]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/md/raid1.c
[BLOCK] Unify the seperate read/write io stat fields into arrays
[mirror_ubuntu-kernels.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46 * Number of guaranteed r1bios in case of extreme VM load:
47 */
48 #define NR_RAID1_BIOS 256
49
50 static mdk_personality_t raid1_personality;
51
52 static void unplug_slaves(mddev_t *mddev);
53
54
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57 struct pool_info *pi = data;
58 r1bio_t *r1_bio;
59 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60
61 /* allocate a r1bio with room for raid_disks entries in the bios array */
62 r1_bio = kmalloc(size, gfp_flags);
63 if (r1_bio)
64 memset(r1_bio, 0, size);
65 else
66 unplug_slaves(pi->mddev);
67
68 return r1_bio;
69 }
70
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73 kfree(r1_bio);
74 }
75
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81
82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 {
84 struct pool_info *pi = data;
85 struct page *page;
86 r1bio_t *r1_bio;
87 struct bio *bio;
88 int i, j;
89
90 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 if (!r1_bio) {
92 unplug_slaves(pi->mddev);
93 return NULL;
94 }
95
96 /*
97 * Allocate bios : 1 for reading, n-1 for writing
98 */
99 for (j = pi->raid_disks ; j-- ; ) {
100 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 if (!bio)
102 goto out_free_bio;
103 r1_bio->bios[j] = bio;
104 }
105 /*
106 * Allocate RESYNC_PAGES data pages and attach them to
107 * the first bio;
108 */
109 bio = r1_bio->bios[0];
110 for (i = 0; i < RESYNC_PAGES; i++) {
111 page = alloc_page(gfp_flags);
112 if (unlikely(!page))
113 goto out_free_pages;
114
115 bio->bi_io_vec[i].bv_page = page;
116 }
117
118 r1_bio->master_bio = NULL;
119
120 return r1_bio;
121
122 out_free_pages:
123 for ( ; i > 0 ; i--)
124 __free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126 while ( ++j < pi->raid_disks )
127 bio_put(r1_bio->bios[j]);
128 r1bio_pool_free(r1_bio, data);
129 return NULL;
130 }
131
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134 struct pool_info *pi = data;
135 int i;
136 r1bio_t *r1bio = __r1_bio;
137 struct bio *bio = r1bio->bios[0];
138
139 for (i = 0; i < RESYNC_PAGES; i++) {
140 __free_page(bio->bi_io_vec[i].bv_page);
141 bio->bi_io_vec[i].bv_page = NULL;
142 }
143 for (i=0 ; i < pi->raid_disks; i++)
144 bio_put(r1bio->bios[i]);
145
146 r1bio_pool_free(r1bio, data);
147 }
148
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151 int i;
152
153 for (i = 0; i < conf->raid_disks; i++) {
154 struct bio **bio = r1_bio->bios + i;
155 if (*bio)
156 bio_put(*bio);
157 *bio = NULL;
158 }
159 }
160
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163 unsigned long flags;
164
165 conf_t *conf = mddev_to_conf(r1_bio->mddev);
166
167 /*
168 * Wake up any possible resync thread that waits for the device
169 * to go idle.
170 */
171 spin_lock_irqsave(&conf->resync_lock, flags);
172 if (!--conf->nr_pending) {
173 wake_up(&conf->wait_idle);
174 wake_up(&conf->wait_resume);
175 }
176 spin_unlock_irqrestore(&conf->resync_lock, flags);
177
178 put_all_bios(conf, r1_bio);
179 mempool_free(r1_bio, conf->r1bio_pool);
180 }
181
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184 conf_t *conf = mddev_to_conf(r1_bio->mddev);
185 unsigned long flags;
186
187 mempool_free(r1_bio, conf->r1buf_pool);
188
189 spin_lock_irqsave(&conf->resync_lock, flags);
190 if (!conf->barrier)
191 BUG();
192 --conf->barrier;
193 wake_up(&conf->wait_resume);
194 wake_up(&conf->wait_idle);
195
196 if (!--conf->nr_pending) {
197 wake_up(&conf->wait_idle);
198 wake_up(&conf->wait_resume);
199 }
200 spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205 unsigned long flags;
206 mddev_t *mddev = r1_bio->mddev;
207 conf_t *conf = mddev_to_conf(mddev);
208
209 spin_lock_irqsave(&conf->device_lock, flags);
210 list_add(&r1_bio->retry_list, &conf->retry_list);
211 spin_unlock_irqrestore(&conf->device_lock, flags);
212
213 md_wakeup_thread(mddev->thread);
214 }
215
216 /*
217 * raid_end_bio_io() is called when we have finished servicing a mirrored
218 * operation and are ready to return a success/failure code to the buffer
219 * cache layer.
220 */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223 struct bio *bio = r1_bio->master_bio;
224
225 /* if nobody has done the final endio yet, do it now */
226 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
227 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
228 (bio_data_dir(bio) == WRITE) ? "write" : "read",
229 (unsigned long long) bio->bi_sector,
230 (unsigned long long) bio->bi_sector +
231 (bio->bi_size >> 9) - 1);
232
233 bio_endio(bio, bio->bi_size,
234 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
235 }
236 free_r1bio(r1_bio);
237 }
238
239 /*
240 * Update disk head position estimator based on IRQ completion info.
241 */
242 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
243 {
244 conf_t *conf = mddev_to_conf(r1_bio->mddev);
245
246 conf->mirrors[disk].head_position =
247 r1_bio->sector + (r1_bio->sectors);
248 }
249
250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
251 {
252 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
253 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
254 int mirror;
255 conf_t *conf = mddev_to_conf(r1_bio->mddev);
256
257 if (bio->bi_size)
258 return 1;
259
260 mirror = r1_bio->read_disk;
261 /*
262 * this branch is our 'one mirror IO has finished' event handler:
263 */
264 if (!uptodate)
265 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
266 else
267 /*
268 * Set R1BIO_Uptodate in our master bio, so that
269 * we will return a good error code for to the higher
270 * levels even if IO on some other mirrored buffer fails.
