struct bio *pbio = r1_bio->bios[primary];
1952 struct bio *sbio = r1_bio->bios[i];
1953 int error = sbio->bi_error;
1954
1955 if (sbio->bi_end_io != end_sync_read)
1956 continue;
1957 /* Now we can 'fixup' the error value */
1958 sbio->bi_error = 0;
1959
1960 if (!error) {
1961 for (j = vcnt; j-- ; ) {
1962 struct page *p, *s;
1963 p = pbio->bi_io_vec[j].bv_page;
1964 s = sbio->bi_io_vec[j].bv_page;
1965 if (memcmp(page_address(p),
1966 page_address(s),
1967 sbio->bi_io_vec[j].bv_len))
1968 break;
1969 }
1970 } else
1971 j = 0;
1972 if (j >= 0)
1973 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1974 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1975 && !error)) {
1976 /* No need to write to this device. */
1977 sbio->bi_end_io = NULL;
1978 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1979 continue;
1980 }
1981
1982 bio_copy_data(sbio, pbio);
1983 }
1984 }
1985
1986 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1987 {
1988 struct r1conf *conf = mddev->private;
1989 int i;
1990 int disks = conf->raid_disks * 2;
1991 struct bio *bio, *wbio;
1992
1993 bio = r1_bio->bios[r1_bio->read_disk];
1994
1995 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1996 /* ouch - failed to read all of that. */
1997 if (!fix_sync_read_error(r1_bio))
1998 return;
1999
2000 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2001 process_checks(r1_bio);
2002
2003 /*
2004 * schedule writes
2005 */
2006 atomic_set(&r1_bio->remaining, 1);
2007 for (i = 0; i < disks ; i++) {
2008 wbio = r1_bio->bios[i];
2009 if (wbio->bi_end_io == NULL ||
2010 (wbio->bi_end_io == end_sync_read &&
2011 (i == r1_bio->read_disk ||
2012 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2013 continue;
2014
2015 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2016 wbio->bi_end_io = end_sync_write;
2017 atomic_inc(&r1_bio->remaining);
2018 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2019
2020 generic_make_request(wbio);
2021 }
2022
2023 if (atomic_dec_and_test(&r1_bio->remaining)) {
2024 /* if we're here, all write(s) have completed, so clean up */
2025 int s = r1_bio->sectors;
2026 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2027 test_bit(R1BIO_WriteError, &r1_bio->state))
2028 reschedule_retry(r1_bio);
2029 else {
2030 put_buf(r1_bio);
2031 md_done_sync(mddev, s, 1);
2032 }
2033 }
2034 }
2035
2036 /*
2037 * This is a kernel thread which:
2038 *
2039 * 1. Retries failed read operations on working mirrors.
2040 * 2. Updates the raid superblock when problems encounter.
2041 * 3. Performs writes following reads for array synchronising.
2042 */
2043
2044 static void fix_read_error(struct r1conf *conf, int read_disk,
2045 sector_t sect, int sectors)
2046 {
2047 struct mddev *mddev = conf->mddev;
2048 while(sectors) {
2049 int s = sectors;
2050 int d = read_disk;
2051 int success = 0;
2052 int start;
2053 struct md_rdev *rdev;
2054
2055 if (s > (PAGE_SIZE>>9))
2056 s = PAGE_SIZE >> 9;
2057
2058 do {
2059 sector_t first_bad;
2060 int bad_sectors;
2061
2062 rcu_read_lock();
2063 rdev = rcu_dereference(conf->mirrors[d].rdev);
2064 if (rdev &&
2065 (test_bit(In_sync, &rdev->flags) ||
2066 (!test_bit(Faulty, &rdev->flags) &&
2067 rdev->recovery_offset >= sect + s)) &&
2068 is_badblock(rdev, sect, s,
2069 &first_bad, &bad_sectors) == 0) {
2070 atomic_inc(&rdev->nr_pending);
2071 rcu_read_unlock();
2072 if (sync_page_io(rdev, sect, s<<9,
2073 conf->tmppage, REQ_OP_READ, 0, false))
2074 success = 1;
2075 rdev_dec_pending(rdev, mddev);
2076 if (success)
2077 break;
2078 } else
2079 rcu_read_unlock();
2080 d++;
2081 if (d == conf->raid_disks * 2)
2082 d = 0;
2083 } while (!success && d != read_disk);
2084
2085 if (!success) {
2086 /* Cannot read from anywhere - mark it bad */
2087 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2088 if (!rdev_set_badblocks(rdev, sect, s, 0))
2089 md_error(mddev, rdev);
2090 break;
2091 }
2092 /* write it back and re-read */
2093 start = d;
2094 while (d != read_disk) {
2095 if (d==0)
2096 d = conf->raid_disks * 2;
2097 d--;
2098 rcu_read_lock();
2099 rdev = rcu_dereference(conf->mirrors[d].rdev);
2100 if (rdev &&
2101 !test_bit(Faulty, &rdev->flags)) {
2102 atomic_inc(&rdev->nr_pending);
2103 rcu_read_unlock();
2104 r1_sync_page_io(rdev, sect, s,
2105 conf->tmppage, WRITE);
2106 rdev_dec_pending(rdev, mddev);
2107 } else
2108 rcu_read_unlock();
2109 }
2110 d = start;
2111 while (d != read_disk) {
2112 char b[BDEVNAME_SIZE];
2113 if (d==0)
2114 d = conf->raid_disks * 2;
2115 d--;
2116 rcu_read_lock();
2117 rdev = rcu_dereference(conf->mirrors[d].rdev);
2118 if (rdev &&
2119 !test_bit(Faulty, &rdev->flags)) {
2120 atomic_inc(&rdev->nr_pending);
2121 rcu_read_unlock();
2122 if (r1_sync_page_io(rdev, sect, s,
2123 conf->tmppage, READ)) {
2124 atomic_add(s, &rdev->corrected_errors);
2125 printk(KERN_INFO
2126 "md/raid1:%s: read error corrected "
2127 "(%d sectors at %llu on %s)\n",
2128 mdname(mddev), s,
2129 (unsigned long long)(sect +
2130 rdev->data_offset),
2131 bdevname(rdev->bdev, b));
2132 }
2133 rdev_dec_pending(rdev, mddev);
2134 } else
2135 rcu_read_unlock();
2136 }
2137 sectors -= s;
2138 sect += s;
2139 }
2140 }
2141
2142 static int narrow_write_error(struct r1bio *r1_bio, int i)
2143 {
2144 struct mddev *mddev = r1_bio->mddev;
2145 struct r1conf *conf = mddev->private;
2146 struct md_rdev *rdev = conf->mirrors[i].rdev;
2147
2148 /* bio has the data to be written to device 'i' where
2149 * we just recently had a write error.
