]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid1.c
md/raid1/10: avoid unnecessary locking
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_error && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else
670 best_good_sectors = sectors;
671
672 if (best_disk >= 0)
673 /* At least two disks to choose from so failfast is OK */
674 set_bit(R1BIO_FailFast, &r1_bio->state);
675
676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 has_nonrot_disk |= nonrot;
678 pending = atomic_read(&rdev->nr_pending);
679 dist = abs(this_sector - conf->mirrors[disk].head_position);
680 if (choose_first) {
681 best_disk = disk;
682 break;
683 }
684 /* Don't change to another disk for sequential reads */
685 if (conf->mirrors[disk].next_seq_sect == this_sector
686 || dist == 0) {
687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 struct raid1_info *mirror = &conf->mirrors[disk];
689
690 best_disk = disk;
691 /*
692 * If buffered sequential IO size exceeds optimal
693 * iosize, check if there is idle disk. If yes, choose
694 * the idle disk. read_balance could already choose an
695 * idle disk before noticing it's a sequential IO in
696 * this disk. This doesn't matter because this disk
697 * will idle, next time it will be utilized after the
698 * first disk has IO size exceeds optimal iosize. In
699 * this way, iosize of the first disk will be optimal
700 * iosize at least. iosize of the second disk might be
701 * small, but not a big deal since when the second disk
702 * starts IO, the first disk is likely still busy.
703 */
704 if (nonrot && opt_iosize > 0 &&
705 mirror->seq_start != MaxSector &&
706 mirror->next_seq_sect > opt_iosize &&
707 mirror->next_seq_sect - opt_iosize >=
708 mirror->seq_start) {
709 choose_next_idle = 1;
710 continue;
711 }
712 break;
713 }
714
715 if (choose_next_idle)
716 continue;
717
718 if (min_pending > pending) {
719 min_pending = pending;
720 best_pending_disk = disk;
721 }
722
723 if (dist < best_dist) {
724 best_dist = dist;
725 best_dist_disk = disk;
726 }
727 }
728
729 /*
730 * If all disks are rotational, choose the closest disk. If any disk is
731 * non-rotational, choose the disk with less pending request even the
732 * disk is rotational, which might/might not be optimal for raids with
733 * mixed ratation/non-rotational disks depending on workload.
734 */
735 if (best_disk == -1) {
736 if (has_nonrot_disk || min_pending == 0)
737 best_disk = best_pending_disk;
738 else
739 best_disk = best_dist_disk;
740 }
741
742 if (best_disk >= 0) {
743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744 if (!rdev)
745 goto retry;
746 atomic_inc(&rdev->nr_pending);
747 sectors = best_good_sectors;
748
749 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 conf->mirrors[best_disk].seq_start = this_sector;
751
752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753 }
754 rcu_read_unlock();
755 *max_sectors = sectors;
756
757 return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762 struct r1conf *conf = mddev->private;
763 int i, ret = 0;
764
765 if ((bits & (1 << WB_async_congested)) &&
766 conf->pending_count >= max_queued_requests)
767 return 1;
768
769 rcu_read_lock();
770 for (i = 0; i < conf->raid_disks * 2; i++) {
771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773 struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775 BUG_ON(!q);
776
777 /* Note the '|| 1' - when read_balance prefers
778 * non-congested targets, it can be removed
779 */
780 if ((bits & (1 << WB_async_congested)) || 1)
781 ret |= bdi_congested(q->backing_dev_info, bits);
782 else
783 ret &= bdi_congested(q->backing_dev_info, bits);
784 }
785 }
786 rcu_read_unlock();
787 return ret;
788 }
789
790 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
791 {
792 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
793 bitmap_unplug(conf->mddev->bitmap);
794 wake_up(&conf->wait_barrier);
795
796 while (bio) { /* submit pending writes */
797 struct bio *next = bio->bi_next;
798 struct md_rdev *rdev = (void*)bio->bi_bdev;
799 bio->bi_next = NULL;
800 bio->bi_bdev = rdev->bdev;
801 if (test_bit(Faulty, &rdev->flags)) {
802 bio->bi_error = -EIO;
803 bio_endio(bio);
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
806 /* Just ignore it */
807 bio_endio(bio);
808 else
809 generic_make_request(bio);
810 bio = next;
811 }
812 }
813
814 static void flush_pending_writes(struct r1conf *conf)
815 {
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
818 */
819 spin_lock_irq(&conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
822 struct bio *bio;
823 bio = bio_list_get(&conf->pending_bio_list);
824 conf->pending_count = 0;
825 spin_unlock_irq(&conf->device_lock);
826 flush_bio_list(conf, bio);
827 } else
828 spin_unlock_irq(&conf->device_lock);
829 }
830
831 /* Barriers....
832 * Sometimes we need to suspend IO while we do something else,
833 * either some resync/recovery, or reconfigure the array.
834 * To do this we raise a 'barrier'.
835 * The 'barrier' is a counter that can be raised multiple times
836 * to count how many activities are happening which preclude
837 * normal IO.
838 * We can only raise the barrier if there is no pending IO.
839 * i.e. if nr_pending == 0.
840 * We choose only to raise the barrier if no-one is waiting for the
841 * barrier to go down. This means that as soon as an IO request
842 * is ready, no other operations which require a barrier will start
843 * until the IO request has had a chance.
844 *
845 * So: regular IO calls 'wait_barrier'. When that returns there
846 * is no backgroup IO happening, It must arrange to call
847 * allow_barrier when it has finished its IO.
848 * backgroup IO calls must call raise_barrier. Once that returns
849 * there is no normal IO happeing. It must arrange to call
850 * lower_barrier when the particular background IO completes.
851 */
852 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
853 {
854 int idx = sector_to_idx(sector_nr);
855
856 spin_lock_irq(&conf->resync_lock);
857
858 /* Wait until no block IO is waiting */
859 wait_event_lock_irq(conf->wait_barrier,
860 !atomic_read(&conf->nr_waiting[idx]),
861 conf->resync_lock);
862
863 /* block any new IO from starting */
864 atomic_inc(&conf->barrier[idx]);
865 /*
866 * In raise_barrier() we firstly increase conf->barrier[idx] then
867 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
868 * increase conf->nr_pending[idx] then check conf->barrier[idx].
869 * A memory barrier here to make sure conf->nr_pending[idx] won't
870 * be fetched before conf->barrier[idx] is increased. Otherwise
871 * there will be a race between raise_barrier() and _wait_barrier().
872 */
873 smp_mb__after_atomic();
874
875 /* For these conditions we must wait:
876 * A: while the array is in frozen state
877 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
878 * existing in corresponding I/O barrier bucket.
879 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
880 * max resync count which allowed on current I/O barrier bucket.
881 */
882 wait_event_lock_irq(conf->wait_barrier,
883 !conf->array_frozen &&
884 !atomic_read(&conf->nr_pending[idx]) &&
885 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
886 conf->resync_lock);
887
888 atomic_inc(&conf->nr_sync_pending);
889 spin_unlock_irq(&conf->resync_lock);
890 }
891
892 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
893 {
894 int idx = sector_to_idx(sector_nr);
895
896 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
897
898 atomic_dec(&conf->barrier[idx]);
899 atomic_dec(&conf->nr_sync_pending);
900 wake_up(&conf->wait_barrier);
901 }
902
903 static void _wait_barrier(struct r1conf *conf, int idx)
904 {
905 /*
906 * We need to increase conf->nr_pending[idx] very early here,
907 * then raise_barrier() can be blocked when it waits for
908 * conf->nr_pending[idx] to be 0. Then we can avoid holding
909 * conf->resync_lock when there is no barrier raised in same
910 * barrier unit bucket. Also if the array is frozen, I/O
911 * should be blocked until array is unfrozen.
912 */
913 atomic_inc(&conf->nr_pending[idx]);
914 /*
915 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
916 * check conf->barrier[idx]. In raise_barrier() we firstly increase
917 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
918 * barrier is necessary here to make sure conf->barrier[idx] won't be
919 * fetched before conf->nr_pending[idx] is increased. Otherwise there
920 * will be a race between _wait_barrier() and raise_barrier().
921 */
922 smp_mb__after_atomic();
923
924 /*
925 * Don't worry about checking two atomic_t variables at same time
926 * here. If during we check conf->barrier[idx], the array is
927 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
928 * 0, it is safe to return and make the I/O continue. Because the
929 * array is frozen, all I/O returned here will eventually complete
930 * or be queued, no race will happen. See code comment in
931 * frozen_array().
932 */
933 if (!READ_ONCE(conf->array_frozen) &&
934 !atomic_read(&conf->barrier[idx]))
935 return;
936
937 /*
938 * After holding conf->resync_lock, conf->nr_pending[idx]
939 * should be decreased before waiting for barrier to drop.
940 * Otherwise, we may encounter a race condition because
941 * raise_barrer() might be waiting for conf->nr_pending[idx]
942 * to be 0 at same time.
943 */
944 spin_lock_irq(&conf->resync_lock);
945 atomic_inc(&conf->nr_waiting[idx]);
946 atomic_dec(&conf->nr_pending[idx]);
947 /*
948 * In case freeze_array() is waiting for
949 * get_unqueued_pending() == extra
950 */
951 wake_up(&conf->wait_barrier);
952 /* Wait for the barrier in same barrier unit bucket to drop. */
953 wait_event_lock_irq(conf->wait_barrier,
954 !conf->array_frozen &&
955 !atomic_read(&conf->barrier[idx]),
956 conf->resync_lock);
957 atomic_inc(&conf->nr_pending[idx]);
958 atomic_dec(&conf->nr_waiting[idx]);
959 spin_unlock_irq(&conf->resync_lock);
960 }
961
962 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
963 {
964 int idx = sector_to_idx(sector_nr);
965
966 /*
967 * Very similar to _wait_barrier(). The difference is, for read
968 * I/O we don't need wait for sync I/O, but if the whole array
969 * is frozen, the read I/O still has to wait until the array is
970 * unfrozen. Since there is no ordering requirement with
971 * conf->barrier[idx] here, memory barrier is unnecessary as well.