271 *
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
275 */
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277
278 update_head_pos(mirror, r1_bio);
279
280 /*
281 * we have only one bio on the read side
282 */
283 if (uptodate)
284 raid_end_bio_io(r1_bio);
285 else {
286 /*
287 * oops, read error:
288 */
289 char b[BDEVNAME_SIZE];
290 if (printk_ratelimit())
291 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
292 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
293 reschedule_retry(r1_bio);
294 }
295
296 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
297 return 0;
298 }
299
300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
301 {
302 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
303 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
304 int mirror, behind;
305 conf_t *conf = mddev_to_conf(r1_bio->mddev);
306
307 if (bio->bi_size)
308 return 1;
309
310 for (mirror = 0; mirror < conf->raid_disks; mirror++)
311 if (r1_bio->bios[mirror] == bio)
312 break;
313
314 /*
315 * this branch is our 'one mirror IO has finished' event handler:
316 */
317 if (!uptodate) {
318 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
319 /* an I/O failed, we can't clear the bitmap */
320 set_bit(R1BIO_Degraded, &r1_bio->state);
321 } else
322 /*
323 * Set R1BIO_Uptodate in our master bio, so that
324 * we will return a good error code for to the higher
325 * levels even if IO on some other mirrored buffer fails.
326 *
327 * The 'master' represents the composite IO operation to
328 * user-side. So if something waits for IO, then it will
329 * wait for the 'master' bio.
330 */
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
332
333 update_head_pos(mirror, r1_bio);
334
335 behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 if (behind) {
337 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
338 atomic_dec(&r1_bio->behind_remaining);
339
340 /* In behind mode, we ACK the master bio once the I/O has safely
341 * reached all non-writemostly disks. Setting the Returned bit
342 * ensures that this gets done only once -- we don't ever want to
343 * return -EIO here, instead we'll wait */
344
345 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
346 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
347 /* Maybe we can return now */
348 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
349 struct bio *mbio = r1_bio->master_bio;
350 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
351 (unsigned long long) mbio->bi_sector,
352 (unsigned long long) mbio->bi_sector +
353 (mbio->bi_size >> 9) - 1);
354 bio_endio(mbio, mbio->bi_size, 0);
355 }
356 }
357 }
358 /*
359 *
360 * Let's see if all mirrored write operations have finished
361 * already.
362 */
363 if (atomic_dec_and_test(&r1_bio->remaining)) {
364 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
365 /* free extra copy of the data pages */
366 int i = bio->bi_vcnt;
367 while (i--)
368 __free_page(bio->bi_io_vec[i].bv_page);
369 }
370 /* clear the bitmap if all writes complete successfully */
371 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
372 r1_bio->sectors,
373 !test_bit(R1BIO_Degraded, &r1_bio->state),
374 behind);
375 md_write_end(r1_bio->mddev);
376 raid_end_bio_io(r1_bio);
377 }
378
379 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
380 return 0;
381 }
382
383
384 /*
385 * This routine returns the disk from which the requested read should
386 * be done. There is a per-array 'next expected sequential IO' sector
387 * number - if this matches on the next IO then we use the last disk.
388 * There is also a per-disk 'last know head position' sector that is
389 * maintained from IRQ contexts, both the normal and the resync IO
390 * completion handlers update this position correctly. If there is no
391 * perfect sequential match then we pick the disk whose head is closest.
392 *
393 * If there are 2 mirrors in the same 2 devices, performance degrades
394 * because position is mirror, not device based.
395 *
396 * The rdev for the device selected will have nr_pending incremented.
397 */
398 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
399 {
400 const unsigned long this_sector = r1_bio->sector;
401 int new_disk = conf->last_used, disk = new_disk;
402 int wonly_disk = -1;
403 const int sectors = r1_bio->sectors;
404 sector_t new_distance, current_distance;
405 mdk_rdev_t *rdev;
406
407 rcu_read_lock();
408 /*
409 * Check if we can balance. We can balance on the whole
410 * device if no resync is going on, or below the resync window.
411 * We take the first readable disk when above the resync window.
412 */
413 retry:
414 if (conf->mddev->recovery_cp < MaxSector &&
415 (this_sector + sectors >= conf->next_resync)) {
416 /* Choose the first operation device, for consistancy */
417 new_disk = 0;
418
419 for (rdev = conf->mirrors[new_disk].rdev;
420 !rdev || !rdev->in_sync
421 || test_bit(WriteMostly, &rdev->flags);
422 rdev = conf->mirrors[++new_disk].rdev) {
423
424 if (rdev && rdev->in_sync)
425 wonly_disk = new_disk;
426
427 if (new_disk == conf->raid_disks - 1) {
428 new_disk = wonly_disk;
429 break;
430 }
431 }
432 goto rb_out;
433 }
434
435
436 /* make sure the disk is operational */
437 for (rdev = conf->mirrors[new_disk].rdev;
438 !rdev || !rdev->in_sync ||
439 test_bit(WriteMostly, &rdev->flags);
440 rdev = conf->mirrors[new_disk].rdev) {
441
442 if (rdev && rdev->in_sync)
443 wonly_disk = new_disk;
444
445 if (new_disk <= 0)
446 new_disk = conf->raid_disks;
447 new_disk--;
448 if (new_disk == disk) {
449 new_disk = wonly_disk;
450 break;
451 }
452 }
453
454 if (new_disk < 0)
455 goto rb_out;
456
457 disk = new_disk;
458 /* now disk == new_disk == starting point for search */
459
460 /*
461 * Don't change to another disk for sequential reads:
462 */
463 if (conf->next_seq_sect == this_sector)
464 goto rb_out;
465 if (this_sector == conf->mirrors[new_disk].head_position)
466 goto rb_out;
467
468 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
469
470 /* Find the disk whose head is closest */
471
472 do {
473 if (disk <= 0)
474 disk = conf->raid_disks;
475 disk--;
476
477 rdev = conf->mirrors[disk].rdev;
478
479 if (!rdev ||
480 !rdev->in_sync ||
481 test_bit(WriteMostly, &rdev->flags))
482 continue;
483
484 if (!atomic_read(&rdev->nr_pending)) {
485 new_disk = disk;
486 break;
487 }
488 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 if (new_distance < current_distance) {
490 current_distance = new_distance;
491 new_disk = disk;
492 }
493 } while (disk != conf->last_used);
494
495 rb_out:
496
497
498 if (new_disk >= 0) {
499 rdev = conf->mirrors[new_disk].rdev;
500 if (!rdev)
501 goto retry;
502 atomic_inc(&rdev->nr_pending);
503 if (!rdev->in_sync) {
504 /* cannot risk returning a device that failed
505 * before we inc'ed nr_pending
506 */
507 atomic_dec(&rdev->nr_pending);
508 goto retry;
509 }
510 conf->next_seq_sect = this_sector + sectors;
511 conf->last_used = new_disk;
512 }
513 rcu_read_unlock();
514
515 return new_disk;
516 }
517
518 static void unplug_slaves(mddev_t *mddev)
519 {
520 conf_t *conf = mddev_to_conf(mddev);
521 int i;
522
523 rcu_read_lock();
524 for (i=0; i<mddev->raid_disks; i++) {
525 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
526 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
527 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
528
529 atomic_inc(&rdev->nr_pending);
530 rcu_read_unlock();
531
532 if (r_queue->unplug_fn)
533 r_queue->unplug_fn(r_queue);
534
535 rdev_dec_pending(rdev, mddev);
536 rcu_read_lock();
537 }
538 }
539 rcu_read_unlock();
540 }
541
542 static void raid1_unplug(request_queue_t *q)
543 {
544 mddev_t *mddev = q->queuedata;
545
546 unplug_slaves(mddev);
547 md_wakeup_thread(mddev->thread);
548 }
549
550 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
551 sector_t *error_sector)
552 {
553 mddev_t *mddev = q->queuedata;
554 conf_t *conf = mddev_to_conf(mddev);
555 int i, ret = 0;
556
557 rcu_read_lock();
558 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
559 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
560 if (rdev && !rdev->faulty) {
561 struct block_device *bdev = rdev->bdev;
562 request_queue_t *r_queue = bdev_get_queue(bdev);
563
564 if (!r_queue->issue_flush_fn)
565 ret = -EOPNOTSUPP;
566 else {
567 atomic_inc(&rdev->nr_pending);
568 rcu_read_unlock();
569 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
570 error_sector);
571 rdev_dec_pending(rdev, mddev);
572 rcu_read_lock();
573 }
574 }
575 }
576 rcu_read_unlock();
577 return ret;
578 }
579
580 /*
581 * Throttle resync depth, so that we can both get proper overlapping of
582 * requests, but are still able to handle normal requests quickly.
