]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid1.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
123 */
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
131
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
147 out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
155 out_free_bio:
156 while (++j < pi->raid_disks)
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160 }
161
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 struct pool_info *pi = data;
165 int i,j;
166 struct r1bio *r1bio = __r1_bio;
167
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 }
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179 }
180
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 int i;
184
185 for (i = 0; i < conf->raid_disks * 2; i++) {
186 struct bio **bio = r1_bio->bios + i;
187 if (!BIO_SPECIAL(*bio))
188 bio_put(*bio);
189 *bio = NULL;
190 }
191 }
192
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 struct r1conf *conf = r1_bio->mddev->private;
196
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199 }
200
201 static void put_buf(struct r1bio *r1_bio)
202 {
203 struct r1conf *conf = r1_bio->mddev->private;
204 int i;
205
206 for (i = 0; i < conf->raid_disks * 2; i++) {
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
214 lower_barrier(conf);
215 }
216
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 unsigned long flags;
220 struct mddev *mddev = r1_bio->mddev;
221 struct r1conf *conf = mddev->private;
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
225 conf->nr_queued ++;
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 wake_up(&conf->wait_barrier);
229 md_wakeup_thread(mddev->thread);
230 }
231
232 /*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 struct bio *bio = r1_bio->master_bio;
240 int done;
241 struct r1conf *conf = r1_bio->mddev->private;
242 sector_t start_next_window = r1_bio->start_next_window;
243 sector_t bi_sector = bio->bi_iter.bi_sector;
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 bio->bi_error = -EIO;
261
262 if (done) {
263 bio_endio(bio);
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
268 allow_barrier(conf, start_next_window, bi_sector);
269 }
270 }
271
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 struct bio *bio = r1_bio->master_bio;
275
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
282
283 call_bio_endio(r1_bio);
284 }
285 free_r1bio(r1_bio);
286 }
287
288 /*
289 * Update disk head position estimator based on IRQ completion info.
290 */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 struct r1conf *conf = r1_bio->mddev->private;
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297 }
298
299 /*
300 * Find the disk number which triggered given bio
301 */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 int mirror;
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
307
308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
312 BUG_ON(mirror == raid_disks * 2);
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316 }
317
318 static void raid1_end_read_request(struct bio *bio)
319 {
320 int uptodate = !bio->bi_error;
321 struct r1bio *r1_bio = bio->bi_private;
322 struct r1conf *conf = r1_bio->mddev->private;
323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
324
325 /*
326 * this branch is our 'one mirror IO has finished' event handler:
327 */
328 update_head_pos(r1_bio->read_disk, r1_bio);
329
330 if (uptodate)
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
332 else {
333 /* If all other devices have failed, we want to return
334 * the error upwards rather than fail the last device.
335 * Here we redefine "uptodate" to mean "Don't want to retry"
336 */
337 unsigned long flags;
338 spin_lock_irqsave(&conf->device_lock, flags);
339 if (r1_bio->mddev->degraded == conf->raid_disks ||
340 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
341 test_bit(In_sync, &rdev->flags)))
342 uptodate = 1;
343 spin_unlock_irqrestore(&conf->device_lock, flags);
344 }
345
346 if (uptodate) {
347 raid_end_bio_io(r1_bio);
348 rdev_dec_pending(rdev, conf->mddev);
349 } else {
350 /*
351 * oops, read error:
352 */
353 char b[BDEVNAME_SIZE];
354 printk_ratelimited(
355 KERN_ERR "md/raid1:%s: %s: "
356 "rescheduling sector %llu\n",
357 mdname(conf->mddev),
358 bdevname(rdev->bdev,
359 b),
360 (unsigned long long)r1_bio->sector);
361 set_bit(R1BIO_ReadError, &r1_bio->state);
362 reschedule_retry(r1_bio);
363 /* don't drop the reference on read_disk yet */
364 }
365 }
366
367 static void close_write(struct r1bio *r1_bio)
368 {
369 /* it really is the end of this request */
370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
371 /* free extra copy of the data pages */
372 int i = r1_bio->behind_page_count;
373 while (i--)
374 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
375 kfree(r1_bio->behind_bvecs);
376 r1_bio->behind_bvecs = NULL;
377 }
378 /* clear the bitmap if all writes complete successfully */
379 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
380 r1_bio->sectors,
381 !test_bit(R1BIO_Degraded, &r1_bio->state),
382 test_bit(R1BIO_BehindIO, &r1_bio->state));
383 md_write_end(r1_bio->mddev);
384 }
385
386 static void r1_bio_write_done(struct r1bio *r1_bio)
387 {
388 if (!atomic_dec_and_test(&r1_bio->remaining))
389 return;
390
391 if (test_bit(R1BIO_WriteError, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else {
394 close_write(r1_bio);
395 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
396 reschedule_retry(r1_bio);
397 else
398 raid_end_bio_io(r1_bio);
399 }
400 }
401
402 static void raid1_end_write_request(struct bio *bio)
403 {
404 struct r1bio *r1_bio = bio->bi_private;
405 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
406 struct r1conf *conf = r1_bio->mddev->private;
407 struct bio *to_put = NULL;
408 int mirror = find_bio_disk(r1_bio, bio);
409 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
410
411 /*
412 * 'one mirror IO has finished' event handler:
413 */
414 if (bio->bi_error) {
415 set_bit(WriteErrorSeen, &rdev->flags);
416 if (!test_and_set_bit(WantReplacement, &rdev->flags))
417 set_bit(MD_RECOVERY_NEEDED, &
418 conf->mddev->recovery);
419
420 set_bit(R1BIO_WriteError, &r1_bio->state);
421 } else {
422 /*
423 * Set R1BIO_Uptodate in our master bio, so that we
424 * will return a good error code for to the higher
425 * levels even if IO on some other mirrored buffer
426 * fails.
427 *
428 * The 'master' represents the composite IO operation
429 * to user-side. So if something waits for IO, then it
430 * will wait for the 'master' bio.
431 */
432 sector_t first_bad;
433 int bad_sectors;
434
435 r1_bio->bios[mirror] = NULL;
436 to_put = bio;
437 /*
438 * Do not set R1BIO_Uptodate if the current device is
439 * rebuilding or Faulty. This is because we cannot use
440 * such device for properly reading the data back (we could
441 * potentially use it, if the current write would have felt
442 * before rdev->recovery_offset, but for simplicity we don't
443 * check this here.
444 */
445 if (test_bit(In_sync, &rdev->flags) &&
446 !test_bit(Faulty, &rdev->flags))
447 set_bit(R1BIO_Uptodate, &r1_bio->state);
448
449 /* Maybe we can clear some bad blocks. */
450 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
451 &first_bad, &bad_sectors)) {
452 r1_bio->bios[mirror] = IO_MADE_GOOD;
453 set_bit(R1BIO_MadeGood, &r1_bio->state);
454 }
455 }
456
457 if (behind) {
458 if (test_bit(WriteMostly, &rdev->flags))
459 atomic_dec(&r1_bio->behind_remaining);
460
461 /*
462 * In behind mode, we ACK the master bio once the I/O
463 * has safely reached all non-writemostly
464 * disks. Setting the Returned bit ensures that this
465 * gets done only once -- we don't ever want to return
466 * -EIO here, instead we'll wait
467 */
468 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
469 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
470 /* Maybe we can return now */
471 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
472 struct bio *mbio = r1_bio->master_bio;
473 pr_debug("raid1: behind end write sectors"
474 " %llu-%llu\n",
475 (unsigned long long) mbio->bi_iter.bi_sector,
476 (unsigned long long) bio_end_sector(mbio) - 1);
477 call_bio_endio(r1_bio);
478 }
479 }
480 }
481 if (r1_bio->bios[mirror] == NULL)
482 rdev_dec_pending(rdev, conf->mddev);
483
484 /*
485 * Let's see if all mirrored write operations have finished
486 * already.
487 */
488 r1_bio_write_done(r1_bio);
489
490 if (to_put)
491 bio_put(to_put);
492 }
493
494 /*
495 * This routine returns the disk from which the requested read should
496 * be done. There is a per-array 'next expected sequential IO' sector
497 * number - if this matches on the next IO then we use the last disk.
498 * There is also a per-disk 'last know head position' sector that is
499 * maintained from IRQ contexts, both the normal and the resync IO
500 * completion handlers update this position correctly. If there is no
501 * perfect sequential match then we pick the disk whose head is closest.
502 *
503 * If there are 2 mirrors in the same 2 devices, performance degrades
504 * because position is mirror, not device based.
505 *
506 * The rdev for the device selected will have nr_pending incremented.
507 */
508 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
509 {
510 const sector_t this_sector = r1_bio->sector;
511 int sectors;
512 int best_good_sectors;
513 int best_disk, best_dist_disk, best_pending_disk;
514 int has_nonrot_disk;
515 int disk;
516 sector_t best_dist;
517 unsigned int min_pending;
518 struct md_rdev *rdev;
519 int choose_first;
520 int choose_next_idle;
521
522 rcu_read_lock();
523 /*
524 * Check if we can balance. We can balance on the whole
525 * device if no resync is going on, or below the resync window.
526 * We take the first readable disk when above the resync window.
527 */
528 retry:
529 sectors = r1_bio->sectors;
530 best_disk = -1;
531 best_dist_disk = -1;
532 best_dist = MaxSector;
533 best_pending_disk = -1;
534 min_pending = UINT_MAX;
535 best_good_sectors = 0;
536 has_nonrot_disk = 0;
537 choose_next_idle = 0;
538
539 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
540 (mddev_is_clustered(conf->mddev) &&
541 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
542 this_sector + sectors)))
543 choose_first = 1;
544 else
545 choose_first = 0;
546
547 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
548 sector_t dist;
549 sector_t first_bad;
550 int bad_sectors;
551 unsigned int pending;
552 bool nonrot;
553
554 rdev = rcu_dereference(conf->mirrors[disk].rdev);
555 if (r1_bio->bios[disk] == IO_BLOCKED
556 || rdev == NULL
557 || test_bit(Faulty, &rdev->flags))
558 continue;
559 if (!test_bit(In_sync, &rdev->flags) &&
560 rdev->recovery_offset < this_sector + sectors)
561 continue;
562 if (test_bit(WriteMostly, &rdev->flags)) {
563 /* Don't balance among write-mostly, just
564 * use the first as a last resort */
565 if (best_dist_disk < 0) {
566 if (is_badblock(rdev, this_sector, sectors,
567 &first_bad, &bad_sectors)) {
568 if (first_bad <= this_sector)
569 /* Cannot use this */
570 continue;
571 best_good_sectors = first_bad - this_sector;
572 } else
573 best_good_sectors = sectors;
574 best_dist_disk = disk;
575 best_pending_disk = disk;
576 }
577 continue;
578 }
579 /* This is a reasonable device to use. It might
580 * even be best.
581 */
582 if (is_badblock(rdev, this_sector, sectors,
583 &first_bad, &bad_sectors)) {
584 if (best_dist < MaxSector)
585 /* already have a better device */
586 continue;
587 if (first_bad <= this_sector) {
588 /* cannot read here. If this is the 'primary'
589 * device, then we must not read beyond
590 * bad_sectors from another device..
591 */
592 bad_sectors -= (this_sector - first_bad);
593 if (choose_first && sectors > bad_sectors)
594 sectors = bad_sectors;
595 if (best_good_sectors > sectors)
596 best_good_sectors = sectors;
597
598 } else {
599 sector_t good_sectors = first_bad - this_sector;
600 if (good_sectors > best_good_sectors) {
601 best_good_sectors = good_sectors;
602 best_disk = disk;
603 }
604 if (choose_first)
605 break;
606 }
607 continue;
608 } else
609 best_good_sectors = sectors;
610
611 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
612 has_nonrot_disk |= nonrot;
613 pending = atomic_read(&rdev->nr_pending);
614 dist = abs(this_sector - conf->mirrors[disk].head_position);
615 if (choose_first) {
616 best_disk = disk;
617 break;
618 }
619 /* Don't change to another disk for sequential reads */
620 if (conf->mirrors[disk].next_seq_sect == this_sector
621 || dist == 0) {
622 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
623 struct raid1_info *mirror = &conf->mirrors[disk];
624
625 best_disk = disk;
626 /*
627 * If buffered sequential IO size exceeds optimal
628 * iosize, check if there is idle disk. If yes, choose
629 * the idle disk. read_balance could already choose an
630 * idle disk before noticing it's a sequential IO in
631 * this disk. This doesn't matter because this disk
632 * will idle, next time it will be utilized after the
633 * first disk has IO size exceeds optimal iosize. In
634 * this way, iosize of the first disk will be optimal
635 * iosize at least. iosize of the second disk might be
636 * small, but not a big deal since when the second disk
637 * starts IO, the first disk is likely still busy.
