]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid1.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_error && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else {
670 if ((sectors > best_good_sectors) && (best_disk >= 0))
671 best_disk = -1;
672 best_good_sectors = sectors;
673 }
674
675 if (best_disk >= 0)
676 /* At least two disks to choose from so failfast is OK */
677 set_bit(R1BIO_FailFast, &r1_bio->state);
678
679 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
680 has_nonrot_disk |= nonrot;
681 pending = atomic_read(&rdev->nr_pending);
682 dist = abs(this_sector - conf->mirrors[disk].head_position);
683 if (choose_first) {
684 best_disk = disk;
685 break;
686 }
687 /* Don't change to another disk for sequential reads */
688 if (conf->mirrors[disk].next_seq_sect == this_sector
689 || dist == 0) {
690 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
691 struct raid1_info *mirror = &conf->mirrors[disk];
692
693 best_disk = disk;
694 /*
695 * If buffered sequential IO size exceeds optimal
696 * iosize, check if there is idle disk. If yes, choose
697 * the idle disk. read_balance could already choose an
698 * idle disk before noticing it's a sequential IO in
699 * this disk. This doesn't matter because this disk
700 * will idle, next time it will be utilized after the
701 * first disk has IO size exceeds optimal iosize. In
702 * this way, iosize of the first disk will be optimal
703 * iosize at least. iosize of the second disk might be
704 * small, but not a big deal since when the second disk
705 * starts IO, the first disk is likely still busy.
706 */
707 if (nonrot && opt_iosize > 0 &&
708 mirror->seq_start != MaxSector &&
709 mirror->next_seq_sect > opt_iosize &&
710 mirror->next_seq_sect - opt_iosize >=
711 mirror->seq_start) {
712 choose_next_idle = 1;
713 continue;
714 }
715 break;
716 }
717
718 if (choose_next_idle)
719 continue;
720
721 if (min_pending > pending) {
722 min_pending = pending;
723 best_pending_disk = disk;
724 }
725
726 if (dist < best_dist) {
727 best_dist = dist;
728 best_dist_disk = disk;
729 }
730 }
731
732 /*
733 * If all disks are rotational, choose the closest disk. If any disk is
734 * non-rotational, choose the disk with less pending request even the
735 * disk is rotational, which might/might not be optimal for raids with
736 * mixed ratation/non-rotational disks depending on workload.
737 */
738 if (best_disk == -1) {
739 if (has_nonrot_disk || min_pending == 0)
740 best_disk = best_pending_disk;
741 else
742 best_disk = best_dist_disk;
743 }
744
745 if (best_disk >= 0) {
746 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
747 if (!rdev)
748 goto retry;
749 atomic_inc(&rdev->nr_pending);
750 sectors = best_good_sectors;
751
752 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
753 conf->mirrors[best_disk].seq_start = this_sector;
754
755 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
756 }
757 rcu_read_unlock();
758 *max_sectors = sectors;
759
760 return best_disk;
761 }
762
763 static int raid1_congested(struct mddev *mddev, int bits)
764 {
765 struct r1conf *conf = mddev->private;
766 int i, ret = 0;
767
768 if ((bits & (1 << WB_async_congested)) &&
769 conf->pending_count >= max_queued_requests)
770 return 1;
771
772 rcu_read_lock();
773 for (i = 0; i < conf->raid_disks * 2; i++) {
774 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
775 if (rdev && !test_bit(Faulty, &rdev->flags)) {
776 struct request_queue *q = bdev_get_queue(rdev->bdev);
777
778 BUG_ON(!q);
779
780 /* Note the '|| 1' - when read_balance prefers
781 * non-congested targets, it can be removed
782 */
783 if ((bits & (1 << WB_async_congested)) || 1)
784 ret |= bdi_congested(q->backing_dev_info, bits);
785 else
786 ret &= bdi_congested(q->backing_dev_info, bits);
787 }
788 }
789 rcu_read_unlock();
790 return ret;
791 }
792
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 bitmap_unplug(conf->mddev->bitmap);
797 wake_up(&conf->wait_barrier);
798
799 while (bio) { /* submit pending writes */
800 struct bio *next = bio->bi_next;
801 struct md_rdev *rdev = (void*)bio->bi_bdev;
802 bio->bi_next = NULL;
803 bio->bi_bdev = rdev->bdev;
804 if (test_bit(Faulty, &rdev->flags)) {
805 bio->bi_error = -EIO;
806 bio_endio(bio);
807 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
809 /* Just ignore it */
810 bio_endio(bio);
811 else
812 generic_make_request(bio);
813 bio = next;
814 }
815 }
816
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819 /* Any writes that have been queued but are awaiting
820 * bitmap updates get flushed here.
821 */
822 spin_lock_irq(&conf->device_lock);
823
824 if (conf->pending_bio_list.head) {
825 struct bio *bio;
826 bio = bio_list_get(&conf->pending_bio_list);
827 conf->pending_count = 0;
828 spin_unlock_irq(&conf->device_lock);
829 flush_bio_list(conf, bio);
830 } else
831 spin_unlock_irq(&conf->device_lock);
832 }
833
834 /* Barriers....
835 * Sometimes we need to suspend IO while we do something else,
836 * either some resync/recovery, or reconfigure the array.
837 * To do this we raise a 'barrier'.
838 * The 'barrier' is a counter that can be raised multiple times
839 * to count how many activities are happening which preclude
840 * normal IO.
841 * We can only raise the barrier if there is no pending IO.
842 * i.e. if nr_pending == 0.
843 * We choose only to raise the barrier if no-one is waiting for the
844 * barrier to go down. This means that as soon as an IO request
845 * is ready, no other operations which require a barrier will start
846 * until the IO request has had a chance.
847 *
848 * So: regular IO calls 'wait_barrier'. When that returns there
849 * is no backgroup IO happening, It must arrange to call
850 * allow_barrier when it has finished its IO.
851 * backgroup IO calls must call raise_barrier. Once that returns
852 * there is no normal IO happeing. It must arrange to call
853 * lower_barrier when the particular background IO completes.
854 */
855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
856 {
857 int idx = sector_to_idx(sector_nr);
858
859 spin_lock_irq(&conf->resync_lock);
860
861 /* Wait until no block IO is waiting */
862 wait_event_lock_irq(conf->wait_barrier,
863 !atomic_read(&conf->nr_waiting[idx]),
864 conf->resync_lock);
865
866 /* block any new IO from starting */
867 atomic_inc(&conf->barrier[idx]);
868 /*
869 * In raise_barrier() we firstly increase conf->barrier[idx] then
870 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
871 * increase conf->nr_pending[idx] then check conf->barrier[idx].
872 * A memory barrier here to make sure conf->nr_pending[idx] won't
873 * be fetched before conf->barrier[idx] is increased. Otherwise
874 * there will be a race between raise_barrier() and _wait_barrier().
875 */
876 smp_mb__after_atomic();
877
878 /* For these conditions we must wait:
879 * A: while the array is in frozen state
880 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
881 * existing in corresponding I/O barrier bucket.
882 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
883 * max resync count which allowed on current I/O barrier bucket.
884 */
885 wait_event_lock_irq(conf->wait_barrier,
886 !conf->array_frozen &&
887 !atomic_read(&conf->nr_pending[idx]) &&
888 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
889 conf->resync_lock);
890
891 atomic_inc(&conf->nr_sync_pending);
892 spin_unlock_irq(&conf->resync_lock);
893 }
894
895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
896 {
897 int idx = sector_to_idx(sector_nr);
898
899 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
900
901 atomic_dec(&conf->barrier[idx]);
902 atomic_dec(&conf->nr_sync_pending);
903 wake_up(&conf->wait_barrier);
904 }
905
906 static void _wait_barrier(struct r1conf *conf, int idx)
907 {
908 /*
909 * We need to increase conf->nr_pending[idx] very early here,
910 * then raise_barrier() can be blocked when it waits for
911 * conf->nr_pending[idx] to be 0. Then we can avoid holding
912 * conf->resync_lock when there is no barrier raised in same
913 * barrier unit bucket. Also if the array is frozen, I/O
914 * should be blocked until array is unfrozen.
915 */
916 atomic_inc(&conf->nr_pending[idx]);
917 /*
918 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
919 * check conf->barrier[idx]. In raise_barrier() we firstly increase
920 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
921 * barrier is necessary here to make sure conf->barrier[idx] won't be
922 * fetched before conf->nr_pending[idx] is increased. Otherwise there
923 * will be a race between _wait_barrier() and raise_barrier().
924 */
925 smp_mb__after_atomic();
926
927 /*
928 * Don't worry about checking two atomic_t variables at same time
929 * here. If during we check conf->barrier[idx], the array is
930 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
931 * 0, it is safe to return and make the I/O continue. Because the
932 * array is frozen, all I/O returned here will eventually complete
933 * or be queued, no race will happen. See code comment in
934 * frozen_array().
935 */
936 if (!READ_ONCE(conf->array_frozen) &&
937 !atomic_read(&conf->barrier[idx]))
938 return;
939
940 /*
941 * After holding conf->resync_lock, conf->nr_pending[idx]
942 * should be decreased before waiting for barrier to drop.
943 * Otherwise, we may encounter a race condition because
944 * raise_barrer() might be waiting for conf->nr_pending[idx]
945 * to be 0 at same time.
946 */
947 spin_lock_irq(&conf->resync_lock);
948 atomic_inc(&conf->nr_waiting[idx]);
949 atomic_dec(&conf->nr_pending[idx]);
950 /*
951 * In case freeze_array() is waiting for
952 * get_unqueued_pending() == extra
953 */
954 wake_up(&conf->wait_barrier);
955 /* Wait for the barrier in same barrier unit bucket to drop. */
956 wait_event_lock_irq(conf->wait_barrier,
957 !conf->array_frozen &&
958 !atomic_read(&conf->barrier[idx]),
959 conf->resync_lock);
960 atomic_inc(&conf->nr_pending[idx]);
961 atomic_dec(&conf->nr_waiting[idx]);
962 spin_unlock_irq(&conf->resync_lock);
963 }
964
965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
966 {
967 int idx = sector_to_idx(sector_nr);
968
969 /*
970 * Very similar to _wait_barrier(). The difference is, for read
971 * I/O we don't need wait for sync I/O, but if the whole array
972 * is frozen, the read I/O still has to wait until the array is
973 * unfrozen. Since there is no ordering requirement with
974 * conf->barrier[idx] here, memory barrier is unnecessary as well.