972 */
973 atomic_inc(&conf->nr_pending[idx]);
974
975 if (!READ_ONCE(conf->array_frozen))
976 return;
977
978 spin_lock_irq(&conf->resync_lock);
979 atomic_inc(&conf->nr_waiting[idx]);
980 atomic_dec(&conf->nr_pending[idx]);
981 /*
982 * In case freeze_array() is waiting for
983 * get_unqueued_pending() == extra
984 */
985 wake_up(&conf->wait_barrier);
986 /* Wait for array to be unfrozen */
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen,
989 conf->resync_lock);
990 atomic_inc(&conf->nr_pending[idx]);
991 atomic_dec(&conf->nr_waiting[idx]);
992 spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
996 {
997 int idx = sector_to_idx(sector_nr);
998
999 _wait_barrier(conf, idx);
1000 }
1001
1002 static void wait_all_barriers(struct r1conf *conf)
1003 {
1004 int idx;
1005
1006 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1007 _wait_barrier(conf, idx);
1008 }
1009
1010 static void _allow_barrier(struct r1conf *conf, int idx)
1011 {
1012 atomic_dec(&conf->nr_pending[idx]);
1013 wake_up(&conf->wait_barrier);
1014 }
1015
1016 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1017 {
1018 int idx = sector_to_idx(sector_nr);
1019
1020 _allow_barrier(conf, idx);
1021 }
1022
1023 static void allow_all_barriers(struct r1conf *conf)
1024 {
1025 int idx;
1026
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 _allow_barrier(conf, idx);
1029 }
1030
1031 /* conf->resync_lock should be held */
1032 static int get_unqueued_pending(struct r1conf *conf)
1033 {
1034 int idx, ret;
1035
1036 ret = atomic_read(&conf->nr_sync_pending);
1037 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1038 ret += atomic_read(&conf->nr_pending[idx]) -
1039 atomic_read(&conf->nr_queued[idx]);
1040
1041 return ret;
1042 }
1043
1044 static void freeze_array(struct r1conf *conf, int extra)
1045 {
1046 /* Stop sync I/O and normal I/O and wait for everything to
1047 * go quiet.
1048 * This is called in two situations:
1049 * 1) management command handlers (reshape, remove disk, quiesce).
1050 * 2) one normal I/O request failed.
1051
1052 * After array_frozen is set to 1, new sync IO will be blocked at
1053 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1054 * or wait_read_barrier(). The flying I/Os will either complete or be
1055 * queued. When everything goes quite, there are only queued I/Os left.
1056
1057 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1058 * barrier bucket index which this I/O request hits. When all sync and
1059 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1060 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1061 * in handle_read_error(), we may call freeze_array() before trying to
1062 * fix the read error. In this case, the error read I/O is not queued,
1063 * so get_unqueued_pending() == 1.
1064 *
1065 * Therefore before this function returns, we need to wait until
1066 * get_unqueued_pendings(conf) gets equal to extra. For
1067 * normal I/O context, extra is 1, in rested situations extra is 0.
1068 */
1069 spin_lock_irq(&conf->resync_lock);
1070 conf->array_frozen = 1;
1071 raid1_log(conf->mddev, "wait freeze");
1072 wait_event_lock_irq_cmd(
1073 conf->wait_barrier,
1074 get_unqueued_pending(conf) == extra,
1075 conf->resync_lock,
1076 flush_pending_writes(conf));
1077 spin_unlock_irq(&conf->resync_lock);
1078 }
1079 static void unfreeze_array(struct r1conf *conf)
1080 {
1081 /* reverse the effect of the freeze */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->array_frozen = 0;
1084 spin_unlock_irq(&conf->resync_lock);
1085 wake_up(&conf->wait_barrier);
1086 }
1087
1088 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1089 struct bio *bio)
1090 {
1091 int size = bio->bi_iter.bi_size;
1092 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1093 int i = 0;
1094 struct bio *behind_bio = NULL;
1095
1096 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1097 if (!behind_bio)
1098 goto fail;
1099
1100 /* discard op, we don't support writezero/writesame yet */
1101 if (!bio_has_data(bio))
1102 goto skip_copy;
1103
1104 while (i < vcnt && size) {
1105 struct page *page;
1106 int len = min_t(int, PAGE_SIZE, size);
1107
1108 page = alloc_page(GFP_NOIO);
1109 if (unlikely(!page))
1110 goto free_pages;
1111
1112 bio_add_page(behind_bio, page, len, 0);
1113
1114 size -= len;
1115 i++;
1116 }
1117
1118 bio_copy_data(behind_bio, bio);
1119 skip_copy:
1120 r1_bio->behind_master_bio = behind_bio;;
1121 set_bit(R1BIO_BehindIO, &r1_bio->state);
1122
1123 return behind_bio;
1124
1125 free_pages:
1126 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1127 bio->bi_iter.bi_size);
1128 bio_free_pages(behind_bio);
1129 fail:
1130 return behind_bio;
1131 }
1132
1133 struct raid1_plug_cb {
1134 struct blk_plug_cb cb;
1135 struct bio_list pending;
1136 int pending_cnt;
1137 };
1138
1139 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1140 {
1141 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1142 cb);
1143 struct mddev *mddev = plug->cb.data;
1144 struct r1conf *conf = mddev->private;
1145 struct bio *bio;
1146
1147 if (from_schedule || current->bio_list) {
1148 spin_lock_irq(&conf->device_lock);
1149 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1150 conf->pending_count += plug->pending_cnt;
1151 spin_unlock_irq(&conf->device_lock);
1152 wake_up(&conf->wait_barrier);
1153 md_wakeup_thread(mddev->thread);
1154 kfree(plug);
1155 return;
1156 }
1157
1158 /* we aren't scheduling, so we can do the write-out directly. */
1159 bio = bio_list_get(&plug->pending);
1160 flush_bio_list(conf, bio);
1161 kfree(plug);
1162 }
1163
1164 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1165 {
1166 r1_bio->master_bio = bio;
1167 r1_bio->sectors = bio_sectors(bio);
1168 r1_bio->state = 0;
1169 r1_bio->mddev = mddev;
1170 r1_bio->sector = bio->bi_iter.bi_sector;
1171 }
1172
1173 static inline struct r1bio *
1174 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1175 {
1176 struct r1conf *conf = mddev->private;
1177 struct r1bio *r1_bio;
1178
1179 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1180 /* Ensure no bio records IO_BLOCKED */
1181 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1182 init_r1bio(r1_bio, mddev, bio);
1183 return r1_bio;
1184 }
1185
1186 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1187 int max_read_sectors, struct r1bio *r1_bio)
1188 {
1189 struct r1conf *conf = mddev->private;
1190 struct raid1_info *mirror;
1191 struct bio *read_bio;
1192 struct bitmap *bitmap = mddev->bitmap;
1193 const int op = bio_op(bio);
1194 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1195 int max_sectors;
1196 int rdisk;
1197 bool print_msg = !!r1_bio;
1198 char b[BDEVNAME_SIZE];
1199
1200 /*
1201 * If r1_bio is set, we are blocking the raid1d thread
1202 * so there is a tiny risk of deadlock. So ask for
1203 * emergency memory if needed.
1204 */
1205 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1206
1207 if (print_msg) {
1208 /* Need to get the block device name carefully */
1209 struct md_rdev *rdev;
1210 rcu_read_lock();
1211 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1212 if (rdev)
1213 bdevname(rdev->bdev, b);
1214 else
1215 strcpy(b, "???");
1216 rcu_read_unlock();
1217 }
1218
1219 /*
1220 * Still need barrier for READ in case that whole
1221 * array is frozen.
1222 */
1223 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1224
1225 if (!r1_bio)
1226 r1_bio = alloc_r1bio(mddev, bio);
1227 else
1228 init_r1bio(r1_bio, mddev, bio);
1229 r1_bio->sectors = max_read_sectors;
1230
1231 /*
1232 * make_request() can abort the operation when read-ahead is being
1233 * used and no empty request is available.
1234 */
1235 rdisk = read_balance(conf, r1_bio, &max_sectors);
1236
1237 if (rdisk < 0) {
1238 /* couldn't find anywhere to read from */
1239 if (print_msg) {
1240 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1241 mdname(mddev),
1242 b,
1243 (unsigned long long)r1_bio->sector);
1244 }
1245 raid_end_bio_io(r1_bio);
1246 return;
1247 }
1248 mirror = conf->mirrors + rdisk;
1249
1250 if (print_msg)
1251 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1252 mdname(mddev),
1253 (unsigned long long)r1_bio->sector,
1254 bdevname(mirror->rdev->bdev, b));
1255
1256 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1257 bitmap) {
1258 /*
1259 * Reading from a write-mostly device must take care not to
1260 * over-take any writes that are 'behind'
1261 */
1262 raid1_log(mddev, "wait behind writes");
1263 wait_event(bitmap->behind_wait,
1264 atomic_read(&bitmap->behind_writes) == 0);
1265 }
1266
1267 if (max_sectors < bio_sectors(bio)) {
1268 struct bio *split = bio_split(bio, max_sectors,
1269 gfp, conf->bio_split);
1270 bio_chain(split, bio);
1271 generic_make_request(bio);
1272 bio = split;
1273 r1_bio->master_bio = bio;
1274 r1_bio->sectors = max_sectors;
1275 }
1276
1277 r1_bio->read_disk = rdisk;
1278
1279 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1280
1281 r1_bio->bios[rdisk] = read_bio;
1282
1283 read_bio->bi_iter.bi_sector = r1_bio->sector +
1284 mirror->rdev->data_offset;
1285 read_bio->bi_bdev = mirror->rdev->bdev;
1286 read_bio->bi_end_io = raid1_end_read_request;
1287 bio_set_op_attrs(read_bio, op, do_sync);
1288 if (test_bit(FailFast, &mirror->rdev->flags) &&
1289 test_bit(R1BIO_FailFast, &r1_bio->state))
1290 read_bio->bi_opf |= MD_FAILFAST;
1291 read_bio->bi_private = r1_bio;
1292
1293 if (mddev->gendisk)
1294 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1295 read_bio, disk_devt(mddev->gendisk),
1296 r1_bio->sector);
1297
1298 generic_make_request(read_bio);
1299 }
1300
1301 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1302 int max_write_sectors)
1303 {
1304 struct r1conf *conf = mddev->private;
1305 struct r1bio *r1_bio;
1306 int i, disks;
1307 struct bitmap *bitmap = mddev->bitmap;
1308 unsigned long flags;
1309 struct md_rdev *blocked_rdev;
1310 struct blk_plug_cb *cb;
1311 struct raid1_plug_cb *plug = NULL;
1312 int first_clone;
1313 int max_sectors;
1314
1315 /*
1316 * Register the new request and wait if the reconstruction
1317 * thread has put up a bar for new requests.
1318 * Continue immediately if no resync is active currently.
1319 */
1320
1321 md_write_start(mddev, bio); /* wait on superblock update early */
1322
1323 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1324 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1325 (mddev_is_clustered(mddev) &&
1326 md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1328
1329 /*
1330 * As the suspend_* range is controlled by userspace, we want
1331 * an interruptible wait.
1332 */
1333 DEFINE_WAIT(w);
1334 for (;;) {
1335 flush_signals(current);
1336 prepare_to_wait(&conf->wait_barrier,
1337 &w, TASK_INTERRUPTIBLE);
1338 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1339 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1340 (mddev_is_clustered(mddev) &&
1341 !md_cluster_ops->area_resyncing(mddev, WRITE,
1342 bio->bi_iter.bi_sector,
1343 bio_end_sector(bio))))
1344 break;
1345 schedule();
1346 }
1347 finish_wait(&conf->wait_barrier, &w);
1348 }
1349 wait_barrier(conf, bio->bi_iter.bi_sector);
1350
1351 r1_bio = alloc_r1bio(mddev, bio);
1352 r1_bio->sectors = max_write_sectors;
1353
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 raid1_log(mddev, "wait queued");
1357 wait_event(conf->wait_barrier,
1358 conf->pending_count < max_queued_requests);
1359 }
1360 /* first select target devices under rcu_lock and
1361 * inc refcount on their rdev. Record them by setting
1362 * bios[x] to bio
1363 * If there are known/acknowledged bad blocks on any device on
1364 * which we have seen a write error, we want to avoid writing those
1365 * blocks.