2150 * We repeatedly clone the bio and trim down to one block,
2151 * then try the write. Where the write fails we record
2152 * a bad block.
2153 * It is conceivable that the bio doesn't exactly align with
2154 * blocks. We must handle this somehow.
2155 *
2156 * We currently own a reference on the rdev.
2157 */
2158
2159 int block_sectors;
2160 sector_t sector;
2161 int sectors;
2162 int sect_to_write = r1_bio->sectors;
2163 int ok = 1;
2164
2165 if (rdev->badblocks.shift < 0)
2166 return 0;
2167
2168 block_sectors = roundup(1 << rdev->badblocks.shift,
2169 bdev_logical_block_size(rdev->bdev) >> 9);
2170 sector = r1_bio->sector;
2171 sectors = ((sector + block_sectors)
2172 & ~(sector_t)(block_sectors - 1))
2173 - sector;
2174
2175 while (sect_to_write) {
2176 struct bio *wbio;
2177 if (sectors > sect_to_write)
2178 sectors = sect_to_write;
2179 /* Write at 'sector' for 'sectors'*/
2180
2181 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2182 unsigned vcnt = r1_bio->behind_page_count;
2183 struct bio_vec *vec = r1_bio->behind_bvecs;
2184
2185 while (!vec->bv_page) {
2186 vec++;
2187 vcnt--;
2188 }
2189
2190 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2191 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2192
2193 wbio->bi_vcnt = vcnt;
2194 } else {
2195 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2196 }
2197
2198 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199 wbio->bi_iter.bi_sector = r1_bio->sector;
2200 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2201
2202 bio_trim(wbio, sector - r1_bio->sector, sectors);
2203 wbio->bi_iter.bi_sector += rdev->data_offset;
2204 wbio->bi_bdev = rdev->bdev;
2205
2206 if (submit_bio_wait(wbio) < 0)
2207 /* failure! */
2208 ok = rdev_set_badblocks(rdev, sector,
2209 sectors, 0)
2210 && ok;
2211
2212 bio_put(wbio);
2213 sect_to_write -= sectors;
2214 sector += sectors;
2215 sectors = block_sectors;
2216 }
2217 return ok;
2218 }
2219
2220 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2221 {
2222 int m;
2223 int s = r1_bio->sectors;
2224 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2225 struct md_rdev *rdev = conf->mirrors[m].rdev;
2226 struct bio *bio = r1_bio->bios[m];
2227 if (bio->bi_end_io == NULL)
2228 continue;
2229 if (!bio->bi_error &&
2230 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2231 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2232 }
2233 if (bio->bi_error &&
2234 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2235 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2236 md_error(conf->mddev, rdev);
2237 }
2238 }
2239 put_buf(r1_bio);
2240 md_done_sync(conf->mddev, s, 1);
2241 }
2242
2243 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2244 {
2245 int m;
2246 bool fail = false;
2247 for (m = 0; m < conf->raid_disks * 2 ; m++)
2248 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2249 struct md_rdev *rdev = conf->mirrors[m].rdev;
2250 rdev_clear_badblocks(rdev,
2251 r1_bio->sector,
2252 r1_bio->sectors, 0);
2253 rdev_dec_pending(rdev, conf->mddev);
2254 } else if (r1_bio->bios[m] != NULL) {
2255 /* This drive got a write error. We need to
2256 * narrow down and record precise write
2257 * errors.