975 */
976 atomic_inc(&conf->nr_pending[idx]);
977
978 if (!READ_ONCE(conf->array_frozen))
979 return;
980
981 spin_lock_irq(&conf->resync_lock);
982 atomic_inc(&conf->nr_waiting[idx]);
983 atomic_dec(&conf->nr_pending[idx]);
984 /*
985 * In case freeze_array() is waiting for
986 * get_unqueued_pending() == extra
987 */
988 wake_up(&conf->wait_barrier);
989 /* Wait for array to be unfrozen */
990 wait_event_lock_irq(conf->wait_barrier,
991 !conf->array_frozen,
992 conf->resync_lock);
993 atomic_inc(&conf->nr_pending[idx]);
994 atomic_dec(&conf->nr_waiting[idx]);
995 spin_unlock_irq(&conf->resync_lock);
996 }
997
998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000 int idx = sector_to_idx(sector_nr);
1001
1002 _wait_barrier(conf, idx);
1003 }
1004
1005 static void wait_all_barriers(struct r1conf *conf)
1006 {
1007 int idx;
1008
1009 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1010 _wait_barrier(conf, idx);
1011 }
1012
1013 static void _allow_barrier(struct r1conf *conf, int idx)
1014 {
1015 atomic_dec(&conf->nr_pending[idx]);
1016 wake_up(&conf->wait_barrier);
1017 }
1018
1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 int idx = sector_to_idx(sector_nr);
1022
1023 _allow_barrier(conf, idx);
1024 }
1025
1026 static void allow_all_barriers(struct r1conf *conf)
1027 {
1028 int idx;
1029
1030 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1031 _allow_barrier(conf, idx);
1032 }
1033
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037 int idx, ret;
1038
1039 ret = atomic_read(&conf->nr_sync_pending);
1040 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041 ret += atomic_read(&conf->nr_pending[idx]) -
1042 atomic_read(&conf->nr_queued[idx]);
1043
1044 return ret;
1045 }
1046
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049 /* Stop sync I/O and normal I/O and wait for everything to
1050 * go quiet.
1051 * This is called in two situations:
1052 * 1) management command handlers (reshape, remove disk, quiesce).
1053 * 2) one normal I/O request failed.
1054
1055 * After array_frozen is set to 1, new sync IO will be blocked at
1056 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057 * or wait_read_barrier(). The flying I/Os will either complete or be
1058 * queued. When everything goes quite, there are only queued I/Os left.
1059
1060 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061 * barrier bucket index which this I/O request hits. When all sync and
1062 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064 * in handle_read_error(), we may call freeze_array() before trying to
1065 * fix the read error. In this case, the error read I/O is not queued,
1066 * so get_unqueued_pending() == 1.
1067 *
1068 * Therefore before this function returns, we need to wait until
1069 * get_unqueued_pendings(conf) gets equal to extra. For
1070 * normal I/O context, extra is 1, in rested situations extra is 0.
1071 */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->array_frozen = 1;
1074 raid1_log(conf->mddev, "wait freeze");
1075 wait_event_lock_irq_cmd(
1076 conf->wait_barrier,
1077 get_unqueued_pending(conf) == extra,
1078 conf->resync_lock,
1079 flush_pending_writes(conf));
1080 spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084 /* reverse the effect of the freeze */
1085 spin_lock_irq(&conf->resync_lock);
1086 conf->array_frozen = 0;
1087 spin_unlock_irq(&conf->resync_lock);
1088 wake_up(&conf->wait_barrier);
1089 }
1090
1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1092 struct bio *bio)
1093 {
1094 int size = bio->bi_iter.bi_size;
1095 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096 int i = 0;
1097 struct bio *behind_bio = NULL;
1098
1099 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100 if (!behind_bio)
1101 goto fail;
1102
1103 /* discard op, we don't support writezero/writesame yet */
1104 if (!bio_has_data(bio))
1105 goto skip_copy;
1106
1107 while (i < vcnt && size) {
1108 struct page *page;
1109 int len = min_t(int, PAGE_SIZE, size);
1110
1111 page = alloc_page(GFP_NOIO);
1112 if (unlikely(!page))
1113 goto free_pages;
1114
1115 bio_add_page(behind_bio, page, len, 0);
1116
1117 size -= len;
1118 i++;
1119 }
1120
1121 bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123 r1_bio->behind_master_bio = behind_bio;;
1124 set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126 return behind_bio;
1127
1128 free_pages:
1129 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130 bio->bi_iter.bi_size);
1131 bio_free_pages(behind_bio);
1132 fail:
1133 return behind_bio;
1134 }
1135
1136 struct raid1_plug_cb {
1137 struct blk_plug_cb cb;
1138 struct bio_list pending;
1139 int pending_cnt;
1140 };
1141
1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1143 {
1144 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1145 cb);
1146 struct mddev *mddev = plug->cb.data;
1147 struct r1conf *conf = mddev->private;
1148 struct bio *bio;
1149
1150 if (from_schedule || current->bio_list) {
1151 spin_lock_irq(&conf->device_lock);
1152 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1153 conf->pending_count += plug->pending_cnt;
1154 spin_unlock_irq(&conf->device_lock);
1155 wake_up(&conf->wait_barrier);
1156 md_wakeup_thread(mddev->thread);
1157 kfree(plug);
1158 return;
1159 }
1160
1161 /* we aren't scheduling, so we can do the write-out directly. */
1162 bio = bio_list_get(&plug->pending);
1163 flush_bio_list(conf, bio);
1164 kfree(plug);
1165 }
1166
1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1168 {
1169 r1_bio->master_bio = bio;
1170 r1_bio->sectors = bio_sectors(bio);
1171 r1_bio->state = 0;
1172 r1_bio->mddev = mddev;
1173 r1_bio->sector = bio->bi_iter.bi_sector;
1174 }
1175
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1178 {
1179 struct r1conf *conf = mddev->private;
1180 struct r1bio *r1_bio;
1181
1182 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183 /* Ensure no bio records IO_BLOCKED */
1184 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1185 init_r1bio(r1_bio, mddev, bio);
1186 return r1_bio;
1187 }
1188
1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1190 int max_read_sectors, struct r1bio *r1_bio)
1191 {
1192 struct r1conf *conf = mddev->private;
1193 struct raid1_info *mirror;
1194 struct bio *read_bio;
1195 struct bitmap *bitmap = mddev->bitmap;
1196 const int op = bio_op(bio);
1197 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198 int max_sectors;
1199 int rdisk;
1200 bool print_msg = !!r1_bio;
1201 char b[BDEVNAME_SIZE];
1202
1203 /*
1204 * If r1_bio is set, we are blocking the raid1d thread
1205 * so there is a tiny risk of deadlock. So ask for
1206 * emergency memory if needed.
1207 */
1208 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1209
1210 if (print_msg) {
1211 /* Need to get the block device name carefully */
1212 struct md_rdev *rdev;
1213 rcu_read_lock();
1214 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1215 if (rdev)
1216 bdevname(rdev->bdev, b);
1217 else
1218 strcpy(b, "???");
1219 rcu_read_unlock();
1220 }
1221
1222 /*
1223 * Still need barrier for READ in case that whole
1224 * array is frozen.
1225 */
1226 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1227
1228 if (!r1_bio)
1229 r1_bio = alloc_r1bio(mddev, bio);
1230 else
1231 init_r1bio(r1_bio, mddev, bio);
1232 r1_bio->sectors = max_read_sectors;
1233
1234 /*
1235 * make_request() can abort the operation when read-ahead is being
1236 * used and no empty request is available.
1237 */
1238 rdisk = read_balance(conf, r1_bio, &max_sectors);
1239
1240 if (rdisk < 0) {
1241 /* couldn't find anywhere to read from */
1242 if (print_msg) {
1243 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1244 mdname(mddev),
1245 b,
1246 (unsigned long long)r1_bio->sector);
1247 }
1248 raid_end_bio_io(r1_bio);
1249 return;
1250 }
1251 mirror = conf->mirrors + rdisk;
1252
1253 if (print_msg)
1254 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1255 mdname(mddev),
1256 (unsigned long long)r1_bio->sector,
1257 bdevname(mirror->rdev->bdev, b));
1258
1259 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1260 bitmap) {
1261 /*
1262 * Reading from a write-mostly device must take care not to
1263 * over-take any writes that are 'behind'
1264 */
1265 raid1_log(mddev, "wait behind writes");
1266 wait_event(bitmap->behind_wait,
1267 atomic_read(&bitmap->behind_writes) == 0);
1268 }
1269
1270 if (max_sectors < bio_sectors(bio)) {
1271 struct bio *split = bio_split(bio, max_sectors,
1272 gfp, conf->bio_split);
1273 bio_chain(split, bio);
1274 generic_make_request(bio);
1275 bio = split;
1276 r1_bio->master_bio = bio;
1277 r1_bio->sectors = max_sectors;
1278 }
1279
1280 r1_bio->read_disk = rdisk;
1281
1282 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1283
1284 r1_bio->bios[rdisk] = read_bio;
1285
1286 read_bio->bi_iter.bi_sector = r1_bio->sector +
1287 mirror->rdev->data_offset;
1288 read_bio->bi_bdev = mirror->rdev->bdev;
1289 read_bio->bi_end_io = raid1_end_read_request;
1290 bio_set_op_attrs(read_bio, op, do_sync);
1291 if (test_bit(FailFast, &mirror->rdev->flags) &&
1292 test_bit(R1BIO_FailFast, &r1_bio->state))
1293 read_bio->bi_opf |= MD_FAILFAST;
1294 read_bio->bi_private = r1_bio;
1295
1296 if (mddev->gendisk)
1297 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1298 read_bio, disk_devt(mddev->gendisk),
1299 r1_bio->sector);
1300
1301 generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305 int max_write_sectors)
1306 {
1307 struct r1conf *conf = mddev->private;
1308 struct r1bio *r1_bio;
1309 int i, disks;
1310 struct bitmap *bitmap = mddev->bitmap;
1311 unsigned long flags;
1312 struct md_rdev *blocked_rdev;
1313 struct blk_plug_cb *cb;
1314 struct raid1_plug_cb *plug = NULL;
1315 int first_clone;
1316 int max_sectors;
1317
1318 /*
1319 * Register the new request and wait if the reconstruction
1320 * thread has put up a bar for new requests.
1321 * Continue immediately if no resync is active currently.
1322 */
1323
1324 md_write_start(mddev, bio); /* wait on superblock update early */
1325
1326 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1327 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1328 (mddev_is_clustered(mddev) &&
1329 md_cluster_ops->area_resyncing(mddev, WRITE,
1330 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1331
1332 /*
1333 * As the suspend_* range is controlled by userspace, we want
1334 * an interruptible wait.
1335 */
1336 DEFINE_WAIT(w);
1337 for (;;) {
1338 flush_signals(current);
1339 prepare_to_wait(&conf->wait_barrier,
1340 &w, TASK_INTERRUPTIBLE);
1341 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1342 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1343 (mddev_is_clustered(mddev) &&
1344 !md_cluster_ops->area_resyncing(mddev, WRITE,
1345 bio->bi_iter.bi_sector,
1346 bio_end_sector(bio))))
1347 break;
1348 schedule();
1349 }
1350 finish_wait(&conf->wait_barrier, &w);
1351 }
1352 wait_barrier(conf, bio->bi_iter.bi_sector);
1353
1354 r1_bio = alloc_r1bio(mddev, bio);
1355 r1_bio->sectors = max_write_sectors;
1356
1357 if (conf->pending_count >= max_queued_requests) {
1358 md_wakeup_thread(mddev->thread);
1359 raid1_log(mddev, "wait queued");
1360 wait_event(conf->wait_barrier,
1361 conf->pending_count < max_queued_requests);
1362 }
1363 /* first select target devices under rcu_lock and
1364 * inc refcount on their rdev. Record them by setting
1365 * bios[x] to bio
1366 * If there are known/acknowledged bad blocks on any device on
1367 * which we have seen a write error, we want to avoid writing those
1368 * blocks.