1366 * This potentially requires several writes to write around
1367 * the bad blocks. Each set of writes gets it's own r1bio
1368 * with a set of bios attached.
1369 */
1370
1371 disks = conf->raid_disks * 2;
1372 retry_write:
1373 blocked_rdev = NULL;
1374 rcu_read_lock();
1375 max_sectors = r1_bio->sectors;
1376 for (i = 0; i < disks; i++) {
1377 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1379 atomic_inc(&rdev->nr_pending);
1380 blocked_rdev = rdev;
1381 break;
1382 }
1383 r1_bio->bios[i] = NULL;
1384 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1385 if (i < conf->raid_disks)
1386 set_bit(R1BIO_Degraded, &r1_bio->state);
1387 continue;
1388 }
1389
1390 atomic_inc(&rdev->nr_pending);
1391 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1392 sector_t first_bad;
1393 int bad_sectors;
1394 int is_bad;
1395
1396 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1397 &first_bad, &bad_sectors);
1398 if (is_bad < 0) {
1399 /* mustn't write here until the bad block is
1400 * acknowledged*/
1401 set_bit(BlockedBadBlocks, &rdev->flags);
1402 blocked_rdev = rdev;
1403 break;
1404 }
1405 if (is_bad && first_bad <= r1_bio->sector) {
1406 /* Cannot write here at all */
1407 bad_sectors -= (r1_bio->sector - first_bad);
1408 if (bad_sectors < max_sectors)
1409 /* mustn't write more than bad_sectors
1410 * to other devices yet
1411 */
1412 max_sectors = bad_sectors;
1413 rdev_dec_pending(rdev, mddev);
1414 /* We don't set R1BIO_Degraded as that
1415 * only applies if the disk is
1416 * missing, so it might be re-added,
1417 * and we want to know to recover this
1418 * chunk.
1419 * In this case the device is here,
1420 * and the fact that this chunk is not
1421 * in-sync is recorded in the bad
1422 * block log
1423 */
1424 continue;
1425 }
1426 if (is_bad) {
1427 int good_sectors = first_bad - r1_bio->sector;
1428 if (good_sectors < max_sectors)
1429 max_sectors = good_sectors;
1430 }
1431 }
1432 r1_bio->bios[i] = bio;
1433 }
1434 rcu_read_unlock();
1435
1436 if (unlikely(blocked_rdev)) {
1437 /* Wait for this device to become unblocked */
1438 int j;
1439
1440 for (j = 0; j < i; j++)
1441 if (r1_bio->bios[j])
1442 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1443 r1_bio->state = 0;
1444 allow_barrier(conf, bio->bi_iter.bi_sector);
1445 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1446 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1447 wait_barrier(conf, bio->bi_iter.bi_sector);
1448 goto retry_write;
1449 }
1450
1451 if (max_sectors < bio_sectors(bio)) {
1452 struct bio *split = bio_split(bio, max_sectors,
1453 GFP_NOIO, conf->bio_split);
1454 bio_chain(split, bio);
1455 generic_make_request(bio);
1456 bio = split;
1457 r1_bio->master_bio = bio;
1458 r1_bio->sectors = max_sectors;
1459 }
1460
1461 atomic_set(&r1_bio->remaining, 1);
1462 atomic_set(&r1_bio->behind_remaining, 0);
1463
1464 first_clone = 1;
1465
1466 for (i = 0; i < disks; i++) {
1467 struct bio *mbio = NULL;
1468 if (!r1_bio->bios[i])
1469 continue;
1470
1471
1472 if (first_clone) {
1473 /* do behind I/O ?
1474 * Not if there are too many, or cannot
1475 * allocate memory, or a reader on WriteMostly
1476 * is waiting for behind writes to flush */
1477 if (bitmap &&
1478 (atomic_read(&bitmap->behind_writes)
1479 < mddev->bitmap_info.max_write_behind) &&
1480 !waitqueue_active(&bitmap->behind_wait)) {
1481 mbio = alloc_behind_master_bio(r1_bio, bio);
1482 }
1483
1484 bitmap_startwrite(bitmap, r1_bio->sector,
1485 r1_bio->sectors,
1486 test_bit(R1BIO_BehindIO,
1487 &r1_bio->state));
1488 first_clone = 0;
1489 }
1490
1491 if (!mbio) {
1492 if (r1_bio->behind_master_bio)
1493 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1494 GFP_NOIO,
1495 mddev->bio_set);
1496 else
1497 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1498 }
1499
1500 if (r1_bio->behind_master_bio) {
1501 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1502 atomic_inc(&r1_bio->behind_remaining);
1503 }
1504
1505 r1_bio->bios[i] = mbio;
1506
1507 mbio->bi_iter.bi_sector = (r1_bio->sector +
1508 conf->mirrors[i].rdev->data_offset);
1509 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1510 mbio->bi_end_io = raid1_end_write_request;
1511 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1512 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1513 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1514 conf->raid_disks - mddev->degraded > 1)
1515 mbio->bi_opf |= MD_FAILFAST;
1516 mbio->bi_private = r1_bio;
1517
1518 atomic_inc(&r1_bio->remaining);
1519
1520 if (mddev->gendisk)
1521 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1522 mbio, disk_devt(mddev->gendisk),
1523 r1_bio->sector);
1524 /* flush_pending_writes() needs access to the rdev so...*/
1525 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1526
1527 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1528 if (cb)
1529 plug = container_of(cb, struct raid1_plug_cb, cb);
1530 else
1531 plug = NULL;
1532 if (plug) {
1533 bio_list_add(&plug->pending, mbio);
1534 plug->pending_cnt++;
1535 } else {
1536 spin_lock_irqsave(&conf->device_lock, flags);
1537 bio_list_add(&conf->pending_bio_list, mbio);
1538 conf->pending_count++;
1539 spin_unlock_irqrestore(&conf->device_lock, flags);
1540 md_wakeup_thread(mddev->thread);
1541 }
1542 }
1543
1544 r1_bio_write_done(r1_bio);
1545
1546 /* In case raid1d snuck in to freeze_array */
1547 wake_up(&conf->wait_barrier);
1548 }
1549
1550 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1551 {
1552 sector_t sectors;
1553
1554 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1555 md_flush_request(mddev, bio);
1556 return;
1557 }
1558
1559 /*
1560 * There is a limit to the maximum size, but
1561 * the read/write handler might find a lower limit
1562 * due to bad blocks. To avoid multiple splits,
1563 * we pass the maximum number of sectors down
1564 * and let the lower level perform the split.
1565 */
1566 sectors = align_to_barrier_unit_end(
1567 bio->bi_iter.bi_sector, bio_sectors(bio));
1568
1569 if (bio_data_dir(bio) == READ)
1570 raid1_read_request(mddev, bio, sectors, NULL);
1571 else
1572 raid1_write_request(mddev, bio, sectors);
1573 }
1574
1575 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1576 {
1577 struct r1conf *conf = mddev->private;
1578 int i;
1579
1580 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1581 conf->raid_disks - mddev->degraded);
1582 rcu_read_lock();
1583 for (i = 0; i < conf->raid_disks; i++) {
1584 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1585 seq_printf(seq, "%s",
1586 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1587 }
1588 rcu_read_unlock();
1589 seq_printf(seq, "]");
1590 }
1591
1592 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1593 {
1594 char b[BDEVNAME_SIZE];
1595 struct r1conf *conf = mddev->private;
1596 unsigned long flags;
1597
1598 /*
1599 * If it is not operational, then we have already marked it as dead
1600 * else if it is the last working disks, ignore the error, let the
1601 * next level up know.
1602 * else mark the drive as failed
1603 */
1604 spin_lock_irqsave(&conf->device_lock, flags);
1605 if (test_bit(In_sync, &rdev->flags)
1606 && (conf->raid_disks - mddev->degraded) == 1) {
1607 /*
1608 * Don't fail the drive, act as though we were just a
1609 * normal single drive.
1610 * However don't try a recovery from this drive as
1611 * it is very likely to fail.
1612 */
1613 conf->recovery_disabled = mddev->recovery_disabled;
1614 spin_unlock_irqrestore(&conf->device_lock, flags);
1615 return;
1616 }
1617 set_bit(Blocked, &rdev->flags);
1618 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1619 mddev->degraded++;
1620 set_bit(Faulty, &rdev->flags);
1621 } else
1622 set_bit(Faulty, &rdev->flags);
1623 spin_unlock_irqrestore(&conf->device_lock, flags);
1624 /*
1625 * if recovery is running, make sure it aborts.
1626 */
1627 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1628 set_mask_bits(&mddev->sb_flags, 0,
1629 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1630 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid1:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev), bdevname(rdev->bdev, b),
1633 mdname(mddev), conf->raid_disks - mddev->degraded);
1634 }
1635
1636 static void print_conf(struct r1conf *conf)
1637 {
1638 int i;
1639
1640 pr_debug("RAID1 conf printout:\n");
1641 if (!conf) {
1642 pr_debug("(!conf)\n");
1643 return;
1644 }
1645 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1646 conf->raid_disks);
1647
1648 rcu_read_lock();
1649 for (i = 0; i < conf->raid_disks; i++) {
1650 char b[BDEVNAME_SIZE];
1651 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1652 if (rdev)
1653 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1654 i, !test_bit(In_sync, &rdev->flags),
1655 !test_bit(Faulty, &rdev->flags),
1656 bdevname(rdev->bdev,b));
1657 }
1658 rcu_read_unlock();
1659 }
1660
1661 static void close_sync(struct r1conf *conf)
1662 {
1663 wait_all_barriers(conf);
1664 allow_all_barriers(conf);
1665
1666 mempool_destroy(conf->r1buf_pool);
1667 conf->r1buf_pool = NULL;
1668 }
1669
1670 static int raid1_spare_active(struct mddev *mddev)
1671 {
1672 int i;
1673 struct r1conf *conf = mddev->private;
1674 int count = 0;
1675 unsigned long flags;
1676
1677 /*
1678 * Find all failed disks within the RAID1 configuration
1679 * and mark them readable.
1680 * Called under mddev lock, so rcu protection not needed.
1681 * device_lock used to avoid races with raid1_end_read_request
1682 * which expects 'In_sync' flags and ->degraded to be consistent.
