]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
md: raid1/raid10: initialize bvec table via bio_add_page()
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87 * 'strct resync_pages' stores actual pages used for doing the resync
88 * IO, and it is per-bio, so make .bi_private points to it.
89 */
90 static inline struct resync_pages *get_resync_pages(struct bio *bio)
91 {
92 return bio->bi_private;
93 }
94
95 /*
96 * for resync bio, r1bio pointer can be retrieved from the per-bio
97 * 'struct resync_pages'.
98 */
99 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
100 {
101 return get_resync_pages(bio)->raid_bio;
102 }
103
104 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
105 {
106 struct pool_info *pi = data;
107 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
108
109 /* allocate a r1bio with room for raid_disks entries in the bios array */
110 return kzalloc(size, gfp_flags);
111 }
112
113 static void r1bio_pool_free(void *r1_bio, void *data)
114 {
115 kfree(r1_bio);
116 }
117
118 #define RESYNC_DEPTH 32
119 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
120 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
121 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
122 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
123 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
124
125 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
126 {
127 struct pool_info *pi = data;
128 struct r1bio *r1_bio;
129 struct bio *bio;
130 int need_pages;
131 int j;
132 struct resync_pages *rps;
133
134 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
135 if (!r1_bio)
136 return NULL;
137
138 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
139 gfp_flags);
140 if (!rps)
141 goto out_free_r1bio;
142
143 /*
144 * Allocate bios : 1 for reading, n-1 for writing
145 */
146 for (j = pi->raid_disks ; j-- ; ) {
147 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
148 if (!bio)
149 goto out_free_bio;
150 r1_bio->bios[j] = bio;
151 }
152 /*
153 * Allocate RESYNC_PAGES data pages and attach them to
154 * the first bio.
155 * If this is a user-requested check/repair, allocate
156 * RESYNC_PAGES for each bio.
157 */
158 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
159 need_pages = pi->raid_disks;
160 else
161 need_pages = 1;
162 for (j = 0; j < pi->raid_disks; j++) {
163 struct resync_pages *rp = &rps[j];
164
165 bio = r1_bio->bios[j];
166
167 if (j < need_pages) {
168 if (resync_alloc_pages(rp, gfp_flags))
169 goto out_free_pages;
170 } else {
171 memcpy(rp, &rps[0], sizeof(*rp));
172 resync_get_all_pages(rp);
173 }
174
175 rp->raid_bio = r1_bio;
176 bio->bi_private = rp;
177 }
178
179 r1_bio->master_bio = NULL;
180
181 return r1_bio;
182
183 out_free_pages:
184 while (--j >= 0)
185 resync_free_pages(&rps[j]);
186
187 out_free_bio:
188 while (++j < pi->raid_disks)
189 bio_put(r1_bio->bios[j]);
190 kfree(rps);
191
192 out_free_r1bio:
193 r1bio_pool_free(r1_bio, data);
194 return NULL;
195 }
196
197 static void r1buf_pool_free(void *__r1_bio, void *data)
198 {
199 struct pool_info *pi = data;
200 int i;
201 struct r1bio *r1bio = __r1_bio;
202 struct resync_pages *rp = NULL;
203
204 for (i = pi->raid_disks; i--; ) {
205 rp = get_resync_pages(r1bio->bios[i]);
206 resync_free_pages(rp);
207 bio_put(r1bio->bios[i]);
208 }
209
210 /* resync pages array stored in the 1st bio's .bi_private */
211 kfree(rp);
212
213 r1bio_pool_free(r1bio, data);
214 }
215
216 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
217 {
218 int i;
219
220 for (i = 0; i < conf->raid_disks * 2; i++) {
221 struct bio **bio = r1_bio->bios + i;
222 if (!BIO_SPECIAL(*bio))
223 bio_put(*bio);
224 *bio = NULL;
225 }
226 }
227
228 static void free_r1bio(struct r1bio *r1_bio)
229 {
230 struct r1conf *conf = r1_bio->mddev->private;
231
232 put_all_bios(conf, r1_bio);
233 mempool_free(r1_bio, conf->r1bio_pool);
234 }
235
236 static void put_buf(struct r1bio *r1_bio)
237 {
238 struct r1conf *conf = r1_bio->mddev->private;
239 sector_t sect = r1_bio->sector;
240 int i;
241
242 for (i = 0; i < conf->raid_disks * 2; i++) {
243 struct bio *bio = r1_bio->bios[i];
244 if (bio->bi_end_io)
245 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
246 }
247
248 mempool_free(r1_bio, conf->r1buf_pool);
249
250 lower_barrier(conf, sect);
251 }
252
253 static void reschedule_retry(struct r1bio *r1_bio)
254 {
255 unsigned long flags;
256 struct mddev *mddev = r1_bio->mddev;
257 struct r1conf *conf = mddev->private;
258 int idx;
259
260 idx = sector_to_idx(r1_bio->sector);
261 spin_lock_irqsave(&conf->device_lock, flags);
262 list_add(&r1_bio->retry_list, &conf->retry_list);
263 atomic_inc(&conf->nr_queued[idx]);
264 spin_unlock_irqrestore(&conf->device_lock, flags);
265
266 wake_up(&conf->wait_barrier);
267 md_wakeup_thread(mddev->thread);
268 }
269
270 /*
271 * raid_end_bio_io() is called when we have finished servicing a mirrored
272 * operation and are ready to return a success/failure code to the buffer
273 * cache layer.
274 */
275 static void call_bio_endio(struct r1bio *r1_bio)
276 {
277 struct bio *bio = r1_bio->master_bio;
278 struct r1conf *conf = r1_bio->mddev->private;
279
280 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
281 bio->bi_status = BLK_STS_IOERR;
282
283 bio_endio(bio);
284 /*
285 * Wake up any possible resync thread that waits for the device
286 * to go idle.
287 */
288 allow_barrier(conf, r1_bio->sector);
289 }
290
291 static void raid_end_bio_io(struct r1bio *r1_bio)
292 {
293 struct bio *bio = r1_bio->master_bio;
294
295 /* if nobody has done the final endio yet, do it now */
296 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
297 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
298 (bio_data_dir(bio) == WRITE) ? "write" : "read",
299 (unsigned long long) bio->bi_iter.bi_sector,
300 (unsigned long long) bio_end_sector(bio) - 1);
301
302 call_bio_endio(r1_bio);
303 }
304 free_r1bio(r1_bio);
305 }
306
307 /*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
311 {
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 conf->mirrors[disk].head_position =
315 r1_bio->sector + (r1_bio->sectors);
316 }
317
318 /*
319 * Find the disk number which triggered given bio
320 */
321 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
322 {
323 int mirror;
324 struct r1conf *conf = r1_bio->mddev->private;
325 int raid_disks = conf->raid_disks;
326
327 for (mirror = 0; mirror < raid_disks * 2; mirror++)
328 if (r1_bio->bios[mirror] == bio)
329 break;
330
331 BUG_ON(mirror == raid_disks * 2);
332 update_head_pos(mirror, r1_bio);
333
334 return mirror;
335 }
336
337 static void raid1_end_read_request(struct bio *bio)
338 {
339 int uptodate = !bio->bi_status;
340 struct r1bio *r1_bio = bio->bi_private;
341 struct r1conf *conf = r1_bio->mddev->private;
342 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
343
344 /*
345 * this branch is our 'one mirror IO has finished' event handler:
346 */
347 update_head_pos(r1_bio->read_disk, r1_bio);
348
349 if (uptodate)
350 set_bit(R1BIO_Uptodate, &r1_bio->state);
351 else if (test_bit(FailFast, &rdev->flags) &&
352 test_bit(R1BIO_FailFast, &r1_bio->state))
353 /* This was a fail-fast read so we definitely
354 * want to retry */
355 ;
356 else {
357 /* If all other devices have failed, we want to return
358 * the error upwards rather than fail the last device.
359 * Here we redefine "uptodate" to mean "Don't want to retry"
360 */
361 unsigned long flags;
362 spin_lock_irqsave(&conf->device_lock, flags);
363 if (r1_bio->mddev->degraded == conf->raid_disks ||
364 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
365 test_bit(In_sync, &rdev->flags)))
366 uptodate = 1;
367 spin_unlock_irqrestore(&conf->device_lock, flags);
368 }
369
370 if (uptodate) {
371 raid_end_bio_io(r1_bio);
372 rdev_dec_pending(rdev, conf->mddev);
373 } else {
374 /*
375 * oops, read error:
376 */
377 char b[BDEVNAME_SIZE];
378 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
379 mdname(conf->mddev),
380 bdevname(rdev->bdev, b),
381 (unsigned long long)r1_bio->sector);
382 set_bit(R1BIO_ReadError, &r1_bio->state);
383 reschedule_retry(r1_bio);
384 /* don't drop the reference on read_disk yet */
385 }
386 }
387
388 static void close_write(struct r1bio *r1_bio)
389 {
390 /* it really is the end of this request */
391 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
392 bio_free_pages(r1_bio->behind_master_bio);
393 bio_put(r1_bio->behind_master_bio);
394 r1_bio->behind_master_bio = NULL;
395 }
396 /* clear the bitmap if all writes complete successfully */
397 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
398 r1_bio->sectors,
399 !test_bit(R1BIO_Degraded, &r1_bio->state),
400 test_bit(R1BIO_BehindIO, &r1_bio->state));
401 md_write_end(r1_bio->mddev);
402 }
403
404 static void r1_bio_write_done(struct r1bio *r1_bio)
405 {
406 if (!atomic_dec_and_test(&r1_bio->remaining))
407 return;
408
409 if (test_bit(R1BIO_WriteError, &r1_bio->state))
410 reschedule_retry(r1_bio);
411 else {
412 close_write(r1_bio);
413 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
414 reschedule_retry(r1_bio);
415 else
416 raid_end_bio_io(r1_bio);
417 }
418 }
419
420 static void raid1_end_write_request(struct bio *bio)
421 {
422 struct r1bio *r1_bio = bio->bi_private;
423 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
424 struct r1conf *conf = r1_bio->mddev->private;
425 struct bio *to_put = NULL;
426 int mirror = find_bio_disk(r1_bio, bio);
427 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
428 bool discard_error;
429
430 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
431
432 /*
433 * 'one mirror IO has finished' event handler:
434 */
435 if (bio->bi_status && !discard_error) {
436 set_bit(WriteErrorSeen, &rdev->flags);
437 if (!test_and_set_bit(WantReplacement, &rdev->flags))
438 set_bit(MD_RECOVERY_NEEDED, &
439 conf->mddev->recovery);
440
441 if (test_bit(FailFast, &rdev->flags) &&
442 (bio->bi_opf & MD_FAILFAST) &&
443 /* We never try FailFast to WriteMostly devices */
444 !test_bit(WriteMostly, &rdev->flags)) {
445 md_error(r1_bio->mddev, rdev);
446 if (!test_bit(Faulty, &rdev->flags))
447 /* This is the only remaining device,
448 * We need to retry the write without
449 * FailFast
450 */
451 set_bit(R1BIO_WriteError, &r1_bio->state);
452 else {
453 /* Finished with this branch */
454 r1_bio->bios[mirror] = NULL;
455 to_put = bio;
456 }
457 } else
458 set_bit(R1BIO_WriteError, &r1_bio->state);
459 } else {
460 /*
461 * Set R1BIO_Uptodate in our master bio, so that we
462 * will return a good error code for to the higher
463 * levels even if IO on some other mirrored buffer
464 * fails.
465 *
466 * The 'master' represents the composite IO operation
467 * to user-side. So if something waits for IO, then it
468 * will wait for the 'master' bio.
469 */
470 sector_t first_bad;
471 int bad_sectors;
472
473 r1_bio->bios[mirror] = NULL;
474 to_put = bio;
475 /*
476 * Do not set R1BIO_Uptodate if the current device is
477 * rebuilding or Faulty. This is because we cannot use
478 * such device for properly reading the data back (we could
479 * potentially use it, if the current write would have felt
480 * before rdev->recovery_offset, but for simplicity we don't
481 * check this here.
482 */
483 if (test_bit(In_sync, &rdev->flags) &&
484 !test_bit(Faulty, &rdev->flags))
485 set_bit(R1BIO_Uptodate, &r1_bio->state);
486
487 /* Maybe we can clear some bad blocks. */
488 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
489 &first_bad, &bad_sectors) && !discard_error) {
490 r1_bio->bios[mirror] = IO_MADE_GOOD;
491 set_bit(R1BIO_MadeGood, &r1_bio->state);
492 }
493 }
494
495 if (behind) {
496 /* we release behind master bio when all write are done */
497 if (r1_bio->behind_master_bio == bio)
498 to_put = NULL;
499
500 if (test_bit(WriteMostly, &rdev->flags))
501 atomic_dec(&r1_bio->behind_remaining);
502
503 /*
504 * In behind mode, we ACK the master bio once the I/O
505 * has safely reached all non-writemostly
506 * disks. Setting the Returned bit ensures that this
507 * gets done only once -- we don't ever want to return
508 * -EIO here, instead we'll wait
509 */
510 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
511 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
512 /* Maybe we can return now */
513 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
514 struct bio *mbio = r1_bio->master_bio;
515 pr_debug("raid1: behind end write sectors"
516 " %llu-%llu\n",
517 (unsigned long long) mbio->bi_iter.bi_sector,
518 (unsigned long long) bio_end_sector(mbio) - 1);
519 call_bio_endio(r1_bio);
520 }
521 }
522 }
523 if (r1_bio->bios[mirror] == NULL)
524 rdev_dec_pending(rdev, conf->mddev);
525
526 /*
527 * Let's see if all mirrored write operations have finished
528 * already.