638 */
639 if (nonrot && opt_iosize > 0 &&
640 mirror->seq_start != MaxSector &&
641 mirror->next_seq_sect > opt_iosize &&
642 mirror->next_seq_sect - opt_iosize >=
643 mirror->seq_start) {
644 choose_next_idle = 1;
645 continue;
646 }
647 break;
648 }
649 /* If device is idle, use it */
650 if (pending == 0) {
651 best_disk = disk;
652 break;
653 }
654
655 if (choose_next_idle)
656 continue;
657
658 if (min_pending > pending) {
659 min_pending = pending;
660 best_pending_disk = disk;
661 }
662
663 if (dist < best_dist) {
664 best_dist = dist;
665 best_dist_disk = disk;
666 }
667 }
668
669 /*
670 * If all disks are rotational, choose the closest disk. If any disk is
671 * non-rotational, choose the disk with less pending request even the
672 * disk is rotational, which might/might not be optimal for raids with
673 * mixed ratation/non-rotational disks depending on workload.
674 */
675 if (best_disk == -1) {
676 if (has_nonrot_disk)
677 best_disk = best_pending_disk;
678 else
679 best_disk = best_dist_disk;
680 }
681
682 if (best_disk >= 0) {
683 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
684 if (!rdev)
685 goto retry;
686 atomic_inc(&rdev->nr_pending);
687 sectors = best_good_sectors;
688
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
691
692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693 }
694 rcu_read_unlock();
695 *max_sectors = sectors;
696
697 return best_disk;
698 }
699
700 static int raid1_congested(struct mddev *mddev, int bits)
701 {
702 struct r1conf *conf = mddev->private;
703 int i, ret = 0;
704
705 if ((bits & (1 << WB_async_congested)) &&
706 conf->pending_count >= max_queued_requests)
707 return 1;
708
709 rcu_read_lock();
710 for (i = 0; i < conf->raid_disks * 2; i++) {
711 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
712 if (rdev && !test_bit(Faulty, &rdev->flags)) {
713 struct request_queue *q = bdev_get_queue(rdev->bdev);
714
715 BUG_ON(!q);
716
717 /* Note the '|| 1' - when read_balance prefers
718 * non-congested targets, it can be removed
719 */
720 if ((bits & (1 << WB_async_congested)) || 1)
721 ret |= bdi_congested(&q->backing_dev_info, bits);
722 else
723 ret &= bdi_congested(&q->backing_dev_info, bits);
724 }
725 }
726 rcu_read_unlock();
727 return ret;
728 }
729
730 static void flush_pending_writes(struct r1conf *conf)
731 {
732 /* Any writes that have been queued but are awaiting
733 * bitmap updates get flushed here.
734 */
735 spin_lock_irq(&conf->device_lock);
736
737 if (conf->pending_bio_list.head) {
738 struct bio *bio;
739 bio = bio_list_get(&conf->pending_bio_list);
740 conf->pending_count = 0;
741 spin_unlock_irq(&conf->device_lock);
742 /* flush any pending bitmap writes to
743 * disk before proceeding w/ I/O */
744 bitmap_unplug(conf->mddev->bitmap);
745 wake_up(&conf->wait_barrier);
746
747 while (bio) { /* submit pending writes */
748 struct bio *next = bio->bi_next;
749 bio->bi_next = NULL;
750 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
751 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
752 /* Just ignore it */
753 bio_endio(bio);
754 else
755 generic_make_request(bio);
756 bio = next;
757 }
758 } else
759 spin_unlock_irq(&conf->device_lock);
760 }
761
762 /* Barriers....
763 * Sometimes we need to suspend IO while we do something else,
764 * either some resync/recovery, or reconfigure the array.
765 * To do this we raise a 'barrier'.
766 * The 'barrier' is a counter that can be raised multiple times
767 * to count how many activities are happening which preclude
768 * normal IO.
769 * We can only raise the barrier if there is no pending IO.
770 * i.e. if nr_pending == 0.
771 * We choose only to raise the barrier if no-one is waiting for the
772 * barrier to go down. This means that as soon as an IO request
773 * is ready, no other operations which require a barrier will start
774 * until the IO request has had a chance.
775 *
776 * So: regular IO calls 'wait_barrier'. When that returns there
777 * is no backgroup IO happening, It must arrange to call
778 * allow_barrier when it has finished its IO.
779 * backgroup IO calls must call raise_barrier. Once that returns
780 * there is no normal IO happeing. It must arrange to call
781 * lower_barrier when the particular background IO completes.
782 */
783 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
784 {
785 spin_lock_irq(&conf->resync_lock);
786
787 /* Wait until no block IO is waiting */
788 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
789 conf->resync_lock);
790
791 /* block any new IO from starting */
792 conf->barrier++;
793 conf->next_resync = sector_nr;
794
795 /* For these conditions we must wait:
796 * A: while the array is in frozen state
797 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
798 * the max count which allowed.
799 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
800 * next resync will reach to the window which normal bios are
801 * handling.
802 * D: while there are any active requests in the current window.
803 */
804 wait_event_lock_irq(conf->wait_barrier,
805 !conf->array_frozen &&
806 conf->barrier < RESYNC_DEPTH &&
807 conf->current_window_requests == 0 &&
808 (conf->start_next_window >=
809 conf->next_resync + RESYNC_SECTORS),
810 conf->resync_lock);
811
812 conf->nr_pending++;
813 spin_unlock_irq(&conf->resync_lock);
814 }
815
816 static void lower_barrier(struct r1conf *conf)
817 {
818 unsigned long flags;
819 BUG_ON(conf->barrier <= 0);
820 spin_lock_irqsave(&conf->resync_lock, flags);
821 conf->barrier--;
822 conf->nr_pending--;
823 spin_unlock_irqrestore(&conf->resync_lock, flags);
824 wake_up(&conf->wait_barrier);
825 }
826
827 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
828 {
829 bool wait = false;
830
831 if (conf->array_frozen || !bio)
832 wait = true;
833 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
834 if ((conf->mddev->curr_resync_completed
835 >= bio_end_sector(bio)) ||
836 (conf->next_resync + NEXT_NORMALIO_DISTANCE
837 <= bio->bi_iter.bi_sector))
838 wait = false;
839 else
840 wait = true;
841 }
842
843 return wait;
844 }
845
846 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
847 {
848 sector_t sector = 0;
849
850 spin_lock_irq(&conf->resync_lock);
851 if (need_to_wait_for_sync(conf, bio)) {
852 conf->nr_waiting++;
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * per-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to allow conf->start_next_window
860 * to increase.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->array_frozen &&
864 (!conf->barrier ||
865 ((conf->start_next_window <
866 conf->next_resync + RESYNC_SECTORS) &&
867 current->bio_list &&
868 !bio_list_empty(current->bio_list))),
869 conf->resync_lock);
870 conf->nr_waiting--;
871 }
872
873 if (bio && bio_data_dir(bio) == WRITE) {
874 if (bio->bi_iter.bi_sector >= conf->next_resync) {
875 if (conf->start_next_window == MaxSector)
876 conf->start_next_window =
877 conf->next_resync +
878 NEXT_NORMALIO_DISTANCE;
879
880 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
881 <= bio->bi_iter.bi_sector)
882 conf->next_window_requests++;
883 else
884 conf->current_window_requests++;
885 sector = conf->start_next_window;
886 }
887 }
888
889 conf->nr_pending++;
890 spin_unlock_irq(&conf->resync_lock);
891 return sector;
892 }
893
894 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
895 sector_t bi_sector)
896 {
897 unsigned long flags;
898
899 spin_lock_irqsave(&conf->resync_lock, flags);
900 conf->nr_pending--;
901 if (start_next_window) {
902 if (start_next_window == conf->start_next_window) {
903 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
904 <= bi_sector)
905 conf->next_window_requests--;
906 else
907 conf->current_window_requests--;
908 } else
909 conf->current_window_requests--;
910
911 if (!conf->current_window_requests) {
912 if (conf->next_window_requests) {
913 conf->current_window_requests =
914 conf->next_window_requests;
915 conf->next_window_requests = 0;
916 conf->start_next_window +=
917 NEXT_NORMALIO_DISTANCE;
918 } else
919 conf->start_next_window = MaxSector;
920 }
921 }
922 spin_unlock_irqrestore(&conf->resync_lock, flags);
923 wake_up(&conf->wait_barrier);
924 }
925
926 static void freeze_array(struct r1conf *conf, int extra)
927 {
928 /* stop syncio and normal IO and wait for everything to
929 * go quite.
930 * We wait until nr_pending match nr_queued+extra
931 * This is called in the context of one normal IO request
932 * that has failed. Thus any sync request that might be pending
933 * will be blocked by nr_pending, and we need to wait for
934 * pending IO requests to complete or be queued for re-try.
935 * Thus the number queued (nr_queued) plus this request (extra)
936 * must match the number of pending IOs (nr_pending) before
937 * we continue.
938 */
939 spin_lock_irq(&conf->resync_lock);
940 conf->array_frozen = 1;
941 wait_event_lock_irq_cmd(conf->wait_barrier,
942 conf->nr_pending == conf->nr_queued+extra,
943 conf->resync_lock,
944 flush_pending_writes(conf));
945 spin_unlock_irq(&conf->resync_lock);
946 }
947 static void unfreeze_array(struct r1conf *conf)
948 {
949 /* reverse the effect of the freeze */
950 spin_lock_irq(&conf->resync_lock);
951 conf->array_frozen = 0;
952 wake_up(&conf->wait_barrier);
953 spin_unlock_irq(&conf->resync_lock);
954 }
955
956 /* duplicate the data pages for behind I/O
957 */
958 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
959 {
960 int i;
961 struct bio_vec *bvec;
962 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
963 GFP_NOIO);
964 if (unlikely(!bvecs))
965 return;
966
967 bio_for_each_segment_all(bvec, bio, i) {
968 bvecs[i] = *bvec;
969 bvecs[i].bv_page = alloc_page(GFP_NOIO);
970 if (unlikely(!bvecs[i].bv_page))
971 goto do_sync_io;
972 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
973 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
974 kunmap(bvecs[i].bv_page);
975 kunmap(bvec->bv_page);
976 }
977 r1_bio->behind_bvecs = bvecs;
978 r1_bio->behind_page_count = bio->bi_vcnt;
979 set_bit(R1BIO_BehindIO, &r1_bio->state);
980 return;
981
982 do_sync_io:
983 for (i = 0; i < bio->bi_vcnt; i++)
984 if (bvecs[i].bv_page)
985 put_page(bvecs[i].bv_page);
986 kfree(bvecs);
987 pr_debug("%dB behind alloc failed, doing sync I/O\n",
988 bio->bi_iter.bi_size);
989 }
990
991 struct raid1_plug_cb {
992 struct blk_plug_cb cb;
993 struct bio_list pending;
994 int pending_cnt;
995 };
996
997 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
998 {
999 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1000 cb);
1001 struct mddev *mddev = plug->cb.data;
1002 struct r1conf *conf = mddev->private;
1003 struct bio *bio;
1004
1005 if (from_schedule || current->bio_list) {
1006 spin_lock_irq(&conf->device_lock);
1007 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1008 conf->pending_count += plug->pending_cnt;
1009 spin_unlock_irq(&conf->device_lock);
1010 wake_up(&conf->wait_barrier);
1011 md_wakeup_thread(mddev->thread);
1012 kfree(plug);
1013 return;
1014 }
1015
1016 /* we aren't scheduling, so we can do the write-out directly. */
1017 bio = bio_list_get(&plug->pending);
1018 bitmap_unplug(mddev->bitmap);
1019 wake_up(&conf->wait_barrier);
1020
1021 while (bio) { /* submit pending writes */
1022 struct bio *next = bio->bi_next;
1023 bio->bi_next = NULL;
1024 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1025 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1026 /* Just ignore it */
1027 bio_endio(bio);
1028 else
1029 generic_make_request(bio);
1030 bio = next;
1031 }
1032 kfree(plug);
1033 }
1034
1035 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1036 {
1037 struct r1conf *conf = mddev->private;
1038 struct raid1_info *mirror;
1039 struct r1bio *r1_bio;
1040 struct bio *read_bio;
1041 int i, disks;
1042 struct bitmap *bitmap;
1043 unsigned long flags;
1044 const int op = bio_op(bio);
1045 const int rw = bio_data_dir(bio);
1046 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1047 const unsigned long do_flush_fua = (bio->bi_rw &
1048 (REQ_PREFLUSH | REQ_FUA));
1049 struct md_rdev *blocked_rdev;
1050 struct blk_plug_cb *cb;
1051 struct raid1_plug_cb *plug = NULL;
1052 int first_clone;
1053 int sectors_handled;
1054 int max_sectors;
1055 sector_t start_next_window;
1056
1057 /*
1058 * Register the new request and wait if the reconstruction
1059 * thread has put up a bar for new requests.
