]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN))
51
52 /*
53 * Number of guaranteed r1bios in case of extreme VM load:
54 */
55 #define NR_RAID1_BIOS 256
56
57 /* when we get a read error on a read-only array, we redirect to another
58 * device without failing the first device, or trying to over-write to
59 * correct the read error. To keep track of bad blocks on a per-bio
60 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
61 */
62 #define IO_BLOCKED ((struct bio *)1)
63 /* When we successfully write to a known bad-block, we need to remove the
64 * bad-block marking which must be done from process context. So we record
65 * the success by setting devs[n].bio to IO_MADE_GOOD
66 */
67 #define IO_MADE_GOOD ((struct bio *)2)
68
69 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
70
71 /* When there are this many requests queue to be written by
72 * the raid1 thread, we become 'congested' to provide back-pressure
73 * for writeback.
74 */
75 static int max_queued_requests = 1024;
76
77 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
78 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
79
80 #define raid1_log(md, fmt, args...) \
81 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
82
83 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
84 {
85 struct pool_info *pi = data;
86 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
87
88 /* allocate a r1bio with room for raid_disks entries in the bios array */
89 return kzalloc(size, gfp_flags);
90 }
91
92 static void r1bio_pool_free(void *r1_bio, void *data)
93 {
94 kfree(r1_bio);
95 }
96
97 #define RESYNC_BLOCK_SIZE (64*1024)
98 #define RESYNC_DEPTH 32
99 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
100 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
101 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
102 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
103 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
104 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
105
106 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 struct pool_info *pi = data;
109 struct r1bio *r1_bio;
110 struct bio *bio;
111 int need_pages;
112 int i, j;
113
114 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
115 if (!r1_bio)
116 return NULL;
117
118 /*
119 * Allocate bios : 1 for reading, n-1 for writing
120 */
121 for (j = pi->raid_disks ; j-- ; ) {
122 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
123 if (!bio)
124 goto out_free_bio;
125 r1_bio->bios[j] = bio;
126 }
127 /*
128 * Allocate RESYNC_PAGES data pages and attach them to
129 * the first bio.
130 * If this is a user-requested check/repair, allocate
131 * RESYNC_PAGES for each bio.
132 */
133 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
134 need_pages = pi->raid_disks;
135 else
136 need_pages = 1;
137 for (j = 0; j < need_pages; j++) {
138 bio = r1_bio->bios[j];
139 bio->bi_vcnt = RESYNC_PAGES;
140
141 if (bio_alloc_pages(bio, gfp_flags))
142 goto out_free_pages;
143 }
144 /* If not user-requests, copy the page pointers to all bios */
145 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
146 for (i=0; i<RESYNC_PAGES ; i++)
147 for (j=1; j<pi->raid_disks; j++)
148 r1_bio->bios[j]->bi_io_vec[i].bv_page =
149 r1_bio->bios[0]->bi_io_vec[i].bv_page;
150 }
151
152 r1_bio->master_bio = NULL;
153
154 return r1_bio;
155
156 out_free_pages:
157 while (--j >= 0)
158 bio_free_pages(r1_bio->bios[j]);
159
160 out_free_bio:
161 while (++j < pi->raid_disks)
162 bio_put(r1_bio->bios[j]);
163 r1bio_pool_free(r1_bio, data);
164 return NULL;
165 }
166
167 static void r1buf_pool_free(void *__r1_bio, void *data)
168 {
169 struct pool_info *pi = data;
170 int i,j;
171 struct r1bio *r1bio = __r1_bio;
172
173 for (i = 0; i < RESYNC_PAGES; i++)
174 for (j = pi->raid_disks; j-- ;) {
175 if (j == 0 ||
176 r1bio->bios[j]->bi_io_vec[i].bv_page !=
177 r1bio->bios[0]->bi_io_vec[i].bv_page)
178 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
179 }
180 for (i=0 ; i < pi->raid_disks; i++)
181 bio_put(r1bio->bios[i]);
182
183 r1bio_pool_free(r1bio, data);
184 }
185
186 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
187 {
188 int i;
189
190 for (i = 0; i < conf->raid_disks * 2; i++) {
191 struct bio **bio = r1_bio->bios + i;
192 if (!BIO_SPECIAL(*bio))
193 bio_put(*bio);
194 *bio = NULL;
195 }
196 }
197
198 static void free_r1bio(struct r1bio *r1_bio)
199 {
200 struct r1conf *conf = r1_bio->mddev->private;
201
202 put_all_bios(conf, r1_bio);
203 mempool_free(r1_bio, conf->r1bio_pool);
204 }
205
206 static void put_buf(struct r1bio *r1_bio)
207 {
208 struct r1conf *conf = r1_bio->mddev->private;
209 sector_t sect = r1_bio->sector;
210 int i;
211
212 for (i = 0; i < conf->raid_disks * 2; i++) {
213 struct bio *bio = r1_bio->bios[i];
214 if (bio->bi_end_io)
215 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
216 }
217
218 mempool_free(r1_bio, conf->r1buf_pool);
219
220 lower_barrier(conf, sect);
221 }
222
223 static void reschedule_retry(struct r1bio *r1_bio)
224 {
225 unsigned long flags;
226 struct mddev *mddev = r1_bio->mddev;
227 struct r1conf *conf = mddev->private;
228 int idx;
229
230 idx = sector_to_idx(r1_bio->sector);
231 spin_lock_irqsave(&conf->device_lock, flags);
232 list_add(&r1_bio->retry_list, &conf->retry_list);
233 atomic_inc(&conf->nr_queued[idx]);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235
236 wake_up(&conf->wait_barrier);
237 md_wakeup_thread(mddev->thread);
238 }
239
240 /*
241 * raid_end_bio_io() is called when we have finished servicing a mirrored
242 * operation and are ready to return a success/failure code to the buffer
243 * cache layer.
244 */
245 static void call_bio_endio(struct r1bio *r1_bio)
246 {
247 struct bio *bio = r1_bio->master_bio;
248 int done;
249 struct r1conf *conf = r1_bio->mddev->private;
250 sector_t bi_sector = bio->bi_iter.bi_sector;
251
252 if (bio->bi_phys_segments) {
253 unsigned long flags;
254 spin_lock_irqsave(&conf->device_lock, flags);
255 bio->bi_phys_segments--;
256 done = (bio->bi_phys_segments == 0);
257 spin_unlock_irqrestore(&conf->device_lock, flags);
258 /*
259 * make_request() might be waiting for
260 * bi_phys_segments to decrease
261 */
262 wake_up(&conf->wait_barrier);
263 } else
264 done = 1;
265
266 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
267 bio->bi_error = -EIO;
268
269 if (done) {
270 bio_endio(bio);
271 /*
272 * Wake up any possible resync thread that waits for the device
273 * to go idle.
274 */
275 allow_barrier(conf, bi_sector);
276 }
277 }
278
279 static void raid_end_bio_io(struct r1bio *r1_bio)
280 {
281 struct bio *bio = r1_bio->master_bio;
282
283 /* if nobody has done the final endio yet, do it now */
284 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
285 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
286 (bio_data_dir(bio) == WRITE) ? "write" : "read",
287 (unsigned long long) bio->bi_iter.bi_sector,
288 (unsigned long long) bio_end_sector(bio) - 1);
289
290 call_bio_endio(r1_bio);
291 }
292 free_r1bio(r1_bio);
293 }
294
295 /*
296 * Update disk head position estimator based on IRQ completion info.
297 */
298 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
299 {
300 struct r1conf *conf = r1_bio->mddev->private;
301
302 conf->mirrors[disk].head_position =
303 r1_bio->sector + (r1_bio->sectors);
304 }
305
306 /*
307 * Find the disk number which triggered given bio
308 */
309 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
310 {
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313 int raid_disks = conf->raid_disks;
314
315 for (mirror = 0; mirror < raid_disks * 2; mirror++)
316 if (r1_bio->bios[mirror] == bio)
317 break;
318
319 BUG_ON(mirror == raid_disks * 2);
320 update_head_pos(mirror, r1_bio);
321
322 return mirror;
323 }
324
325 static void raid1_end_read_request(struct bio *bio)
326 {
327 int uptodate = !bio->bi_error;
328 struct r1bio *r1_bio = bio->bi_private;
329 struct r1conf *conf = r1_bio->mddev->private;
330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
331
332 /*
333 * this branch is our 'one mirror IO has finished' event handler:
334 */
335 update_head_pos(r1_bio->read_disk, r1_bio);
336
337 if (uptodate)
338 set_bit(R1BIO_Uptodate, &r1_bio->state);
339 else if (test_bit(FailFast, &rdev->flags) &&
340 test_bit(R1BIO_FailFast, &r1_bio->state))
341 /* This was a fail-fast read so we definitely
342 * want to retry */
343 ;
344 else {
345 /* If all other devices have failed, we want to return
346 * the error upwards rather than fail the last device.
347 * Here we redefine "uptodate" to mean "Don't want to retry"
348 */
349 unsigned long flags;
350 spin_lock_irqsave(&conf->device_lock, flags);
351 if (r1_bio->mddev->degraded == conf->raid_disks ||
352 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
353 test_bit(In_sync, &rdev->flags)))
354 uptodate = 1;
355 spin_unlock_irqrestore(&conf->device_lock, flags);
356 }
357
358 if (uptodate) {
359 raid_end_bio_io(r1_bio);
360 rdev_dec_pending(rdev, conf->mddev);
361 } else {
362 /*
363 * oops, read error:
364 */
365 char b[BDEVNAME_SIZE];
366 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
367 mdname(conf->mddev),
368 bdevname(rdev->bdev, b),
369 (unsigned long long)r1_bio->sector);
370 set_bit(R1BIO_ReadError, &r1_bio->state);
371 reschedule_retry(r1_bio);
372 /* don't drop the reference on read_disk yet */
373 }
374 }
375
376 static void close_write(struct r1bio *r1_bio)
377 {
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 /* free extra copy of the data pages */
381 int i = r1_bio->behind_page_count;
382 while (i--)
383 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
384 kfree(r1_bio->behind_bvecs);
385 r1_bio->behind_bvecs = NULL;
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
408 }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 struct r1bio *r1_bio = bio->bi_private;
414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 struct r1conf *conf = r1_bio->mddev->private;
416 struct bio *to_put = NULL;
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 bool discard_error;
420
421 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
422
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
426 if (bio->bi_error && !discard_error) {
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
450 } else {
451 /*
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
460 */
461 sector_t first_bad;
462 int bad_sectors;
463
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
476 set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 &first_bad, &bad_sectors) && !discard_error) {
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
486 if (behind) {
487 if (test_bit(WriteMostly, &rdev->flags))
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
506 call_bio_endio(r1_bio);
507 }
508 }
509 }
510 if (r1_bio->bios[mirror] == NULL)
511 rdev_dec_pending(rdev, conf->mddev);
512
513 /*
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
517 r1_bio_write_done(r1_bio);
518
519 if (to_put)
520 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525 {
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540 }
541
542 /*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 const sector_t this_sector = r1_bio->sector;
559 int sectors;
560 int best_good_sectors;
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
563 int disk;
564 sector_t best_dist;
565 unsigned int min_pending;
566 struct md_rdev *rdev;
567 int choose_first;
568 int choose_next_idle;
569
570 rcu_read_lock();
571 /*
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
577 sectors = r1_bio->sectors;
578 best_disk = -1;
579 best_dist_disk = -1;
580 best_dist = MaxSector;
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
583 best_good_sectors = 0;
584 has_nonrot_disk = 0;
585 choose_next_idle = 0;
586 clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
595
596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 sector_t dist;
598 sector_t first_bad;
599 int bad_sectors;
600 unsigned int pending;
601 bool nonrot;
602
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
606 || test_bit(Faulty, &rdev->flags))
607 continue;
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
610 continue;
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk < 0) {
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
617 if (first_bad <= this_sector)
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
623 best_dist_disk = disk;
624 best_pending_disk = disk;
625 }
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
657 } else
658 best_good_sectors = sectors;
659
660 if (best_disk >= 0)
661 /* At least two disks to choose from so failfast is OK */
662 set_bit(R1BIO_FailFast, &r1_bio->state);
663
664 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
665 has_nonrot_disk |= nonrot;
666 pending = atomic_read(&rdev->nr_pending);
667 dist = abs(this_sector - conf->mirrors[disk].head_position);
668 if (choose_first) {
669 best_disk = disk;
670 break;
671 }
672 /* Don't change to another disk for sequential reads */
673 if (conf->mirrors[disk].next_seq_sect == this_sector
674 || dist == 0) {
675 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
676 struct raid1_info *mirror = &conf->mirrors[disk];
677
678 best_disk = disk;
679 /*
680 * If buffered sequential IO size exceeds optimal
681 * iosize, check if there is idle disk. If yes, choose
682 * the idle disk. read_balance could already choose an
683 * idle disk before noticing it's a sequential IO in
684 * this disk. This doesn't matter because this disk
685 * will idle, next time it will be utilized after the
686 * first disk has IO size exceeds optimal iosize. In
687 * this way, iosize of the first disk will be optimal
688 * iosize at least. iosize of the second disk might be
689 * small, but not a big deal since when the second disk
690 * starts IO, the first disk is likely still busy.
