]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid1.c
Merge tag 'fbdev-v4.12' of git://github.com/bzolnier/linux
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
52
53 /*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 return bio->bi_private;
91 }
92
93 /*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct pool_info *pi = data;
105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
108 return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 struct pool_info *pi = data;
126 struct r1bio *r1_bio;
127 struct bio *bio;
128 int need_pages;
129 int j;
130 struct resync_pages *rps;
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 if (!r1_bio)
134 return NULL;
135
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
155 */
156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 need_pages = pi->raid_disks;
158 else
159 need_pages = 1;
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
163 bio = r1_bio->bios[j];
164
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
182 out_free_pages:
183 while (--j >= 0)
184 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187 while (++j < pi->raid_disks)
188 bio_put(r1_bio->bios[j]);
189 kfree(rps);
190
191 out_free_r1bio:
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 struct pool_info *pi = data;
199 int i;
200 struct r1bio *r1bio = __r1_bio;
201 struct resync_pages *rp = NULL;
202
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
206 bio_put(r1bio->bios[i]);
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
211
212 r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 int i;
218
219 for (i = 0; i < conf->raid_disks * 2; i++) {
220 struct bio **bio = r1_bio->bios + i;
221 if (!BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 struct r1conf *conf = r1_bio->mddev->private;
230
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t sect = r1_bio->sector;
239 int i;
240
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
249 lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 unsigned long flags;
255 struct mddev *mddev = r1_bio->mddev;
256 struct r1conf *conf = mddev->private;
257 int idx;
258
259 idx = sector_to_idx(r1_bio->sector);
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
262 atomic_inc(&conf->nr_queued[idx]);
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
265 wake_up(&conf->wait_barrier);
266 md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 struct bio *bio = r1_bio->master_bio;
277 struct r1conf *conf = r1_bio->mddev->private;
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 bio->bi_error = -EIO;
281
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 struct bio *bio = r1_bio->master_bio;
293
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
300
301 call_bio_endio(r1_bio);
302 }
303 free_r1bio(r1_bio);
304 }
305
306 /*
307 * Update disk head position estimator based on IRQ completion info.
308 */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318 * Find the disk number which triggered given bio
319 */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
325
326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
330 BUG_ON(mirror == raid_disks * 2);
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 int uptodate = !bio->bi_error;
339 struct r1bio *r1_bio = bio->bi_private;
340 struct r1conf *conf = r1_bio->mddev->private;
341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
346 update_head_pos(r1_bio->read_disk, r1_bio);
347
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
359 */
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 test_bit(In_sync, &rdev->flags)))
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
368
369 if (uptodate) {
370 raid_end_bio_io(r1_bio);
371 rdev_dec_pending(rdev, conf->mddev);
372 } else {
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
381 set_bit(R1BIO_ReadError, &r1_bio->state);
382 reschedule_retry(r1_bio);
383 /* don't drop the reference on read_disk yet */
384 }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
416 }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 struct r1bio *r1_bio = bio->bi_private;
422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 struct r1conf *conf = r1_bio->mddev->private;
424 struct bio *to_put = NULL;
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
434 if (bio->bi_error && !discard_error) {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
458 } else {
459 /*
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
468 */
469 sector_t first_bad;
470 int bad_sectors;
471
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
484 set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486 /* Maybe we can clear some bad blocks. */
487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 &first_bad, &bad_sectors) && !discard_error) {
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
494 if (behind) {
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
499 if (test_bit(WriteMostly, &rdev->flags))
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
518 call_bio_endio(r1_bio);
519 }
520 }
521 }
522 if (r1_bio->bios[mirror] == NULL)
523 rdev_dec_pending(rdev, conf->mddev);
524
525 /*
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 r1_bio_write_done(r1_bio);
530
531 if (to_put)
532 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537 {
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552 }
553
554 /*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 const sector_t this_sector = r1_bio->sector;
571 int sectors;
572 int best_good_sectors;
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
575 int disk;
576 sector_t best_dist;
577 unsigned int min_pending;
578 struct md_rdev *rdev;
579 int choose_first;
580 int choose_next_idle;
581
582 rcu_read_lock();
583 /*
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
589 sectors = r1_bio->sectors;
590 best_disk = -1;
591 best_dist_disk = -1;
592 best_dist = MaxSector;
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
595 best_good_sectors = 0;
596 has_nonrot_disk = 0;
597 choose_next_idle = 0;
598 clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
607
608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 sector_t dist;
610 sector_t first_bad;
611 int bad_sectors;
612 unsigned int pending;
613 bool nonrot;
614
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
618 || test_bit(Faulty, &rdev->flags))
619 continue;
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
622 continue;
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
626 if (best_dist_disk < 0) {
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
629 if (first_bad <= this_sector)
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
635 best_dist_disk = disk;
636 best_pending_disk = disk;
637 }
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else
670 best_good_sectors = sectors;
671
672 if (best_disk >= 0)
673 /* At least two disks to choose from so failfast is OK */
674 set_bit(R1BIO_FailFast, &r1_bio->state);
675
676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 has_nonrot_disk |= nonrot;
678 pending = atomic_read(&rdev->nr_pending);
679 dist = abs(this_sector - conf->mirrors[disk].head_position);
680 if (choose_first) {
681 best_disk = disk;
682 break;
683 }
684 /* Don't change to another disk for sequential reads */
685 if (conf->mirrors[disk].next_seq_sect == this_sector
686 || dist == 0) {
687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 struct raid1_info *mirror = &conf->mirrors[disk];
689
690 best_disk = disk;
691 /*
692 * If buffered sequential IO size exceeds optimal
693 * iosize, check if there is idle disk. If yes, choose
694 * the idle disk. read_balance could already choose an
695 * idle disk before noticing it's a sequential IO in
696 * this disk. This doesn't matter because this disk
697 * will idle, next time it will be utilized after the
698 * first disk has IO size exceeds optimal iosize. In
699 * this way, iosize of the first disk will be optimal
700 * iosize at least. iosize of the second disk might be
701 * small, but not a big deal since when the second disk
702 * starts IO, the first disk is likely still busy.
703 */
704 if (nonrot && opt_iosize > 0 &&
705 mirror->seq_start != MaxSector &&
706 mirror->next_seq_sect > opt_iosize &&
707 mirror->next_seq_sect - opt_iosize >=
708 mirror->seq_start) {
709 choose_next_idle = 1;
710 continue;
711 }
712 break;
713 }
714
715 if (choose_next_idle)
716 continue;
717
718 if (min_pending > pending) {
719 min_pending = pending;
720 best_pending_disk = disk;
721 }
722
723 if (dist < best_dist) {
724 best_dist = dist;
725 best_dist_disk = disk;
726 }
727 }
728
729 /*
730 * If all disks are rotational, choose the closest disk. If any disk is
731 * non-rotational, choose the disk with less pending request even the
732 * disk is rotational, which might/might not be optimal for raids with
733 * mixed ratation/non-rotational disks depending on workload.
734 */
735 if (best_disk == -1) {
736 if (has_nonrot_disk || min_pending == 0)
737 best_disk = best_pending_disk;
738 else
739 best_disk = best_dist_disk;
740 }
741
742 if (best_disk >= 0) {
743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744 if (!rdev)
745 goto retry;
746 atomic_inc(&rdev->nr_pending);
747 sectors = best_good_sectors;
748
749 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 conf->mirrors[best_disk].seq_start = this_sector;
751
752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753 }
754 rcu_read_unlock();
755 *max_sectors = sectors;
756
757 return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762 struct r1conf *conf = mddev->private;
763 int i, ret = 0;
764
765 if ((bits & (1 << WB_async_congested)) &&
766 conf->pending_count >= max_queued_requests)
767 return 1;
768
769 rcu_read_lock();
770 for (i = 0; i < conf->raid_disks * 2; i++) {
771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773 struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775 BUG_ON(!q);
776
777 /* Note the '|| 1' - when read_balance prefers
778 * non-congested targets, it can be removed
779 */
780 if ((bits & (1 << WB_async_congested)) || 1)
781 ret |= bdi_congested(q->backing_dev_info, bits);
782 else
783 ret &= bdi_congested(q->backing_dev_info, bits);
784 }
785 }
786 rcu_read_unlock();
787 return ret;
788 }
789
790 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
791 {
792 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
793 bitmap_unplug(conf->mddev->bitmap);
794 wake_up(&conf->wait_barrier);
795
796 while (bio) { /* submit pending writes */
797 struct bio *next = bio->bi_next;
798 struct md_rdev *rdev = (void*)bio->bi_bdev;
799 bio->bi_next = NULL;
800 bio->bi_bdev = rdev->bdev;
801 if (test_bit(Faulty, &rdev->flags)) {
802 bio->bi_error = -EIO;
803 bio_endio(bio);
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
806 /* Just ignore it */
807 bio_endio(bio);
808 else
809 generic_make_request(bio);
810 bio = next;
811 }
812 }
813
814 static void flush_pending_writes(struct r1conf *conf)
815 {
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
818 */
819 spin_lock_irq(&conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
822 struct bio *bio;
823 bio = bio_list_get(&conf->pending_bio_list);
824 conf->pending_count = 0;
825 spin_unlock_irq(&conf->device_lock);
826 flush_bio_list(conf, bio);
827 } else
828 spin_unlock_irq(&conf->device_lock);
829 }
830
831 /* Barriers....
832 * Sometimes we need to suspend IO while we do something else,
833 * either some resync/recovery, or reconfigure the array.
834 * To do this we raise a 'barrier'.
835 * The 'barrier' is a counter that can be raised multiple times
836 * to count how many activities are happening which preclude
837 * normal IO.
838 * We can only raise the barrier if there is no pending IO.
839 * i.e. if nr_pending == 0.
840 * We choose only to raise the barrier if no-one is waiting for the
841 * barrier to go down. This means that as soon as an IO request
842 * is ready, no other operations which require a barrier will start
843 * until the IO request has had a chance.
844 *
845 * So: regular IO calls 'wait_barrier'. When that returns there
846 * is no backgroup IO happening, It must arrange to call
847 * allow_barrier when it has finished its IO.
848 * backgroup IO calls must call raise_barrier. Once that returns
849 * there is no normal IO happeing. It must arrange to call
850 * lower_barrier when the particular background IO completes.
851 */
852 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
853 {
854 int idx = sector_to_idx(sector_nr);
855
856 spin_lock_irq(&conf->resync_lock);
857
858 /* Wait until no block IO is waiting */
859 wait_event_lock_irq(conf->wait_barrier,
860 !atomic_read(&conf->nr_waiting[idx]),
861 conf->resync_lock);
862
863 /* block any new IO from starting */
864 atomic_inc(&conf->barrier[idx]);
865 /*
866 * In raise_barrier() we firstly increase conf->barrier[idx] then
867 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
868 * increase conf->nr_pending[idx] then check conf->barrier[idx].
869 * A memory barrier here to make sure conf->nr_pending[idx] won't
870 * be fetched before conf->barrier[idx] is increased. Otherwise
871 * there will be a race between raise_barrier() and _wait_barrier().
872 */
873 smp_mb__after_atomic();
874
875 /* For these conditions we must wait:
876 * A: while the array is in frozen state
877 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
878 * existing in corresponding I/O barrier bucket.
879 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
880 * max resync count which allowed on current I/O barrier bucket.