583 */
584 #define RESYNC_DEPTH 32
585
586 static void device_barrier(conf_t *conf, sector_t sect)
587 {
588 spin_lock_irq(&conf->resync_lock);
589 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
590 conf->resync_lock, raid1_unplug(conf->mddev->queue));
591
592 if (!conf->barrier++) {
593 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
594 conf->resync_lock, raid1_unplug(conf->mddev->queue));
595 if (conf->nr_pending)
596 BUG();
597 }
598 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
599 conf->resync_lock, raid1_unplug(conf->mddev->queue));
600 conf->next_resync = sect;
601 spin_unlock_irq(&conf->resync_lock);
602 }
603
604 /* duplicate the data pages for behind I/O */
605 static struct page **alloc_behind_pages(struct bio *bio)
606 {
607 int i;
608 struct bio_vec *bvec;
609 struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
610 GFP_NOIO);
611 if (unlikely(!pages))
612 goto do_sync_io;
613
614 memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
615
616 bio_for_each_segment(bvec, bio, i) {
617 pages[i] = alloc_page(GFP_NOIO);
618 if (unlikely(!pages[i]))
619 goto do_sync_io;
620 memcpy(kmap(pages[i]) + bvec->bv_offset,
621 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
622 kunmap(pages[i]);
623 kunmap(bvec->bv_page);
624 }
625
626 return pages;
627
628 do_sync_io:
629 if (pages)
630 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
631 __free_page(pages[i]);
632 kfree(pages);
633 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
634 return NULL;
635 }
636
637 static int make_request(request_queue_t *q, struct bio * bio)
638 {
639 mddev_t *mddev = q->queuedata;
640 conf_t *conf = mddev_to_conf(mddev);
641 mirror_info_t *mirror;
642 r1bio_t *r1_bio;
643 struct bio *read_bio;
644 int i, targets = 0, disks;
645 mdk_rdev_t *rdev;
646 struct bitmap *bitmap = mddev->bitmap;
647 unsigned long flags;
648 struct bio_list bl;
649 struct page **behind_pages = NULL;
650 const int rw = bio_data_dir(bio);
651
652 if (unlikely(bio_barrier(bio))) {
653 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
654 return 0;
655 }
656
657 /*
658 * Register the new request and wait if the reconstruction
659 * thread has put up a bar for new requests.
660 * Continue immediately if no resync is active currently.
661 */
662 md_write_start(mddev, bio); /* wait on superblock update early */
663
664 spin_lock_irq(&conf->resync_lock);
665 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
666 conf->nr_pending++;
667 spin_unlock_irq(&conf->resync_lock);
668
669 disk_stat_inc(mddev->gendisk, ios[rw]);
670 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
671
672 /*
673 * make_request() can abort the operation when READA is being
674 * used and no empty request is available.