1683 */
1684 spin_lock_irqsave(&conf->device_lock, flags);
1685 for (i = 0; i < conf->raid_disks; i++) {
1686 struct md_rdev *rdev = conf->mirrors[i].rdev;
1687 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1688 if (repl
1689 && !test_bit(Candidate, &repl->flags)
1690 && repl->recovery_offset == MaxSector
1691 && !test_bit(Faulty, &repl->flags)
1692 && !test_and_set_bit(In_sync, &repl->flags)) {
1693 /* replacement has just become active */
1694 if (!rdev ||
1695 !test_and_clear_bit(In_sync, &rdev->flags))
1696 count++;
1697 if (rdev) {
1698 /* Replaced device not technically
1699 * faulty, but we need to be sure
1700 * it gets removed and never re-added
1701 */
1702 set_bit(Faulty, &rdev->flags);
1703 sysfs_notify_dirent_safe(
1704 rdev->sysfs_state);
1705 }
1706 }
1707 if (rdev
1708 && rdev->recovery_offset == MaxSector
1709 && !test_bit(Faulty, &rdev->flags)
1710 && !test_and_set_bit(In_sync, &rdev->flags)) {
1711 count++;
1712 sysfs_notify_dirent_safe(rdev->sysfs_state);
1713 }
1714 }
1715 mddev->degraded -= count;
1716 spin_unlock_irqrestore(&conf->device_lock, flags);
1717
1718 print_conf(conf);
1719 return count;
1720 }
1721
1722 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1723 {
1724 struct r1conf *conf = mddev->private;
1725 int err = -EEXIST;
1726 int mirror = 0;
1727 struct raid1_info *p;
1728 int first = 0;
1729 int last = conf->raid_disks - 1;
1730
1731 if (mddev->recovery_disabled == conf->recovery_disabled)
1732 return -EBUSY;
1733
1734 if (md_integrity_add_rdev(rdev, mddev))
1735 return -ENXIO;
1736
1737 if (rdev->raid_disk >= 0)
1738 first = last = rdev->raid_disk;
1739
1740 /*
1741 * find the disk ... but prefer rdev->saved_raid_disk
1742 * if possible.
1743 */
1744 if (rdev->saved_raid_disk >= 0 &&
1745 rdev->saved_raid_disk >= first &&
1746 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1747 first = last = rdev->saved_raid_disk;
1748
1749 for (mirror = first; mirror <= last; mirror++) {
1750 p = conf->mirrors+mirror;
1751 if (!p->rdev) {
1752
1753 if (mddev->gendisk)
1754 disk_stack_limits(mddev->gendisk, rdev->bdev,
1755 rdev->data_offset << 9);
1756
1757 p->head_position = 0;
1758 rdev->raid_disk = mirror;
1759 err = 0;
1760 /* As all devices are equivalent, we don't need a full recovery
1761 * if this was recently any drive of the array
1762 */
1763 if (rdev->saved_raid_disk < 0)
1764 conf->fullsync = 1;
1765 rcu_assign_pointer(p->rdev, rdev);
1766 break;
1767 }
1768 if (test_bit(WantReplacement, &p->rdev->flags) &&
1769 p[conf->raid_disks].rdev == NULL) {
1770 /* Add this device as a replacement */
1771 clear_bit(In_sync, &rdev->flags);
1772 set_bit(Replacement, &rdev->flags);
1773 rdev->raid_disk = mirror;
1774 err = 0;
1775 conf->fullsync = 1;
1776 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1777 break;
1778 }
1779 }
1780 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1781 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1782 print_conf(conf);
1783 return err;
1784 }
1785
1786 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1787 {
1788 struct r1conf *conf = mddev->private;
1789 int err = 0;
1790 int number = rdev->raid_disk;
1791 struct raid1_info *p = conf->mirrors + number;
1792
1793 if (rdev != p->rdev)
1794 p = conf->mirrors + conf->raid_disks + number;
1795
1796 print_conf(conf);
1797 if (rdev == p->rdev) {
1798 if (test_bit(In_sync, &rdev->flags) ||
1799 atomic_read(&rdev->nr_pending)) {
1800 err = -EBUSY;
1801 goto abort;
1802 }
1803 /* Only remove non-faulty devices if recovery
1804 * is not possible.
1805 */
1806 if (!test_bit(Faulty, &rdev->flags) &&
1807 mddev->recovery_disabled != conf->recovery_disabled &&
1808 mddev->degraded < conf->raid_disks) {
1809 err = -EBUSY;
1810 goto abort;
1811 }
1812 p->rdev = NULL;
1813 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1814 synchronize_rcu();
1815 if (atomic_read(&rdev->nr_pending)) {
1816 /* lost the race, try later */
1817 err = -EBUSY;
1818 p->rdev = rdev;
1819 goto abort;
1820 }
1821 }
1822 if (conf->mirrors[conf->raid_disks + number].rdev) {
1823 /* We just removed a device that is being replaced.
1824 * Move down the replacement. We drain all IO before
1825 * doing this to avoid confusion.
1826 */
1827 struct md_rdev *repl =
1828 conf->mirrors[conf->raid_disks + number].rdev;
1829 freeze_array(conf, 0);
1830 clear_bit(Replacement, &repl->flags);
1831 p->rdev = repl;
1832 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1833 unfreeze_array(conf);
1834 }
1835
1836 clear_bit(WantReplacement, &rdev->flags);
1837 err = md_integrity_register(mddev);
1838 }
1839 abort:
1840
1841 print_conf(conf);
1842 return err;
1843 }
1844
1845 static void end_sync_read(struct bio *bio)
1846 {
1847 struct r1bio *r1_bio = get_resync_r1bio(bio);
1848
1849 update_head_pos(r1_bio->read_disk, r1_bio);
1850
1851 /*
1852 * we have read a block, now it needs to be re-written,
1853 * or re-read if the read failed.
1854 * We don't do much here, just schedule handling by raid1d
1855 */
1856 if (!bio->bi_error)
1857 set_bit(R1BIO_Uptodate, &r1_bio->state);
1858
1859 if (atomic_dec_and_test(&r1_bio->remaining))
1860 reschedule_retry(r1_bio);
1861 }
1862
1863 static void end_sync_write(struct bio *bio)
1864 {
1865 int uptodate = !bio->bi_error;
1866 struct r1bio *r1_bio = get_resync_r1bio(bio);
1867 struct mddev *mddev = r1_bio->mddev;
1868 struct r1conf *conf = mddev->private;
1869 sector_t first_bad;
1870 int bad_sectors;
1871 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1872
1873 if (!uptodate) {
1874 sector_t sync_blocks = 0;
1875 sector_t s = r1_bio->sector;
1876 long sectors_to_go = r1_bio->sectors;
1877 /* make sure these bits doesn't get cleared. */
1878 do {
1879 bitmap_end_sync(mddev->bitmap, s,
1880 &sync_blocks, 1);
1881 s += sync_blocks;
1882 sectors_to_go -= sync_blocks;
1883 } while (sectors_to_go > 0);
1884 set_bit(WriteErrorSeen, &rdev->flags);
1885 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1886 set_bit(MD_RECOVERY_NEEDED, &
1887 mddev->recovery);
1888 set_bit(R1BIO_WriteError, &r1_bio->state);
1889 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1890 &first_bad, &bad_sectors) &&
1891 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1892 r1_bio->sector,
1893 r1_bio->sectors,
1894 &first_bad, &bad_sectors)
1895 )
1896 set_bit(R1BIO_MadeGood, &r1_bio->state);
1897
1898 if (atomic_dec_and_test(&r1_bio->remaining)) {
1899 int s = r1_bio->sectors;
1900 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1901 test_bit(R1BIO_WriteError, &r1_bio->state))
1902 reschedule_retry(r1_bio);
1903 else {
1904 put_buf(r1_bio);
1905 md_done_sync(mddev, s, uptodate);
1906 }
1907 }
1908 }
1909
1910 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1911 int sectors, struct page *page, int rw)
1912 {
1913 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1914 /* success */
1915 return 1;
1916 if (rw == WRITE) {
1917 set_bit(WriteErrorSeen, &rdev->flags);
1918 if (!test_and_set_bit(WantReplacement,
1919 &rdev->flags))
1920 set_bit(MD_RECOVERY_NEEDED, &
1921 rdev->mddev->recovery);
1922 }
1923 /* need to record an error - either for the block or the device */
1924 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1925 md_error(rdev->mddev, rdev);
1926 return 0;
1927 }
1928
1929 static int fix_sync_read_error(struct r1bio *r1_bio)
1930 {
1931 /* Try some synchronous reads of other devices to get
1932 * good data, much like with normal read errors. Only
1933 * read into the pages we already have so we don't
1934 * need to re-issue the read request.
1935 * We don't need to freeze the array, because being in an
1936 * active sync request, there is no normal IO, and
1937 * no overlapping syncs.
1938 * We don't need to check is_badblock() again as we
1939 * made sure that anything with a bad block in range
1940 * will have bi_end_io clear.
1941 */
1942 struct mddev *mddev = r1_bio->mddev;
1943 struct r1conf *conf = mddev->private;
1944 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1945 struct page **pages = get_resync_pages(bio)->pages;
1946 sector_t sect = r1_bio->sector;
1947 int sectors = r1_bio->sectors;
1948 int idx = 0;
1949 struct md_rdev *rdev;
1950
1951 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1952 if (test_bit(FailFast, &rdev->flags)) {
1953 /* Don't try recovering from here - just fail it
1954 * ... unless it is the last working device of course */
1955 md_error(mddev, rdev);
1956 if (test_bit(Faulty, &rdev->flags))
1957 /* Don't try to read from here, but make sure
1958 * put_buf does it's thing
1959 */
1960 bio->bi_end_io = end_sync_write;
1961 }
1962
1963 while(sectors) {
1964 int s = sectors;
1965 int d = r1_bio->read_disk;
1966 int success = 0;
1967 int start;
1968
1969 if (s > (PAGE_SIZE>>9))
1970 s = PAGE_SIZE >> 9;
1971 do {
1972 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1973 /* No rcu protection needed here devices
1974 * can only be removed when no resync is
1975 * active, and resync is currently active
1976 */
1977 rdev = conf->mirrors[d].rdev;
1978 if (sync_page_io(rdev, sect, s<<9,
1979 pages[idx],
1980 REQ_OP_READ, 0, false)) {
1981 success = 1;
1982 break;
1983 }
1984 }
1985 d++;
1986 if (d == conf->raid_disks * 2)
1987 d = 0;
1988 } while (!success && d != r1_bio->read_disk);
1989
1990 if (!success) {
1991 char b[BDEVNAME_SIZE];
1992 int abort = 0;
1993 /* Cannot read from anywhere, this block is lost.
1994 * Record a bad block on each device. If that doesn't
1995 * work just disable and interrupt the recovery.
1996 * Don't fail devices as that won't really help.
