]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid1.c
Merge remote-tracking branch 'asoc/fix/atmel-build' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
121 */
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
129
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
165
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 }
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 int i;
182
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
188 }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 struct r1conf *conf = r1_bio->mddev->private;
194
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
203
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
212 lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
265 allow_barrier(conf, start_next_window, bi_sector);
266 }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 struct bio *bio = r1_bio->master_bio;
272
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
279
280 call_bio_endio(r1_bio);
281 }
282 free_r1bio(r1_bio);
283 }
284
285 /*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 struct r1conf *conf = r1_bio->mddev->private;
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297 * Find the disk number which triggered given bio
298 */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
304
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
321
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
326 update_head_pos(mirror, r1_bio);
327
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
334 */
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
343
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
362 }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
397 }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
407
408 mirror = find_bio_disk(r1_bio, bio);
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
423 /*
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
432 */
433 sector_t first_bad;
434 int bad_sectors;
435
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
480 }
481 }
482 }
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
486
487 /*
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
491 r1_bio_write_done(r1_bio);
492
493 if (to_put)
494 bio_put(to_put);
495 }
496
497 /*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 const sector_t this_sector = r1_bio->sector;
514 int sectors;
515 int best_good_sectors;
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
518 int disk;
519 sector_t best_dist;
520 unsigned int min_pending;
521 struct md_rdev *rdev;
522 int choose_first;
523 int choose_next_idle;
524
525 rcu_read_lock();
526 /*
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
532 sectors = r1_bio->sectors;
533 best_disk = -1;
534 best_dist_disk = -1;
535 best_dist = MaxSector;
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
538 best_good_sectors = 0;
539 has_nonrot_disk = 0;
540 choose_next_idle = 0;
541
542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 sector_t dist;
546 sector_t first_bad;
547 int bad_sectors;
548 unsigned int pending;
549 bool nonrot;
550
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
553 || rdev == NULL
554 || test_bit(Unmerged, &rdev->flags)
555 || test_bit(Faulty, &rdev->flags))
556 continue;
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
559 continue;
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
563 if (best_dist_disk < 0) {
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad < this_sector)
567 /* Cannot use this */
568 continue;
569 best_good_sectors = first_bad - this_sector;
570 } else
571 best_good_sectors = sectors;
572 best_dist_disk = disk;
573 best_pending_disk = disk;
574 }
575 continue;
576 }
577 /* This is a reasonable device to use. It might
578 * even be best.
579 */
580 if (is_badblock(rdev, this_sector, sectors,
581 &first_bad, &bad_sectors)) {
582 if (best_dist < MaxSector)
583 /* already have a better device */
584 continue;
585 if (first_bad <= this_sector) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
589 */
590 bad_sectors -= (this_sector - first_bad);
591 if (choose_first && sectors > bad_sectors)
592 sectors = bad_sectors;
593 if (best_good_sectors > sectors)
594 best_good_sectors = sectors;
595
596 } else {
597 sector_t good_sectors = first_bad - this_sector;
598 if (good_sectors > best_good_sectors) {
599 best_good_sectors = good_sectors;
600 best_disk = disk;
601 }
602 if (choose_first)
603 break;
604 }
605 continue;
606 } else
607 best_good_sectors = sectors;
608
609 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 has_nonrot_disk |= nonrot;
611 pending = atomic_read(&rdev->nr_pending);
612 dist = abs(this_sector - conf->mirrors[disk].head_position);
613 if (choose_first) {
614 best_disk = disk;
615 break;
616 }
617 /* Don't change to another disk for sequential reads */
618 if (conf->mirrors[disk].next_seq_sect == this_sector
619 || dist == 0) {
620 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 struct raid1_info *mirror = &conf->mirrors[disk];
622
623 best_disk = disk;
624 /*
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
636 */
637 if (nonrot && opt_iosize > 0 &&
638 mirror->seq_start != MaxSector &&
639 mirror->next_seq_sect > opt_iosize &&
640 mirror->next_seq_sect - opt_iosize >=
641 mirror->seq_start) {
642 choose_next_idle = 1;
643 continue;
644 }
645 break;
646 }
647 /* If device is idle, use it */
648 if (pending == 0) {
649 best_disk = disk;
650 break;
651 }
652
653 if (choose_next_idle)
654 continue;
655
656 if (min_pending > pending) {
657 min_pending = pending;
658 best_pending_disk = disk;
659 }
660
661 if (dist < best_dist) {
662 best_dist = dist;
663 best_dist_disk = disk;
664 }
665 }
666
667 /*
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
672 */
673 if (best_disk == -1) {
674 if (has_nonrot_disk)
675 best_disk = best_pending_disk;
676 else
677 best_disk = best_dist_disk;
678 }
679
680 if (best_disk >= 0) {
681 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 if (!rdev)
683 goto retry;
684 atomic_inc(&rdev->nr_pending);
685 if (test_bit(Faulty, &rdev->flags)) {
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
688 */
689 rdev_dec_pending(rdev, conf->mddev);
690 goto retry;
691 }
692 sectors = best_good_sectors;
693
694 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 conf->mirrors[best_disk].seq_start = this_sector;
696
697 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 }
699 rcu_read_unlock();
700 *max_sectors = sectors;
701
702 return best_disk;
703 }
704
705 static int raid1_mergeable_bvec(struct mddev *mddev,
706 struct bvec_merge_data *bvm,
707 struct bio_vec *biovec)
708 {
709 struct r1conf *conf = mddev->private;
710 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711 int max = biovec->bv_len;
712
713 if (mddev->merge_check_needed) {
714 int disk;
715 rcu_read_lock();
716 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717 struct md_rdev *rdev = rcu_dereference(
718 conf->mirrors[disk].rdev);
719 if (rdev && !test_bit(Faulty, &rdev->flags)) {
720 struct request_queue *q =
721 bdev_get_queue(rdev->bdev);
722 if (q->merge_bvec_fn) {
723 bvm->bi_sector = sector +
724 rdev->data_offset;
725 bvm->bi_bdev = rdev->bdev;
726 max = min(max, q->merge_bvec_fn(
727 q, bvm, biovec));
728 }
729 }
730 }
731 rcu_read_unlock();
732 }
733 return max;
734
735 }
736
737 static int raid1_congested(struct mddev *mddev, int bits)
738 {
739 struct r1conf *conf = mddev->private;
740 int i, ret = 0;
741
742 if ((bits & (1 << BDI_async_congested)) &&
743 conf->pending_count >= max_queued_requests)
744 return 1;
745
746 rcu_read_lock();
747 for (i = 0; i < conf->raid_disks * 2; i++) {
748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 struct request_queue *q = bdev_get_queue(rdev->bdev);
751
752 BUG_ON(!q);
753
754 /* Note the '|| 1' - when read_balance prefers
755 * non-congested targets, it can be removed
756 */
757 if ((bits & (1<<BDI_async_congested)) || 1)
758 ret |= bdi_congested(&q->backing_dev_info, bits);
759 else
760 ret &= bdi_congested(&q->backing_dev_info, bits);
761 }
762 }
763 rcu_read_unlock();
764 return ret;
765 }
766
767 static void flush_pending_writes(struct r1conf *conf)
768 {
769 /* Any writes that have been queued but are awaiting
770 * bitmap updates get flushed here.
771 */
772 spin_lock_irq(&conf->device_lock);
773
774 if (conf->pending_bio_list.head) {
775 struct bio *bio;
776 bio = bio_list_get(&conf->pending_bio_list);
777 conf->pending_count = 0;
778 spin_unlock_irq(&conf->device_lock);
779 /* flush any pending bitmap writes to
780 * disk before proceeding w/ I/O */
781 bitmap_unplug(conf->mddev->bitmap);
782 wake_up(&conf->wait_barrier);
783
784 while (bio) { /* submit pending writes */
785 struct bio *next = bio->bi_next;
786 bio->bi_next = NULL;
787 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
788 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
789 /* Just ignore it */
790 bio_endio(bio, 0);
791 else
792 generic_make_request(bio);
793 bio = next;
794 }
795 } else
796 spin_unlock_irq(&conf->device_lock);
797 }
798
799 /* Barriers....