529 */
530 r1_bio_write_done(r1_bio);
531
532 if (to_put)
533 bio_put(to_put);
534 }
535
536 static sector_t align_to_barrier_unit_end(sector_t start_sector,
537 sector_t sectors)
538 {
539 sector_t len;
540
541 WARN_ON(sectors == 0);
542 /*
543 * len is the number of sectors from start_sector to end of the
544 * barrier unit which start_sector belongs to.
545 */
546 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
547 start_sector;
548
549 if (len > sectors)
550 len = sectors;
551
552 return len;
553 }
554
555 /*
556 * This routine returns the disk from which the requested read should
557 * be done. There is a per-array 'next expected sequential IO' sector
558 * number - if this matches on the next IO then we use the last disk.
559 * There is also a per-disk 'last know head position' sector that is
560 * maintained from IRQ contexts, both the normal and the resync IO
561 * completion handlers update this position correctly. If there is no
562 * perfect sequential match then we pick the disk whose head is closest.
563 *
564 * If there are 2 mirrors in the same 2 devices, performance degrades
565 * because position is mirror, not device based.
566 *
567 * The rdev for the device selected will have nr_pending incremented.
568 */
569 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
570 {
571 const sector_t this_sector = r1_bio->sector;
572 int sectors;
573 int best_good_sectors;
574 int best_disk, best_dist_disk, best_pending_disk;
575 int has_nonrot_disk;
576 int disk;
577 sector_t best_dist;
578 unsigned int min_pending;
579 struct md_rdev *rdev;
580 int choose_first;
581 int choose_next_idle;
582
583 rcu_read_lock();
584 /*
585 * Check if we can balance. We can balance on the whole
586 * device if no resync is going on, or below the resync window.
587 * We take the first readable disk when above the resync window.
588 */
589 retry:
590 sectors = r1_bio->sectors;
591 best_disk = -1;
592 best_dist_disk = -1;
593 best_dist = MaxSector;
594 best_pending_disk = -1;
595 min_pending = UINT_MAX;
596 best_good_sectors = 0;
597 has_nonrot_disk = 0;
598 choose_next_idle = 0;
599 clear_bit(R1BIO_FailFast, &r1_bio->state);
600
601 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
602 (mddev_is_clustered(conf->mddev) &&
603 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
604 this_sector + sectors)))
605 choose_first = 1;
606 else
607 choose_first = 0;
608
609 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
610 sector_t dist;
611 sector_t first_bad;
612 int bad_sectors;
613 unsigned int pending;
614 bool nonrot;
615
616 rdev = rcu_dereference(conf->mirrors[disk].rdev);
617 if (r1_bio->bios[disk] == IO_BLOCKED
618 || rdev == NULL
619 || test_bit(Faulty, &rdev->flags))
620 continue;
621 if (!test_bit(In_sync, &rdev->flags) &&
622 rdev->recovery_offset < this_sector + sectors)
623 continue;
624 if (test_bit(WriteMostly, &rdev->flags)) {
625 /* Don't balance among write-mostly, just
626 * use the first as a last resort */
627 if (best_dist_disk < 0) {
628 if (is_badblock(rdev, this_sector, sectors,
629 &first_bad, &bad_sectors)) {
630 if (first_bad <= this_sector)
631 /* Cannot use this */
632 continue;
633 best_good_sectors = first_bad - this_sector;
634 } else
635 best_good_sectors = sectors;
636 best_dist_disk = disk;
637 best_pending_disk = disk;
638 }
639 continue;
640 }
641 /* This is a reasonable device to use. It might
642 * even be best.
643 */
644 if (is_badblock(rdev, this_sector, sectors,
645 &first_bad, &bad_sectors)) {
646 if (best_dist < MaxSector)
647 /* already have a better device */
648 continue;
649 if (first_bad <= this_sector) {
650 /* cannot read here. If this is the 'primary'
651 * device, then we must not read beyond
652 * bad_sectors from another device..
653 */
654 bad_sectors -= (this_sector - first_bad);
655 if (choose_first && sectors > bad_sectors)
656 sectors = bad_sectors;
657 if (best_good_sectors > sectors)
658 best_good_sectors = sectors;
659
660 } else {
661 sector_t good_sectors = first_bad - this_sector;
662 if (good_sectors > best_good_sectors) {
663 best_good_sectors = good_sectors;
664 best_disk = disk;
665 }
666 if (choose_first)
667 break;
668 }
669 continue;
670 } else {
671 if ((sectors > best_good_sectors) && (best_disk >= 0))
672 best_disk = -1;
673 best_good_sectors = sectors;
674 }
675
676 if (best_disk >= 0)
677 /* At least two disks to choose from so failfast is OK */
678 set_bit(R1BIO_FailFast, &r1_bio->state);
679
680 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
681 has_nonrot_disk |= nonrot;
682 pending = atomic_read(&rdev->nr_pending);
683 dist = abs(this_sector - conf->mirrors[disk].head_position);
684 if (choose_first) {
685 best_disk = disk;
686 break;
687 }
688 /* Don't change to another disk for sequential reads */
689 if (conf->mirrors[disk].next_seq_sect == this_sector
690 || dist == 0) {
691 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
692 struct raid1_info *mirror = &conf->mirrors[disk];
693
694 best_disk = disk;
695 /*
696 * If buffered sequential IO size exceeds optimal
697 * iosize, check if there is idle disk. If yes, choose
698 * the idle disk. read_balance could already choose an
699 * idle disk before noticing it's a sequential IO in
700 * this disk. This doesn't matter because this disk
701 * will idle, next time it will be utilized after the
702 * first disk has IO size exceeds optimal iosize. In
703 * this way, iosize of the first disk will be optimal
704 * iosize at least. iosize of the second disk might be
705 * small, but not a big deal since when the second disk
706 * starts IO, the first disk is likely still busy.
707 */
708 if (nonrot && opt_iosize > 0 &&
709 mirror->seq_start != MaxSector &&
710 mirror->next_seq_sect > opt_iosize &&
711 mirror->next_seq_sect - opt_iosize >=
712 mirror->seq_start) {
713 choose_next_idle = 1;
714 continue;
715 }
716 break;
717 }
718
719 if (choose_next_idle)
720 continue;
721
722 if (min_pending > pending) {
723 min_pending = pending;
724 best_pending_disk = disk;
725 }
726
727 if (dist < best_dist) {
728 best_dist = dist;
729 best_dist_disk = disk;
730 }
731 }
732
733 /*
734 * If all disks are rotational, choose the closest disk. If any disk is
735 * non-rotational, choose the disk with less pending request even the
736 * disk is rotational, which might/might not be optimal for raids with
737 * mixed ratation/non-rotational disks depending on workload.
738 */
739 if (best_disk == -1) {
740 if (has_nonrot_disk || min_pending == 0)
741 best_disk = best_pending_disk;
742 else
743 best_disk = best_dist_disk;
744 }
745
746 if (best_disk >= 0) {
747 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
748 if (!rdev)
749 goto retry;
750 atomic_inc(&rdev->nr_pending);
751 sectors = best_good_sectors;
752
753 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
754 conf->mirrors[best_disk].seq_start = this_sector;
755
756 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
757 }
758 rcu_read_unlock();
759 *max_sectors = sectors;
760
761 return best_disk;
762 }
763
764 static int raid1_congested(struct mddev *mddev, int bits)
765 {
766 struct r1conf *conf = mddev->private;
767 int i, ret = 0;
768
769 if ((bits & (1 << WB_async_congested)) &&
770 conf->pending_count >= max_queued_requests)
771 return 1;
772
773 rcu_read_lock();
774 for (i = 0; i < conf->raid_disks * 2; i++) {
775 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
776 if (rdev && !test_bit(Faulty, &rdev->flags)) {
777 struct request_queue *q = bdev_get_queue(rdev->bdev);
778
779 BUG_ON(!q);
780
781 /* Note the '|| 1' - when read_balance prefers
782 * non-congested targets, it can be removed
783 */
784 if ((bits & (1 << WB_async_congested)) || 1)
785 ret |= bdi_congested(q->backing_dev_info, bits);
786 else
787 ret &= bdi_congested(q->backing_dev_info, bits);
788 }
789 }
790 rcu_read_unlock();
791 return ret;
792 }
793
794 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795 {
796 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
797 bitmap_unplug(conf->mddev->bitmap);
798 wake_up(&conf->wait_barrier);
799
800 while (bio) { /* submit pending writes */
801 struct bio *next = bio->bi_next;
802 struct md_rdev *rdev = (void*)bio->bi_bdev;
803 bio->bi_next = NULL;
804 bio->bi_bdev = rdev->bdev;
805 if (test_bit(Faulty, &rdev->flags)) {
806 bio->bi_status = BLK_STS_IOERR;
807 bio_endio(bio);
808 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
809 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
810 /* Just ignore it */
811 bio_endio(bio);
812 else
813 generic_make_request(bio);
814 bio = next;
815 }
816 }
817
818 static void flush_pending_writes(struct r1conf *conf)
819 {
820 /* Any writes that have been queued but are awaiting
821 * bitmap updates get flushed here.
822 */
823 spin_lock_irq(&conf->device_lock);
824
825 if (conf->pending_bio_list.head) {
826 struct bio *bio;
827 bio = bio_list_get(&conf->pending_bio_list);
828 conf->pending_count = 0;
829 spin_unlock_irq(&conf->device_lock);
830 flush_bio_list(conf, bio);
831 } else
832 spin_unlock_irq(&conf->device_lock);
833 }
834
835 /* Barriers....
836 * Sometimes we need to suspend IO while we do something else,
837 * either some resync/recovery, or reconfigure the array.
838 * To do this we raise a 'barrier'.
839 * The 'barrier' is a counter that can be raised multiple times
840 * to count how many activities are happening which preclude
841 * normal IO.
842 * We can only raise the barrier if there is no pending IO.
843 * i.e. if nr_pending == 0.
844 * We choose only to raise the barrier if no-one is waiting for the
845 * barrier to go down. This means that as soon as an IO request
846 * is ready, no other operations which require a barrier will start
847 * until the IO request has had a chance.
848 *
849 * So: regular IO calls 'wait_barrier'. When that returns there
850 * is no backgroup IO happening, It must arrange to call
851 * allow_barrier when it has finished its IO.
852 * backgroup IO calls must call raise_barrier. Once that returns
853 * there is no normal IO happeing. It must arrange to call
854 * lower_barrier when the particular background IO completes.
855 */
856 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
857 {
858 int idx = sector_to_idx(sector_nr);
859
860 spin_lock_irq(&conf->resync_lock);
861
862 /* Wait until no block IO is waiting */
863 wait_event_lock_irq(conf->wait_barrier,
864 !atomic_read(&conf->nr_waiting[idx]),
865 conf->resync_lock);
866
867 /* block any new IO from starting */
868 atomic_inc(&conf->barrier[idx]);
869 /*
870 * In raise_barrier() we firstly increase conf->barrier[idx] then
871 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
872 * increase conf->nr_pending[idx] then check conf->barrier[idx].
873 * A memory barrier here to make sure conf->nr_pending[idx] won't
874 * be fetched before conf->barrier[idx] is increased. Otherwise
875 * there will be a race between raise_barrier() and _wait_barrier().
876 */
877 smp_mb__after_atomic();
878
879 /* For these conditions we must wait:
880 * A: while the array is in frozen state
881 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
882 * existing in corresponding I/O barrier bucket.
883 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
884 * max resync count which allowed on current I/O barrier bucket.
885 */
886 wait_event_lock_irq(conf->wait_barrier,
887 !conf->array_frozen &&
888 !atomic_read(&conf->nr_pending[idx]) &&
889 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
890 conf->resync_lock);
891
892 atomic_inc(&conf->nr_sync_pending);
893 spin_unlock_irq(&conf->resync_lock);
894 }
895
896 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
897 {
898 int idx = sector_to_idx(sector_nr);
899
900 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
901
902 atomic_dec(&conf->barrier[idx]);
903 atomic_dec(&conf->nr_sync_pending);
904 wake_up(&conf->wait_barrier);
905 }
906
907 static void _wait_barrier(struct r1conf *conf, int idx)
908 {
909 /*
910 * We need to increase conf->nr_pending[idx] very early here,
911 * then raise_barrier() can be blocked when it waits for
912 * conf->nr_pending[idx] to be 0. Then we can avoid holding
913 * conf->resync_lock when there is no barrier raised in same
914 * barrier unit bucket. Also if the array is frozen, I/O
915 * should be blocked until array is unfrozen.
916 */
917 atomic_inc(&conf->nr_pending[idx]);
918 /*
919 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
920 * check conf->barrier[idx]. In raise_barrier() we firstly increase
921 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
922 * barrier is necessary here to make sure conf->barrier[idx] won't be
923 * fetched before conf->nr_pending[idx] is increased. Otherwise there
924 * will be a race between _wait_barrier() and raise_barrier().