1997 */
1998 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1999 mdname(mddev),
2000 bdevname(bio->bi_bdev, b),
2001 (unsigned long long)r1_bio->sector);
2002 for (d = 0; d < conf->raid_disks * 2; d++) {
2003 rdev = conf->mirrors[d].rdev;
2004 if (!rdev || test_bit(Faulty, &rdev->flags))
2005 continue;
2006 if (!rdev_set_badblocks(rdev, sect, s, 0))
2007 abort = 1;
2008 }
2009 if (abort) {
2010 conf->recovery_disabled =
2011 mddev->recovery_disabled;
2012 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2013 md_done_sync(mddev, r1_bio->sectors, 0);
2014 put_buf(r1_bio);
2015 return 0;
2016 }
2017 /* Try next page */
2018 sectors -= s;
2019 sect += s;
2020 idx++;
2021 continue;
2022 }
2023
2024 start = d;
2025 /* write it back and re-read */
2026 while (d != r1_bio->read_disk) {
2027 if (d == 0)
2028 d = conf->raid_disks * 2;
2029 d--;
2030 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2031 continue;
2032 rdev = conf->mirrors[d].rdev;
2033 if (r1_sync_page_io(rdev, sect, s,
2034 pages[idx],
2035 WRITE) == 0) {
2036 r1_bio->bios[d]->bi_end_io = NULL;
2037 rdev_dec_pending(rdev, mddev);
2038 }
2039 }
2040 d = start;
2041 while (d != r1_bio->read_disk) {
2042 if (d == 0)
2043 d = conf->raid_disks * 2;
2044 d--;
2045 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2046 continue;
2047 rdev = conf->mirrors[d].rdev;
2048 if (r1_sync_page_io(rdev, sect, s,
2049 pages[idx],
2050 READ) != 0)
2051 atomic_add(s, &rdev->corrected_errors);
2052 }
2053 sectors -= s;
2054 sect += s;
2055 idx ++;
2056 }
2057 set_bit(R1BIO_Uptodate, &r1_bio->state);
2058 bio->bi_error = 0;
2059 return 1;
2060 }
2061
2062 static void process_checks(struct r1bio *r1_bio)
2063 {
2064 /* We have read all readable devices. If we haven't
2065 * got the block, then there is no hope left.
2066 * If we have, then we want to do a comparison
2067 * and skip the write if everything is the same.
2068 * If any blocks failed to read, then we need to
2069 * attempt an over-write
2070 */
2071 struct mddev *mddev = r1_bio->mddev;
2072 struct r1conf *conf = mddev->private;
2073 int primary;
2074 int i;
2075 int vcnt;
2076
2077 /* Fix variable parts of all bios */
2078 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2079 for (i = 0; i < conf->raid_disks * 2; i++) {
2080 int j;
2081 int size;
2082 int error;
2083 struct bio_vec *bi;
2084 struct bio *b = r1_bio->bios[i];
2085 struct resync_pages *rp = get_resync_pages(b);
2086 if (b->bi_end_io != end_sync_read)
2087 continue;
2088 /* fixup the bio for reuse, but preserve errno */
2089 error = b->bi_error;
2090 bio_reset(b);
2091 b->bi_error = error;
2092 b->bi_vcnt = vcnt;
2093 b->bi_iter.bi_size = r1_bio->sectors << 9;
2094 b->bi_iter.bi_sector = r1_bio->sector +
2095 conf->mirrors[i].rdev->data_offset;
2096 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2097 b->bi_end_io = end_sync_read;
2098 rp->raid_bio = r1_bio;
2099 b->bi_private = rp;
2100
2101 size = b->bi_iter.bi_size;
2102 bio_for_each_segment_all(bi, b, j) {
2103 bi->bv_offset = 0;
2104 if (size > PAGE_SIZE)
2105 bi->bv_len = PAGE_SIZE;
2106 else
2107 bi->bv_len = size;
2108 size -= PAGE_SIZE;
2109 }
2110 }
2111 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2112 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2113 !r1_bio->bios[primary]->bi_error) {
2114 r1_bio->bios[primary]->bi_end_io = NULL;
2115 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2116 break;
2117 }
2118 r1_bio->read_disk = primary;
2119 for (i = 0; i < conf->raid_disks * 2; i++) {
2120 int j;
2121 struct bio *pbio = r1_bio->bios[primary];
2122 struct bio *sbio = r1_bio->bios[i];
2123 int error = sbio->bi_error;
2124 struct page **ppages = get_resync_pages(pbio)->pages;
2125 struct page **spages = get_resync_pages(sbio)->pages;
2126 struct bio_vec *bi;
2127 int page_len[RESYNC_PAGES] = { 0 };
2128
2129 if (sbio->bi_end_io != end_sync_read)
2130 continue;
2131 /* Now we can 'fixup' the error value */
2132 sbio->bi_error = 0;
2133
2134 bio_for_each_segment_all(bi, sbio, j)
2135 page_len[j] = bi->bv_len;
2136
2137 if (!error) {
2138 for (j = vcnt; j-- ; ) {
2139 if (memcmp(page_address(ppages[j]),
2140 page_address(spages[j]),
2141 page_len[j]))
2142 break;
2143 }
2144 } else
2145 j = 0;
2146 if (j >= 0)
2147 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2148 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2149 && !error)) {
2150 /* No need to write to this device. */
2151 sbio->bi_end_io = NULL;
2152 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2153 continue;
2154 }
2155
2156 bio_copy_data(sbio, pbio);
2157 }
2158 }
2159
2160 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2161 {
2162 struct r1conf *conf = mddev->private;
2163 int i;
2164 int disks = conf->raid_disks * 2;
2165 struct bio *bio, *wbio;
2166
2167 bio = r1_bio->bios[r1_bio->read_disk];
2168
2169 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2170 /* ouch - failed to read all of that. */
2171 if (!fix_sync_read_error(r1_bio))
2172 return;
2173
2174 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2175 process_checks(r1_bio);
2176
2177 /*
2178 * schedule writes
2179 */
2180 atomic_set(&r1_bio->remaining, 1);
2181 for (i = 0; i < disks ; i++) {
2182 wbio = r1_bio->bios[i];
2183 if (wbio->bi_end_io == NULL ||
2184 (wbio->bi_end_io == end_sync_read &&
2185 (i == r1_bio->read_disk ||
2186 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2187 continue;
2188 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2189 continue;
2190
2191 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2192 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2193 wbio->bi_opf |= MD_FAILFAST;
2194
2195 wbio->bi_end_io = end_sync_write;
2196 atomic_inc(&r1_bio->remaining);
2197 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2198
2199 generic_make_request(wbio);
2200 }
2201
2202 if (atomic_dec_and_test(&r1_bio->remaining)) {
2203 /* if we're here, all write(s) have completed, so clean up */
2204 int s = r1_bio->sectors;
2205 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2206 test_bit(R1BIO_WriteError, &r1_bio->state))
2207 reschedule_retry(r1_bio);
2208 else {
2209 put_buf(r1_bio);
2210 md_done_sync(mddev, s, 1);
2211 }
2212 }
2213 }
2214
2215 /*
2216 * This is a kernel thread which:
2217 *
2218 * 1. Retries failed read operations on working mirrors.
2219 * 2. Updates the raid superblock when problems encounter.
2220 * 3. Performs writes following reads for array synchronising.
2221 */
2222
2223 static void fix_read_error(struct r1conf *conf, int read_disk,
2224 sector_t sect, int sectors)
2225 {
2226 struct mddev *mddev = conf->mddev;
2227 while(sectors) {
2228 int s = sectors;
2229 int d = read_disk;
2230 int success = 0;
2231 int start;
2232 struct md_rdev *rdev;
2233
2234 if (s > (PAGE_SIZE>>9))
2235 s = PAGE_SIZE >> 9;
2236
2237 do {
2238 sector_t first_bad;
2239 int bad_sectors;
2240
2241 rcu_read_lock();
2242 rdev = rcu_dereference(conf->mirrors[d].rdev);
2243 if (rdev &&
2244 (test_bit(In_sync, &rdev->flags) ||
2245 (!test_bit(Faulty, &rdev->flags) &&
2246 rdev->recovery_offset >= sect + s)) &&
2247 is_badblock(rdev, sect, s,
2248 &first_bad, &bad_sectors) == 0) {
2249 atomic_inc(&rdev->nr_pending);
2250 rcu_read_unlock();
2251 if (sync_page_io(rdev, sect, s<<9,
2252 conf->tmppage, REQ_OP_READ, 0, false))
2253 success = 1;
2254 rdev_dec_pending(rdev, mddev);
2255 if (success)
2256 break;
2257 } else
2258 rcu_read_unlock();
2259 d++;
2260 if (d == conf->raid_disks * 2)
2261 d = 0;
2262 } while (!success && d != read_disk);
2263
2264 if (!success) {
2265 /* Cannot read from anywhere - mark it bad */
2266 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2267 if (!rdev_set_badblocks(rdev, sect, s, 0))
2268 md_error(mddev, rdev);
2269 break;
2270 }
2271 /* write it back and re-read */
2272 start = d;
2273 while (d != read_disk) {
2274 if (d==0)
2275 d = conf->raid_disks * 2;
2276 d--;
2277 rcu_read_lock();
2278 rdev = rcu_dereference(conf->mirrors[d].rdev);
2279 if (rdev &&
2280 !test_bit(Faulty, &rdev->flags)) {
2281 atomic_inc(&rdev->nr_pending);
2282 rcu_read_unlock();
2283 r1_sync_page_io(rdev, sect, s,
2284 conf->tmppage, WRITE);
2285 rdev_dec_pending(rdev, mddev);
2286 } else
2287 rcu_read_unlock();
2288 }
2289 d = start;
2290 while (d != read_disk) {
2291 char b[BDEVNAME_SIZE];
2292 if (d==0)
2293 d = conf->raid_disks * 2;
2294 d--;
2295 rcu_read_lock();
2296 rdev = rcu_dereference(conf->mirrors[d].rdev);
2297 if (rdev &&
2298 !test_bit(Faulty, &rdev->flags)) {
2299 atomic_inc(&rdev->nr_pending);
2300 rcu_read_unlock();
2301 if (r1_sync_page_io(rdev, sect, s,
2302 conf->tmppage, READ)) {
2303 atomic_add(s, &rdev->corrected_errors);
2304 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2305 mdname(mddev), s,
2306 (unsigned long long)(sect +
2307 rdev->data_offset),
2308 bdevname(rdev->bdev, b));
2309 }
2310 rdev_dec_pending(rdev, mddev);
2311 } else
2312 rcu_read_unlock();
2313 }
2314 sectors -= s;
2315 sect += s;
2316 }
2317 }
2318
2319 static int narrow_write_error(struct r1bio *r1_bio, int i)
2320 {
2321 struct mddev *mddev = r1_bio->mddev;
2322 struct r1conf *conf = mddev->private;
2323 struct md_rdev *rdev = conf->mirrors[i].rdev;
2324
2325 /* bio has the data to be written to device 'i' where
2326 * we just recently had a write error.
2327 * We repeatedly clone the bio and trim down to one block,
2328 * then try the write. Where the write fails we record
2329 * a bad block.
2330 * It is conceivable that the bio doesn't exactly align with
2331 * blocks. We must handle this somehow.
2332 *
2333 * We currently own a reference on the rdev.