800 * Sometimes we need to suspend IO while we do something else,
801 * either some resync/recovery, or reconfigure the array.
802 * To do this we raise a 'barrier'.
803 * The 'barrier' is a counter that can be raised multiple times
804 * to count how many activities are happening which preclude
805 * normal IO.
806 * We can only raise the barrier if there is no pending IO.
807 * i.e. if nr_pending == 0.
808 * We choose only to raise the barrier if no-one is waiting for the
809 * barrier to go down. This means that as soon as an IO request
810 * is ready, no other operations which require a barrier will start
811 * until the IO request has had a chance.
812 *
813 * So: regular IO calls 'wait_barrier'. When that returns there
814 * is no backgroup IO happening, It must arrange to call
815 * allow_barrier when it has finished its IO.
816 * backgroup IO calls must call raise_barrier. Once that returns
817 * there is no normal IO happeing. It must arrange to call
818 * lower_barrier when the particular background IO completes.
819 */
820 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
821 {
822 spin_lock_irq(&conf->resync_lock);
823
824 /* Wait until no block IO is waiting */
825 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
826 conf->resync_lock);
827
828 /* block any new IO from starting */
829 conf->barrier++;
830 conf->next_resync = sector_nr;
831
832 /* For these conditions we must wait:
833 * A: while the array is in frozen state
834 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
835 * the max count which allowed.
836 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
837 * next resync will reach to the window which normal bios are
838 * handling.
839 * D: while there are any active requests in the current window.
840 */
841 wait_event_lock_irq(conf->wait_barrier,
842 !conf->array_frozen &&
843 conf->barrier < RESYNC_DEPTH &&
844 conf->current_window_requests == 0 &&
845 (conf->start_next_window >=
846 conf->next_resync + RESYNC_SECTORS),
847 conf->resync_lock);
848
849 conf->nr_pending++;
850 spin_unlock_irq(&conf->resync_lock);
851 }
852
853 static void lower_barrier(struct r1conf *conf)
854 {
855 unsigned long flags;
856 BUG_ON(conf->barrier <= 0);
857 spin_lock_irqsave(&conf->resync_lock, flags);
858 conf->barrier--;
859 conf->nr_pending--;
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
862 }
863
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866 bool wait = false;
867
868 if (conf->array_frozen || !bio)
869 wait = true;
870 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 if ((conf->mddev->curr_resync_completed
872 >= bio_end_sector(bio)) ||
873 (conf->next_resync + NEXT_NORMALIO_DISTANCE
874 <= bio->bi_iter.bi_sector))
875 wait = false;
876 else
877 wait = true;
878 }
879
880 return wait;
881 }
882
883 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
884 {
885 sector_t sector = 0;
886
887 spin_lock_irq(&conf->resync_lock);
888 if (need_to_wait_for_sync(conf, bio)) {
889 conf->nr_waiting++;
890 /* Wait for the barrier to drop.
891 * However if there are already pending
892 * requests (preventing the barrier from
893 * rising completely), and the
894 * per-process bio queue isn't empty,
895 * then don't wait, as we need to empty
896 * that queue to allow conf->start_next_window
897 * to increase.
898 */
899 wait_event_lock_irq(conf->wait_barrier,
900 !conf->array_frozen &&
901 (!conf->barrier ||
902 ((conf->start_next_window <
903 conf->next_resync + RESYNC_SECTORS) &&
904 current->bio_list &&
905 !bio_list_empty(current->bio_list))),
906 conf->resync_lock);
907 conf->nr_waiting--;
908 }
909
910 if (bio && bio_data_dir(bio) == WRITE) {
911 if (bio->bi_iter.bi_sector >=
912 conf->mddev->curr_resync_completed) {
913 if (conf->start_next_window == MaxSector)
914 conf->start_next_window =
915 conf->next_resync +
916 NEXT_NORMALIO_DISTANCE;
917
918 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
919 <= bio->bi_iter.bi_sector)
920 conf->next_window_requests++;
921 else
922 conf->current_window_requests++;
923 sector = conf->start_next_window;
924 }
925 }
926
927 conf->nr_pending++;
928 spin_unlock_irq(&conf->resync_lock);
929 return sector;
930 }
931
932 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
933 sector_t bi_sector)
934 {
935 unsigned long flags;
936
937 spin_lock_irqsave(&conf->resync_lock, flags);
938 conf->nr_pending--;
939 if (start_next_window) {
940 if (start_next_window == conf->start_next_window) {
941 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
942 <= bi_sector)
943 conf->next_window_requests--;
944 else
945 conf->current_window_requests--;
946 } else
947 conf->current_window_requests--;
948
949 if (!conf->current_window_requests) {
950 if (conf->next_window_requests) {
951 conf->current_window_requests =
952 conf->next_window_requests;
953 conf->next_window_requests = 0;
954 conf->start_next_window +=
955 NEXT_NORMALIO_DISTANCE;
956 } else
957 conf->start_next_window = MaxSector;
958 }
959 }
960 spin_unlock_irqrestore(&conf->resync_lock, flags);
961 wake_up(&conf->wait_barrier);
962 }
963
964 static void freeze_array(struct r1conf *conf, int extra)
965 {
966 /* stop syncio and normal IO and wait for everything to
967 * go quite.
968 * We wait until nr_pending match nr_queued+extra
969 * This is called in the context of one normal IO request
970 * that has failed. Thus any sync request that might be pending
971 * will be blocked by nr_pending, and we need to wait for
972 * pending IO requests to complete or be queued for re-try.
973 * Thus the number queued (nr_queued) plus this request (extra)
974 * must match the number of pending IOs (nr_pending) before
975 * we continue.