925 */
926 smp_mb__after_atomic();
927
928 /*
929 * Don't worry about checking two atomic_t variables at same time
930 * here. If during we check conf->barrier[idx], the array is
931 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
932 * 0, it is safe to return and make the I/O continue. Because the
933 * array is frozen, all I/O returned here will eventually complete
934 * or be queued, no race will happen. See code comment in
935 * frozen_array().
936 */
937 if (!READ_ONCE(conf->array_frozen) &&
938 !atomic_read(&conf->barrier[idx]))
939 return;
940
941 /*
942 * After holding conf->resync_lock, conf->nr_pending[idx]
943 * should be decreased before waiting for barrier to drop.
944 * Otherwise, we may encounter a race condition because
945 * raise_barrer() might be waiting for conf->nr_pending[idx]
946 * to be 0 at same time.
947 */
948 spin_lock_irq(&conf->resync_lock);
949 atomic_inc(&conf->nr_waiting[idx]);
950 atomic_dec(&conf->nr_pending[idx]);
951 /*
952 * In case freeze_array() is waiting for
953 * get_unqueued_pending() == extra
954 */
955 wake_up(&conf->wait_barrier);
956 /* Wait for the barrier in same barrier unit bucket to drop. */
957 wait_event_lock_irq(conf->wait_barrier,
958 !conf->array_frozen &&
959 !atomic_read(&conf->barrier[idx]),
960 conf->resync_lock);
961 atomic_inc(&conf->nr_pending[idx]);
962 atomic_dec(&conf->nr_waiting[idx]);
963 spin_unlock_irq(&conf->resync_lock);
964 }
965
966 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
967 {
968 int idx = sector_to_idx(sector_nr);
969
970 /*
971 * Very similar to _wait_barrier(). The difference is, for read
972 * I/O we don't need wait for sync I/O, but if the whole array
973 * is frozen, the read I/O still has to wait until the array is
974 * unfrozen. Since there is no ordering requirement with
975 * conf->barrier[idx] here, memory barrier is unnecessary as well.
976 */
977 atomic_inc(&conf->nr_pending[idx]);
978
979 if (!READ_ONCE(conf->array_frozen))
980 return;
981
982 spin_lock_irq(&conf->resync_lock);
983 atomic_inc(&conf->nr_waiting[idx]);
984 atomic_dec(&conf->nr_pending[idx]);
985 /*
986 * In case freeze_array() is waiting for
987 * get_unqueued_pending() == extra
988 */
989 wake_up(&conf->wait_barrier);
990 /* Wait for array to be unfrozen */
991 wait_event_lock_irq(conf->wait_barrier,
992 !conf->array_frozen,
993 conf->resync_lock);
994 atomic_inc(&conf->nr_pending[idx]);
995 atomic_dec(&conf->nr_waiting[idx]);
996 spin_unlock_irq(&conf->resync_lock);
997 }
998
999 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1000 {
1001 int idx = sector_to_idx(sector_nr);
1002
1003 _wait_barrier(conf, idx);
1004 }
1005
1006 static void wait_all_barriers(struct r1conf *conf)
1007 {
1008 int idx;
1009
1010 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1011 _wait_barrier(conf, idx);
1012 }
1013
1014 static void _allow_barrier(struct r1conf *conf, int idx)
1015 {
1016 atomic_dec(&conf->nr_pending[idx]);
1017 wake_up(&conf->wait_barrier);
1018 }
1019
1020 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 int idx = sector_to_idx(sector_nr);
1023
1024 _allow_barrier(conf, idx);
1025 }
1026
1027 static void allow_all_barriers(struct r1conf *conf)
1028 {
1029 int idx;
1030
1031 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1032 _allow_barrier(conf, idx);
1033 }
1034
1035 /* conf->resync_lock should be held */
1036 static int get_unqueued_pending(struct r1conf *conf)
1037 {
1038 int idx, ret;
1039
1040 ret = atomic_read(&conf->nr_sync_pending);
1041 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1042 ret += atomic_read(&conf->nr_pending[idx]) -
1043 atomic_read(&conf->nr_queued[idx]);
1044
1045 return ret;
1046 }
1047
1048 static void freeze_array(struct r1conf *conf, int extra)
1049 {
1050 /* Stop sync I/O and normal I/O and wait for everything to
1051 * go quiet.
1052 * This is called in two situations:
1053 * 1) management command handlers (reshape, remove disk, quiesce).
1054 * 2) one normal I/O request failed.
1055
1056 * After array_frozen is set to 1, new sync IO will be blocked at
1057 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1058 * or wait_read_barrier(). The flying I/Os will either complete or be
1059 * queued. When everything goes quite, there are only queued I/Os left.
1060
1061 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1062 * barrier bucket index which this I/O request hits. When all sync and
1063 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1064 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1065 * in handle_read_error(), we may call freeze_array() before trying to
1066 * fix the read error. In this case, the error read I/O is not queued,
1067 * so get_unqueued_pending() == 1.
1068 *
1069 * Therefore before this function returns, we need to wait until
1070 * get_unqueued_pendings(conf) gets equal to extra. For
1071 * normal I/O context, extra is 1, in rested situations extra is 0.
1072 */
1073 spin_lock_irq(&conf->resync_lock);
1074 conf->array_frozen = 1;
1075 raid1_log(conf->mddev, "wait freeze");
1076 wait_event_lock_irq_cmd(
1077 conf->wait_barrier,
1078 get_unqueued_pending(conf) == extra,
1079 conf->resync_lock,
1080 flush_pending_writes(conf));
1081 spin_unlock_irq(&conf->resync_lock);
1082 }
1083 static void unfreeze_array(struct r1conf *conf)
1084 {
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1087 conf->array_frozen = 0;
1088 spin_unlock_irq(&conf->resync_lock);
1089 wake_up(&conf->wait_barrier);
1090 }
1091
1092 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1093 struct bio *bio)
1094 {
1095 int size = bio->bi_iter.bi_size;
1096 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1097 int i = 0;
1098 struct bio *behind_bio = NULL;
1099
1100 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1101 if (!behind_bio)
1102 goto fail;
1103
1104 /* discard op, we don't support writezero/writesame yet */
1105 if (!bio_has_data(bio))
1106 goto skip_copy;
1107
1108 while (i < vcnt && size) {
1109 struct page *page;
1110 int len = min_t(int, PAGE_SIZE, size);
1111
1112 page = alloc_page(GFP_NOIO);
1113 if (unlikely(!page))
1114 goto free_pages;
1115
1116 bio_add_page(behind_bio, page, len, 0);
1117
1118 size -= len;
1119 i++;
1120 }
1121
1122 bio_copy_data(behind_bio, bio);
1123 skip_copy:
1124 r1_bio->behind_master_bio = behind_bio;;
1125 set_bit(R1BIO_BehindIO, &r1_bio->state);
1126
1127 return behind_bio;
1128
1129 free_pages:
1130 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1131 bio->bi_iter.bi_size);
1132 bio_free_pages(behind_bio);
1133 fail:
1134 return behind_bio;
1135 }
1136
1137 struct raid1_plug_cb {
1138 struct blk_plug_cb cb;
1139 struct bio_list pending;
1140 int pending_cnt;
1141 };
1142
1143 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1144 {
1145 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1146 cb);
1147 struct mddev *mddev = plug->cb.data;
1148 struct r1conf *conf = mddev->private;
1149 struct bio *bio;
1150
1151 if (from_schedule || current->bio_list) {
1152 spin_lock_irq(&conf->device_lock);
1153 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1154 conf->pending_count += plug->pending_cnt;
1155 spin_unlock_irq(&conf->device_lock);
1156 wake_up(&conf->wait_barrier);
1157 md_wakeup_thread(mddev->thread);
1158 kfree(plug);
1159 return;
1160 }
1161
1162 /* we aren't scheduling, so we can do the write-out directly. */
1163 bio = bio_list_get(&plug->pending);
1164 flush_bio_list(conf, bio);
1165 kfree(plug);
1166 }
1167
1168 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1169 {
1170 r1_bio->master_bio = bio;
1171 r1_bio->sectors = bio_sectors(bio);
1172 r1_bio->state = 0;
1173 r1_bio->mddev = mddev;
1174 r1_bio->sector = bio->bi_iter.bi_sector;
1175 }
1176
1177 static inline struct r1bio *
1178 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1179 {
1180 struct r1conf *conf = mddev->private;
1181 struct r1bio *r1_bio;
1182
1183 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1184 /* Ensure no bio records IO_BLOCKED */
1185 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1186 init_r1bio(r1_bio, mddev, bio);
1187 return r1_bio;
1188 }
1189
1190 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1191 int max_read_sectors, struct r1bio *r1_bio)
1192 {
1193 struct r1conf *conf = mddev->private;
1194 struct raid1_info *mirror;
1195 struct bio *read_bio;
1196 struct bitmap *bitmap = mddev->bitmap;
1197 const int op = bio_op(bio);
1198 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199 int max_sectors;
1200 int rdisk;
1201 bool print_msg = !!r1_bio;
1202 char b[BDEVNAME_SIZE];
1203
1204 /*
1205 * If r1_bio is set, we are blocking the raid1d thread
1206 * so there is a tiny risk of deadlock. So ask for
1207 * emergency memory if needed.
1208 */
1209 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1210
1211 if (print_msg) {
1212 /* Need to get the block device name carefully */
1213 struct md_rdev *rdev;
1214 rcu_read_lock();
1215 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1216 if (rdev)
1217 bdevname(rdev->bdev, b);
1218 else
1219 strcpy(b, "???");
1220 rcu_read_unlock();
1221 }
1222
1223 /*
1224 * Still need barrier for READ in case that whole
1225 * array is frozen.
1226 */
1227 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1228
1229 if (!r1_bio)
1230 r1_bio = alloc_r1bio(mddev, bio);
1231 else
1232 init_r1bio(r1_bio, mddev, bio);
1233 r1_bio->sectors = max_read_sectors;
1234
1235 /*
1236 * make_request() can abort the operation when read-ahead is being
1237 * used and no empty request is available.
1238 */
1239 rdisk = read_balance(conf, r1_bio, &max_sectors);
1240
1241 if (rdisk < 0) {
1242 /* couldn't find anywhere to read from */
1243 if (print_msg) {
1244 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1245 mdname(mddev),
1246 b,
1247 (unsigned long long)r1_bio->sector);
1248 }
1249 raid_end_bio_io(r1_bio);
1250 return;
1251 }
1252 mirror = conf->mirrors + rdisk;
1253
1254 if (print_msg)
1255 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1256 mdname(mddev),
1257 (unsigned long long)r1_bio->sector,
1258 bdevname(mirror->rdev->bdev, b));
1259
1260 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1261 bitmap) {
1262 /*
1263 * Reading from a write-mostly device must take care not to
1264 * over-take any writes that are 'behind'
1265 */
1266 raid1_log(mddev, "wait behind writes");
1267 wait_event(bitmap->behind_wait,
1268 atomic_read(&bitmap->behind_writes) == 0);
1269 }
1270
1271 if (max_sectors < bio_sectors(bio)) {
1272 struct bio *split = bio_split(bio, max_sectors,
1273 gfp, conf->bio_split);
1274 bio_chain(split, bio);
1275 generic_make_request(bio);
1276 bio = split;
1277 r1_bio->master_bio = bio;
1278 r1_bio->sectors = max_sectors;
1279 }
1280
1281 r1_bio->read_disk = rdisk;
1282
1283 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1284
1285 r1_bio->bios[rdisk] = read_bio;
1286
1287 read_bio->bi_iter.bi_sector = r1_bio->sector +
1288 mirror->rdev->data_offset;
1289 read_bio->bi_bdev = mirror->rdev->bdev;
1290 read_bio->bi_end_io = raid1_end_read_request;
1291 bio_set_op_attrs(read_bio, op, do_sync);
1292 if (test_bit(FailFast, &mirror->rdev->flags) &&
1293 test_bit(R1BIO_FailFast, &r1_bio->state))
1294 read_bio->bi_opf |= MD_FAILFAST;
1295 read_bio->bi_private = r1_bio;
1296
1297 if (mddev->gendisk)
1298 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1299 read_bio, disk_devt(mddev->gendisk),
1300 r1_bio->sector);
1301
1302 generic_make_request(read_bio);
1303 }
1304
1305 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1306 int max_write_sectors)
1307 {
1308 struct r1conf *conf = mddev->private;
1309 struct r1bio *r1_bio;
1310 int i, disks;
1311 struct bitmap *bitmap = mddev->bitmap;
1312 unsigned long flags;
1313 struct md_rdev *blocked_rdev;
1314 struct blk_plug_cb *cb;
1315 struct raid1_plug_cb *plug = NULL;
1316 int first_clone;
1317 int max_sectors;
1318
1319 /*
1320 * Register the new request and wait if the reconstruction
1321 * thread has put up a bar for new requests.
1322 * Continue immediately if no resync is active currently.
1323 */
1324
1325
1326 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1327 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1328 (mddev_is_clustered(mddev) &&
1329 md_cluster_ops->area_resyncing(mddev, WRITE,
1330 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1331
1332 /*
1333 * As the suspend_* range is controlled by userspace, we want
1334 * an interruptible wait.