2334 */
2335
2336 int block_sectors;
2337 sector_t sector;
2338 int sectors;
2339 int sect_to_write = r1_bio->sectors;
2340 int ok = 1;
2341
2342 if (rdev->badblocks.shift < 0)
2343 return 0;
2344
2345 block_sectors = roundup(1 << rdev->badblocks.shift,
2346 bdev_logical_block_size(rdev->bdev) >> 9);
2347 sector = r1_bio->sector;
2348 sectors = ((sector + block_sectors)
2349 & ~(sector_t)(block_sectors - 1))
2350 - sector;
2351
2352 while (sect_to_write) {
2353 struct bio *wbio;
2354 if (sectors > sect_to_write)
2355 sectors = sect_to_write;
2356 /* Write at 'sector' for 'sectors'*/
2357
2358 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2359 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2360 GFP_NOIO,
2361 mddev->bio_set);
2362 /* We really need a _all clone */
2363 wbio->bi_iter = (struct bvec_iter){ 0 };
2364 } else {
2365 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2366 mddev->bio_set);
2367 }
2368
2369 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2370 wbio->bi_iter.bi_sector = r1_bio->sector;
2371 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2372
2373 bio_trim(wbio, sector - r1_bio->sector, sectors);
2374 wbio->bi_iter.bi_sector += rdev->data_offset;
2375 wbio->bi_bdev = rdev->bdev;
2376
2377 if (submit_bio_wait(wbio) < 0)
2378 /* failure! */
2379 ok = rdev_set_badblocks(rdev, sector,
2380 sectors, 0)
2381 && ok;
2382
2383 bio_put(wbio);
2384 sect_to_write -= sectors;
2385 sector += sectors;
2386 sectors = block_sectors;
2387 }
2388 return ok;
2389 }
2390
2391 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2392 {
2393 int m;
2394 int s = r1_bio->sectors;
2395 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2396 struct md_rdev *rdev = conf->mirrors[m].rdev;
2397 struct bio *bio = r1_bio->bios[m];
2398 if (bio->bi_end_io == NULL)
2399 continue;
2400 if (!bio->bi_error &&
2401 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2402 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2403 }
2404 if (bio->bi_error &&
2405 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2406 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2407 md_error(conf->mddev, rdev);
2408 }
2409 }
2410 put_buf(r1_bio);
2411 md_done_sync(conf->mddev, s, 1);
2412 }
2413
2414 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2415 {
2416 int m, idx;
2417 bool fail = false;
2418
2419 for (m = 0; m < conf->raid_disks * 2 ; m++)
2420 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2421 struct md_rdev *rdev = conf->mirrors[m].rdev;
2422 rdev_clear_badblocks(rdev,
2423 r1_bio->sector,
2424 r1_bio->sectors, 0);
2425 rdev_dec_pending(rdev, conf->mddev);
2426 } else if (r1_bio->bios[m] != NULL) {
2427 /* This drive got a write error. We need to
2428 * narrow down and record precise write
2429 * errors.
2430 */
2431 fail = true;
2432 if (!narrow_write_error(r1_bio, m)) {
2433 md_error(conf->mddev,
2434 conf->mirrors[m].rdev);
2435 /* an I/O failed, we can't clear the bitmap */
2436 set_bit(R1BIO_Degraded, &r1_bio->state);
2437 }
2438 rdev_dec_pending(conf->mirrors[m].rdev,
2439 conf->mddev);
2440 }
2441 if (fail) {
2442 spin_lock_irq(&conf->device_lock);
2443 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2444 idx = sector_to_idx(r1_bio->sector);
2445 atomic_inc(&conf->nr_queued[idx]);
2446 spin_unlock_irq(&conf->device_lock);
2447 /*
2448 * In case freeze_array() is waiting for condition
2449 * get_unqueued_pending() == extra to be true.
2450 */
2451 wake_up(&conf->wait_barrier);
2452 md_wakeup_thread(conf->mddev->thread);
2453 } else {
2454 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2455 close_write(r1_bio);
2456 raid_end_bio_io(r1_bio);
2457 }
2458 }
2459
2460 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2461 {
2462 struct mddev *mddev = conf->mddev;
2463 struct bio *bio;
2464 struct md_rdev *rdev;
2465 dev_t bio_dev;
2466 sector_t bio_sector;
2467
2468 clear_bit(R1BIO_ReadError, &r1_bio->state);
2469 /* we got a read error. Maybe the drive is bad. Maybe just
2470 * the block and we can fix it.
2471 * We freeze all other IO, and try reading the block from
2472 * other devices. When we find one, we re-write
2473 * and check it that fixes the read error.
2474 * This is all done synchronously while the array is
2475 * frozen
2476 */
2477
2478 bio = r1_bio->bios[r1_bio->read_disk];
2479 bio_dev = bio->bi_bdev->bd_dev;
2480 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2481 bio_put(bio);
2482 r1_bio->bios[r1_bio->read_disk] = NULL;
2483
2484 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2485 if (mddev->ro == 0
2486 && !test_bit(FailFast, &rdev->flags)) {
2487 freeze_array(conf, 1);
2488 fix_read_error(conf, r1_bio->read_disk,
2489 r1_bio->sector, r1_bio->sectors);
2490 unfreeze_array(conf);
2491 } else {
2492 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2493 }
2494
2495 rdev_dec_pending(rdev, conf->mddev);
2496 allow_barrier(conf, r1_bio->sector);
2497 bio = r1_bio->master_bio;
2498
2499 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2500 r1_bio->state = 0;
2501 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2502 }
2503
2504 static void raid1d(struct md_thread *thread)
2505 {
2506 struct mddev *mddev = thread->mddev;
2507 struct r1bio *r1_bio;
2508 unsigned long flags;
2509 struct r1conf *conf = mddev->private;
2510 struct list_head *head = &conf->retry_list;
2511 struct blk_plug plug;
2512 int idx;
2513
2514 md_check_recovery(mddev);
2515
2516 if (!list_empty_careful(&conf->bio_end_io_list) &&
2517 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2518 LIST_HEAD(tmp);
2519 spin_lock_irqsave(&conf->device_lock, flags);
2520 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2521 list_splice_init(&conf->bio_end_io_list, &tmp);
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523 while (!list_empty(&tmp)) {
2524 r1_bio = list_first_entry(&tmp, struct r1bio,
2525 retry_list);
2526 list_del(&r1_bio->retry_list);
2527 idx = sector_to_idx(r1_bio->sector);
2528 atomic_dec(&conf->nr_queued[idx]);
2529 if (mddev->degraded)
2530 set_bit(R1BIO_Degraded, &r1_bio->state);
2531 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2532 close_write(r1_bio);
2533 raid_end_bio_io(r1_bio);
2534 }
2535 }
2536
2537 blk_start_plug(&plug);
2538 for (;;) {
2539
2540 flush_pending_writes(conf);
2541
2542 spin_lock_irqsave(&conf->device_lock, flags);
2543 if (list_empty(head)) {
2544 spin_unlock_irqrestore(&conf->device_lock, flags);
2545 break;
2546 }
2547 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2548 list_del(head->prev);
2549 idx = sector_to_idx(r1_bio->sector);
2550 atomic_dec(&conf->nr_queued[idx]);
2551 spin_unlock_irqrestore(&conf->device_lock, flags);
2552
2553 mddev = r1_bio->mddev;
2554 conf = mddev->private;
2555 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2556 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2557 test_bit(R1BIO_WriteError, &r1_bio->state))
2558 handle_sync_write_finished(conf, r1_bio);
2559 else
2560 sync_request_write(mddev, r1_bio);
2561 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2562 test_bit(R1BIO_WriteError, &r1_bio->state))
2563 handle_write_finished(conf, r1_bio);
2564 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2565 handle_read_error(conf, r1_bio);
2566 else
2567 WARN_ON_ONCE(1);
2568
2569 cond_resched();
2570 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2571 md_check_recovery(mddev);
2572 }
2573 blk_finish_plug(&plug);
2574 }
2575
2576 static int init_resync(struct r1conf *conf)
2577 {
2578 int buffs;
2579
2580 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2581 BUG_ON(conf->r1buf_pool);
2582 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2583 conf->poolinfo);
2584 if (!conf->r1buf_pool)
2585 return -ENOMEM;
2586 return 0;
2587 }
2588
2589 /*
2590 * perform a "sync" on one "block"
2591 *
2592 * We need to make sure that no normal I/O request - particularly write
2593 * requests - conflict with active sync requests.
2594 *
2595 * This is achieved by tracking pending requests and a 'barrier' concept
2596 * that can be installed to exclude normal IO requests.
2597 */
2598
2599 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2600 int *skipped)
2601 {
2602 struct r1conf *conf = mddev->private;
2603 struct r1bio *r1_bio;
2604 struct bio *bio;
2605 sector_t max_sector, nr_sectors;
2606 int disk = -1;
2607 int i;
2608 int wonly = -1;
2609 int write_targets = 0, read_targets = 0;
2610 sector_t sync_blocks;
2611 int still_degraded = 0;
2612 int good_sectors = RESYNC_SECTORS;
2613 int min_bad = 0; /* number of sectors that are bad in all devices */
2614 int idx = sector_to_idx(sector_nr);
2615
2616 if (!conf->r1buf_pool)
2617 if (init_resync(conf))
2618 return 0;
2619
2620 max_sector = mddev->dev_sectors;
2621 if (sector_nr >= max_sector) {
2622 /* If we aborted, we need to abort the
2623 * sync on the 'current' bitmap chunk (there will
2624 * only be one in raid1 resync.
2625 * We can find the current addess in mddev->curr_resync
2626 */
2627 if (mddev->curr_resync < max_sector) /* aborted */
2628 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2629 &sync_blocks, 1);
2630 else /* completed sync */
2631 conf->fullsync = 0;
2632
2633 bitmap_close_sync(mddev->bitmap);
2634 close_sync(conf);
2635
2636 if (mddev_is_clustered(mddev)) {
2637 conf->cluster_sync_low = 0;
2638 conf->cluster_sync_high = 0;
2639 }
2640 return 0;
2641 }
2642
2643 if (mddev->bitmap == NULL &&
2644 mddev->recovery_cp == MaxSector &&
2645 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2646 conf->fullsync == 0) {
2647 *skipped = 1;
2648 return max_sector - sector_nr;
2649 }
2650 /* before building a request, check if we can skip these blocks..
2651 * This call the bitmap_start_sync doesn't actually record anything
2652 */
2653 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2654 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2655 /* We can skip this block, and probably several more */
2656 *skipped = 1;
2657 return sync_blocks;
2658 }
2659
2660 /*
2661 * If there is non-resync activity waiting for a turn, then let it
2662 * though before starting on this new sync request.
2663 */
2664 if (atomic_read(&conf->nr_waiting[idx]))
2665 schedule_timeout_uninterruptible(1);
2666
2667 /* we are incrementing sector_nr below. To be safe, we check against
2668 * sector_nr + two times RESYNC_SECTORS
2669 */
2670
2671 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2672 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2673 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2674
2675 raise_barrier(conf, sector_nr);
2676
2677 rcu_read_lock();
2678 /*
2679 * If we get a correctably read error during resync or recovery,
2680 * we might want to read from a different device. So we
2681 * flag all drives that could conceivably be read from for READ,
2682 * and any others (which will be non-In_sync devices) for WRITE.