675 *
676 */
677 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
678
679 r1_bio->master_bio = bio;
680 r1_bio->sectors = bio->bi_size >> 9;
681 r1_bio->state = 0;
682 r1_bio->mddev = mddev;
683 r1_bio->sector = bio->bi_sector;
684
685 if (rw == READ) {
686 /*
687 * read balancing logic:
688 */
689 int rdisk = read_balance(conf, r1_bio);
690
691 if (rdisk < 0) {
692 /* couldn't find anywhere to read from */
693 raid_end_bio_io(r1_bio);
694 return 0;
695 }
696 mirror = conf->mirrors + rdisk;
697
698 r1_bio->read_disk = rdisk;
699
700 read_bio = bio_clone(bio, GFP_NOIO);
701
702 r1_bio->bios[rdisk] = read_bio;
703
704 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
705 read_bio->bi_bdev = mirror->rdev->bdev;
706 read_bio->bi_end_io = raid1_end_read_request;
707 read_bio->bi_rw = READ;
708 read_bio->bi_private = r1_bio;
709
710 generic_make_request(read_bio);
711 return 0;
712 }
713
714 /*
715 * WRITE:
716 */
717 /* first select target devices under spinlock and
718 * inc refcount on their rdev. Record them by setting
719 * bios[x] to bio
720 */
721 disks = conf->raid_disks;
722 #if 0
723 { static int first=1;
724 if (first) printk("First Write sector %llu disks %d\n",
725 (unsigned long long)r1_bio->sector, disks);
726 first = 0;
727 }
728 #endif
729 rcu_read_lock();
730 for (i = 0; i < disks; i++) {
731 if ((rdev=conf->mirrors[i].rdev) != NULL &&
732 !rdev->faulty) {
733 atomic_inc(&rdev->nr_pending);
734 if (rdev->faulty) {
735 atomic_dec(&rdev->nr_pending);
736 r1_bio->bios[i] = NULL;
737 } else
738 r1_bio->bios[i] = bio;
739 targets++;
740 } else
741 r1_bio->bios[i] = NULL;
742 }
743 rcu_read_unlock();
744
745 BUG_ON(targets == 0); /* we never fail the last device */
746
747 if (targets < conf->raid_disks) {
748 /* array is degraded, we will not clear the bitmap
749 * on I/O completion (see raid1_end_write_request) */
750 set_bit(R1BIO_Degraded, &r1_bio->state);
751 }
752
753 /* do behind I/O ? */
754 if (bitmap &&
755 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
756 (behind_pages = alloc_behind_pages(bio)) != NULL)
757 set_bit(R1BIO_BehindIO, &r1_bio->state);
758
759 atomic_set(&r1_bio->remaining, 0);
760 atomic_set(&r1_bio->behind_remaining, 0);
761
762 bio_list_init(&bl);
763 for (i = 0; i < disks; i++) {
764 struct bio *mbio;
765 if (!r1_bio->bios[i])
766 continue;
767
768 mbio = bio_clone(bio, GFP_NOIO);
769 r1_bio->bios[i] = mbio;
770
771 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
772 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
773 mbio->bi_end_io = raid1_end_write_request;
774 mbio->bi_rw = WRITE;
775 mbio->bi_private = r1_bio;
776
777 if (behind_pages) {
778 struct bio_vec *bvec;
779 int j;
780
781 /* Yes, I really want the '__' version so that
782 * we clear any unused pointer in the io_vec, rather
783 * than leave them unchanged. This is important
784 * because when we come to free the pages, we won't
785 * know the originial bi_idx, so we just free
786 * them all
787 */
788 __bio_for_each_segment(bvec, mbio, j, 0)
789 bvec->bv_page = behind_pages[j];
790 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
791 atomic_inc(&r1_bio->behind_remaining);
792 }
793
794 atomic_inc(&r1_bio->remaining);
795
796 bio_list_add(&bl, mbio);
797 }
798 kfree(behind_pages); /* the behind pages are attached to the bios now */
799
800 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
801 test_bit(R1BIO_BehindIO, &r1_bio->state));
802 spin_lock_irqsave(&conf->device_lock, flags);
803 bio_list_merge(&conf->pending_bio_list, &bl);
804 bio_list_init(&bl);
805
806 blk_plug_device(mddev->queue);
807 spin_unlock_irqrestore(&conf->device_lock, flags);
808
809 #if 0
810 while ((bio = bio_list_pop(&bl)) != NULL)
811 generic_make_request(bio);
812 #endif
813
814 return 0;
815 }
816
817 static void status(struct seq_file *seq, mddev_t *mddev)
818 {
819 conf_t *conf = mddev_to_conf(mddev);
820 int i;
821
822 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
823 conf->working_disks);
824 for (i = 0; i < conf->raid_disks; i++)
825 seq_printf(seq, "%s",
826 conf->mirrors[i].rdev &&
827 conf->mirrors[i].rdev->in_sync ? "U" : "_");
828 seq_printf(seq, "]");
829 }
830
831
832 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
833 {
834 char b[BDEVNAME_SIZE];
835 conf_t *conf = mddev_to_conf(mddev);
836
837 /*
838 * If it is not operational, then we have already marked it as dead
839 * else if it is the last working disks, ignore the error, let the
840 * next level up know.
841 * else mark the drive as failed
842 */
843 if (rdev->in_sync
844 && conf->working_disks == 1)
845 /*
846 * Don't fail the drive, act as though we were just a
847 * normal single drive
848 */
849 return;
850 if (rdev->in_sync) {
851 mddev->degraded++;
852 conf->working_disks--;
853 /*
854 * if recovery is running, make sure it aborts.
855 */
856 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
857 }
858 rdev->in_sync = 0;
859 rdev->faulty = 1;
860 mddev->sb_dirty = 1;
861 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
862 " Operation continuing on %d devices\n",
863 bdevname(rdev->bdev,b), conf->working_disks);
864 }
865
866 static void print_conf(conf_t *conf)
867 {
868 int i;
869 mirror_info_t *tmp;
870
871 printk("RAID1 conf printout:\n");
872 if (!conf) {
873 printk("(!conf)\n");
874 return;
875 }
876 printk(" --- wd:%d rd:%d\n", conf->working_disks,
877 conf->raid_disks);
878
879 for (i = 0; i < conf->raid_disks; i++) {
880 char b[BDEVNAME_SIZE];
881 tmp = conf->mirrors + i;
882 if (tmp->rdev)
883 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
884 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
885 bdevname(tmp->rdev->bdev,b));
886 }
887 }
888
889 static void close_sync(conf_t *conf)
890 {
891 spin_lock_irq(&conf->resync_lock);
892 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
893 conf->resync_lock, raid1_unplug(conf->mddev->queue));
894 spin_unlock_irq(&conf->resync_lock);
895
896 if (conf->barrier) BUG();
897 if (waitqueue_active(&conf->wait_idle)) BUG();
898
899 mempool_destroy(conf->r1buf_pool);
900 conf->r1buf_pool = NULL;
901 }
902
903 static int raid1_spare_active(mddev_t *mddev)
904 {
905 int i;
906 conf_t *conf = mddev->private;
907 mirror_info_t *tmp;
908
909 /*
910 * Find all failed disks within the RAID1 configuration
911 * and mark them readable
912 */
913 for (i = 0; i < conf->raid_disks; i++) {
914 tmp = conf->mirrors + i;
915 if (tmp->rdev
916 && !tmp->rdev->faulty
917 && !tmp->rdev->in_sync) {
918 conf->working_disks++;
919 mddev->degraded--;
920 tmp->rdev->in_sync = 1;
921 }
922 }
923
924 print_conf(conf);
925 return 0;
926 }
927
928
929 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
930 {
931 conf_t *conf = mddev->private;
932 int found = 0;
933 int mirror = 0;
934 mirror_info_t *p;
935
936 if (rdev->saved_raid_disk >= 0 &&
937 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
938 mirror = rdev->saved_raid_disk;
939 for (mirror=0; mirror < mddev->raid_disks; mirror++)
940 if ( !(p=conf->mirrors+mirror)->rdev) {
941
942 blk_queue_stack_limits(mddev->queue,
943 rdev->bdev->bd_disk->queue);
944 /* as we don't honour merge_bvec_fn, we must never risk
945 * violating it, so limit ->max_sector to one PAGE, as
946 * a one page request is never in violation.