1335 */
1336 DEFINE_WAIT(w);
1337 for (;;) {
1338 sigset_t full, old;
1339 prepare_to_wait(&conf->wait_barrier,
1340 &w, TASK_INTERRUPTIBLE);
1341 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1342 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1343 (mddev_is_clustered(mddev) &&
1344 !md_cluster_ops->area_resyncing(mddev, WRITE,
1345 bio->bi_iter.bi_sector,
1346 bio_end_sector(bio))))
1347 break;
1348 sigfillset(&full);
1349 sigprocmask(SIG_BLOCK, &full, &old);
1350 schedule();
1351 sigprocmask(SIG_SETMASK, &old, NULL);
1352 }
1353 finish_wait(&conf->wait_barrier, &w);
1354 }
1355 wait_barrier(conf, bio->bi_iter.bi_sector);
1356
1357 r1_bio = alloc_r1bio(mddev, bio);
1358 r1_bio->sectors = max_write_sectors;
1359
1360 if (conf->pending_count >= max_queued_requests) {
1361 md_wakeup_thread(mddev->thread);
1362 raid1_log(mddev, "wait queued");
1363 wait_event(conf->wait_barrier,
1364 conf->pending_count < max_queued_requests);
1365 }
1366 /* first select target devices under rcu_lock and
1367 * inc refcount on their rdev. Record them by setting
1368 * bios[x] to bio
1369 * If there are known/acknowledged bad blocks on any device on
1370 * which we have seen a write error, we want to avoid writing those
1371 * blocks.
1372 * This potentially requires several writes to write around
1373 * the bad blocks. Each set of writes gets it's own r1bio
1374 * with a set of bios attached.
1375 */
1376
1377 disks = conf->raid_disks * 2;
1378 retry_write:
1379 blocked_rdev = NULL;
1380 rcu_read_lock();
1381 max_sectors = r1_bio->sectors;
1382 for (i = 0; i < disks; i++) {
1383 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1384 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1385 atomic_inc(&rdev->nr_pending);
1386 blocked_rdev = rdev;
1387 break;
1388 }
1389 r1_bio->bios[i] = NULL;
1390 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1391 if (i < conf->raid_disks)
1392 set_bit(R1BIO_Degraded, &r1_bio->state);
1393 continue;
1394 }
1395
1396 atomic_inc(&rdev->nr_pending);
1397 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1398 sector_t first_bad;
1399 int bad_sectors;
1400 int is_bad;
1401
1402 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1403 &first_bad, &bad_sectors);
1404 if (is_bad < 0) {
1405 /* mustn't write here until the bad block is
1406 * acknowledged*/
1407 set_bit(BlockedBadBlocks, &rdev->flags);
1408 blocked_rdev = rdev;
1409 break;
1410 }
1411 if (is_bad && first_bad <= r1_bio->sector) {
1412 /* Cannot write here at all */
1413 bad_sectors -= (r1_bio->sector - first_bad);
1414 if (bad_sectors < max_sectors)
1415 /* mustn't write more than bad_sectors
1416 * to other devices yet
1417 */
1418 max_sectors = bad_sectors;
1419 rdev_dec_pending(rdev, mddev);
1420 /* We don't set R1BIO_Degraded as that
1421 * only applies if the disk is
1422 * missing, so it might be re-added,
1423 * and we want to know to recover this
1424 * chunk.
1425 * In this case the device is here,
1426 * and the fact that this chunk is not
1427 * in-sync is recorded in the bad
1428 * block log
1429 */
1430 continue;
1431 }
1432 if (is_bad) {
1433 int good_sectors = first_bad - r1_bio->sector;
1434 if (good_sectors < max_sectors)
1435 max_sectors = good_sectors;
1436 }
1437 }
1438 r1_bio->bios[i] = bio;
1439 }
1440 rcu_read_unlock();
1441
1442 if (unlikely(blocked_rdev)) {
1443 /* Wait for this device to become unblocked */
1444 int j;
1445
1446 for (j = 0; j < i; j++)
1447 if (r1_bio->bios[j])
1448 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1449 r1_bio->state = 0;
1450 allow_barrier(conf, bio->bi_iter.bi_sector);
1451 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453 wait_barrier(conf, bio->bi_iter.bi_sector);
1454 goto retry_write;
1455 }
1456
1457 if (max_sectors < bio_sectors(bio)) {
1458 struct bio *split = bio_split(bio, max_sectors,
1459 GFP_NOIO, conf->bio_split);
1460 bio_chain(split, bio);
1461 generic_make_request(bio);
1462 bio = split;
1463 r1_bio->master_bio = bio;
1464 r1_bio->sectors = max_sectors;
1465 }
1466
1467 atomic_set(&r1_bio->remaining, 1);
1468 atomic_set(&r1_bio->behind_remaining, 0);
1469
1470 first_clone = 1;
1471
1472 for (i = 0; i < disks; i++) {
1473 struct bio *mbio = NULL;
1474 if (!r1_bio->bios[i])
1475 continue;
1476
1477
1478 if (first_clone) {
1479 /* do behind I/O ?
1480 * Not if there are too many, or cannot
1481 * allocate memory, or a reader on WriteMostly
1482 * is waiting for behind writes to flush */
1483 if (bitmap &&
1484 (atomic_read(&bitmap->behind_writes)
1485 < mddev->bitmap_info.max_write_behind) &&
1486 !waitqueue_active(&bitmap->behind_wait)) {
1487 mbio = alloc_behind_master_bio(r1_bio, bio);
1488 }
1489
1490 bitmap_startwrite(bitmap, r1_bio->sector,
1491 r1_bio->sectors,
1492 test_bit(R1BIO_BehindIO,
1493 &r1_bio->state));
1494 first_clone = 0;
1495 }
1496
1497 if (!mbio) {
1498 if (r1_bio->behind_master_bio)
1499 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1500 GFP_NOIO,
1501 mddev->bio_set);
1502 else
1503 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1504 }
1505
1506 if (r1_bio->behind_master_bio) {
1507 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1508 atomic_inc(&r1_bio->behind_remaining);
1509 }
1510
1511 r1_bio->bios[i] = mbio;
1512
1513 mbio->bi_iter.bi_sector = (r1_bio->sector +
1514 conf->mirrors[i].rdev->data_offset);
1515 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1516 mbio->bi_end_io = raid1_end_write_request;
1517 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1518 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1519 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1520 conf->raid_disks - mddev->degraded > 1)
1521 mbio->bi_opf |= MD_FAILFAST;
1522 mbio->bi_private = r1_bio;
1523
1524 atomic_inc(&r1_bio->remaining);
1525
1526 if (mddev->gendisk)
1527 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1528 mbio, disk_devt(mddev->gendisk),
1529 r1_bio->sector);
1530 /* flush_pending_writes() needs access to the rdev so...*/
1531 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1532
1533 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1534 if (cb)
1535 plug = container_of(cb, struct raid1_plug_cb, cb);
1536 else
1537 plug = NULL;
1538 if (plug) {
1539 bio_list_add(&plug->pending, mbio);
1540 plug->pending_cnt++;
1541 } else {
1542 spin_lock_irqsave(&conf->device_lock, flags);
1543 bio_list_add(&conf->pending_bio_list, mbio);
1544 conf->pending_count++;
1545 spin_unlock_irqrestore(&conf->device_lock, flags);
1546 md_wakeup_thread(mddev->thread);
1547 }
1548 }
1549
1550 r1_bio_write_done(r1_bio);
1551
1552 /* In case raid1d snuck in to freeze_array */
1553 wake_up(&conf->wait_barrier);
1554 }
1555
1556 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1557 {
1558 sector_t sectors;
1559
1560 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1561 md_flush_request(mddev, bio);
1562 return true;
1563 }
1564
1565 /*
1566 * There is a limit to the maximum size, but
1567 * the read/write handler might find a lower limit
1568 * due to bad blocks. To avoid multiple splits,
1569 * we pass the maximum number of sectors down
1570 * and let the lower level perform the split.
1571 */
1572 sectors = align_to_barrier_unit_end(
1573 bio->bi_iter.bi_sector, bio_sectors(bio));
1574
1575 if (bio_data_dir(bio) == READ)
1576 raid1_read_request(mddev, bio, sectors, NULL);
1577 else {
1578 if (!md_write_start(mddev,bio))
1579 return false;
1580 raid1_write_request(mddev, bio, sectors);
1581 }
1582 return true;
1583 }
1584
1585 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1586 {
1587 struct r1conf *conf = mddev->private;
1588 int i;
1589
1590 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1591 conf->raid_disks - mddev->degraded);
1592 rcu_read_lock();
1593 for (i = 0; i < conf->raid_disks; i++) {
1594 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1595 seq_printf(seq, "%s",
1596 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597 }
1598 rcu_read_unlock();
1599 seq_printf(seq, "]");
1600 }
1601
1602 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 char b[BDEVNAME_SIZE];
1605 struct r1conf *conf = mddev->private;
1606 unsigned long flags;
1607
1608 /*
1609 * If it is not operational, then we have already marked it as dead
1610 * else if it is the last working disks, ignore the error, let the
1611 * next level up know.
1612 * else mark the drive as failed
1613 */
1614 spin_lock_irqsave(&conf->device_lock, flags);
1615 if (test_bit(In_sync, &rdev->flags)
1616 && (conf->raid_disks - mddev->degraded) == 1) {
1617 /*
1618 * Don't fail the drive, act as though we were just a
1619 * normal single drive.
1620 * However don't try a recovery from this drive as
1621 * it is very likely to fail.
1622 */
1623 conf->recovery_disabled = mddev->recovery_disabled;
1624 spin_unlock_irqrestore(&conf->device_lock, flags);
1625 return;
1626 }
1627 set_bit(Blocked, &rdev->flags);
1628 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1629 mddev->degraded++;
1630 set_bit(Faulty, &rdev->flags);
1631 } else
1632 set_bit(Faulty, &rdev->flags);
1633 spin_unlock_irqrestore(&conf->device_lock, flags);
1634 /*
1635 * if recovery is running, make sure it aborts.
1636 */
1637 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1638 set_mask_bits(&mddev->sb_flags, 0,
1639 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1640 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1641 "md/raid1:%s: Operation continuing on %d devices.\n",
1642 mdname(mddev), bdevname(rdev->bdev, b),
1643 mdname(mddev), conf->raid_disks - mddev->degraded);
1644 }
1645
1646 static void print_conf(struct r1conf *conf)
1647 {
1648 int i;
1649
1650 pr_debug("RAID1 conf printout:\n");
1651 if (!conf) {
1652 pr_debug("(!conf)\n");
1653 return;
1654 }
1655 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1656 conf->raid_disks);
1657
1658 rcu_read_lock();
1659 for (i = 0; i < conf->raid_disks; i++) {
1660 char b[BDEVNAME_SIZE];
1661 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1662 if (rdev)
1663 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1664 i, !test_bit(In_sync, &rdev->flags),
1665 !test_bit(Faulty, &rdev->flags),
1666 bdevname(rdev->bdev,b));
1667 }
1668 rcu_read_unlock();
1669 }
1670
1671 static void close_sync(struct r1conf *conf)
1672 {
1673 wait_all_barriers(conf);
1674 allow_all_barriers(conf);
1675
1676 mempool_destroy(conf->r1buf_pool);
1677 conf->r1buf_pool = NULL;
1678 }
1679
1680 static int raid1_spare_active(struct mddev *mddev)
1681 {
1682 int i;
1683 struct r1conf *conf = mddev->private;
1684 int count = 0;
1685 unsigned long flags;
1686
1687 /*
1688 * Find all failed disks within the RAID1 configuration
1689 * and mark them readable.
1690 * Called under mddev lock, so rcu protection not needed.
1691 * device_lock used to avoid races with raid1_end_read_request
1692 * which expects 'In_sync' flags and ->degraded to be consistent.
1693 */
1694 spin_lock_irqsave(&conf->device_lock, flags);
1695 for (i = 0; i < conf->raid_disks; i++) {
1696 struct md_rdev *rdev = conf->mirrors[i].rdev;
1697 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1698 if (repl
1699 && !test_bit(Candidate, &repl->flags)
1700 && repl->recovery_offset == MaxSector
1701 && !test_bit(Faulty, &repl->flags)
1702 && !test_and_set_bit(In_sync, &repl->flags)) {
1703 /* replacement has just become active */
1704 if (!rdev ||
1705 !test_and_clear_bit(In_sync, &rdev->flags))
1706 count++;
1707 if (rdev) {
1708 /* Replaced device not technically
1709 * faulty, but we need to be sure
1710 * it gets removed and never re-added
1711 */
1712 set_bit(Faulty, &rdev->flags);
1713 sysfs_notify_dirent_safe(
1714 rdev->sysfs_state);
1715 }
1716 }
1717 if (rdev
1718 && rdev->recovery_offset == MaxSector
1719 && !test_bit(Faulty, &rdev->flags)
1720 && !test_and_set_bit(In_sync, &rdev->flags)) {
1721 count++;
1722 sysfs_notify_dirent_safe(rdev->sysfs_state);
1723 }
1724 }
1725 mddev->degraded -= count;
1726 spin_unlock_irqrestore(&conf->device_lock, flags);
1727
1728 print_conf(conf);
1729 return count;
1730 }
1731
1732 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1733 {
1734 struct r1conf *conf = mddev->private;
1735 int err = -EEXIST;
1736 int mirror = 0;
1737 struct raid1_info *p;
1738 int first = 0;
1739 int last = conf->raid_disks - 1;
1740
1741 if (mddev->recovery_disabled == conf->recovery_disabled)
1742 return -EBUSY;
1743
1744 if (md_integrity_add_rdev(rdev, mddev))
1745 return -ENXIO;
1746
1747 if (rdev->raid_disk >= 0)
1748 first = last = rdev->raid_disk;
1749
1750 /*
1751 * find the disk ... but prefer rdev->saved_raid_disk
1752 * if possible.