881 */
882 wait_event_lock_irq(conf->wait_barrier,
883 !conf->array_frozen &&
884 !atomic_read(&conf->nr_pending[idx]) &&
885 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
886 conf->resync_lock);
887
888 atomic_inc(&conf->nr_sync_pending);
889 spin_unlock_irq(&conf->resync_lock);
890 }
891
892 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
893 {
894 int idx = sector_to_idx(sector_nr);
895
896 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
897
898 atomic_dec(&conf->barrier[idx]);
899 atomic_dec(&conf->nr_sync_pending);
900 wake_up(&conf->wait_barrier);
901 }
902
903 static void _wait_barrier(struct r1conf *conf, int idx)
904 {
905 /*
906 * We need to increase conf->nr_pending[idx] very early here,
907 * then raise_barrier() can be blocked when it waits for
908 * conf->nr_pending[idx] to be 0. Then we can avoid holding
909 * conf->resync_lock when there is no barrier raised in same
910 * barrier unit bucket. Also if the array is frozen, I/O
911 * should be blocked until array is unfrozen.
912 */
913 atomic_inc(&conf->nr_pending[idx]);
914 /*
915 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
916 * check conf->barrier[idx]. In raise_barrier() we firstly increase
917 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
918 * barrier is necessary here to make sure conf->barrier[idx] won't be
919 * fetched before conf->nr_pending[idx] is increased. Otherwise there
920 * will be a race between _wait_barrier() and raise_barrier().
921 */
922 smp_mb__after_atomic();
923
924 /*
925 * Don't worry about checking two atomic_t variables at same time
926 * here. If during we check conf->barrier[idx], the array is
927 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
928 * 0, it is safe to return and make the I/O continue. Because the
929 * array is frozen, all I/O returned here will eventually complete
930 * or be queued, no race will happen. See code comment in
931 * frozen_array().
932 */
933 if (!READ_ONCE(conf->array_frozen) &&
934 !atomic_read(&conf->barrier[idx]))
935 return;
936
937 /*
938 * After holding conf->resync_lock, conf->nr_pending[idx]
939 * should be decreased before waiting for barrier to drop.
940 * Otherwise, we may encounter a race condition because
941 * raise_barrer() might be waiting for conf->nr_pending[idx]
942 * to be 0 at same time.
943 */
944 spin_lock_irq(&conf->resync_lock);
945 atomic_inc(&conf->nr_waiting[idx]);
946 atomic_dec(&conf->nr_pending[idx]);
947 /*
948 * In case freeze_array() is waiting for
949 * get_unqueued_pending() == extra
950 */
951 wake_up(&conf->wait_barrier);
952 /* Wait for the barrier in same barrier unit bucket to drop. */
953 wait_event_lock_irq(conf->wait_barrier,
954 !conf->array_frozen &&
955 !atomic_read(&conf->barrier[idx]),
956 conf->resync_lock);
957 atomic_inc(&conf->nr_pending[idx]);
958 atomic_dec(&conf->nr_waiting[idx]);
959 spin_unlock_irq(&conf->resync_lock);
960 }
961
962 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
963 {
964 int idx = sector_to_idx(sector_nr);
965
966 /*
967 * Very similar to _wait_barrier(). The difference is, for read
968 * I/O we don't need wait for sync I/O, but if the whole array
969 * is frozen, the read I/O still has to wait until the array is
970 * unfrozen. Since there is no ordering requirement with
971 * conf->barrier[idx] here, memory barrier is unnecessary as well.
972 */
973 atomic_inc(&conf->nr_pending[idx]);
974
975 if (!READ_ONCE(conf->array_frozen))
976 return;
977
978 spin_lock_irq(&conf->resync_lock);
979 atomic_inc(&conf->nr_waiting[idx]);
980 atomic_dec(&conf->nr_pending[idx]);
981 /*
982 * In case freeze_array() is waiting for
983 * get_unqueued_pending() == extra
984 */
985 wake_up(&conf->wait_barrier);
986 /* Wait for array to be unfrozen */
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen,
989 conf->resync_lock);
990 atomic_inc(&conf->nr_pending[idx]);
991 atomic_dec(&conf->nr_waiting[idx]);
992 spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
996 {
997 int idx = sector_to_idx(sector_nr);
998
999 _wait_barrier(conf, idx);
1000 }
1001
1002 static void wait_all_barriers(struct r1conf *conf)
1003 {
1004 int idx;
1005
1006 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1007 _wait_barrier(conf, idx);
1008 }
1009
1010 static void _allow_barrier(struct r1conf *conf, int idx)
1011 {
1012 atomic_dec(&conf->nr_pending[idx]);
1013 wake_up(&conf->wait_barrier);
1014 }
1015
1016 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1017 {
1018 int idx = sector_to_idx(sector_nr);
1019
1020 _allow_barrier(conf, idx);
1021 }
1022
1023 static void allow_all_barriers(struct r1conf *conf)
1024 {
1025 int idx;
1026
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 _allow_barrier(conf, idx);
1029 }
1030
1031 /* conf->resync_lock should be held */
1032 static int get_unqueued_pending(struct r1conf *conf)
1033 {
1034 int idx, ret;
1035
1036 ret = atomic_read(&conf->nr_sync_pending);
1037 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1038 ret += atomic_read(&conf->nr_pending[idx]) -
1039 atomic_read(&conf->nr_queued[idx]);
1040
1041 return ret;
1042 }
1043
1044 static void freeze_array(struct r1conf *conf, int extra)
1045 {
1046 /* Stop sync I/O and normal I/O and wait for everything to
1047 * go quiet.
1048 * This is called in two situations:
1049 * 1) management command handlers (reshape, remove disk, quiesce).
1050 * 2) one normal I/O request failed.
1051
1052 * After array_frozen is set to 1, new sync IO will be blocked at
1053 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1054 * or wait_read_barrier(). The flying I/Os will either complete or be
1055 * queued. When everything goes quite, there are only queued I/Os left.
1056
1057 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1058 * barrier bucket index which this I/O request hits. When all sync and
1059 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1060 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1061 * in handle_read_error(), we may call freeze_array() before trying to
1062 * fix the read error. In this case, the error read I/O is not queued,
1063 * so get_unqueued_pending() == 1.
1064 *
1065 * Therefore before this function returns, we need to wait until
1066 * get_unqueued_pendings(conf) gets equal to extra. For
1067 * normal I/O context, extra is 1, in rested situations extra is 0.
1068 */
1069 spin_lock_irq(&conf->resync_lock);
1070 conf->array_frozen = 1;
1071 raid1_log(conf->mddev, "wait freeze");
1072 wait_event_lock_irq_cmd(
1073 conf->wait_barrier,
1074 get_unqueued_pending(conf) == extra,
1075 conf->resync_lock,
1076 flush_pending_writes(conf));
1077 spin_unlock_irq(&conf->resync_lock);
1078 }
1079 static void unfreeze_array(struct r1conf *conf)
1080 {
1081 /* reverse the effect of the freeze */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->array_frozen = 0;
1084 spin_unlock_irq(&conf->resync_lock);
1085 wake_up(&conf->wait_barrier);
1086 }
1087
1088 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1089 struct bio *bio)
1090 {
1091 int size = bio->bi_iter.bi_size;
1092 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1093 int i = 0;
1094 struct bio *behind_bio = NULL;
1095
1096 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1097 if (!behind_bio)
1098 goto fail;
1099
1100 /* discard op, we don't support writezero/writesame yet */
1101 if (!bio_has_data(bio))
1102 goto skip_copy;
1103
1104 while (i < vcnt && size) {
1105 struct page *page;
1106 int len = min_t(int, PAGE_SIZE, size);
1107
1108 page = alloc_page(GFP_NOIO);
1109 if (unlikely(!page))
1110 goto free_pages;
1111
1112 bio_add_page(behind_bio, page, len, 0);
1113
1114 size -= len;
1115 i++;
1116 }
1117
1118 bio_copy_data(behind_bio, bio);
1119 skip_copy:
1120 r1_bio->behind_master_bio = behind_bio;;
1121 set_bit(R1BIO_BehindIO, &r1_bio->state);
1122
1123 return behind_bio;
1124
1125 free_pages:
1126 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1127 bio->bi_iter.bi_size);
1128 bio_free_pages(behind_bio);
1129 fail:
1130 return behind_bio;
1131 }
1132
1133 struct raid1_plug_cb {
1134 struct blk_plug_cb cb;
1135 struct bio_list pending;
1136 int pending_cnt;
1137 };
1138
1139 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1140 {
1141 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1142 cb);
1143 struct mddev *mddev = plug->cb.data;
1144 struct r1conf *conf = mddev->private;
1145 struct bio *bio;
1146
1147 if (from_schedule || current->bio_list) {
1148 spin_lock_irq(&conf->device_lock);
1149 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1150 conf->pending_count += plug->pending_cnt;
1151 spin_unlock_irq(&conf->device_lock);
1152 wake_up(&conf->wait_barrier);
1153 md_wakeup_thread(mddev->thread);
1154 kfree(plug);
1155 return;
1156 }
1157
1158 /* we aren't scheduling, so we can do the write-out directly. */
1159 bio = bio_list_get(&plug->pending);
1160 flush_bio_list(conf, bio);
1161 kfree(plug);
1162 }
1163
1164 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1165 {
1166 r1_bio->master_bio = bio;
1167 r1_bio->sectors = bio_sectors(bio);
1168 r1_bio->state = 0;
1169 r1_bio->mddev = mddev;
1170 r1_bio->sector = bio->bi_iter.bi_sector;
1171 }
1172
1173 static inline struct r1bio *
1174 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1175 {
1176 struct r1conf *conf = mddev->private;
1177 struct r1bio *r1_bio;
1178
1179 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1180 /* Ensure no bio records IO_BLOCKED */
1181 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1182 init_r1bio(r1_bio, mddev, bio);
1183 return r1_bio;
1184 }
1185
1186 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1187 int max_read_sectors, struct r1bio *r1_bio)
1188 {
1189 struct r1conf *conf = mddev->private;
1190 struct raid1_info *mirror;
1191 struct bio *read_bio;
1192 struct bitmap *bitmap = mddev->bitmap;
1193 const int op = bio_op(bio);
1194 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1195 int max_sectors;
1196 int rdisk;
1197 bool print_msg = !!r1_bio;
1198 char b[BDEVNAME_SIZE];
1199
1200 /*
1201 * If r1_bio is set, we are blocking the raid1d thread
1202 * so there is a tiny risk of deadlock. So ask for
1203 * emergency memory if needed.
1204 */
1205 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1206
1207 if (print_msg) {
1208 /* Need to get the block device name carefully */
1209 struct md_rdev *rdev;
1210 rcu_read_lock();
1211 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1212 if (rdev)
1213 bdevname(rdev->bdev, b);
1214 else
1215 strcpy(b, "???");
1216 rcu_read_unlock();
1217 }
1218
1219 /*
1220 * Still need barrier for READ in case that whole
1221 * array is frozen.
1222 */
1223 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1224
1225 if (!r1_bio)
1226 r1_bio = alloc_r1bio(mddev, bio);
1227 else
1228 init_r1bio(r1_bio, mddev, bio);
1229 r1_bio->sectors = max_read_sectors;
1230
1231 /*
1232 * make_request() can abort the operation when read-ahead is being
1233 * used and no empty request is available.