691 */
692 if (nonrot && opt_iosize > 0 &&
693 mirror->seq_start != MaxSector &&
694 mirror->next_seq_sect > opt_iosize &&
695 mirror->next_seq_sect - opt_iosize >=
696 mirror->seq_start) {
697 choose_next_idle = 1;
698 continue;
699 }
700 break;
701 }
702
703 if (choose_next_idle)
704 continue;
705
706 if (min_pending > pending) {
707 min_pending = pending;
708 best_pending_disk = disk;
709 }
710
711 if (dist < best_dist) {
712 best_dist = dist;
713 best_dist_disk = disk;
714 }
715 }
716
717 /*
718 * If all disks are rotational, choose the closest disk. If any disk is
719 * non-rotational, choose the disk with less pending request even the
720 * disk is rotational, which might/might not be optimal for raids with
721 * mixed ratation/non-rotational disks depending on workload.
722 */
723 if (best_disk == -1) {
724 if (has_nonrot_disk || min_pending == 0)
725 best_disk = best_pending_disk;
726 else
727 best_disk = best_dist_disk;
728 }
729
730 if (best_disk >= 0) {
731 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
732 if (!rdev)
733 goto retry;
734 atomic_inc(&rdev->nr_pending);
735 sectors = best_good_sectors;
736
737 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
738 conf->mirrors[best_disk].seq_start = this_sector;
739
740 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
741 }
742 rcu_read_unlock();
743 *max_sectors = sectors;
744
745 return best_disk;
746 }
747
748 static int raid1_congested(struct mddev *mddev, int bits)
749 {
750 struct r1conf *conf = mddev->private;
751 int i, ret = 0;
752
753 if ((bits & (1 << WB_async_congested)) &&
754 conf->pending_count >= max_queued_requests)
755 return 1;
756
757 rcu_read_lock();
758 for (i = 0; i < conf->raid_disks * 2; i++) {
759 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
760 if (rdev && !test_bit(Faulty, &rdev->flags)) {
761 struct request_queue *q = bdev_get_queue(rdev->bdev);
762
763 BUG_ON(!q);
764
765 /* Note the '|| 1' - when read_balance prefers
766 * non-congested targets, it can be removed
767 */
768 if ((bits & (1 << WB_async_congested)) || 1)
769 ret |= bdi_congested(q->backing_dev_info, bits);
770 else
771 ret &= bdi_congested(q->backing_dev_info, bits);
772 }
773 }
774 rcu_read_unlock();
775 return ret;
776 }
777
778 static void flush_pending_writes(struct r1conf *conf)
779 {
780 /* Any writes that have been queued but are awaiting
781 * bitmap updates get flushed here.
782 */
783 spin_lock_irq(&conf->device_lock);
784
785 if (conf->pending_bio_list.head) {
786 struct bio *bio;
787 bio = bio_list_get(&conf->pending_bio_list);
788 conf->pending_count = 0;
789 spin_unlock_irq(&conf->device_lock);
790 /* flush any pending bitmap writes to
791 * disk before proceeding w/ I/O */
792 bitmap_unplug(conf->mddev->bitmap);
793 wake_up(&conf->wait_barrier);
794
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
797 struct md_rdev *rdev = (void*)bio->bi_bdev;
798 bio->bi_next = NULL;
799 bio->bi_bdev = rdev->bdev;
800 if (test_bit(Faulty, &rdev->flags)) {
801 bio->bi_error = -EIO;
802 bio_endio(bio);
803 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
804 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
805 /* Just ignore it */
806 bio_endio(bio);
807 else
808 generic_make_request(bio);
809 bio = next;
810 }
811 } else
812 spin_unlock_irq(&conf->device_lock);
813 }
814
815 /* Barriers....
816 * Sometimes we need to suspend IO while we do something else,
817 * either some resync/recovery, or reconfigure the array.
818 * To do this we raise a 'barrier'.
819 * The 'barrier' is a counter that can be raised multiple times
820 * to count how many activities are happening which preclude
821 * normal IO.
822 * We can only raise the barrier if there is no pending IO.
823 * i.e. if nr_pending == 0.
824 * We choose only to raise the barrier if no-one is waiting for the
825 * barrier to go down. This means that as soon as an IO request
826 * is ready, no other operations which require a barrier will start
827 * until the IO request has had a chance.
828 *
829 * So: regular IO calls 'wait_barrier'. When that returns there
830 * is no backgroup IO happening, It must arrange to call
831 * allow_barrier when it has finished its IO.
832 * backgroup IO calls must call raise_barrier. Once that returns
833 * there is no normal IO happeing. It must arrange to call
834 * lower_barrier when the particular background IO completes.
835 */
836 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
837 {
838 int idx = sector_to_idx(sector_nr);
839
840 spin_lock_irq(&conf->resync_lock);
841
842 /* Wait until no block IO is waiting */
843 wait_event_lock_irq(conf->wait_barrier,
844 !atomic_read(&conf->nr_waiting[idx]),
845 conf->resync_lock);
846
847 /* block any new IO from starting */
848 atomic_inc(&conf->barrier[idx]);
849 /*
850 * In raise_barrier() we firstly increase conf->barrier[idx] then
851 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
852 * increase conf->nr_pending[idx] then check conf->barrier[idx].
853 * A memory barrier here to make sure conf->nr_pending[idx] won't
854 * be fetched before conf->barrier[idx] is increased. Otherwise
855 * there will be a race between raise_barrier() and _wait_barrier().
856 */
857 smp_mb__after_atomic();
858
859 /* For these conditions we must wait:
860 * A: while the array is in frozen state
861 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
862 * existing in corresponding I/O barrier bucket.
863 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
864 * max resync count which allowed on current I/O barrier bucket.
865 */
866 wait_event_lock_irq(conf->wait_barrier,
867 !conf->array_frozen &&
868 !atomic_read(&conf->nr_pending[idx]) &&
869 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
870 conf->resync_lock);
871
872 atomic_inc(&conf->nr_pending[idx]);
873 spin_unlock_irq(&conf->resync_lock);
874 }
875
876 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
877 {
878 int idx = sector_to_idx(sector_nr);
879
880 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
881
882 atomic_dec(&conf->barrier[idx]);
883 atomic_dec(&conf->nr_pending[idx]);
884 wake_up(&conf->wait_barrier);
885 }
886
887 static void _wait_barrier(struct r1conf *conf, int idx)
888 {
889 /*
890 * We need to increase conf->nr_pending[idx] very early here,
891 * then raise_barrier() can be blocked when it waits for
892 * conf->nr_pending[idx] to be 0. Then we can avoid holding
893 * conf->resync_lock when there is no barrier raised in same
894 * barrier unit bucket. Also if the array is frozen, I/O
895 * should be blocked until array is unfrozen.
896 */
897 atomic_inc(&conf->nr_pending[idx]);
898 /*
899 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
900 * check conf->barrier[idx]. In raise_barrier() we firstly increase
901 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
902 * barrier is necessary here to make sure conf->barrier[idx] won't be
903 * fetched before conf->nr_pending[idx] is increased. Otherwise there
904 * will be a race between _wait_barrier() and raise_barrier().
905 */
906 smp_mb__after_atomic();
907
908 /*
909 * Don't worry about checking two atomic_t variables at same time
910 * here. If during we check conf->barrier[idx], the array is
911 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
912 * 0, it is safe to return and make the I/O continue. Because the
913 * array is frozen, all I/O returned here will eventually complete
914 * or be queued, no race will happen. See code comment in
915 * frozen_array().
916 */
917 if (!READ_ONCE(conf->array_frozen) &&
918 !atomic_read(&conf->barrier[idx]))
919 return;
920
921 /*
922 * After holding conf->resync_lock, conf->nr_pending[idx]
923 * should be decreased before waiting for barrier to drop.
924 * Otherwise, we may encounter a race condition because
925 * raise_barrer() might be waiting for conf->nr_pending[idx]
926 * to be 0 at same time.
927 */
928 spin_lock_irq(&conf->resync_lock);
929 atomic_inc(&conf->nr_waiting[idx]);
930 atomic_dec(&conf->nr_pending[idx]);
931 /*
932 * In case freeze_array() is waiting for
933 * get_unqueued_pending() == extra
934 */
935 wake_up(&conf->wait_barrier);
936 /* Wait for the barrier in same barrier unit bucket to drop. */
937 wait_event_lock_irq(conf->wait_barrier,
938 !conf->array_frozen &&
939 !atomic_read(&conf->barrier[idx]),
940 conf->resync_lock);
941 atomic_inc(&conf->nr_pending[idx]);
942 atomic_dec(&conf->nr_waiting[idx]);
943 spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
947 {
948 int idx = sector_to_idx(sector_nr);
949
950 /*
951 * Very similar to _wait_barrier(). The difference is, for read
952 * I/O we don't need wait for sync I/O, but if the whole array
953 * is frozen, the read I/O still has to wait until the array is
954 * unfrozen. Since there is no ordering requirement with
955 * conf->barrier[idx] here, memory barrier is unnecessary as well.
956 */
957 atomic_inc(&conf->nr_pending[idx]);
958
959 if (!READ_ONCE(conf->array_frozen))
960 return;
961
962 spin_lock_irq(&conf->resync_lock);
963 atomic_inc(&conf->nr_waiting[idx]);
964 atomic_dec(&conf->nr_pending[idx]);
965 /*
966 * In case freeze_array() is waiting for
967 * get_unqueued_pending() == extra
968 */
969 wake_up(&conf->wait_barrier);
970 /* Wait for array to be unfrozen */
971 wait_event_lock_irq(conf->wait_barrier,
972 !conf->array_frozen,
973 conf->resync_lock);
974 atomic_inc(&conf->nr_pending[idx]);
975 atomic_dec(&conf->nr_waiting[idx]);
976 spin_unlock_irq(&conf->resync_lock);
977 }
978
979 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
980 {
981 int idx = sector_to_idx(sector_nr);
982
983 _wait_barrier(conf, idx);
984 }
985
986 static void wait_all_barriers(struct r1conf *conf)
987 {
988 int idx;
989
990 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
991 _wait_barrier(conf, idx);
992 }
993
994 static void _allow_barrier(struct r1conf *conf, int idx)
995 {
996 atomic_dec(&conf->nr_pending[idx]);
997 wake_up(&conf->wait_barrier);
998 }
999
1000 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1001 {
1002 int idx = sector_to_idx(sector_nr);
1003
1004 _allow_barrier(conf, idx);
1005 }
1006
1007 static void allow_all_barriers(struct r1conf *conf)
1008 {
1009 int idx;
1010
1011 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012 _allow_barrier(conf, idx);
1013 }
1014
1015 /* conf->resync_lock should be held */
1016 static int get_unqueued_pending(struct r1conf *conf)
1017 {
1018 int idx, ret;
1019
1020 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1021 ret += atomic_read(&conf->nr_pending[idx]) -
1022 atomic_read(&conf->nr_queued[idx]);
1023
1024 return ret;
1025 }
1026
1027 static void freeze_array(struct r1conf *conf, int extra)
1028 {
1029 /* Stop sync I/O and normal I/O and wait for everything to
1030 * go quite.
1031 * This is called in two situations:
1032 * 1) management command handlers (reshape, remove disk, quiesce).
1033 * 2) one normal I/O request failed.
1034
1035 * After array_frozen is set to 1, new sync IO will be blocked at
1036 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037 * or wait_read_barrier(). The flying I/Os will either complete or be
1038 * queued. When everything goes quite, there are only queued I/Os left.
1039
1040 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041 * barrier bucket index which this I/O request hits. When all sync and
1042 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044 * in handle_read_error(), we may call freeze_array() before trying to
1045 * fix the read error. In this case, the error read I/O is not queued,
1046 * so get_unqueued_pending() == 1.
1047 *
1048 * Therefore before this function returns, we need to wait until
1049 * get_unqueued_pendings(conf) gets equal to extra. For
1050 * normal I/O context, extra is 1, in rested situations extra is 0.