2258 */
2259 fail = true;
2260 if (!narrow_write_error(r1_bio, m)) {
2261 md_error(conf->mddev,
2262 conf->mirrors[m].rdev);
2263 /* an I/O failed, we can't clear the bitmap */
2264 set_bit(R1BIO_Degraded, &r1_bio->state);
2265 }
2266 rdev_dec_pending(conf->mirrors[m].rdev,
2267 conf->mddev);
2268 }
2269 if (fail) {
2270 spin_lock_irq(&conf->device_lock);
2271 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2272 conf->nr_queued++;
2273 spin_unlock_irq(&conf->device_lock);
2274 md_wakeup_thread(conf->mddev->thread);
2275 } else {
2276 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2277 close_write(r1_bio);
2278 raid_end_bio_io(r1_bio);
2279 }
2280 }
2281
2282 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2283 {
2284 int disk;
2285 int max_sectors;
2286 struct mddev *mddev = conf->mddev;
2287 struct bio *bio;
2288 char b[BDEVNAME_SIZE];
2289 struct md_rdev *rdev;
2290
2291 clear_bit(R1BIO_ReadError, &r1_bio->state);
2292 /* we got a read error. Maybe the drive is bad. Maybe just
2293 * the block and we can fix it.
2294 * We freeze all other IO, and try reading the block from
2295 * other devices. When we find one, we re-write
2296 * and check it that fixes the read error.
2297 * This is all done synchronously while the array is
2298 * frozen
2299 */
2300 if (mddev->ro == 0) {
2301 freeze_array(conf, 1);
2302 fix_read_error(conf, r1_bio->read_disk,
2303 r1_bio->sector, r1_bio->sectors);
2304 unfreeze_array(conf);
2305 } else
2306 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2307 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2308
2309 bio = r1_bio->bios[r1_bio->read_disk];
2310 bdevname(bio->bi_bdev, b);
2311 read_more:
2312 disk = read_balance(conf, r1_bio, &max_sectors);
2313 if (disk == -1) {
2314 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2315 " read error for block %llu\n",
2316 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2317 raid_end_bio_io(r1_bio);
2318 } else {
2319 const unsigned long do_sync
2320 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2321 if (bio) {
2322 r1_bio->bios[r1_bio->read_disk] =
2323 mddev->ro ? IO_BLOCKED : NULL;
2324 bio_put(bio);
2325 }
2326 r1_bio->read_disk = disk;
2327 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2328 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2329 max_sectors);
2330 r1_bio->bios[r1_bio->read_disk] = bio;
2331 rdev = conf->mirrors[disk].rdev;
2332 printk_ratelimited(KERN_ERR
2333 "md/raid1:%s: redirecting sector %llu"
2334 " to other mirror: %s\n",
2335 mdname(mddev),
2336 (unsigned long long)r1_bio->sector,
2337 bdevname(rdev->bdev, b));
2338 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2339 bio->bi_bdev = rdev->bdev;
2340 bio->bi_end_io = raid1_end_read_request;
2341 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2342 bio->bi_private = r1_bio;
2343 if (max_sectors < r1_bio->sectors) {
2344 /* Drat - have to split this up more */
2345 struct bio *mbio = r1_bio->master_bio;
2346 int sectors_handled = (r1_bio->sector + max_sectors
2347 - mbio->bi_iter.bi_sector);
2348 r1_bio->sectors = max_sectors;
2349 spin_lock_irq(&conf->device_lock);
2350 if (mbio->bi_phys_segments == 0)
2351 mbio->bi_phys_segments = 2;
2352 else
2353 mbio->bi_phys_segments++;
2354 spin_unlock_irq(&conf->device_lock);
2355 generic_make_request(bio);
2356 bio = NULL;
2357
2358 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2359
2360 r1_bio->master_bio = mbio;
2361 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2362 r1_bio->state = 0;
2363 set_bit(R1BIO_ReadError, &r1_bio->state);
2364 r1_bio->mddev = mddev;
2365 r1_bio->sector = mbio->bi_iter.bi_sector +
2366 sectors_handled;
2367
2368 goto read_more;
2369 } else
2370 generic_make_request(bio);
2371 }
2372 }
2373
2374 static void raid1d(struct md_thread *thread)
2375 {
2376 struct mddev *mddev = thread->mddev;
2377 struct r1bio *r1_bio;
2378 unsigned long flags;
2379 struct r1conf *conf = mddev->private;
2380 struct list_head *head = &conf->retry_list;
2381 struct blk_plug plug;
2382
2383 md_check_recovery(mddev);
2384
2385 if (!list_empty_careful(&conf->bio_end_io_list) &&
2386 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2387 LIST_HEAD(tmp);
2388 spin_lock_irqsave(&conf->device_lock, flags);
2389 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2390 while (!list_empty(&conf->bio_end_io_list)) {
2391 list_move(conf->bio_end_io_list.prev, &tmp);
2392 conf->nr_queued--;
2393 }
2394 }
2395 spin_unlock_irqrestore(&conf->device_lock, flags);
2396 while (!list_empty(&tmp)) {
2397 r1_bio = list_first_entry(&tmp, struct r1bio,
2398 retry_list);
2399 list_del(&r1_bio->retry_list);
2400 if (mddev->degraded)
2401 set_bit(R1BIO_Degraded, &r1_bio->state);
2402 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2403 close_write(r1_bio);
2404 raid_end_bio_io(r1_bio);