1234 */
1235 rdisk = read_balance(conf, r1_bio, &max_sectors);
1236
1237 if (rdisk < 0) {
1238 /* couldn't find anywhere to read from */
1239 if (print_msg) {
1240 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1241 mdname(mddev),
1242 b,
1243 (unsigned long long)r1_bio->sector);
1244 }
1245 raid_end_bio_io(r1_bio);
1246 return;
1247 }
1248 mirror = conf->mirrors + rdisk;
1249
1250 if (print_msg)
1251 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1252 mdname(mddev),
1253 (unsigned long long)r1_bio->sector,
1254 bdevname(mirror->rdev->bdev, b));
1255
1256 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1257 bitmap) {
1258 /*
1259 * Reading from a write-mostly device must take care not to
1260 * over-take any writes that are 'behind'
1261 */
1262 raid1_log(mddev, "wait behind writes");
1263 wait_event(bitmap->behind_wait,
1264 atomic_read(&bitmap->behind_writes) == 0);
1265 }
1266
1267 if (max_sectors < bio_sectors(bio)) {
1268 struct bio *split = bio_split(bio, max_sectors,
1269 gfp, conf->bio_split);
1270 bio_chain(split, bio);
1271 generic_make_request(bio);
1272 bio = split;
1273 r1_bio->master_bio = bio;
1274 r1_bio->sectors = max_sectors;
1275 }
1276
1277 r1_bio->read_disk = rdisk;
1278
1279 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1280
1281 r1_bio->bios[rdisk] = read_bio;
1282
1283 read_bio->bi_iter.bi_sector = r1_bio->sector +
1284 mirror->rdev->data_offset;
1285 read_bio->bi_bdev = mirror->rdev->bdev;
1286 read_bio->bi_end_io = raid1_end_read_request;
1287 bio_set_op_attrs(read_bio, op, do_sync);
1288 if (test_bit(FailFast, &mirror->rdev->flags) &&
1289 test_bit(R1BIO_FailFast, &r1_bio->state))
1290 read_bio->bi_opf |= MD_FAILFAST;
1291 read_bio->bi_private = r1_bio;
1292
1293 if (mddev->gendisk)
1294 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1295 read_bio, disk_devt(mddev->gendisk),
1296 r1_bio->sector);
1297
1298 generic_make_request(read_bio);
1299 }
1300
1301 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1302 int max_write_sectors)
1303 {
1304 struct r1conf *conf = mddev->private;
1305 struct r1bio *r1_bio;
1306 int i, disks;
1307 struct bitmap *bitmap = mddev->bitmap;
1308 unsigned long flags;
1309 struct md_rdev *blocked_rdev;
1310 struct blk_plug_cb *cb;
1311 struct raid1_plug_cb *plug = NULL;
1312 int first_clone;
1313 int max_sectors;
1314
1315 /*
1316 * Register the new request and wait if the reconstruction
1317 * thread has put up a bar for new requests.
1318 * Continue immediately if no resync is active currently.
1319 */
1320
1321 md_write_start(mddev, bio); /* wait on superblock update early */
1322
1323 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1324 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1325 (mddev_is_clustered(mddev) &&
1326 md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1328
1329 /*
1330 * As the suspend_* range is controlled by userspace, we want
1331 * an interruptible wait.
1332 */
1333 DEFINE_WAIT(w);
1334 for (;;) {
1335 flush_signals(current);
1336 prepare_to_wait(&conf->wait_barrier,
1337 &w, TASK_INTERRUPTIBLE);
1338 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1339 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1340 (mddev_is_clustered(mddev) &&
1341 !md_cluster_ops->area_resyncing(mddev, WRITE,
1342 bio->bi_iter.bi_sector,
1343 bio_end_sector(bio))))
1344 break;
1345 schedule();
1346 }
1347 finish_wait(&conf->wait_barrier, &w);
1348 }
1349 wait_barrier(conf, bio->bi_iter.bi_sector);
1350
1351 r1_bio = alloc_r1bio(mddev, bio);
1352 r1_bio->sectors = max_write_sectors;
1353
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 raid1_log(mddev, "wait queued");
1357 wait_event(conf->wait_barrier,
1358 conf->pending_count < max_queued_requests);
1359 }
1360 /* first select target devices under rcu_lock and
1361 * inc refcount on their rdev. Record them by setting
1362 * bios[x] to bio
1363 * If there are known/acknowledged bad blocks on any device on
1364 * which we have seen a write error, we want to avoid writing those
1365 * blocks.
1366 * This potentially requires several writes to write around
1367 * the bad blocks. Each set of writes gets it's own r1bio
1368 * with a set of bios attached.
1369 */
1370
1371 disks = conf->raid_disks * 2;
1372 retry_write:
1373 blocked_rdev = NULL;
1374 rcu_read_lock();
1375 max_sectors = r1_bio->sectors;
1376 for (i = 0; i < disks; i++) {
1377 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1379 atomic_inc(&rdev->nr_pending);
1380 blocked_rdev = rdev;
1381 break;
1382 }
1383 r1_bio->bios[i] = NULL;
1384 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1385 if (i < conf->raid_disks)
1386 set_bit(R1BIO_Degraded, &r1_bio->state);
1387 continue;
1388 }
1389
1390 atomic_inc(&rdev->nr_pending);
1391 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1392 sector_t first_bad;
1393 int bad_sectors;
1394 int is_bad;
1395
1396 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1397 &first_bad, &bad_sectors);
1398 if (is_bad < 0) {
1399 /* mustn't write here until the bad block is
1400 * acknowledged*/
1401 set_bit(BlockedBadBlocks, &rdev->flags);
1402 blocked_rdev = rdev;
1403 break;
1404 }
1405 if (is_bad && first_bad <= r1_bio->sector) {
1406 /* Cannot write here at all */
1407 bad_sectors -= (r1_bio->sector - first_bad);
1408 if (bad_sectors < max_sectors)
1409 /* mustn't write more than bad_sectors
1410 * to other devices yet
1411 */
1412 max_sectors = bad_sectors;
1413 rdev_dec_pending(rdev, mddev);
1414 /* We don't set R1BIO_Degraded as that
1415 * only applies if the disk is
1416 * missing, so it might be re-added,
1417 * and we want to know to recover this
1418 * chunk.
1419 * In this case the device is here,
1420 * and the fact that this chunk is not
1421 * in-sync is recorded in the bad
1422 * block log
1423 */
1424 continue;
1425 }
1426 if (is_bad) {
1427 int good_sectors = first_bad - r1_bio->sector;
1428 if (good_sectors < max_sectors)
1429 max_sectors = good_sectors;
1430 }
1431 }
1432 r1_bio->bios[i] = bio;
1433 }
1434 rcu_read_unlock();
1435
1436 if (unlikely(blocked_rdev)) {
1437 /* Wait for this device to become unblocked */
1438 int j;
1439
1440 for (j = 0; j < i; j++)
1441 if (r1_bio->bios[j])
1442 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1443 r1_bio->state = 0;
1444 allow_barrier(conf, bio->bi_iter.bi_sector);
1445 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1446 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1447 wait_barrier(conf, bio->bi_iter.bi_sector);
1448 goto retry_write;
1449 }
1450
1451 if (max_sectors < bio_sectors(bio)) {
1452 struct bio *split = bio_split(bio, max_sectors,
1453 GFP_NOIO, conf->bio_split);
1454 bio_chain(split, bio);
1455 generic_make_request(bio);
1456 bio = split;
1457 r1_bio->master_bio = bio;
1458 r1_bio->sectors = max_sectors;
1459 }
1460
1461 atomic_set(&r1_bio->remaining, 1);
1462 atomic_set(&r1_bio->behind_remaining, 0);
1463
1464 first_clone = 1;
1465
1466 for (i = 0; i < disks; i++) {
1467 struct bio *mbio = NULL;
1468 if (!r1_bio->bios[i])
1469 continue;
1470
1471
1472 if (first_clone) {
1473 /* do behind I/O ?
1474 * Not if there are too many, or cannot
1475 * allocate memory, or a reader on WriteMostly
1476 * is waiting for behind writes to flush */
1477 if (bitmap &&
1478 (atomic_read(&bitmap->behind_writes)
1479 < mddev->bitmap_info.max_write_behind) &&
1480 !waitqueue_active(&bitmap->behind_wait)) {
1481 mbio = alloc_behind_master_bio(r1_bio, bio);
1482 }
1483
1484 bitmap_startwrite(bitmap, r1_bio->sector,
1485 r1_bio->sectors,
1486 test_bit(R1BIO_BehindIO,
1487 &r1_bio->state));
1488 first_clone = 0;
1489 }
1490
1491 if (!mbio) {
1492 if (r1_bio->behind_master_bio)
1493 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1494 GFP_NOIO,
1495 mddev->bio_set);
1496 else
1497 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1498 }
1499
1500 if (r1_bio->behind_master_bio) {
1501 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1502 atomic_inc(&r1_bio->behind_remaining);
1503 }
1504
1505 r1_bio->bios[i] = mbio;
1506
1507 mbio->bi_iter.bi_sector = (r1_bio->sector +
1508 conf->mirrors[i].rdev->data_offset);
1509 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1510 mbio->bi_end_io = raid1_end_write_request;
1511 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1512 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1513 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1514 conf->raid_disks - mddev->degraded > 1)
1515 mbio->bi_opf |= MD_FAILFAST;
1516 mbio->bi_private = r1_bio;
1517
1518 atomic_inc(&r1_bio->remaining);
1519
1520 if (mddev->gendisk)
1521 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1522 mbio, disk_devt(mddev->gendisk),
1523 r1_bio->sector);
1524 /* flush_pending_writes() needs access to the rdev so...*/
1525 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1526
1527 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1528 if (cb)
1529 plug = container_of(cb, struct raid1_plug_cb, cb);
1530 else
1531 plug = NULL;
1532 spin_lock_irqsave(&conf->device_lock, flags);
1533 if (plug) {
1534 bio_list_add(&plug->pending, mbio);
1535 plug->pending_cnt++;
1536 } else {
1537 bio_list_add(&conf->pending_bio_list, mbio);
1538 conf->pending_count++;
1539 }
1540 spin_unlock_irqrestore(&conf->device_lock, flags);
1541 if (!plug)
1542 md_wakeup_thread(mddev->thread);
1543 }
1544
1545 r1_bio_write_done(r1_bio);
1546
1547 /* In case raid1d snuck in to freeze_array */
1548 wake_up(&conf->wait_barrier);
1549 }
1550
1551 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1552 {
1553 sector_t sectors;
1554
1555 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1556 md_flush_request(mddev, bio);
1557 return;
1558 }
1559
1560 /*
1561 * There is a limit to the maximum size, but
1562 * the read/write handler might find a lower limit
1563 * due to bad blocks. To avoid multiple splits,
1564 * we pass the maximum number of sectors down
1565 * and let the lower level perform the split.
1566 */
1567 sectors = align_to_barrier_unit_end(
1568 bio->bi_iter.bi_sector, bio_sectors(bio));
1569
1570 if (bio_data_dir(bio) == READ)
1571 raid1_read_request(mddev, bio, sectors, NULL);
1572 else
1573 raid1_write_request(mddev, bio, sectors);
1574 }
1575
1576 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1577 {
1578 struct r1conf *conf = mddev->private;
1579 int i;
1580
1581 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1582 conf->raid_disks - mddev->degraded);
1583 rcu_read_lock();
1584 for (i = 0; i < conf->raid_disks; i++) {
1585 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1586 seq_printf(seq, "%s",
1587 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1588 }
1589 rcu_read_unlock();
1590 seq_printf(seq, "]");
1591 }
1592
1593 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1594 {
1595 char b[BDEVNAME_SIZE];
1596 struct r1conf *conf = mddev->private;
1597 unsigned long flags;
1598
1599 /*
1600 * If it is not operational, then we have already marked it as dead
1601 * else if it is the last working disks, ignore the error, let the
1602 * next level up know.
1603 * else mark the drive as failed
1604 */
1605 spin_lock_irqsave(&conf->device_lock, flags);
1606 if (test_bit(In_sync, &rdev->flags)
1607 && (conf->raid_disks - mddev->degraded) == 1) {
1608 /*
1609 * Don't fail the drive, act as though we were just a
1610 * normal single drive.