976 */
977 spin_lock_irq(&conf->resync_lock);
978 conf->array_frozen = 1;
979 wait_event_lock_irq_cmd(conf->wait_barrier,
980 conf->nr_pending == conf->nr_queued+extra,
981 conf->resync_lock,
982 flush_pending_writes(conf));
983 spin_unlock_irq(&conf->resync_lock);
984 }
985 static void unfreeze_array(struct r1conf *conf)
986 {
987 /* reverse the effect of the freeze */
988 spin_lock_irq(&conf->resync_lock);
989 conf->array_frozen = 0;
990 wake_up(&conf->wait_barrier);
991 spin_unlock_irq(&conf->resync_lock);
992 }
993
994 /* duplicate the data pages for behind I/O
995 */
996 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
997 {
998 int i;
999 struct bio_vec *bvec;
1000 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1001 GFP_NOIO);
1002 if (unlikely(!bvecs))
1003 return;
1004
1005 bio_for_each_segment_all(bvec, bio, i) {
1006 bvecs[i] = *bvec;
1007 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1008 if (unlikely(!bvecs[i].bv_page))
1009 goto do_sync_io;
1010 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1011 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1012 kunmap(bvecs[i].bv_page);
1013 kunmap(bvec->bv_page);
1014 }
1015 r1_bio->behind_bvecs = bvecs;
1016 r1_bio->behind_page_count = bio->bi_vcnt;
1017 set_bit(R1BIO_BehindIO, &r1_bio->state);
1018 return;
1019
1020 do_sync_io:
1021 for (i = 0; i < bio->bi_vcnt; i++)
1022 if (bvecs[i].bv_page)
1023 put_page(bvecs[i].bv_page);
1024 kfree(bvecs);
1025 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1026 bio->bi_iter.bi_size);
1027 }
1028
1029 struct raid1_plug_cb {
1030 struct blk_plug_cb cb;
1031 struct bio_list pending;
1032 int pending_cnt;
1033 };
1034
1035 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1036 {
1037 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1038 cb);
1039 struct mddev *mddev = plug->cb.data;
1040 struct r1conf *conf = mddev->private;
1041 struct bio *bio;
1042
1043 if (from_schedule || current->bio_list) {
1044 spin_lock_irq(&conf->device_lock);
1045 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1046 conf->pending_count += plug->pending_cnt;
1047 spin_unlock_irq(&conf->device_lock);
1048 wake_up(&conf->wait_barrier);
1049 md_wakeup_thread(mddev->thread);
1050 kfree(plug);
1051 return;
1052 }
1053
1054 /* we aren't scheduling, so we can do the write-out directly. */
1055 bio = bio_list_get(&plug->pending);
1056 bitmap_unplug(mddev->bitmap);
1057 wake_up(&conf->wait_barrier);
1058
1059 while (bio) { /* submit pending writes */
1060 struct bio *next = bio->bi_next;
1061 bio->bi_next = NULL;
1062 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1063 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 /* Just ignore it */
1065 bio_endio(bio, 0);
1066 else
1067 generic_make_request(bio);
1068 bio = next;
1069 }
1070 kfree(plug);
1071 }
1072
1073 static void make_request(struct mddev *mddev, struct bio * bio)
1074 {
1075 struct r1conf *conf = mddev->private;
1076 struct raid1_info *mirror;
1077 struct r1bio *r1_bio;
1078 struct bio *read_bio;
1079 int i, disks;
1080 struct bitmap *bitmap;
1081 unsigned long flags;
1082 const int rw = bio_data_dir(bio);
1083 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1084 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1085 const unsigned long do_discard = (bio->bi_rw
1086 & (REQ_DISCARD | REQ_SECURE));
1087 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1088 struct md_rdev *blocked_rdev;
1089 struct blk_plug_cb *cb;
1090 struct raid1_plug_cb *plug = NULL;
1091 int first_clone;
1092 int sectors_handled;
1093 int max_sectors;
1094 sector_t start_next_window;
1095
1096 /*
1097 * Register the new request and wait if the reconstruction
1098 * thread has put up a bar for new requests.
1099 * Continue immediately if no resync is active currently.
1100 */
1101
1102 md_write_start(mddev, bio); /* wait on superblock update early */
1103
1104 if (bio_data_dir(bio) == WRITE &&
1105 bio_end_sector(bio) > mddev->suspend_lo &&
1106 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1107 /* As the suspend_* range is controlled by
1108 * userspace, we want an interruptible
1109 * wait.
1110 */
1111 DEFINE_WAIT(w);
1112 for (;;) {
1113 flush_signals(current);
1114 prepare_to_wait(&conf->wait_barrier,
1115 &w, TASK_INTERRUPTIBLE);
1116 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1117 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1118 break;
1119 schedule();
1120 }
1121 finish_wait(&conf->wait_barrier, &w);
1122 }
1123
1124 start_next_window = wait_barrier(conf, bio);
1125
1126 bitmap = mddev->bitmap;
1127
1128 /*
1129 * make_request() can abort the operation when READA is being
1130 * used and no empty request is available.
1131 *
1132 */
1133 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1134
1135 r1_bio->master_bio = bio;
1136 r1_bio->sectors = bio_sectors(bio);
1137 r1_bio->state = 0;
1138 r1_bio->mddev = mddev;
1139 r1_bio->sector = bio->bi_iter.bi_sector;
1140
1141 /* We might need to issue multiple reads to different
1142 * devices if there are bad blocks around, so we keep
1143 * track of the number of reads in bio->bi_phys_segments.
1144 * If this is 0, there is only one r1_bio and no locking
1145 * will be needed when requests complete. If it is
1146 * non-zero, then it is the number of not-completed requests.
1147 */
1148 bio->bi_phys_segments = 0;
1149 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1150
1151 if (rw == READ) {
1152 /*
1153 * read balancing logic:
1154 */
1155 int rdisk;
1156
1157 read_again:
1158 rdisk = read_balance(conf, r1_bio, &max_sectors);
1159
1160 if (rdisk < 0) {
1161 /* couldn't find anywhere to read from */
1162 raid_end_bio_io(r1_bio);
1163 return;
1164 }
1165 mirror = conf->mirrors + rdisk;
1166
1167 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1168 bitmap) {
1169 /* Reading from a write-mostly device must
1170 * take care not to over-take any writes
1171 * that are 'behind'
1172 */
1173 wait_event(bitmap->behind_wait,
1174 atomic_read(&bitmap->behind_writes) == 0);
1175 }
1176 r1_bio->read_disk = rdisk;
1177 r1_bio->start_next_window = 0;
1178
1179 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1180 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1181 max_sectors);
1182
1183 r1_bio->bios[rdisk] = read_bio;
1184
1185 read_bio->bi_iter.bi_sector = r1_bio->sector +
1186 mirror->rdev->data_offset;
1187 read_bio->bi_bdev = mirror->rdev->bdev;
1188 read_bio->bi_end_io = raid1_end_read_request;
1189 read_bio->bi_rw = READ | do_sync;
1190 read_bio->bi_private = r1_bio;
1191
1192 if (max_sectors < r1_bio->sectors) {
1193 /* could not read all from this device, so we will
1194 * need another r1_bio.
1195 */
1196
1197 sectors_handled = (r1_bio->sector + max_sectors
1198 - bio->bi_iter.bi_sector);
1199 r1_bio->sectors = max_sectors;
1200 spin_lock_irq(&conf->device_lock);
1201 if (bio->bi_phys_segments == 0)
1202 bio->bi_phys_segments = 2;
1203 else
1204 bio->bi_phys_segments++;
1205 spin_unlock_irq(&conf->device_lock);
1206 /* Cannot call generic_make_request directly
1207 * as that will be queued in __make_request
1208 * and subsequent mempool_alloc might block waiting
1209 * for it. So hand bio over to raid1d.
1210 */
1211 reschedule_retry(r1_bio);
1212
1213 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1214
1215 r1_bio->master_bio = bio;
1216 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1217 r1_bio->state = 0;
1218 r1_bio->mddev = mddev;
1219 r1_bio->sector = bio->bi_iter.bi_sector +
1220 sectors_handled;
1221 goto read_again;
1222 } else
1223 generic_make_request(read_bio);
1224 return;
1225 }
1226
1227 /*
1228 * WRITE:
1229 */
1230 if (conf->pending_count >= max_queued_requests) {
1231 md_wakeup_thread(mddev->thread);
1232 wait_event(conf->wait_barrier,
1233 conf->pending_count < max_queued_requests);
1234 }
1235 /* first select target devices under rcu_lock and
1236 * inc refcount on their rdev. Record them by setting
1237 * bios[x] to bio
1238 * If there are known/acknowledged bad blocks on any device on
1239 * which we have seen a write error, we want to avoid writing those
1240 * blocks.
1241 * This potentially requires several writes to write around
1242 * the bad blocks. Each set of writes gets it's own r1bio
1243 * with a set of bios attached.