1753 */
1754 if (rdev->saved_raid_disk >= 0 &&
1755 rdev->saved_raid_disk >= first &&
1756 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1757 first = last = rdev->saved_raid_disk;
1758
1759 for (mirror = first; mirror <= last; mirror++) {
1760 p = conf->mirrors+mirror;
1761 if (!p->rdev) {
1762
1763 if (mddev->gendisk)
1764 disk_stack_limits(mddev->gendisk, rdev->bdev,
1765 rdev->data_offset << 9);
1766
1767 p->head_position = 0;
1768 rdev->raid_disk = mirror;
1769 err = 0;
1770 /* As all devices are equivalent, we don't need a full recovery
1771 * if this was recently any drive of the array
1772 */
1773 if (rdev->saved_raid_disk < 0)
1774 conf->fullsync = 1;
1775 rcu_assign_pointer(p->rdev, rdev);
1776 break;
1777 }
1778 if (test_bit(WantReplacement, &p->rdev->flags) &&
1779 p[conf->raid_disks].rdev == NULL) {
1780 /* Add this device as a replacement */
1781 clear_bit(In_sync, &rdev->flags);
1782 set_bit(Replacement, &rdev->flags);
1783 rdev->raid_disk = mirror;
1784 err = 0;
1785 conf->fullsync = 1;
1786 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1787 break;
1788 }
1789 }
1790 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1791 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1792 print_conf(conf);
1793 return err;
1794 }
1795
1796 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1797 {
1798 struct r1conf *conf = mddev->private;
1799 int err = 0;
1800 int number = rdev->raid_disk;
1801 struct raid1_info *p = conf->mirrors + number;
1802
1803 if (rdev != p->rdev)
1804 p = conf->mirrors + conf->raid_disks + number;
1805
1806 print_conf(conf);
1807 if (rdev == p->rdev) {
1808 if (test_bit(In_sync, &rdev->flags) ||
1809 atomic_read(&rdev->nr_pending)) {
1810 err = -EBUSY;
1811 goto abort;
1812 }
1813 /* Only remove non-faulty devices if recovery
1814 * is not possible.
1815 */
1816 if (!test_bit(Faulty, &rdev->flags) &&
1817 mddev->recovery_disabled != conf->recovery_disabled &&
1818 mddev->degraded < conf->raid_disks) {
1819 err = -EBUSY;
1820 goto abort;
1821 }
1822 p->rdev = NULL;
1823 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1824 synchronize_rcu();
1825 if (atomic_read(&rdev->nr_pending)) {
1826 /* lost the race, try later */
1827 err = -EBUSY;
1828 p->rdev = rdev;
1829 goto abort;
1830 }
1831 }
1832 if (conf->mirrors[conf->raid_disks + number].rdev) {
1833 /* We just removed a device that is being replaced.
1834 * Move down the replacement. We drain all IO before
1835 * doing this to avoid confusion.
1836 */
1837 struct md_rdev *repl =
1838 conf->mirrors[conf->raid_disks + number].rdev;
1839 freeze_array(conf, 0);
1840 clear_bit(Replacement, &repl->flags);
1841 p->rdev = repl;
1842 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1843 unfreeze_array(conf);
1844 }
1845
1846 clear_bit(WantReplacement, &rdev->flags);
1847 err = md_integrity_register(mddev);
1848 }
1849 abort:
1850
1851 print_conf(conf);
1852 return err;
1853 }
1854
1855 static void end_sync_read(struct bio *bio)
1856 {
1857 struct r1bio *r1_bio = get_resync_r1bio(bio);
1858
1859 update_head_pos(r1_bio->read_disk, r1_bio);
1860
1861 /*
1862 * we have read a block, now it needs to be re-written,
1863 * or re-read if the read failed.
1864 * We don't do much here, just schedule handling by raid1d
1865 */
1866 if (!bio->bi_status)
1867 set_bit(R1BIO_Uptodate, &r1_bio->state);
1868
1869 if (atomic_dec_and_test(&r1_bio->remaining))
1870 reschedule_retry(r1_bio);
1871 }
1872
1873 static void end_sync_write(struct bio *bio)
1874 {
1875 int uptodate = !bio->bi_status;
1876 struct r1bio *r1_bio = get_resync_r1bio(bio);
1877 struct mddev *mddev = r1_bio->mddev;
1878 struct r1conf *conf = mddev->private;
1879 sector_t first_bad;
1880 int bad_sectors;
1881 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1882
1883 if (!uptodate) {
1884 sector_t sync_blocks = 0;
1885 sector_t s = r1_bio->sector;
1886 long sectors_to_go = r1_bio->sectors;
1887 /* make sure these bits doesn't get cleared. */
1888 do {
1889 bitmap_end_sync(mddev->bitmap, s,
1890 &sync_blocks, 1);
1891 s += sync_blocks;
1892 sectors_to_go -= sync_blocks;
1893 } while (sectors_to_go > 0);
1894 set_bit(WriteErrorSeen, &rdev->flags);
1895 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896 set_bit(MD_RECOVERY_NEEDED, &
1897 mddev->recovery);
1898 set_bit(R1BIO_WriteError, &r1_bio->state);
1899 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1900 &first_bad, &bad_sectors) &&
1901 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1902 r1_bio->sector,
1903 r1_bio->sectors,
1904 &first_bad, &bad_sectors)
1905 )
1906 set_bit(R1BIO_MadeGood, &r1_bio->state);
1907
1908 if (atomic_dec_and_test(&r1_bio->remaining)) {
1909 int s = r1_bio->sectors;
1910 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1911 test_bit(R1BIO_WriteError, &r1_bio->state))
1912 reschedule_retry(r1_bio);
1913 else {
1914 put_buf(r1_bio);
1915 md_done_sync(mddev, s, uptodate);
1916 }
1917 }
1918 }
1919
1920 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1921 int sectors, struct page *page, int rw)
1922 {
1923 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1924 /* success */
1925 return 1;
1926 if (rw == WRITE) {
1927 set_bit(WriteErrorSeen, &rdev->flags);
1928 if (!test_and_set_bit(WantReplacement,
1929 &rdev->flags))
1930 set_bit(MD_RECOVERY_NEEDED, &
1931 rdev->mddev->recovery);
1932 }
1933 /* need to record an error - either for the block or the device */
1934 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1935 md_error(rdev->mddev, rdev);
1936 return 0;
1937 }
1938
1939 static int fix_sync_read_error(struct r1bio *r1_bio)
1940 {
1941 /* Try some synchronous reads of other devices to get
1942 * good data, much like with normal read errors. Only
1943 * read into the pages we already have so we don't
1944 * need to re-issue the read request.
1945 * We don't need to freeze the array, because being in an
1946 * active sync request, there is no normal IO, and
1947 * no overlapping syncs.
1948 * We don't need to check is_badblock() again as we
1949 * made sure that anything with a bad block in range
1950 * will have bi_end_io clear.
1951 */
1952 struct mddev *mddev = r1_bio->mddev;
1953 struct r1conf *conf = mddev->private;
1954 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1955 struct page **pages = get_resync_pages(bio)->pages;
1956 sector_t sect = r1_bio->sector;
1957 int sectors = r1_bio->sectors;
1958 int idx = 0;
1959 struct md_rdev *rdev;
1960
1961 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1962 if (test_bit(FailFast, &rdev->flags)) {
1963 /* Don't try recovering from here - just fail it
1964 * ... unless it is the last working device of course */
1965 md_error(mddev, rdev);
1966 if (test_bit(Faulty, &rdev->flags))
1967 /* Don't try to read from here, but make sure
1968 * put_buf does it's thing
1969 */
1970 bio->bi_end_io = end_sync_write;
1971 }
1972
1973 while(sectors) {
1974 int s = sectors;
1975 int d = r1_bio->read_disk;
1976 int success = 0;
1977 int start;
1978
1979 if (s > (PAGE_SIZE>>9))
1980 s = PAGE_SIZE >> 9;
1981 do {
1982 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1983 /* No rcu protection needed here devices
1984 * can only be removed when no resync is
1985 * active, and resync is currently active
1986 */
1987 rdev = conf->mirrors[d].rdev;
1988 if (sync_page_io(rdev, sect, s<<9,
1989 pages[idx],
1990 REQ_OP_READ, 0, false)) {
1991 success = 1;
1992 break;
1993 }
1994 }
1995 d++;
1996 if (d == conf->raid_disks * 2)
1997 d = 0;
1998 } while (!success && d != r1_bio->read_disk);
1999
2000 if (!success) {
2001 char b[BDEVNAME_SIZE];
2002 int abort = 0;
2003 /* Cannot read from anywhere, this block is lost.
2004 * Record a bad block on each device. If that doesn't
2005 * work just disable and interrupt the recovery.
2006 * Don't fail devices as that won't really help.
2007 */
2008 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2009 mdname(mddev),
2010 bdevname(bio->bi_bdev, b),
2011 (unsigned long long)r1_bio->sector);
2012 for (d = 0; d < conf->raid_disks * 2; d++) {
2013 rdev = conf->mirrors[d].rdev;
2014 if (!rdev || test_bit(Faulty, &rdev->flags))
2015 continue;
2016 if (!rdev_set_badblocks(rdev, sect, s, 0))
2017 abort = 1;
2018 }
2019 if (abort) {
2020 conf->recovery_disabled =
2021 mddev->recovery_disabled;
2022 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2023 md_done_sync(mddev, r1_bio->sectors, 0);
2024 put_buf(r1_bio);
2025 return 0;
2026 }
2027 /* Try next page */
2028 sectors -= s;
2029 sect += s;
2030 idx++;
2031 continue;
2032 }
2033
2034 start = d;
2035 /* write it back and re-read */
2036 while (d != r1_bio->read_disk) {
2037 if (d == 0)
2038 d = conf->raid_disks * 2;
2039 d--;
2040 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2041 continue;
2042 rdev = conf->mirrors[d].rdev;
2043 if (r1_sync_page_io(rdev, sect, s,
2044 pages[idx],
2045 WRITE) == 0) {
2046 r1_bio->bios[d]->bi_end_io = NULL;
2047 rdev_dec_pending(rdev, mddev);
2048 }
2049 }
2050 d = start;
2051 while (d != r1_bio->read_disk) {
2052 if (d == 0)
2053 d = conf->raid_disks * 2;
2054 d--;
2055 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2056 continue;
2057 rdev = conf->mirrors[d].rdev;
2058 if (r1_sync_page_io(rdev, sect, s,
2059 pages[idx],
2060 READ) != 0)
2061 atomic_add(s, &rdev->corrected_errors);
2062 }
2063 sectors -= s;
2064 sect += s;
2065 idx ++;
2066 }
2067 set_bit(R1BIO_Uptodate, &r1_bio->state);
2068 bio->bi_status = 0;
2069 return 1;
2070 }
2071
2072 static void process_checks(struct r1bio *r1_bio)
2073 {
2074 /* We have read all readable devices. If we haven't
2075 * got the block, then there is no hope left.
2076 * If we have, then we want to do a comparison
2077 * and skip the write if everything is the same.