1060 * Continue immediately if no resync is active currently.
1061 */
1062
1063 md_write_start(mddev, bio); /* wait on superblock update early */
1064
1065 if (bio_data_dir(bio) == WRITE &&
1066 ((bio_end_sector(bio) > mddev->suspend_lo &&
1067 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1068 (mddev_is_clustered(mddev) &&
1069 md_cluster_ops->area_resyncing(mddev, WRITE,
1070 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1071 /* As the suspend_* range is controlled by
1072 * userspace, we want an interruptible
1073 * wait.
1074 */
1075 DEFINE_WAIT(w);
1076 for (;;) {
1077 flush_signals(current);
1078 prepare_to_wait(&conf->wait_barrier,
1079 &w, TASK_INTERRUPTIBLE);
1080 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1081 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1082 (mddev_is_clustered(mddev) &&
1083 !md_cluster_ops->area_resyncing(mddev, WRITE,
1084 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1085 break;
1086 schedule();
1087 }
1088 finish_wait(&conf->wait_barrier, &w);
1089 }
1090
1091 start_next_window = wait_barrier(conf, bio);
1092
1093 bitmap = mddev->bitmap;
1094
1095 /*
1096 * make_request() can abort the operation when read-ahead is being
1097 * used and no empty request is available.
1098 *
1099 */
1100 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1101
1102 r1_bio->master_bio = bio;
1103 r1_bio->sectors = bio_sectors(bio);
1104 r1_bio->state = 0;
1105 r1_bio->mddev = mddev;
1106 r1_bio->sector = bio->bi_iter.bi_sector;
1107
1108 /* We might need to issue multiple reads to different
1109 * devices if there are bad blocks around, so we keep
1110 * track of the number of reads in bio->bi_phys_segments.
1111 * If this is 0, there is only one r1_bio and no locking
1112 * will be needed when requests complete. If it is
1113 * non-zero, then it is the number of not-completed requests.
1114 */
1115 bio->bi_phys_segments = 0;
1116 bio_clear_flag(bio, BIO_SEG_VALID);
1117
1118 if (rw == READ) {
1119 /*
1120 * read balancing logic:
1121 */
1122 int rdisk;
1123
1124 read_again:
1125 rdisk = read_balance(conf, r1_bio, &max_sectors);
1126
1127 if (rdisk < 0) {
1128 /* couldn't find anywhere to read from */
1129 raid_end_bio_io(r1_bio);
1130 return;
1131 }
1132 mirror = conf->mirrors + rdisk;
1133
1134 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1135 bitmap) {
1136 /* Reading from a write-mostly device must
1137 * take care not to over-take any writes
1138 * that are 'behind'
1139 */
1140 wait_event(bitmap->behind_wait,
1141 atomic_read(&bitmap->behind_writes) == 0);
1142 }
1143 r1_bio->read_disk = rdisk;
1144 r1_bio->start_next_window = 0;
1145
1146 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1147 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1148 max_sectors);
1149
1150 r1_bio->bios[rdisk] = read_bio;
1151
1152 read_bio->bi_iter.bi_sector = r1_bio->sector +
1153 mirror->rdev->data_offset;
1154 read_bio->bi_bdev = mirror->rdev->bdev;
1155 read_bio->bi_end_io = raid1_end_read_request;
1156 bio_set_op_attrs(read_bio, op, do_sync);
1157 read_bio->bi_private = r1_bio;
1158
1159 if (max_sectors < r1_bio->sectors) {
1160 /* could not read all from this device, so we will
1161 * need another r1_bio.
1162 */
1163
1164 sectors_handled = (r1_bio->sector + max_sectors
1165 - bio->bi_iter.bi_sector);
1166 r1_bio->sectors = max_sectors;
1167 spin_lock_irq(&conf->device_lock);
1168 if (bio->bi_phys_segments == 0)
1169 bio->bi_phys_segments = 2;
1170 else
1171 bio->bi_phys_segments++;
1172 spin_unlock_irq(&conf->device_lock);
1173 /* Cannot call generic_make_request directly
1174 * as that will be queued in __make_request
1175 * and subsequent mempool_alloc might block waiting
1176 * for it. So hand bio over to raid1d.
1177 */
1178 reschedule_retry(r1_bio);
1179
1180 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1181
1182 r1_bio->master_bio = bio;
1183 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1184 r1_bio->state = 0;
1185 r1_bio->mddev = mddev;
1186 r1_bio->sector = bio->bi_iter.bi_sector +
1187 sectors_handled;
1188 goto read_again;
1189 } else
1190 generic_make_request(read_bio);
1191 return;
1192 }
1193
1194 /*
1195 * WRITE:
1196 */
1197 if (conf->pending_count >= max_queued_requests) {
1198 md_wakeup_thread(mddev->thread);
1199 wait_event(conf->wait_barrier,
1200 conf->pending_count < max_queued_requests);
1201 }
1202 /* first select target devices under rcu_lock and
1203 * inc refcount on their rdev. Record them by setting
1204 * bios[x] to bio
1205 * If there are known/acknowledged bad blocks on any device on
1206 * which we have seen a write error, we want to avoid writing those
1207 * blocks.
1208 * This potentially requires several writes to write around
1209 * the bad blocks. Each set of writes gets it's own r1bio
1210 * with a set of bios attached.
1211 */
1212
1213 disks = conf->raid_disks * 2;
1214 retry_write:
1215 r1_bio->start_next_window = start_next_window;
1216 blocked_rdev = NULL;
1217 rcu_read_lock();
1218 max_sectors = r1_bio->sectors;
1219 for (i = 0; i < disks; i++) {
1220 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1221 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1222 atomic_inc(&rdev->nr_pending);
1223 blocked_rdev = rdev;
1224 break;
1225 }
1226 r1_bio->bios[i] = NULL;
1227 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1228 if (i < conf->raid_disks)
1229 set_bit(R1BIO_Degraded, &r1_bio->state);
1230 continue;
1231 }
1232
1233 atomic_inc(&rdev->nr_pending);
1234 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1235 sector_t first_bad;
1236 int bad_sectors;
1237 int is_bad;
1238
1239 is_bad = is_badblock(rdev, r1_bio->sector,
1240 max_sectors,
1241 &first_bad, &bad_sectors);
1242 if (is_bad < 0) {
1243 /* mustn't write here until the bad block is
1244 * acknowledged*/
1245 set_bit(BlockedBadBlocks, &rdev->flags);
1246 blocked_rdev = rdev;
1247 break;
1248 }
1249 if (is_bad && first_bad <= r1_bio->sector) {
1250 /* Cannot write here at all */
1251 bad_sectors -= (r1_bio->sector - first_bad);
1252 if (bad_sectors < max_sectors)
1253 /* mustn't write more than bad_sectors
1254 * to other devices yet
1255 */
1256 max_sectors = bad_sectors;
1257 rdev_dec_pending(rdev, mddev);
1258 /* We don't set R1BIO_Degraded as that
1259 * only applies if the disk is
1260 * missing, so it might be re-added,
1261 * and we want to know to recover this
1262 * chunk.
1263 * In this case the device is here,
1264 * and the fact that this chunk is not
1265 * in-sync is recorded in the bad
1266 * block log
1267 */
1268 continue;
1269 }
1270 if (is_bad) {
1271 int good_sectors = first_bad - r1_bio->sector;
1272 if (good_sectors < max_sectors)
1273 max_sectors = good_sectors;
1274 }
1275 }
1276 r1_bio->bios[i] = bio;
1277 }
1278 rcu_read_unlock();
1279
1280 if (unlikely(blocked_rdev)) {
1281 /* Wait for this device to become unblocked */
1282 int j;
1283 sector_t old = start_next_window;
1284
1285 for (j = 0; j < i; j++)
1286 if (r1_bio->bios[j])
1287 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1288 r1_bio->state = 0;
1289 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1290 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1291 start_next_window = wait_barrier(conf, bio);
1292 /*
1293 * We must make sure the multi r1bios of bio have
1294 * the same value of bi_phys_segments
1295 */
1296 if (bio->bi_phys_segments && old &&
1297 old != start_next_window)
1298 /* Wait for the former r1bio(s) to complete */
1299 wait_event(conf->wait_barrier,
1300 bio->bi_phys_segments == 1);
1301 goto retry_write;
1302 }
1303
1304 if (max_sectors < r1_bio->sectors) {
1305 /* We are splitting this write into multiple parts, so
1306 * we need to prepare for allocating another r1_bio.
1307 */
1308 r1_bio->sectors = max_sectors;
1309 spin_lock_irq(&conf->device_lock);
1310 if (bio->bi_phys_segments == 0)
1311 bio->bi_phys_segments = 2;
1312 else
1313 bio->bi_phys_segments++;
1314 spin_unlock_irq(&conf->device_lock);
1315 }
1316 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1317
1318 atomic_set(&r1_bio->remaining, 1);
1319 atomic_set(&r1_bio->behind_remaining, 0);
1320
1321 first_clone = 1;
1322 for (i = 0; i < disks; i++) {
1323 struct bio *mbio;
1324 if (!r1_bio->bios[i])
1325 continue;
1326
1327 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1328 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1329
1330 if (first_clone) {
1331 /* do behind I/O ?
1332 * Not if there are too many, or cannot
1333 * allocate memory, or a reader on WriteMostly
1334 * is waiting for behind writes to flush */
1335 if (bitmap &&
1336 (atomic_read(&bitmap->behind_writes)
1337 < mddev->bitmap_info.max_write_behind) &&
1338 !waitqueue_active(&bitmap->behind_wait))
1339 alloc_behind_pages(mbio, r1_bio);
1340
1341 bitmap_startwrite(bitmap, r1_bio->sector,
1342 r1_bio->sectors,
1343 test_bit(R1BIO_BehindIO,
1344 &r1_bio->state));
1345 first_clone = 0;
1346 }
1347 if (r1_bio->behind_bvecs) {
1348 struct bio_vec *bvec;
1349 int j;
1350
1351 /*
1352 * We trimmed the bio, so _all is legit
1353 */
1354 bio_for_each_segment_all(bvec, mbio, j)
1355 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1356 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1357 atomic_inc(&r1_bio->behind_remaining);
1358 }
1359
1360 r1_bio->bios[i] = mbio;
1361
1362 mbio->bi_iter.bi_sector = (r1_bio->sector +
1363 conf->mirrors[i].rdev->data_offset);
1364 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1365 mbio->bi_end_io = raid1_end_write_request;
1366 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1367 mbio->bi_private = r1_bio;
1368
1369 atomic_inc(&r1_bio->remaining);
1370
1371 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1372 if (cb)
1373 plug = container_of(cb, struct raid1_plug_cb, cb);
1374 else
1375 plug = NULL;
1376 spin_lock_irqsave(&conf->device_lock, flags);
1377 if (plug) {
1378 bio_list_add(&plug->pending, mbio);
1379 plug->pending_cnt++;
1380 } else {
1381 bio_list_add(&conf->pending_bio_list, mbio);
1382 conf->pending_count++;
1383 }
1384 spin_unlock_irqrestore(&conf->device_lock, flags);
1385 if (!plug)
1386 md_wakeup_thread(mddev->thread);
1387 }
1388 /* Mustn't call r1_bio_write_done before this next test,
1389 * as it could result in the bio being freed.