1244 */
1245
1246 disks = conf->raid_disks * 2;
1247 retry_write:
1248 r1_bio->start_next_window = start_next_window;
1249 blocked_rdev = NULL;
1250 rcu_read_lock();
1251 max_sectors = r1_bio->sectors;
1252 for (i = 0; i < disks; i++) {
1253 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1254 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1255 atomic_inc(&rdev->nr_pending);
1256 blocked_rdev = rdev;
1257 break;
1258 }
1259 r1_bio->bios[i] = NULL;
1260 if (!rdev || test_bit(Faulty, &rdev->flags)
1261 || test_bit(Unmerged, &rdev->flags)) {
1262 if (i < conf->raid_disks)
1263 set_bit(R1BIO_Degraded, &r1_bio->state);
1264 continue;
1265 }
1266
1267 atomic_inc(&rdev->nr_pending);
1268 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1269 sector_t first_bad;
1270 int bad_sectors;
1271 int is_bad;
1272
1273 is_bad = is_badblock(rdev, r1_bio->sector,
1274 max_sectors,
1275 &first_bad, &bad_sectors);
1276 if (is_bad < 0) {
1277 /* mustn't write here until the bad block is
1278 * acknowledged*/
1279 set_bit(BlockedBadBlocks, &rdev->flags);
1280 blocked_rdev = rdev;
1281 break;
1282 }
1283 if (is_bad && first_bad <= r1_bio->sector) {
1284 /* Cannot write here at all */
1285 bad_sectors -= (r1_bio->sector - first_bad);
1286 if (bad_sectors < max_sectors)
1287 /* mustn't write more than bad_sectors
1288 * to other devices yet
1289 */
1290 max_sectors = bad_sectors;
1291 rdev_dec_pending(rdev, mddev);
1292 /* We don't set R1BIO_Degraded as that
1293 * only applies if the disk is
1294 * missing, so it might be re-added,
1295 * and we want to know to recover this
1296 * chunk.
1297 * In this case the device is here,
1298 * and the fact that this chunk is not
1299 * in-sync is recorded in the bad
1300 * block log
1301 */
1302 continue;
1303 }
1304 if (is_bad) {
1305 int good_sectors = first_bad - r1_bio->sector;
1306 if (good_sectors < max_sectors)
1307 max_sectors = good_sectors;
1308 }
1309 }
1310 r1_bio->bios[i] = bio;
1311 }
1312 rcu_read_unlock();
1313
1314 if (unlikely(blocked_rdev)) {
1315 /* Wait for this device to become unblocked */
1316 int j;
1317 sector_t old = start_next_window;
1318
1319 for (j = 0; j < i; j++)
1320 if (r1_bio->bios[j])
1321 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1322 r1_bio->state = 0;
1323 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1324 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1325 start_next_window = wait_barrier(conf, bio);
1326 /*
1327 * We must make sure the multi r1bios of bio have
1328 * the same value of bi_phys_segments
1329 */
1330 if (bio->bi_phys_segments && old &&
1331 old != start_next_window)
1332 /* Wait for the former r1bio(s) to complete */
1333 wait_event(conf->wait_barrier,
1334 bio->bi_phys_segments == 1);
1335 goto retry_write;
1336 }
1337
1338 if (max_sectors < r1_bio->sectors) {
1339 /* We are splitting this write into multiple parts, so
1340 * we need to prepare for allocating another r1_bio.
1341 */
1342 r1_bio->sectors = max_sectors;
1343 spin_lock_irq(&conf->device_lock);
1344 if (bio->bi_phys_segments == 0)
1345 bio->bi_phys_segments = 2;
1346 else
1347 bio->bi_phys_segments++;
1348 spin_unlock_irq(&conf->device_lock);
1349 }
1350 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1351
1352 atomic_set(&r1_bio->remaining, 1);
1353 atomic_set(&r1_bio->behind_remaining, 0);
1354
1355 first_clone = 1;
1356 for (i = 0; i < disks; i++) {
1357 struct bio *mbio;
1358 if (!r1_bio->bios[i])
1359 continue;
1360
1361 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1362 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1363
1364 if (first_clone) {
1365 /* do behind I/O ?
1366 * Not if there are too many, or cannot
1367 * allocate memory, or a reader on WriteMostly
1368 * is waiting for behind writes to flush */
1369 if (bitmap &&
1370 (atomic_read(&bitmap->behind_writes)
1371 < mddev->bitmap_info.max_write_behind) &&
1372 !waitqueue_active(&bitmap->behind_wait))
1373 alloc_behind_pages(mbio, r1_bio);
1374
1375 bitmap_startwrite(bitmap, r1_bio->sector,
1376 r1_bio->sectors,
1377 test_bit(R1BIO_BehindIO,
1378 &r1_bio->state));
1379 first_clone = 0;
1380 }
1381 if (r1_bio->behind_bvecs) {
1382 struct bio_vec *bvec;
1383 int j;
1384
1385 /*
1386 * We trimmed the bio, so _all is legit
1387 */
1388 bio_for_each_segment_all(bvec, mbio, j)
1389 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1390 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1391 atomic_inc(&r1_bio->behind_remaining);
1392 }
1393
1394 r1_bio->bios[i] = mbio;
1395
1396 mbio->bi_iter.bi_sector = (r1_bio->sector +
1397 conf->mirrors[i].rdev->data_offset);
1398 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1399 mbio->bi_end_io = raid1_end_write_request;
1400 mbio->bi_rw =
1401 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1402 mbio->bi_private = r1_bio;
1403
1404 atomic_inc(&r1_bio->remaining);
1405
1406 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1407 if (cb)
1408 plug = container_of(cb, struct raid1_plug_cb, cb);
1409 else
1410 plug = NULL;
1411 spin_lock_irqsave(&conf->device_lock, flags);
1412 if (plug) {
1413 bio_list_add(&plug->pending, mbio);
1414 plug->pending_cnt++;
1415 } else {
1416 bio_list_add(&conf->pending_bio_list, mbio);
1417 conf->pending_count++;
1418 }
1419 spin_unlock_irqrestore(&conf->device_lock, flags);
1420 if (!plug)
1421 md_wakeup_thread(mddev->thread);
1422 }
1423 /* Mustn't call r1_bio_write_done before this next test,
1424 * as it could result in the bio being freed.
1425 */
1426 if (sectors_handled < bio_sectors(bio)) {
1427 r1_bio_write_done(r1_bio);
1428 /* We need another r1_bio. It has already been counted
1429 * in bio->bi_phys_segments
1430 */
1431 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1432 r1_bio->master_bio = bio;
1433 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1434 r1_bio->state = 0;
1435 r1_bio->mddev = mddev;
1436 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1437 goto retry_write;
1438 }
1439
1440 r1_bio_write_done(r1_bio);
1441
1442 /* In case raid1d snuck in to freeze_array */
1443 wake_up(&conf->wait_barrier);
1444 }
1445
1446 static void status(struct seq_file *seq, struct mddev *mddev)
1447 {
1448 struct r1conf *conf = mddev->private;
1449 int i;
1450
1451 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1452 conf->raid_disks - mddev->degraded);
1453 rcu_read_lock();
1454 for (i = 0; i < conf->raid_disks; i++) {
1455 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1456 seq_printf(seq, "%s",
1457 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1458 }
1459 rcu_read_unlock();
1460 seq_printf(seq, "]");
1461 }
1462
1463 static void error(struct mddev *mddev, struct md_rdev *rdev)
1464 {
1465 char b[BDEVNAME_SIZE];
1466 struct r1conf *conf = mddev->private;
1467
1468 /*
1469 * If it is not operational, then we have already marked it as dead
1470 * else if it is the last working disks, ignore the error, let the
1471 * next level up know.
1472 * else mark the drive as failed
1473 */
1474 if (test_bit(In_sync, &rdev->flags)
1475 && (conf->raid_disks - mddev->degraded) == 1) {
1476 /*
1477 * Don't fail the drive, act as though we were just a
1478 * normal single drive.
1479 * However don't try a recovery from this drive as
1480 * it is very likely to fail.