2078 * If any blocks failed to read, then we need to
2079 * attempt an over-write
2080 */
2081 struct mddev *mddev = r1_bio->mddev;
2082 struct r1conf *conf = mddev->private;
2083 int primary;
2084 int i;
2085 int vcnt;
2086
2087 /* Fix variable parts of all bios */
2088 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2089 for (i = 0; i < conf->raid_disks * 2; i++) {
2090 blk_status_t status;
2091 struct bio *b = r1_bio->bios[i];
2092 struct resync_pages *rp = get_resync_pages(b);
2093 if (b->bi_end_io != end_sync_read)
2094 continue;
2095 /* fixup the bio for reuse, but preserve errno */
2096 status = b->bi_status;
2097 bio_reset(b);
2098 b->bi_status = status;
2099 b->bi_iter.bi_sector = r1_bio->sector +
2100 conf->mirrors[i].rdev->data_offset;
2101 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2102 b->bi_end_io = end_sync_read;
2103 rp->raid_bio = r1_bio;
2104 b->bi_private = rp;
2105
2106 /* initialize bvec table again */
2107 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2108 }
2109 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2110 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2111 !r1_bio->bios[primary]->bi_status) {
2112 r1_bio->bios[primary]->bi_end_io = NULL;
2113 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2114 break;
2115 }
2116 r1_bio->read_disk = primary;
2117 for (i = 0; i < conf->raid_disks * 2; i++) {
2118 int j;
2119 struct bio *pbio = r1_bio->bios[primary];
2120 struct bio *sbio = r1_bio->bios[i];
2121 blk_status_t status = sbio->bi_status;
2122 struct page **ppages = get_resync_pages(pbio)->pages;
2123 struct page **spages = get_resync_pages(sbio)->pages;
2124 struct bio_vec *bi;
2125 int page_len[RESYNC_PAGES] = { 0 };
2126
2127 if (sbio->bi_end_io != end_sync_read)
2128 continue;
2129 /* Now we can 'fixup' the error value */
2130 sbio->bi_status = 0;
2131
2132 bio_for_each_segment_all(bi, sbio, j)
2133 page_len[j] = bi->bv_len;
2134
2135 if (!status) {
2136 for (j = vcnt; j-- ; ) {
2137 if (memcmp(page_address(ppages[j]),
2138 page_address(spages[j]),
2139 page_len[j]))
2140 break;
2141 }
2142 } else
2143 j = 0;
2144 if (j >= 0)
2145 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2146 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2147 && !status)) {
2148 /* No need to write to this device. */
2149 sbio->bi_end_io = NULL;
2150 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2151 continue;
2152 }
2153
2154 bio_copy_data(sbio, pbio);
2155 }
2156 }
2157
2158 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2159 {
2160 struct r1conf *conf = mddev->private;
2161 int i;
2162 int disks = conf->raid_disks * 2;
2163 struct bio *wbio;
2164
2165 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2166 /* ouch - failed to read all of that. */
2167 if (!fix_sync_read_error(r1_bio))
2168 return;
2169
2170 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2171 process_checks(r1_bio);
2172
2173 /*
2174 * schedule writes
2175 */
2176 atomic_set(&r1_bio->remaining, 1);
2177 for (i = 0; i < disks ; i++) {
2178 wbio = r1_bio->bios[i];
2179 if (wbio->bi_end_io == NULL ||
2180 (wbio->bi_end_io == end_sync_read &&
2181 (i == r1_bio->read_disk ||
2182 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2183 continue;
2184 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2185 continue;
2186
2187 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2188 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2189 wbio->bi_opf |= MD_FAILFAST;
2190
2191 wbio->bi_end_io = end_sync_write;
2192 atomic_inc(&r1_bio->remaining);
2193 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2194
2195 generic_make_request(wbio);
2196 }
2197
2198 if (atomic_dec_and_test(&r1_bio->remaining)) {
2199 /* if we're here, all write(s) have completed, so clean up */
2200 int s = r1_bio->sectors;
2201 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2202 test_bit(R1BIO_WriteError, &r1_bio->state))
2203 reschedule_retry(r1_bio);
2204 else {
2205 put_buf(r1_bio);
2206 md_done_sync(mddev, s, 1);
2207 }
2208 }
2209 }
2210
2211 /*
2212 * This is a kernel thread which:
2213 *
2214 * 1. Retries failed read operations on working mirrors.
2215 * 2. Updates the raid superblock when problems encounter.
2216 * 3. Performs writes following reads for array synchronising.
2217 */
2218
2219 static void fix_read_error(struct r1conf *conf, int read_disk,
2220 sector_t sect, int sectors)
2221 {
2222 struct mddev *mddev = conf->mddev;
2223 while(sectors) {
2224 int s = sectors;
2225 int d = read_disk;
2226 int success = 0;
2227 int start;
2228 struct md_rdev *rdev;
2229
2230 if (s > (PAGE_SIZE>>9))
2231 s = PAGE_SIZE >> 9;
2232
2233 do {
2234 sector_t first_bad;
2235 int bad_sectors;
2236
2237 rcu_read_lock();
2238 rdev = rcu_dereference(conf->mirrors[d].rdev);
2239 if (rdev &&
2240 (test_bit(In_sync, &rdev->flags) ||
2241 (!test_bit(Faulty, &rdev->flags) &&
2242 rdev->recovery_offset >= sect + s)) &&
2243 is_badblock(rdev, sect, s,
2244 &first_bad, &bad_sectors) == 0) {
2245 atomic_inc(&rdev->nr_pending);
2246 rcu_read_unlock();
2247 if (sync_page_io(rdev, sect, s<<9,
2248 conf->tmppage, REQ_OP_READ, 0, false))
2249 success = 1;
2250 rdev_dec_pending(rdev, mddev);
2251 if (success)
2252 break;
2253 } else
2254 rcu_read_unlock();
2255 d++;
2256 if (d == conf->raid_disks * 2)
2257 d = 0;
2258 } while (!success && d != read_disk);
2259
2260 if (!success) {
2261 /* Cannot read from anywhere - mark it bad */
2262 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2263 if (!rdev_set_badblocks(rdev, sect, s, 0))
2264 md_error(mddev, rdev);
2265 break;
2266 }
2267 /* write it back and re-read */
2268 start = d;
2269 while (d != read_disk) {
2270 if (d==0)
2271 d = conf->raid_disks * 2;
2272 d--;
2273 rcu_read_lock();
2274 rdev = rcu_dereference(conf->mirrors[d].rdev);
2275 if (rdev &&
2276 !test_bit(Faulty, &rdev->flags)) {
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
2279 r1_sync_page_io(rdev, sect, s,
2280 conf->tmppage, WRITE);
2281 rdev_dec_pending(rdev, mddev);
2282 } else
2283 rcu_read_unlock();
2284 }
2285 d = start;
2286 while (d != read_disk) {
2287 char b[BDEVNAME_SIZE];
2288 if (d==0)
2289 d = conf->raid_disks * 2;
2290 d--;
2291 rcu_read_lock();
2292 rdev = rcu_dereference(conf->mirrors[d].rdev);
2293 if (rdev &&
2294 !test_bit(Faulty, &rdev->flags)) {
2295 atomic_inc(&rdev->nr_pending);
2296 rcu_read_unlock();
2297 if (r1_sync_page_io(rdev, sect, s,
2298 conf->tmppage, READ)) {
2299 atomic_add(s, &rdev->corrected_errors);
2300 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2301 mdname(mddev), s,
2302 (unsigned long long)(sect +
2303 rdev->data_offset),
2304 bdevname(rdev->bdev, b));
2305 }
2306 rdev_dec_pending(rdev, mddev);
2307 } else
2308 rcu_read_unlock();
2309 }
2310 sectors -= s;
2311 sect += s;
2312 }
2313 }
2314
2315 static int narrow_write_error(struct r1bio *r1_bio, int i)
2316 {
2317 struct mddev *mddev = r1_bio->mddev;
2318 struct r1conf *conf = mddev->private;
2319 struct md_rdev *rdev = conf->mirrors[i].rdev;
2320
2321 /* bio has the data to be written to device 'i' where
2322 * we just recently had a write error.
2323 * We repeatedly clone the bio and trim down to one block,
2324 * then try the write. Where the write fails we record
2325 * a bad block.
2326 * It is conceivable that the bio doesn't exactly align with
2327 * blocks. We must handle this somehow.
2328 *
2329 * We currently own a reference on the rdev.
2330 */
2331
2332 int block_sectors;
2333 sector_t sector;
2334 int sectors;
2335 int sect_to_write = r1_bio->sectors;
2336 int ok = 1;
2337
2338 if (rdev->badblocks.shift < 0)
2339 return 0;
2340
2341 block_sectors = roundup(1 << rdev->badblocks.shift,
2342 bdev_logical_block_size(rdev->bdev) >> 9);
2343 sector = r1_bio->sector;
2344 sectors = ((sector + block_sectors)
2345 & ~(sector_t)(block_sectors - 1))
2346 - sector;
2347
2348 while (sect_to_write) {
2349 struct bio *wbio;
2350 if (sectors > sect_to_write)
2351 sectors = sect_to_write;
2352 /* Write at 'sector' for 'sectors'*/
2353
2354 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2355 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2356 GFP_NOIO,
2357 mddev->bio_set);
2358 /* We really need a _all clone */
2359 wbio->bi_iter = (struct bvec_iter){ 0 };
2360 } else {
2361 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2362 mddev->bio_set);
2363 }
2364
2365 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2366 wbio->bi_iter.bi_sector = r1_bio->sector;
2367 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2368
2369 bio_trim(wbio, sector - r1_bio->sector, sectors);
2370 wbio->bi_iter.bi_sector += rdev->data_offset;
2371 wbio->bi_bdev = rdev->bdev;
2372
2373 if (submit_bio_wait(wbio) < 0)
2374 /* failure! */
2375 ok = rdev_set_badblocks(rdev, sector,
2376 sectors, 0)
2377 && ok;
2378
2379 bio_put(wbio);
2380 sect_to_write -= sectors;
2381 sector += sectors;
2382 sectors = block_sectors;
2383 }
2384 return ok;
2385 }
2386
2387 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2388 {
2389 int m;
2390 int s = r1_bio->sectors;
2391 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2392 struct md_rdev *rdev = conf->mirrors[m].rdev;
2393 struct bio *bio = r1_bio->bios[m];
2394 if (bio->bi_end_io == NULL)
2395 continue;
2396 if (!bio->bi_status &&
2397 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2398 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2399 }
2400 if (bio->bi_status &&
2401 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2402 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2403 md_error(conf->mddev, rdev);
2404 }
2405 }
2406 put_buf(r1_bio);
2407 md_done_sync(conf->mddev, s, 1);
2408 }
2409
2410 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2411 {
2412 int m, idx;
2413 bool fail = false;
2414
2415 for (m = 0; m < conf->raid_disks * 2 ; m++)
2416 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2417 struct md_rdev *rdev = conf->mirrors[m].rdev;
2418 rdev_clear_badblocks(rdev,
2419 r1_bio->sector,
2420 r1_bio->sectors, 0);
2421 rdev_dec_pending(rdev, conf->mddev);
2422 } else if (r1_bio->bios[m] != NULL) {
2423 /* This drive got a write error. We need to
2424 * narrow down and record precise write
2425 * errors.
2426 */
2427 fail = true;
2428 if (!narrow_write_error(r1_bio, m)) {
2429 md_error(conf->mddev,
2430 conf->mirrors[m].rdev);
2431 /* an I/O failed, we can't clear the bitmap */
2432 set_bit(R1BIO_Degraded, &r1_bio->state);
2433 }
2434 rdev_dec_pending(conf->mirrors[m].rdev,
2435 conf->mddev);
2436 }
2437 if (fail) {
2438 spin_lock_irq(&conf->device_lock);
2439 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2440 idx = sector_to_idx(r1_bio->sector);
2441 atomic_inc(&conf->nr_queued[idx]);
2442 spin_unlock_irq(&conf->device_lock);
2443 /*
2444 * In case freeze_array() is waiting for condition
2445 * get_unqueued_pending() == extra to be true.
2446 */
2447 wake_up(&conf->wait_barrier);
2448 md_wakeup_thread(conf->mddev->thread);
2449 } else {
2450 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2451 close_write(r1_bio);
2452 raid_end_bio_io(r1_bio);
2453 }
2454 }
2455
2456 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2457 {
2458 struct mddev *mddev = conf->mddev;
2459 struct bio *bio;
2460 struct md_rdev *rdev;
2461 dev_t bio_dev;
2462 sector_t bio_sector;
2463
2464 clear_bit(R1BIO_ReadError, &r1_bio->state);
2465 /* we got a read error. Maybe the drive is bad. Maybe just
2466 * the block and we can fix it.
2467 * We freeze all other IO, and try reading the block from
2468 * other devices. When we find one, we re-write
2469 * and check it that fixes the read error.
2470 * This is all done synchronously while the array is
2471 * frozen
2472 */
2473
2474 bio = r1_bio->bios[r1_bio->read_disk];
2475 bio_dev = bio->bi_bdev->bd_dev;
2476 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2477 bio_put(bio);
2478 r1_bio->bios[r1_bio->read_disk] = NULL;
2479
2480 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2481 if (mddev->ro == 0
2482 && !test_bit(FailFast, &rdev->flags)) {
2483 freeze_array(conf, 1);
2484 fix_read_error(conf, r1_bio->read_disk,
2485 r1_bio->sector, r1_bio->sectors);
2486 unfreeze_array(conf);
2487 } else {
2488 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2489 }
2490
2491 rdev_dec_pending(rdev, conf->mddev);
2492 allow_barrier(conf, r1_bio->sector);
2493 bio = r1_bio->master_bio;
2494
2495 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2496 r1_bio->state = 0;
2497 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2498 }
2499
2500 static void raid1d(struct md_thread *thread)
2501 {
2502 struct mddev *mddev = thread->mddev;
2503 struct r1bio *r1_bio;
2504 unsigned long flags;
2505 struct r1conf *conf = mddev->private;
2506 struct list_head *head = &conf->retry_list;
2507 struct blk_plug plug;
2508 int idx;
2509
2510 md_check_recovery(mddev);
2511
2512 if (!list_empty_careful(&conf->bio_end_io_list) &&
2513 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2514 LIST_HEAD(tmp);
2515 spin_lock_irqsave(&conf->device_lock, flags);
2516 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2517 list_splice_init(&conf->bio_end_io_list, &tmp);
2518 spin_unlock_irqrestore(&conf->device_lock, flags);
2519 while (!list_empty(&tmp)) {
2520 r1_bio = list_first_entry(&tmp, struct r1bio,
2521 retry_list);
2522 list_del(&r1_bio->retry_list);
2523 idx = sector_to_idx(r1_bio->sector);
2524 atomic_dec(&conf->nr_queued[idx]);
2525 if (mddev->degraded)
2526 set_bit(R1BIO_Degraded, &r1_bio->state);
2527 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2528 close_write(r1_bio);
2529 raid_end_bio_io(r1_bio);
2530 }
2531 }
2532
2533 blk_start_plug(&plug);
2534 for (;;) {
2535
2536 flush_pending_writes(conf);
2537
2538 spin_lock_irqsave(&conf->device_lock, flags);
2539 if (list_empty(head)) {
2540 spin_unlock_irqrestore(&conf->device_lock, flags);
2541 break;
2542 }
2543 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2544 list_del(head->prev);
2545 idx = sector_to_idx(r1_bio->sector);
2546 atomic_dec(&conf->nr_queued[idx]);
2547 spin_unlock_irqrestore(&conf->device_lock, flags);
2548
2549 mddev = r1_bio->mddev;
2550 conf = mddev->private;
2551 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2552 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2553 test_bit(R1BIO_WriteError, &r1_bio->state))
2554 handle_sync_write_finished(conf, r1_bio);
2555 else
2556 sync_request_write(mddev, r1_bio);
2557 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2558 test_bit(R1BIO_WriteError, &r1_bio->state))
2559 handle_write_finished(conf, r1_bio);
2560 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2561 handle_read_error(conf, r1_bio);
2562 else
2563 WARN_ON_ONCE(1);
2564
2565 cond_resched();
2566 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2567 md_check_recovery(mddev);
2568 }
2569 blk_finish_plug(&plug);
2570 }
2571
2572 static int init_resync(struct r1conf *conf)
2573 {
2574 int buffs;
2575
2576 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2577 BUG_ON(conf->r1buf_pool);
2578 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2579 conf->poolinfo);
2580 if (!conf->r1buf_pool)
2581 return -ENOMEM;
2582 return 0;
2583 }
2584
2585 /*
2586 * perform a "sync" on one "block"
2587 *
2588 * We need to make sure that no normal I/O request - particularly write
2589 * requests - conflict with active sync requests.