1390 */
1391 if (sectors_handled < bio_sectors(bio)) {
1392 r1_bio_write_done(r1_bio);
1393 /* We need another r1_bio. It has already been counted
1394 * in bio->bi_phys_segments
1395 */
1396 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1397 r1_bio->master_bio = bio;
1398 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1399 r1_bio->state = 0;
1400 r1_bio->mddev = mddev;
1401 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1402 goto retry_write;
1403 }
1404
1405 r1_bio_write_done(r1_bio);
1406
1407 /* In case raid1d snuck in to freeze_array */
1408 wake_up(&conf->wait_barrier);
1409 }
1410
1411 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1412 {
1413 struct r1conf *conf = mddev->private;
1414 int i;
1415
1416 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1417 conf->raid_disks - mddev->degraded);
1418 rcu_read_lock();
1419 for (i = 0; i < conf->raid_disks; i++) {
1420 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1421 seq_printf(seq, "%s",
1422 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1423 }
1424 rcu_read_unlock();
1425 seq_printf(seq, "]");
1426 }
1427
1428 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1429 {
1430 char b[BDEVNAME_SIZE];
1431 struct r1conf *conf = mddev->private;
1432 unsigned long flags;
1433
1434 /*
1435 * If it is not operational, then we have already marked it as dead
1436 * else if it is the last working disks, ignore the error, let the
1437 * next level up know.
1438 * else mark the drive as failed
1439 */
1440 if (test_bit(In_sync, &rdev->flags)
1441 && (conf->raid_disks - mddev->degraded) == 1) {
1442 /*
1443 * Don't fail the drive, act as though we were just a
1444 * normal single drive.
1445 * However don't try a recovery from this drive as
1446 * it is very likely to fail.
1447 */
1448 conf->recovery_disabled = mddev->recovery_disabled;
1449 return;
1450 }
1451 set_bit(Blocked, &rdev->flags);
1452 spin_lock_irqsave(&conf->device_lock, flags);
1453 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1454 mddev->degraded++;
1455 set_bit(Faulty, &rdev->flags);
1456 } else
1457 set_bit(Faulty, &rdev->flags);
1458 spin_unlock_irqrestore(&conf->device_lock, flags);
1459 /*
1460 * if recovery is running, make sure it aborts.
1461 */
1462 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1463 set_mask_bits(&mddev->flags, 0,
1464 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1465 printk(KERN_ALERT
1466 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1467 "md/raid1:%s: Operation continuing on %d devices.\n",
1468 mdname(mddev), bdevname(rdev->bdev, b),
1469 mdname(mddev), conf->raid_disks - mddev->degraded);
1470 }
1471
1472 static void print_conf(struct r1conf *conf)
1473 {
1474 int i;
1475
1476 printk(KERN_DEBUG "RAID1 conf printout:\n");
1477 if (!conf) {
1478 printk(KERN_DEBUG "(!conf)\n");
1479 return;
1480 }
1481 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1482 conf->raid_disks);
1483
1484 rcu_read_lock();
1485 for (i = 0; i < conf->raid_disks; i++) {
1486 char b[BDEVNAME_SIZE];
1487 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1488 if (rdev)
1489 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1490 i, !test_bit(In_sync, &rdev->flags),
1491 !test_bit(Faulty, &rdev->flags),
1492 bdevname(rdev->bdev,b));
1493 }
1494 rcu_read_unlock();
1495 }
1496
1497 static void close_sync(struct r1conf *conf)
1498 {
1499 wait_barrier(conf, NULL);
1500 allow_barrier(conf, 0, 0);
1501
1502 mempool_destroy(conf->r1buf_pool);
1503 conf->r1buf_pool = NULL;
1504
1505 spin_lock_irq(&conf->resync_lock);
1506 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1507 conf->start_next_window = MaxSector;
1508 conf->current_window_requests +=
1509 conf->next_window_requests;
1510 conf->next_window_requests = 0;
1511 spin_unlock_irq(&conf->resync_lock);
1512 }
1513
1514 static int raid1_spare_active(struct mddev *mddev)
1515 {
1516 int i;
1517 struct r1conf *conf = mddev->private;
1518 int count = 0;
1519 unsigned long flags;
1520
1521 /*
1522 * Find all failed disks within the RAID1 configuration
1523 * and mark them readable.
1524 * Called under mddev lock, so rcu protection not needed.
1525 * device_lock used to avoid races with raid1_end_read_request
1526 * which expects 'In_sync' flags and ->degraded to be consistent.
1527 */
1528 spin_lock_irqsave(&conf->device_lock, flags);
1529 for (i = 0; i < conf->raid_disks; i++) {
1530 struct md_rdev *rdev = conf->mirrors[i].rdev;
1531 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1532 if (repl
1533 && !test_bit(Candidate, &repl->flags)
1534 && repl->recovery_offset == MaxSector
1535 && !test_bit(Faulty, &repl->flags)
1536 && !test_and_set_bit(In_sync, &repl->flags)) {
1537 /* replacement has just become active */
1538 if (!rdev ||
1539 !test_and_clear_bit(In_sync, &rdev->flags))
1540 count++;
1541 if (rdev) {
1542 /* Replaced device not technically
1543 * faulty, but we need to be sure
1544 * it gets removed and never re-added
1545 */
1546 set_bit(Faulty, &rdev->flags);
1547 sysfs_notify_dirent_safe(
1548 rdev->sysfs_state);
1549 }
1550 }
1551 if (rdev
1552 && rdev->recovery_offset == MaxSector
1553 && !test_bit(Faulty, &rdev->flags)
1554 && !test_and_set_bit(In_sync, &rdev->flags)) {
1555 count++;
1556 sysfs_notify_dirent_safe(rdev->sysfs_state);
1557 }
1558 }
1559 mddev->degraded -= count;
1560 spin_unlock_irqrestore(&conf->device_lock, flags);
1561
1562 print_conf(conf);
1563 return count;
1564 }
1565
1566 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1567 {
1568 struct r1conf *conf = mddev->private;
1569 int err = -EEXIST;
1570 int mirror = 0;
1571 struct raid1_info *p;
1572 int first = 0;
1573 int last = conf->raid_disks - 1;
1574
1575 if (mddev->recovery_disabled == conf->recovery_disabled)
1576 return -EBUSY;
1577
1578 if (md_integrity_add_rdev(rdev, mddev))
1579 return -ENXIO;
1580
1581 if (rdev->raid_disk >= 0)
1582 first = last = rdev->raid_disk;
1583
1584 /*
1585 * find the disk ... but prefer rdev->saved_raid_disk
1586 * if possible.
1587 */
1588 if (rdev->saved_raid_disk >= 0 &&
1589 rdev->saved_raid_disk >= first &&
1590 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1591 first = last = rdev->saved_raid_disk;
1592
1593 for (mirror = first; mirror <= last; mirror++) {
1594 p = conf->mirrors+mirror;
1595 if (!p->rdev) {
1596
1597 if (mddev->gendisk)
1598 disk_stack_limits(mddev->gendisk, rdev->bdev,
1599 rdev->data_offset << 9);
1600
1601 p->head_position = 0;
1602 rdev->raid_disk = mirror;
1603 err = 0;
1604 /* As all devices are equivalent, we don't need a full recovery
1605 * if this was recently any drive of the array
1606 */
1607 if (rdev->saved_raid_disk < 0)
1608 conf->fullsync = 1;
1609 rcu_assign_pointer(p->rdev, rdev);
1610 break;
1611 }
1612 if (test_bit(WantReplacement, &p->rdev->flags) &&
1613 p[conf->raid_disks].rdev == NULL) {
1614 /* Add this device as a replacement */
1615 clear_bit(In_sync, &rdev->flags);
1616 set_bit(Replacement, &rdev->flags);
1617 rdev->raid_disk = mirror;
1618 err = 0;
1619 conf->fullsync = 1;
1620 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621 break;
1622 }
1623 }
1624 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1625 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1626 print_conf(conf);
1627 return err;
1628 }
1629
1630 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 struct r1conf *conf = mddev->private;
1633 int err = 0;
1634 int number = rdev->raid_disk;
1635 struct raid1_info *p = conf->mirrors + number;
1636
1637 if (rdev != p->rdev)
1638 p = conf->mirrors + conf->raid_disks + number;
1639
1640 print_conf(conf);
1641 if (rdev == p->rdev) {
1642 if (test_bit(In_sync, &rdev->flags) ||
1643 atomic_read(&rdev->nr_pending)) {
1644 err = -EBUSY;
1645 goto abort;
1646 }
1647 /* Only remove non-faulty devices if recovery
1648 * is not possible.
1649 */
1650 if (!test_bit(Faulty, &rdev->flags) &&
1651 mddev->recovery_disabled != conf->recovery_disabled &&
1652 mddev->degraded < conf->raid_disks) {
1653 err = -EBUSY;
1654 goto abort;
1655 }
1656 p->rdev = NULL;
1657 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1658 synchronize_rcu();
1659 if (atomic_read(&rdev->nr_pending)) {
1660 /* lost the race, try later */
1661 err = -EBUSY;
1662 p->rdev = rdev;
1663 goto abort;
1664 }
1665 }
1666 if (conf->mirrors[conf->raid_disks + number].rdev) {
1667 /* We just removed a device that is being replaced.
1668 * Move down the replacement. We drain all IO before
1669 * doing this to avoid confusion.
1670 */
1671 struct md_rdev *repl =
1672 conf->mirrors[conf->raid_disks + number].rdev;
1673 freeze_array(conf, 0);
1674 clear_bit(Replacement, &repl->flags);
1675 p->rdev = repl;
1676 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1677 unfreeze_array(conf);
1678 clear_bit(WantReplacement, &rdev->flags);
1679 } else
1680 clear_bit(WantReplacement, &rdev->flags);
1681 err = md_integrity_register(mddev);
1682 }
1683 abort:
1684
1685 print_conf(conf);
1686 return err;
1687 }
1688
1689 static void end_sync_read(struct bio *bio)
1690 {
1691 struct r1bio *r1_bio = bio->bi_private;
1692
1693 update_head_pos(r1_bio->read_disk, r1_bio);
1694
1695 /*
1696 * we have read a block, now it needs to be re-written,
1697 * or re-read if the read failed.