1369 * This potentially requires several writes to write around
1370 * the bad blocks. Each set of writes gets it's own r1bio
1371 * with a set of bios attached.
1372 */
1373
1374 disks = conf->raid_disks * 2;
1375 retry_write:
1376 blocked_rdev = NULL;
1377 rcu_read_lock();
1378 max_sectors = r1_bio->sectors;
1379 for (i = 0; i < disks; i++) {
1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1381 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1382 atomic_inc(&rdev->nr_pending);
1383 blocked_rdev = rdev;
1384 break;
1385 }
1386 r1_bio->bios[i] = NULL;
1387 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1388 if (i < conf->raid_disks)
1389 set_bit(R1BIO_Degraded, &r1_bio->state);
1390 continue;
1391 }
1392
1393 atomic_inc(&rdev->nr_pending);
1394 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1395 sector_t first_bad;
1396 int bad_sectors;
1397 int is_bad;
1398
1399 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1400 &first_bad, &bad_sectors);
1401 if (is_bad < 0) {
1402 /* mustn't write here until the bad block is
1403 * acknowledged*/
1404 set_bit(BlockedBadBlocks, &rdev->flags);
1405 blocked_rdev = rdev;
1406 break;
1407 }
1408 if (is_bad && first_bad <= r1_bio->sector) {
1409 /* Cannot write here at all */
1410 bad_sectors -= (r1_bio->sector - first_bad);
1411 if (bad_sectors < max_sectors)
1412 /* mustn't write more than bad_sectors
1413 * to other devices yet
1414 */
1415 max_sectors = bad_sectors;
1416 rdev_dec_pending(rdev, mddev);
1417 /* We don't set R1BIO_Degraded as that
1418 * only applies if the disk is
1419 * missing, so it might be re-added,
1420 * and we want to know to recover this
1421 * chunk.
1422 * In this case the device is here,
1423 * and the fact that this chunk is not
1424 * in-sync is recorded in the bad
1425 * block log
1426 */
1427 continue;
1428 }
1429 if (is_bad) {
1430 int good_sectors = first_bad - r1_bio->sector;
1431 if (good_sectors < max_sectors)
1432 max_sectors = good_sectors;
1433 }
1434 }
1435 r1_bio->bios[i] = bio;
1436 }
1437 rcu_read_unlock();
1438
1439 if (unlikely(blocked_rdev)) {
1440 /* Wait for this device to become unblocked */
1441 int j;
1442
1443 for (j = 0; j < i; j++)
1444 if (r1_bio->bios[j])
1445 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1446 r1_bio->state = 0;
1447 allow_barrier(conf, bio->bi_iter.bi_sector);
1448 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1449 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1450 wait_barrier(conf, bio->bi_iter.bi_sector);
1451 goto retry_write;
1452 }
1453
1454 if (max_sectors < bio_sectors(bio)) {
1455 struct bio *split = bio_split(bio, max_sectors,
1456 GFP_NOIO, conf->bio_split);
1457 bio_chain(split, bio);
1458 generic_make_request(bio);
1459 bio = split;
1460 r1_bio->master_bio = bio;
1461 r1_bio->sectors = max_sectors;
1462 }
1463
1464 atomic_set(&r1_bio->remaining, 1);
1465 atomic_set(&r1_bio->behind_remaining, 0);
1466
1467 first_clone = 1;
1468
1469 for (i = 0; i < disks; i++) {
1470 struct bio *mbio = NULL;
1471 if (!r1_bio->bios[i])
1472 continue;
1473
1474
1475 if (first_clone) {
1476 /* do behind I/O ?
1477 * Not if there are too many, or cannot
1478 * allocate memory, or a reader on WriteMostly
1479 * is waiting for behind writes to flush */
1480 if (bitmap &&
1481 (atomic_read(&bitmap->behind_writes)
1482 < mddev->bitmap_info.max_write_behind) &&
1483 !waitqueue_active(&bitmap->behind_wait)) {
1484 mbio = alloc_behind_master_bio(r1_bio, bio);
1485 }
1486
1487 bitmap_startwrite(bitmap, r1_bio->sector,
1488 r1_bio->sectors,
1489 test_bit(R1BIO_BehindIO,
1490 &r1_bio->state));
1491 first_clone = 0;
1492 }
1493
1494 if (!mbio) {
1495 if (r1_bio->behind_master_bio)
1496 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1497 GFP_NOIO,
1498 mddev->bio_set);
1499 else
1500 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1501 }
1502
1503 if (r1_bio->behind_master_bio) {
1504 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1505 atomic_inc(&r1_bio->behind_remaining);
1506 }
1507
1508 r1_bio->bios[i] = mbio;
1509
1510 mbio->bi_iter.bi_sector = (r1_bio->sector +
1511 conf->mirrors[i].rdev->data_offset);
1512 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1513 mbio->bi_end_io = raid1_end_write_request;
1514 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1515 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1516 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1517 conf->raid_disks - mddev->degraded > 1)
1518 mbio->bi_opf |= MD_FAILFAST;
1519 mbio->bi_private = r1_bio;
1520
1521 atomic_inc(&r1_bio->remaining);
1522
1523 if (mddev->gendisk)
1524 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1525 mbio, disk_devt(mddev->gendisk),
1526 r1_bio->sector);
1527 /* flush_pending_writes() needs access to the rdev so...*/
1528 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1529
1530 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1531 if (cb)
1532 plug = container_of(cb, struct raid1_plug_cb, cb);
1533 else
1534 plug = NULL;
1535 if (plug) {
1536 bio_list_add(&plug->pending, mbio);
1537 plug->pending_cnt++;
1538 } else {
1539 spin_lock_irqsave(&conf->device_lock, flags);
1540 bio_list_add(&conf->pending_bio_list, mbio);
1541 conf->pending_count++;
1542 spin_unlock_irqrestore(&conf->device_lock, flags);
1543 md_wakeup_thread(mddev->thread);
1544 }
1545 }
1546
1547 r1_bio_write_done(r1_bio);
1548
1549 /* In case raid1d snuck in to freeze_array */
1550 wake_up(&conf->wait_barrier);
1551 }
1552
1553 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1554 {
1555 sector_t sectors;
1556
1557 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1558 md_flush_request(mddev, bio);
1559 return;
1560 }
1561
1562 /*
1563 * There is a limit to the maximum size, but
1564 * the read/write handler might find a lower limit
1565 * due to bad blocks. To avoid multiple splits,
1566 * we pass the maximum number of sectors down
1567 * and let the lower level perform the split.
1568 */
1569 sectors = align_to_barrier_unit_end(
1570 bio->bi_iter.bi_sector, bio_sectors(bio));
1571
1572 if (bio_data_dir(bio) == READ)
1573 raid1_read_request(mddev, bio, sectors, NULL);
1574 else
1575 raid1_write_request(mddev, bio, sectors);
1576 }
1577
1578 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580 struct r1conf *conf = mddev->private;
1581 int i;
1582
1583 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1584 conf->raid_disks - mddev->degraded);
1585 rcu_read_lock();
1586 for (i = 0; i < conf->raid_disks; i++) {
1587 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1588 seq_printf(seq, "%s",
1589 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1590 }
1591 rcu_read_unlock();
1592 seq_printf(seq, "]");
1593 }
1594
1595 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1596 {
1597 char b[BDEVNAME_SIZE];
1598 struct r1conf *conf = mddev->private;
1599 unsigned long flags;
1600
1601 /*
1602 * If it is not operational, then we have already marked it as dead
1603 * else if it is the last working disks, ignore the error, let the
1604 * next level up know.
1605 * else mark the drive as failed
1606 */
1607 spin_lock_irqsave(&conf->device_lock, flags);
1608 if (test_bit(In_sync, &rdev->flags)
1609 && (conf->raid_disks - mddev->degraded) == 1) {
1610 /*
1611 * Don't fail the drive, act as though we were just a
1612 * normal single drive.
1613 * However don't try a recovery from this drive as
1614 * it is very likely to fail.
1615 */
1616 conf->recovery_disabled = mddev->recovery_disabled;
1617 spin_unlock_irqrestore(&conf->device_lock, flags);
1618 return;
1619 }
1620 set_bit(Blocked, &rdev->flags);
1621 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1622 mddev->degraded++;
1623 set_bit(Faulty, &rdev->flags);
1624 } else
1625 set_bit(Faulty, &rdev->flags);
1626 spin_unlock_irqrestore(&conf->device_lock, flags);
1627 /*
1628 * if recovery is running, make sure it aborts.
1629 */
1630 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1631 set_mask_bits(&mddev->sb_flags, 0,
1632 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1633 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1634 "md/raid1:%s: Operation continuing on %d devices.\n",
1635 mdname(mddev), bdevname(rdev->bdev, b),
1636 mdname(mddev), conf->raid_disks - mddev->degraded);
1637 }
1638
1639 static void print_conf(struct r1conf *conf)
1640 {
1641 int i;
1642
1643 pr_debug("RAID1 conf printout:\n");
1644 if (!conf) {
1645 pr_debug("(!conf)\n");
1646 return;
1647 }
1648 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1649 conf->raid_disks);
1650
1651 rcu_read_lock();
1652 for (i = 0; i < conf->raid_disks; i++) {
1653 char b[BDEVNAME_SIZE];
1654 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1655 if (rdev)
1656 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1657 i, !test_bit(In_sync, &rdev->flags),
1658 !test_bit(Faulty, &rdev->flags),
1659 bdevname(rdev->bdev,b));
1660 }
1661 rcu_read_unlock();
1662 }
1663
1664 static void close_sync(struct r1conf *conf)
1665 {
1666 wait_all_barriers(conf);
1667 allow_all_barriers(conf);
1668
1669 mempool_destroy(conf->r1buf_pool);
1670 conf->r1buf_pool = NULL;
1671 }
1672
1673 static int raid1_spare_active(struct mddev *mddev)
1674 {
1675 int i;
1676 struct r1conf *conf = mddev->private;
1677 int count = 0;
1678 unsigned long flags;
1679
1680 /*
1681 * Find all failed disks within the RAID1 configuration
1682 * and mark them readable.
1683 * Called under mddev lock, so rcu protection not needed.
1684 * device_lock used to avoid races with raid1_end_read_request
1685 * which expects 'In_sync' flags and ->degraded to be consistent.