2405 }
2406 }
2407
2408 blk_start_plug(&plug);
2409 for (;;) {
2410
2411 flush_pending_writes(conf);
2412
2413 spin_lock_irqsave(&conf->device_lock, flags);
2414 if (list_empty(head)) {
2415 spin_unlock_irqrestore(&conf->device_lock, flags);
2416 break;
2417 }
2418 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2419 list_del(head->prev);
2420 conf->nr_queued--;
2421 spin_unlock_irqrestore(&conf->device_lock, flags);
2422
2423 mddev = r1_bio->mddev;
2424 conf = mddev->private;
2425 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2426 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2427 test_bit(R1BIO_WriteError, &r1_bio->state))
2428 handle_sync_write_finished(conf, r1_bio);
2429 else
2430 sync_request_write(mddev, r1_bio);
2431 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432 test_bit(R1BIO_WriteError, &r1_bio->state))
2433 handle_write_finished(conf, r1_bio);
2434 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2435 handle_read_error(conf, r1_bio);
2436 else
2437 /* just a partial read to be scheduled from separate
2438 * context
2439 */
2440 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2441
2442 cond_resched();
2443 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2444 md_check_recovery(mddev);
2445 }
2446 blk_finish_plug(&plug);
2447 }
2448
2449 static int init_resync(struct r1conf *conf)
2450 {
2451 int buffs;
2452
2453 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2454 BUG_ON(conf->r1buf_pool);
2455 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2456 conf->poolinfo);
2457 if (!conf->r1buf_pool)
2458 return -ENOMEM;
2459 conf->next_resync = 0;
2460 return 0;
2461 }
2462
2463 /*
2464 * perform a "sync" on one "block"
2465 *
2466 * We need to make sure that no normal I/O request - particularly write
2467 * requests - conflict with active sync requests.
2468 *
2469 * This is achieved by tracking pending requests and a 'barrier' concept
2470 * that can be installed to exclude normal IO requests.
2471 */
2472
2473 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2474 int *skipped)
2475 {
2476 struct r1conf *conf = mddev->private;
2477 struct r1bio *r1_bio;
2478 struct bio *bio;
2479 sector_t max_sector, nr_sectors;
2480 int disk = -1;
2481 int i;
2482 int wonly = -1;
2483 int write_targets = 0, read_targets = 0;
2484 sector_t sync_blocks;
2485 int still_degraded = 0;
2486 int good_sectors = RESYNC_SECTORS;
2487 int min_bad = 0; /* number of sectors that are bad in all devices */
2488
2489 if (!conf->r1buf_pool)
2490 if (init_resync(conf))
2491 return 0;
2492
2493 max_sector = mddev->dev_sectors;
2494 if (sector_nr >= max_sector) {
2495 /* If we aborted, we need to abort the
2496 * sync on the 'current' bitmap chunk (there will
2497 * only be one in raid1 resync.
2498 * We can find the current addess in mddev->curr_resync
2499 */
2500 if (mddev->curr_resync < max_sector) /* aborted */
2501 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2502 &sync_blocks, 1);
2503 else /* completed sync */
2504 conf->fullsync = 0;
2505
2506 bitmap_close_sync(mddev->bitmap);
2507 close_sync(conf);
2508
2509 if (mddev_is_clustered(mddev)) {
2510 conf->cluster_sync_low = 0;
2511 conf->cluster_sync_high = 0;
2512 }
2513 return 0;
2514 }
2515
2516 if (mddev->bitmap == NULL &&
2517 mddev->recovery_cp == MaxSector &&
2518 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2519 conf->fullsync == 0) {
2520 *skipped = 1;
2521 return max_sector - sector_nr;
2522 }
2523 /* before building a request, check if we can skip these blocks..
2524 * This call the bitmap_start_sync doesn't actually record anything
2525 */
2526 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2527 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2528 /* We can skip this block, and probably several more */
2529 *skipped = 1;
2530 return sync_blocks;
2531 }
2532
2533 /*
2534 * If there is non-resync activity waiting for a turn, then let it
2535 * though before starting on this new sync request.
2536 */
2537 if (conf->nr_waiting)
2538 schedule_timeout_uninterruptible(1);
2539
2540 /* we are incrementing sector_nr below. To be safe, we check against
2541 * sector_nr + two times RESYNC_SECTORS
2542 */
2543
2544 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2545 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2546 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2547
2548 raise_barrier(conf, sector_nr);
2549
2550 rcu_read_lock();
2551 /*
2552 * If we get a correctably read error during resync or recovery,
2553 * we might want to read from a different device. So we
2554 * flag all drives that could conceivably be read from for READ,
2555 * and any others (which will be non-In_sync devices) for WRITE.
2556 * If a read fails, we try reading from something else for which READ
2557 * is OK.