1051 */
1052 spin_lock_irq(&conf->resync_lock);
1053 conf->array_frozen = 1;
1054 raid1_log(conf->mddev, "wait freeze");
1055 wait_event_lock_irq_cmd(
1056 conf->wait_barrier,
1057 get_unqueued_pending(conf) == extra,
1058 conf->resync_lock,
1059 flush_pending_writes(conf));
1060 spin_unlock_irq(&conf->resync_lock);
1061 }
1062 static void unfreeze_array(struct r1conf *conf)
1063 {
1064 /* reverse the effect of the freeze */
1065 spin_lock_irq(&conf->resync_lock);
1066 conf->array_frozen = 0;
1067 spin_unlock_irq(&conf->resync_lock);
1068 wake_up(&conf->wait_barrier);
1069 }
1070
1071 /* duplicate the data pages for behind I/O
1072 */
1073 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1074 {
1075 int i;
1076 struct bio_vec *bvec;
1077 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1078 GFP_NOIO);
1079 if (unlikely(!bvecs))
1080 return;
1081
1082 bio_for_each_segment_all(bvec, bio, i) {
1083 bvecs[i] = *bvec;
1084 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1085 if (unlikely(!bvecs[i].bv_page))
1086 goto do_sync_io;
1087 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1088 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1089 kunmap(bvecs[i].bv_page);
1090 kunmap(bvec->bv_page);
1091 }
1092 r1_bio->behind_bvecs = bvecs;
1093 r1_bio->behind_page_count = bio->bi_vcnt;
1094 set_bit(R1BIO_BehindIO, &r1_bio->state);
1095 return;
1096
1097 do_sync_io:
1098 for (i = 0; i < bio->bi_vcnt; i++)
1099 if (bvecs[i].bv_page)
1100 put_page(bvecs[i].bv_page);
1101 kfree(bvecs);
1102 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103 bio->bi_iter.bi_size);
1104 }
1105
1106 struct raid1_plug_cb {
1107 struct blk_plug_cb cb;
1108 struct bio_list pending;
1109 int pending_cnt;
1110 };
1111
1112 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113 {
1114 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1115 cb);
1116 struct mddev *mddev = plug->cb.data;
1117 struct r1conf *conf = mddev->private;
1118 struct bio *bio;
1119
1120 if (from_schedule || current->bio_list) {
1121 spin_lock_irq(&conf->device_lock);
1122 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1123 conf->pending_count += plug->pending_cnt;
1124 spin_unlock_irq(&conf->device_lock);
1125 wake_up(&conf->wait_barrier);
1126 md_wakeup_thread(mddev->thread);
1127 kfree(plug);
1128 return;
1129 }
1130
1131 /* we aren't scheduling, so we can do the write-out directly. */
1132 bio = bio_list_get(&plug->pending);
1133 bitmap_unplug(mddev->bitmap);
1134 wake_up(&conf->wait_barrier);
1135
1136 while (bio) { /* submit pending writes */
1137 struct bio *next = bio->bi_next;
1138 struct md_rdev *rdev = (void*)bio->bi_bdev;
1139 bio->bi_next = NULL;
1140 bio->bi_bdev = rdev->bdev;
1141 if (test_bit(Faulty, &rdev->flags)) {
1142 bio->bi_error = -EIO;
1143 bio_endio(bio);
1144 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1151 }
1152 kfree(plug);
1153 }
1154
1155 static inline struct r1bio *
1156 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1157 {
1158 struct r1conf *conf = mddev->private;
1159 struct r1bio *r1_bio;
1160
1161 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1162
1163 r1_bio->master_bio = bio;
1164 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1165 r1_bio->state = 0;
1166 r1_bio->mddev = mddev;
1167 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1168
1169 return r1_bio;
1170 }
1171
1172 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1173 {
1174 struct r1conf *conf = mddev->private;
1175 struct raid1_info *mirror;
1176 struct r1bio *r1_bio;
1177 struct bio *read_bio;
1178 struct bitmap *bitmap = mddev->bitmap;
1179 const int op = bio_op(bio);
1180 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1181 int sectors_handled;
1182 int max_sectors;
1183 int rdisk;
1184
1185 /*
1186 * Still need barrier for READ in case that whole
1187 * array is frozen.
1188 */
1189 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1190
1191 r1_bio = alloc_r1bio(mddev, bio, 0);
1192
1193 /*
1194 * We might need to issue multiple reads to different
1195 * devices if there are bad blocks around, so we keep
1196 * track of the number of reads in bio->bi_phys_segments.
1197 * If this is 0, there is only one r1_bio and no locking
1198 * will be needed when requests complete. If it is
1199 * non-zero, then it is the number of not-completed requests.
1200 */
1201 bio->bi_phys_segments = 0;
1202 bio_clear_flag(bio, BIO_SEG_VALID);
1203
1204 /*
1205 * make_request() can abort the operation when read-ahead is being
1206 * used and no empty request is available.
1207 */
1208 read_again:
1209 rdisk = read_balance(conf, r1_bio, &max_sectors);
1210
1211 if (rdisk < 0) {
1212 /* couldn't find anywhere to read from */
1213 raid_end_bio_io(r1_bio);
1214 return;
1215 }
1216 mirror = conf->mirrors + rdisk;
1217
1218 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1219 bitmap) {
1220 /*
1221 * Reading from a write-mostly device must take care not to
1222 * over-take any writes that are 'behind'
1223 */
1224 raid1_log(mddev, "wait behind writes");
1225 wait_event(bitmap->behind_wait,
1226 atomic_read(&bitmap->behind_writes) == 0);
1227 }
1228 r1_bio->read_disk = rdisk;
1229
1230 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1231 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1232 max_sectors);
1233
1234 r1_bio->bios[rdisk] = read_bio;
1235
1236 read_bio->bi_iter.bi_sector = r1_bio->sector +
1237 mirror->rdev->data_offset;
1238 read_bio->bi_bdev = mirror->rdev->bdev;
1239 read_bio->bi_end_io = raid1_end_read_request;
1240 bio_set_op_attrs(read_bio, op, do_sync);
1241 if (test_bit(FailFast, &mirror->rdev->flags) &&
1242 test_bit(R1BIO_FailFast, &r1_bio->state))
1243 read_bio->bi_opf |= MD_FAILFAST;
1244 read_bio->bi_private = r1_bio;
1245
1246 if (mddev->gendisk)
1247 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1248 read_bio, disk_devt(mddev->gendisk),
1249 r1_bio->sector);
1250
1251 if (max_sectors < r1_bio->sectors) {
1252 /*
1253 * could not read all from this device, so we will need another
1254 * r1_bio.
1255 */
1256 sectors_handled = (r1_bio->sector + max_sectors
1257 - bio->bi_iter.bi_sector);
1258 r1_bio->sectors = max_sectors;
1259 spin_lock_irq(&conf->device_lock);
1260 if (bio->bi_phys_segments == 0)
1261 bio->bi_phys_segments = 2;
1262 else
1263 bio->bi_phys_segments++;
1264 spin_unlock_irq(&conf->device_lock);
1265
1266 /*
1267 * Cannot call generic_make_request directly as that will be
1268 * queued in __make_request and subsequent mempool_alloc might
1269 * block waiting for it. So hand bio over to raid1d.
1270 */
1271 reschedule_retry(r1_bio);
1272
1273 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1274 goto read_again;
1275 } else
1276 generic_make_request(read_bio);
1277 }
1278
1279 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1280 {
1281 struct r1conf *conf = mddev->private;
1282 struct r1bio *r1_bio;
1283 int i, disks;
1284 struct bitmap *bitmap = mddev->bitmap;
1285 unsigned long flags;
1286 struct md_rdev *blocked_rdev;
1287 struct blk_plug_cb *cb;
1288 struct raid1_plug_cb *plug = NULL;
1289 int first_clone;
1290 int sectors_handled;
1291 int max_sectors;
1292
1293 /*
1294 * Register the new request and wait if the reconstruction
1295 * thread has put up a bar for new requests.
1296 * Continue immediately if no resync is active currently.
1297 */
1298
1299 md_write_start(mddev, bio); /* wait on superblock update early */
1300
1301 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303 (mddev_is_clustered(mddev) &&
1304 md_cluster_ops->area_resyncing(mddev, WRITE,
1305 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306
1307 /*
1308 * As the suspend_* range is controlled by userspace, we want
1309 * an interruptible wait.
1310 */
1311 DEFINE_WAIT(w);
1312 for (;;) {
1313 flush_signals(current);
1314 prepare_to_wait(&conf->wait_barrier,
1315 &w, TASK_INTERRUPTIBLE);
1316 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318 (mddev_is_clustered(mddev) &&
1319 !md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio))))
1322 break;
1323 schedule();
1324 }
1325 finish_wait(&conf->wait_barrier, &w);
1326 }
1327 wait_barrier(conf, bio->bi_iter.bi_sector);
1328
1329 r1_bio = alloc_r1bio(mddev, bio, 0);
1330
1331 /* We might need to issue multiple writes to different
1332 * devices if there are bad blocks around, so we keep
1333 * track of the number of writes in bio->bi_phys_segments.
1334 * If this is 0, there is only one r1_bio and no locking
1335 * will be needed when requests complete. If it is
1336 * non-zero, then it is the number of not-completed requests.
1337 */
1338 bio->bi_phys_segments = 0;
1339 bio_clear_flag(bio, BIO_SEG_VALID);
1340
1341 if (conf->pending_count >= max_queued_requests) {
1342 md_wakeup_thread(mddev->thread);
1343 raid1_log(mddev, "wait queued");
1344 wait_event(conf->wait_barrier,
1345 conf->pending_count < max_queued_requests);
1346 }
1347 /* first select target devices under rcu_lock and
1348 * inc refcount on their rdev. Record them by setting
1349 * bios[x] to bio
1350 * If there are known/acknowledged bad blocks on any device on
1351 * which we have seen a write error, we want to avoid writing those
1352 * blocks.
1353 * This potentially requires several writes to write around
1354 * the bad blocks. Each set of writes gets it's own r1bio
1355 * with a set of bios attached.
1356 */
1357
1358 disks = conf->raid_disks * 2;
1359 retry_write:
1360 blocked_rdev = NULL;
1361 rcu_read_lock();
1362 max_sectors = r1_bio->sectors;
1363 for (i = 0; i < disks; i++) {
1364 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366 atomic_inc(&rdev->nr_pending);
1367 blocked_rdev = rdev;
1368 break;
1369 }
1370 r1_bio->bios[i] = NULL;
1371 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372 if (i < conf->raid_disks)
1373 set_bit(R1BIO_Degraded, &r1_bio->state);
1374 continue;
1375 }
1376
1377 atomic_inc(&rdev->nr_pending);
1378 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379 sector_t first_bad;
1380 int bad_sectors;
1381 int is_bad;
1382
1383 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384 &first_bad, &bad_sectors);
1385 if (is_bad < 0) {
1386 /* mustn't write here until the bad block is
1387 * acknowledged*/
1388 set_bit(BlockedBadBlocks, &rdev->flags);
1389 blocked_rdev = rdev;
1390 break;
1391 }
1392 if (is_bad && first_bad <= r1_bio->sector) {
1393 /* Cannot write here at all */
1394 bad_sectors -= (r1_bio->sector - first_bad);
1395 if (bad_sectors < max_sectors)
1396 /* mustn't write more than bad_sectors
1397 * to other devices yet
1398 */
1399 max_sectors = bad_sectors;
1400 rdev_dec_pending(rdev, mddev);
1401 /* We don't set R1BIO_Degraded as that
1402 * only applies if the disk is
1403 * missing, so it might be re-added,
1404 * and we want to know to recover this
1405 * chunk.
1406 * In this case the device is here,
1407 * and the fact that this chunk is not
1408 * in-sync is recorded in the bad
1409 * block log
1410 */
1411 continue;
1412 }
1413 if (is_bad) {
1414 int good_sectors = first_bad - r1_bio->sector;
1415 if (good_sectors < max_sectors)
1416 max_sectors = good_sectors;
1417 }
1418 }
1419 r1_bio->bios[i] = bio;
1420 }
1421 rcu_read_unlock();
1422
1423 if (unlikely(blocked_rdev)) {
1424 /* Wait for this device to become unblocked */
1425 int j;
1426
1427 for (j = 0; j < i; j++)
1428 if (r1_bio->bios[j])
1429 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430 r1_bio->state = 0;
1431 allow_barrier(conf, bio->bi_iter.bi_sector);
1432 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434 wait_barrier(conf, bio->bi_iter.bi_sector);
1435 goto retry_write;
1436 }
1437
1438 if (max_sectors < r1_bio->sectors) {
1439 /* We are splitting this write into multiple parts, so
1440 * we need to prepare for allocating another r1_bio.
1441 */
1442 r1_bio->sectors = max_sectors;
1443 spin_lock_irq(&conf->device_lock);
1444 if (bio->bi_phys_segments == 0)
1445 bio->bi_phys_segments = 2;
1446 else
1447 bio->bi_phys_segments++;
1448 spin_unlock_irq(&conf->device_lock);
1449 }
1450 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451
1452 atomic_set(&r1_bio->remaining, 1);
1453 atomic_set(&r1_bio->behind_remaining, 0);
1454
1455 first_clone = 1;
1456 for (i = 0; i < disks; i++) {
1457 struct bio *mbio = NULL;
1458 sector_t offset;
1459 if (!r1_bio->bios[i])
1460 continue;
1461
1462 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463
1464 if (first_clone) {
1465 /* do behind I/O ?