1686 */
1687 spin_lock_irqsave(&conf->device_lock, flags);
1688 for (i = 0; i < conf->raid_disks; i++) {
1689 struct md_rdev *rdev = conf->mirrors[i].rdev;
1690 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1691 if (repl
1692 && !test_bit(Candidate, &repl->flags)
1693 && repl->recovery_offset == MaxSector
1694 && !test_bit(Faulty, &repl->flags)
1695 && !test_and_set_bit(In_sync, &repl->flags)) {
1696 /* replacement has just become active */
1697 if (!rdev ||
1698 !test_and_clear_bit(In_sync, &rdev->flags))
1699 count++;
1700 if (rdev) {
1701 /* Replaced device not technically
1702 * faulty, but we need to be sure
1703 * it gets removed and never re-added
1704 */
1705 set_bit(Faulty, &rdev->flags);
1706 sysfs_notify_dirent_safe(
1707 rdev->sysfs_state);
1708 }
1709 }
1710 if (rdev
1711 && rdev->recovery_offset == MaxSector
1712 && !test_bit(Faulty, &rdev->flags)
1713 && !test_and_set_bit(In_sync, &rdev->flags)) {
1714 count++;
1715 sysfs_notify_dirent_safe(rdev->sysfs_state);
1716 }
1717 }
1718 mddev->degraded -= count;
1719 spin_unlock_irqrestore(&conf->device_lock, flags);
1720
1721 print_conf(conf);
1722 return count;
1723 }
1724
1725 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1726 {
1727 struct r1conf *conf = mddev->private;
1728 int err = -EEXIST;
1729 int mirror = 0;
1730 struct raid1_info *p;
1731 int first = 0;
1732 int last = conf->raid_disks - 1;
1733
1734 if (mddev->recovery_disabled == conf->recovery_disabled)
1735 return -EBUSY;
1736
1737 if (md_integrity_add_rdev(rdev, mddev))
1738 return -ENXIO;
1739
1740 if (rdev->raid_disk >= 0)
1741 first = last = rdev->raid_disk;
1742
1743 /*
1744 * find the disk ... but prefer rdev->saved_raid_disk
1745 * if possible.
1746 */
1747 if (rdev->saved_raid_disk >= 0 &&
1748 rdev->saved_raid_disk >= first &&
1749 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1750 first = last = rdev->saved_raid_disk;
1751
1752 for (mirror = first; mirror <= last; mirror++) {
1753 p = conf->mirrors+mirror;
1754 if (!p->rdev) {
1755
1756 if (mddev->gendisk)
1757 disk_stack_limits(mddev->gendisk, rdev->bdev,
1758 rdev->data_offset << 9);
1759
1760 p->head_position = 0;
1761 rdev->raid_disk = mirror;
1762 err = 0;
1763 /* As all devices are equivalent, we don't need a full recovery
1764 * if this was recently any drive of the array
1765 */
1766 if (rdev->saved_raid_disk < 0)
1767 conf->fullsync = 1;
1768 rcu_assign_pointer(p->rdev, rdev);
1769 break;
1770 }
1771 if (test_bit(WantReplacement, &p->rdev->flags) &&
1772 p[conf->raid_disks].rdev == NULL) {
1773 /* Add this device as a replacement */
1774 clear_bit(In_sync, &rdev->flags);
1775 set_bit(Replacement, &rdev->flags);
1776 rdev->raid_disk = mirror;
1777 err = 0;
1778 conf->fullsync = 1;
1779 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1780 break;
1781 }
1782 }
1783 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1784 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1785 print_conf(conf);
1786 return err;
1787 }
1788
1789 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1790 {
1791 struct r1conf *conf = mddev->private;
1792 int err = 0;
1793 int number = rdev->raid_disk;
1794 struct raid1_info *p = conf->mirrors + number;
1795
1796 if (rdev != p->rdev)
1797 p = conf->mirrors + conf->raid_disks + number;
1798
1799 print_conf(conf);
1800 if (rdev == p->rdev) {
1801 if (test_bit(In_sync, &rdev->flags) ||
1802 atomic_read(&rdev->nr_pending)) {
1803 err = -EBUSY;
1804 goto abort;
1805 }
1806 /* Only remove non-faulty devices if recovery
1807 * is not possible.
1808 */
1809 if (!test_bit(Faulty, &rdev->flags) &&
1810 mddev->recovery_disabled != conf->recovery_disabled &&
1811 mddev->degraded < conf->raid_disks) {
1812 err = -EBUSY;
1813 goto abort;
1814 }
1815 p->rdev = NULL;
1816 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1817 synchronize_rcu();
1818 if (atomic_read(&rdev->nr_pending)) {
1819 /* lost the race, try later */
1820 err = -EBUSY;
1821 p->rdev = rdev;
1822 goto abort;
1823 }
1824 }
1825 if (conf->mirrors[conf->raid_disks + number].rdev) {
1826 /* We just removed a device that is being replaced.
1827 * Move down the replacement. We drain all IO before
1828 * doing this to avoid confusion.
1829 */
1830 struct md_rdev *repl =
1831 conf->mirrors[conf->raid_disks + number].rdev;
1832 freeze_array(conf, 0);
1833 clear_bit(Replacement, &repl->flags);
1834 p->rdev = repl;
1835 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1836 unfreeze_array(conf);
1837 }
1838
1839 clear_bit(WantReplacement, &rdev->flags);
1840 err = md_integrity_register(mddev);
1841 }
1842 abort:
1843
1844 print_conf(conf);
1845 return err;
1846 }
1847
1848 static void end_sync_read(struct bio *bio)
1849 {
1850 struct r1bio *r1_bio = get_resync_r1bio(bio);
1851
1852 update_head_pos(r1_bio->read_disk, r1_bio);
1853
1854 /*
1855 * we have read a block, now it needs to be re-written,
1856 * or re-read if the read failed.
1857 * We don't do much here, just schedule handling by raid1d
1858 */
1859 if (!bio->bi_error)
1860 set_bit(R1BIO_Uptodate, &r1_bio->state);
1861
1862 if (atomic_dec_and_test(&r1_bio->remaining))
1863 reschedule_retry(r1_bio);
1864 }
1865
1866 static void end_sync_write(struct bio *bio)
1867 {
1868 int uptodate = !bio->bi_error;
1869 struct r1bio *r1_bio = get_resync_r1bio(bio);
1870 struct mddev *mddev = r1_bio->mddev;
1871 struct r1conf *conf = mddev->private;
1872 sector_t first_bad;
1873 int bad_sectors;
1874 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1875
1876 if (!uptodate) {
1877 sector_t sync_blocks = 0;
1878 sector_t s = r1_bio->sector;
1879 long sectors_to_go = r1_bio->sectors;
1880 /* make sure these bits doesn't get cleared. */
1881 do {
1882 bitmap_end_sync(mddev->bitmap, s,
1883 &sync_blocks, 1);
1884 s += sync_blocks;
1885 sectors_to_go -= sync_blocks;
1886 } while (sectors_to_go > 0);
1887 set_bit(WriteErrorSeen, &rdev->flags);
1888 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1889 set_bit(MD_RECOVERY_NEEDED, &
1890 mddev->recovery);
1891 set_bit(R1BIO_WriteError, &r1_bio->state);
1892 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1893 &first_bad, &bad_sectors) &&
1894 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1895 r1_bio->sector,
1896 r1_bio->sectors,
1897 &first_bad, &bad_sectors)
1898 )
1899 set_bit(R1BIO_MadeGood, &r1_bio->state);
1900
1901 if (atomic_dec_and_test(&r1_bio->remaining)) {
1902 int s = r1_bio->sectors;
1903 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1904 test_bit(R1BIO_WriteError, &r1_bio->state))
1905 reschedule_retry(r1_bio);
1906 else {
1907 put_buf(r1_bio);
1908 md_done_sync(mddev, s, uptodate);
1909 }
1910 }
1911 }
1912
1913 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1914 int sectors, struct page *page, int rw)
1915 {
1916 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1917 /* success */
1918 return 1;
1919 if (rw == WRITE) {
1920 set_bit(WriteErrorSeen, &rdev->flags);
1921 if (!test_and_set_bit(WantReplacement,
1922 &rdev->flags))
1923 set_bit(MD_RECOVERY_NEEDED, &
1924 rdev->mddev->recovery);
1925 }
1926 /* need to record an error - either for the block or the device */
1927 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1928 md_error(rdev->mddev, rdev);
1929 return 0;
1930 }
1931
1932 static int fix_sync_read_error(struct r1bio *r1_bio)
1933 {
1934 /* Try some synchronous reads of other devices to get
1935 * good data, much like with normal read errors. Only
1936 * read into the pages we already have so we don't
1937 * need to re-issue the read request.
1938 * We don't need to freeze the array, because being in an
1939 * active sync request, there is no normal IO, and
1940 * no overlapping syncs.
1941 * We don't need to check is_badblock() again as we
1942 * made sure that anything with a bad block in range
1943 * will have bi_end_io clear.
1944 */
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1947 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1948 struct page **pages = get_resync_pages(bio)->pages;
1949 sector_t sect = r1_bio->sector;
1950 int sectors = r1_bio->sectors;
1951 int idx = 0;
1952 struct md_rdev *rdev;
1953
1954 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1955 if (test_bit(FailFast, &rdev->flags)) {
1956 /* Don't try recovering from here - just fail it
1957 * ... unless it is the last working device of course */
1958 md_error(mddev, rdev);
1959 if (test_bit(Faulty, &rdev->flags))
1960 /* Don't try to read from here, but make sure
1961 * put_buf does it's thing
1962 */
1963 bio->bi_end_io = end_sync_write;
1964 }
1965
1966 while(sectors) {
1967 int s = sectors;
1968 int d = r1_bio->read_disk;
1969 int success = 0;
1970 int start;
1971
1972 if (s > (PAGE_SIZE>>9))
1973 s = PAGE_SIZE >> 9;
1974 do {
1975 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1976 /* No rcu protection needed here devices
1977 * can only be removed when no resync is
1978 * active, and resync is currently active
1979 */
1980 rdev = conf->mirrors[d].rdev;
1981 if (sync_page_io(rdev, sect, s<<9,
1982 pages[idx],
1983 REQ_OP_READ, 0, false)) {
1984 success = 1;
1985 break;
1986 }
1987 }
1988 d++;
1989 if (d == conf->raid_disks * 2)
1990 d = 0;
1991 } while (!success && d != r1_bio->read_disk);
1992
1993 if (!success) {
1994 char b[BDEVNAME_SIZE];
1995 int abort = 0;
1996 /* Cannot read from anywhere, this block is lost.
1997 * Record a bad block on each device. If that doesn't
1998 * work just disable and interrupt the recovery.
1999 * Don't fail devices as that won't really help.