1698 * We don't do much here, just schedule handling by raid1d
1699 */
1700 if (!bio->bi_error)
1701 set_bit(R1BIO_Uptodate, &r1_bio->state);
1702
1703 if (atomic_dec_and_test(&r1_bio->remaining))
1704 reschedule_retry(r1_bio);
1705 }
1706
1707 static void end_sync_write(struct bio *bio)
1708 {
1709 int uptodate = !bio->bi_error;
1710 struct r1bio *r1_bio = bio->bi_private;
1711 struct mddev *mddev = r1_bio->mddev;
1712 struct r1conf *conf = mddev->private;
1713 sector_t first_bad;
1714 int bad_sectors;
1715 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1716
1717 if (!uptodate) {
1718 sector_t sync_blocks = 0;
1719 sector_t s = r1_bio->sector;
1720 long sectors_to_go = r1_bio->sectors;
1721 /* make sure these bits doesn't get cleared. */
1722 do {
1723 bitmap_end_sync(mddev->bitmap, s,
1724 &sync_blocks, 1);
1725 s += sync_blocks;
1726 sectors_to_go -= sync_blocks;
1727 } while (sectors_to_go > 0);
1728 set_bit(WriteErrorSeen, &rdev->flags);
1729 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1730 set_bit(MD_RECOVERY_NEEDED, &
1731 mddev->recovery);
1732 set_bit(R1BIO_WriteError, &r1_bio->state);
1733 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1734 &first_bad, &bad_sectors) &&
1735 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1736 r1_bio->sector,
1737 r1_bio->sectors,
1738 &first_bad, &bad_sectors)
1739 )
1740 set_bit(R1BIO_MadeGood, &r1_bio->state);
1741
1742 if (atomic_dec_and_test(&r1_bio->remaining)) {
1743 int s = r1_bio->sectors;
1744 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1745 test_bit(R1BIO_WriteError, &r1_bio->state))
1746 reschedule_retry(r1_bio);
1747 else {
1748 put_buf(r1_bio);
1749 md_done_sync(mddev, s, uptodate);
1750 }
1751 }
1752 }
1753
1754 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1755 int sectors, struct page *page, int rw)
1756 {
1757 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1758 /* success */
1759 return 1;
1760 if (rw == WRITE) {
1761 set_bit(WriteErrorSeen, &rdev->flags);
1762 if (!test_and_set_bit(WantReplacement,
1763 &rdev->flags))
1764 set_bit(MD_RECOVERY_NEEDED, &
1765 rdev->mddev->recovery);
1766 }
1767 /* need to record an error - either for the block or the device */
1768 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769 md_error(rdev->mddev, rdev);
1770 return 0;
1771 }
1772
1773 static int fix_sync_read_error(struct r1bio *r1_bio)
1774 {
1775 /* Try some synchronous reads of other devices to get
1776 * good data, much like with normal read errors. Only
1777 * read into the pages we already have so we don't
1778 * need to re-issue the read request.
1779 * We don't need to freeze the array, because being in an
1780 * active sync request, there is no normal IO, and
1781 * no overlapping syncs.
1782 * We don't need to check is_badblock() again as we
1783 * made sure that anything with a bad block in range
1784 * will have bi_end_io clear.
1785 */
1786 struct mddev *mddev = r1_bio->mddev;
1787 struct r1conf *conf = mddev->private;
1788 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1789 sector_t sect = r1_bio->sector;
1790 int sectors = r1_bio->sectors;
1791 int idx = 0;
1792
1793 while(sectors) {
1794 int s = sectors;
1795 int d = r1_bio->read_disk;
1796 int success = 0;
1797 struct md_rdev *rdev;
1798 int start;
1799
1800 if (s > (PAGE_SIZE>>9))
1801 s = PAGE_SIZE >> 9;
1802 do {
1803 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1804 /* No rcu protection needed here devices
1805 * can only be removed when no resync is
1806 * active, and resync is currently active
1807 */
1808 rdev = conf->mirrors[d].rdev;
1809 if (sync_page_io(rdev, sect, s<<9,
1810 bio->bi_io_vec[idx].bv_page,
1811 REQ_OP_READ, 0, false)) {
1812 success = 1;
1813 break;
1814 }
1815 }
1816 d++;
1817 if (d == conf->raid_disks * 2)
1818 d = 0;
1819 } while (!success && d != r1_bio->read_disk);
1820
1821 if (!success) {
1822 char b[BDEVNAME_SIZE];
1823 int abort = 0;
1824 /* Cannot read from anywhere, this block is lost.
1825 * Record a bad block on each device. If that doesn't
1826 * work just disable and interrupt the recovery.
1827 * Don't fail devices as that won't really help.
1828 */
1829 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1830 " for block %llu\n",
1831 mdname(mddev),
1832 bdevname(bio->bi_bdev, b),
1833 (unsigned long long)r1_bio->sector);
1834 for (d = 0; d < conf->raid_disks * 2; d++) {
1835 rdev = conf->mirrors[d].rdev;
1836 if (!rdev || test_bit(Faulty, &rdev->flags))
1837 continue;
1838 if (!rdev_set_badblocks(rdev, sect, s, 0))
1839 abort = 1;
1840 }
1841 if (abort) {
1842 conf->recovery_disabled =
1843 mddev->recovery_disabled;
1844 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1845 md_done_sync(mddev, r1_bio->sectors, 0);
1846 put_buf(r1_bio);
1847 return 0;
1848 }
1849 /* Try next page */
1850 sectors -= s;
1851 sect += s;
1852 idx++;
1853 continue;
1854 }
1855
1856 start = d;
1857 /* write it back and re-read */
1858 while (d != r1_bio->read_disk) {
1859 if (d == 0)
1860 d = conf->raid_disks * 2;
1861 d--;
1862 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1863 continue;
1864 rdev = conf->mirrors[d].rdev;
1865 if (r1_sync_page_io(rdev, sect, s,
1866 bio->bi_io_vec[idx].bv_page,
1867 WRITE) == 0) {
1868 r1_bio->bios[d]->bi_end_io = NULL;
1869 rdev_dec_pending(rdev, mddev);
1870 }
1871 }
1872 d = start;
1873 while (d != r1_bio->read_disk) {
1874 if (d == 0)
1875 d = conf->raid_disks * 2;
1876 d--;
1877 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1878 continue;
1879 rdev = conf->mirrors[d].rdev;
1880 if (r1_sync_page_io(rdev, sect, s,
1881 bio->bi_io_vec[idx].bv_page,
1882 READ) != 0)
1883 atomic_add(s, &rdev->corrected_errors);
1884 }
1885 sectors -= s;
1886 sect += s;
1887 idx ++;
1888 }
1889 set_bit(R1BIO_Uptodate, &r1_bio->state);
1890 bio->bi_error = 0;
1891 return 1;
1892 }
1893
1894 static void process_checks(struct r1bio *r1_bio)
1895 {
1896 /* We have read all readable devices. If we haven't
1897 * got the block, then there is no hope left.
1898 * If we have, then we want to do a comparison
1899 * and skip the write if everything is the same.
1900 * If any blocks failed to read, then we need to
1901 * attempt an over-write
1902 */
1903 struct mddev *mddev = r1_bio->mddev;
1904 struct r1conf *conf = mddev->private;
1905 int primary;
1906 int i;
1907 int vcnt;
1908
1909 /* Fix variable parts of all bios */
1910 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1911 for (i = 0; i < conf->raid_disks * 2; i++) {
1912 int j;
1913 int size;
1914 int error;
1915 struct bio *b = r1_bio->bios[i];
1916 if (b->bi_end_io != end_sync_read)
1917 continue;
1918 /* fixup the bio for reuse, but preserve errno */
1919 error = b->bi_error;
1920 bio_reset(b);
1921 b->bi_error = error;
1922 b->bi_vcnt = vcnt;
1923 b->bi_iter.bi_size = r1_bio->sectors << 9;
1924 b->bi_iter.bi_sector = r1_bio->sector +
1925 conf->mirrors[i].rdev->data_offset;
1926 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1927 b->bi_end_io = end_sync_read;
1928 b->bi_private = r1_bio;
1929
1930 size = b->bi_iter.bi_size;
1931 for (j = 0; j < vcnt ; j++) {
1932 struct bio_vec *bi;
1933 bi = &b->bi_io_vec[j];
1934 bi->bv_offset = 0;
1935 if (size > PAGE_SIZE)
1936 bi->bv_len = PAGE_SIZE;
1937 else
1938 bi->bv_len = size;
1939 size -= PAGE_SIZE;
1940 }
1941 }
1942 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1943 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1944 !r1_bio->bios[primary]->bi_error) {
1945 r1_bio->bios[primary]->bi_end_io = NULL;
1946 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1947 break;
1948 }
1949 r1_bio->read_disk = primary;
1950 for (i = 0; i < conf->raid_disks * 2; i++) {
1951 int j;
1952 struct bio *pbio = r1_bio->bios[primary];
1953 struct bio *sbio = r1_bio->bios[i];
1954 int error = sbio->bi_error;
1955
1956 if (sbio->bi_end_io != end_sync_read)
1957 continue;
1958 /* Now we can 'fixup' the error value */
1959 sbio->bi_error = 0;
1960
1961 if (!error) {
1962 for (j = vcnt; j-- ; ) {
1963 struct page *p, *s;
1964 p = pbio->bi_io_vec[j].bv_page;
1965 s = sbio->bi_io_vec[j].bv_page;
1966 if (memcmp(page_address(p),
1967 page_address(s),
1968 sbio->bi_io_vec[j].bv_len))
1969 break;
1970 }
1971 } else
1972 j = 0;
1973 if (j >= 0)
1974 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1975 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1976 && !error)) {
1977 /* No need to write to this device. */
1978 sbio->bi_end_io = NULL;
1979 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1980 continue;
1981 }
1982
1983 bio_copy_data(sbio, pbio);
1984 }
1985 }
1986
1987 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1988 {
1989 struct r1conf *conf = mddev->private;
1990 int i;
1991 int disks = conf->raid_disks * 2;
1992 struct bio *bio, *wbio;
1993
1994 bio = r1_bio->bios[r1_bio->read_disk];
1995
1996 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1997 /* ouch - failed to read all of that. */
1998 if (!fix_sync_read_error(r1_bio))
1999 return;
2000
2001 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2002 process_checks(r1_bio);
2003
2004 /*
2005 * schedule writes
2006 */
2007 atomic_set(&r1_bio->remaining, 1);
2008 for (i = 0; i < disks ; i++) {
2009 wbio = r1_bio->bios[i];
2010 if (wbio->bi_end_io == NULL ||
2011 (wbio->bi_end_io == end_sync_read &&
2012 (i == r1_bio->read_disk ||
2013 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2014 continue;
2015
2016 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2017 wbio->bi_end_io = end_sync_write;
2018 atomic_inc(&r1_bio->remaining);
2019 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2020
2021 generic_make_request(wbio);
2022 }
2023
2024 if (atomic_dec_and_test(&r1_bio->remaining)) {
2025 /* if we're here, all write(s) have completed, so clean up */
2026 int s = r1_bio->sectors;
2027 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2028 test_bit(R1BIO_WriteError, &r1_bio->state))
2029 reschedule_retry(r1_bio);
2030 else {
2031 put_buf(r1_bio);
2032 md_done_sync(mddev, s, 1);
2033 }
2034 }
2035 }
2036
2037 /*
2038 * This is a kernel thread which:
2039 *
2040 * 1. Retries failed read operations on working mirrors.
2041 * 2. Updates the raid superblock when problems encounter.
2042 * 3. Performs writes following reads for array synchronising.