2590 *
2591 * This is achieved by tracking pending requests and a 'barrier' concept
2592 * that can be installed to exclude normal IO requests.
2593 */
2594
2595 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2596 int *skipped)
2597 {
2598 struct r1conf *conf = mddev->private;
2599 struct r1bio *r1_bio;
2600 struct bio *bio;
2601 sector_t max_sector, nr_sectors;
2602 int disk = -1;
2603 int i;
2604 int wonly = -1;
2605 int write_targets = 0, read_targets = 0;
2606 sector_t sync_blocks;
2607 int still_degraded = 0;
2608 int good_sectors = RESYNC_SECTORS;
2609 int min_bad = 0; /* number of sectors that are bad in all devices */
2610 int idx = sector_to_idx(sector_nr);
2611 int page_idx = 0;
2612
2613 if (!conf->r1buf_pool)
2614 if (init_resync(conf))
2615 return 0;
2616
2617 max_sector = mddev->dev_sectors;
2618 if (sector_nr >= max_sector) {
2619 /* If we aborted, we need to abort the
2620 * sync on the 'current' bitmap chunk (there will
2621 * only be one in raid1 resync.
2622 * We can find the current addess in mddev->curr_resync
2623 */
2624 if (mddev->curr_resync < max_sector) /* aborted */
2625 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2626 &sync_blocks, 1);
2627 else /* completed sync */
2628 conf->fullsync = 0;
2629
2630 bitmap_close_sync(mddev->bitmap);
2631 close_sync(conf);
2632
2633 if (mddev_is_clustered(mddev)) {
2634 conf->cluster_sync_low = 0;
2635 conf->cluster_sync_high = 0;
2636 }
2637 return 0;
2638 }
2639
2640 if (mddev->bitmap == NULL &&
2641 mddev->recovery_cp == MaxSector &&
2642 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2643 conf->fullsync == 0) {
2644 *skipped = 1;
2645 return max_sector - sector_nr;
2646 }
2647 /* before building a request, check if we can skip these blocks..
2648 * This call the bitmap_start_sync doesn't actually record anything
2649 */
2650 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2651 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2652 /* We can skip this block, and probably several more */
2653 *skipped = 1;
2654 return sync_blocks;
2655 }
2656
2657 /*
2658 * If there is non-resync activity waiting for a turn, then let it
2659 * though before starting on this new sync request.
2660 */
2661 if (atomic_read(&conf->nr_waiting[idx]))
2662 schedule_timeout_uninterruptible(1);
2663
2664 /* we are incrementing sector_nr below. To be safe, we check against
2665 * sector_nr + two times RESYNC_SECTORS
2666 */
2667
2668 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2669 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2670 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2671
2672 raise_barrier(conf, sector_nr);
2673
2674 rcu_read_lock();
2675 /*
2676 * If we get a correctably read error during resync or recovery,
2677 * we might want to read from a different device. So we
2678 * flag all drives that could conceivably be read from for READ,
2679 * and any others (which will be non-In_sync devices) for WRITE.
2680 * If a read fails, we try reading from something else for which READ
2681 * is OK.
2682 */
2683
2684 r1_bio->mddev = mddev;
2685 r1_bio->sector = sector_nr;
2686 r1_bio->state = 0;
2687 set_bit(R1BIO_IsSync, &r1_bio->state);
2688 /* make sure good_sectors won't go across barrier unit boundary */
2689 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2690
2691 for (i = 0; i < conf->raid_disks * 2; i++) {
2692 struct md_rdev *rdev;
2693 bio = r1_bio->bios[i];
2694
2695 rdev = rcu_dereference(conf->mirrors[i].rdev);
2696 if (rdev == NULL ||
2697 test_bit(Faulty, &rdev->flags)) {
2698 if (i < conf->raid_disks)
2699 still_degraded = 1;
2700 } else if (!test_bit(In_sync, &rdev->flags)) {
2701 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2702 bio->bi_end_io = end_sync_write;
2703 write_targets ++;
2704 } else {
2705 /* may need to read from here */
2706 sector_t first_bad = MaxSector;
2707 int bad_sectors;
2708
2709 if (is_badblock(rdev, sector_nr, good_sectors,
2710 &first_bad, &bad_sectors)) {
2711 if (first_bad > sector_nr)
2712 good_sectors = first_bad - sector_nr;
2713 else {
2714 bad_sectors -= (sector_nr - first_bad);
2715 if (min_bad == 0 ||
2716 min_bad > bad_sectors)
2717 min_bad = bad_sectors;
2718 }
2719 }
2720 if (sector_nr < first_bad) {
2721 if (test_bit(WriteMostly, &rdev->flags)) {
2722 if (wonly < 0)
2723 wonly = i;
2724 } else {
2725 if (disk < 0)
2726 disk = i;
2727 }
2728 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2729 bio->bi_end_io = end_sync_read;
2730 read_targets++;
2731 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2732 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2733 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2734 /*
2735 * The device is suitable for reading (InSync),
2736 * but has bad block(s) here. Let's try to correct them,
2737 * if we are doing resync or repair. Otherwise, leave
2738 * this device alone for this sync request.
2739 */
2740 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2741 bio->bi_end_io = end_sync_write;
2742 write_targets++;
2743 }
2744 }
2745 if (bio->bi_end_io) {
2746 atomic_inc(&rdev->nr_pending);
2747 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2748 bio->bi_bdev = rdev->bdev;
2749 if (test_bit(FailFast, &rdev->flags))
2750 bio->bi_opf |= MD_FAILFAST;
2751 }
2752 }
2753 rcu_read_unlock();
2754 if (disk < 0)
2755 disk = wonly;
2756 r1_bio->read_disk = disk;
2757
2758 if (read_targets == 0 && min_bad > 0) {
2759 /* These sectors are bad on all InSync devices, so we
2760 * need to mark them bad on all write targets
2761 */
2762 int ok = 1;
2763 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2764 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2765 struct md_rdev *rdev = conf->mirrors[i].rdev;
2766 ok = rdev_set_badblocks(rdev, sector_nr,
2767 min_bad, 0
2768 ) && ok;
2769 }
2770 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2771 *skipped = 1;
2772 put_buf(r1_bio);
2773
2774 if (!ok) {
2775 /* Cannot record the badblocks, so need to
2776 * abort the resync.
2777 * If there are multiple read targets, could just
2778 * fail the really bad ones ???
2779 */
2780 conf->recovery_disabled = mddev->recovery_disabled;
2781 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2782 return 0;
2783 } else
2784 return min_bad;
2785
2786 }
2787 if (min_bad > 0 && min_bad < good_sectors) {
2788 /* only resync enough to reach the next bad->good
2789 * transition */
2790 good_sectors = min_bad;
2791 }
2792
2793 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2794 /* extra read targets are also write targets */
2795 write_targets += read_targets-1;
2796
2797 if (write_targets == 0 || read_targets == 0) {
2798 /* There is nowhere to write, so all non-sync
2799 * drives must be failed - so we are finished
2800 */
2801 sector_t rv;
2802 if (min_bad > 0)
2803 max_sector = sector_nr + min_bad;
2804 rv = max_sector - sector_nr;
2805 *skipped = 1;
2806 put_buf(r1_bio);
2807 return rv;
2808 }
2809
2810 if (max_sector > mddev->resync_max)
2811 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2812 if (max_sector > sector_nr + good_sectors)
2813 max_sector = sector_nr + good_sectors;
2814 nr_sectors = 0;
2815 sync_blocks = 0;
2816 do {
2817 struct page *page;
2818 int len = PAGE_SIZE;
2819 if (sector_nr + (len>>9) > max_sector)
2820 len = (max_sector - sector_nr) << 9;
2821 if (len == 0)
2822 break;
2823 if (sync_blocks == 0) {
2824 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2825 &sync_blocks, still_degraded) &&
2826 !conf->fullsync &&
2827 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2828 break;
2829 if ((len >> 9) > sync_blocks)
2830 len = sync_blocks<<9;
2831 }
2832
2833 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2834 struct resync_pages *rp;
2835
2836 bio = r1_bio->bios[i];
2837 rp = get_resync_pages(bio);
2838 if (bio->bi_end_io) {
2839 page = resync_fetch_page(rp, page_idx);
2840
2841 /*
2842 * won't fail because the vec table is big
2843 * enough to hold all these pages
2844 */
2845 bio_add_page(bio, page, len, 0);
2846 }
2847 }
2848 nr_sectors += len>>9;
2849 sector_nr += len>>9;
2850 sync_blocks -= (len>>9);
2851 } while (++page_idx < RESYNC_PAGES);
2852
2853 r1_bio->sectors = nr_sectors;
2854
2855 if (mddev_is_clustered(mddev) &&
2856 conf->cluster_sync_high < sector_nr + nr_sectors) {
2857 conf->cluster_sync_low = mddev->curr_resync_completed;
2858 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2859 /* Send resync message */
2860 md_cluster_ops->resync_info_update(mddev,
2861 conf->cluster_sync_low,
2862 conf->cluster_sync_high);
2863 }
2864
2865 /* For a user-requested sync, we read all readable devices and do a
2866 * compare
2867 */
2868 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2869 atomic_set(&r1_bio->remaining, read_targets);
2870 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2871 bio = r1_bio->bios[i];
2872 if (bio->bi_end_io == end_sync_read) {
2873 read_targets--;
2874 md_sync_acct(bio->bi_bdev, nr_sectors);
2875 if (read_targets == 1)
2876 bio->bi_opf &= ~MD_FAILFAST;
2877 generic_make_request(bio);
2878 }
2879 }
2880 } else {
2881 atomic_set(&r1_bio->remaining, 1);
2882 bio = r1_bio->bios[r1_bio->read_disk];
2883 md_sync_acct(bio->bi_bdev, nr_sectors);
2884 if (read_targets == 1)
2885 bio->bi_opf &= ~MD_FAILFAST;
2886 generic_make_request(bio);
2887
2888 }
2889 return nr_sectors;
2890 }
2891
2892 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2893 {
2894 if (sectors)
2895 return sectors;
2896
2897 return mddev->dev_sectors;
2898 }
2899
2900 static struct r1conf *setup_conf(struct mddev *mddev)
2901 {
2902 struct r1conf *conf;
2903 int i;
2904 struct raid1_info *disk;
2905 struct md_rdev *rdev;
2906 int err = -ENOMEM;
2907
2908 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2909 if (!conf)
2910 goto abort;
2911
2912 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2913 sizeof(atomic_t), GFP_KERNEL);
2914 if (!conf->nr_pending)
2915 goto abort;
2916
2917 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2918 sizeof(atomic_t), GFP_KERNEL);
2919 if (!conf->nr_waiting)
2920 goto abort;
2921
2922 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2923 sizeof(atomic_t), GFP_KERNEL);
2924 if (!conf->nr_queued)
2925 goto abort;
2926
2927 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2928 sizeof(atomic_t), GFP_KERNEL);
2929 if (!conf->barrier)
2930 goto abort;
2931
2932 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2933 * mddev->raid_disks * 2,
2934 GFP_KERNEL);
2935 if (!conf->mirrors)
2936 goto abort;
2937
2938 conf->tmppage = alloc_page(GFP_KERNEL);
2939 if (!conf->tmppage)
2940 goto abort;
2941
2942 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2943 if (!conf->poolinfo)
2944 goto abort;
2945 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2946 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2947 r1bio_pool_free,
2948 conf->poolinfo);
2949 if (!conf->r1bio_pool)
2950 goto abort;
2951
2952 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2953 if (!conf->bio_split)
2954 goto abort;
2955
2956 conf->poolinfo->mddev = mddev;
2957
2958 err = -EINVAL;
2959 spin_lock_init(&conf->device_lock);
2960 rdev_for_each(rdev, mddev) {
2961 int disk_idx = rdev->raid_disk;
2962 if (disk_idx >= mddev->raid_disks
2963 || disk_idx < 0)
2964 continue;