2000 */
2001 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2002 mdname(mddev),
2003 bdevname(bio->bi_bdev, b),
2004 (unsigned long long)r1_bio->sector);
2005 for (d = 0; d < conf->raid_disks * 2; d++) {
2006 rdev = conf->mirrors[d].rdev;
2007 if (!rdev || test_bit(Faulty, &rdev->flags))
2008 continue;
2009 if (!rdev_set_badblocks(rdev, sect, s, 0))
2010 abort = 1;
2011 }
2012 if (abort) {
2013 conf->recovery_disabled =
2014 mddev->recovery_disabled;
2015 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2016 md_done_sync(mddev, r1_bio->sectors, 0);
2017 put_buf(r1_bio);
2018 return 0;
2019 }
2020 /* Try next page */
2021 sectors -= s;
2022 sect += s;
2023 idx++;
2024 continue;
2025 }
2026
2027 start = d;
2028 /* write it back and re-read */
2029 while (d != r1_bio->read_disk) {
2030 if (d == 0)
2031 d = conf->raid_disks * 2;
2032 d--;
2033 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2034 continue;
2035 rdev = conf->mirrors[d].rdev;
2036 if (r1_sync_page_io(rdev, sect, s,
2037 pages[idx],
2038 WRITE) == 0) {
2039 r1_bio->bios[d]->bi_end_io = NULL;
2040 rdev_dec_pending(rdev, mddev);
2041 }
2042 }
2043 d = start;
2044 while (d != r1_bio->read_disk) {
2045 if (d == 0)
2046 d = conf->raid_disks * 2;
2047 d--;
2048 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2049 continue;
2050 rdev = conf->mirrors[d].rdev;
2051 if (r1_sync_page_io(rdev, sect, s,
2052 pages[idx],
2053 READ) != 0)
2054 atomic_add(s, &rdev->corrected_errors);
2055 }
2056 sectors -= s;
2057 sect += s;
2058 idx ++;
2059 }
2060 set_bit(R1BIO_Uptodate, &r1_bio->state);
2061 bio->bi_error = 0;
2062 return 1;
2063 }
2064
2065 static void process_checks(struct r1bio *r1_bio)
2066 {
2067 /* We have read all readable devices. If we haven't
2068 * got the block, then there is no hope left.
2069 * If we have, then we want to do a comparison
2070 * and skip the write if everything is the same.
2071 * If any blocks failed to read, then we need to
2072 * attempt an over-write
2073 */
2074 struct mddev *mddev = r1_bio->mddev;
2075 struct r1conf *conf = mddev->private;
2076 int primary;
2077 int i;
2078 int vcnt;
2079
2080 /* Fix variable parts of all bios */
2081 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2082 for (i = 0; i < conf->raid_disks * 2; i++) {
2083 int j;
2084 int size;
2085 int error;
2086 struct bio_vec *bi;
2087 struct bio *b = r1_bio->bios[i];
2088 struct resync_pages *rp = get_resync_pages(b);
2089 if (b->bi_end_io != end_sync_read)
2090 continue;
2091 /* fixup the bio for reuse, but preserve errno */
2092 error = b->bi_error;
2093 bio_reset(b);
2094 b->bi_error = error;
2095 b->bi_vcnt = vcnt;
2096 b->bi_iter.bi_size = r1_bio->sectors << 9;
2097 b->bi_iter.bi_sector = r1_bio->sector +
2098 conf->mirrors[i].rdev->data_offset;
2099 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2100 b->bi_end_io = end_sync_read;
2101 rp->raid_bio = r1_bio;
2102 b->bi_private = rp;
2103
2104 size = b->bi_iter.bi_size;
2105 bio_for_each_segment_all(bi, b, j) {
2106 bi->bv_offset = 0;
2107 if (size > PAGE_SIZE)
2108 bi->bv_len = PAGE_SIZE;
2109 else
2110 bi->bv_len = size;
2111 size -= PAGE_SIZE;
2112 }
2113 }
2114 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2115 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2116 !r1_bio->bios[primary]->bi_error) {
2117 r1_bio->bios[primary]->bi_end_io = NULL;
2118 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2119 break;
2120 }
2121 r1_bio->read_disk = primary;
2122 for (i = 0; i < conf->raid_disks * 2; i++) {
2123 int j;
2124 struct bio *pbio = r1_bio->bios[primary];
2125 struct bio *sbio = r1_bio->bios[i];
2126 int error = sbio->bi_error;
2127 struct page **ppages = get_resync_pages(pbio)->pages;
2128 struct page **spages = get_resync_pages(sbio)->pages;
2129 struct bio_vec *bi;
2130 int page_len[RESYNC_PAGES] = { 0 };
2131
2132 if (sbio->bi_end_io != end_sync_read)
2133 continue;
2134 /* Now we can 'fixup' the error value */
2135 sbio->bi_error = 0;
2136
2137 bio_for_each_segment_all(bi, sbio, j)
2138 page_len[j] = bi->bv_len;
2139
2140 if (!error) {
2141 for (j = vcnt; j-- ; ) {
2142 if (memcmp(page_address(ppages[j]),
2143 page_address(spages[j]),
2144 page_len[j]))
2145 break;
2146 }
2147 } else
2148 j = 0;
2149 if (j >= 0)
2150 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2151 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2152 && !error)) {
2153 /* No need to write to this device. */
2154 sbio->bi_end_io = NULL;
2155 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2156 continue;
2157 }
2158
2159 bio_copy_data(sbio, pbio);
2160 }
2161 }
2162
2163 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2164 {
2165 struct r1conf *conf = mddev->private;
2166 int i;
2167 int disks = conf->raid_disks * 2;
2168 struct bio *bio, *wbio;
2169
2170 bio = r1_bio->bios[r1_bio->read_disk];
2171
2172 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2173 /* ouch - failed to read all of that. */
2174 if (!fix_sync_read_error(r1_bio))
2175 return;
2176
2177 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2178 process_checks(r1_bio);
2179
2180 /*
2181 * schedule writes
2182 */
2183 atomic_set(&r1_bio->remaining, 1);
2184 for (i = 0; i < disks ; i++) {
2185 wbio = r1_bio->bios[i];
2186 if (wbio->bi_end_io == NULL ||
2187 (wbio->bi_end_io == end_sync_read &&
2188 (i == r1_bio->read_disk ||
2189 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2190 continue;
2191 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2192 continue;
2193
2194 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2195 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2196 wbio->bi_opf |= MD_FAILFAST;
2197
2198 wbio->bi_end_io = end_sync_write;
2199 atomic_inc(&r1_bio->remaining);
2200 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2201
2202 generic_make_request(wbio);
2203 }
2204
2205 if (atomic_dec_and_test(&r1_bio->remaining)) {
2206 /* if we're here, all write(s) have completed, so clean up */
2207 int s = r1_bio->sectors;
2208 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2209 test_bit(R1BIO_WriteError, &r1_bio->state))
2210 reschedule_retry(r1_bio);
2211 else {
2212 put_buf(r1_bio);
2213 md_done_sync(mddev, s, 1);
2214 }
2215 }
2216 }
2217
2218 /*
2219 * This is a kernel thread which:
2220 *
2221 * 1. Retries failed read operations on working mirrors.
2222 * 2. Updates the raid superblock when problems encounter.
2223 * 3. Performs writes following reads for array synchronising.
2224 */
2225
2226 static void fix_read_error(struct r1conf *conf, int read_disk,
2227 sector_t sect, int sectors)
2228 {
2229 struct mddev *mddev = conf->mddev;
2230 while(sectors) {
2231 int s = sectors;
2232 int d = read_disk;
2233 int success = 0;
2234 int start;
2235 struct md_rdev *rdev;
2236
2237 if (s > (PAGE_SIZE>>9))
2238 s = PAGE_SIZE >> 9;
2239
2240 do {
2241 sector_t first_bad;
2242 int bad_sectors;
2243
2244 rcu_read_lock();
2245 rdev = rcu_dereference(conf->mirrors[d].rdev);
2246 if (rdev &&
2247 (test_bit(In_sync, &rdev->flags) ||
2248 (!test_bit(Faulty, &rdev->flags) &&
2249 rdev->recovery_offset >= sect + s)) &&
2250 is_badblock(rdev, sect, s,
2251 &first_bad, &bad_sectors) == 0) {
2252 atomic_inc(&rdev->nr_pending);
2253 rcu_read_unlock();
2254 if (sync_page_io(rdev, sect, s<<9,
2255 conf->tmppage, REQ_OP_READ, 0, false))
2256 success = 1;
2257 rdev_dec_pending(rdev, mddev);
2258 if (success)
2259 break;
2260 } else
2261 rcu_read_unlock();
2262 d++;
2263 if (d == conf->raid_disks * 2)
2264 d = 0;
2265 } while (!success && d != read_disk);
2266
2267 if (!success) {
2268 /* Cannot read from anywhere - mark it bad */
2269 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2270 if (!rdev_set_badblocks(rdev, sect, s, 0))
2271 md_error(mddev, rdev);
2272 break;
2273 }
2274 /* write it back and re-read */
2275 start = d;
2276 while (d != read_disk) {
2277 if (d==0)
2278 d = conf->raid_disks * 2;
2279 d--;
2280 rcu_read_lock();
2281 rdev = rcu_dereference(conf->mirrors[d].rdev);
2282 if (rdev &&
2283 !test_bit(Faulty, &rdev->flags)) {
2284 atomic_inc(&rdev->nr_pending);
2285 rcu_read_unlock();
2286 r1_sync_page_io(rdev, sect, s,
2287 conf->tmppage, WRITE);
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
2291 }
2292 d = start;
2293 while (d != read_disk) {
2294 char b[BDEVNAME_SIZE];
2295 if (d==0)
2296 d = conf->raid_disks * 2;
2297 d--;
2298 rcu_read_lock();
2299 rdev = rcu_dereference(conf->mirrors[d].rdev);
2300 if (rdev &&
2301 !test_bit(Faulty, &rdev->flags)) {
2302 atomic_inc(&rdev->nr_pending);
2303 rcu_read_unlock();
2304 if (r1_sync_page_io(rdev, sect, s,
2305 conf->tmppage, READ)) {
2306 atomic_add(s, &rdev->corrected_errors);
2307 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2308 mdname(mddev), s,
2309 (unsigned long long)(sect +
2310 rdev->data_offset),
2311 bdevname(rdev->bdev, b));
2312 }
2313 rdev_dec_pending(rdev, mddev);
2314 } else
2315 rcu_read_unlock();
2316 }
2317 sectors -= s;
2318 sect += s;
2319 }
2320 }
2321
2322 static int narrow_write_error(struct r1bio *r1_bio, int i)
2323 {
2324 struct mddev *mddev = r1_bio->mddev;
2325 struct r1conf *conf = mddev->private;
2326 struct md_rdev *rdev = conf->mirrors[i].rdev;
2327
2328 /* bio has the data to be written to device 'i' where
2329 * we just recently had a write error.
2330 * We repeatedly clone the bio and trim down to one block,
2331 * then try the write. Where the write fails we record
2332 * a bad block.
2333 * It is conceivable that the bio doesn't exactly align with
2334 * blocks. We must handle this somehow.
2335 *
2336 * We currently own a reference on the rdev.