1481 */
1482 conf->recovery_disabled = mddev->recovery_disabled;
1483 return;
1484 }
1485 set_bit(Blocked, &rdev->flags);
1486 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1487 unsigned long flags;
1488 spin_lock_irqsave(&conf->device_lock, flags);
1489 mddev->degraded++;
1490 set_bit(Faulty, &rdev->flags);
1491 spin_unlock_irqrestore(&conf->device_lock, flags);
1492 } else
1493 set_bit(Faulty, &rdev->flags);
1494 /*
1495 * if recovery is running, make sure it aborts.
1496 */
1497 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1499 printk(KERN_ALERT
1500 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1501 "md/raid1:%s: Operation continuing on %d devices.\n",
1502 mdname(mddev), bdevname(rdev->bdev, b),
1503 mdname(mddev), conf->raid_disks - mddev->degraded);
1504 }
1505
1506 static void print_conf(struct r1conf *conf)
1507 {
1508 int i;
1509
1510 printk(KERN_DEBUG "RAID1 conf printout:\n");
1511 if (!conf) {
1512 printk(KERN_DEBUG "(!conf)\n");
1513 return;
1514 }
1515 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1516 conf->raid_disks);
1517
1518 rcu_read_lock();
1519 for (i = 0; i < conf->raid_disks; i++) {
1520 char b[BDEVNAME_SIZE];
1521 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1522 if (rdev)
1523 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1524 i, !test_bit(In_sync, &rdev->flags),
1525 !test_bit(Faulty, &rdev->flags),
1526 bdevname(rdev->bdev,b));
1527 }
1528 rcu_read_unlock();
1529 }
1530
1531 static void close_sync(struct r1conf *conf)
1532 {
1533 wait_barrier(conf, NULL);
1534 allow_barrier(conf, 0, 0);
1535
1536 mempool_destroy(conf->r1buf_pool);
1537 conf->r1buf_pool = NULL;
1538
1539 spin_lock_irq(&conf->resync_lock);
1540 conf->next_resync = 0;
1541 conf->start_next_window = MaxSector;
1542 conf->current_window_requests +=
1543 conf->next_window_requests;
1544 conf->next_window_requests = 0;
1545 spin_unlock_irq(&conf->resync_lock);
1546 }
1547
1548 static int raid1_spare_active(struct mddev *mddev)
1549 {
1550 int i;
1551 struct r1conf *conf = mddev->private;
1552 int count = 0;
1553 unsigned long flags;
1554
1555 /*
1556 * Find all failed disks within the RAID1 configuration
1557 * and mark them readable.
1558 * Called under mddev lock, so rcu protection not needed.
1559 */
1560 for (i = 0; i < conf->raid_disks; i++) {
1561 struct md_rdev *rdev = conf->mirrors[i].rdev;
1562 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1563 if (repl
1564 && repl->recovery_offset == MaxSector
1565 && !test_bit(Faulty, &repl->flags)
1566 && !test_and_set_bit(In_sync, &repl->flags)) {
1567 /* replacement has just become active */
1568 if (!rdev ||
1569 !test_and_clear_bit(In_sync, &rdev->flags))
1570 count++;
1571 if (rdev) {
1572 /* Replaced device not technically
1573 * faulty, but we need to be sure
1574 * it gets removed and never re-added
1575 */
1576 set_bit(Faulty, &rdev->flags);
1577 sysfs_notify_dirent_safe(
1578 rdev->sysfs_state);
1579 }
1580 }
1581 if (rdev
1582 && rdev->recovery_offset == MaxSector
1583 && !test_bit(Faulty, &rdev->flags)
1584 && !test_and_set_bit(In_sync, &rdev->flags)) {
1585 count++;
1586 sysfs_notify_dirent_safe(rdev->sysfs_state);
1587 }
1588 }
1589 spin_lock_irqsave(&conf->device_lock, flags);
1590 mddev->degraded -= count;
1591 spin_unlock_irqrestore(&conf->device_lock, flags);
1592
1593 print_conf(conf);
1594 return count;
1595 }
1596
1597 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599 struct r1conf *conf = mddev->private;
1600 int err = -EEXIST;
1601 int mirror = 0;
1602 struct raid1_info *p;
1603 int first = 0;
1604 int last = conf->raid_disks - 1;
1605 struct request_queue *q = bdev_get_queue(rdev->bdev);
1606
1607 if (mddev->recovery_disabled == conf->recovery_disabled)
1608 return -EBUSY;
1609
1610 if (rdev->raid_disk >= 0)
1611 first = last = rdev->raid_disk;
1612
1613 if (q->merge_bvec_fn) {
1614 set_bit(Unmerged, &rdev->flags);
1615 mddev->merge_check_needed = 1;
1616 }
1617
1618 for (mirror = first; mirror <= last; mirror++) {
1619 p = conf->mirrors+mirror;
1620 if (!p->rdev) {
1621
1622 if (mddev->gendisk)
1623 disk_stack_limits(mddev->gendisk, rdev->bdev,
1624 rdev->data_offset << 9);
1625
1626 p->head_position = 0;
1627 rdev->raid_disk = mirror;
1628 err = 0;
1629 /* As all devices are equivalent, we don't need a full recovery
1630 * if this was recently any drive of the array
1631 */
1632 if (rdev->saved_raid_disk < 0)
1633 conf->fullsync = 1;
1634 rcu_assign_pointer(p->rdev, rdev);
1635 break;
1636 }
1637 if (test_bit(WantReplacement, &p->rdev->flags) &&
1638 p[conf->raid_disks].rdev == NULL) {
1639 /* Add this device as a replacement */
1640 clear_bit(In_sync, &rdev->flags);
1641 set_bit(Replacement, &rdev->flags);
1642 rdev->raid_disk = mirror;
1643 err = 0;
1644 conf->fullsync = 1;
1645 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1646 break;
1647 }
1648 }
1649 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1650 /* Some requests might not have seen this new
1651 * merge_bvec_fn. We must wait for them to complete
1652 * before merging the device fully.
1653 * First we make sure any code which has tested
1654 * our function has submitted the request, then
1655 * we wait for all outstanding requests to complete.
1656 */
1657 synchronize_sched();
1658 freeze_array(conf, 0);
1659 unfreeze_array(conf);
1660 clear_bit(Unmerged, &rdev->flags);
1661 }
1662 md_integrity_add_rdev(rdev, mddev);
1663 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1664 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1665 print_conf(conf);
1666 return err;
1667 }
1668
1669 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671 struct r1conf *conf = mddev->private;
1672 int err = 0;
1673 int number = rdev->raid_disk;
1674 struct raid1_info *p = conf->mirrors + number;
1675
1676 if (rdev != p->rdev)
1677 p = conf->mirrors + conf->raid_disks + number;
1678
1679 print_conf(conf);
1680 if (rdev == p->rdev) {
1681 if (test_bit(In_sync, &rdev->flags) ||
1682 atomic_read(&rdev->nr_pending)) {
1683 err = -EBUSY;
1684 goto abort;
1685 }
1686 /* Only remove non-faulty devices if recovery
1687 * is not possible.
1688 */
1689 if (!test_bit(Faulty, &rdev->flags) &&
1690 mddev->recovery_disabled != conf->recovery_disabled &&
1691 mddev->degraded < conf->raid_disks) {
1692 err = -EBUSY;
1693 goto abort;
1694 }
1695 p->rdev = NULL;
1696 synchronize_rcu();
1697 if (atomic_read(&rdev->nr_pending)) {
1698 /* lost the race, try later */
1699 err = -EBUSY;
1700 p->rdev = rdev;
1701 goto abort;
1702 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1703 /* We just removed a device that is being replaced.
1704 * Move down the replacement. We drain all IO before
1705 * doing this to avoid confusion.