1466 * Not if there are too many, or cannot
1467 * allocate memory, or a reader on WriteMostly
1468 * is waiting for behind writes to flush */
1469 if (bitmap &&
1470 (atomic_read(&bitmap->behind_writes)
1471 < mddev->bitmap_info.max_write_behind) &&
1472 !waitqueue_active(&bitmap->behind_wait)) {
1473 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474 mddev->bio_set,
1475 offset << 9,
1476 max_sectors << 9);
1477 alloc_behind_pages(mbio, r1_bio);
1478 }
1479
1480 bitmap_startwrite(bitmap, r1_bio->sector,
1481 r1_bio->sectors,
1482 test_bit(R1BIO_BehindIO,
1483 &r1_bio->state));
1484 first_clone = 0;
1485 }
1486
1487 if (!mbio) {
1488 if (r1_bio->behind_bvecs)
1489 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490 mddev->bio_set,
1491 offset << 9,
1492 max_sectors << 9);
1493 else {
1494 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495 bio_trim(mbio, offset, max_sectors);
1496 }
1497 }
1498
1499 if (r1_bio->behind_bvecs) {
1500 struct bio_vec *bvec;
1501 int j;
1502
1503 /*
1504 * We trimmed the bio, so _all is legit
1505 */
1506 bio_for_each_segment_all(bvec, mbio, j)
1507 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1508 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509 atomic_inc(&r1_bio->behind_remaining);
1510 }
1511
1512 r1_bio->bios[i] = mbio;
1513
1514 mbio->bi_iter.bi_sector = (r1_bio->sector +
1515 conf->mirrors[i].rdev->data_offset);
1516 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1517 mbio->bi_end_io = raid1_end_write_request;
1518 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1519 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521 conf->raid_disks - mddev->degraded > 1)
1522 mbio->bi_opf |= MD_FAILFAST;
1523 mbio->bi_private = r1_bio;
1524
1525 atomic_inc(&r1_bio->remaining);
1526
1527 if (mddev->gendisk)
1528 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529 mbio, disk_devt(mddev->gendisk),
1530 r1_bio->sector);
1531 /* flush_pending_writes() needs access to the rdev so...*/
1532 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533
1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535 if (cb)
1536 plug = container_of(cb, struct raid1_plug_cb, cb);
1537 else
1538 plug = NULL;
1539 spin_lock_irqsave(&conf->device_lock, flags);
1540 if (plug) {
1541 bio_list_add(&plug->pending, mbio);
1542 plug->pending_cnt++;
1543 } else {
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 }
1547 spin_unlock_irqrestore(&conf->device_lock, flags);
1548 if (!plug)
1549 md_wakeup_thread(mddev->thread);
1550 }
1551 /* Mustn't call r1_bio_write_done before this next test,
1552 * as it could result in the bio being freed.
1553 */
1554 if (sectors_handled < bio_sectors(bio)) {
1555 r1_bio_write_done(r1_bio);
1556 /* We need another r1_bio. It has already been counted
1557 * in bio->bi_phys_segments
1558 */
1559 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1560 goto retry_write;
1561 }
1562
1563 r1_bio_write_done(r1_bio);
1564
1565 /* In case raid1d snuck in to freeze_array */
1566 wake_up(&conf->wait_barrier);
1567 }
1568
1569 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570 {
1571 struct bio *split;
1572 sector_t sectors;
1573
1574 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575 md_flush_request(mddev, bio);
1576 return;
1577 }
1578
1579 /* if bio exceeds barrier unit boundary, split it */
1580 do {
1581 sectors = align_to_barrier_unit_end(
1582 bio->bi_iter.bi_sector, bio_sectors(bio));
1583 if (sectors < bio_sectors(bio)) {
1584 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585 bio_chain(split, bio);
1586 } else {
1587 split = bio;
1588 }
1589
1590 if (bio_data_dir(split) == READ)
1591 raid1_read_request(mddev, split);
1592 else
1593 raid1_write_request(mddev, split);
1594 } while (split != bio);
1595 }
1596
1597 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1598 {
1599 struct r1conf *conf = mddev->private;
1600 int i;
1601
1602 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1603 conf->raid_disks - mddev->degraded);
1604 rcu_read_lock();
1605 for (i = 0; i < conf->raid_disks; i++) {
1606 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1607 seq_printf(seq, "%s",
1608 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609 }
1610 rcu_read_unlock();
1611 seq_printf(seq, "]");
1612 }
1613
1614 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1615 {
1616 char b[BDEVNAME_SIZE];
1617 struct r1conf *conf = mddev->private;
1618 unsigned long flags;
1619
1620 /*
1621 * If it is not operational, then we have already marked it as dead
1622 * else if it is the last working disks, ignore the error, let the
1623 * next level up know.
1624 * else mark the drive as failed
1625 */
1626 spin_lock_irqsave(&conf->device_lock, flags);
1627 if (test_bit(In_sync, &rdev->flags)
1628 && (conf->raid_disks - mddev->degraded) == 1) {
1629 /*
1630 * Don't fail the drive, act as though we were just a
1631 * normal single drive.
1632 * However don't try a recovery from this drive as
1633 * it is very likely to fail.
1634 */
1635 conf->recovery_disabled = mddev->recovery_disabled;
1636 spin_unlock_irqrestore(&conf->device_lock, flags);
1637 return;
1638 }
1639 set_bit(Blocked, &rdev->flags);
1640 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1641 mddev->degraded++;
1642 set_bit(Faulty, &rdev->flags);
1643 } else
1644 set_bit(Faulty, &rdev->flags);
1645 spin_unlock_irqrestore(&conf->device_lock, flags);
1646 /*
1647 * if recovery is running, make sure it aborts.
1648 */
1649 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650 set_mask_bits(&mddev->sb_flags, 0,
1651 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1652 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1653 "md/raid1:%s: Operation continuing on %d devices.\n",
1654 mdname(mddev), bdevname(rdev->bdev, b),
1655 mdname(mddev), conf->raid_disks - mddev->degraded);
1656 }
1657
1658 static void print_conf(struct r1conf *conf)
1659 {
1660 int i;
1661
1662 pr_debug("RAID1 conf printout:\n");
1663 if (!conf) {
1664 pr_debug("(!conf)\n");
1665 return;
1666 }
1667 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1668 conf->raid_disks);
1669
1670 rcu_read_lock();
1671 for (i = 0; i < conf->raid_disks; i++) {
1672 char b[BDEVNAME_SIZE];
1673 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1674 if (rdev)
1675 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1676 i, !test_bit(In_sync, &rdev->flags),
1677 !test_bit(Faulty, &rdev->flags),
1678 bdevname(rdev->bdev,b));
1679 }
1680 rcu_read_unlock();
1681 }
1682
1683 static void close_sync(struct r1conf *conf)
1684 {
1685 wait_all_barriers(conf);
1686 allow_all_barriers(conf);
1687
1688 mempool_destroy(conf->r1buf_pool);
1689 conf->r1buf_pool = NULL;
1690 }
1691
1692 static int raid1_spare_active(struct mddev *mddev)
1693 {
1694 int i;
1695 struct r1conf *conf = mddev->private;
1696 int count = 0;
1697 unsigned long flags;
1698
1699 /*
1700 * Find all failed disks within the RAID1 configuration
1701 * and mark them readable.
1702 * Called under mddev lock, so rcu protection not needed.
1703 * device_lock used to avoid races with raid1_end_read_request
1704 * which expects 'In_sync' flags and ->degraded to be consistent.
1705 */
1706 spin_lock_irqsave(&conf->device_lock, flags);
1707 for (i = 0; i < conf->raid_disks; i++) {
1708 struct md_rdev *rdev = conf->mirrors[i].rdev;
1709 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1710 if (repl
1711 && !test_bit(Candidate, &repl->flags)
1712 && repl->recovery_offset == MaxSector
1713 && !test_bit(Faulty, &repl->flags)
1714 && !test_and_set_bit(In_sync, &repl->flags)) {
1715 /* replacement has just become active */
1716 if (!rdev ||
1717 !test_and_clear_bit(In_sync, &rdev->flags))
1718 count++;
1719 if (rdev) {
1720 /* Replaced device not technically
1721 * faulty, but we need to be sure
1722 * it gets removed and never re-added
1723 */
1724 set_bit(Faulty, &rdev->flags);
1725 sysfs_notify_dirent_safe(
1726 rdev->sysfs_state);
1727 }
1728 }
1729 if (rdev
1730 && rdev->recovery_offset == MaxSector
1731 && !test_bit(Faulty, &rdev->flags)
1732 && !test_and_set_bit(In_sync, &rdev->flags)) {
1733 count++;
1734 sysfs_notify_dirent_safe(rdev->sysfs_state);
1735 }
1736 }
1737 mddev->degraded -= count;
1738 spin_unlock_irqrestore(&conf->device_lock, flags);
1739
1740 print_conf(conf);
1741 return count;
1742 }
1743
1744 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1745 {
1746 struct r1conf *conf = mddev->private;
1747 int err = -EEXIST;
1748 int mirror = 0;
1749 struct raid1_info *p;
1750 int first = 0;
1751 int last = conf->raid_disks - 1;
1752
1753 if (mddev->recovery_disabled == conf->recovery_disabled)
1754 return -EBUSY;
1755
1756 if (md_integrity_add_rdev(rdev, mddev))
1757 return -ENXIO;
1758
1759 if (rdev->raid_disk >= 0)
1760 first = last = rdev->raid_disk;
1761
1762 /*
1763 * find the disk ... but prefer rdev->saved_raid_disk
1764 * if possible.
1765 */
1766 if (rdev->saved_raid_disk >= 0 &&
1767 rdev->saved_raid_disk >= first &&
1768 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769 first = last = rdev->saved_raid_disk;
1770
1771 for (mirror = first; mirror <= last; mirror++) {
1772 p = conf->mirrors+mirror;
1773 if (!p->rdev) {
1774
1775 if (mddev->gendisk)
1776 disk_stack_limits(mddev->gendisk, rdev->bdev,
1777 rdev->data_offset << 9);
1778
1779 p->head_position = 0;
1780 rdev->raid_disk = mirror;
1781 err = 0;
1782 /* As all devices are equivalent, we don't need a full recovery
1783 * if this was recently any drive of the array
1784 */
1785 if (rdev->saved_raid_disk < 0)
1786 conf->fullsync = 1;
1787 rcu_assign_pointer(p->rdev, rdev);
1788 break;
1789 }
1790 if (test_bit(WantReplacement, &p->rdev->flags) &&
1791 p[conf->raid_disks].rdev == NULL) {
1792 /* Add this device as a replacement */
1793 clear_bit(In_sync, &rdev->flags);
1794 set_bit(Replacement, &rdev->flags);
1795 rdev->raid_disk = mirror;
1796 err = 0;
1797 conf->fullsync = 1;
1798 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1799 break;
1800 }
1801 }
1802 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1803 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1804 print_conf(conf);
1805 return err;
1806 }
1807
1808 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1809 {
1810 struct r1conf *conf = mddev->private;
1811 int err = 0;
1812 int number = rdev->raid_disk;
1813 struct raid1_info *p = conf->mirrors + number;
1814
1815 if (rdev != p->rdev)
1816 p = conf->mirrors + conf->raid_disks + number;
1817
1818 print_conf(conf);
1819 if (rdev == p->rdev) {
1820 if (test_bit(In_sync, &rdev->flags) ||
1821 atomic_read(&rdev->nr_pending)) {
1822 err = -EBUSY;
1823 goto abort;
1824 }
1825 /* Only remove non-faulty devices if recovery
1826 * is not possible.
1827 */
1828 if (!test_bit(Faulty, &rdev->flags) &&
1829 mddev->recovery_disabled != conf->recovery_disabled &&
1830 mddev->degraded < conf->raid_disks) {
1831 err = -EBUSY;
1832 goto abort;
1833 }
1834 p->rdev = NULL;
1835 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1836 synchronize_rcu();
1837 if (atomic_read(&rdev->nr_pending)) {
1838 /* lost the race, try later */
1839 err = -EBUSY;
1840 p->rdev = rdev;
1841 goto abort;
1842 }
1843 }
1844 if (conf->mirrors[conf->raid_disks + number].rdev) {
1845 /* We just removed a device that is being replaced.
1846 * Move down the replacement. We drain all IO before
1847 * doing this to avoid confusion.
1848 */
1849 struct md_rdev *repl =
1850 conf->mirrors[conf->raid_disks + number].rdev;
1851 freeze_array(conf, 0);
1852 clear_bit(Replacement, &repl->flags);
1853 p->rdev = repl;
1854 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1855 unfreeze_array(conf);
1856 clear_bit(WantReplacement, &rdev->flags);
1857 } else
1858 clear_bit(WantReplacement, &rdev->flags);
1859 err = md_integrity_register(mddev);
1860 }
1861 abort:
1862
1863 print_conf(conf);
1864 return err;
1865 }
1866
1867 static void end_sync_read(struct bio *bio)
1868 {
1869 struct r1bio *r1_bio = bio->bi_private;
1870
1871 update_head_pos(r1_bio->read_disk, r1_bio);
1872
1873 /*
1874 * we have read a block, now it needs to be re-written,
1875 * or re-read if the read failed.