1611 * However don't try a recovery from this drive as
1612 * it is very likely to fail.
1613 */
1614 conf->recovery_disabled = mddev->recovery_disabled;
1615 spin_unlock_irqrestore(&conf->device_lock, flags);
1616 return;
1617 }
1618 set_bit(Blocked, &rdev->flags);
1619 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1620 mddev->degraded++;
1621 set_bit(Faulty, &rdev->flags);
1622 } else
1623 set_bit(Faulty, &rdev->flags);
1624 spin_unlock_irqrestore(&conf->device_lock, flags);
1625 /*
1626 * if recovery is running, make sure it aborts.
1627 */
1628 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1629 set_mask_bits(&mddev->sb_flags, 0,
1630 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1631 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1632 "md/raid1:%s: Operation continuing on %d devices.\n",
1633 mdname(mddev), bdevname(rdev->bdev, b),
1634 mdname(mddev), conf->raid_disks - mddev->degraded);
1635 }
1636
1637 static void print_conf(struct r1conf *conf)
1638 {
1639 int i;
1640
1641 pr_debug("RAID1 conf printout:\n");
1642 if (!conf) {
1643 pr_debug("(!conf)\n");
1644 return;
1645 }
1646 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1647 conf->raid_disks);
1648
1649 rcu_read_lock();
1650 for (i = 0; i < conf->raid_disks; i++) {
1651 char b[BDEVNAME_SIZE];
1652 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1653 if (rdev)
1654 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1655 i, !test_bit(In_sync, &rdev->flags),
1656 !test_bit(Faulty, &rdev->flags),
1657 bdevname(rdev->bdev,b));
1658 }
1659 rcu_read_unlock();
1660 }
1661
1662 static void close_sync(struct r1conf *conf)
1663 {
1664 wait_all_barriers(conf);
1665 allow_all_barriers(conf);
1666
1667 mempool_destroy(conf->r1buf_pool);
1668 conf->r1buf_pool = NULL;
1669 }
1670
1671 static int raid1_spare_active(struct mddev *mddev)
1672 {
1673 int i;
1674 struct r1conf *conf = mddev->private;
1675 int count = 0;
1676 unsigned long flags;
1677
1678 /*
1679 * Find all failed disks within the RAID1 configuration
1680 * and mark them readable.
1681 * Called under mddev lock, so rcu protection not needed.
1682 * device_lock used to avoid races with raid1_end_read_request
1683 * which expects 'In_sync' flags and ->degraded to be consistent.
1684 */
1685 spin_lock_irqsave(&conf->device_lock, flags);
1686 for (i = 0; i < conf->raid_disks; i++) {
1687 struct md_rdev *rdev = conf->mirrors[i].rdev;
1688 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1689 if (repl
1690 && !test_bit(Candidate, &repl->flags)
1691 && repl->recovery_offset == MaxSector
1692 && !test_bit(Faulty, &repl->flags)
1693 && !test_and_set_bit(In_sync, &repl->flags)) {
1694 /* replacement has just become active */
1695 if (!rdev ||
1696 !test_and_clear_bit(In_sync, &rdev->flags))
1697 count++;
1698 if (rdev) {
1699 /* Replaced device not technically
1700 * faulty, but we need to be sure
1701 * it gets removed and never re-added
1702 */
1703 set_bit(Faulty, &rdev->flags);
1704 sysfs_notify_dirent_safe(
1705 rdev->sysfs_state);
1706 }
1707 }
1708 if (rdev
1709 && rdev->recovery_offset == MaxSector
1710 && !test_bit(Faulty, &rdev->flags)
1711 && !test_and_set_bit(In_sync, &rdev->flags)) {
1712 count++;
1713 sysfs_notify_dirent_safe(rdev->sysfs_state);
1714 }
1715 }
1716 mddev->degraded -= count;
1717 spin_unlock_irqrestore(&conf->device_lock, flags);
1718
1719 print_conf(conf);
1720 return count;
1721 }
1722
1723 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725 struct r1conf *conf = mddev->private;
1726 int err = -EEXIST;
1727 int mirror = 0;
1728 struct raid1_info *p;
1729 int first = 0;
1730 int last = conf->raid_disks - 1;
1731
1732 if (mddev->recovery_disabled == conf->recovery_disabled)
1733 return -EBUSY;
1734
1735 if (md_integrity_add_rdev(rdev, mddev))
1736 return -ENXIO;
1737
1738 if (rdev->raid_disk >= 0)
1739 first = last = rdev->raid_disk;
1740
1741 /*
1742 * find the disk ... but prefer rdev->saved_raid_disk
1743 * if possible.
1744 */
1745 if (rdev->saved_raid_disk >= 0 &&
1746 rdev->saved_raid_disk >= first &&
1747 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1748 first = last = rdev->saved_raid_disk;
1749
1750 for (mirror = first; mirror <= last; mirror++) {
1751 p = conf->mirrors+mirror;
1752 if (!p->rdev) {
1753
1754 if (mddev->gendisk)
1755 disk_stack_limits(mddev->gendisk, rdev->bdev,
1756 rdev->data_offset << 9);
1757
1758 p->head_position = 0;
1759 rdev->raid_disk = mirror;
1760 err = 0;
1761 /* As all devices are equivalent, we don't need a full recovery
1762 * if this was recently any drive of the array
1763 */
1764 if (rdev->saved_raid_disk < 0)
1765 conf->fullsync = 1;
1766 rcu_assign_pointer(p->rdev, rdev);
1767 break;
1768 }
1769 if (test_bit(WantReplacement, &p->rdev->flags) &&
1770 p[conf->raid_disks].rdev == NULL) {
1771 /* Add this device as a replacement */
1772 clear_bit(In_sync, &rdev->flags);
1773 set_bit(Replacement, &rdev->flags);
1774 rdev->raid_disk = mirror;
1775 err = 0;
1776 conf->fullsync = 1;
1777 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1778 break;
1779 }
1780 }
1781 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1782 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1783 print_conf(conf);
1784 return err;
1785 }
1786
1787 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789 struct r1conf *conf = mddev->private;
1790 int err = 0;
1791 int number = rdev->raid_disk;
1792 struct raid1_info *p = conf->mirrors + number;
1793
1794 if (rdev != p->rdev)
1795 p = conf->mirrors + conf->raid_disks + number;
1796
1797 print_conf(conf);
1798 if (rdev == p->rdev) {
1799 if (test_bit(In_sync, &rdev->flags) ||
1800 atomic_read(&rdev->nr_pending)) {
1801 err = -EBUSY;
1802 goto abort;
1803 }
1804 /* Only remove non-faulty devices if recovery
1805 * is not possible.
1806 */
1807 if (!test_bit(Faulty, &rdev->flags) &&
1808 mddev->recovery_disabled != conf->recovery_disabled &&
1809 mddev->degraded < conf->raid_disks) {
1810 err = -EBUSY;
1811 goto abort;
1812 }
1813 p->rdev = NULL;
1814 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1815 synchronize_rcu();
1816 if (atomic_read(&rdev->nr_pending)) {
1817 /* lost the race, try later */
1818 err = -EBUSY;
1819 p->rdev = rdev;
1820 goto abort;
1821 }
1822 }
1823 if (conf->mirrors[conf->raid_disks + number].rdev) {
1824 /* We just removed a device that is being replaced.
1825 * Move down the replacement. We drain all IO before
1826 * doing this to avoid confusion.
1827 */
1828 struct md_rdev *repl =
1829 conf->mirrors[conf->raid_disks + number].rdev;
1830 freeze_array(conf, 0);
1831 clear_bit(Replacement, &repl->flags);
1832 p->rdev = repl;
1833 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1834 unfreeze_array(conf);
1835 }
1836
1837 clear_bit(WantReplacement, &rdev->flags);
1838 err = md_integrity_register(mddev);
1839 }
1840 abort:
1841
1842 print_conf(conf);
1843 return err;
1844 }
1845
1846 static void end_sync_read(struct bio *bio)
1847 {
1848 struct r1bio *r1_bio = get_resync_r1bio(bio);
1849
1850 update_head_pos(r1_bio->read_disk, r1_bio);
1851
1852 /*
1853 * we have read a block, now it needs to be re-written,
1854 * or re-read if the read failed.
1855 * We don't do much here, just schedule handling by raid1d
1856 */
1857 if (!bio->bi_error)
1858 set_bit(R1BIO_Uptodate, &r1_bio->state);
1859
1860 if (atomic_dec_and_test(&r1_bio->remaining))
1861 reschedule_retry(r1_bio);
1862 }
1863
1864 static void end_sync_write(struct bio *bio)
1865 {
1866 int uptodate = !bio->bi_error;
1867 struct r1bio *r1_bio = get_resync_r1bio(bio);
1868 struct mddev *mddev = r1_bio->mddev;
1869 struct r1conf *conf = mddev->private;
1870 sector_t first_bad;
1871 int bad_sectors;
1872 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1873
1874 if (!uptodate) {
1875 sector_t sync_blocks = 0;
1876 sector_t s = r1_bio->sector;
1877 long sectors_to_go = r1_bio->sectors;
1878 /* make sure these bits doesn't get cleared. */
1879 do {
1880 bitmap_end_sync(mddev->bitmap, s,
1881 &sync_blocks, 1);
1882 s += sync_blocks;
1883 sectors_to_go -= sync_blocks;
1884 } while (sectors_to_go > 0);
1885 set_bit(WriteErrorSeen, &rdev->flags);
1886 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1887 set_bit(MD_RECOVERY_NEEDED, &
1888 mddev->recovery);
1889 set_bit(R1BIO_WriteError, &r1_bio->state);
1890 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1891 &first_bad, &bad_sectors) &&
1892 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1893 r1_bio->sector,
1894 r1_bio->sectors,
1895 &first_bad, &bad_sectors)
1896 )
1897 set_bit(R1BIO_MadeGood, &r1_bio->state);
1898
1899 if (atomic_dec_and_test(&r1_bio->remaining)) {
1900 int s = r1_bio->sectors;
1901 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1902 test_bit(R1BIO_WriteError, &r1_bio->state))
1903 reschedule_retry(r1_bio);
1904 else {
1905 put_buf(r1_bio);
1906 md_done_sync(mddev, s, uptodate);
1907 }
1908 }
1909 }
1910
1911 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1912 int sectors, struct page *page, int rw)
1913 {
1914 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1915 /* success */
1916 return 1;
1917 if (rw == WRITE) {
1918 set_bit(WriteErrorSeen, &rdev->flags);
1919 if (!test_and_set_bit(WantReplacement,
1920 &rdev->flags))
1921 set_bit(MD_RECOVERY_NEEDED, &
1922 rdev->mddev->recovery);
1923 }
1924 /* need to record an error - either for the block or the device */
1925 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1926 md_error(rdev->mddev, rdev);
1927 return 0;
1928 }
1929
1930 static int fix_sync_read_error(struct r1bio *r1_bio)
1931 {
1932 /* Try some synchronous reads of other devices to get
1933 * good data, much like with normal read errors. Only
1934 * read into the pages we already have so we don't
1935 * need to re-issue the read request.
1936 * We don't need to freeze the array, because being in an
1937 * active sync request, there is no normal IO, and
1938 * no overlapping syncs.
1939 * We don't need to check is_badblock() again as we
1940 * made sure that anything with a bad block in range
1941 * will have bi_end_io clear.