2043 */
2044
2045 static void fix_read_error(struct r1conf *conf, int read_disk,
2046 sector_t sect, int sectors)
2047 {
2048 struct mddev *mddev = conf->mddev;
2049 while(sectors) {
2050 int s = sectors;
2051 int d = read_disk;
2052 int success = 0;
2053 int start;
2054 struct md_rdev *rdev;
2055
2056 if (s > (PAGE_SIZE>>9))
2057 s = PAGE_SIZE >> 9;
2058
2059 do {
2060 sector_t first_bad;
2061 int bad_sectors;
2062
2063 rcu_read_lock();
2064 rdev = rcu_dereference(conf->mirrors[d].rdev);
2065 if (rdev &&
2066 (test_bit(In_sync, &rdev->flags) ||
2067 (!test_bit(Faulty, &rdev->flags) &&
2068 rdev->recovery_offset >= sect + s)) &&
2069 is_badblock(rdev, sect, s,
2070 &first_bad, &bad_sectors) == 0) {
2071 atomic_inc(&rdev->nr_pending);
2072 rcu_read_unlock();
2073 if (sync_page_io(rdev, sect, s<<9,
2074 conf->tmppage, REQ_OP_READ, 0, false))
2075 success = 1;
2076 rdev_dec_pending(rdev, mddev);
2077 if (success)
2078 break;
2079 } else
2080 rcu_read_unlock();
2081 d++;
2082 if (d == conf->raid_disks * 2)
2083 d = 0;
2084 } while (!success && d != read_disk);
2085
2086 if (!success) {
2087 /* Cannot read from anywhere - mark it bad */
2088 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2089 if (!rdev_set_badblocks(rdev, sect, s, 0))
2090 md_error(mddev, rdev);
2091 break;
2092 }
2093 /* write it back and re-read */
2094 start = d;
2095 while (d != read_disk) {
2096 if (d==0)
2097 d = conf->raid_disks * 2;
2098 d--;
2099 rcu_read_lock();
2100 rdev = rcu_dereference(conf->mirrors[d].rdev);
2101 if (rdev &&
2102 !test_bit(Faulty, &rdev->flags)) {
2103 atomic_inc(&rdev->nr_pending);
2104 rcu_read_unlock();
2105 r1_sync_page_io(rdev, sect, s,
2106 conf->tmppage, WRITE);
2107 rdev_dec_pending(rdev, mddev);
2108 } else
2109 rcu_read_unlock();
2110 }
2111 d = start;
2112 while (d != read_disk) {
2113 char b[BDEVNAME_SIZE];
2114 if (d==0)
2115 d = conf->raid_disks * 2;
2116 d--;
2117 rcu_read_lock();
2118 rdev = rcu_dereference(conf->mirrors[d].rdev);
2119 if (rdev &&
2120 !test_bit(Faulty, &rdev->flags)) {
2121 atomic_inc(&rdev->nr_pending);
2122 rcu_read_unlock();
2123 if (r1_sync_page_io(rdev, sect, s,
2124 conf->tmppage, READ)) {
2125 atomic_add(s, &rdev->corrected_errors);
2126 printk(KERN_INFO
2127 "md/raid1:%s: read error corrected "
2128 "(%d sectors at %llu on %s)\n",
2129 mdname(mddev), s,
2130 (unsigned long long)(sect +
2131 rdev->data_offset),
2132 bdevname(rdev->bdev, b));
2133 }
2134 rdev_dec_pending(rdev, mddev);
2135 } else
2136 rcu_read_unlock();
2137 }
2138 sectors -= s;
2139 sect += s;
2140 }
2141 }
2142
2143 static int narrow_write_error(struct r1bio *r1_bio, int i)
2144 {
2145 struct mddev *mddev = r1_bio->mddev;
2146 struct r1conf *conf = mddev->private;
2147 struct md_rdev *rdev = conf->mirrors[i].rdev;
2148
2149 /* bio has the data to be written to device 'i' where
2150 * we just recently had a write error.
2151 * We repeatedly clone the bio and trim down to one block,
2152 * then try the write. Where the write fails we record
2153 * a bad block.
2154 * It is conceivable that the bio doesn't exactly align with
2155 * blocks. We must handle this somehow.
2156 *
2157 * We currently own a reference on the rdev.
2158 */
2159
2160 int block_sectors;
2161 sector_t sector;
2162 int sectors;
2163 int sect_to_write = r1_bio->sectors;
2164 int ok = 1;
2165
2166 if (rdev->badblocks.shift < 0)
2167 return 0;
2168
2169 block_sectors = roundup(1 << rdev->badblocks.shift,
2170 bdev_logical_block_size(rdev->bdev) >> 9);
2171 sector = r1_bio->sector;
2172 sectors = ((sector + block_sectors)
2173 & ~(sector_t)(block_sectors - 1))
2174 - sector;
2175
2176 while (sect_to_write) {
2177 struct bio *wbio;
2178 if (sectors > sect_to_write)
2179 sectors = sect_to_write;
2180 /* Write at 'sector' for 'sectors'*/
2181
2182 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2183 unsigned vcnt = r1_bio->behind_page_count;
2184 struct bio_vec *vec = r1_bio->behind_bvecs;
2185
2186 while (!vec->bv_page) {
2187 vec++;
2188 vcnt--;
2189 }
2190
2191 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2192 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2193
2194 wbio->bi_vcnt = vcnt;
2195 } else {
2196 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2197 }
2198
2199 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2200 wbio->bi_iter.bi_sector = r1_bio->sector;
2201 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2202
2203 bio_trim(wbio, sector - r1_bio->sector, sectors);
2204 wbio->bi_iter.bi_sector += rdev->data_offset;
2205 wbio->bi_bdev = rdev->bdev;
2206
2207 if (submit_bio_wait(wbio) < 0)
2208 /* failure! */
2209 ok = rdev_set_badblocks(rdev, sector,
2210 sectors, 0)
2211 && ok;
2212
2213 bio_put(wbio);
2214 sect_to_write -= sectors;
2215 sector += sectors;
2216 sectors = block_sectors;
2217 }
2218 return ok;
2219 }
2220
2221 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2222 {
2223 int m;
2224 int s = r1_bio->sectors;
2225 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2226 struct md_rdev *rdev = conf->mirrors[m].rdev;
2227 struct bio *bio = r1_bio->bios[m];
2228 if (bio->bi_end_io == NULL)
2229 continue;
2230 if (!bio->bi_error &&
2231 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2232 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2233 }
2234 if (bio->bi_error &&
2235 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2236 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2237 md_error(conf->mddev, rdev);
2238 }
2239 }
2240 put_buf(r1_bio);
2241 md_done_sync(conf->mddev, s, 1);
2242 }
2243
2244 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2245 {
2246 int m;
2247 bool fail = false;
2248 for (m = 0; m < conf->raid_disks * 2 ; m++)
2249 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2250 struct md_rdev *rdev = conf->mirrors[m].rdev;
2251 rdev_clear_badblocks(rdev,
2252 r1_bio->sector,
2253 r1_bio->sectors, 0);
2254 rdev_dec_pending(rdev, conf->mddev);
2255 } else if (r1_bio->bios[m] != NULL) {
2256 /* This drive got a write error. We need to
2257 * narrow down and record precise write
2258 * errors.
2259 */
2260 fail = true;
2261 if (!narrow_write_error(r1_bio, m)) {
2262 md_error(conf->mddev,
2263 conf->mirrors[m].rdev);
2264 /* an I/O failed, we can't clear the bitmap */
2265 set_bit(R1BIO_Degraded, &r1_bio->state);
2266 }
2267 rdev_dec_pending(conf->mirrors[m].rdev,
2268 conf->mddev);
2269 }
2270 if (fail) {
2271 spin_lock_irq(&conf->device_lock);
2272 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2273 conf->nr_queued++;
2274 spin_unlock_irq(&conf->device_lock);
2275 md_wakeup_thread(conf->mddev->thread);
2276 } else {
2277 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2278 close_write(r1_bio);
2279 raid_end_bio_io(r1_bio);
2280 }
2281 }
2282
2283 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2284 {
2285 int disk;
2286 int max_sectors;
2287 struct mddev *mddev = conf->mddev;
2288 struct bio *bio;
2289 char b[BDEVNAME_SIZE];
2290 struct md_rdev *rdev;
2291
2292 clear_bit(R1BIO_ReadError, &r1_bio->state);
2293 /* we got a read error. Maybe the drive is bad. Maybe just
2294 * the block and we can fix it.
2295 * We freeze all other IO, and try reading the block from
2296 * other devices. When we find one, we re-write
2297 * and check it that fixes the read error.
2298 * This is all done synchronously while the array is
2299 * frozen
2300 */
2301 if (mddev->ro == 0) {
2302 freeze_array(conf, 1);
2303 fix_read_error(conf, r1_bio->read_disk,
2304 r1_bio->sector, r1_bio->sectors);
2305 unfreeze_array(conf);
2306 } else
2307 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2308 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2309
2310 bio = r1_bio->bios[r1_bio->read_disk];
2311 bdevname(bio->bi_bdev, b);
2312 read_more:
2313 disk = read_balance(conf, r1_bio, &max_sectors);
2314 if (disk == -1) {
2315 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2316 " read error for block %llu\n",
2317 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2318 raid_end_bio_io(r1_bio);
2319 } else {
2320 const unsigned long do_sync
2321 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2322 if (bio) {
2323 r1_bio->bios[r1_bio->read_disk] =
2324 mddev->ro ? IO_BLOCKED : NULL;
2325 bio_put(bio);
2326 }
2327 r1_bio->read_disk = disk;
2328 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2329 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2330 max_sectors);
2331 r1_bio->bios[r1_bio->read_disk] = bio;
2332 rdev = conf->mirrors[disk].rdev;
2333 printk_ratelimited(KERN_ERR
2334 "md/raid1:%s: redirecting sector %llu"
2335 " to other mirror: %s\n",
2336 mdname(mddev),
2337 (unsigned long long)r1_bio->sector,
2338 bdevname(rdev->bdev, b));
2339 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2340 bio->bi_bdev = rdev->bdev;
2341 bio->bi_end_io = raid1_end_read_request;
2342 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2343 bio->bi_private = r1_bio;
2344 if (max_sectors < r1_bio->sectors) {
2345 /* Drat - have to split this up more */
2346 struct bio *mbio = r1_bio->master_bio;
2347 int sectors_handled = (r1_bio->sector + max_sectors
2348 - mbio->bi_iter.bi_sector);
2349 r1_bio->sectors = max_sectors;
2350 spin_lock_irq(&conf->device_lock);
2351 if (mbio->bi_phys_segments == 0)
2352 mbio->bi_phys_segments = 2;
2353 else
2354 mbio->bi_phys_segments++;
2355 spin_unlock_irq(&conf->device_lock);
2356 generic_make_request(bio);
2357 bio = NULL;
2358
2359 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360
2361 r1_bio->master_bio = mbio;
2362 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2363 r1_bio->state = 0;
2364 set_bit(R1BIO_ReadError, &r1_bio->state);
2365 r1_bio->mddev = mddev;
2366 r1_bio->sector = mbio->bi_iter.bi_sector +
2367 sectors_handled;
2368
2369 goto read_more;
2370 } else
2371 generic_make_request(bio);
2372 }
2373 }
2374
2375 static void raid1d(struct md_thread *thread)
2376 {
2377 struct mddev *mddev = thread->mddev;
2378 struct r1bio *r1_bio;
2379 unsigned long flags;
2380 struct r1conf *conf = mddev->private;
2381 struct list_head *head = &conf->retry_list;
2382 struct blk_plug plug;
2383
2384 md_check_recovery(mddev);
2385
2386 if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 LIST_HEAD(tmp);
2389 spin_lock_irqsave(&conf->device_lock, flags);
2390 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 while (!list_empty(&conf->bio_end_io_list)) {
2392 list_move(conf->bio_end_io_list.prev, &tmp);
2393 conf->nr_queued--;
2394 }
2395 }
2396 spin_unlock_irqrestore(&conf->device_lock, flags);
2397 while (!list_empty(&tmp)) {
2398 r1_bio = list_first_entry(&tmp, struct r1bio,
2399 retry_list);
2400 list_del(&r1_bio->retry_list);
2401 if (mddev->degraded)
2402 set_bit(R1BIO_Degraded, &r1_bio->state);
2403 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 close_write(r1_bio);
2405 raid_end_bio_io(r1_bio);
2406 }
2407 }
2408
2409 blk_start_plug(&plug);
2410 for (;;) {
2411
2412 flush_pending_writes(conf);
2413
2414 spin_lock_irqsave(&conf->device_lock, flags);
2415 if (list_empty(head)) {
2416 spin_unlock_irqrestore(&conf->device_lock, flags);
2417 break;
2418 }
2419 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2420 list_del(head->prev);
2421 conf->nr_queued--;
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423
2424 mddev = r1_bio->mddev;
2425 conf = mddev->private;
2426 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428 test_bit(R1BIO_WriteError, &r1_bio->state))
2429 handle_sync_write_finished(conf, r1_bio);
2430 else
2431 sync_request_write(mddev, r1_bio);
2432 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 test_bit(R1BIO_WriteError, &r1_bio->state))
2434 handle_write_finished(conf, r1_bio);
2435 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 handle_read_error(conf, r1_bio);
2437 else
2438 /* just a partial read to be scheduled from separate
2439 * context
2440 */
2441 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2442
2443 cond_resched();
2444 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 md_check_recovery(mddev);
2446 }
2447 blk_finish_plug(&plug);
2448 }
2449
2450 static int init_resync(struct r1conf *conf)
2451 {
2452 int buffs;
2453
2454 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2455 BUG_ON(conf->r1buf_pool);
2456 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 conf->poolinfo);
2458 if (!conf->r1buf_pool)
2459 return -ENOMEM;
2460 conf->next_resync = 0;
2461 return 0;
2462 }
2463
2464 /*
2465 * perform a "sync" on one "block"
2466 *
2467 * We need to make sure that no normal I/O request - particularly write
2468 * requests - conflict with active sync requests.