947 */
948 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
949 mddev->queue->max_sectors > (PAGE_SIZE>>9))
950 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
951
952 p->head_position = 0;
953 rdev->raid_disk = mirror;
954 found = 1;
955 if (rdev->saved_raid_disk != mirror)
956 conf->fullsync = 1;
957 p->rdev = rdev;
958 break;
959 }
960
961 print_conf(conf);
962 return found;
963 }
964
965 static int raid1_remove_disk(mddev_t *mddev, int number)
966 {
967 conf_t *conf = mddev->private;
968 int err = 0;
969 mdk_rdev_t *rdev;
970 mirror_info_t *p = conf->mirrors+ number;
971
972 print_conf(conf);
973 rdev = p->rdev;
974 if (rdev) {
975 if (rdev->in_sync ||
976 atomic_read(&rdev->nr_pending)) {
977 err = -EBUSY;
978 goto abort;
979 }
980 p->rdev = NULL;
981 synchronize_rcu();
982 if (atomic_read(&rdev->nr_pending)) {
983 /* lost the race, try later */
984 err = -EBUSY;
985 p->rdev = rdev;
986 }
987 }
988 abort:
989
990 print_conf(conf);
991 return err;
992 }
993
994
995 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
996 {
997 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
998 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
999 conf_t *conf = mddev_to_conf(r1_bio->mddev);
1000
1001 if (bio->bi_size)
1002 return 1;
1003
1004 if (r1_bio->bios[r1_bio->read_disk] != bio)
1005 BUG();
1006 update_head_pos(r1_bio->read_disk, r1_bio);
1007 /*
1008 * we have read a block, now it needs to be re-written,
1009 * or re-read if the read failed.
1010 * We don't do much here, just schedule handling by raid1d
1011 */
1012 if (!uptodate) {
1013 md_error(r1_bio->mddev,
1014 conf->mirrors[r1_bio->read_disk].rdev);
1015 } else
1016 set_bit(R1BIO_Uptodate, &r1_bio->state);
1017 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
1018 reschedule_retry(r1_bio);
1019 return 0;
1020 }
1021
1022 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1023 {
1024 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1025 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1026 mddev_t *mddev = r1_bio->mddev;
1027 conf_t *conf = mddev_to_conf(mddev);
1028 int i;
1029 int mirror=0;
1030
1031 if (bio->bi_size)
1032 return 1;
1033
1034 for (i = 0; i < conf->raid_disks; i++)
1035 if (r1_bio->bios[i] == bio) {
1036 mirror = i;
1037 break;
1038 }
1039 if (!uptodate)
1040 md_error(mddev, conf->mirrors[mirror].rdev);
1041
1042 update_head_pos(mirror, r1_bio);
1043
1044 if (atomic_dec_and_test(&r1_bio->remaining)) {
1045 md_done_sync(mddev, r1_bio->sectors, uptodate);
1046 put_buf(r1_bio);
1047 }
1048 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1049 return 0;
1050 }
1051
1052 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1053 {
1054 conf_t *conf = mddev_to_conf(mddev);
1055 int i;
1056 int disks = conf->raid_disks;
1057 struct bio *bio, *wbio;
1058
1059 bio = r1_bio->bios[r1_bio->read_disk];
1060
1061 /*
1062 if (r1_bio->sector == 0) printk("First sync write startss\n");
1063 */
1064 /*
1065 * schedule writes
1066 */
1067 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1068 /*
1069 * There is no point trying a read-for-reconstruct as
1070 * reconstruct is about to be aborted
1071 */
1072 char b[BDEVNAME_SIZE];
1073 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1074 " for block %llu\n",
1075 bdevname(bio->bi_bdev,b),
1076 (unsigned long long)r1_bio->sector);
1077 md_done_sync(mddev, r1_bio->sectors, 0);
1078 put_buf(r1_bio);
1079 return;
1080 }
1081
1082 atomic_set(&r1_bio->remaining, 1);
1083 for (i = 0; i < disks ; i++) {
1084 wbio = r1_bio->bios[i];
1085 if (wbio->bi_end_io != end_sync_write)
1086 continue;
1087
1088 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
1089 atomic_inc(&r1_bio->remaining);
1090 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1091
1092 generic_make_request(wbio);
1093 }
1094
1095 if (atomic_dec_and_test(&r1_bio->remaining)) {
1096 /* if we're here, all write(s) have completed, so clean up */
1097 md_done_sync(mddev, r1_bio->sectors, 1);
1098 put_buf(r1_bio);
1099 }
1100 }
1101
1102 /*
1103 * This is a kernel thread which:
1104 *
1105 * 1. Retries failed read operations on working mirrors.
1106 * 2. Updates the raid superblock when problems encounter.
1107 * 3. Performs writes following reads for array syncronising.
1108 */
1109
1110 static void raid1d(mddev_t *mddev)
1111 {
1112 r1bio_t *r1_bio;
1113 struct bio *bio;
1114 unsigned long flags;
1115 conf_t *conf = mddev_to_conf(mddev);
1116 struct list_head *head = &conf->retry_list;
1117 int unplug=0;
1118 mdk_rdev_t *rdev;
1119
1120 md_check_recovery(mddev);
1121
1122 for (;;) {
1123 char b[BDEVNAME_SIZE];
1124 spin_lock_irqsave(&conf->device_lock, flags);
1125
1126 if (conf->pending_bio_list.head) {
1127 bio = bio_list_get(&conf->pending_bio_list);
1128 blk_remove_plug(mddev->queue);
1129 spin_unlock_irqrestore(&conf->device_lock, flags);
1130 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1131 if (bitmap_unplug(mddev->bitmap) != 0)
1132 printk("%s: bitmap file write failed!\n", mdname(mddev));
1133
1134 while (bio) { /* submit pending writes */
1135 struct bio *next = bio->bi_next;
1136 bio->bi_next = NULL;
1137 generic_make_request(bio);
1138 bio = next;
1139 }
1140 unplug = 1;
1141
1142 continue;
1143 }
1144
1145 if (list_empty(head))
1146 break;
1147 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1148 list_del(head->prev);
1149 spin_unlock_irqrestore(&conf->device_lock, flags);
1150
1151 mddev = r1_bio->mddev;
1152 conf = mddev_to_conf(mddev);
1153 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1154 sync_request_write(mddev, r1_bio);
1155 unplug = 1;
1156 } else {
1157 int disk;
1158 bio = r1_bio->bios[r1_bio->read_disk];
1159 if ((disk=read_balance(conf, r1_bio)) == -1) {
1160 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1161 " read error for block %llu\n",
1162 bdevname(bio->bi_bdev,b),
1163 (unsigned long long)r1_bio->sector);
1164 raid_end_bio_io(r1_bio);
1165 } else {
1166 r1_bio->bios[r1_bio->read_disk] = NULL;
1167 r1_bio->read_disk = disk;
1168 bio_put(bio);
1169 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1170 r1_bio->bios[r1_bio->read_disk] = bio;
1171 rdev = conf->mirrors[disk].rdev;
1172 if (printk_ratelimit())
1173 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1174 " another mirror\n",
1175 bdevname(rdev->bdev,b),
1176 (unsigned long long)r1_bio->sector);
1177 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1178 bio->bi_bdev = rdev->bdev;
1179 bio->bi_end_io = raid1_end_read_request;
1180 bio->bi_rw = READ;
1181 bio->bi_private = r1_bio;
1182 unplug = 1;
1183 generic_make_request(bio);
1184 }
1185 }
1186 }
1187 spin_unlock_irqrestore(&conf->device_lock, flags);
1188 if (unplug)
1189 unplug_slaves(mddev);
1190 }
1191
1192
1193 static int init_resync(conf_t *conf)
1194 {
1195 int buffs;
1196
1197 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1198 if (conf->r1buf_pool)
1199 BUG();
1200 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1201 conf->poolinfo);
1202 if (!conf->r1buf_pool)
1203 return -ENOMEM;
1204 conf->next_resync = 0;
1205 return 0;
1206 }
1207
1208 /*
1209 * perform a "sync" on one "block"
1210 *
1211 * We need to make sure that no normal I/O request - particularly write
1212 * requests - conflict with active sync requests.