1942 */
1943 struct mddev *mddev = r1_bio->mddev;
1944 struct r1conf *conf = mddev->private;
1945 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1946 struct page **pages = get_resync_pages(bio)->pages;
1947 sector_t sect = r1_bio->sector;
1948 int sectors = r1_bio->sectors;
1949 int idx = 0;
1950 struct md_rdev *rdev;
1951
1952 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1953 if (test_bit(FailFast, &rdev->flags)) {
1954 /* Don't try recovering from here - just fail it
1955 * ... unless it is the last working device of course */
1956 md_error(mddev, rdev);
1957 if (test_bit(Faulty, &rdev->flags))
1958 /* Don't try to read from here, but make sure
1959 * put_buf does it's thing
1960 */
1961 bio->bi_end_io = end_sync_write;
1962 }
1963
1964 while(sectors) {
1965 int s = sectors;
1966 int d = r1_bio->read_disk;
1967 int success = 0;
1968 int start;
1969
1970 if (s > (PAGE_SIZE>>9))
1971 s = PAGE_SIZE >> 9;
1972 do {
1973 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1974 /* No rcu protection needed here devices
1975 * can only be removed when no resync is
1976 * active, and resync is currently active
1977 */
1978 rdev = conf->mirrors[d].rdev;
1979 if (sync_page_io(rdev, sect, s<<9,
1980 pages[idx],
1981 REQ_OP_READ, 0, false)) {
1982 success = 1;
1983 break;
1984 }
1985 }
1986 d++;
1987 if (d == conf->raid_disks * 2)
1988 d = 0;
1989 } while (!success && d != r1_bio->read_disk);
1990
1991 if (!success) {
1992 char b[BDEVNAME_SIZE];
1993 int abort = 0;
1994 /* Cannot read from anywhere, this block is lost.
1995 * Record a bad block on each device. If that doesn't
1996 * work just disable and interrupt the recovery.
1997 * Don't fail devices as that won't really help.
1998 */
1999 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2000 mdname(mddev),
2001 bdevname(bio->bi_bdev, b),
2002 (unsigned long long)r1_bio->sector);
2003 for (d = 0; d < conf->raid_disks * 2; d++) {
2004 rdev = conf->mirrors[d].rdev;
2005 if (!rdev || test_bit(Faulty, &rdev->flags))
2006 continue;
2007 if (!rdev_set_badblocks(rdev, sect, s, 0))
2008 abort = 1;
2009 }
2010 if (abort) {
2011 conf->recovery_disabled =
2012 mddev->recovery_disabled;
2013 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2014 md_done_sync(mddev, r1_bio->sectors, 0);
2015 put_buf(r1_bio);
2016 return 0;
2017 }
2018 /* Try next page */
2019 sectors -= s;
2020 sect += s;
2021 idx++;
2022 continue;
2023 }
2024
2025 start = d;
2026 /* write it back and re-read */
2027 while (d != r1_bio->read_disk) {
2028 if (d == 0)
2029 d = conf->raid_disks * 2;
2030 d--;
2031 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2032 continue;
2033 rdev = conf->mirrors[d].rdev;
2034 if (r1_sync_page_io(rdev, sect, s,
2035 pages[idx],
2036 WRITE) == 0) {
2037 r1_bio->bios[d]->bi_end_io = NULL;
2038 rdev_dec_pending(rdev, mddev);
2039 }
2040 }
2041 d = start;
2042 while (d != r1_bio->read_disk) {
2043 if (d == 0)
2044 d = conf->raid_disks * 2;
2045 d--;
2046 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2047 continue;
2048 rdev = conf->mirrors[d].rdev;
2049 if (r1_sync_page_io(rdev, sect, s,
2050 pages[idx],
2051 READ) != 0)
2052 atomic_add(s, &rdev->corrected_errors);
2053 }
2054 sectors -= s;
2055 sect += s;
2056 idx ++;
2057 }
2058 set_bit(R1BIO_Uptodate, &r1_bio->state);
2059 bio->bi_error = 0;
2060 return 1;
2061 }
2062
2063 static void process_checks(struct r1bio *r1_bio)
2064 {
2065 /* We have read all readable devices. If we haven't
2066 * got the block, then there is no hope left.
2067 * If we have, then we want to do a comparison
2068 * and skip the write if everything is the same.
2069 * If any blocks failed to read, then we need to
2070 * attempt an over-write
2071 */
2072 struct mddev *mddev = r1_bio->mddev;
2073 struct r1conf *conf = mddev->private;
2074 int primary;
2075 int i;
2076 int vcnt;
2077
2078 /* Fix variable parts of all bios */
2079 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2080 for (i = 0; i < conf->raid_disks * 2; i++) {
2081 int j;
2082 int size;
2083 int error;
2084 struct bio_vec *bi;
2085 struct bio *b = r1_bio->bios[i];
2086 struct resync_pages *rp = get_resync_pages(b);
2087 if (b->bi_end_io != end_sync_read)
2088 continue;
2089 /* fixup the bio for reuse, but preserve errno */
2090 error = b->bi_error;
2091 bio_reset(b);
2092 b->bi_error = error;
2093 b->bi_vcnt = vcnt;
2094 b->bi_iter.bi_size = r1_bio->sectors << 9;
2095 b->bi_iter.bi_sector = r1_bio->sector +
2096 conf->mirrors[i].rdev->data_offset;
2097 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2098 b->bi_end_io = end_sync_read;
2099 rp->raid_bio = r1_bio;
2100 b->bi_private = rp;
2101
2102 size = b->bi_iter.bi_size;
2103 bio_for_each_segment_all(bi, b, j) {
2104 bi->bv_offset = 0;
2105 if (size > PAGE_SIZE)
2106 bi->bv_len = PAGE_SIZE;
2107 else
2108 bi->bv_len = size;
2109 size -= PAGE_SIZE;
2110 }
2111 }
2112 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2113 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2114 !r1_bio->bios[primary]->bi_error) {
2115 r1_bio->bios[primary]->bi_end_io = NULL;
2116 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2117 break;
2118 }
2119 r1_bio->read_disk = primary;
2120 for (i = 0; i < conf->raid_disks * 2; i++) {
2121 int j;
2122 struct bio *pbio = r1_bio->bios[primary];
2123 struct bio *sbio = r1_bio->bios[i];
2124 int error = sbio->bi_error;
2125 struct page **ppages = get_resync_pages(pbio)->pages;
2126 struct page **spages = get_resync_pages(sbio)->pages;
2127 struct bio_vec *bi;
2128 int page_len[RESYNC_PAGES] = { 0 };
2129
2130 if (sbio->bi_end_io != end_sync_read)
2131 continue;
2132 /* Now we can 'fixup' the error value */
2133 sbio->bi_error = 0;
2134
2135 bio_for_each_segment_all(bi, sbio, j)
2136 page_len[j] = bi->bv_len;
2137
2138 if (!error) {
2139 for (j = vcnt; j-- ; ) {
2140 if (memcmp(page_address(ppages[j]),
2141 page_address(spages[j]),
2142 page_len[j]))
2143 break;
2144 }
2145 } else
2146 j = 0;
2147 if (j >= 0)
2148 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2149 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2150 && !error)) {
2151 /* No need to write to this device. */
2152 sbio->bi_end_io = NULL;
2153 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2154 continue;
2155 }
2156
2157 bio_copy_data(sbio, pbio);
2158 }
2159 }
2160
2161 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2162 {
2163 struct r1conf *conf = mddev->private;
2164 int i;
2165 int disks = conf->raid_disks * 2;
2166 struct bio *bio, *wbio;
2167
2168 bio = r1_bio->bios[r1_bio->read_disk];
2169
2170 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2171 /* ouch - failed to read all of that. */
2172 if (!fix_sync_read_error(r1_bio))
2173 return;
2174
2175 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2176 process_checks(r1_bio);
2177
2178 /*
2179 * schedule writes
2180 */
2181 atomic_set(&r1_bio->remaining, 1);
2182 for (i = 0; i < disks ; i++) {
2183 wbio = r1_bio->bios[i];
2184 if (wbio->bi_end_io == NULL ||
2185 (wbio->bi_end_io == end_sync_read &&
2186 (i == r1_bio->read_disk ||
2187 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2188 continue;
2189 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2190 continue;
2191
2192 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2193 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2194 wbio->bi_opf |= MD_FAILFAST;
2195
2196 wbio->bi_end_io = end_sync_write;
2197 atomic_inc(&r1_bio->remaining);
2198 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2199
2200 generic_make_request(wbio);
2201 }
2202
2203 if (atomic_dec_and_test(&r1_bio->remaining)) {
2204 /* if we're here, all write(s) have completed, so clean up */
2205 int s = r1_bio->sectors;
2206 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2207 test_bit(R1BIO_WriteError, &r1_bio->state))
2208 reschedule_retry(r1_bio);
2209 else {
2210 put_buf(r1_bio);
2211 md_done_sync(mddev, s, 1);
2212 }
2213 }
2214 }
2215
2216 /*
2217 * This is a kernel thread which:
2218 *
2219 * 1. Retries failed read operations on working mirrors.
2220 * 2. Updates the raid superblock when problems encounter.
2221 * 3. Performs writes following reads for array synchronising.
2222 */
2223
2224 static void fix_read_error(struct r1conf *conf, int read_disk,
2225 sector_t sect, int sectors)
2226 {
2227 struct mddev *mddev = conf->mddev;
2228 while(sectors) {
2229 int s = sectors;
2230 int d = read_disk;
2231 int success = 0;
2232 int start;
2233 struct md_rdev *rdev;
2234
2235 if (s > (PAGE_SIZE>>9))
2236 s = PAGE_SIZE >> 9;
2237
2238 do {
2239 sector_t first_bad;
2240 int bad_sectors;
2241
2242 rcu_read_lock();
2243 rdev = rcu_dereference(conf->mirrors[d].rdev);
2244 if (rdev &&
2245 (test_bit(In_sync, &rdev->flags) ||
2246 (!test_bit(Faulty, &rdev->flags) &&
2247 rdev->recovery_offset >= sect + s)) &&
2248 is_badblock(rdev, sect, s,
2249 &first_bad, &bad_sectors) == 0) {
2250 atomic_inc(&rdev->nr_pending);
2251 rcu_read_unlock();
2252 if (sync_page_io(rdev, sect, s<<9,
2253 conf->tmppage, REQ_OP_READ, 0, false))
2254 success = 1;
2255 rdev_dec_pending(rdev, mddev);
2256 if (success)
2257 break;
2258 } else
2259 rcu_read_unlock();
2260 d++;
2261 if (d == conf->raid_disks * 2)
2262 d = 0;
2263 } while (!success && d != read_disk);
2264
2265 if (!success) {
2266 /* Cannot read from anywhere - mark it bad */
2267 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2268 if (!rdev_set_badblocks(rdev, sect, s, 0))
2269 md_error(mddev, rdev);
2270 break;
2271 }
2272 /* write it back and re-read */
2273 start = d;
2274 while (d != read_disk) {
2275 if (d==0)
2276 d = conf->raid_disks * 2;
2277 d--;
2278 rcu_read_lock();
2279 rdev = rcu_dereference(conf->mirrors[d].rdev);
2280 if (rdev &&
2281 !test_bit(Faulty, &rdev->flags)) {
2282 atomic_inc(&rdev->nr_pending);
2283 rcu_read_unlock();
2284 r1_sync_page_io(rdev, sect, s,
2285 conf->tmppage, WRITE);
2286 rdev_dec_pending(rdev, mddev);
2287 } else
2288 rcu_read_unlock();
2289 }
2290 d = start;
2291 while (d != read_disk) {
2292 char b[BDEVNAME_SIZE];
2293 if (d==0)
2294 d = conf->raid_disks * 2;
2295 d--;
2296 rcu_read_lock();
2297 rdev = rcu_dereference(conf->mirrors[d].rdev);
2298 if (rdev &&
2299 !test_bit(Faulty, &rdev->flags)) {
2300 atomic_inc(&rdev->nr_pending);
2301 rcu_read_unlock();
2302 if (r1_sync_page_io(rdev, sect, s,
2303 conf->tmppage, READ)) {
2304 atomic_add(s, &rdev->corrected_errors);
2305 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2306 mdname(mddev), s,
2307 (unsigned long long)(sect +
2308 rdev->data_offset),
2309 bdevname(rdev->bdev, b));
2310 }
2311 rdev_dec_pending(rdev, mddev);
2312 } else
2313 rcu_read_unlock();
2314 }
2315 sectors -= s;
2316 sect += s;
2317 }
2318 }
2319
2320 static int narrow_write_error(struct r1bio *r1_bio, int i)
2321 {
2322 struct mddev *mddev = r1_bio->mddev;
2323 struct r1conf *conf = mddev->private;
2324 struct md_rdev *rdev = conf->mirrors[i].rdev;
2325
2326 /* bio has the data to be written to device 'i' where
2327 * we just recently had a write error.