2469 *
2470 * This is achieved by tracking pending requests and a 'barrier' concept
2471 * that can be installed to exclude normal IO requests.
2472 */
2473
2474 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 int *skipped)
2476 {
2477 struct r1conf *conf = mddev->private;
2478 struct r1bio *r1_bio;
2479 struct bio *bio;
2480 sector_t max_sector, nr_sectors;
2481 int disk = -1;
2482 int i;
2483 int wonly = -1;
2484 int write_targets = 0, read_targets = 0;
2485 sector_t sync_blocks;
2486 int still_degraded = 0;
2487 int good_sectors = RESYNC_SECTORS;
2488 int min_bad = 0; /* number of sectors that are bad in all devices */
2489
2490 if (!conf->r1buf_pool)
2491 if (init_resync(conf))
2492 return 0;
2493
2494 max_sector = mddev->dev_sectors;
2495 if (sector_nr >= max_sector) {
2496 /* If we aborted, we need to abort the
2497 * sync on the 'current' bitmap chunk (there will
2498 * only be one in raid1 resync.
2499 * We can find the current addess in mddev->curr_resync
2500 */
2501 if (mddev->curr_resync < max_sector) /* aborted */
2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503 &sync_blocks, 1);
2504 else /* completed sync */
2505 conf->fullsync = 0;
2506
2507 bitmap_close_sync(mddev->bitmap);
2508 close_sync(conf);
2509
2510 if (mddev_is_clustered(mddev)) {
2511 conf->cluster_sync_low = 0;
2512 conf->cluster_sync_high = 0;
2513 }
2514 return 0;
2515 }
2516
2517 if (mddev->bitmap == NULL &&
2518 mddev->recovery_cp == MaxSector &&
2519 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2520 conf->fullsync == 0) {
2521 *skipped = 1;
2522 return max_sector - sector_nr;
2523 }
2524 /* before building a request, check if we can skip these blocks..
2525 * This call the bitmap_start_sync doesn't actually record anything
2526 */
2527 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2528 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2529 /* We can skip this block, and probably several more */
2530 *skipped = 1;
2531 return sync_blocks;
2532 }
2533
2534 /*
2535 * If there is non-resync activity waiting for a turn, then let it
2536 * though before starting on this new sync request.
2537 */
2538 if (conf->nr_waiting)
2539 schedule_timeout_uninterruptible(1);
2540
2541 /* we are incrementing sector_nr below. To be safe, we check against
2542 * sector_nr + two times RESYNC_SECTORS
2543 */
2544
2545 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2547 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2548
2549 raise_barrier(conf, sector_nr);
2550
2551 rcu_read_lock();
2552 /*
2553 * If we get a correctably read error during resync or recovery,
2554 * we might want to read from a different device. So we
2555 * flag all drives that could conceivably be read from for READ,
2556 * and any others (which will be non-In_sync devices) for WRITE.
2557 * If a read fails, we try reading from something else for which READ
2558 * is OK.
2559 */
2560
2561 r1_bio->mddev = mddev;
2562 r1_bio->sector = sector_nr;
2563 r1_bio->state = 0;
2564 set_bit(R1BIO_IsSync, &r1_bio->state);
2565
2566 for (i = 0; i < conf->raid_disks * 2; i++) {
2567 struct md_rdev *rdev;
2568 bio = r1_bio->bios[i];
2569 bio_reset(bio);
2570
2571 rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 if (rdev == NULL ||
2573 test_bit(Faulty, &rdev->flags)) {
2574 if (i < conf->raid_disks)
2575 still_degraded = 1;
2576 } else if (!test_bit(In_sync, &rdev->flags)) {
2577 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2578 bio->bi_end_io = end_sync_write;
2579 write_targets ++;
2580 } else {
2581 /* may need to read from here */
2582 sector_t first_bad = MaxSector;
2583 int bad_sectors;
2584
2585 if (is_badblock(rdev, sector_nr, good_sectors,
2586 &first_bad, &bad_sectors)) {
2587 if (first_bad > sector_nr)
2588 good_sectors = first_bad - sector_nr;
2589 else {
2590 bad_sectors -= (sector_nr - first_bad);
2591 if (min_bad == 0 ||
2592 min_bad > bad_sectors)
2593 min_bad = bad_sectors;
2594 }
2595 }
2596 if (sector_nr < first_bad) {
2597 if (test_bit(WriteMostly, &rdev->flags)) {
2598 if (wonly < 0)
2599 wonly = i;
2600 } else {
2601 if (disk < 0)
2602 disk = i;
2603 }
2604 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2605 bio->bi_end_io = end_sync_read;
2606 read_targets++;
2607 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 /*
2611 * The device is suitable for reading (InSync),
2612 * but has bad block(s) here. Let's try to correct them,
2613 * if we are doing resync or repair. Otherwise, leave
2614 * this device alone for this sync request.
2615 */
2616 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2617 bio->bi_end_io = end_sync_write;
2618 write_targets++;
2619 }
2620 }
2621 if (bio->bi_end_io) {
2622 atomic_inc(&rdev->nr_pending);
2623 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2624 bio->bi_bdev = rdev->bdev;
2625 bio->bi_private = r1_bio;
2626 }
2627 }
2628 rcu_read_unlock();
2629 if (disk < 0)
2630 disk = wonly;
2631 r1_bio->read_disk = disk;
2632
2633 if (read_targets == 0 && min_bad > 0) {
2634 /* These sectors are bad on all InSync devices, so we
2635 * need to mark them bad on all write targets
2636 */
2637 int ok = 1;
2638 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2639 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2640 struct md_rdev *rdev = conf->mirrors[i].rdev;
2641 ok = rdev_set_badblocks(rdev, sector_nr,
2642 min_bad, 0
2643 ) && ok;
2644 }
2645 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 *skipped = 1;
2647 put_buf(r1_bio);
2648
2649 if (!ok) {
2650 /* Cannot record the badblocks, so need to
2651 * abort the resync.
2652 * If there are multiple read targets, could just
2653 * fail the really bad ones ???
2654 */
2655 conf->recovery_disabled = mddev->recovery_disabled;
2656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 return 0;
2658 } else
2659 return min_bad;
2660
2661 }
2662 if (min_bad > 0 && min_bad < good_sectors) {
2663 /* only resync enough to reach the next bad->good
2664 * transition */
2665 good_sectors = min_bad;
2666 }
2667
2668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 /* extra read targets are also write targets */
2670 write_targets += read_targets-1;
2671
2672 if (write_targets == 0 || read_targets == 0) {
2673 /* There is nowhere to write, so all non-sync
2674 * drives must be failed - so we are finished
2675 */
2676 sector_t rv;
2677 if (min_bad > 0)
2678 max_sector = sector_nr + min_bad;
2679 rv = max_sector - sector_nr;
2680 *skipped = 1;
2681 put_buf(r1_bio);
2682 return rv;
2683 }
2684
2685 if (max_sector > mddev->resync_max)
2686 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2687 if (max_sector > sector_nr + good_sectors)
2688 max_sector = sector_nr + good_sectors;
2689 nr_sectors = 0;
2690 sync_blocks = 0;
2691 do {
2692 struct page *page;
2693 int len = PAGE_SIZE;
2694 if (sector_nr + (len>>9) > max_sector)
2695 len = (max_sector - sector_nr) << 9;
2696 if (len == 0)
2697 break;
2698 if (sync_blocks == 0) {
2699 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2700 &sync_blocks, still_degraded) &&
2701 !conf->fullsync &&
2702 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2703 break;
2704 if ((len >> 9) > sync_blocks)
2705 len = sync_blocks<<9;
2706 }
2707
2708 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2709 bio = r1_bio->bios[i];
2710 if (bio->bi_end_io) {
2711 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2712 if (bio_add_page(bio, page, len, 0) == 0) {
2713 /* stop here */
2714 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715 while (i > 0) {
2716 i--;
2717 bio = r1_bio->bios[i];
2718 if (bio->bi_end_io==NULL)
2719 continue;
2720 /* remove last page from this bio */
2721 bio->bi_vcnt--;
2722 bio->bi_iter.bi_size -= len;
2723 bio_clear_flag(bio, BIO_SEG_VALID);
2724 }
2725 goto bio_full;
2726 }
2727 }
2728 }
2729 nr_sectors += len>>9;
2730 sector_nr += len>>9;
2731 sync_blocks -= (len>>9);
2732 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733 bio_full:
2734 r1_bio->sectors = nr_sectors;
2735
2736 if (mddev_is_clustered(mddev) &&
2737 conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 conf->cluster_sync_low = mddev->curr_resync_completed;
2739 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 /* Send resync message */
2741 md_cluster_ops->resync_info_update(mddev,
2742 conf->cluster_sync_low,
2743 conf->cluster_sync_high);
2744 }
2745
2746 /* For a user-requested sync, we read all readable devices and do a
2747 * compare
2748 */
2749 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 atomic_set(&r1_bio->remaining, read_targets);
2751 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2752 bio = r1_bio->bios[i];
2753 if (bio->bi_end_io == end_sync_read) {
2754 read_targets--;
2755 md_sync_acct(bio->bi_bdev, nr_sectors);
2756 generic_make_request(bio);
2757 }
2758 }
2759 } else {
2760 atomic_set(&r1_bio->remaining, 1);
2761 bio = r1_bio->bios[r1_bio->read_disk];
2762 md_sync_acct(bio->bi_bdev, nr_sectors);
2763 generic_make_request(bio);
2764
2765 }
2766 return nr_sectors;
2767 }
2768
2769 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2770 {
2771 if (sectors)
2772 return sectors;
2773
2774 return mddev->dev_sectors;
2775 }
2776
2777 static struct r1conf *setup_conf(struct mddev *mddev)
2778 {
2779 struct r1conf *conf;
2780 int i;
2781 struct raid1_info *disk;
2782 struct md_rdev *rdev;
2783 int err = -ENOMEM;
2784
2785 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2786 if (!conf)
2787 goto abort;
2788
2789 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2790 * mddev->raid_disks * 2,
2791 GFP_KERNEL);
2792 if (!conf->mirrors)
2793 goto abort;
2794
2795 conf->tmppage = alloc_page(GFP_KERNEL);
2796 if (!conf->tmppage)
2797 goto abort;
2798
2799 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2800 if (!conf->poolinfo)
2801 goto abort;
2802 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2803 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 r1bio_pool_free,
2805 conf->poolinfo);
2806 if (!conf->r1bio_pool)
2807 goto abort;
2808
2809 conf->poolinfo->mddev = mddev;
2810
2811 err = -EINVAL;
2812 spin_lock_init(&conf->device_lock);
2813 rdev_for_each(rdev, mddev) {
2814 struct request_queue *q;
2815 int disk_idx = rdev->raid_disk;
2816 if (disk_idx >= mddev->raid_disks
2817 || disk_idx < 0)
2818 continue;
2819 if (test_bit(Replacement, &rdev->flags))
2820 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2821 else
2822 disk = conf->mirrors + disk_idx;
2823
2824 if (disk->rdev)
2825 goto abort;
2826 disk->rdev = rdev;
2827 q = bdev_get_queue(rdev->bdev);
2828
2829 disk->head_position = 0;
2830 disk->seq_start = MaxSector;
2831 }
2832 conf->raid_disks = mddev->raid_disks;
2833 conf->mddev = mddev;
2834 INIT_LIST_HEAD(&conf->retry_list);