2683 * If a read fails, we try reading from something else for which READ
2684 * is OK.
2685 */
2686
2687 r1_bio->mddev = mddev;
2688 r1_bio->sector = sector_nr;
2689 r1_bio->state = 0;
2690 set_bit(R1BIO_IsSync, &r1_bio->state);
2691 /* make sure good_sectors won't go across barrier unit boundary */
2692 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2693
2694 for (i = 0; i < conf->raid_disks * 2; i++) {
2695 struct md_rdev *rdev;
2696 bio = r1_bio->bios[i];
2697
2698 rdev = rcu_dereference(conf->mirrors[i].rdev);
2699 if (rdev == NULL ||
2700 test_bit(Faulty, &rdev->flags)) {
2701 if (i < conf->raid_disks)
2702 still_degraded = 1;
2703 } else if (!test_bit(In_sync, &rdev->flags)) {
2704 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2705 bio->bi_end_io = end_sync_write;
2706 write_targets ++;
2707 } else {
2708 /* may need to read from here */
2709 sector_t first_bad = MaxSector;
2710 int bad_sectors;
2711
2712 if (is_badblock(rdev, sector_nr, good_sectors,
2713 &first_bad, &bad_sectors)) {
2714 if (first_bad > sector_nr)
2715 good_sectors = first_bad - sector_nr;
2716 else {
2717 bad_sectors -= (sector_nr - first_bad);
2718 if (min_bad == 0 ||
2719 min_bad > bad_sectors)
2720 min_bad = bad_sectors;
2721 }
2722 }
2723 if (sector_nr < first_bad) {
2724 if (test_bit(WriteMostly, &rdev->flags)) {
2725 if (wonly < 0)
2726 wonly = i;
2727 } else {
2728 if (disk < 0)
2729 disk = i;
2730 }
2731 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2732 bio->bi_end_io = end_sync_read;
2733 read_targets++;
2734 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2735 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2736 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2737 /*
2738 * The device is suitable for reading (InSync),
2739 * but has bad block(s) here. Let's try to correct them,
2740 * if we are doing resync or repair. Otherwise, leave
2741 * this device alone for this sync request.
2742 */
2743 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2744 bio->bi_end_io = end_sync_write;
2745 write_targets++;
2746 }
2747 }
2748 if (bio->bi_end_io) {
2749 atomic_inc(&rdev->nr_pending);
2750 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2751 bio->bi_bdev = rdev->bdev;
2752 if (test_bit(FailFast, &rdev->flags))
2753 bio->bi_opf |= MD_FAILFAST;
2754 }
2755 }
2756 rcu_read_unlock();
2757 if (disk < 0)
2758 disk = wonly;
2759 r1_bio->read_disk = disk;
2760
2761 if (read_targets == 0 && min_bad > 0) {
2762 /* These sectors are bad on all InSync devices, so we
2763 * need to mark them bad on all write targets
2764 */
2765 int ok = 1;
2766 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2767 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2768 struct md_rdev *rdev = conf->mirrors[i].rdev;
2769 ok = rdev_set_badblocks(rdev, sector_nr,
2770 min_bad, 0
2771 ) && ok;
2772 }
2773 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2774 *skipped = 1;
2775 put_buf(r1_bio);
2776
2777 if (!ok) {
2778 /* Cannot record the badblocks, so need to
2779 * abort the resync.
2780 * If there are multiple read targets, could just
2781 * fail the really bad ones ???
2782 */
2783 conf->recovery_disabled = mddev->recovery_disabled;
2784 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2785 return 0;
2786 } else
2787 return min_bad;
2788
2789 }
2790 if (min_bad > 0 && min_bad < good_sectors) {
2791 /* only resync enough to reach the next bad->good
2792 * transition */
2793 good_sectors = min_bad;
2794 }
2795
2796 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2797 /* extra read targets are also write targets */
2798 write_targets += read_targets-1;
2799
2800 if (write_targets == 0 || read_targets == 0) {
2801 /* There is nowhere to write, so all non-sync
2802 * drives must be failed - so we are finished
2803 */
2804 sector_t rv;
2805 if (min_bad > 0)
2806 max_sector = sector_nr + min_bad;
2807 rv = max_sector - sector_nr;
2808 *skipped = 1;
2809 put_buf(r1_bio);
2810 return rv;
2811 }
2812
2813 if (max_sector > mddev->resync_max)
2814 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2815 if (max_sector > sector_nr + good_sectors)
2816 max_sector = sector_nr + good_sectors;
2817 nr_sectors = 0;
2818 sync_blocks = 0;
2819 do {
2820 struct page *page;
2821 int len = PAGE_SIZE;
2822 if (sector_nr + (len>>9) > max_sector)
2823 len = (max_sector - sector_nr) << 9;
2824 if (len == 0)
2825 break;
2826 if (sync_blocks == 0) {
2827 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2828 &sync_blocks, still_degraded) &&
2829 !conf->fullsync &&
2830 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2831 break;
2832 if ((len >> 9) > sync_blocks)
2833 len = sync_blocks<<9;
2834 }
2835
2836 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2837 struct resync_pages *rp;
2838
2839 bio = r1_bio->bios[i];
2840 rp = get_resync_pages(bio);
2841 if (bio->bi_end_io) {
2842 page = resync_fetch_page(rp, rp->idx++);
2843
2844 /*
2845 * won't fail because the vec table is big
2846 * enough to hold all these pages
2847 */
2848 bio_add_page(bio, page, len, 0);
2849 }
2850 }
2851 nr_sectors += len>>9;
2852 sector_nr += len>>9;
2853 sync_blocks -= (len>>9);
2854 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2855
2856 r1_bio->sectors = nr_sectors;
2857
2858 if (mddev_is_clustered(mddev) &&
2859 conf->cluster_sync_high < sector_nr + nr_sectors) {
2860 conf->cluster_sync_low = mddev->curr_resync_completed;
2861 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2862 /* Send resync message */
2863 md_cluster_ops->resync_info_update(mddev,
2864 conf->cluster_sync_low,
2865 conf->cluster_sync_high);
2866 }
2867
2868 /* For a user-requested sync, we read all readable devices and do a
2869 * compare
2870 */
2871 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2872 atomic_set(&r1_bio->remaining, read_targets);
2873 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2874 bio = r1_bio->bios[i];
2875 if (bio->bi_end_io == end_sync_read) {
2876 read_targets--;
2877 md_sync_acct(bio->bi_bdev, nr_sectors);
2878 if (read_targets == 1)
2879 bio->bi_opf &= ~MD_FAILFAST;
2880 generic_make_request(bio);
2881 }
2882 }
2883 } else {
2884 atomic_set(&r1_bio->remaining, 1);
2885 bio = r1_bio->bios[r1_bio->read_disk];
2886 md_sync_acct(bio->bi_bdev, nr_sectors);
2887 if (read_targets == 1)
2888 bio->bi_opf &= ~MD_FAILFAST;
2889 generic_make_request(bio);
2890
2891 }
2892 return nr_sectors;
2893 }
2894
2895 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2896 {
2897 if (sectors)
2898 return sectors;
2899
2900 return mddev->dev_sectors;
2901 }
2902
2903 static struct r1conf *setup_conf(struct mddev *mddev)
2904 {
2905 struct r1conf *conf;
2906 int i;
2907 struct raid1_info *disk;
2908 struct md_rdev *rdev;
2909 int err = -ENOMEM;
2910
2911 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2912 if (!conf)
2913 goto abort;
2914
2915 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2916 sizeof(atomic_t), GFP_KERNEL);
2917 if (!conf->nr_pending)
2918 goto abort;
2919
2920 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2921 sizeof(atomic_t), GFP_KERNEL);
2922 if (!conf->nr_waiting)
2923 goto abort;
2924
2925 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2926 sizeof(atomic_t), GFP_KERNEL);
2927 if (!conf->nr_queued)
2928 goto abort;
2929
2930 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2931 sizeof(atomic_t), GFP_KERNEL);
2932 if (!conf->barrier)
2933 goto abort;
2934
2935 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2936 * mddev->raid_disks * 2,
2937 GFP_KERNEL);
2938 if (!conf->mirrors)
2939 goto abort;
2940
2941 conf->tmppage = alloc_page(GFP_KERNEL);
2942 if (!conf->tmppage)
2943 goto abort;
2944
2945 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2946 if (!conf->poolinfo)
2947 goto abort;
2948 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2949 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2950 r1bio_pool_free,
2951 conf->poolinfo);
2952 if (!conf->r1bio_pool)
2953 goto abort;
2954
2955 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2956 if (!conf->bio_split)
2957 goto abort;
2958
2959 conf->poolinfo->mddev = mddev;
2960
2961 err = -EINVAL;
2962 spin_lock_init(&conf->device_lock);
2963 rdev_for_each(rdev, mddev) {
2964 int disk_idx = rdev->raid_disk;
2965 if (disk_idx >= mddev->raid_disks
2966 || disk_idx < 0)
2967 continue;
2968 if (test_bit(Replacement, &rdev->flags))
2969 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2970 else
2971 disk = conf->mirrors + disk_idx;
2972
2973 if (disk->rdev)
2974 goto abort;
2975 disk->rdev = rdev;
2976 disk->head_position = 0;
2977 disk->seq_start = MaxSector;
2978 }
2979 conf->raid_disks = mddev->raid_disks;
2980 conf->mddev = mddev;
2981 INIT_LIST_HEAD(&conf->retry_list);
2982 INIT_LIST_HEAD(&conf->bio_end_io_list);
2983
2984 spin_lock_init(&conf->resync_lock);
2985 init_waitqueue_head(&conf->wait_barrier);
2986
2987 bio_list_init(&conf->pending_bio_list);
2988 conf->pending_count = 0;
2989 conf->recovery_disabled = mddev->recovery_disabled - 1;
2990
2991 err = -EIO;
2992 for (i = 0; i < conf->raid_disks * 2; i++) {
2993
2994 disk = conf->mirrors + i;
2995
2996 if (i < conf->raid_disks &&
2997 disk[conf->raid_disks].rdev) {
2998 /* This slot has a replacement. */
2999 if (!disk->rdev) {
3000 /* No original, just make the replacement
3001 * a recovering spare
3002 */
3003 disk->rdev =
3004 disk[conf->raid_disks].rdev;
3005 disk[conf->raid_disks].rdev = NULL;
3006 } else if (!test_bit(In_sync, &disk->rdev->flags))
3007 /* Original is not in_sync - bad */
3008 goto abort;
3009 }
3010
3011 if (!disk->rdev ||
3012 !test_bit(In_sync, &disk->rdev->flags)) {
3013 disk->head_position = 0;
3014 if (disk->rdev &&
3015 (disk->rdev->saved_raid_disk < 0))
3016 conf->fullsync = 1;
3017 }
3018 }
3019
3020 err = -ENOMEM;