1706 */
1707 struct md_rdev *repl =
1708 conf->mirrors[conf->raid_disks + number].rdev;
1709 freeze_array(conf, 0);
1710 clear_bit(Replacement, &repl->flags);
1711 p->rdev = repl;
1712 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1713 unfreeze_array(conf);
1714 clear_bit(WantReplacement, &rdev->flags);
1715 } else
1716 clear_bit(WantReplacement, &rdev->flags);
1717 err = md_integrity_register(mddev);
1718 }
1719 abort:
1720
1721 print_conf(conf);
1722 return err;
1723 }
1724
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727 struct r1bio *r1_bio = bio->bi_private;
1728
1729 update_head_pos(r1_bio->read_disk, r1_bio);
1730
1731 /*
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1735 */
1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 set_bit(R1BIO_Uptodate, &r1_bio->state);
1738
1739 if (atomic_dec_and_test(&r1_bio->remaining))
1740 reschedule_retry(r1_bio);
1741 }
1742
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 struct r1bio *r1_bio = bio->bi_private;
1747 struct mddev *mddev = r1_bio->mddev;
1748 struct r1conf *conf = mddev->private;
1749 int mirror=0;
1750 sector_t first_bad;
1751 int bad_sectors;
1752
1753 mirror = find_bio_disk(r1_bio, bio);
1754
1755 if (!uptodate) {
1756 sector_t sync_blocks = 0;
1757 sector_t s = r1_bio->sector;
1758 long sectors_to_go = r1_bio->sectors;
1759 /* make sure these bits doesn't get cleared. */
1760 do {
1761 bitmap_end_sync(mddev->bitmap, s,
1762 &sync_blocks, 1);
1763 s += sync_blocks;
1764 sectors_to_go -= sync_blocks;
1765 } while (sectors_to_go > 0);
1766 set_bit(WriteErrorSeen,
1767 &conf->mirrors[mirror].rdev->flags);
1768 if (!test_and_set_bit(WantReplacement,
1769 &conf->mirrors[mirror].rdev->flags))
1770 set_bit(MD_RECOVERY_NEEDED, &
1771 mddev->recovery);
1772 set_bit(R1BIO_WriteError, &r1_bio->state);
1773 } else if (is_badblock(conf->mirrors[mirror].rdev,
1774 r1_bio->sector,
1775 r1_bio->sectors,
1776 &first_bad, &bad_sectors) &&
1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 r1_bio->sector,
1779 r1_bio->sectors,
1780 &first_bad, &bad_sectors)
1781 )
1782 set_bit(R1BIO_MadeGood, &r1_bio->state);
1783
1784 if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 int s = r1_bio->sectors;
1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 test_bit(R1BIO_WriteError, &r1_bio->state))
1788 reschedule_retry(r1_bio);
1789 else {
1790 put_buf(r1_bio);
1791 md_done_sync(mddev, s, uptodate);
1792 }
1793 }
1794 }
1795
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 int sectors, struct page *page, int rw)
1798 {
1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 /* success */
1801 return 1;
1802 if (rw == WRITE) {
1803 set_bit(WriteErrorSeen, &rdev->flags);
1804 if (!test_and_set_bit(WantReplacement,
1805 &rdev->flags))
1806 set_bit(MD_RECOVERY_NEEDED, &
1807 rdev->mddev->recovery);
1808 }
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 md_error(rdev->mddev, rdev);
1812 return 0;
1813 }
1814
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1827 */
1828 struct mddev *mddev = r1_bio->mddev;
1829 struct r1conf *conf = mddev->private;
1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 sector_t sect = r1_bio->sector;
1832 int sectors = r1_bio->sectors;
1833 int idx = 0;
1834
1835 while(sectors) {
1836 int s = sectors;
1837 int d = r1_bio->read_disk;
1838 int success = 0;
1839 struct md_rdev *rdev;
1840 int start;
1841
1842 if (s > (PAGE_SIZE>>9))
1843 s = PAGE_SIZE >> 9;
1844 do {
1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1849 */
1850 rdev = conf->mirrors[d].rdev;
1851 if (sync_page_io(rdev, sect, s<<9,
1852 bio->bi_io_vec[idx].bv_page,
1853 READ, false)) {
1854 success = 1;
1855 break;
1856 }
1857 }
1858 d++;
1859 if (d == conf->raid_disks * 2)
1860 d = 0;
1861 } while (!success && d != r1_bio->read_disk);
1862
1863 if (!success) {
1864 char b[BDEVNAME_SIZE];
1865 int abort = 0;
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1870 */
1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1873 mdname(mddev),
1874 bdevname(bio->bi_bdev, b),
1875 (unsigned long long)r1_bio->sector);
1876 for (d = 0; d < conf->raid_disks * 2; d++) {
1877 rdev = conf->mirrors[d].rdev;
1878 if (!rdev || test_bit(Faulty, &rdev->flags))
1879 continue;
1880 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 abort = 1;
1882 }
1883 if (abort) {
1884 conf->recovery_disabled =
1885 mddev->recovery_disabled;
1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 md_done_sync(mddev, r1_bio->sectors, 0);
1888 put_buf(r1_bio);
1889 return 0;
1890 }
1891 /* Try next page */
1892 sectors -= s;
1893 sect += s;
1894 idx++;
1895 continue;
1896 }
1897
1898 start = d;
1899 /* write it back and re-read */
1900 while (d != r1_bio->read_disk) {
1901 if (d == 0)
1902 d = conf->raid_disks * 2;
1903 d--;
1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 continue;
1906 rdev = conf->mirrors[d].rdev;
1907 if (r1_sync_page_io(rdev, sect, s,
1908 bio->bi_io_vec[idx].bv_page,
1909 WRITE) == 0) {
1910 r1_bio->bios[d]->bi_end_io = NULL;
1911 rdev_dec_pending(rdev, mddev);
1912 }
1913 }
1914 d = start;
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 READ) != 0)
1925 atomic_add(s, &rdev->corrected_errors);
1926 }
1927 sectors -= s;
1928 sect += s;
1929 idx ++;
1930 }
1931 set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 return 1;
1934 }
1935
1936 static void process_checks(struct r1bio *r1_bio)
1937 {
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1944 */
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1947 int primary;
1948 int i;
1949 int vcnt;
1950
1951 /* Fix variable parts of all bios */
1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 for (i = 0; i < conf->raid_disks * 2; i++) {
1954 int j;
1955 int size;
1956 int uptodate;
1957 struct bio *b = r1_bio->bios[i];
1958 if (b->bi_end_io != end_sync_read)
1959 continue;
1960 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962 bio_reset(b);
1963 if (!uptodate)
1964 clear_bit(BIO_UPTODATE, &b->bi_flags);
1965 b->bi_vcnt = vcnt;
1966 b->bi_iter.bi_size = r1_bio->sectors << 9;
1967 b->bi_iter.bi_sector = r1_bio->sector +