2337 */
2338
2339 int block_sectors;
2340 sector_t sector;
2341 int sectors;
2342 int sect_to_write = r1_bio->sectors;
2343 int ok = 1;
2344
2345 if (rdev->badblocks.shift < 0)
2346 return 0;
2347
2348 block_sectors = roundup(1 << rdev->badblocks.shift,
2349 bdev_logical_block_size(rdev->bdev) >> 9);
2350 sector = r1_bio->sector;
2351 sectors = ((sector + block_sectors)
2352 & ~(sector_t)(block_sectors - 1))
2353 - sector;
2354
2355 while (sect_to_write) {
2356 struct bio *wbio;
2357 if (sectors > sect_to_write)
2358 sectors = sect_to_write;
2359 /* Write at 'sector' for 'sectors'*/
2360
2361 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2362 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2363 GFP_NOIO,
2364 mddev->bio_set);
2365 /* We really need a _all clone */
2366 wbio->bi_iter = (struct bvec_iter){ 0 };
2367 } else {
2368 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2369 mddev->bio_set);
2370 }
2371
2372 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2373 wbio->bi_iter.bi_sector = r1_bio->sector;
2374 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2375
2376 bio_trim(wbio, sector - r1_bio->sector, sectors);
2377 wbio->bi_iter.bi_sector += rdev->data_offset;
2378 wbio->bi_bdev = rdev->bdev;
2379
2380 if (submit_bio_wait(wbio) < 0)
2381 /* failure! */
2382 ok = rdev_set_badblocks(rdev, sector,
2383 sectors, 0)
2384 && ok;
2385
2386 bio_put(wbio);
2387 sect_to_write -= sectors;
2388 sector += sectors;
2389 sectors = block_sectors;
2390 }
2391 return ok;
2392 }
2393
2394 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2395 {
2396 int m;
2397 int s = r1_bio->sectors;
2398 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2399 struct md_rdev *rdev = conf->mirrors[m].rdev;
2400 struct bio *bio = r1_bio->bios[m];
2401 if (bio->bi_end_io == NULL)
2402 continue;
2403 if (!bio->bi_error &&
2404 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2405 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2406 }
2407 if (bio->bi_error &&
2408 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2409 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2410 md_error(conf->mddev, rdev);
2411 }
2412 }
2413 put_buf(r1_bio);
2414 md_done_sync(conf->mddev, s, 1);
2415 }
2416
2417 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2418 {
2419 int m, idx;
2420 bool fail = false;
2421
2422 for (m = 0; m < conf->raid_disks * 2 ; m++)
2423 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2424 struct md_rdev *rdev = conf->mirrors[m].rdev;
2425 rdev_clear_badblocks(rdev,
2426 r1_bio->sector,
2427 r1_bio->sectors, 0);
2428 rdev_dec_pending(rdev, conf->mddev);
2429 } else if (r1_bio->bios[m] != NULL) {
2430 /* This drive got a write error. We need to
2431 * narrow down and record precise write
2432 * errors.
2433 */
2434 fail = true;
2435 if (!narrow_write_error(r1_bio, m)) {
2436 md_error(conf->mddev,
2437 conf->mirrors[m].rdev);
2438 /* an I/O failed, we can't clear the bitmap */
2439 set_bit(R1BIO_Degraded, &r1_bio->state);
2440 }
2441 rdev_dec_pending(conf->mirrors[m].rdev,
2442 conf->mddev);
2443 }
2444 if (fail) {
2445 spin_lock_irq(&conf->device_lock);
2446 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2447 idx = sector_to_idx(r1_bio->sector);
2448 atomic_inc(&conf->nr_queued[idx]);
2449 spin_unlock_irq(&conf->device_lock);
2450 /*
2451 * In case freeze_array() is waiting for condition
2452 * get_unqueued_pending() == extra to be true.
2453 */
2454 wake_up(&conf->wait_barrier);
2455 md_wakeup_thread(conf->mddev->thread);
2456 } else {
2457 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2458 close_write(r1_bio);
2459 raid_end_bio_io(r1_bio);
2460 }
2461 }
2462
2463 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2464 {
2465 struct mddev *mddev = conf->mddev;
2466 struct bio *bio;
2467 struct md_rdev *rdev;
2468 dev_t bio_dev;
2469 sector_t bio_sector;
2470
2471 clear_bit(R1BIO_ReadError, &r1_bio->state);
2472 /* we got a read error. Maybe the drive is bad. Maybe just
2473 * the block and we can fix it.
2474 * We freeze all other IO, and try reading the block from
2475 * other devices. When we find one, we re-write
2476 * and check it that fixes the read error.
2477 * This is all done synchronously while the array is
2478 * frozen
2479 */
2480
2481 bio = r1_bio->bios[r1_bio->read_disk];
2482 bio_dev = bio->bi_bdev->bd_dev;
2483 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2484 bio_put(bio);
2485 r1_bio->bios[r1_bio->read_disk] = NULL;
2486
2487 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2488 if (mddev->ro == 0
2489 && !test_bit(FailFast, &rdev->flags)) {
2490 freeze_array(conf, 1);
2491 fix_read_error(conf, r1_bio->read_disk,
2492 r1_bio->sector, r1_bio->sectors);
2493 unfreeze_array(conf);
2494 } else {
2495 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2496 }
2497
2498 rdev_dec_pending(rdev, conf->mddev);
2499 allow_barrier(conf, r1_bio->sector);
2500 bio = r1_bio->master_bio;
2501
2502 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2503 r1_bio->state = 0;
2504 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2505 }
2506
2507 static void raid1d(struct md_thread *thread)
2508 {
2509 struct mddev *mddev = thread->mddev;
2510 struct r1bio *r1_bio;
2511 unsigned long flags;
2512 struct r1conf *conf = mddev->private;
2513 struct list_head *head = &conf->retry_list;
2514 struct blk_plug plug;
2515 int idx;
2516
2517 md_check_recovery(mddev);
2518
2519 if (!list_empty_careful(&conf->bio_end_io_list) &&
2520 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2521 LIST_HEAD(tmp);
2522 spin_lock_irqsave(&conf->device_lock, flags);
2523 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2524 list_splice_init(&conf->bio_end_io_list, &tmp);
2525 spin_unlock_irqrestore(&conf->device_lock, flags);
2526 while (!list_empty(&tmp)) {
2527 r1_bio = list_first_entry(&tmp, struct r1bio,
2528 retry_list);
2529 list_del(&r1_bio->retry_list);
2530 idx = sector_to_idx(r1_bio->sector);
2531 atomic_dec(&conf->nr_queued[idx]);
2532 if (mddev->degraded)
2533 set_bit(R1BIO_Degraded, &r1_bio->state);
2534 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2535 close_write(r1_bio);
2536 raid_end_bio_io(r1_bio);
2537 }
2538 }
2539
2540 blk_start_plug(&plug);
2541 for (;;) {
2542
2543 flush_pending_writes(conf);
2544
2545 spin_lock_irqsave(&conf->device_lock, flags);
2546 if (list_empty(head)) {
2547 spin_unlock_irqrestore(&conf->device_lock, flags);
2548 break;
2549 }
2550 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2551 list_del(head->prev);
2552 idx = sector_to_idx(r1_bio->sector);
2553 atomic_dec(&conf->nr_queued[idx]);
2554 spin_unlock_irqrestore(&conf->device_lock, flags);
2555
2556 mddev = r1_bio->mddev;
2557 conf = mddev->private;
2558 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2559 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2560 test_bit(R1BIO_WriteError, &r1_bio->state))
2561 handle_sync_write_finished(conf, r1_bio);
2562 else
2563 sync_request_write(mddev, r1_bio);
2564 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565 test_bit(R1BIO_WriteError, &r1_bio->state))
2566 handle_write_finished(conf, r1_bio);
2567 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2568 handle_read_error(conf, r1_bio);
2569 else
2570 WARN_ON_ONCE(1);
2571
2572 cond_resched();
2573 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2574 md_check_recovery(mddev);
2575 }
2576 blk_finish_plug(&plug);
2577 }
2578
2579 static int init_resync(struct r1conf *conf)
2580 {
2581 int buffs;
2582
2583 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2584 BUG_ON(conf->r1buf_pool);
2585 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2586 conf->poolinfo);
2587 if (!conf->r1buf_pool)
2588 return -ENOMEM;
2589 return 0;
2590 }
2591
2592 /*
2593 * perform a "sync" on one "block"
2594 *
2595 * We need to make sure that no normal I/O request - particularly write
2596 * requests - conflict with active sync requests.
2597 *
2598 * This is achieved by tracking pending requests and a 'barrier' concept
2599 * that can be installed to exclude normal IO requests.
2600 */
2601
2602 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2603 int *skipped)
2604 {
2605 struct r1conf *conf = mddev->private;
2606 struct r1bio *r1_bio;
2607 struct bio *bio;
2608 sector_t max_sector, nr_sectors;
2609 int disk = -1;
2610 int i;
2611 int wonly = -1;
2612 int write_targets = 0, read_targets = 0;
2613 sector_t sync_blocks;
2614 int still_degraded = 0;
2615 int good_sectors = RESYNC_SECTORS;
2616 int min_bad = 0; /* number of sectors that are bad in all devices */
2617 int idx = sector_to_idx(sector_nr);
2618
2619 if (!conf->r1buf_pool)
2620 if (init_resync(conf))
2621 return 0;
2622
2623 max_sector = mddev->dev_sectors;
2624 if (sector_nr >= max_sector) {
2625 /* If we aborted, we need to abort the
2626 * sync on the 'current' bitmap chunk (there will
2627 * only be one in raid1 resync.
2628 * We can find the current addess in mddev->curr_resync
2629 */
2630 if (mddev->curr_resync < max_sector) /* aborted */
2631 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2632 &sync_blocks, 1);
2633 else /* completed sync */
2634 conf->fullsync = 0;
2635
2636 bitmap_close_sync(mddev->bitmap);
2637 close_sync(conf);
2638
2639 if (mddev_is_clustered(mddev)) {
2640 conf->cluster_sync_low = 0;
2641 conf->cluster_sync_high = 0;
2642 }
2643 return 0;
2644 }
2645
2646 if (mddev->bitmap == NULL &&
2647 mddev->recovery_cp == MaxSector &&
2648 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2649 conf->fullsync == 0) {
2650 *skipped = 1;
2651 return max_sector - sector_nr;
2652 }
2653 /* before building a request, check if we can skip these blocks..
2654 * This call the bitmap_start_sync doesn't actually record anything
2655 */
2656 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2657 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2658 /* We can skip this block, and probably several more */
2659 *skipped = 1;
2660 return sync_blocks;
2661 }
2662
2663 /*
2664 * If there is non-resync activity waiting for a turn, then let it
2665 * though before starting on this new sync request.
2666 */
2667 if (atomic_read(&conf->nr_waiting[idx]))
2668 schedule_timeout_uninterruptible(1);
2669
2670 /* we are incrementing sector_nr below. To be safe, we check against
2671 * sector_nr + two times RESYNC_SECTORS
2672 */
2673
2674 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2675 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2676 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2677
2678 raise_barrier(conf, sector_nr);
2679
2680 rcu_read_lock();
2681 /*
2682 * If we get a correctably read error during resync or recovery,
2683 * we might want to read from a different device. So we
2684 * flag all drives that could conceivably be read from for READ,
2685 * and any others (which will be non-In_sync devices) for WRITE.