2328 * We repeatedly clone the bio and trim down to one block,
2329 * then try the write. Where the write fails we record
2330 * a bad block.
2331 * It is conceivable that the bio doesn't exactly align with
2332 * blocks. We must handle this somehow.
2333 *
2334 * We currently own a reference on the rdev.
2335 */
2336
2337 int block_sectors;
2338 sector_t sector;
2339 int sectors;
2340 int sect_to_write = r1_bio->sectors;
2341 int ok = 1;
2342
2343 if (rdev->badblocks.shift < 0)
2344 return 0;
2345
2346 block_sectors = roundup(1 << rdev->badblocks.shift,
2347 bdev_logical_block_size(rdev->bdev) >> 9);
2348 sector = r1_bio->sector;
2349 sectors = ((sector + block_sectors)
2350 & ~(sector_t)(block_sectors - 1))
2351 - sector;
2352
2353 while (sect_to_write) {
2354 struct bio *wbio;
2355 if (sectors > sect_to_write)
2356 sectors = sect_to_write;
2357 /* Write at 'sector' for 'sectors'*/
2358
2359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2360 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2361 GFP_NOIO,
2362 mddev->bio_set);
2363 /* We really need a _all clone */
2364 wbio->bi_iter = (struct bvec_iter){ 0 };
2365 } else {
2366 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2367 mddev->bio_set);
2368 }
2369
2370 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2371 wbio->bi_iter.bi_sector = r1_bio->sector;
2372 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2373
2374 bio_trim(wbio, sector - r1_bio->sector, sectors);
2375 wbio->bi_iter.bi_sector += rdev->data_offset;
2376 wbio->bi_bdev = rdev->bdev;
2377
2378 if (submit_bio_wait(wbio) < 0)
2379 /* failure! */
2380 ok = rdev_set_badblocks(rdev, sector,
2381 sectors, 0)
2382 && ok;
2383
2384 bio_put(wbio);
2385 sect_to_write -= sectors;
2386 sector += sectors;
2387 sectors = block_sectors;
2388 }
2389 return ok;
2390 }
2391
2392 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394 int m;
2395 int s = r1_bio->sectors;
2396 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
2398 struct bio *bio = r1_bio->bios[m];
2399 if (bio->bi_end_io == NULL)
2400 continue;
2401 if (!bio->bi_error &&
2402 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2403 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2404 }
2405 if (bio->bi_error &&
2406 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2407 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2408 md_error(conf->mddev, rdev);
2409 }
2410 }
2411 put_buf(r1_bio);
2412 md_done_sync(conf->mddev, s, 1);
2413 }
2414
2415 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2416 {
2417 int m, idx;
2418 bool fail = false;
2419
2420 for (m = 0; m < conf->raid_disks * 2 ; m++)
2421 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2422 struct md_rdev *rdev = conf->mirrors[m].rdev;
2423 rdev_clear_badblocks(rdev,
2424 r1_bio->sector,
2425 r1_bio->sectors, 0);
2426 rdev_dec_pending(rdev, conf->mddev);
2427 } else if (r1_bio->bios[m] != NULL) {
2428 /* This drive got a write error. We need to
2429 * narrow down and record precise write
2430 * errors.
2431 */
2432 fail = true;
2433 if (!narrow_write_error(r1_bio, m)) {
2434 md_error(conf->mddev,
2435 conf->mirrors[m].rdev);
2436 /* an I/O failed, we can't clear the bitmap */
2437 set_bit(R1BIO_Degraded, &r1_bio->state);
2438 }
2439 rdev_dec_pending(conf->mirrors[m].rdev,
2440 conf->mddev);
2441 }
2442 if (fail) {
2443 spin_lock_irq(&conf->device_lock);
2444 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2445 idx = sector_to_idx(r1_bio->sector);
2446 atomic_inc(&conf->nr_queued[idx]);
2447 spin_unlock_irq(&conf->device_lock);
2448 /*
2449 * In case freeze_array() is waiting for condition
2450 * get_unqueued_pending() == extra to be true.
2451 */
2452 wake_up(&conf->wait_barrier);
2453 md_wakeup_thread(conf->mddev->thread);
2454 } else {
2455 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2456 close_write(r1_bio);
2457 raid_end_bio_io(r1_bio);
2458 }
2459 }
2460
2461 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 struct mddev *mddev = conf->mddev;
2464 struct bio *bio;
2465 struct md_rdev *rdev;
2466 dev_t bio_dev;
2467 sector_t bio_sector;
2468
2469 clear_bit(R1BIO_ReadError, &r1_bio->state);
2470 /* we got a read error. Maybe the drive is bad. Maybe just
2471 * the block and we can fix it.
2472 * We freeze all other IO, and try reading the block from
2473 * other devices. When we find one, we re-write
2474 * and check it that fixes the read error.
2475 * This is all done synchronously while the array is
2476 * frozen
2477 */
2478
2479 bio = r1_bio->bios[r1_bio->read_disk];
2480 bio_dev = bio->bi_bdev->bd_dev;
2481 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2482 bio_put(bio);
2483 r1_bio->bios[r1_bio->read_disk] = NULL;
2484
2485 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2486 if (mddev->ro == 0
2487 && !test_bit(FailFast, &rdev->flags)) {
2488 freeze_array(conf, 1);
2489 fix_read_error(conf, r1_bio->read_disk,
2490 r1_bio->sector, r1_bio->sectors);
2491 unfreeze_array(conf);
2492 } else {
2493 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2494 }
2495
2496 rdev_dec_pending(rdev, conf->mddev);
2497 allow_barrier(conf, r1_bio->sector);
2498 bio = r1_bio->master_bio;
2499
2500 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2501 r1_bio->state = 0;
2502 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2503 }
2504
2505 static void raid1d(struct md_thread *thread)
2506 {
2507 struct mddev *mddev = thread->mddev;
2508 struct r1bio *r1_bio;
2509 unsigned long flags;
2510 struct r1conf *conf = mddev->private;
2511 struct list_head *head = &conf->retry_list;
2512 struct blk_plug plug;
2513 int idx;
2514
2515 md_check_recovery(mddev);
2516
2517 if (!list_empty_careful(&conf->bio_end_io_list) &&
2518 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2519 LIST_HEAD(tmp);
2520 spin_lock_irqsave(&conf->device_lock, flags);
2521 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2522 list_splice_init(&conf->bio_end_io_list, &tmp);
2523 spin_unlock_irqrestore(&conf->device_lock, flags);
2524 while (!list_empty(&tmp)) {
2525 r1_bio = list_first_entry(&tmp, struct r1bio,
2526 retry_list);
2527 list_del(&r1_bio->retry_list);
2528 idx = sector_to_idx(r1_bio->sector);
2529 atomic_dec(&conf->nr_queued[idx]);
2530 if (mddev->degraded)
2531 set_bit(R1BIO_Degraded, &r1_bio->state);
2532 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2533 close_write(r1_bio);
2534 raid_end_bio_io(r1_bio);
2535 }
2536 }
2537
2538 blk_start_plug(&plug);
2539 for (;;) {
2540
2541 flush_pending_writes(conf);
2542
2543 spin_lock_irqsave(&conf->device_lock, flags);
2544 if (list_empty(head)) {
2545 spin_unlock_irqrestore(&conf->device_lock, flags);
2546 break;
2547 }
2548 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2549 list_del(head->prev);
2550 idx = sector_to_idx(r1_bio->sector);
2551 atomic_dec(&conf->nr_queued[idx]);
2552 spin_unlock_irqrestore(&conf->device_lock, flags);
2553
2554 mddev = r1_bio->mddev;
2555 conf = mddev->private;
2556 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2557 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2558 test_bit(R1BIO_WriteError, &r1_bio->state))
2559 handle_sync_write_finished(conf, r1_bio);
2560 else
2561 sync_request_write(mddev, r1_bio);
2562 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563 test_bit(R1BIO_WriteError, &r1_bio->state))
2564 handle_write_finished(conf, r1_bio);
2565 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2566 handle_read_error(conf, r1_bio);
2567 else
2568 WARN_ON_ONCE(1);
2569
2570 cond_resched();
2571 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2572 md_check_recovery(mddev);
2573 }
2574 blk_finish_plug(&plug);
2575 }
2576
2577 static int init_resync(struct r1conf *conf)
2578 {
2579 int buffs;
2580
2581 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2582 BUG_ON(conf->r1buf_pool);
2583 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2584 conf->poolinfo);
2585 if (!conf->r1buf_pool)
2586 return -ENOMEM;
2587 return 0;
2588 }
2589
2590 /*
2591 * perform a "sync" on one "block"
2592 *
2593 * We need to make sure that no normal I/O request - particularly write
2594 * requests - conflict with active sync requests.
2595 *
2596 * This is achieved by tracking pending requests and a 'barrier' concept
2597 * that can be installed to exclude normal IO requests.
2598 */
2599
2600 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2601 int *skipped)
2602 {
2603 struct r1conf *conf = mddev->private;
2604 struct r1bio *r1_bio;
2605 struct bio *bio;
2606 sector_t max_sector, nr_sectors;
2607 int disk = -1;
2608 int i;
2609 int wonly = -1;
2610 int write_targets = 0, read_targets = 0;
2611 sector_t sync_blocks;
2612 int still_degraded = 0;
2613 int good_sectors = RESYNC_SECTORS;
2614 int min_bad = 0; /* number of sectors that are bad in all devices */
2615 int idx = sector_to_idx(sector_nr);
2616
2617 if (!conf->r1buf_pool)
2618 if (init_resync(conf))
2619 return 0;
2620
2621 max_sector = mddev->dev_sectors;
2622 if (sector_nr >= max_sector) {
2623 /* If we aborted, we need to abort the
2624 * sync on the 'current' bitmap chunk (there will
2625 * only be one in raid1 resync.
2626 * We can find the current addess in mddev->curr_resync
2627 */
2628 if (mddev->curr_resync < max_sector) /* aborted */
2629 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2630 &sync_blocks, 1);
2631 else /* completed sync */
2632 conf->fullsync = 0;
2633
2634 bitmap_close_sync(mddev->bitmap);
2635 close_sync(conf);
2636
2637 if (mddev_is_clustered(mddev)) {
2638 conf->cluster_sync_low = 0;
2639 conf->cluster_sync_high = 0;
2640 }
2641 return 0;
2642 }
2643
2644 if (mddev->bitmap == NULL &&
2645 mddev->recovery_cp == MaxSector &&
2646 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2647 conf->fullsync == 0) {
2648 *skipped = 1;
2649 return max_sector - sector_nr;
2650 }
2651 /* before building a request, check if we can skip these blocks..