1213 *
1214 * This is achieved by tracking pending requests and a 'barrier' concept
1215 * that can be installed to exclude normal IO requests.
1216 */
1217
1218 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1219 {
1220 conf_t *conf = mddev_to_conf(mddev);
1221 mirror_info_t *mirror;
1222 r1bio_t *r1_bio;
1223 struct bio *bio;
1224 sector_t max_sector, nr_sectors;
1225 int disk;
1226 int i;
1227 int wonly;
1228 int write_targets = 0;
1229 int sync_blocks;
1230 int still_degraded = 0;
1231
1232 if (!conf->r1buf_pool)
1233 {
1234 /*
1235 printk("sync start - bitmap %p\n", mddev->bitmap);
1236 */
1237 if (init_resync(conf))
1238 return 0;
1239 }
1240
1241 max_sector = mddev->size << 1;
1242 if (sector_nr >= max_sector) {
1243 /* If we aborted, we need to abort the
1244 * sync on the 'current' bitmap chunk (there will
1245 * only be one in raid1 resync.
1246 * We can find the current addess in mddev->curr_resync
1247 */
1248 if (mddev->curr_resync < max_sector) /* aborted */
1249 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1250 &sync_blocks, 1);
1251 else /* completed sync */
1252 conf->fullsync = 0;
1253
1254 bitmap_close_sync(mddev->bitmap);
1255 close_sync(conf);
1256 return 0;
1257 }
1258
1259 /* before building a request, check if we can skip these blocks..
1260 * This call the bitmap_start_sync doesn't actually record anything
1261 */
1262 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1263 !conf->fullsync) {
1264 /* We can skip this block, and probably several more */
1265 *skipped = 1;
1266 return sync_blocks;
1267 }
1268 /*
1269 * If there is non-resync activity waiting for us then
1270 * put in a delay to throttle resync.
1271 */
1272 if (!go_faster && waitqueue_active(&conf->wait_resume))
1273 msleep_interruptible(1000);
1274 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1275
1276 /*
1277 * If reconstructing, and >1 working disc,
1278 * could dedicate one to rebuild and others to
1279 * service read requests ..
1280 */
1281 disk = conf->last_used;
1282 /* make sure disk is operational */
1283 wonly = disk;
1284 while (conf->mirrors[disk].rdev == NULL ||
1285 !conf->mirrors[disk].rdev->in_sync ||
1286 test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1287 ) {
1288 if (conf->mirrors[disk].rdev &&
1289 conf->mirrors[disk].rdev->in_sync)
1290 wonly = disk;
1291 if (disk <= 0)
1292 disk = conf->raid_disks;
1293 disk--;
1294 if (disk == conf->last_used) {
1295 disk = wonly;
1296 break;
1297 }
1298 }
1299 conf->last_used = disk;
1300 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1301
1302
1303 mirror = conf->mirrors + disk;
1304
1305 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1306
1307 spin_lock_irq(&conf->resync_lock);
1308 conf->nr_pending++;
1309 spin_unlock_irq(&conf->resync_lock);
1310
1311 r1_bio->mddev = mddev;
1312 r1_bio->sector = sector_nr;
1313 r1_bio->state = 0;
1314 set_bit(R1BIO_IsSync, &r1_bio->state);
1315 r1_bio->read_disk = disk;
1316
1317 for (i=0; i < conf->raid_disks; i++) {
1318 bio = r1_bio->bios[i];
1319
1320 /* take from bio_init */
1321 bio->bi_next = NULL;
1322 bio->bi_flags |= 1 << BIO_UPTODATE;
1323 bio->bi_rw = 0;
1324 bio->bi_vcnt = 0;
1325 bio->bi_idx = 0;
1326 bio->bi_phys_segments = 0;
1327 bio->bi_hw_segments = 0;
1328 bio->bi_size = 0;
1329 bio->bi_end_io = NULL;
1330 bio->bi_private = NULL;
1331
1332 if (i == disk) {
1333 bio->bi_rw = READ;
1334 bio->bi_end_io = end_sync_read;
1335 } else if (conf->mirrors[i].rdev == NULL ||
1336 conf->mirrors[i].rdev->faulty) {
1337 still_degraded = 1;
1338 continue;
1339 } else if (!conf->mirrors[i].rdev->in_sync ||
1340 sector_nr + RESYNC_SECTORS > mddev->recovery_cp) {
1341 bio->bi_rw = WRITE;
1342 bio->bi_end_io = end_sync_write;
1343 write_targets ++;
1344 } else
1345 /* no need to read or write here */
1346 continue;
1347 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1348 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1349 bio->bi_private = r1_bio;
1350 }
1351
1352 if (write_targets == 0) {
1353 /* There is nowhere to write, so all non-sync
1354 * drives must be failed - so we are finished
1355 */
1356 sector_t rv = max_sector - sector_nr;
1357 *skipped = 1;
1358 put_buf(r1_bio);
1359 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1360 return rv;
1361 }
1362
1363 nr_sectors = 0;
1364 sync_blocks = 0;
1365 do {
1366 struct page *page;
1367 int len = PAGE_SIZE;
1368 if (sector_nr + (len>>9) > max_sector)
1369 len = (max_sector - sector_nr) << 9;
1370 if (len == 0)
1371 break;
1372 if (sync_blocks == 0) {
1373 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1374 &sync_blocks, still_degraded) &&
1375 !conf->fullsync)
1376 break;
1377 if (sync_blocks < (PAGE_SIZE>>9))
1378 BUG();
1379 if (len > (sync_blocks<<9))
1380 len = sync_blocks<<9;
1381 }
1382
1383 for (i=0 ; i < conf->raid_disks; i++) {
1384 bio = r1_bio->bios[i];
1385 if (bio->bi_end_io) {
1386 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1387 if (bio_add_page(bio, page, len, 0) == 0) {
1388 /* stop here */
1389 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1390 while (i > 0) {
1391 i--;
1392 bio = r1_bio->bios[i];
1393 if (bio->bi_end_io==NULL)
1394 continue;
1395 /* remove last page from this bio */
1396 bio->bi_vcnt--;
1397 bio->bi_size -= len;
1398 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1399 }
1400 goto bio_full;
1401 }
1402 }
1403 }
1404 nr_sectors += len>>9;