2686 * If a read fails, we try reading from something else for which READ
2687 * is OK.
2688 */
2689
2690 r1_bio->mddev = mddev;
2691 r1_bio->sector = sector_nr;
2692 r1_bio->state = 0;
2693 set_bit(R1BIO_IsSync, &r1_bio->state);
2694 /* make sure good_sectors won't go across barrier unit boundary */
2695 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2696
2697 for (i = 0; i < conf->raid_disks * 2; i++) {
2698 struct md_rdev *rdev;
2699 bio = r1_bio->bios[i];
2700
2701 rdev = rcu_dereference(conf->mirrors[i].rdev);
2702 if (rdev == NULL ||
2703 test_bit(Faulty, &rdev->flags)) {
2704 if (i < conf->raid_disks)
2705 still_degraded = 1;
2706 } else if (!test_bit(In_sync, &rdev->flags)) {
2707 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2708 bio->bi_end_io = end_sync_write;
2709 write_targets ++;
2710 } else {
2711 /* may need to read from here */
2712 sector_t first_bad = MaxSector;
2713 int bad_sectors;
2714
2715 if (is_badblock(rdev, sector_nr, good_sectors,
2716 &first_bad, &bad_sectors)) {
2717 if (first_bad > sector_nr)
2718 good_sectors = first_bad - sector_nr;
2719 else {
2720 bad_sectors -= (sector_nr - first_bad);
2721 if (min_bad == 0 ||
2722 min_bad > bad_sectors)
2723 min_bad = bad_sectors;
2724 }
2725 }
2726 if (sector_nr < first_bad) {
2727 if (test_bit(WriteMostly, &rdev->flags)) {
2728 if (wonly < 0)
2729 wonly = i;
2730 } else {
2731 if (disk < 0)
2732 disk = i;
2733 }
2734 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2735 bio->bi_end_io = end_sync_read;
2736 read_targets++;
2737 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2738 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2739 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2740 /*
2741 * The device is suitable for reading (InSync),
2742 * but has bad block(s) here. Let's try to correct them,
2743 * if we are doing resync or repair. Otherwise, leave
2744 * this device alone for this sync request.
2745 */
2746 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2747 bio->bi_end_io = end_sync_write;
2748 write_targets++;
2749 }
2750 }
2751 if (bio->bi_end_io) {
2752 atomic_inc(&rdev->nr_pending);
2753 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2754 bio->bi_bdev = rdev->bdev;
2755 if (test_bit(FailFast, &rdev->flags))
2756 bio->bi_opf |= MD_FAILFAST;
2757 }
2758 }
2759 rcu_read_unlock();
2760 if (disk < 0)
2761 disk = wonly;
2762 r1_bio->read_disk = disk;
2763
2764 if (read_targets == 0 && min_bad > 0) {
2765 /* These sectors are bad on all InSync devices, so we
2766 * need to mark them bad on all write targets
2767 */
2768 int ok = 1;
2769 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2770 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2771 struct md_rdev *rdev = conf->mirrors[i].rdev;
2772 ok = rdev_set_badblocks(rdev, sector_nr,
2773 min_bad, 0
2774 ) && ok;
2775 }
2776 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2777 *skipped = 1;
2778 put_buf(r1_bio);
2779
2780 if (!ok) {
2781 /* Cannot record the badblocks, so need to
2782 * abort the resync.
2783 * If there are multiple read targets, could just
2784 * fail the really bad ones ???
2785 */
2786 conf->recovery_disabled = mddev->recovery_disabled;
2787 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2788 return 0;
2789 } else
2790 return min_bad;
2791
2792 }
2793 if (min_bad > 0 && min_bad < good_sectors) {
2794 /* only resync enough to reach the next bad->good
2795 * transition */
2796 good_sectors = min_bad;
2797 }
2798
2799 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2800 /* extra read targets are also write targets */
2801 write_targets += read_targets-1;
2802
2803 if (write_targets == 0 || read_targets == 0) {
2804 /* There is nowhere to write, so all non-sync
2805 * drives must be failed - so we are finished
2806 */
2807 sector_t rv;
2808 if (min_bad > 0)
2809 max_sector = sector_nr + min_bad;
2810 rv = max_sector - sector_nr;
2811 *skipped = 1;
2812 put_buf(r1_bio);
2813 return rv;
2814 }
2815
2816 if (max_sector > mddev->resync_max)
2817 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2818 if (max_sector > sector_nr + good_sectors)
2819 max_sector = sector_nr + good_sectors;
2820 nr_sectors = 0;
2821 sync_blocks = 0;
2822 do {
2823 struct page *page;
2824 int len = PAGE_SIZE;
2825 if (sector_nr + (len>>9) > max_sector)
2826 len = (max_sector - sector_nr) << 9;
2827 if (len == 0)
2828 break;
2829 if (sync_blocks == 0) {
2830 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2831 &sync_blocks, still_degraded) &&
2832 !conf->fullsync &&
2833 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2834 break;
2835 if ((len >> 9) > sync_blocks)
2836 len = sync_blocks<<9;
2837 }
2838
2839 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2840 struct resync_pages *rp;
2841
2842 bio = r1_bio->bios[i];
2843 rp = get_resync_pages(bio);
2844 if (bio->bi_end_io) {
2845 page = resync_fetch_page(rp, rp->idx++);
2846
2847 /*
2848 * won't fail because the vec table is big
2849 * enough to hold all these pages
2850 */
2851 bio_add_page(bio, page, len, 0);
2852 }
2853 }
2854 nr_sectors += len>>9;
2855 sector_nr += len>>9;
2856 sync_blocks -= (len>>9);
2857 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2858
2859 r1_bio->sectors = nr_sectors;
2860
2861 if (mddev_is_clustered(mddev) &&
2862 conf->cluster_sync_high < sector_nr + nr_sectors) {
2863 conf->cluster_sync_low = mddev->curr_resync_completed;
2864 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2865 /* Send resync message */
2866 md_cluster_ops->resync_info_update(mddev,
2867 conf->cluster_sync_low,
2868 conf->cluster_sync_high);
2869 }
2870
2871 /* For a user-requested sync, we read all readable devices and do a
2872 * compare
2873 */
2874 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2875 atomic_set(&r1_bio->remaining, read_targets);
2876 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2877 bio = r1_bio->bios[i];
2878 if (bio->bi_end_io == end_sync_read) {
2879 read_targets--;
2880 md_sync_acct(bio->bi_bdev, nr_sectors);
2881 if (read_targets == 1)
2882 bio->bi_opf &= ~MD_FAILFAST;
2883 generic_make_request(bio);
2884 }
2885 }
2886 } else {
2887 atomic_set(&r1_bio->remaining, 1);
2888 bio = r1_bio->bios[r1_bio->read_disk];
2889 md_sync_acct(bio->bi_bdev, nr_sectors);
2890 if (read_targets == 1)
2891 bio->bi_opf &= ~MD_FAILFAST;
2892 generic_make_request(bio);
2893
2894 }
2895 return nr_sectors;
2896 }
2897
2898 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2899 {
2900 if (sectors)
2901 return sectors;
2902
2903 return mddev->dev_sectors;
2904 }
2905
2906 static struct r1conf *setup_conf(struct mddev *mddev)
2907 {
2908 struct r1conf *conf;
2909 int i;
2910 struct raid1_info *disk;
2911 struct md_rdev *rdev;
2912 int err = -ENOMEM;
2913
2914 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2915 if (!conf)
2916 goto abort;
2917
2918 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2919 sizeof(atomic_t), GFP_KERNEL);
2920 if (!conf->nr_pending)
2921 goto abort;
2922
2923 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2924 sizeof(atomic_t), GFP_KERNEL);
2925 if (!conf->nr_waiting)
2926 goto abort;
2927
2928 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2929 sizeof(atomic_t), GFP_KERNEL);
2930 if (!conf->nr_queued)
2931 goto abort;
2932
2933 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2934 sizeof(atomic_t), GFP_KERNEL);
2935 if (!conf->barrier)
2936 goto abort;
2937
2938 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2939 * mddev->raid_disks * 2,
2940 GFP_KERNEL);
2941 if (!conf->mirrors)
2942 goto abort;
2943
2944 conf->tmppage = alloc_page(GFP_KERNEL);
2945 if (!conf->tmppage)
2946 goto abort;
2947
2948 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2949 if (!conf->poolinfo)
2950 goto abort;
2951 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2952 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2953 r1bio_pool_free,
2954 conf->poolinfo);
2955 if (!conf->r1bio_pool)
2956 goto abort;
2957
2958 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2959 if (!conf->bio_split)
2960 goto abort;
2961
2962 conf->poolinfo->mddev = mddev;
2963
2964 err = -EINVAL;
2965 spin_lock_init(&conf->device_lock);
2966 rdev_for_each(rdev, mddev) {
2967 int disk_idx = rdev->raid_disk;
2968 if (disk_idx >= mddev->raid_disks
2969 || disk_idx < 0)
2970 continue;
2971 if (test_bit(Replacement, &rdev->flags))
2972 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2973 else
2974 disk = conf->mirrors + disk_idx;
2975
2976 if (disk->rdev)
2977 goto abort;
2978 disk->rdev = rdev;
2979 disk->head_position = 0;
2980 disk->seq_start = MaxSector;
2981 }
2982 conf->raid_disks = mddev->raid_disks;
2983 conf->mddev = mddev;
2984 INIT_LIST_HEAD(&conf->retry_list);
2985 INIT_LIST_HEAD(&conf->bio_end_io_list);
2986
2987 spin_lock_init(&conf->resync_lock);
2988 init_waitqueue_head(&conf->wait_barrier);
2989
2990 bio_list_init(&conf->pending_bio_list);
2991 conf->pending_count = 0;
2992 conf->recovery_disabled = mddev->recovery_disabled - 1;
2993
2994 err = -EIO;
2995 for (i = 0; i < conf->raid_disks * 2; i++) {
2996
2997 disk = conf->mirrors + i;
2998
2999 if (i < conf->raid_disks &&
3000 disk[conf->raid_disks].rdev) {
3001 /* This slot has a replacement. */
3002 if (!disk->rdev) {
3003 /* No original, just make the replacement
3004 * a recovering spare
3005 */
3006 disk->rdev =
3007 disk[conf->raid_disks].rdev;
3008 disk[conf->raid_disks].rdev = NULL;
3009 } else if (!test_bit(In_sync, &disk->rdev->flags))
3010 /* Original is not in_sync - bad */
3011 goto abort;
3012 }
3013
3014 if (!disk->rdev ||
3015 !test_bit(In_sync, &disk->rdev->flags)) {
3016 disk->head_position = 0;
3017 if (disk->rdev &&
3018 (disk->rdev->saved_raid_disk < 0))
3019 conf->fullsync = 1;
3020 }
3021 }
3022
3023 err = -ENOMEM;