3021 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3022 if (!conf->thread)
3023 goto abort;
3024
3025 return conf;
3026
3027 abort:
3028 if (conf) {
3029 mempool_destroy(conf->r1bio_pool);
3030 kfree(conf->mirrors);
3031 safe_put_page(conf->tmppage);
3032 kfree(conf->poolinfo);
3033 kfree(conf->nr_pending);
3034 kfree(conf->nr_waiting);
3035 kfree(conf->nr_queued);
3036 kfree(conf->barrier);
3037 if (conf->bio_split)
3038 bioset_free(conf->bio_split);
3039 kfree(conf);
3040 }
3041 return ERR_PTR(err);
3042 }
3043
3044 static void raid1_free(struct mddev *mddev, void *priv);
3045 static int raid1_run(struct mddev *mddev)
3046 {
3047 struct r1conf *conf;
3048 int i;
3049 struct md_rdev *rdev;
3050 int ret;
3051 bool discard_supported = false;
3052
3053 if (mddev->level != 1) {
3054 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3055 mdname(mddev), mddev->level);
3056 return -EIO;
3057 }
3058 if (mddev->reshape_position != MaxSector) {
3059 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3060 mdname(mddev));
3061 return -EIO;
3062 }
3063 /*
3064 * copy the already verified devices into our private RAID1
3065 * bookkeeping area. [whatever we allocate in run(),
3066 * should be freed in raid1_free()]
3067 */
3068 if (mddev->private == NULL)
3069 conf = setup_conf(mddev);
3070 else
3071 conf = mddev->private;
3072
3073 if (IS_ERR(conf))
3074 return PTR_ERR(conf);
3075
3076 if (mddev->queue) {
3077 blk_queue_max_write_same_sectors(mddev->queue, 0);
3078 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3079 }
3080
3081 rdev_for_each(rdev, mddev) {
3082 if (!mddev->gendisk)
3083 continue;
3084 disk_stack_limits(mddev->gendisk, rdev->bdev,
3085 rdev->data_offset << 9);
3086 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3087 discard_supported = true;
3088 }
3089
3090 mddev->degraded = 0;
3091 for (i=0; i < conf->raid_disks; i++)
3092 if (conf->mirrors[i].rdev == NULL ||
3093 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3094 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3095 mddev->degraded++;
3096
3097 if (conf->raid_disks - mddev->degraded == 1)
3098 mddev->recovery_cp = MaxSector;
3099
3100 if (mddev->recovery_cp != MaxSector)
3101 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3102 mdname(mddev));
3103 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3104 mdname(mddev), mddev->raid_disks - mddev->degraded,
3105 mddev->raid_disks);
3106
3107 /*
3108 * Ok, everything is just fine now
3109 */
3110 mddev->thread = conf->thread;
3111 conf->thread = NULL;
3112 mddev->private = conf;
3113 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3114
3115 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3116
3117 if (mddev->queue) {
3118 if (discard_supported)
3119 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3120 mddev->queue);
3121 else
3122 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3123 mddev->queue);
3124 }
3125
3126 ret = md_integrity_register(mddev);
3127 if (ret) {
3128 md_unregister_thread(&mddev->thread);
3129 raid1_free(mddev, conf);
3130 }
3131 return ret;
3132 }
3133
3134 static void raid1_free(struct mddev *mddev, void *priv)
3135 {
3136 struct r1conf *conf = priv;
3137
3138 mempool_destroy(conf->r1bio_pool);
3139 kfree(conf->mirrors);
3140 safe_put_page(conf->tmppage);
3141 kfree(conf->poolinfo);
3142 kfree(conf->nr_pending);
3143 kfree(conf->nr_waiting);
3144 kfree(conf->nr_queued);
3145 kfree(conf->barrier);
3146 if (conf->bio_split)
3147 bioset_free(conf->bio_split);
3148 kfree(conf);
3149 }
3150
3151 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3152 {
3153 /* no resync is happening, and there is enough space
3154 * on all devices, so we can resize.
3155 * We need to make sure resync covers any new space.
3156 * If the array is shrinking we should possibly wait until
3157 * any io in the removed space completes, but it hardly seems
3158 * worth it.
3159 */
3160 sector_t newsize = raid1_size(mddev, sectors, 0);
3161 if (mddev->external_size &&
3162 mddev->array_sectors > newsize)
3163 return -EINVAL;
3164 if (mddev->bitmap) {
3165 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3166 if (ret)
3167 return ret;
3168 }
3169 md_set_array_sectors(mddev, newsize);
3170 if (sectors > mddev->dev_sectors &&
3171 mddev->recovery_cp > mddev->dev_sectors) {
3172 mddev->recovery_cp = mddev->dev_sectors;
3173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3174 }
3175 mddev->dev_sectors = sectors;
3176 mddev->resync_max_sectors = sectors;
3177 return 0;
3178 }
3179
3180 static int raid1_reshape(struct mddev *mddev)
3181 {
3182 /* We need to:
3183 * 1/ resize the r1bio_pool
3184 * 2/ resize conf->mirrors
3185 *
3186 * We allocate a new r1bio_pool if we can.
3187 * Then raise a device barrier and wait until all IO stops.
3188 * Then resize conf->mirrors and swap in the new r1bio pool.
3189 *
3190 * At the same time, we "pack" the devices so that all the missing
3191 * devices have the higher raid_disk numbers.
3192 */
3193 mempool_t *newpool, *oldpool;
3194 struct pool_info *newpoolinfo;
3195 struct raid1_info *newmirrors;
3196 struct r1conf *conf = mddev->private;
3197 int cnt, raid_disks;
3198 unsigned long flags;
3199 int d, d2;
3200
3201 /* Cannot change chunk_size, layout, or level */
3202 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3203 mddev->layout != mddev->new_layout ||
3204 mddev->level != mddev->new_level) {
3205 mddev->new_chunk_sectors = mddev->chunk_sectors;
3206 mddev->new_layout = mddev->layout;
3207 mddev->new_level = mddev->level;
3208 return -EINVAL;
3209 }
3210
3211 if (!mddev_is_clustered(mddev))
3212 md_allow_write(mddev);
3213
3214 raid_disks = mddev->raid_disks + mddev->delta_disks;
3215
3216 if (raid_disks < conf->raid_disks) {
3217 cnt=0;
3218 for (d= 0; d < conf->raid_disks; d++)
3219 if (conf->mirrors[d].rdev)
3220 cnt++;
3221 if (cnt > raid_disks)
3222 return -EBUSY;
3223 }
3224
3225 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3226 if (!newpoolinfo)
3227 return -ENOMEM;
3228 newpoolinfo->mddev = mddev;
3229 newpoolinfo->raid_disks = raid_disks * 2;
3230
3231 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3232 r1bio_pool_free, newpoolinfo);
3233 if (!newpool) {
3234 kfree(newpoolinfo);
3235 return -ENOMEM;
3236 }
3237 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3238 GFP_KERNEL);
3239 if (!newmirrors) {
3240 kfree(newpoolinfo);
3241 mempool_destroy(newpool);
3242 return -ENOMEM;
3243 }
3244
3245 freeze_array(conf, 0);
3246
3247 /* ok, everything is stopped */
3248 oldpool = conf->r1bio_pool;
3249 conf->r1bio_pool = newpool;
3250
3251 for (d = d2 = 0; d < conf->raid_disks; d++) {
3252 struct md_rdev *rdev = conf->mirrors[d].rdev;
3253 if (rdev && rdev->raid_disk != d2) {
3254 sysfs_unlink_rdev(mddev, rdev);
3255 rdev->raid_disk = d2;
3256 sysfs_unlink_rdev(mddev, rdev);
3257 if (sysfs_link_rdev(mddev, rdev))
3258 pr_warn("md/raid1:%s: cannot register rd%d\n",
3259 mdname(mddev), rdev->raid_disk);
3260 }
3261 if (rdev)
3262 newmirrors[d2++].rdev = rdev;
3263 }
3264 kfree(conf->mirrors);
3265 conf->mirrors = newmirrors;
3266 kfree(conf->poolinfo);
3267 conf->poolinfo = newpoolinfo;
3268
3269 spin_lock_irqsave(&conf->device_lock, flags);
3270 mddev->degraded += (raid_disks - conf->raid_disks);
3271 spin_unlock_irqrestore(&conf->device_lock, flags);
3272 conf->raid_disks = mddev->raid_disks = raid_disks;
3273 mddev->delta_disks = 0;
3274
3275 unfreeze_array(conf);
3276
3277 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3278 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3279 md_wakeup_thread(mddev->thread);
3280
3281 mempool_destroy(oldpool);
3282 return 0;
3283 }
3284
3285 static void raid1_quiesce(struct mddev *mddev, int state)
3286 {
3287 struct r1conf *conf = mddev->private;
3288
3289 switch(state) {
3290 case 2: /* wake for suspend */
3291 wake_up(&conf->wait_barrier);
3292 break;
3293 case 1:
3294 freeze_array(conf, 0);
3295 break;
3296 case 0:
3297 unfreeze_array(conf);
3298 break;
3299 }
3300 }
3301
3302 static void *raid1_takeover(struct mddev *mddev)
3303 {
3304 /* raid1 can take over:
3305 * raid5 with 2 devices, any layout or chunk size
3306 */
3307 if (mddev->level == 5 && mddev->raid_disks == 2) {
3308 struct r1conf *conf;
3309 mddev->new_level = 1;
3310 mddev->new_layout = 0;
3311 mddev->new_chunk_sectors = 0;
3312 conf = setup_conf(mddev);
3313 if (!IS_ERR(conf)) {
3314 /* Array must appear to be quiesced */
3315 conf->array_frozen = 1;
3316 mddev_clear_unsupported_flags(mddev,
3317 UNSUPPORTED_MDDEV_FLAGS);
3318 }
3319 return conf;
3320 }
3321 return ERR_PTR(-EINVAL);
3322 }
3323
3324 static struct md_personality raid1_personality =
3325 {
3326 .name = "raid1",
3327 .level = 1,
3328 .owner = THIS_MODULE,
3329 .make_request = raid1_make_request,
3330 .run = raid1_run,
3331 .free = raid1_free,
3332 .status = raid1_status,
3333 .error_handler = raid1_error,
3334 .hot_add_disk = raid1_add_disk,
3335 .hot_remove_disk= raid1_remove_disk,
3336 .spare_active = raid1_spare_active,
3337 .sync_request = raid1_sync_request,
3338 .resize = raid1_resize,
3339 .size = raid1_size,
3340 .check_reshape = raid1_reshape,
3341 .quiesce = raid1_quiesce,
3342 .takeover = raid1_takeover,
3343 .congested = raid1_congested,
3344 };
3345
3346 static int __init raid_init(void)
3347 {
3348 return register_md_personality(&raid1_personality);
3349 }
3350
3351 static void raid_exit(void)
3352 {
3353 unregister_md_personality(&raid1_personality);
3354 }
3355
3356 module_init(raid_init);
3357 module_exit(raid_exit);
3358 MODULE_LICENSE("GPL");
3359 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3360 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3361 MODULE_ALIAS("md-raid1");
3362 MODULE_ALIAS("md-level-1");
3363
3364 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);