2835 INIT_LIST_HEAD(&conf->bio_end_io_list);
2836
2837 spin_lock_init(&conf->resync_lock);
2838 init_waitqueue_head(&conf->wait_barrier);
2839
2840 bio_list_init(&conf->pending_bio_list);
2841 conf->pending_count = 0;
2842 conf->recovery_disabled = mddev->recovery_disabled - 1;
2843
2844 conf->start_next_window = MaxSector;
2845 conf->current_window_requests = conf->next_window_requests = 0;
2846
2847 err = -EIO;
2848 for (i = 0; i < conf->raid_disks * 2; i++) {
2849
2850 disk = conf->mirrors + i;
2851
2852 if (i < conf->raid_disks &&
2853 disk[conf->raid_disks].rdev) {
2854 /* This slot has a replacement. */
2855 if (!disk->rdev) {
2856 /* No original, just make the replacement
2857 * a recovering spare
2858 */
2859 disk->rdev =
2860 disk[conf->raid_disks].rdev;
2861 disk[conf->raid_disks].rdev = NULL;
2862 } else if (!test_bit(In_sync, &disk->rdev->flags))
2863 /* Original is not in_sync - bad */
2864 goto abort;
2865 }
2866
2867 if (!disk->rdev ||
2868 !test_bit(In_sync, &disk->rdev->flags)) {
2869 disk->head_position = 0;
2870 if (disk->rdev &&
2871 (disk->rdev->saved_raid_disk < 0))
2872 conf->fullsync = 1;
2873 }
2874 }
2875
2876 err = -ENOMEM;
2877 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2878 if (!conf->thread) {
2879 printk(KERN_ERR
2880 "md/raid1:%s: couldn't allocate thread\n",
2881 mdname(mddev));
2882 goto abort;
2883 }
2884
2885 return conf;
2886
2887 abort:
2888 if (conf) {
2889 mempool_destroy(conf->r1bio_pool);
2890 kfree(conf->mirrors);
2891 safe_put_page(conf->tmppage);
2892 kfree(conf->poolinfo);
2893 kfree(conf);
2894 }
2895 return ERR_PTR(err);
2896 }
2897
2898 static void raid1_free(struct mddev *mddev, void *priv);
2899 static int raid1_run(struct mddev *mddev)
2900 {
2901 struct r1conf *conf;
2902 int i;
2903 struct md_rdev *rdev;
2904 int ret;
2905 bool discard_supported = false;
2906
2907 if (mddev->level != 1) {
2908 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2909 mdname(mddev), mddev->level);
2910 return -EIO;
2911 }
2912 if (mddev->reshape_position != MaxSector) {
2913 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2914 mdname(mddev));
2915 return -EIO;
2916 }
2917 /*
2918 * copy the already verified devices into our private RAID1
2919 * bookkeeping area. [whatever we allocate in run(),
2920 * should be freed in raid1_free()]
2921 */
2922 if (mddev->private == NULL)
2923 conf = setup_conf(mddev);
2924 else
2925 conf = mddev->private;
2926
2927 if (IS_ERR(conf))
2928 return PTR_ERR(conf);
2929
2930 if (mddev->queue)
2931 blk_queue_max_write_same_sectors(mddev->queue, 0);
2932
2933 rdev_for_each(rdev, mddev) {
2934 if (!mddev->gendisk)
2935 continue;
2936 disk_stack_limits(mddev->gendisk, rdev->bdev,
2937 rdev->data_offset << 9);
2938 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2939 discard_supported = true;
2940 }
2941
2942 mddev->degraded = 0;
2943 for (i=0; i < conf->raid_disks; i++)
2944 if (conf->mirrors[i].rdev == NULL ||
2945 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2946 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2947 mddev->degraded++;
2948
2949 if (conf->raid_disks - mddev->degraded == 1)
2950 mddev->recovery_cp = MaxSector;
2951
2952 if (mddev->recovery_cp != MaxSector)
2953 printk(KERN_NOTICE "md/raid1:%s: not clean"
2954 " -- starting background reconstruction\n",
2955 mdname(mddev));
2956 printk(KERN_INFO
2957 "md/raid1:%s: active with %d out of %d mirrors\n",
2958 mdname(mddev), mddev->raid_disks - mddev->degraded,
2959 mddev->raid_disks);
2960
2961 /*
2962 * Ok, everything is just fine now
2963 */
2964 mddev->thread = conf->thread;
2965 conf->thread = NULL;
2966 mddev->private = conf;
2967
2968 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2969
2970 if (mddev->queue) {
2971 if (discard_supported)
2972 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2973 mddev->queue);
2974 else
2975 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2976 mddev->queue);
2977 }
2978
2979 ret = md_integrity_register(mddev);
2980 if (ret) {
2981 md_unregister_thread(&mddev->thread);
2982 raid1_free(mddev, conf);
2983 }
2984 return ret;
2985 }
2986
2987 static void raid1_free(struct mddev *mddev, void *priv)
2988 {
2989 struct r1conf *conf = priv;
2990
2991 mempool_destroy(conf->r1bio_pool);
2992 kfree(conf->mirrors);
2993 safe_put_page(conf->tmppage);
2994 kfree(conf->poolinfo);
2995 kfree(conf);
2996 }
2997
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000 /* no resync is happening, and there is enough space
3001 * on all devices, so we can resize.
3002 * We need to make sure resync covers any new space.
3003 * If the array is shrinking we should possibly wait until
3004 * any io in the removed space completes, but it hardly seems
3005 * worth it.
3006 */
3007 sector_t newsize = raid1_size(mddev, sectors, 0);
3008 if (mddev->external_size &&
3009 mddev->array_sectors > newsize)
3010 return -EINVAL;
3011 if (mddev->bitmap) {
3012 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 if (ret)
3014 return ret;
3015 }
3016 md_set_array_sectors(mddev, newsize);
3017 set_capacity(mddev->gendisk, mddev->array_sectors);
3018 revalidate_disk(mddev->gendisk);
3019 if (sectors > mddev->dev_sectors &&
3020 mddev->recovery_cp > mddev->dev_sectors) {
3021 mddev->recovery_cp = mddev->dev_sectors;
3022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 }
3024 mddev->dev_sectors = sectors;
3025 mddev->resync_max_sectors = sectors;
3026 return 0;
3027 }
3028
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031 /* We need to:
3032 * 1/ resize the r1bio_pool
3033 * 2/ resize conf->mirrors
3034 *
3035 * We allocate a new r1bio_pool if we can.
3036 * Then raise a device barrier and wait until all IO stops.
3037 * Then resize conf->mirrors and swap in the new r1bio pool.
3038 *
3039 * At the same time, we "pack" the devices so that all the missing
3040 * devices have the higher raid_disk numbers.
3041 */
3042 mempool_t *newpool, *oldpool;
3043 struct pool_info *newpoolinfo;
3044 struct raid1_info *newmirrors;
3045 struct r1conf *conf = mddev->private;
3046 int cnt, raid_disks;
3047 unsigned long flags;
3048 int d, d2, err;
3049
3050 /* Cannot change chunk_size, layout, or level */
3051 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 mddev->layout != mddev->new_layout ||
3053 mddev->level != mddev->new_level) {
3054 mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 mddev->new_layout = mddev->layout;
3056 mddev->new_level = mddev->level;
3057 return -EINVAL;
3058 }
3059
3060 if (!mddev_is_clustered(mddev)) {
3061 err = md_allow_write(mddev);
3062 if (err)
3063 return err;
3064 }
3065
3066 raid_disks = mddev->raid_disks + mddev->delta_disks;
3067
3068 if (raid_disks < conf->raid_disks) {
3069 cnt=0;
3070 for (d= 0; d < conf->raid_disks; d++)
3071 if (conf->mirrors[d].rdev)
3072 cnt++;
3073 if (cnt > raid_disks)
3074 return -EBUSY;
3075 }
3076
3077 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3078 if (!newpoolinfo)
3079 return -ENOMEM;
3080 newpoolinfo->mddev = mddev;
3081 newpoolinfo->raid_disks = raid_disks * 2;
3082
3083 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3084 r1bio_pool_free, newpoolinfo);
3085 if (!newpool) {
3086 kfree(newpoolinfo);
3087 return -ENOMEM;
3088 }
3089 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3090 GFP_KERNEL);
3091 if (!newmirrors) {
3092 kfree(newpoolinfo);
3093 mempool_destroy(newpool);
3094 return -ENOMEM;
3095 }
3096
3097 freeze_array(conf, 0);
3098
3099 /* ok, everything is stopped */
3100 oldpool = conf->r1bio_pool;
3101 conf->r1bio_pool = newpool;
3102
3103 for (d = d2 = 0; d < conf->raid_disks; d++) {
3104 struct md_rdev *rdev = conf->mirrors[d].rdev;
3105 if (rdev && rdev->raid_disk != d2) {
3106 sysfs_unlink_rdev(mddev, rdev);
3107 rdev->raid_disk = d2;
3108 sysfs_unlink_rdev(mddev, rdev);
3109 if (sysfs_link_rdev(mddev, rdev))
3110 printk(KERN_WARNING
3111 "md/raid1:%s: cannot register rd%d\n",
3112 mdname(mddev), rdev->raid_disk);
3113 }
3114 if (rdev)
3115 newmirrors[d2++].rdev = rdev;
3116 }
3117 kfree(conf->mirrors);
3118 conf->mirrors = newmirrors;
3119 kfree(conf->poolinfo);
3120 conf->poolinfo = newpoolinfo;
3121
3122 spin_lock_irqsave(&conf->device_lock, flags);
3123 mddev->degraded += (raid_disks - conf->raid_disks);
3124 spin_unlock_irqrestore(&conf->device_lock, flags);
3125 conf->raid_disks = mddev->raid_disks = raid_disks;
3126 mddev->delta_disks = 0;
3127
3128 unfreeze_array(conf);
3129
3130 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3131 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3132 md_wakeup_thread(mddev->thread);
3133
3134 mempool_destroy(oldpool);
3135 return 0;
3136 }
3137
3138 static void raid1_quiesce(struct mddev *mddev, int state)
3139 {
3140 struct r1conf *conf = mddev->private;
3141
3142 switch(state) {
3143 case 2: /* wake for suspend */
3144 wake_up(&conf->wait_barrier);
3145 break;
3146 case 1:
3147 freeze_array(conf, 0);
3148 break;
3149 case 0:
3150 unfreeze_array(conf);
3151 break;
3152 }
3153 }
3154
3155 static void *raid1_takeover(struct mddev *mddev)
3156 {
3157 /* raid1 can take over:
3158 * raid5 with 2 devices, any layout or chunk size
3159 */
3160 if (mddev->level == 5 && mddev->raid_disks == 2) {
3161 struct r1conf *conf;
3162 mddev->new_level = 1;
3163 mddev->new_layout = 0;
3164 mddev->new_chunk_sectors = 0;
3165 conf = setup_conf(mddev);
3166 if (!IS_ERR(conf))
3167 /* Array must appear to be quiesced */
3168 conf->array_frozen = 1;
3169 return conf;
3170 }
3171 return ERR_PTR(-EINVAL);
3172 }
3173
3174 static struct md_personality raid1_personality =
3175 {
3176 .name = "raid1",
3177 .level = 1,
3178 .owner = THIS_MODULE,
3179 .make_request = raid1_make_request,
3180 .run = raid1_run,
3181 .free = raid1_free,
3182 .status = raid1_status,
3183 .error_handler = raid1_error,
3184 .hot_add_disk = raid1_add_disk,
3185 .hot_remove_disk= raid1_remove_disk,
3186 .spare_active = raid1_spare_active,
3187 .sync_request = raid1_sync_request,
3188 .resize = raid1_resize,
3189 .size = raid1_size,
3190 .check_reshape = raid1_reshape,
3191 .quiesce = raid1_quiesce,
3192 .takeover = raid1_takeover,
3193 .congested = raid1_congested,
3194 };
3195
3196 static int __init raid_init(void)
3197 {
3198 return register_md_personality(&raid1_personality);
3199 }
3200
3201 static void raid_exit(void)
3202 {
3203 unregister_md_personality(&raid1_personality);
3204 }
3205
3206 module_init(raid_init);
3207 module_exit(raid_exit);
3208 MODULE_LICENSE("GPL");
3209 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3210 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3211 MODULE_ALIAS("md-raid1");
3212 MODULE_ALIAS("md-level-1");
3213
3214 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);