2558 */
2559
2560 r1_bio->mddev = mddev;
2561 r1_bio->sector = sector_nr;
2562 r1_bio->state = 0;
2563 set_bit(R1BIO_IsSync, &r1_bio->state);
2564
2565 for (i = 0; i < conf->raid_disks * 2; i++) {
2566 struct md_rdev *rdev;
2567 bio = r1_bio->bios[i];
2568 bio_reset(bio);
2569
2570 rdev = rcu_dereference(conf->mirrors[i].rdev);
2571 if (rdev == NULL ||
2572 test_bit(Faulty, &rdev->flags)) {
2573 if (i < conf->raid_disks)
2574 still_degraded = 1;
2575 } else if (!test_bit(In_sync, &rdev->flags)) {
2576 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2577 bio->bi_end_io = end_sync_write;
2578 write_targets ++;
2579 } else {
2580 /* may need to read from here */
2581 sector_t first_bad = MaxSector;
2582 int bad_sectors;
2583
2584 if (is_badblock(rdev, sector_nr, good_sectors,
2585 &first_bad, &bad_sectors)) {
2586 if (first_bad > sector_nr)
2587 good_sectors = first_bad - sector_nr;
2588 else {
2589 bad_sectors -= (sector_nr - first_bad);
2590 if (min_bad == 0 ||
2591 min_bad > bad_sectors)
2592 min_bad = bad_sectors;
2593 }
2594 }
2595 if (sector_nr < first_bad) {
2596 if (test_bit(WriteMostly, &rdev->flags)) {
2597 if (wonly < 0)
2598 wonly = i;
2599 } else {
2600 if (disk < 0)
2601 disk = i;
2602 }
2603 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2604 bio->bi_end_io = end_sync_read;
2605 read_targets++;
2606 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2607 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2608 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2609 /*
2610 * The device is suitable for reading (InSync),
2611 * but has bad block(s) here. Let's try to correct them,
2612 * if we are doing resync or repair. Otherwise, leave
2613 * this device alone for this sync request.
2614 */
2615 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2616 bio->bi_end_io = end_sync_write;
2617 write_targets++;
2618 }
2619 }
2620 if (bio->bi_end_io) {
2621 atomic_inc(&rdev->nr_pending);
2622 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2623 bio->bi_bdev = rdev->bdev;
2624 bio->bi_private = r1_bio;
2625 }
2626 }
2627 rcu_read_unlock();
2628 if (disk < 0)
2629 disk = wonly;
2630 r1_bio->read_disk = disk;
2631
2632 if (read_targets == 0 && min_bad > 0) {
2633 /* These sectors are bad on all InSync devices, so we
2634 * need to mark them bad on all write targets
2635 */
2636 int ok = 1;
2637 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2638 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2639 struct md_rdev *rdev = conf->mirrors[i].rdev;
2640 ok = rdev_set_badblocks(rdev, sector_nr,
2641 min_bad, 0
2642 ) && ok;
2643 }
2644 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2645 *skipped = 1;
2646 put_buf(r1_bio);
2647
2648 if (!ok) {
2649 /* Cannot record the badblocks, so need to
2650 * abort the resync.
2651 * If there are multiple read targets, could just
2652 * fail the really bad ones ???
2653 */
2654 conf->recovery_disabled = mddev->recovery_disabled;
2655 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2656 return 0;
2657 } else
2658 return min_bad;
2659
2660 }
2661 if (min_bad > 0 && min_bad < good_sectors) {
2662 /* only resync enough to reach the next bad->good
2663 * transition */
2664 good_sectors = min_bad;
2665 }
2666
2667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2668 /* extra read targets are also write targets */
2669 write_targets += read_targets-1;
2670
2671 if (write_targets == 0 || read_targets == 0) {
2672 /* There is nowhere to write, so all non-sync
2673 * drives must be failed - so we are finished
2674 */
2675 sector_t rv;
2676 if (min_bad > 0)
2677 max_sector = sector_nr + min_bad;
2678 rv = max_sector - sector_nr;
2679 *skipped = 1;
2680 put_buf(r1_bio);
2681 return rv;
2682 }
2683
2684 if (max_sector > mddev->resync_max)
2685 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2686 if (max_sector > sector_nr + good_sectors)
2687 max_sector = sector_nr + good_sectors;
2688 nr_sectors = 0;
2689 sync_blocks = 0;
2690 do {
2691 struct page *page;
2692 int len = PAGE_SIZE;
2693 if (sector_nr + (len>>9) > max_sector)
2694 len = (max_sector - sector_nr) << 9;
2695 if (len == 0)
2696 break;
2697 if (sync_blocks == 0) {
2698 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2699 &sync_blocks, still_degraded) &&
2700 !conf->fullsync &&
2701 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2702 break;
2703 if ((len >> 9) > sync_blocks)
2704 len = sync_blocks<<9;
2705 }
2706
2707 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2708 bio = r1_bio->bios[i];
2709 if (bio->bi_end_io) {
2710 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2711 if (bio_add_page(bio, page, len, 0) == 0) {