1876 * We don't do much here, just schedule handling by raid1d
1877 */
1878 if (!bio->bi_error)
1879 set_bit(R1BIO_Uptodate, &r1_bio->state);
1880
1881 if (atomic_dec_and_test(&r1_bio->remaining))
1882 reschedule_retry(r1_bio);
1883 }
1884
1885 static void end_sync_write(struct bio *bio)
1886 {
1887 int uptodate = !bio->bi_error;
1888 struct r1bio *r1_bio = bio->bi_private;
1889 struct mddev *mddev = r1_bio->mddev;
1890 struct r1conf *conf = mddev->private;
1891 sector_t first_bad;
1892 int bad_sectors;
1893 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1894
1895 if (!uptodate) {
1896 sector_t sync_blocks = 0;
1897 sector_t s = r1_bio->sector;
1898 long sectors_to_go = r1_bio->sectors;
1899 /* make sure these bits doesn't get cleared. */
1900 do {
1901 bitmap_end_sync(mddev->bitmap, s,
1902 &sync_blocks, 1);
1903 s += sync_blocks;
1904 sectors_to_go -= sync_blocks;
1905 } while (sectors_to_go > 0);
1906 set_bit(WriteErrorSeen, &rdev->flags);
1907 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1908 set_bit(MD_RECOVERY_NEEDED, &
1909 mddev->recovery);
1910 set_bit(R1BIO_WriteError, &r1_bio->state);
1911 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1912 &first_bad, &bad_sectors) &&
1913 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1914 r1_bio->sector,
1915 r1_bio->sectors,
1916 &first_bad, &bad_sectors)
1917 )
1918 set_bit(R1BIO_MadeGood, &r1_bio->state);
1919
1920 if (atomic_dec_and_test(&r1_bio->remaining)) {
1921 int s = r1_bio->sectors;
1922 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1923 test_bit(R1BIO_WriteError, &r1_bio->state))
1924 reschedule_retry(r1_bio);
1925 else {
1926 put_buf(r1_bio);
1927 md_done_sync(mddev, s, uptodate);
1928 }
1929 }
1930 }
1931
1932 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1933 int sectors, struct page *page, int rw)
1934 {
1935 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1936 /* success */
1937 return 1;
1938 if (rw == WRITE) {
1939 set_bit(WriteErrorSeen, &rdev->flags);
1940 if (!test_and_set_bit(WantReplacement,
1941 &rdev->flags))
1942 set_bit(MD_RECOVERY_NEEDED, &
1943 rdev->mddev->recovery);
1944 }
1945 /* need to record an error - either for the block or the device */
1946 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1947 md_error(rdev->mddev, rdev);
1948 return 0;
1949 }
1950
1951 static int fix_sync_read_error(struct r1bio *r1_bio)
1952 {
1953 /* Try some synchronous reads of other devices to get
1954 * good data, much like with normal read errors. Only
1955 * read into the pages we already have so we don't
1956 * need to re-issue the read request.
1957 * We don't need to freeze the array, because being in an
1958 * active sync request, there is no normal IO, and
1959 * no overlapping syncs.
1960 * We don't need to check is_badblock() again as we
1961 * made sure that anything with a bad block in range
1962 * will have bi_end_io clear.
1963 */
1964 struct mddev *mddev = r1_bio->mddev;
1965 struct r1conf *conf = mddev->private;
1966 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1967 sector_t sect = r1_bio->sector;
1968 int sectors = r1_bio->sectors;
1969 int idx = 0;
1970 struct md_rdev *rdev;
1971
1972 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1973 if (test_bit(FailFast, &rdev->flags)) {
1974 /* Don't try recovering from here - just fail it
1975 * ... unless it is the last working device of course */
1976 md_error(mddev, rdev);
1977 if (test_bit(Faulty, &rdev->flags))
1978 /* Don't try to read from here, but make sure
1979 * put_buf does it's thing
1980 */
1981 bio->bi_end_io = end_sync_write;
1982 }
1983
1984 while(sectors) {
1985 int s = sectors;
1986 int d = r1_bio->read_disk;
1987 int success = 0;
1988 int start;
1989
1990 if (s > (PAGE_SIZE>>9))
1991 s = PAGE_SIZE >> 9;
1992 do {
1993 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1994 /* No rcu protection needed here devices
1995 * can only be removed when no resync is
1996 * active, and resync is currently active
1997 */
1998 rdev = conf->mirrors[d].rdev;
1999 if (sync_page_io(rdev, sect, s<<9,
2000 bio->bi_io_vec[idx].bv_page,
2001 REQ_OP_READ, 0, false)) {
2002 success = 1;
2003 break;
2004 }
2005 }
2006 d++;
2007 if (d == conf->raid_disks * 2)
2008 d = 0;
2009 } while (!success && d != r1_bio->read_disk);
2010
2011 if (!success) {
2012 char b[BDEVNAME_SIZE];
2013 int abort = 0;
2014 /* Cannot read from anywhere, this block is lost.
2015 * Record a bad block on each device. If that doesn't
2016 * work just disable and interrupt the recovery.
2017 * Don't fail devices as that won't really help.
2018 */
2019 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2020 mdname(mddev),
2021 bdevname(bio->bi_bdev, b),
2022 (unsigned long long)r1_bio->sector);
2023 for (d = 0; d < conf->raid_disks * 2; d++) {
2024 rdev = conf->mirrors[d].rdev;
2025 if (!rdev || test_bit(Faulty, &rdev->flags))
2026 continue;
2027 if (!rdev_set_badblocks(rdev, sect, s, 0))
2028 abort = 1;
2029 }
2030 if (abort) {
2031 conf->recovery_disabled =
2032 mddev->recovery_disabled;
2033 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2034 md_done_sync(mddev, r1_bio->sectors, 0);
2035 put_buf(r1_bio);
2036 return 0;
2037 }
2038 /* Try next page */
2039 sectors -= s;
2040 sect += s;
2041 idx++;
2042 continue;
2043 }
2044
2045 start = d;
2046 /* write it back and re-read */
2047 while (d != r1_bio->read_disk) {
2048 if (d == 0)
2049 d = conf->raid_disks * 2;
2050 d--;
2051 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2052 continue;
2053 rdev = conf->mirrors[d].rdev;
2054 if (r1_sync_page_io(rdev, sect, s,
2055 bio->bi_io_vec[idx].bv_page,
2056 WRITE) == 0) {
2057 r1_bio->bios[d]->bi_end_io = NULL;
2058 rdev_dec_pending(rdev, mddev);
2059 }
2060 }
2061 d = start;
2062 while (d != r1_bio->read_disk) {
2063 if (d == 0)
2064 d = conf->raid_disks * 2;
2065 d--;
2066 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2067 continue;
2068 rdev = conf->mirrors[d].rdev;
2069 if (r1_sync_page_io(rdev, sect, s,
2070 bio->bi_io_vec[idx].bv_page,
2071 READ) != 0)
2072 atomic_add(s, &rdev->corrected_errors);
2073 }
2074 sectors -= s;
2075 sect += s;
2076 idx ++;
2077 }
2078 set_bit(R1BIO_Uptodate, &r1_bio->state);
2079 bio->bi_error = 0;
2080 return 1;
2081 }
2082
2083 static void process_checks(struct r1bio *r1_bio)
2084 {
2085 /* We have read all readable devices. If we haven't
2086 * got the block, then there is no hope left.
2087 * If we have, then we want to do a comparison
2088 * and skip the write if everything is the same.
2089 * If any blocks failed to read, then we need to
2090 * attempt an over-write
2091 */
2092 struct mddev *mddev = r1_bio->mddev;
2093 struct r1conf *conf = mddev->private;
2094 int primary;
2095 int i;
2096 int vcnt;
2097
2098 /* Fix variable parts of all bios */
2099 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2100 for (i = 0; i < conf->raid_disks * 2; i++) {
2101 int j;
2102 int size;
2103 int error;
2104 struct bio *b = r1_bio->bios[i];
2105 if (b->bi_end_io != end_sync_read)
2106 continue;
2107 /* fixup the bio for reuse, but preserve errno */
2108 error = b->bi_error;
2109 bio_reset(b);
2110 b->bi_error = error;
2111 b->bi_vcnt = vcnt;
2112 b->bi_iter.bi_size = r1_bio->sectors << 9;
2113 b->bi_iter.bi_sector = r1_bio->sector +
2114 conf->mirrors[i].rdev->data_offset;
2115 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2116 b->bi_end_io = end_sync_read;
2117 b->bi_private = r1_bio;
2118
2119 size = b->bi_iter.bi_size;
2120 for (j = 0; j < vcnt ; j++) {
2121 struct bio_vec *bi;
2122 bi = &b->bi_io_vec[j];
2123 bi->bv_offset = 0;
2124 if (size > PAGE_SIZE)
2125 bi->bv_len = PAGE_SIZE;
2126 else
2127 bi->bv_len = size;
2128 size -= PAGE_SIZE;
2129 }
2130 }
2131 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2132 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2133 !r1_bio->bios[primary]->bi_error) {
2134 r1_bio->bios[primary]->bi_end_io = NULL;
2135 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2136 break;
2137 }
2138 r1_bio->read_disk = primary;
2139 for (i = 0; i < conf->raid_disks * 2; i++) {
2140 int j;
2141 struct bio *pbio = r1_bio->bios[primary];
2142 struct bio *sbio = r1_bio->bios[i];
2143 int error = sbio->bi_error;
2144
2145 if (sbio->bi_end_io != end_sync_read)
2146 continue;
2147 /* Now we can 'fixup' the error value */
2148 sbio->bi_error = 0;
2149
2150 if (!error) {
2151 for (j = vcnt; j-- ; ) {
2152 struct page *p, *s;
2153 p = pbio->bi_io_vec[j].bv_page;
2154 s = sbio->bi_io_vec[j].bv_page;
2155 if (memcmp(page_address(p),
2156 page_address(s),
2157 sbio->bi_io_vec[j].bv_len))
2158 break;
2159 }
2160 } else
2161 j = 0;
2162 if (j >= 0)
2163 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2164 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2165 && !error)) {
2166 /* No need to write to this device. */
2167 sbio->bi_end_io = NULL;
2168 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2169 continue;
2170 }
2171
2172 bio_copy_data(sbio, pbio);
2173 }
2174 }
2175
2176 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2177 {
2178 struct r1conf *conf = mddev->private;
2179 int i;
2180 int disks = conf->raid_disks * 2;
2181 struct bio *bio, *wbio;
2182
2183 bio = r1_bio->bios[r1_bio->read_disk];
2184
2185 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2186 /* ouch - failed to read all of that. */
2187 if (!fix_sync_read_error(r1_bio))
2188 return;
2189
2190 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2191 process_checks(r1_bio);
2192
2193 /*
2194 * schedule writes
2195 */
2196 atomic_set(&r1_bio->remaining, 1);
2197 for (i = 0; i < disks ; i++) {
2198 wbio = r1_bio->bios[i];
2199 if (wbio->bi_end_io == NULL ||
2200 (wbio->bi_end_io == end_sync_read &&
2201 (i == r1_bio->read_disk ||
2202 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2203 continue;
2204
2205 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2206 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2207 wbio->bi_opf |= MD_FAILFAST;
2208
2209 wbio->bi_end_io = end_sync_write;
2210 atomic_inc(&r1_bio->remaining);
2211 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2212
2213 generic_make_request(wbio);
2214 }
2215
2216 if (atomic_dec_and_test(&r1_bio->remaining)) {
2217 /* if we're here, all write(s) have completed, so clean up */
2218 int s = r1_bio->sectors;
2219 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2220 test_bit(R1BIO_WriteError, &r1_bio->state))
2221 reschedule_retry(r1_bio);
2222 else {
2223 put_buf(r1_bio);
2224 md_done_sync(mddev, s, 1);
2225 }
2226 }
2227 }
2228
2229 /*
2230 * This is a kernel thread which:
2231 *
2232 * 1. Retries failed read operations on working mirrors.
2233 * 2. Updates the raid superblock when problems encounter.
2234 * 3. Performs writes following reads for array synchronising.