2652 * This call the bitmap_start_sync doesn't actually record anything
2653 */
2654 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2655 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2656 /* We can skip this block, and probably several more */
2657 *skipped = 1;
2658 return sync_blocks;
2659 }
2660
2661 /*
2662 * If there is non-resync activity waiting for a turn, then let it
2663 * though before starting on this new sync request.
2664 */
2665 if (atomic_read(&conf->nr_waiting[idx]))
2666 schedule_timeout_uninterruptible(1);
2667
2668 /* we are incrementing sector_nr below. To be safe, we check against
2669 * sector_nr + two times RESYNC_SECTORS
2670 */
2671
2672 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2673 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2674 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2675
2676 raise_barrier(conf, sector_nr);
2677
2678 rcu_read_lock();
2679 /*
2680 * If we get a correctably read error during resync or recovery,
2681 * we might want to read from a different device. So we
2682 * flag all drives that could conceivably be read from for READ,
2683 * and any others (which will be non-In_sync devices) for WRITE.
2684 * If a read fails, we try reading from something else for which READ
2685 * is OK.
2686 */
2687
2688 r1_bio->mddev = mddev;
2689 r1_bio->sector = sector_nr;
2690 r1_bio->state = 0;
2691 set_bit(R1BIO_IsSync, &r1_bio->state);
2692 /* make sure good_sectors won't go across barrier unit boundary */
2693 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2694
2695 for (i = 0; i < conf->raid_disks * 2; i++) {
2696 struct md_rdev *rdev;
2697 bio = r1_bio->bios[i];
2698
2699 rdev = rcu_dereference(conf->mirrors[i].rdev);
2700 if (rdev == NULL ||
2701 test_bit(Faulty, &rdev->flags)) {
2702 if (i < conf->raid_disks)
2703 still_degraded = 1;
2704 } else if (!test_bit(In_sync, &rdev->flags)) {
2705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2706 bio->bi_end_io = end_sync_write;
2707 write_targets ++;
2708 } else {
2709 /* may need to read from here */
2710 sector_t first_bad = MaxSector;
2711 int bad_sectors;
2712
2713 if (is_badblock(rdev, sector_nr, good_sectors,
2714 &first_bad, &bad_sectors)) {
2715 if (first_bad > sector_nr)
2716 good_sectors = first_bad - sector_nr;
2717 else {
2718 bad_sectors -= (sector_nr - first_bad);
2719 if (min_bad == 0 ||
2720 min_bad > bad_sectors)
2721 min_bad = bad_sectors;
2722 }
2723 }
2724 if (sector_nr < first_bad) {
2725 if (test_bit(WriteMostly, &rdev->flags)) {
2726 if (wonly < 0)
2727 wonly = i;
2728 } else {
2729 if (disk < 0)
2730 disk = i;
2731 }
2732 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2733 bio->bi_end_io = end_sync_read;
2734 read_targets++;
2735 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2736 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2737 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2738 /*
2739 * The device is suitable for reading (InSync),
2740 * but has bad block(s) here. Let's try to correct them,
2741 * if we are doing resync or repair. Otherwise, leave
2742 * this device alone for this sync request.
2743 */
2744 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2745 bio->bi_end_io = end_sync_write;
2746 write_targets++;
2747 }
2748 }
2749 if (bio->bi_end_io) {
2750 atomic_inc(&rdev->nr_pending);
2751 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2752 bio->bi_bdev = rdev->bdev;
2753 if (test_bit(FailFast, &rdev->flags))
2754 bio->bi_opf |= MD_FAILFAST;
2755 }
2756 }
2757 rcu_read_unlock();
2758 if (disk < 0)
2759 disk = wonly;
2760 r1_bio->read_disk = disk;
2761
2762 if (read_targets == 0 && min_bad > 0) {
2763 /* These sectors are bad on all InSync devices, so we
2764 * need to mark them bad on all write targets
2765 */
2766 int ok = 1;
2767 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2768 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2769 struct md_rdev *rdev = conf->mirrors[i].rdev;
2770 ok = rdev_set_badblocks(rdev, sector_nr,
2771 min_bad, 0
2772 ) && ok;
2773 }
2774 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775 *skipped = 1;
2776 put_buf(r1_bio);
2777
2778 if (!ok) {
2779 /* Cannot record the badblocks, so need to
2780 * abort the resync.
2781 * If there are multiple read targets, could just
2782 * fail the really bad ones ???
2783 */
2784 conf->recovery_disabled = mddev->recovery_disabled;
2785 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2786 return 0;
2787 } else
2788 return min_bad;
2789
2790 }
2791 if (min_bad > 0 && min_bad < good_sectors) {
2792 /* only resync enough to reach the next bad->good
2793 * transition */
2794 good_sectors = min_bad;
2795 }
2796
2797 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2798 /* extra read targets are also write targets */
2799 write_targets += read_targets-1;
2800
2801 if (write_targets == 0 || read_targets == 0) {
2802 /* There is nowhere to write, so all non-sync
2803 * drives must be failed - so we are finished
2804 */
2805 sector_t rv;
2806 if (min_bad > 0)
2807 max_sector = sector_nr + min_bad;
2808 rv = max_sector - sector_nr;
2809 *skipped = 1;
2810 put_buf(r1_bio);
2811 return rv;
2812 }
2813
2814 if (max_sector > mddev->resync_max)
2815 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2816 if (max_sector > sector_nr + good_sectors)
2817 max_sector = sector_nr + good_sectors;
2818 nr_sectors = 0;
2819 sync_blocks = 0;
2820 do {
2821 struct page *page;
2822 int len = PAGE_SIZE;
2823 if (sector_nr + (len>>9) > max_sector)
2824 len = (max_sector - sector_nr) << 9;
2825 if (len == 0)
2826 break;
2827 if (sync_blocks == 0) {
2828 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2829 &sync_blocks, still_degraded) &&
2830 !conf->fullsync &&
2831 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2832 break;
2833 if ((len >> 9) > sync_blocks)
2834 len = sync_blocks<<9;
2835 }
2836
2837 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2838 struct resync_pages *rp;
2839
2840 bio = r1_bio->bios[i];
2841 rp = get_resync_pages(bio);
2842 if (bio->bi_end_io) {
2843 page = resync_fetch_page(rp, rp->idx++);
2844
2845 /*
2846 * won't fail because the vec table is big
2847 * enough to hold all these pages
2848 */
2849 bio_add_page(bio, page, len, 0);
2850 }
2851 }
2852 nr_sectors += len>>9;
2853 sector_nr += len>>9;
2854 sync_blocks -= (len>>9);
2855 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2856
2857 r1_bio->sectors = nr_sectors;
2858
2859 if (mddev_is_clustered(mddev) &&
2860 conf->cluster_sync_high < sector_nr + nr_sectors) {
2861 conf->cluster_sync_low = mddev->curr_resync_completed;
2862 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2863 /* Send resync message */
2864 md_cluster_ops->resync_info_update(mddev,
2865 conf->cluster_sync_low,
2866 conf->cluster_sync_high);
2867 }
2868
2869 /* For a user-requested sync, we read all readable devices and do a
2870 * compare
2871 */
2872 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2873 atomic_set(&r1_bio->remaining, read_targets);
2874 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2875 bio = r1_bio->bios[i];
2876 if (bio->bi_end_io == end_sync_read) {
2877 read_targets--;
2878 md_sync_acct(bio->bi_bdev, nr_sectors);
2879 if (read_targets == 1)
2880 bio->bi_opf &= ~MD_FAILFAST;
2881 generic_make_request(bio);
2882 }
2883 }
2884 } else {
2885 atomic_set(&r1_bio->remaining, 1);
2886 bio = r1_bio->bios[r1_bio->read_disk];
2887 md_sync_acct(bio->bi_bdev, nr_sectors);
2888 if (read_targets == 1)
2889 bio->bi_opf &= ~MD_FAILFAST;
2890 generic_make_request(bio);
2891
2892 }
2893 return nr_sectors;
2894 }
2895
2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2897 {
2898 if (sectors)
2899 return sectors;
2900
2901 return mddev->dev_sectors;
2902 }
2903
2904 static struct r1conf *setup_conf(struct mddev *mddev)
2905 {
2906 struct r1conf *conf;
2907 int i;
2908 struct raid1_info *disk;
2909 struct md_rdev *rdev;
2910 int err = -ENOMEM;
2911
2912 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2913 if (!conf)
2914 goto abort;
2915
2916 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2917 sizeof(atomic_t), GFP_KERNEL);
2918 if (!conf->nr_pending)
2919 goto abort;
2920
2921 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2922 sizeof(atomic_t), GFP_KERNEL);
2923 if (!conf->nr_waiting)
2924 goto abort;
2925
2926 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2927 sizeof(atomic_t), GFP_KERNEL);
2928 if (!conf->nr_queued)
2929 goto abort;
2930
2931 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2932 sizeof(atomic_t), GFP_KERNEL);
2933 if (!conf->barrier)
2934 goto abort;
2935
2936 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2937 * mddev->raid_disks * 2,
2938 GFP_KERNEL);
2939 if (!conf->mirrors)
2940 goto abort;
2941
2942 conf->tmppage = alloc_page(GFP_KERNEL);
2943 if (!conf->tmppage)
2944 goto abort;
2945
2946 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2947 if (!conf->poolinfo)
2948 goto abort;
2949 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2950 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2951 r1bio_pool_free,
2952 conf->poolinfo);
2953 if (!conf->r1bio_pool)
2954 goto abort;
2955
2956 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2957 if (!conf->bio_split)
2958 goto abort;
2959
2960 conf->poolinfo->mddev = mddev;
2961
2962 err = -EINVAL;
2963 spin_lock_init(&conf->device_lock);
2964 rdev_for_each(rdev, mddev) {
2965 int disk_idx = rdev->raid_disk;
2966 if (disk_idx >= mddev->raid_disks
2967 || disk_idx < 0)
2968 continue;
2969 if (test_bit(Replacement, &rdev->flags))
2970 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2971 else
2972 disk = conf->mirrors + disk_idx;
2973
2974 if (disk->rdev)
2975 goto abort;
2976 disk->rdev = rdev;
2977 disk->head_position = 0;
2978 disk->seq_start = MaxSector;
2979 }
2980 conf->raid_disks = mddev->raid_disks;
2981 conf->mddev = mddev;
2982 INIT_LIST_HEAD(&conf->retry_list);
2983 INIT_LIST_HEAD(&conf->bio_end_io_list);
2984
2985 spin_lock_init(&conf->resync_lock);
2986 init_waitqueue_head(&conf->wait_barrier);
2987
2988 bio_list_init(&conf->pending_bio_list);
2989 conf->pending_count = 0;
2990 conf->recovery_disabled = mddev->recovery_disabled - 1;
2991
2992 err = -EIO;
2993 for (i = 0; i < conf->raid_disks * 2; i++) {
2994
2995 disk = conf->mirrors + i;
2996
2997 if (i < conf->raid_disks &&
2998 disk[conf->raid_disks].rdev) {
2999 /* This slot has a replacement. */