2712 /* stop here */
2713 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2714 while (i > 0) {
2715 i--;
2716 bio = r1_bio->bios[i];
2717 if (bio->bi_end_io==NULL)
2718 continue;
2719 /* remove last page from this bio */
2720 bio->bi_vcnt--;
2721 bio->bi_iter.bi_size -= len;
2722 bio_clear_flag(bio, BIO_SEG_VALID);
2723 }
2724 goto bio_full;
2725 }
2726 }
2727 }
2728 nr_sectors += len>>9;
2729 sector_nr += len>>9;
2730 sync_blocks -= (len>>9);
2731 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2732 bio_full:
2733 r1_bio->sectors = nr_sectors;
2734
2735 if (mddev_is_clustered(mddev) &&
2736 conf->cluster_sync_high < sector_nr + nr_sectors) {
2737 conf->cluster_sync_low = mddev->curr_resync_completed;
2738 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2739 /* Send resync message */
2740 md_cluster_ops->resync_info_update(mddev,
2741 conf->cluster_sync_low,
2742 conf->cluster_sync_high);
2743 }
2744
2745 /* For a user-requested sync, we read all readable devices and do a
2746 * compare
2747 */
2748 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2749 atomic_set(&r1_bio->remaining, read_targets);
2750 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2751 bio = r1_bio->bios[i];
2752 if (bio->bi_end_io == end_sync_read) {
2753 read_targets--;
2754 md_sync_acct(bio->bi_bdev, nr_sectors);
2755 generic_make_request(bio);
2756 }
2757 }
2758 } else {
2759 atomic_set(&r1_bio->remaining, 1);
2760 bio = r1_bio->bios[r1_bio->read_disk];
2761 md_sync_acct(bio->bi_bdev, nr_sectors);
2762 generic_make_request(bio);
2763
2764 }
2765 return nr_sectors;
2766 }
2767
2768 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2769 {
2770 if (sectors)
2771 return sectors;
2772
2773 return mddev->dev_sectors;
2774 }
2775
2776 static struct r1conf *setup_conf(struct mddev *mddev)
2777 {
2778 struct r1conf *conf;
2779 int i;
2780 struct raid1_info *disk;
2781 struct md_rdev *rdev;
2782 int err = -ENOMEM;
2783
2784 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2785 if (!conf)
2786 goto abort;
2787
2788 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2789 * mddev->raid_disks * 2,
2790 GFP_KERNEL);
2791 if (!conf->mirrors)
2792 goto abort;
2793
2794 conf->tmppage = alloc_page(GFP_KERNEL);
2795 if (!conf->tmppage)
2796 goto abort;
2797
2798 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2799 if (!conf->poolinfo)
2800 goto abort;
2801 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2802 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2803 r1bio_pool_free,
2804 conf->poolinfo);
2805 if (!conf->r1bio_pool)
2806 goto abort;
2807
2808 conf->poolinfo->mddev = mddev;
2809
2810 err = -EINVAL;
2811 spin_lock_init(&conf->device_lock);
2812 rdev_for_each(rdev, mddev) {
2813 struct request_queue *q;
2814 int disk_idx = rdev->raid_disk;
2815 if (disk_idx >= mddev->raid_disks
2816 || disk_idx < 0)
2817 continue;
2818 if (test_bit(Replacement, &rdev->flags))
2819 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2820 else
2821 disk = conf->mirrors + disk_idx;
2822
2823 if (disk->rdev)
2824 goto abort;
2825 disk->rdev = rdev;
2826 q = bdev_get_queue(rdev->bdev);
2827
2828 disk->head_position = 0;
2829 disk->seq_start = MaxSector;
2830 }
2831 conf->raid_disks = mddev->raid_disks;
2832 conf->mddev = mddev;
2833 INIT_LIST_HEAD(&conf->retry_list);
2834 INIT_LIST_HEAD(&conf->bio_end_io_list);
2835
2836 spin_lock_init(&conf->resync_lock);
2837 init_waitqueue_head(&conf->wait_barrier);
2838
2839 bio_list_init(&conf->pending_bio_list);
2840 conf->pending_count = 0;
2841 conf->recovery_disabled = mddev->recovery_disabled - 1;
2842
2843 conf->start_next_window = MaxSector;
2844 conf->current_window_requests = conf->next_window_requests = 0;
2845
2846 err = -EIO;
2847 for (i = 0; i < conf->raid_disks * 2; i++) {
2848
2849 disk = conf->mirrors + i;
2850
2851 if (i < conf->raid_disks &&
2852 disk[conf->raid_disks].rdev) {
2853 /* This slot has a replacement. */
2854 if (!disk->rdev) {
2855 /* No original, just make the replacement
2856 * a recovering spare
2857 */
2858 disk->rdev =
2859 disk[conf->raid_disks].rdev;
2860 disk[conf->raid_disks].rdev = NULL;
2861 } else if (!test_bit(In_sync, &disk->rdev->flags))
2862 /* Original is not in_sync - bad */
2863 goto abort;
2864 }
2865
2866 if (!disk->rdev ||
2867 !test_bit(In_sync, &disk->rdev->flags)) {
2868 disk->head_position = 0;
2869 if (disk->rdev &&
2870 (disk->rdev->saved_raid_disk < 0))
2871 conf->fullsync = 1;
2872 }
2873 }
2874
2875 err = -ENOMEM;
2876 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2877 if (!conf->thread) {
2878 printk(KERN_ERR