3024 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3025 if (!conf->thread)
3026 goto abort;
3027
3028 return conf;
3029
3030 abort:
3031 if (conf) {
3032 mempool_destroy(conf->r1bio_pool);
3033 kfree(conf->mirrors);
3034 safe_put_page(conf->tmppage);
3035 kfree(conf->poolinfo);
3036 kfree(conf->nr_pending);
3037 kfree(conf->nr_waiting);
3038 kfree(conf->nr_queued);
3039 kfree(conf->barrier);
3040 if (conf->bio_split)
3041 bioset_free(conf->bio_split);
3042 kfree(conf);
3043 }
3044 return ERR_PTR(err);
3045 }
3046
3047 static void raid1_free(struct mddev *mddev, void *priv);
3048 static int raid1_run(struct mddev *mddev)
3049 {
3050 struct r1conf *conf;
3051 int i;
3052 struct md_rdev *rdev;
3053 int ret;
3054 bool discard_supported = false;
3055
3056 if (mddev->level != 1) {
3057 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3058 mdname(mddev), mddev->level);
3059 return -EIO;
3060 }
3061 if (mddev->reshape_position != MaxSector) {
3062 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3063 mdname(mddev));
3064 return -EIO;
3065 }
3066 if (mddev_init_writes_pending(mddev) < 0)
3067 return -ENOMEM;
3068 /*
3069 * copy the already verified devices into our private RAID1
3070 * bookkeeping area. [whatever we allocate in run(),
3071 * should be freed in raid1_free()]
3072 */
3073 if (mddev->private == NULL)
3074 conf = setup_conf(mddev);
3075 else
3076 conf = mddev->private;
3077
3078 if (IS_ERR(conf))
3079 return PTR_ERR(conf);
3080
3081 if (mddev->queue) {
3082 blk_queue_max_write_same_sectors(mddev->queue, 0);
3083 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3084 }
3085
3086 rdev_for_each(rdev, mddev) {
3087 if (!mddev->gendisk)
3088 continue;
3089 disk_stack_limits(mddev->gendisk, rdev->bdev,
3090 rdev->data_offset << 9);
3091 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3092 discard_supported = true;
3093 }
3094
3095 mddev->degraded = 0;
3096 for (i=0; i < conf->raid_disks; i++)
3097 if (conf->mirrors[i].rdev == NULL ||
3098 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3099 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3100 mddev->degraded++;
3101
3102 if (conf->raid_disks - mddev->degraded == 1)
3103 mddev->recovery_cp = MaxSector;
3104
3105 if (mddev->recovery_cp != MaxSector)
3106 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3107 mdname(mddev));
3108 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3109 mdname(mddev), mddev->raid_disks - mddev->degraded,
3110 mddev->raid_disks);
3111
3112 /*
3113 * Ok, everything is just fine now
3114 */
3115 mddev->thread = conf->thread;
3116 conf->thread = NULL;
3117 mddev->private = conf;
3118 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3119
3120 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3121
3122 if (mddev->queue) {
3123 if (discard_supported)
3124 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3125 mddev->queue);
3126 else
3127 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3128 mddev->queue);
3129 }
3130
3131 ret = md_integrity_register(mddev);
3132 if (ret) {
3133 md_unregister_thread(&mddev->thread);
3134 raid1_free(mddev, conf);
3135 }
3136 return ret;
3137 }
3138
3139 static void raid1_free(struct mddev *mddev, void *priv)
3140 {
3141 struct r1conf *conf = priv;
3142
3143 mempool_destroy(conf->r1bio_pool);
3144 kfree(conf->mirrors);
3145 safe_put_page(conf->tmppage);
3146 kfree(conf->poolinfo);
3147 kfree(conf->nr_pending);
3148 kfree(conf->nr_waiting);
3149 kfree(conf->nr_queued);
3150 kfree(conf->barrier);
3151 if (conf->bio_split)
3152 bioset_free(conf->bio_split);
3153 kfree(conf);
3154 }
3155
3156 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3157 {
3158 /* no resync is happening, and there is enough space
3159 * on all devices, so we can resize.
3160 * We need to make sure resync covers any new space.
3161 * If the array is shrinking we should possibly wait until
3162 * any io in the removed space completes, but it hardly seems
3163 * worth it.
3164 */
3165 sector_t newsize = raid1_size(mddev, sectors, 0);
3166 if (mddev->external_size &&
3167 mddev->array_sectors > newsize)
3168 return -EINVAL;
3169 if (mddev->bitmap) {
3170 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3171 if (ret)
3172 return ret;
3173 }
3174 md_set_array_sectors(mddev, newsize);
3175 if (sectors > mddev->dev_sectors &&
3176 mddev->recovery_cp > mddev->dev_sectors) {
3177 mddev->recovery_cp = mddev->dev_sectors;
3178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3179 }
3180 mddev->dev_sectors = sectors;
3181 mddev->resync_max_sectors = sectors;
3182 return 0;
3183 }
3184
3185 static int raid1_reshape(struct mddev *mddev)
3186 {
3187 /* We need to:
3188 * 1/ resize the r1bio_pool
3189 * 2/ resize conf->mirrors
3190 *
3191 * We allocate a new r1bio_pool if we can.
3192 * Then raise a device barrier and wait until all IO stops.
3193 * Then resize conf->mirrors and swap in the new r1bio pool.
3194 *
3195 * At the same time, we "pack" the devices so that all the missing
3196 * devices have the higher raid_disk numbers.
3197 */
3198 mempool_t *newpool, *oldpool;
3199 struct pool_info *newpoolinfo;
3200 struct raid1_info *newmirrors;
3201 struct r1conf *conf = mddev->private;
3202 int cnt, raid_disks;
3203 unsigned long flags;
3204 int d, d2;
3205
3206 /* Cannot change chunk_size, layout, or level */
3207 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3208 mddev->layout != mddev->new_layout ||
3209 mddev->level != mddev->new_level) {
3210 mddev->new_chunk_sectors = mddev->chunk_sectors;
3211 mddev->new_layout = mddev->layout;
3212 mddev->new_level = mddev->level;
3213 return -EINVAL;
3214 }
3215
3216 if (!mddev_is_clustered(mddev))
3217 md_allow_write(mddev);
3218
3219 raid_disks = mddev->raid_disks + mddev->delta_disks;
3220
3221 if (raid_disks < conf->raid_disks) {
3222 cnt=0;
3223 for (d= 0; d < conf->raid_disks; d++)
3224 if (conf->mirrors[d].rdev)
3225 cnt++;
3226 if (cnt > raid_disks)
3227 return -EBUSY;
3228 }
3229
3230 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3231 if (!newpoolinfo)
3232 return -ENOMEM;
3233 newpoolinfo->mddev = mddev;
3234 newpoolinfo->raid_disks = raid_disks * 2;
3235
3236 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3237 r1bio_pool_free, newpoolinfo);
3238 if (!newpool) {
3239 kfree(newpoolinfo);
3240 return -ENOMEM;
3241 }
3242 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3243 GFP_KERNEL);
3244 if (!newmirrors) {
3245 kfree(newpoolinfo);
3246 mempool_destroy(newpool);
3247 return -ENOMEM;
3248 }
3249
3250 freeze_array(conf, 0);
3251
3252 /* ok, everything is stopped */
3253 oldpool = conf->r1bio_pool;
3254 conf->r1bio_pool = newpool;
3255
3256 for (d = d2 = 0; d < conf->raid_disks; d++) {
3257 struct md_rdev *rdev = conf->mirrors[d].rdev;
3258 if (rdev && rdev->raid_disk != d2) {
3259 sysfs_unlink_rdev(mddev, rdev);
3260 rdev->raid_disk = d2;
3261 sysfs_unlink_rdev(mddev, rdev);
3262 if (sysfs_link_rdev(mddev, rdev))
3263 pr_warn("md/raid1:%s: cannot register rd%d\n",
3264 mdname(mddev), rdev->raid_disk);
3265 }
3266 if (rdev)
3267 newmirrors[d2++].rdev = rdev;
3268 }
3269 kfree(conf->mirrors);
3270 conf->mirrors = newmirrors;
3271 kfree(conf->poolinfo);
3272 conf->poolinfo = newpoolinfo;
3273
3274 spin_lock_irqsave(&conf->device_lock, flags);
3275 mddev->degraded += (raid_disks - conf->raid_disks);
3276 spin_unlock_irqrestore(&conf->device_lock, flags);
3277 conf->raid_disks = mddev->raid_disks = raid_disks;
3278 mddev->delta_disks = 0;
3279
3280 unfreeze_array(conf);
3281
3282 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284 md_wakeup_thread(mddev->thread);
3285
3286 mempool_destroy(oldpool);
3287 return 0;
3288 }
3289
3290 static void raid1_quiesce(struct mddev *mddev, int state)
3291 {
3292 struct r1conf *conf = mddev->private;
3293
3294 switch(state) {
3295 case 2: /* wake for suspend */
3296 wake_up(&conf->wait_barrier);
3297 break;
3298 case 1:
3299 freeze_array(conf, 0);
3300 break;
3301 case 0:
3302 unfreeze_array(conf);
3303 break;
3304 }
3305 }
3306
3307 static void *raid1_takeover(struct mddev *mddev)
3308 {
3309 /* raid1 can take over:
3310 * raid5 with 2 devices, any layout or chunk size
3311 */
3312 if (mddev->level == 5 && mddev->raid_disks == 2) {
3313 struct r1conf *conf;
3314 mddev->new_level = 1;
3315 mddev->new_layout = 0;
3316 mddev->new_chunk_sectors = 0;
3317 conf = setup_conf(mddev);
3318 if (!IS_ERR(conf)) {
3319 /* Array must appear to be quiesced */
3320 conf->array_frozen = 1;
3321 mddev_clear_unsupported_flags(mddev,
3322 UNSUPPORTED_MDDEV_FLAGS);
3323 }
3324 return conf;
3325 }
3326 return ERR_PTR(-EINVAL);
3327 }
3328
3329 static struct md_personality raid1_personality =
3330 {
3331 .name = "raid1",
3332 .level = 1,
3333 .owner = THIS_MODULE,
3334 .make_request = raid1_make_request,
3335 .run = raid1_run,
3336 .free = raid1_free,
3337 .status = raid1_status,
3338 .error_handler = raid1_error,
3339 .hot_add_disk = raid1_add_disk,
3340 .hot_remove_disk= raid1_remove_disk,
3341 .spare_active = raid1_spare_active,
3342 .sync_request = raid1_sync_request,
3343 .resize = raid1_resize,
3344 .size = raid1_size,
3345 .check_reshape = raid1_reshape,
3346 .quiesce = raid1_quiesce,
3347 .takeover = raid1_takeover,
3348 .congested = raid1_congested,
3349 };
3350
3351 static int __init raid_init(void)
3352 {
3353 return register_md_personality(&raid1_personality);
3354 }
3355
3356 static void raid_exit(void)
3357 {
3358 unregister_md_personality(&raid1_personality);
3359 }
3360
3361 module_init(raid_init);
3362 module_exit(raid_exit);
3363 MODULE_LICENSE("GPL");
3364 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3365 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3366 MODULE_ALIAS("md-raid1");
3367 MODULE_ALIAS("md-level-1");
3368
3369 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);