2235 */
2236
2237 static void fix_read_error(struct r1conf *conf, int read_disk,
2238 sector_t sect, int sectors)
2239 {
2240 struct mddev *mddev = conf->mddev;
2241 while(sectors) {
2242 int s = sectors;
2243 int d = read_disk;
2244 int success = 0;
2245 int start;
2246 struct md_rdev *rdev;
2247
2248 if (s > (PAGE_SIZE>>9))
2249 s = PAGE_SIZE >> 9;
2250
2251 do {
2252 sector_t first_bad;
2253 int bad_sectors;
2254
2255 rcu_read_lock();
2256 rdev = rcu_dereference(conf->mirrors[d].rdev);
2257 if (rdev &&
2258 (test_bit(In_sync, &rdev->flags) ||
2259 (!test_bit(Faulty, &rdev->flags) &&
2260 rdev->recovery_offset >= sect + s)) &&
2261 is_badblock(rdev, sect, s,
2262 &first_bad, &bad_sectors) == 0) {
2263 atomic_inc(&rdev->nr_pending);
2264 rcu_read_unlock();
2265 if (sync_page_io(rdev, sect, s<<9,
2266 conf->tmppage, REQ_OP_READ, 0, false))
2267 success = 1;
2268 rdev_dec_pending(rdev, mddev);
2269 if (success)
2270 break;
2271 } else
2272 rcu_read_unlock();
2273 d++;
2274 if (d == conf->raid_disks * 2)
2275 d = 0;
2276 } while (!success && d != read_disk);
2277
2278 if (!success) {
2279 /* Cannot read from anywhere - mark it bad */
2280 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2281 if (!rdev_set_badblocks(rdev, sect, s, 0))
2282 md_error(mddev, rdev);
2283 break;
2284 }
2285 /* write it back and re-read */
2286 start = d;
2287 while (d != read_disk) {
2288 if (d==0)
2289 d = conf->raid_disks * 2;
2290 d--;
2291 rcu_read_lock();
2292 rdev = rcu_dereference(conf->mirrors[d].rdev);
2293 if (rdev &&
2294 !test_bit(Faulty, &rdev->flags)) {
2295 atomic_inc(&rdev->nr_pending);
2296 rcu_read_unlock();
2297 r1_sync_page_io(rdev, sect, s,
2298 conf->tmppage, WRITE);
2299 rdev_dec_pending(rdev, mddev);
2300 } else
2301 rcu_read_unlock();
2302 }
2303 d = start;
2304 while (d != read_disk) {
2305 char b[BDEVNAME_SIZE];
2306 if (d==0)
2307 d = conf->raid_disks * 2;
2308 d--;
2309 rcu_read_lock();
2310 rdev = rcu_dereference(conf->mirrors[d].rdev);
2311 if (rdev &&
2312 !test_bit(Faulty, &rdev->flags)) {
2313 atomic_inc(&rdev->nr_pending);
2314 rcu_read_unlock();
2315 if (r1_sync_page_io(rdev, sect, s,
2316 conf->tmppage, READ)) {
2317 atomic_add(s, &rdev->corrected_errors);
2318 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2319 mdname(mddev), s,
2320 (unsigned long long)(sect +
2321 rdev->data_offset),
2322 bdevname(rdev->bdev, b));
2323 }
2324 rdev_dec_pending(rdev, mddev);
2325 } else
2326 rcu_read_unlock();
2327 }
2328 sectors -= s;
2329 sect += s;
2330 }
2331 }
2332
2333 static int narrow_write_error(struct r1bio *r1_bio, int i)
2334 {
2335 struct mddev *mddev = r1_bio->mddev;
2336 struct r1conf *conf = mddev->private;
2337 struct md_rdev *rdev = conf->mirrors[i].rdev;
2338
2339 /* bio has the data to be written to device 'i' where
2340 * we just recently had a write error.
2341 * We repeatedly clone the bio and trim down to one block,
2342 * then try the write. Where the write fails we record
2343 * a bad block.
2344 * It is conceivable that the bio doesn't exactly align with
2345 * blocks. We must handle this somehow.
2346 *
2347 * We currently own a reference on the rdev.
2348 */
2349
2350 int block_sectors;
2351 sector_t sector;
2352 int sectors;
2353 int sect_to_write = r1_bio->sectors;
2354 int ok = 1;
2355
2356 if (rdev->badblocks.shift < 0)
2357 return 0;
2358
2359 block_sectors = roundup(1 << rdev->badblocks.shift,
2360 bdev_logical_block_size(rdev->bdev) >> 9);
2361 sector = r1_bio->sector;
2362 sectors = ((sector + block_sectors)
2363 & ~(sector_t)(block_sectors - 1))
2364 - sector;
2365
2366 while (sect_to_write) {
2367 struct bio *wbio;
2368 if (sectors > sect_to_write)
2369 sectors = sect_to_write;
2370 /* Write at 'sector' for 'sectors'*/
2371
2372 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2373 unsigned vcnt = r1_bio->behind_page_count;
2374 struct bio_vec *vec = r1_bio->behind_bvecs;
2375
2376 while (!vec->bv_page) {
2377 vec++;
2378 vcnt--;
2379 }
2380
2381 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2382 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2383
2384 wbio->bi_vcnt = vcnt;
2385 } else {
2386 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2387 mddev->bio_set);
2388 }
2389
2390 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2391 wbio->bi_iter.bi_sector = r1_bio->sector;
2392 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2393
2394 bio_trim(wbio, sector - r1_bio->sector, sectors);
2395 wbio->bi_iter.bi_sector += rdev->data_offset;
2396 wbio->bi_bdev = rdev->bdev;
2397
2398 if (submit_bio_wait(wbio) < 0)
2399 /* failure! */
2400 ok = rdev_set_badblocks(rdev, sector,
2401 sectors, 0)
2402 && ok;
2403
2404 bio_put(wbio);
2405 sect_to_write -= sectors;
2406 sector += sectors;
2407 sectors = block_sectors;
2408 }
2409 return ok;
2410 }
2411
2412 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2413 {
2414 int m;
2415 int s = r1_bio->sectors;
2416 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2417 struct md_rdev *rdev = conf->mirrors[m].rdev;
2418 struct bio *bio = r1_bio->bios[m];
2419 if (bio->bi_end_io == NULL)
2420 continue;
2421 if (!bio->bi_error &&
2422 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2423 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2424 }
2425 if (bio->bi_error &&
2426 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2427 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2428 md_error(conf->mddev, rdev);
2429 }
2430 }
2431 put_buf(r1_bio);
2432 md_done_sync(conf->mddev, s, 1);
2433 }
2434
2435 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2436 {
2437 int m, idx;
2438 bool fail = false;
2439
2440 for (m = 0; m < conf->raid_disks * 2 ; m++)
2441 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2442 struct md_rdev *rdev = conf->mirrors[m].rdev;
2443 rdev_clear_badblocks(rdev,
2444 r1_bio->sector,
2445 r1_bio->sectors, 0);
2446 rdev_dec_pending(rdev, conf->mddev);
2447 } else if (r1_bio->bios[m] != NULL) {
2448 /* This drive got a write error. We need to
2449 * narrow down and record precise write
2450 * errors.
2451 */
2452 fail = true;
2453 if (!narrow_write_error(r1_bio, m)) {
2454 md_error(conf->mddev,
2455 conf->mirrors[m].rdev);
2456 /* an I/O failed, we can't clear the bitmap */
2457 set_bit(R1BIO_Degraded, &r1_bio->state);
2458 }
2459 rdev_dec_pending(conf->mirrors[m].rdev,
2460 conf->mddev);
2461 }
2462 if (fail) {
2463 spin_lock_irq(&conf->device_lock);
2464 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2465 idx = sector_to_idx(r1_bio->sector);
2466 atomic_inc(&conf->nr_queued[idx]);
2467 spin_unlock_irq(&conf->device_lock);
2468 /*
2469 * In case freeze_array() is waiting for condition
2470 * get_unqueued_pending() == extra to be true.
2471 */
2472 wake_up(&conf->wait_barrier);
2473 md_wakeup_thread(conf->mddev->thread);
2474 } else {
2475 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2476 close_write(r1_bio);
2477 raid_end_bio_io(r1_bio);
2478 }
2479 }
2480
2481 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2482 {
2483 int disk;
2484 int max_sectors;
2485 struct mddev *mddev = conf->mddev;
2486 struct bio *bio;
2487 char b[BDEVNAME_SIZE];
2488 struct md_rdev *rdev;
2489 dev_t bio_dev;
2490 sector_t bio_sector;
2491
2492 clear_bit(R1BIO_ReadError, &r1_bio->state);
2493 /* we got a read error. Maybe the drive is bad. Maybe just
2494 * the block and we can fix it.
2495 * We freeze all other IO, and try reading the block from
2496 * other devices. When we find one, we re-write
2497 * and check it that fixes the read error.
2498 * This is all done synchronously while the array is
2499 * frozen
2500 */
2501
2502 bio = r1_bio->bios[r1_bio->read_disk];
2503 bdevname(bio->bi_bdev, b);
2504 bio_dev = bio->bi_bdev->bd_dev;
2505 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2506 bio_put(bio);
2507 r1_bio->bios[r1_bio->read_disk] = NULL;
2508
2509 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2510 if (mddev->ro == 0
2511 && !test_bit(FailFast, &rdev->flags)) {
2512 freeze_array(conf, 1);
2513 fix_read_error(conf, r1_bio->read_disk,
2514 r1_bio->sector, r1_bio->sectors);
2515 unfreeze_array(conf);
2516 } else {
2517 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2518 }
2519
2520 rdev_dec_pending(rdev, conf->mddev);
2521
2522 read_more:
2523 disk = read_balance(conf, r1_bio, &max_sectors);
2524 if (disk == -1) {
2525 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2526 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2527 raid_end_bio_io(r1_bio);
2528 } else {
2529 const unsigned long do_sync
2530 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2531 r1_bio->read_disk = disk;
2532 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2533 mddev->bio_set);
2534 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2535 max_sectors);
2536 r1_bio->bios[r1_bio->read_disk] = bio;
2537 rdev = conf->mirrors[disk].rdev;
2538 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2539 mdname(mddev),
2540 (unsigned long long)r1_bio->sector,
2541 bdevname(rdev->bdev, b));
2542 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2543 bio->bi_bdev = rdev->bdev;
2544 bio->bi_end_io = raid1_end_read_request;
2545 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2546 if (test_bit(FailFast, &rdev->flags) &&
2547 test_bit(R1BIO_FailFast, &r1_bio->state))
2548 bio->bi_opf |= MD_FAILFAST;
2549 bio->bi_private = r1_bio;
2550 if (max_sectors < r1_bio->sectors) {
2551 /* Drat - have to split this up more */
2552 struct bio *mbio = r1_bio->master_bio;
2553 int sectors_handled = (r1_bio->sector + max_sectors
2554 - mbio->bi_iter.bi_sector);
2555 r1_bio->sectors = max_sectors;
2556 spin_lock_irq(&conf->device_lock);
2557 if (mbio->bi_phys_segments == 0)
2558 mbio->bi_phys_segments = 2;
2559 else
2560 mbio->bi_phys_segments++;
2561 spin_unlock_irq(&conf->device_lock);
2562 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2563 bio, bio_dev, bio_sector);
2564 generic_make_request(bio);
2565 bio = NULL;
2566
2567 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2568 set_bit(R1BIO_ReadError, &r1_bio->state);
2569
2570 goto read_more;
2571 } else {
2572 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2573 bio, bio_dev, bio_sector);
2574 generic_make_request(bio);
2575 }
2576 }
2577 }
2578
2579 static void raid1d(struct md_thread *thread)
2580 {
2581 struct mddev *mddev = thread->mddev;
2582 struct r1bio *r1_bio;
2583 unsigned long flags;
2584 struct r1conf *conf = mddev->private;
2585 struct list_head *head = &conf->retry_list;
2586 struct blk_plug plug;
2587 int idx;
2588
2589 md_check_recovery(mddev);
2590
2591 if (!list_empty_careful(&conf->bio_end_io_list) &&
2592 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2593 LIST_HEAD(tmp);
2594 spin_lock_irqsave(&conf->device_lock, flags);
2595 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2596 list_splice_init(&conf->bio_end_io_list, &tmp);
2597 spin_unlock_irqrestore(&conf->device_lock, flags);
2598 while (!list_empty(&tmp)) {
2599 r1_bio = list_first_entry(&tmp, struct r1bio,
2600 retry_list);
2601 list_del(&r1_bio->retry_list);
2602 idx = sector_to_idx(r1_bio->sector);
2603 atomic_dec(&conf->nr_queued[idx]);
2604 if (mddev->degraded)
2605 set_bit(R1BIO_Degraded, &r1_bio->state);
2606 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2607 close_write(r1_bio);
2608 raid_end_bio_io(r1_bio);
2609 }
2610 }
2611
2612 blk_start_plug(&plug);
2613 for (;;) {
2614
2615 flush_pending_writes(conf);
2616
2617 spin_lock_irqsave(&conf->device_lock, flags);
2618 if (list_empty(head)) {
2619 spin_unlock_irqrestore(&conf->device_lock, flags);
2620 break;
2621 }
2622 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2623 list_del(head->prev);
2624 idx = sector_to_idx(r1_bio->sector);
2625 atomic_dec(&conf->nr_queued[idx]);
2626 spin_unlock_irqrestore(&conf->device_lock, flags);
2627
2628 mddev = r1_bio->mddev;
2629 conf = mddev->private;
2630 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2631 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2632 test_bit(R1BIO_WriteError, &r1_bio->state))
2633 handle_sync_write_finished(conf, r1_bio);
2634 else
2635 sync_request_write(mddev, r1_bio);
2636 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2637 test_bit(R1BIO_WriteError, &r1_bio->state))
2638 handle_write_finished(conf, r1_bio);
2639 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2640 handle_read_error(conf, r1_bio);
2641 else
2642 /* just a partial read to be scheduled from separate
2643 * context
2644 */
2645 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2646
2647 cond_resched();
2648 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2649 md_check_recovery(mddev);
2650 }
2651 blk_finish_plug(&plug);
2652 }
2653
2654 static int init_resync(struct r1conf *conf)
2655 {
2656 int buffs;
2657
2658 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2659 BUG_ON(conf->r1buf_pool);
2660 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2661 conf->poolinfo);
2662 if (!conf->r1buf_pool)
2663 return -ENOMEM;
2664 return 0;
2665 }
2666
2667 /*
2668 * perform a "sync" on one "block"
2669 *
2670 * We need to make sure that no normal I/O request - particularly write
2671 * requests - conflict with active sync requests.