1405 sector_nr += len>>9;
1406 sync_blocks -= (len>>9);
1407 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1408 bio_full:
1409 bio = r1_bio->bios[disk];
1410 r1_bio->sectors = nr_sectors;
1411
1412 md_sync_acct(mirror->rdev->bdev, nr_sectors);
1413
1414 generic_make_request(bio);
1415
1416 return nr_sectors;
1417 }
1418
1419 static int run(mddev_t *mddev)
1420 {
1421 conf_t *conf;
1422 int i, j, disk_idx;
1423 mirror_info_t *disk;
1424 mdk_rdev_t *rdev;
1425 struct list_head *tmp;
1426
1427 if (mddev->level != 1) {
1428 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1429 mdname(mddev), mddev->level);
1430 goto out;
1431 }
1432 /*
1433 * copy the already verified devices into our private RAID1
1434 * bookkeeping area. [whatever we allocate in run(),
1435 * should be freed in stop()]
1436 */
1437 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1438 mddev->private = conf;
1439 if (!conf)
1440 goto out_no_mem;
1441
1442 memset(conf, 0, sizeof(*conf));
1443 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1444 GFP_KERNEL);
1445 if (!conf->mirrors)
1446 goto out_no_mem;
1447
1448 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1449
1450 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1451 if (!conf->poolinfo)
1452 goto out_no_mem;
1453 conf->poolinfo->mddev = mddev;
1454 conf->poolinfo->raid_disks = mddev->raid_disks;
1455 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1456 r1bio_pool_free,
1457 conf->poolinfo);
1458 if (!conf->r1bio_pool)
1459 goto out_no_mem;
1460
1461 ITERATE_RDEV(mddev, rdev, tmp) {
1462 disk_idx = rdev->raid_disk;
1463 if (disk_idx >= mddev->raid_disks
1464 || disk_idx < 0)
1465 continue;
1466 disk = conf->mirrors + disk_idx;
1467
1468 disk->rdev = rdev;
1469
1470 blk_queue_stack_limits(mddev->queue,
1471 rdev->bdev->bd_disk->queue);
1472 /* as we don't honour merge_bvec_fn, we must never risk
1473 * violating it, so limit ->max_sector to one PAGE, as
1474 * a one page request is never in violation.
1475 */
1476 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1477 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1478 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1479
1480 disk->head_position = 0;
1481 if (!rdev->faulty && rdev->in_sync)
1482 conf->working_disks++;
1483 }
1484 conf->raid_disks = mddev->raid_disks;
1485 conf->mddev = mddev;
1486 spin_lock_init(&conf->device_lock);
1487 INIT_LIST_HEAD(&conf->retry_list);
1488 if (conf->working_disks == 1)
1489 mddev->recovery_cp = MaxSector;
1490
1491 spin_lock_init(&conf->resync_lock);
1492 init_waitqueue_head(&conf->wait_idle);
1493 init_waitqueue_head(&conf->wait_resume);
1494
1495 bio_list_init(&conf->pending_bio_list);
1496 bio_list_init(&conf->flushing_bio_list);
1497
1498 if (!conf->working_disks) {
1499 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1500 mdname(mddev));
1501 goto out_free_conf;
1502 }
1503
1504 mddev->degraded = 0;
1505 for (i = 0; i < conf->raid_disks; i++) {
1506
1507 disk = conf->mirrors + i;
1508
1509 if (!disk->rdev) {
1510 disk->head_position = 0;
1511 mddev->degraded++;
1512 }
1513 }
1514
1515 /*
1516 * find the first working one and use it as a starting point
1517 * to read balancing.
1518 */
1519 for (j = 0; j < conf->raid_disks &&
1520 (!conf->mirrors[j].rdev ||
1521 !conf->mirrors[j].rdev->in_sync) ; j++)
1522 /* nothing */;
1523 conf->last_used = j;
1524
1525
1526 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1527 if (!mddev->thread) {
1528 printk(KERN_ERR
1529 "raid1: couldn't allocate thread for %s\n",
1530 mdname(mddev));
1531 goto out_free_conf;
1532 }
1533 if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1534
1535 printk(KERN_INFO
1536 "raid1: raid set %s active with %d out of %d mirrors\n",
1537 mdname(mddev), mddev->raid_disks - mddev->degraded,
1538 mddev->raid_disks);
1539 /*
1540 * Ok, everything is just fine now
1541 */
1542 mddev->array_size = mddev->size;
1543
1544 mddev->queue->unplug_fn = raid1_unplug;
1545 mddev->queue->issue_flush_fn = raid1_issue_flush;
1546
1547 return 0;
1548
1549 out_no_mem:
1550 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1551 mdname(mddev));
1552
1553 out_free_conf:
1554 if (conf) {
1555 if (conf->r1bio_pool)
1556 mempool_destroy(conf->r1bio_pool);
1557 kfree(conf->mirrors);
1558 kfree(conf->poolinfo);
1559 kfree(conf);
1560 mddev->private = NULL;
1561 }
1562 out:
1563 return -EIO;
1564 }
1565
1566 static int stop(mddev_t *mddev)
1567 {
1568 conf_t *conf = mddev_to_conf(mddev);
1569 struct bitmap *bitmap = mddev->bitmap;
1570 int behind_wait = 0;
1571
1572 /* wait for behind writes to complete */
1573 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1574 behind_wait++;
1575 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1576 set_current_state(TASK_UNINTERRUPTIBLE);
1577 schedule_timeout(HZ); /* wait a second */
1578 /* need to kick something here to make sure I/O goes? */
1579 }
1580
1581 md_unregister_thread(mddev->thread);
1582 mddev->thread = NULL;
1583 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1584 if (conf->r1bio_pool)
1585 mempool_destroy(conf->r1bio_pool);
1586 kfree(conf->mirrors);
1587 kfree(conf->poolinfo);
1588 kfree(conf);
1589 mddev->private = NULL;
1590 return 0;
1591 }
1592
1593 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1594 {
1595 /* no resync is happening, and there is enough space
1596 * on all devices, so we can resize.