1968 conf->mirrors[i].rdev->data_offset;
1969 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970 b->bi_end_io = end_sync_read;
1971 b->bi_private = r1_bio;
1972
1973 size = b->bi_iter.bi_size;
1974 for (j = 0; j < vcnt ; j++) {
1975 struct bio_vec *bi;
1976 bi = &b->bi_io_vec[j];
1977 bi->bv_offset = 0;
1978 if (size > PAGE_SIZE)
1979 bi->bv_len = PAGE_SIZE;
1980 else
1981 bi->bv_len = size;
1982 size -= PAGE_SIZE;
1983 }
1984 }
1985 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988 r1_bio->bios[primary]->bi_end_io = NULL;
1989 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990 break;
1991 }
1992 r1_bio->read_disk = primary;
1993 for (i = 0; i < conf->raid_disks * 2; i++) {
1994 int j;
1995 struct bio *pbio = r1_bio->bios[primary];
1996 struct bio *sbio = r1_bio->bios[i];
1997 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998
1999 if (sbio->bi_end_io != end_sync_read)
2000 continue;
2001 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003
2004 if (uptodate) {
2005 for (j = vcnt; j-- ; ) {
2006 struct page *p, *s;
2007 p = pbio->bi_io_vec[j].bv_page;
2008 s = sbio->bi_io_vec[j].bv_page;
2009 if (memcmp(page_address(p),
2010 page_address(s),
2011 sbio->bi_io_vec[j].bv_len))
2012 break;
2013 }
2014 } else
2015 j = 0;
2016 if (j >= 0)
2017 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019 && uptodate)) {
2020 /* No need to write to this device. */
2021 sbio->bi_end_io = NULL;
2022 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023 continue;
2024 }
2025
2026 bio_copy_data(sbio, pbio);
2027 }
2028 }
2029
2030 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2031 {
2032 struct r1conf *conf = mddev->private;
2033 int i;
2034 int disks = conf->raid_disks * 2;
2035 struct bio *bio, *wbio;
2036
2037 bio = r1_bio->bios[r1_bio->read_disk];
2038
2039 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2040 /* ouch - failed to read all of that. */
2041 if (!fix_sync_read_error(r1_bio))
2042 return;
2043
2044 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2045 process_checks(r1_bio);
2046
2047 /*
2048 * schedule writes
2049 */
2050 atomic_set(&r1_bio->remaining, 1);
2051 for (i = 0; i < disks ; i++) {
2052 wbio = r1_bio->bios[i];
2053 if (wbio->bi_end_io == NULL ||
2054 (wbio->bi_end_io == end_sync_read &&
2055 (i == r1_bio->read_disk ||
2056 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2057 continue;
2058
2059 wbio->bi_rw = WRITE;
2060 wbio->bi_end_io = end_sync_write;
2061 atomic_inc(&r1_bio->remaining);
2062 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2063
2064 generic_make_request(wbio);
2065 }
2066
2067 if (atomic_dec_and_test(&r1_bio->remaining)) {
2068 /* if we're here, all write(s) have completed, so clean up */
2069 int s = r1_bio->sectors;
2070 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2071 test_bit(R1BIO_WriteError, &r1_bio->state))
2072 reschedule_retry(r1_bio);
2073 else {
2074 put_buf(r1_bio);
2075 md_done_sync(mddev, s, 1);
2076 }
2077 }
2078 }
2079
2080 /*
2081 * This is a kernel thread which:
2082 *
2083 * 1. Retries failed read operations on working mirrors.
2084 * 2. Updates the raid superblock when problems encounter.
2085 * 3. Performs writes following reads for array synchronising.
2086 */
2087
2088 static void fix_read_error(struct r1conf *conf, int read_disk,
2089 sector_t sect, int sectors)
2090 {
2091 struct mddev *mddev = conf->mddev;
2092 while(sectors) {
2093 int s = sectors;
2094 int d = read_disk;
2095 int success = 0;
2096 int start;
2097 struct md_rdev *rdev;
2098
2099 if (s > (PAGE_SIZE>>9))
2100 s = PAGE_SIZE >> 9;
2101
2102 do {
2103 /* Note: no rcu protection needed here
2104 * as this is synchronous in the raid1d thread
2105 * which is the thread that might remove
2106 * a device. If raid1d ever becomes multi-threaded....
2107 */
2108 sector_t first_bad;
2109 int bad_sectors;
2110
2111 rdev = conf->mirrors[d].rdev;
2112 if (rdev &&
2113 (test_bit(In_sync, &rdev->flags) ||
2114 (!test_bit(Faulty, &rdev->flags) &&
2115 rdev->recovery_offset >= sect + s)) &&
2116 is_badblock(rdev, sect, s,
2117 &first_bad, &bad_sectors) == 0 &&
2118 sync_page_io(rdev, sect, s<<9,
2119 conf->tmppage, READ, false))
2120 success = 1;
2121 else {
2122 d++;
2123 if (d == conf->raid_disks * 2)
2124 d = 0;
2125 }
2126 } while (!success && d != read_disk);
2127
2128 if (!success) {
2129 /* Cannot read from anywhere - mark it bad */
2130 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2131 if (!rdev_set_badblocks(rdev, sect, s, 0))
2132 md_error(mddev, rdev);
2133 break;
2134 }
2135 /* write it back and re-read */
2136 start = d;
2137 while (d != read_disk) {
2138 if (d==0)
2139 d = conf->raid_disks * 2;
2140 d--;
2141 rdev = conf->mirrors[d].rdev;
2142 if (rdev &&
2143 !test_bit(Faulty, &rdev->flags))
2144 r1_sync_page_io(rdev, sect, s,
2145 conf->tmppage, WRITE);
2146 }
2147 d = start;
2148 while (d != read_disk) {
2149 char b[BDEVNAME_SIZE];
2150 if (d==0)
2151 d = conf->raid_disks * 2;
2152 d--;
2153 rdev = conf->mirrors[d].rdev;
2154 if (rdev &&
2155 !test_bit(Faulty, &rdev->flags)) {
2156 if (r1_sync_page_io(rdev, sect, s,
2157 conf->tmppage, READ)) {
2158 atomic_add(s, &rdev->corrected_errors);
2159 printk(KERN_INFO
2160 "md/raid1:%s: read error corrected "
2161 "(%d sectors at %llu on %s)\n",
2162 mdname(mddev), s,
2163 (unsigned long long)(sect +
2164 rdev->data_offset),
2165 bdevname(rdev->bdev, b));
2166 }
2167 }
2168 }
2169 sectors -= s;
2170 sect += s;
2171 }
2172 }
2173
2174 static int narrow_write_error(struct r1bio *r1_bio, int i)
2175 {
2176 struct mddev *mddev = r1_bio->mddev;
2177 struct r1conf *conf = mddev->private;
2178 struct md_rdev *rdev = conf->mirrors[i].rdev;
2179
2180 /* bio has the data to be written to device 'i' where
2181 * we just recently had a write error.
2182 * We repeatedly clone the bio and trim down to one block,
2183 * then try the write. Where the write fails we record
2184 * a bad block.
2185 * It is conceivable that the bio doesn't exactly align with
2186 * blocks. We must handle this somehow.
2187 *
2188 * We currently own a reference on the rdev.