2672 *
2673 * This is achieved by tracking pending requests and a 'barrier' concept
2674 * that can be installed to exclude normal IO requests.
2675 */
2676
2677 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2678 int *skipped)
2679 {
2680 struct r1conf *conf = mddev->private;
2681 struct r1bio *r1_bio;
2682 struct bio *bio;
2683 sector_t max_sector, nr_sectors;
2684 int disk = -1;
2685 int i;
2686 int wonly = -1;
2687 int write_targets = 0, read_targets = 0;
2688 sector_t sync_blocks;
2689 int still_degraded = 0;
2690 int good_sectors = RESYNC_SECTORS;
2691 int min_bad = 0; /* number of sectors that are bad in all devices */
2692 int idx = sector_to_idx(sector_nr);
2693
2694 if (!conf->r1buf_pool)
2695 if (init_resync(conf))
2696 return 0;
2697
2698 max_sector = mddev->dev_sectors;
2699 if (sector_nr >= max_sector) {
2700 /* If we aborted, we need to abort the
2701 * sync on the 'current' bitmap chunk (there will
2702 * only be one in raid1 resync.
2703 * We can find the current addess in mddev->curr_resync
2704 */
2705 if (mddev->curr_resync < max_sector) /* aborted */
2706 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2707 &sync_blocks, 1);
2708 else /* completed sync */
2709 conf->fullsync = 0;
2710
2711 bitmap_close_sync(mddev->bitmap);
2712 close_sync(conf);
2713
2714 if (mddev_is_clustered(mddev)) {
2715 conf->cluster_sync_low = 0;
2716 conf->cluster_sync_high = 0;
2717 }
2718 return 0;
2719 }
2720
2721 if (mddev->bitmap == NULL &&
2722 mddev->recovery_cp == MaxSector &&
2723 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2724 conf->fullsync == 0) {
2725 *skipped = 1;
2726 return max_sector - sector_nr;
2727 }
2728 /* before building a request, check if we can skip these blocks..
2729 * This call the bitmap_start_sync doesn't actually record anything
2730 */
2731 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2732 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2733 /* We can skip this block, and probably several more */
2734 *skipped = 1;
2735 return sync_blocks;
2736 }
2737
2738 /*
2739 * If there is non-resync activity waiting for a turn, then let it
2740 * though before starting on this new sync request.
2741 */
2742 if (atomic_read(&conf->nr_waiting[idx]))
2743 schedule_timeout_uninterruptible(1);
2744
2745 /* we are incrementing sector_nr below. To be safe, we check against
2746 * sector_nr + two times RESYNC_SECTORS
2747 */
2748
2749 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2750 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2751 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2752
2753 raise_barrier(conf, sector_nr);
2754
2755 rcu_read_lock();
2756 /*
2757 * If we get a correctably read error during resync or recovery,
2758 * we might want to read from a different device. So we
2759 * flag all drives that could conceivably be read from for READ,
2760 * and any others (which will be non-In_sync devices) for WRITE.
2761 * If a read fails, we try reading from something else for which READ
2762 * is OK.
2763 */
2764
2765 r1_bio->mddev = mddev;
2766 r1_bio->sector = sector_nr;
2767 r1_bio->state = 0;
2768 set_bit(R1BIO_IsSync, &r1_bio->state);
2769 /* make sure good_sectors won't go across barrier unit boundary */
2770 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2771
2772 for (i = 0; i < conf->raid_disks * 2; i++) {
2773 struct md_rdev *rdev;
2774 bio = r1_bio->bios[i];
2775 bio_reset(bio);
2776
2777 rdev = rcu_dereference(conf->mirrors[i].rdev);
2778 if (rdev == NULL ||
2779 test_bit(Faulty, &rdev->flags)) {
2780 if (i < conf->raid_disks)
2781 still_degraded = 1;
2782 } else if (!test_bit(In_sync, &rdev->flags)) {
2783 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2784 bio->bi_end_io = end_sync_write;
2785 write_targets ++;
2786 } else {
2787 /* may need to read from here */
2788 sector_t first_bad = MaxSector;
2789 int bad_sectors;
2790
2791 if (is_badblock(rdev, sector_nr, good_sectors,
2792 &first_bad, &bad_sectors)) {
2793 if (first_bad > sector_nr)
2794 good_sectors = first_bad - sector_nr;
2795 else {
2796 bad_sectors -= (sector_nr - first_bad);
2797 if (min_bad == 0 ||
2798 min_bad > bad_sectors)
2799 min_bad = bad_sectors;
2800 }
2801 }
2802 if (sector_nr < first_bad) {
2803 if (test_bit(WriteMostly, &rdev->flags)) {
2804 if (wonly < 0)
2805 wonly = i;
2806 } else {
2807 if (disk < 0)
2808 disk = i;
2809 }
2810 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2811 bio->bi_end_io = end_sync_read;
2812 read_targets++;
2813 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2814 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2815 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2816 /*
2817 * The device is suitable for reading (InSync),
2818 * but has bad block(s) here. Let's try to correct them,
2819 * if we are doing resync or repair. Otherwise, leave
2820 * this device alone for this sync request.
2821 */
2822 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2823 bio->bi_end_io = end_sync_write;
2824 write_targets++;
2825 }
2826 }
2827 if (bio->bi_end_io) {
2828 atomic_inc(&rdev->nr_pending);
2829 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2830 bio->bi_bdev = rdev->bdev;
2831 bio->bi_private = r1_bio;
2832 if (test_bit(FailFast, &rdev->flags))
2833 bio->bi_opf |= MD_FAILFAST;
2834 }
2835 }
2836 rcu_read_unlock();
2837 if (disk < 0)
2838 disk = wonly;
2839 r1_bio->read_disk = disk;
2840
2841 if (read_targets == 0 && min_bad > 0) {
2842 /* These sectors are bad on all InSync devices, so we
2843 * need to mark them bad on all write targets
2844 */
2845 int ok = 1;
2846 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2847 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2848 struct md_rdev *rdev = conf->mirrors[i].rdev;
2849 ok = rdev_set_badblocks(rdev, sector_nr,
2850 min_bad, 0
2851 ) && ok;
2852 }
2853 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2854 *skipped = 1;
2855 put_buf(r1_bio);
2856
2857 if (!ok) {
2858 /* Cannot record the badblocks, so need to
2859 * abort the resync.
2860 * If there are multiple read targets, could just
2861 * fail the really bad ones ???
2862 */
2863 conf->recovery_disabled = mddev->recovery_disabled;
2864 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2865 return 0;
2866 } else
2867 return min_bad;
2868
2869 }
2870 if (min_bad > 0 && min_bad < good_sectors) {
2871 /* only resync enough to reach the next bad->good
2872 * transition */
2873 good_sectors = min_bad;
2874 }
2875
2876 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2877 /* extra read targets are also write targets */
2878 write_targets += read_targets-1;
2879
2880 if (write_targets == 0 || read_targets == 0) {
2881 /* There is nowhere to write, so all non-sync
2882 * drives must be failed - so we are finished
2883 */
2884 sector_t rv;
2885 if (min_bad > 0)
2886 max_sector = sector_nr + min_bad;
2887 rv = max_sector - sector_nr;
2888 *skipped = 1;
2889 put_buf(r1_bio);
2890 return rv;
2891 }
2892
2893 if (max_sector > mddev->resync_max)
2894 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2895 if (max_sector > sector_nr + good_sectors)
2896 max_sector = sector_nr + good_sectors;
2897 nr_sectors = 0;
2898 sync_blocks = 0;
2899 do {
2900 struct page *page;
2901 int len = PAGE_SIZE;
2902 if (sector_nr + (len>>9) > max_sector)
2903 len = (max_sector - sector_nr) << 9;
2904 if (len == 0)
2905 break;
2906 if (sync_blocks == 0) {
2907 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2908 &sync_blocks, still_degraded) &&
2909 !conf->fullsync &&
2910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2911 break;
2912 if ((len >> 9) > sync_blocks)
2913 len = sync_blocks<<9;
2914 }
2915
2916 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2917 bio = r1_bio->bios[i];
2918 if (bio->bi_end_io) {
2919 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2920 if (bio_add_page(bio, page, len, 0) == 0) {
2921 /* stop here */
2922 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2923 while (i > 0) {
2924 i--;
2925 bio = r1_bio->bios[i];
2926 if (bio->bi_end_io==NULL)
2927 continue;
2928 /* remove last page from this bio */
2929 bio->bi_vcnt--;
2930 bio->bi_iter.bi_size -= len;
2931 bio_clear_flag(bio, BIO_SEG_VALID);
2932 }
2933 goto bio_full;
2934 }
2935 }
2936 }
2937 nr_sectors += len>>9;
2938 sector_nr += len>>9;
2939 sync_blocks -= (len>>9);
2940 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2941 bio_full:
2942 r1_bio->sectors = nr_sectors;
2943
2944 if (mddev_is_clustered(mddev) &&
2945 conf->cluster_sync_high < sector_nr + nr_sectors) {
2946 conf->cluster_sync_low = mddev->curr_resync_completed;
2947 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2948 /* Send resync message */
2949 md_cluster_ops->resync_info_update(mddev,
2950 conf->cluster_sync_low,
2951 conf->cluster_sync_high);
2952 }
2953
2954 /* For a user-requested sync, we read all readable devices and do a
2955 * compare
2956 */
2957 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2958 atomic_set(&r1_bio->remaining, read_targets);
2959 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2960 bio = r1_bio->bios[i];
2961 if (bio->bi_end_io == end_sync_read) {
2962 read_targets--;
2963 md_sync_acct(bio->bi_bdev, nr_sectors);
2964 if (read_targets == 1)
2965 bio->bi_opf &= ~MD_FAILFAST;
2966 generic_make_request(bio);
2967 }
2968 }
2969 } else {
2970 atomic_set(&r1_bio->remaining, 1);
2971 bio = r1_bio->bios[r1_bio->read_disk];
2972 md_sync_acct(bio->bi_bdev, nr_sectors);
2973 if (read_targets == 1)
2974 bio->bi_opf &= ~MD_FAILFAST;
2975 generic_make_request(bio);
2976
2977 }
2978 return nr_sectors;
2979 }
2980
2981 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2982 {
2983 if (sectors)
2984 return sectors;
2985
2986 return mddev->dev_sectors;
2987 }
2988
2989 static struct r1conf *setup_conf(struct mddev *mddev)
2990 {
2991 struct r1conf *conf;
2992 int i;
2993 struct raid1_info *disk;
2994 struct md_rdev *rdev;
2995 int err = -ENOMEM;
2996
2997 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2998 if (!conf)
2999 goto abort;
3000
3001 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3002 sizeof(atomic_t), GFP_KERNEL);
3003 if (!conf->nr_pending)
3004 goto abort;
3005
3006 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3007 sizeof(atomic_t), GFP_KERNEL);
3008 if (!conf->nr_waiting)
3009 goto abort;
3010
3011 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3012 sizeof(atomic_t), GFP_KERNEL);
3013 if (!conf->nr_queued)
3014 goto abort;
3015
3016 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3017 sizeof(atomic_t), GFP_KERNEL);
3018 if (!conf->barrier)
3019 goto abort;
3020
3021 conf->mirrors = kzalloc(sizeof(struct raid1_info)
3022 * mddev->raid_disks * 2,
3023 GFP_KERNEL);
3024 if (!conf->mirrors)
3025 goto abort;
3026
3027 conf->tmppage = alloc_page(GFP_KERNEL);
3028 if (!conf->tmppage)
3029 goto abort;
3030
3031 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3032 if (!conf->poolinfo)
3033 goto abort;
3034 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3035 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3036 r1bio_pool_free,
3037 conf->poolinfo);
3038 if (!conf->r1bio_pool)
3039 goto abort;
3040
3041 conf->poolinfo->mddev = mddev;
3042
3043 err = -EINVAL;
3044 spin_lock_init(&conf->device_lock);
3045 rdev_for_each(rdev, mddev) {