2965 if (test_bit(Replacement, &rdev->flags))
2966 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2967 else
2968 disk = conf->mirrors + disk_idx;
2969
2970 if (disk->rdev)
2971 goto abort;
2972 disk->rdev = rdev;
2973 disk->head_position = 0;
2974 disk->seq_start = MaxSector;
2975 }
2976 conf->raid_disks = mddev->raid_disks;
2977 conf->mddev = mddev;
2978 INIT_LIST_HEAD(&conf->retry_list);
2979 INIT_LIST_HEAD(&conf->bio_end_io_list);
2980
2981 spin_lock_init(&conf->resync_lock);
2982 init_waitqueue_head(&conf->wait_barrier);
2983
2984 bio_list_init(&conf->pending_bio_list);
2985 conf->pending_count = 0;
2986 conf->recovery_disabled = mddev->recovery_disabled - 1;
2987
2988 err = -EIO;
2989 for (i = 0; i < conf->raid_disks * 2; i++) {
2990
2991 disk = conf->mirrors + i;
2992
2993 if (i < conf->raid_disks &&
2994 disk[conf->raid_disks].rdev) {
2995 /* This slot has a replacement. */
2996 if (!disk->rdev) {
2997 /* No original, just make the replacement
2998 * a recovering spare
2999 */
3000 disk->rdev =
3001 disk[conf->raid_disks].rdev;
3002 disk[conf->raid_disks].rdev = NULL;
3003 } else if (!test_bit(In_sync, &disk->rdev->flags))
3004 /* Original is not in_sync - bad */
3005 goto abort;
3006 }
3007
3008 if (!disk->rdev ||
3009 !test_bit(In_sync, &disk->rdev->flags)) {
3010 disk->head_position = 0;
3011 if (disk->rdev &&
3012 (disk->rdev->saved_raid_disk < 0))
3013 conf->fullsync = 1;
3014 }
3015 }
3016
3017 err = -ENOMEM;
3018 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3019 if (!conf->thread)
3020 goto abort;
3021
3022 return conf;
3023
3024 abort:
3025 if (conf) {
3026 mempool_destroy(conf->r1bio_pool);
3027 kfree(conf->mirrors);
3028 safe_put_page(conf->tmppage);
3029 kfree(conf->poolinfo);
3030 kfree(conf->nr_pending);
3031 kfree(conf->nr_waiting);
3032 kfree(conf->nr_queued);
3033 kfree(conf->barrier);
3034 if (conf->bio_split)
3035 bioset_free(conf->bio_split);
3036 kfree(conf);
3037 }
3038 return ERR_PTR(err);
3039 }
3040
3041 static void raid1_free(struct mddev *mddev, void *priv);
3042 static int raid1_run(struct mddev *mddev)
3043 {
3044 struct r1conf *conf;
3045 int i;
3046 struct md_rdev *rdev;
3047 int ret;
3048 bool discard_supported = false;
3049
3050 if (mddev->level != 1) {
3051 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3052 mdname(mddev), mddev->level);
3053 return -EIO;
3054 }
3055 if (mddev->reshape_position != MaxSector) {
3056 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3057 mdname(mddev));
3058 return -EIO;
3059 }
3060 if (mddev_init_writes_pending(mddev) < 0)
3061 return -ENOMEM;
3062 /*
3063 * copy the already verified devices into our private RAID1
3064 * bookkeeping area. [whatever we allocate in run(),
3065 * should be freed in raid1_free()]
3066 */
3067 if (mddev->private == NULL)
3068 conf = setup_conf(mddev);
3069 else
3070 conf = mddev->private;
3071
3072 if (IS_ERR(conf))
3073 return PTR_ERR(conf);
3074
3075 if (mddev->queue) {
3076 blk_queue_max_write_same_sectors(mddev->queue, 0);
3077 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3078 }
3079
3080 rdev_for_each(rdev, mddev) {
3081 if (!mddev->gendisk)
3082 continue;
3083 disk_stack_limits(mddev->gendisk, rdev->bdev,
3084 rdev->data_offset << 9);
3085 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3086 discard_supported = true;
3087 }
3088
3089 mddev->degraded = 0;
3090 for (i=0; i < conf->raid_disks; i++)
3091 if (conf->mirrors[i].rdev == NULL ||
3092 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3093 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3094 mddev->degraded++;
3095
3096 if (conf->raid_disks - mddev->degraded == 1)
3097 mddev->recovery_cp = MaxSector;
3098
3099 if (mddev->recovery_cp != MaxSector)
3100 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3101 mdname(mddev));
3102 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3103 mdname(mddev), mddev->raid_disks - mddev->degraded,
3104 mddev->raid_disks);
3105
3106 /*
3107 * Ok, everything is just fine now
3108 */
3109 mddev->thread = conf->thread;
3110 conf->thread = NULL;
3111 mddev->private = conf;
3112 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3113
3114 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3115
3116 if (mddev->queue) {
3117 if (discard_supported)
3118 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3119 mddev->queue);
3120 else
3121 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3122 mddev->queue);
3123 }
3124
3125 ret = md_integrity_register(mddev);
3126 if (ret) {
3127 md_unregister_thread(&mddev->thread);
3128 raid1_free(mddev, conf);
3129 }
3130 return ret;
3131 }
3132
3133 static void raid1_free(struct mddev *mddev, void *priv)
3134 {
3135 struct r1conf *conf = priv;
3136
3137 mempool_destroy(conf->r1bio_pool);
3138 kfree(conf->mirrors);
3139 safe_put_page(conf->tmppage);
3140 kfree(conf->poolinfo);
3141 kfree(conf->nr_pending);
3142 kfree(conf->nr_waiting);
3143 kfree(conf->nr_queued);
3144 kfree(conf->barrier);
3145 if (conf->bio_split)
3146 bioset_free(conf->bio_split);
3147 kfree(conf);
3148 }
3149
3150 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3151 {
3152 /* no resync is happening, and there is enough space
3153 * on all devices, so we can resize.
3154 * We need to make sure resync covers any new space.
3155 * If the array is shrinking we should possibly wait until
3156 * any io in the removed space completes, but it hardly seems
3157 * worth it.
3158 */
3159 sector_t newsize = raid1_size(mddev, sectors, 0);
3160 if (mddev->external_size &&
3161 mddev->array_sectors > newsize)
3162 return -EINVAL;
3163 if (mddev->bitmap) {
3164 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3165 if (ret)
3166 return ret;
3167 }
3168 md_set_array_sectors(mddev, newsize);
3169 if (sectors > mddev->dev_sectors &&
3170 mddev->recovery_cp > mddev->dev_sectors) {
3171 mddev->recovery_cp = mddev->dev_sectors;
3172 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3173 }
3174 mddev->dev_sectors = sectors;
3175 mddev->resync_max_sectors = sectors;
3176 return 0;
3177 }
3178
3179 static int raid1_reshape(struct mddev *mddev)
3180 {
3181 /* We need to:
3182 * 1/ resize the r1bio_pool
3183 * 2/ resize conf->mirrors
3184 *
3185 * We allocate a new r1bio_pool if we can.
3186 * Then raise a device barrier and wait until all IO stops.
3187 * Then resize conf->mirrors and swap in the new r1bio pool.
3188 *
3189 * At the same time, we "pack" the devices so that all the missing
3190 * devices have the higher raid_disk numbers.
3191 */
3192 mempool_t *newpool, *oldpool;
3193 struct pool_info *newpoolinfo;
3194 struct raid1_info *newmirrors;
3195 struct r1conf *conf = mddev->private;
3196 int cnt, raid_disks;
3197 unsigned long flags;
3198 int d, d2;
3199
3200 /* Cannot change chunk_size, layout, or level */
3201 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3202 mddev->layout != mddev->new_layout ||
3203 mddev->level != mddev->new_level) {
3204 mddev->new_chunk_sectors = mddev->chunk_sectors;
3205 mddev->new_layout = mddev->layout;
3206 mddev->new_level = mddev->level;
3207 return -EINVAL;
3208 }
3209
3210 if (!mddev_is_clustered(mddev))
3211 md_allow_write(mddev);
3212
3213 raid_disks = mddev->raid_disks + mddev->delta_disks;
3214
3215 if (raid_disks < conf->raid_disks) {
3216 cnt=0;
3217 for (d= 0; d < conf->raid_disks; d++)
3218 if (conf->mirrors[d].rdev)
3219 cnt++;
3220 if (cnt > raid_disks)
3221 return -EBUSY;
3222 }
3223
3224 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3225 if (!newpoolinfo)
3226 return -ENOMEM;
3227 newpoolinfo->mddev = mddev;
3228 newpoolinfo->raid_disks = raid_disks * 2;
3229
3230 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3231 r1bio_pool_free, newpoolinfo);
3232 if (!newpool) {
3233 kfree(newpoolinfo);
3234 return -ENOMEM;
3235 }
3236 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3237 GFP_KERNEL);
3238 if (!newmirrors) {
3239 kfree(newpoolinfo);
3240 mempool_destroy(newpool);
3241 return -ENOMEM;
3242 }
3243
3244 freeze_array(conf, 0);
3245
3246 /* ok, everything is stopped */
3247 oldpool = conf->r1bio_pool;
3248 conf->r1bio_pool = newpool;
3249
3250 for (d = d2 = 0; d < conf->raid_disks; d++) {
3251 struct md_rdev *rdev = conf->mirrors[d].rdev;
3252 if (rdev && rdev->raid_disk != d2) {
3253 sysfs_unlink_rdev(mddev, rdev);
3254 rdev->raid_disk = d2;
3255 sysfs_unlink_rdev(mddev, rdev);
3256 if (sysfs_link_rdev(mddev, rdev))
3257 pr_warn("md/raid1:%s: cannot register rd%d\n",
3258 mdname(mddev), rdev->raid_disk);
3259 }
3260 if (rdev)
3261 newmirrors[d2++].rdev = rdev;
3262 }
3263 kfree(conf->mirrors);
3264 conf->mirrors = newmirrors;
3265 kfree(conf->poolinfo);
3266 conf->poolinfo = newpoolinfo;
3267
3268 spin_lock_irqsave(&conf->device_lock, flags);
3269 mddev->degraded += (raid_disks - conf->raid_disks);
3270 spin_unlock_irqrestore(&conf->device_lock, flags);
3271 conf->raid_disks = mddev->raid_disks = raid_disks;
3272 mddev->delta_disks = 0;
3273
3274 unfreeze_array(conf);
3275
3276 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3278 md_wakeup_thread(mddev->thread);
3279
3280 mempool_destroy(oldpool);
3281 return 0;
3282 }
3283
3284 static void raid1_quiesce(struct mddev *mddev, int state)
3285 {
3286 struct r1conf *conf = mddev->private;
3287
3288 switch(state) {
3289 case 2: /* wake for suspend */
3290 wake_up(&conf->wait_barrier);
3291 break;
3292 case 1:
3293 freeze_array(conf, 0);
3294 break;
3295 case 0:
3296 unfreeze_array(conf);
3297 break;
3298 }
3299 }
3300
3301 static void *raid1_takeover(struct mddev *mddev)
3302 {
3303 /* raid1 can take over:
3304 * raid5 with 2 devices, any layout or chunk size
3305 */
3306 if (mddev->level == 5 && mddev->raid_disks == 2) {
3307 struct r1conf *conf;
3308 mddev->new_level = 1;
3309 mddev->new_layout = 0;
3310 mddev->new_chunk_sectors = 0;
3311 conf = setup_conf(mddev);
3312 if (!IS_ERR(conf)) {
3313 /* Array must appear to be quiesced */
3314 conf->array_frozen = 1;
3315 mddev_clear_unsupported_flags(mddev,
3316 UNSUPPORTED_MDDEV_FLAGS);
3317 }
3318 return conf;
3319 }
3320 return ERR_PTR(-EINVAL);
3321 }
3322
3323 static struct md_personality raid1_personality =
3324 {
3325 .name = "raid1",
3326 .level = 1,
3327 .owner = THIS_MODULE,
3328 .make_request = raid1_make_request,
3329 .run = raid1_run,
3330 .free = raid1_free,
3331 .status = raid1_status,
3332 .error_handler = raid1_error,
3333 .hot_add_disk = raid1_add_disk,
3334 .hot_remove_disk= raid1_remove_disk,
3335 .spare_active = raid1_spare_active,
3336 .sync_request = raid1_sync_request,
3337 .resize = raid1_resize,
3338 .size = raid1_size,
3339 .check_reshape = raid1_reshape,
3340 .quiesce = raid1_quiesce,
3341 .takeover = raid1_takeover,
3342 .congested = raid1_congested,
3343 };
3344
3345 static int __init raid_init(void)
3346 {
3347 return register_md_personality(&raid1_personality);
3348 }
3349
3350 static void raid_exit(void)
3351 {
3352 unregister_md_personality(&raid1_personality);
3353 }
3354
3355 module_init(raid_init);
3356 module_exit(raid_exit);
3357 MODULE_LICENSE("GPL");
3358 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3359 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3360 MODULE_ALIAS("md-raid1");
3361 MODULE_ALIAS("md-level-1");
3362
3363 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);