1597 * We need to make sure resync covers any new space.
1598 * If the array is shrinking we should possibly wait until
1599 * any io in the removed space completes, but it hardly seems
1600 * worth it.
1601 */
1602 mddev->array_size = sectors>>1;
1603 set_capacity(mddev->gendisk, mddev->array_size << 1);
1604 mddev->changed = 1;
1605 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1606 mddev->recovery_cp = mddev->size << 1;
1607 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1608 }
1609 mddev->size = mddev->array_size;
1610 mddev->resync_max_sectors = sectors;
1611 return 0;
1612 }
1613
1614 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1615 {
1616 /* We need to:
1617 * 1/ resize the r1bio_pool
1618 * 2/ resize conf->mirrors
1619 *
1620 * We allocate a new r1bio_pool if we can.
1621 * Then raise a device barrier and wait until all IO stops.
1622 * Then resize conf->mirrors and swap in the new r1bio pool.
1623 *
1624 * At the same time, we "pack" the devices so that all the missing
1625 * devices have the higher raid_disk numbers.
1626 */
1627 mempool_t *newpool, *oldpool;
1628 struct pool_info *newpoolinfo;
1629 mirror_info_t *newmirrors;
1630 conf_t *conf = mddev_to_conf(mddev);
1631 int cnt;
1632
1633 int d, d2;
1634
1635 if (raid_disks < conf->raid_disks) {
1636 cnt=0;
1637 for (d= 0; d < conf->raid_disks; d++)
1638 if (conf->mirrors[d].rdev)
1639 cnt++;
1640 if (cnt > raid_disks)
1641 return -EBUSY;
1642 }
1643
1644 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1645 if (!newpoolinfo)
1646 return -ENOMEM;
1647 newpoolinfo->mddev = mddev;
1648 newpoolinfo->raid_disks = raid_disks;
1649
1650 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1651 r1bio_pool_free, newpoolinfo);
1652 if (!newpool) {
1653 kfree(newpoolinfo);
1654 return -ENOMEM;
1655 }
1656 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1657 if (!newmirrors) {
1658 kfree(newpoolinfo);
1659 mempool_destroy(newpool);
1660 return -ENOMEM;
1661 }
1662 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1663
1664 spin_lock_irq(&conf->resync_lock);
1665 conf->barrier++;
1666 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1667 conf->resync_lock, raid1_unplug(mddev->queue));
1668 spin_unlock_irq(&conf->resync_lock);
1669
1670 /* ok, everything is stopped */
1671 oldpool = conf->r1bio_pool;
1672 conf->r1bio_pool = newpool;
1673
1674 for (d=d2=0; d < conf->raid_disks; d++)
1675 if (conf->mirrors[d].rdev) {
1676 conf->mirrors[d].rdev->raid_disk = d2;
1677 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1678 }
1679 kfree(conf->mirrors);
1680 conf->mirrors = newmirrors;
1681 kfree(conf->poolinfo);
1682 conf->poolinfo = newpoolinfo;
1683
1684 mddev->degraded += (raid_disks - conf->raid_disks);
1685 conf->raid_disks = mddev->raid_disks = raid_disks;
1686
1687 conf->last_used = 0; /* just make sure it is in-range */
1688 spin_lock_irq(&conf->resync_lock);
1689 conf->barrier--;
1690 spin_unlock_irq(&conf->resync_lock);
1691 wake_up(&conf->wait_resume);
1692 wake_up(&conf->wait_idle);
1693
1694
1695 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1696 md_wakeup_thread(mddev->thread);
1697
1698 mempool_destroy(oldpool);
1699 return 0;
1700 }
1701
1702 static void raid1_quiesce(mddev_t *mddev, int state)
1703 {
1704 conf_t *conf = mddev_to_conf(mddev);
1705
1706 switch(state) {
1707 case 1:
1708 spin_lock_irq(&conf->resync_lock);
1709 conf->barrier++;
1710 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1711 conf->resync_lock, raid1_unplug(mddev->queue));
1712 spin_unlock_irq(&conf->resync_lock);
1713 break;
1714 case 0:
1715 spin_lock_irq(&conf->resync_lock);
1716 conf->barrier--;
1717 spin_unlock_irq(&conf->resync_lock);
1718 wake_up(&conf->wait_resume);
1719 wake_up(&conf->wait_idle);
1720 break;
1721 }
1722 if (mddev->thread) {
1723 if (mddev->bitmap)
1724 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1725 else
1726 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1727 md_wakeup_thread(mddev->thread);
1728 }
1729 }
1730
1731
1732 static mdk_personality_t raid1_personality =
1733 {
1734 .name = "raid1",
1735 .owner = THIS_MODULE,
1736 .make_request = make_request,
1737 .run = run,
1738 .stop = stop,
1739 .status = status,
1740 .error_handler = error,
1741 .hot_add_disk = raid1_add_disk,
1742 .hot_remove_disk= raid1_remove_disk,
1743 .spare_active = raid1_spare_active,
1744 .sync_request = sync_request,
1745 .resize = raid1_resize,
1746 .reshape = raid1_reshape,
1747 .quiesce = raid1_quiesce,
1748 };
1749
1750 static int __init raid_init(void)
1751 {
1752 return register_md_personality(RAID1, &raid1_personality);
1753 }
1754
1755 static void raid_exit(void)
1756 {
1757 unregister_md_personality(RAID1);
1758 }
1759
1760 module_init(raid_init);
1761 module_exit(raid_exit);
1762 MODULE_LICENSE("GPL");
1763 MODULE_ALIAS("md-personality-3"); /* RAID1 */