2879 "md/raid1:%s: couldn't allocate thread\n",
2880 mdname(mddev));
2881 goto abort;
2882 }
2883
2884 return conf;
2885
2886 abort:
2887 if (conf) {
2888 mempool_destroy(conf->r1bio_pool);
2889 kfree(conf->mirrors);
2890 safe_put_page(conf->tmppage);
2891 kfree(conf->poolinfo);
2892 kfree(conf);
2893 }
2894 return ERR_PTR(err);
2895 }
2896
2897 static void raid1_free(struct mddev *mddev, void *priv);
2898 static int raid1_run(struct mddev *mddev)
2899 {
2900 struct r1conf *conf;
2901 int i;
2902 struct md_rdev *rdev;
2903 int ret;
2904 bool discard_supported = false;
2905
2906 if (mddev->level != 1) {
2907 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2908 mdname(mddev), mddev->level);
2909 return -EIO;
2910 }
2911 if (mddev->reshape_position != MaxSector) {
2912 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2913 mdname(mddev));
2914 return -EIO;
2915 }
2916 /*
2917 * copy the already verified devices into our private RAID1
2918 * bookkeeping area. [whatever we allocate in run(),
2919 * should be freed in raid1_free()]
2920 */
2921 if (mddev->private == NULL)
2922 conf = setup_conf(mddev);
2923 else
2924 conf = mddev->private;
2925
2926 if (IS_ERR(conf))
2927 return PTR_ERR(conf);
2928
2929 if (mddev->queue)
2930 blk_queue_max_write_same_sectors(mddev->queue, 0);
2931
2932 rdev_for_each(rdev, mddev) {
2933 if (!mddev->gendisk)
2934 continue;
2935 disk_stack_limits(mddev->gendisk, rdev->bdev,
2936 rdev->data_offset << 9);
2937 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2938 discard_supported = true;
2939 }
2940
2941 mddev->degraded = 0;
2942 for (i=0; i < conf->raid_disks; i++)
2943 if (conf->mirrors[i].rdev == NULL ||
2944 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2945 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2946 mddev->degraded++;
2947
2948 if (conf->raid_disks - mddev->degraded == 1)
2949 mddev->recovery_cp = MaxSector;
2950
2951 if (mddev->recovery_cp != MaxSector)
2952 printk(KERN_NOTICE "md/raid1:%s: not clean"
2953 " -- starting background reconstruction\n",
2954 mdname(mddev));
2955 printk(KERN_INFO
2956 "md/raid1:%s: active with %d out of %d mirrors\n",
2957 mdname(mddev), mddev->raid_disks - mddev->degraded,
2958 mddev->raid_disks);
2959
2960 /*
2961 * Ok, everything is just fine now
2962 */
2963 mddev->thread = conf->thread;
2964 conf->thread = NULL;
2965 mddev->private = conf;
2966
2967 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2968
2969 if (mddev->queue) {
2970 if (discard_supported)
2971 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2972 mddev->queue);
2973 else
2974 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2975 mddev->queue);
2976 }
2977
2978 ret = md_integrity_register(mddev);
2979 if (ret) {
2980 md_unregister_thread(&mddev->thread);
2981 raid1_free(mddev, conf);
2982 }
2983 return ret;
2984 }
2985
2986 static void raid1_free(struct mddev *mddev, void *priv)
2987 {
2988 struct r1conf *conf = priv;
2989
2990 mempool_destroy(conf->r1bio_pool);
2991 kfree(conf->mirrors);
2992 safe_put_page(conf->tmppage);
2993 kfree(conf->poolinfo);
2994 kfree(conf);
2995 }
2996
2997 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2998 {
2999 /* no resync is happening, and there is enough space
3000 * on all devices, so we can resize.
3001 * We need to make sure resync covers any new space.
3002 * If the array is shrinking we should possibly wait until
3003 * any io in the removed space completes, but it hardly seems
3004 * worth it.
3005 */
3006 sector_t newsize = raid1_size(mddev, sectors, 0);
3007 if (mddev->external_size &&
3008 mddev->array_sectors > newsize)
3009 return -EINVAL;
3010 if (mddev->bitmap) {
3011 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3012 if (ret)
3013 return ret;
3014 }
3015 md_set_array_sectors(mddev, newsize);
3016 set_capacity(mddev->gendisk, mddev->array_sectors);
3017 revalidate_disk(mddev->gendisk);
3018 if (sectors > mddev->dev_sectors &&
3019 mddev->recovery_cp > mddev->dev_sectors) {
3020 mddev->recovery_cp = mddev->dev_sectors;
3021 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3022 }
3023 mddev->dev_sectors = sectors;
3024 mddev->resync_max_sectors = sectors;
3025 return 0;
3026 }
3027
3028 static int raid1_reshape(struct mddev *mddev)
3029 {
3030 /* We need to:
3031 * 1/ resize the r1bio_pool
3032 * 2/ resize conf->mirrors
3033 *
3034 * We allocate a new r1bio_pool if we can.
3035 * Then raise a device barrier and wait until all IO stops.
3036 * Then resize conf->mirrors and swap in the new r1bio pool.
3037 *
3038 * At the same time, we "pack" the devices so that all the missing
3039 * devices have the higher raid_disk numbers.