3000 if (!disk->rdev) {
3001 /* No original, just make the replacement
3002 * a recovering spare
3003 */
3004 disk->rdev =
3005 disk[conf->raid_disks].rdev;
3006 disk[conf->raid_disks].rdev = NULL;
3007 } else if (!test_bit(In_sync, &disk->rdev->flags))
3008 /* Original is not in_sync - bad */
3009 goto abort;
3010 }
3011
3012 if (!disk->rdev ||
3013 !test_bit(In_sync, &disk->rdev->flags)) {
3014 disk->head_position = 0;
3015 if (disk->rdev &&
3016 (disk->rdev->saved_raid_disk < 0))
3017 conf->fullsync = 1;
3018 }
3019 }
3020
3021 err = -ENOMEM;
3022 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3023 if (!conf->thread)
3024 goto abort;
3025
3026 return conf;
3027
3028 abort:
3029 if (conf) {
3030 mempool_destroy(conf->r1bio_pool);
3031 kfree(conf->mirrors);
3032 safe_put_page(conf->tmppage);
3033 kfree(conf->poolinfo);
3034 kfree(conf->nr_pending);
3035 kfree(conf->nr_waiting);
3036 kfree(conf->nr_queued);
3037 kfree(conf->barrier);
3038 if (conf->bio_split)
3039 bioset_free(conf->bio_split);
3040 kfree(conf);
3041 }
3042 return ERR_PTR(err);
3043 }
3044
3045 static void raid1_free(struct mddev *mddev, void *priv);
3046 static int raid1_run(struct mddev *mddev)
3047 {
3048 struct r1conf *conf;
3049 int i;
3050 struct md_rdev *rdev;
3051 int ret;
3052 bool discard_supported = false;
3053
3054 if (mddev->level != 1) {
3055 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3056 mdname(mddev), mddev->level);
3057 return -EIO;
3058 }
3059 if (mddev->reshape_position != MaxSector) {
3060 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3061 mdname(mddev));
3062 return -EIO;
3063 }
3064 /*
3065 * copy the already verified devices into our private RAID1
3066 * bookkeeping area. [whatever we allocate in run(),
3067 * should be freed in raid1_free()]
3068 */
3069 if (mddev->private == NULL)
3070 conf = setup_conf(mddev);
3071 else
3072 conf = mddev->private;
3073
3074 if (IS_ERR(conf))
3075 return PTR_ERR(conf);
3076
3077 if (mddev->queue) {
3078 blk_queue_max_write_same_sectors(mddev->queue, 0);
3079 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3080 }
3081
3082 rdev_for_each(rdev, mddev) {
3083 if (!mddev->gendisk)
3084 continue;
3085 disk_stack_limits(mddev->gendisk, rdev->bdev,
3086 rdev->data_offset << 9);
3087 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3088 discard_supported = true;
3089 }
3090
3091 mddev->degraded = 0;
3092 for (i=0; i < conf->raid_disks; i++)
3093 if (conf->mirrors[i].rdev == NULL ||
3094 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3095 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3096 mddev->degraded++;
3097
3098 if (conf->raid_disks - mddev->degraded == 1)
3099 mddev->recovery_cp = MaxSector;
3100
3101 if (mddev->recovery_cp != MaxSector)
3102 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3103 mdname(mddev));
3104 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3105 mdname(mddev), mddev->raid_disks - mddev->degraded,
3106 mddev->raid_disks);
3107
3108 /*
3109 * Ok, everything is just fine now
3110 */
3111 mddev->thread = conf->thread;
3112 conf->thread = NULL;
3113 mddev->private = conf;
3114 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3115
3116 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3117
3118 if (mddev->queue) {
3119 if (discard_supported)
3120 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3121 mddev->queue);
3122 else
3123 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3124 mddev->queue);
3125 }
3126
3127 ret = md_integrity_register(mddev);
3128 if (ret) {
3129 md_unregister_thread(&mddev->thread);
3130 raid1_free(mddev, conf);
3131 }
3132 return ret;
3133 }
3134
3135 static void raid1_free(struct mddev *mddev, void *priv)
3136 {
3137 struct r1conf *conf = priv;
3138
3139 mempool_destroy(conf->r1bio_pool);
3140 kfree(conf->mirrors);
3141 safe_put_page(conf->tmppage);
3142 kfree(conf->poolinfo);
3143 kfree(conf->nr_pending);
3144 kfree(conf->nr_waiting);
3145 kfree(conf->nr_queued);
3146 kfree(conf->barrier);
3147 if (conf->bio_split)
3148 bioset_free(conf->bio_split);
3149 kfree(conf);
3150 }
3151
3152 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3153 {
3154 /* no resync is happening, and there is enough space
3155 * on all devices, so we can resize.
3156 * We need to make sure resync covers any new space.
3157 * If the array is shrinking we should possibly wait until
3158 * any io in the removed space completes, but it hardly seems
3159 * worth it.
3160 */
3161 sector_t newsize = raid1_size(mddev, sectors, 0);
3162 if (mddev->external_size &&
3163 mddev->array_sectors > newsize)
3164 return -EINVAL;
3165 if (mddev->bitmap) {
3166 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3167 if (ret)
3168 return ret;
3169 }
3170 md_set_array_sectors(mddev, newsize);
3171 if (sectors > mddev->dev_sectors &&
3172 mddev->recovery_cp > mddev->dev_sectors) {
3173 mddev->recovery_cp = mddev->dev_sectors;
3174 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3175 }
3176 mddev->dev_sectors = sectors;
3177 mddev->resync_max_sectors = sectors;
3178 return 0;
3179 }
3180
3181 static int raid1_reshape(struct mddev *mddev)
3182 {
3183 /* We need to:
3184 * 1/ resize the r1bio_pool
3185 * 2/ resize conf->mirrors
3186 *
3187 * We allocate a new r1bio_pool if we can.
3188 * Then raise a device barrier and wait until all IO stops.
3189 * Then resize conf->mirrors and swap in the new r1bio pool.
3190 *
3191 * At the same time, we "pack" the devices so that all the missing
3192 * devices have the higher raid_disk numbers.
3193 */
3194 mempool_t *newpool, *oldpool;
3195 struct pool_info *newpoolinfo;
3196 struct raid1_info *newmirrors;
3197 struct r1conf *conf = mddev->private;
3198 int cnt, raid_disks;
3199 unsigned long flags;
3200 int d, d2, err;
3201
3202 /* Cannot change chunk_size, layout, or level */
3203 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3204 mddev->layout != mddev->new_layout ||
3205 mddev->level != mddev->new_level) {
3206 mddev->new_chunk_sectors = mddev->chunk_sectors;
3207 mddev->new_layout = mddev->layout;
3208 mddev->new_level = mddev->level;
3209 return -EINVAL;
3210 }
3211
3212 if (!mddev_is_clustered(mddev)) {
3213 err = md_allow_write(mddev);
3214 if (err)
3215 return err;
3216 }
3217
3218 raid_disks = mddev->raid_disks + mddev->delta_disks;
3219
3220 if (raid_disks < conf->raid_disks) {
3221 cnt=0;
3222 for (d= 0; d < conf->raid_disks; d++)
3223 if (conf->mirrors[d].rdev)
3224 cnt++;
3225 if (cnt > raid_disks)
3226 return -EBUSY;
3227 }
3228
3229 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3230 if (!newpoolinfo)
3231 return -ENOMEM;
3232 newpoolinfo->mddev = mddev;
3233 newpoolinfo->raid_disks = raid_disks * 2;
3234
3235 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3236 r1bio_pool_free, newpoolinfo);
3237 if (!newpool) {
3238 kfree(newpoolinfo);
3239 return -ENOMEM;
3240 }
3241 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3242 GFP_KERNEL);
3243 if (!newmirrors) {
3244 kfree(newpoolinfo);
3245 mempool_destroy(newpool);
3246 return -ENOMEM;
3247 }
3248
3249 freeze_array(conf, 0);
3250
3251 /* ok, everything is stopped */
3252 oldpool = conf->r1bio_pool;
3253 conf->r1bio_pool = newpool;
3254
3255 for (d = d2 = 0; d < conf->raid_disks; d++) {
3256 struct md_rdev *rdev = conf->mirrors[d].rdev;
3257 if (rdev && rdev->raid_disk != d2) {
3258 sysfs_unlink_rdev(mddev, rdev);
3259 rdev->raid_disk = d2;
3260 sysfs_unlink_rdev(mddev, rdev);
3261 if (sysfs_link_rdev(mddev, rdev))
3262 pr_warn("md/raid1:%s: cannot register rd%d\n",
3263 mdname(mddev), rdev->raid_disk);
3264 }
3265 if (rdev)
3266 newmirrors[d2++].rdev = rdev;
3267 }
3268 kfree(conf->mirrors);
3269 conf->mirrors = newmirrors;
3270 kfree(conf->poolinfo);
3271 conf->poolinfo = newpoolinfo;
3272
3273 spin_lock_irqsave(&conf->device_lock, flags);
3274 mddev->degraded += (raid_disks - conf->raid_disks);
3275 spin_unlock_irqrestore(&conf->device_lock, flags);
3276 conf->raid_disks = mddev->raid_disks = raid_disks;
3277 mddev->delta_disks = 0;
3278
3279 unfreeze_array(conf);
3280
3281 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3282 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3283 md_wakeup_thread(mddev->thread);
3284
3285 mempool_destroy(oldpool);
3286 return 0;
3287 }
3288
3289 static void raid1_quiesce(struct mddev *mddev, int state)
3290 {
3291 struct r1conf *conf = mddev->private;
3292
3293 switch(state) {
3294 case 2: /* wake for suspend */
3295 wake_up(&conf->wait_barrier);
3296 break;
3297 case 1:
3298 freeze_array(conf, 0);
3299 break;
3300 case 0:
3301 unfreeze_array(conf);
3302 break;
3303 }
3304 }
3305
3306 static void *raid1_takeover(struct mddev *mddev)
3307 {
3308 /* raid1 can take over:
3309 * raid5 with 2 devices, any layout or chunk size
3310 */
3311 if (mddev->level == 5 && mddev->raid_disks == 2) {
3312 struct r1conf *conf;
3313 mddev->new_level = 1;
3314 mddev->new_layout = 0;
3315 mddev->new_chunk_sectors = 0;
3316 conf = setup_conf(mddev);
3317 if (!IS_ERR(conf)) {
3318 /* Array must appear to be quiesced */
3319 conf->array_frozen = 1;
3320 mddev_clear_unsupported_flags(mddev,
3321 UNSUPPORTED_MDDEV_FLAGS);
3322 }
3323 return conf;
3324 }
3325 return ERR_PTR(-EINVAL);
3326 }
3327
3328 static struct md_personality raid1_personality =
3329 {
3330 .name = "raid1",
3331 .level = 1,
3332 .owner = THIS_MODULE,
3333 .make_request = raid1_make_request,
3334 .run = raid1_run,
3335 .free = raid1_free,
3336 .status = raid1_status,
3337 .error_handler = raid1_error,
3338 .hot_add_disk = raid1_add_disk,
3339 .hot_remove_disk= raid1_remove_disk,
3340 .spare_active = raid1_spare_active,
3341 .sync_request = raid1_sync_request,
3342 .resize = raid1_resize,
3343 .size = raid1_size,
3344 .check_reshape = raid1_reshape,
3345 .quiesce = raid1_quiesce,
3346 .takeover = raid1_takeover,
3347 .congested = raid1_congested,
3348 };
3349
3350 static int __init raid_init(void)
3351 {
3352 return register_md_personality(&raid1_personality);
3353 }
3354
3355 static void raid_exit(void)
3356 {
3357 unregister_md_personality(&raid1_personality);
3358 }
3359
3360 module_init(raid_init);
3361 module_exit(raid_exit);
3362 MODULE_LICENSE("GPL");
3363 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3364 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3365 MODULE_ALIAS("md-raid1");
3366 MODULE_ALIAS("md-level-1");
3367
3368 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);