3046 struct request_queue *q;
3047 int disk_idx = rdev->raid_disk;
3048 if (disk_idx >= mddev->raid_disks
3049 || disk_idx < 0)
3050 continue;
3051 if (test_bit(Replacement, &rdev->flags))
3052 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3053 else
3054 disk = conf->mirrors + disk_idx;
3055
3056 if (disk->rdev)
3057 goto abort;
3058 disk->rdev = rdev;
3059 q = bdev_get_queue(rdev->bdev);
3060
3061 disk->head_position = 0;
3062 disk->seq_start = MaxSector;
3063 }
3064 conf->raid_disks = mddev->raid_disks;
3065 conf->mddev = mddev;
3066 INIT_LIST_HEAD(&conf->retry_list);
3067 INIT_LIST_HEAD(&conf->bio_end_io_list);
3068
3069 spin_lock_init(&conf->resync_lock);
3070 init_waitqueue_head(&conf->wait_barrier);
3071
3072 bio_list_init(&conf->pending_bio_list);
3073 conf->pending_count = 0;
3074 conf->recovery_disabled = mddev->recovery_disabled - 1;
3075
3076 err = -EIO;
3077 for (i = 0; i < conf->raid_disks * 2; i++) {
3078
3079 disk = conf->mirrors + i;
3080
3081 if (i < conf->raid_disks &&
3082 disk[conf->raid_disks].rdev) {
3083 /* This slot has a replacement. */
3084 if (!disk->rdev) {
3085 /* No original, just make the replacement
3086 * a recovering spare
3087 */
3088 disk->rdev =
3089 disk[conf->raid_disks].rdev;
3090 disk[conf->raid_disks].rdev = NULL;
3091 } else if (!test_bit(In_sync, &disk->rdev->flags))
3092 /* Original is not in_sync - bad */
3093 goto abort;
3094 }
3095
3096 if (!disk->rdev ||
3097 !test_bit(In_sync, &disk->rdev->flags)) {
3098 disk->head_position = 0;
3099 if (disk->rdev &&
3100 (disk->rdev->saved_raid_disk < 0))
3101 conf->fullsync = 1;
3102 }
3103 }
3104
3105 err = -ENOMEM;
3106 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3107 if (!conf->thread)
3108 goto abort;
3109
3110 return conf;
3111
3112 abort:
3113 if (conf) {
3114 mempool_destroy(conf->r1bio_pool);
3115 kfree(conf->mirrors);
3116 safe_put_page(conf->tmppage);
3117 kfree(conf->poolinfo);
3118 kfree(conf->nr_pending);
3119 kfree(conf->nr_waiting);
3120 kfree(conf->nr_queued);
3121 kfree(conf->barrier);
3122 kfree(conf);
3123 }
3124 return ERR_PTR(err);
3125 }
3126
3127 static void raid1_free(struct mddev *mddev, void *priv);
3128 static int raid1_run(struct mddev *mddev)
3129 {
3130 struct r1conf *conf;
3131 int i;
3132 struct md_rdev *rdev;
3133 int ret;
3134 bool discard_supported = false;
3135
3136 if (mddev->level != 1) {
3137 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3138 mdname(mddev), mddev->level);
3139 return -EIO;
3140 }
3141 if (mddev->reshape_position != MaxSector) {
3142 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3143 mdname(mddev));
3144 return -EIO;
3145 }
3146 /*
3147 * copy the already verified devices into our private RAID1
3148 * bookkeeping area. [whatever we allocate in run(),
3149 * should be freed in raid1_free()]
3150 */
3151 if (mddev->private == NULL)
3152 conf = setup_conf(mddev);
3153 else
3154 conf = mddev->private;
3155
3156 if (IS_ERR(conf))
3157 return PTR_ERR(conf);
3158
3159 if (mddev->queue)
3160 blk_queue_max_write_same_sectors(mddev->queue, 0);
3161
3162 rdev_for_each(rdev, mddev) {
3163 if (!mddev->gendisk)
3164 continue;
3165 disk_stack_limits(mddev->gendisk, rdev->bdev,
3166 rdev->data_offset << 9);
3167 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3168 discard_supported = true;
3169 }
3170
3171 mddev->degraded = 0;
3172 for (i=0; i < conf->raid_disks; i++)
3173 if (conf->mirrors[i].rdev == NULL ||
3174 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3175 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3176 mddev->degraded++;
3177
3178 if (conf->raid_disks - mddev->degraded == 1)
3179 mddev->recovery_cp = MaxSector;
3180
3181 if (mddev->recovery_cp != MaxSector)
3182 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3183 mdname(mddev));
3184 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3185 mdname(mddev), mddev->raid_disks - mddev->degraded,
3186 mddev->raid_disks);
3187
3188 /*
3189 * Ok, everything is just fine now
3190 */
3191 mddev->thread = conf->thread;
3192 conf->thread = NULL;
3193 mddev->private = conf;
3194 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3195
3196 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3197
3198 if (mddev->queue) {
3199 if (discard_supported)
3200 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3201 mddev->queue);
3202 else
3203 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3204 mddev->queue);
3205 }
3206
3207 ret = md_integrity_register(mddev);
3208 if (ret) {
3209 md_unregister_thread(&mddev->thread);
3210 raid1_free(mddev, conf);
3211 }
3212 return ret;
3213 }
3214
3215 static void raid1_free(struct mddev *mddev, void *priv)
3216 {
3217 struct r1conf *conf = priv;
3218
3219 mempool_destroy(conf->r1bio_pool);
3220 kfree(conf->mirrors);
3221 safe_put_page(conf->tmppage);
3222 kfree(conf->poolinfo);
3223 kfree(conf->nr_pending);
3224 kfree(conf->nr_waiting);
3225 kfree(conf->nr_queued);
3226 kfree(conf->barrier);
3227 kfree(conf);
3228 }
3229
3230 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3231 {
3232 /* no resync is happening, and there is enough space
3233 * on all devices, so we can resize.
3234 * We need to make sure resync covers any new space.
3235 * If the array is shrinking we should possibly wait until
3236 * any io in the removed space completes, but it hardly seems
3237 * worth it.
3238 */
3239 sector_t newsize = raid1_size(mddev, sectors, 0);
3240 if (mddev->external_size &&
3241 mddev->array_sectors > newsize)
3242 return -EINVAL;
3243 if (mddev->bitmap) {
3244 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3245 if (ret)
3246 return ret;
3247 }
3248 md_set_array_sectors(mddev, newsize);
3249 set_capacity(mddev->gendisk, mddev->array_sectors);
3250 revalidate_disk(mddev->gendisk);
3251 if (sectors > mddev->dev_sectors &&
3252 mddev->recovery_cp > mddev->dev_sectors) {
3253 mddev->recovery_cp = mddev->dev_sectors;
3254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3255 }
3256 mddev->dev_sectors = sectors;
3257 mddev->resync_max_sectors = sectors;
3258 return 0;
3259 }
3260
3261 static int raid1_reshape(struct mddev *mddev)
3262 {
3263 /* We need to:
3264 * 1/ resize the r1bio_pool
3265 * 2/ resize conf->mirrors
3266 *
3267 * We allocate a new r1bio_pool if we can.
3268 * Then raise a device barrier and wait until all IO stops.
3269 * Then resize conf->mirrors and swap in the new r1bio pool.
3270 *
3271 * At the same time, we "pack" the devices so that all the missing
3272 * devices have the higher raid_disk numbers.
3273 */
3274 mempool_t *newpool, *oldpool;
3275 struct pool_info *newpoolinfo;
3276 struct raid1_info *newmirrors;
3277 struct r1conf *conf = mddev->private;
3278 int cnt, raid_disks;
3279 unsigned long flags;
3280 int d, d2, err;
3281
3282 /* Cannot change chunk_size, layout, or level */
3283 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3284 mddev->layout != mddev->new_layout ||
3285 mddev->level != mddev->new_level) {
3286 mddev->new_chunk_sectors = mddev->chunk_sectors;
3287 mddev->new_layout = mddev->layout;
3288 mddev->new_level = mddev->level;
3289 return -EINVAL;
3290 }
3291
3292 if (!mddev_is_clustered(mddev)) {
3293 err = md_allow_write(mddev);
3294 if (err)
3295 return err;
3296 }
3297
3298 raid_disks = mddev->raid_disks + mddev->delta_disks;
3299
3300 if (raid_disks < conf->raid_disks) {
3301 cnt=0;
3302 for (d= 0; d < conf->raid_disks; d++)
3303 if (conf->mirrors[d].rdev)
3304 cnt++;
3305 if (cnt > raid_disks)
3306 return -EBUSY;
3307 }
3308
3309 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3310 if (!newpoolinfo)
3311 return -ENOMEM;
3312 newpoolinfo->mddev = mddev;
3313 newpoolinfo->raid_disks = raid_disks * 2;
3314
3315 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3316 r1bio_pool_free, newpoolinfo);
3317 if (!newpool) {
3318 kfree(newpoolinfo);
3319 return -ENOMEM;
3320 }
3321 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3322 GFP_KERNEL);
3323 if (!newmirrors) {
3324 kfree(newpoolinfo);
3325 mempool_destroy(newpool);
3326 return -ENOMEM;
3327 }
3328
3329 freeze_array(conf, 0);
3330
3331 /* ok, everything is stopped */
3332 oldpool = conf->r1bio_pool;
3333 conf->r1bio_pool = newpool;
3334
3335 for (d = d2 = 0; d < conf->raid_disks; d++) {
3336 struct md_rdev *rdev = conf->mirrors[d].rdev;
3337 if (rdev && rdev->raid_disk != d2) {
3338 sysfs_unlink_rdev(mddev, rdev);
3339 rdev->raid_disk = d2;
3340 sysfs_unlink_rdev(mddev, rdev);
3341 if (sysfs_link_rdev(mddev, rdev))
3342 pr_warn("md/raid1:%s: cannot register rd%d\n",
3343 mdname(mddev), rdev->raid_disk);
3344 }
3345 if (rdev)
3346 newmirrors[d2++].rdev = rdev;
3347 }
3348 kfree(conf->mirrors);
3349 conf->mirrors = newmirrors;
3350 kfree(conf->poolinfo);
3351 conf->poolinfo = newpoolinfo;
3352
3353 spin_lock_irqsave(&conf->device_lock, flags);
3354 mddev->degraded += (raid_disks - conf->raid_disks);
3355 spin_unlock_irqrestore(&conf->device_lock, flags);
3356 conf->raid_disks = mddev->raid_disks = raid_disks;
3357 mddev->delta_disks = 0;
3358
3359 unfreeze_array(conf);
3360
3361 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3363 md_wakeup_thread(mddev->thread);
3364
3365 mempool_destroy(oldpool);
3366 return 0;
3367 }
3368
3369 static void raid1_quiesce(struct mddev *mddev, int state)
3370 {
3371 struct r1conf *conf = mddev->private;
3372
3373 switch(state) {
3374 case 2: /* wake for suspend */
3375 wake_up(&conf->wait_barrier);
3376 break;
3377 case 1:
3378 freeze_array(conf, 0);
3379 break;
3380 case 0:
3381 unfreeze_array(conf);
3382 break;
3383 }
3384 }
3385
3386 static void *raid1_takeover(struct mddev *mddev)
3387 {
3388 /* raid1 can take over:
3389 * raid5 with 2 devices, any layout or chunk size
3390 */
3391 if (mddev->level == 5 && mddev->raid_disks == 2) {
3392 struct r1conf *conf;
3393 mddev->new_level = 1;
3394 mddev->new_layout = 0;
3395 mddev->new_chunk_sectors = 0;
3396 conf = setup_conf(mddev);
3397 if (!IS_ERR(conf)) {
3398 /* Array must appear to be quiesced */
3399 conf->array_frozen = 1;
3400 mddev_clear_unsupported_flags(mddev,
3401 UNSUPPORTED_MDDEV_FLAGS);
3402 }
3403 return conf;
3404 }
3405 return ERR_PTR(-EINVAL);
3406 }
3407
3408 static struct md_personality raid1_personality =
3409 {
3410 .name = "raid1",
3411 .level = 1,
3412 .owner = THIS_MODULE,
3413 .make_request = raid1_make_request,
3414 .run = raid1_run,
3415 .free = raid1_free,
3416 .status = raid1_status,
3417 .error_handler = raid1_error,
3418 .hot_add_disk = raid1_add_disk,
3419 .hot_remove_disk= raid1_remove_disk,
3420 .spare_active = raid1_spare_active,
3421 .sync_request = raid1_sync_request,
3422 .resize = raid1_resize,
3423 .size = raid1_size,
3424 .check_reshape = raid1_reshape,
3425 .quiesce = raid1_quiesce,
3426 .takeover = raid1_takeover,
3427 .congested = raid1_congested,
3428 };
3429
3430 static int __init raid_init(void)
3431 {
3432 return register_md_personality(&raid1_personality);
3433 }
3434
3435 static void raid_exit(void)
3436 {
3437 unregister_md_personality(&raid1_personality);
3438 }
3439
3440 module_init(raid_init);
3441 module_exit(raid_exit);
3442 MODULE_LICENSE("GPL");
3443 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3444 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3445 MODULE_ALIAS("md-raid1");
3446 MODULE_ALIAS("md-level-1");
3447
3448 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);