3040 */
3041 mempool_t *newpool, *oldpool;
3042 struct pool_info *newpoolinfo;
3043 struct raid1_info *newmirrors;
3044 struct r1conf *conf = mddev->private;
3045 int cnt, raid_disks;
3046 unsigned long flags;
3047 int d, d2, err;
3048
3049 /* Cannot change chunk_size, layout, or level */
3050 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3051 mddev->layout != mddev->new_layout ||
3052 mddev->level != mddev->new_level) {
3053 mddev->new_chunk_sectors = mddev->chunk_sectors;
3054 mddev->new_layout = mddev->layout;
3055 mddev->new_level = mddev->level;
3056 return -EINVAL;
3057 }
3058
3059 if (!mddev_is_clustered(mddev)) {
3060 err = md_allow_write(mddev);
3061 if (err)
3062 return err;
3063 }
3064
3065 raid_disks = mddev->raid_disks + mddev->delta_disks;
3066
3067 if (raid_disks < conf->raid_disks) {
3068 cnt=0;
3069 for (d= 0; d < conf->raid_disks; d++)
3070 if (conf->mirrors[d].rdev)
3071 cnt++;
3072 if (cnt > raid_disks)
3073 return -EBUSY;
3074 }
3075
3076 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3077 if (!newpoolinfo)
3078 return -ENOMEM;
3079 newpoolinfo->mddev = mddev;
3080 newpoolinfo->raid_disks = raid_disks * 2;
3081
3082 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3083 r1bio_pool_free, newpoolinfo);
3084 if (!newpool) {
3085 kfree(newpoolinfo);
3086 return -ENOMEM;
3087 }
3088 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3089 GFP_KERNEL);
3090 if (!newmirrors) {
3091 kfree(newpoolinfo);
3092 mempool_destroy(newpool);
3093 return -ENOMEM;
3094 }
3095
3096 freeze_array(conf, 0);
3097
3098 /* ok, everything is stopped */
3099 oldpool = conf->r1bio_pool;
3100 conf->r1bio_pool = newpool;
3101
3102 for (d = d2 = 0; d < conf->raid_disks; d++) {
3103 struct md_rdev *rdev = conf->mirrors[d].rdev;
3104 if (rdev && rdev->raid_disk != d2) {
3105 sysfs_unlink_rdev(mddev, rdev);
3106 rdev->raid_disk = d2;
3107 sysfs_unlink_rdev(mddev, rdev);
3108 if (sysfs_link_rdev(mddev, rdev))
3109 printk(KERN_WARNING
3110 "md/raid1:%s: cannot register rd%d\n",
3111 mdname(mddev), rdev->raid_disk);
3112 }
3113 if (rdev)
3114 newmirrors[d2++].rdev = rdev;
3115 }
3116 kfree(conf->mirrors);
3117 conf->mirrors = newmirrors;
3118 kfree(conf->poolinfo);
3119 conf->poolinfo = newpoolinfo;
3120
3121 spin_lock_irqsave(&conf->device_lock, flags);
3122 mddev->degraded += (raid_disks - conf->raid_disks);
3123 spin_unlock_irqrestore(&conf->device_lock, flags);
3124 conf->raid_disks = mddev->raid_disks = raid_disks;
3125 mddev->delta_disks = 0;
3126
3127 unfreeze_array(conf);
3128
3129 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3131 md_wakeup_thread(mddev->thread);
3132
3133 mempool_destroy(oldpool);
3134 return 0;
3135 }
3136
3137 static void raid1_quiesce(struct mddev *mddev, int state)
3138 {
3139 struct r1conf *conf = mddev->private;
3140
3141 switch(state) {
3142 case 2: /* wake for suspend */
3143 wake_up(&conf->wait_barrier);
3144 break;
3145 case 1:
3146 freeze_array(conf, 0);
3147 break;
3148 case 0:
3149 unfreeze_array(conf);
3150 break;
3151 }
3152 }
3153
3154 static void *raid1_takeover(struct mddev *mddev)
3155 {
3156 /* raid1 can take over:
3157 * raid5 with 2 devices, any layout or chunk size
3158 */
3159 if (mddev->level == 5 && mddev->raid_disks == 2) {
3160 struct r1conf *conf;
3161 mddev->new_level = 1;
3162 mddev->new_layout = 0;
3163 mddev->new_chunk_sectors = 0;
3164 conf = setup_conf(mddev);
3165 if (!IS_ERR(conf))
3166 /* Array must appear to be quiesced */
3167 conf->array_frozen = 1;
3168 return conf;
3169 }
3170 return ERR_PTR(-EINVAL);
3171 }
3172
3173 static struct md_personality raid1_personality =
3174 {
3175 .name = "raid1",
3176 .level = 1,
3177 .owner = THIS_MODULE,
3178 .make_request = raid1_make_request,
3179 .run = raid1_run,
3180 .free = raid1_free,
3181 .status = raid1_status,
3182 .error_handler = raid1_error,
3183 .hot_add_disk = raid1_add_disk,
3184 .hot_remove_disk= raid1_remove_disk,
3185 .spare_active = raid1_spare_active,
3186 .sync_request = raid1_sync_request,
3187 .resize = raid1_resize,
3188 .size = raid1_size,
3189 .check_reshape = raid1_reshape,
3190 .quiesce = raid1_quiesce,
3191 .takeover = raid1_takeover,
3192 .congested = raid1_congested,
3193 };
3194
3195 static int __init raid_init(void)
3196 {
3197 return register_md_personality(&raid1_personality);
3198 }
3199
3200 static void raid_exit(void)
3201 {
3202 unregister_md_personality(&raid1_personality);
3203 }
3204
3205 module_init(raid_init);
3206 module_exit(raid_exit);
3207 MODULE_LICENSE("GPL");
3208 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3209 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3210 MODULE_ALIAS("md-raid1");
3211 MODULE_ALIAS("md-level-1");
3212
3213 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);