2189 */
2190
2191 int block_sectors;
2192 sector_t sector;
2193 int sectors;
2194 int sect_to_write = r1_bio->sectors;
2195 int ok = 1;
2196
2197 if (rdev->badblocks.shift < 0)
2198 return 0;
2199
2200 block_sectors = roundup(1 << rdev->badblocks.shift,
2201 bdev_logical_block_size(rdev->bdev) >> 9);
2202 sector = r1_bio->sector;
2203 sectors = ((sector + block_sectors)
2204 & ~(sector_t)(block_sectors - 1))
2205 - sector;
2206
2207 while (sect_to_write) {
2208 struct bio *wbio;
2209 if (sectors > sect_to_write)
2210 sectors = sect_to_write;
2211 /* Write at 'sector' for 'sectors'*/
2212
2213 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214 unsigned vcnt = r1_bio->behind_page_count;
2215 struct bio_vec *vec = r1_bio->behind_bvecs;
2216
2217 while (!vec->bv_page) {
2218 vec++;
2219 vcnt--;
2220 }
2221
2222 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2224
2225 wbio->bi_vcnt = vcnt;
2226 } else {
2227 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2228 }
2229
2230 wbio->bi_rw = WRITE;
2231 wbio->bi_iter.bi_sector = r1_bio->sector;
2232 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2233
2234 bio_trim(wbio, sector - r1_bio->sector, sectors);
2235 wbio->bi_iter.bi_sector += rdev->data_offset;
2236 wbio->bi_bdev = rdev->bdev;
2237 if (submit_bio_wait(WRITE, wbio) == 0)
2238 /* failure! */
2239 ok = rdev_set_badblocks(rdev, sector,
2240 sectors, 0)
2241 && ok;
2242
2243 bio_put(wbio);
2244 sect_to_write -= sectors;
2245 sector += sectors;
2246 sectors = block_sectors;
2247 }
2248 return ok;
2249 }
2250
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2252 {
2253 int m;
2254 int s = r1_bio->sectors;
2255 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256 struct md_rdev *rdev = conf->mirrors[m].rdev;
2257 struct bio *bio = r1_bio->bios[m];
2258 if (bio->bi_end_io == NULL)
2259 continue;
2260 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2263 }
2264 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267 md_error(conf->mddev, rdev);
2268 }
2269 }
2270 put_buf(r1_bio);
2271 md_done_sync(conf->mddev, s, 1);
2272 }
2273
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2275 {
2276 int m;
2277 for (m = 0; m < conf->raid_disks * 2 ; m++)
2278 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279 struct md_rdev *rdev = conf->mirrors[m].rdev;
2280 rdev_clear_badblocks(rdev,
2281 r1_bio->sector,
2282 r1_bio->sectors, 0);
2283 rdev_dec_pending(rdev, conf->mddev);
2284 } else if (r1_bio->bios[m] != NULL) {
2285 /* This drive got a write error. We need to
2286 * narrow down and record precise write
2287 * errors.
2288 */
2289 if (!narrow_write_error(r1_bio, m)) {
2290 md_error(conf->mddev,
2291 conf->mirrors[m].rdev);
2292 /* an I/O failed, we can't clear the bitmap */
2293 set_bit(R1BIO_Degraded, &r1_bio->state);
2294 }
2295 rdev_dec_pending(conf->mirrors[m].rdev,
2296 conf->mddev);
2297 }
2298 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299 close_write(r1_bio);
2300 raid_end_bio_io(r1_bio);
2301 }
2302
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305 int disk;
2306 int max_sectors;
2307 struct mddev *mddev = conf->mddev;
2308 struct bio *bio;
2309 char b[BDEVNAME_SIZE];
2310 struct md_rdev *rdev;
2311
2312 clear_bit(R1BIO_ReadError, &r1_bio->state);
2313 /* we got a read error. Maybe the drive is bad. Maybe just
2314 * the block and we can fix it.
2315 * We freeze all other IO, and try reading the block from
2316 * other devices. When we find one, we re-write
2317 * and check it that fixes the read error.
2318 * This is all done synchronously while the array is
2319 * frozen
2320 */
2321 if (mddev->ro == 0) {
2322 freeze_array(conf, 1);
2323 fix_read_error(conf, r1_bio->read_disk,
2324 r1_bio->sector, r1_bio->sectors);
2325 unfreeze_array(conf);
2326 } else
2327 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329
2330 bio = r1_bio->bios[r1_bio->read_disk];
2331 bdevname(bio->bi_bdev, b);
2332 read_more:
2333 disk = read_balance(conf, r1_bio, &max_sectors);
2334 if (disk == -1) {
2335 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336 " read error for block %llu\n",
2337 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338 raid_end_bio_io(r1_bio);
2339 } else {
2340 const unsigned long do_sync
2341 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2342 if (bio) {
2343 r1_bio->bios[r1_bio->read_disk] =
2344 mddev->ro ? IO_BLOCKED : NULL;
2345 bio_put(bio);
2346 }
2347 r1_bio->read_disk = disk;
2348 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350 max_sectors);
2351 r1_bio->bios[r1_bio->read_disk] = bio;
2352 rdev = conf->mirrors[disk].rdev;
2353 printk_ratelimited(KERN_ERR
2354 "md/raid1:%s: redirecting sector %llu"
2355 " to other mirror: %s\n",
2356 mdname(mddev),
2357 (unsigned long long)r1_bio->sector,
2358 bdevname(rdev->bdev, b));
2359 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360 bio->bi_bdev = rdev->bdev;
2361 bio->bi_end_io = raid1_end_read_request;
2362 bio->bi_rw = READ | do_sync;
2363 bio->bi_private = r1_bio;
2364 if (max_sectors < r1_bio->sectors) {
2365 /* Drat - have to split this up more */
2366 struct bio *mbio = r1_bio->master_bio;
2367 int sectors_handled = (r1_bio->sector + max_sectors
2368 - mbio->bi_iter.bi_sector);
2369 r1_bio->sectors = max_sectors;
2370 spin_lock_irq(&conf->device_lock);
2371 if (mbio->bi_phys_segments == 0)
2372 mbio->bi_phys_segments = 2;
2373 else
2374 mbio->bi_phys_segments++;
2375 spin_unlock_irq(&conf->device_lock);
2376 generic_make_request(bio);
2377 bio = NULL;
2378
2379 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380
2381 r1_bio->master_bio = mbio;
2382 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383 r1_bio->state = 0;
2384 set_bit(R1BIO_ReadError, &r1_bio->state);
2385 r1_bio->mddev = mddev;
2386 r1_bio->sector = mbio->bi_iter.bi_sector +
2387 sectors_handled;
2388
2389 goto read_more;
2390 } else
2391 generic_make_request(bio);
2392 }
2393 }
2394
2395 static void raid1d(struct md_thread *thread)
2396 {
2397 struct mddev *mddev = thread->mddev;
2398 struct r1bio *r1_bio;
2399 unsigned long flags;
2400 struct r1conf *conf = mddev->private;
2401 struct list_head *head = &conf->retry_list;
2402 struct blk_plug plug;
2403
2404 md_check_recovery(mddev);
2405
2406 blk_start_plug(&plug);
2407 for (;;) {
2408
2409 flush_pending_writes(conf);
2410
2411 spin_lock_irqsave(&conf->device_lock, flags);
2412 if (list_empty(head)) {
2413 spin_unlock_irqrestore(&conf->device_lock, flags);
2414 break;
2415 }
2416 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417 list_del(head->prev);
2418 conf->nr_queued--;
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2420
2421 mddev = r1_bio->mddev;
2422 conf = mddev->private;
2423 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425 test_bit(R1BIO_WriteError, &r1_bio->state))
2426 handle_sync_write_finished(conf, r1_bio);
2427 else
2428 sync_request_write(mddev, r1_bio);
2429 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430 test_bit(R1BIO_WriteError, &r1_bio->state))
2431 handle_write_finished(conf, r1_bio);
2432 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433 handle_read_error(conf, r1_bio);
2434 else
2435 /* just a partial read to be scheduled from separate
2436 * context
2437 */
2438 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439
2440 cond_resched();
2441 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442 md_check_recovery(mddev);
2443 }
2444 blk_finish_plug(&plug);
2445 }
2446
2447 static int init_resync(struct r1conf *conf)
2448 {
2449 int buffs;
2450
2451 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2452 BUG_ON(conf->r1buf_pool);
2453 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2454 conf->poolinfo);
2455 if (!conf->r1buf_pool)
2456 return -ENOMEM;
2457 conf->next_resync = 0;
2458 return 0;
2459 }
2460
2461 /*
2462 * perform a "sync" on one "block"
2463 *
2464 * We need to make sure that no normal I/O request - particularly write
2465 * requests - conflict with active sync requests.
2466 *
2467 * This is achieved by tracking pending requests and a 'barrier' concept
2468 * that can be installed to exclude normal IO requests.
2469 */
2470
2471 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2472 {
2473 struct r1conf *conf = mddev->private;
2474 struct r1bio *r1_bio;
2475 struct bio *bio;
2476 sector_t max_sector, nr_sectors;
2477 int disk = -1;
2478 int i;
2479 int wonly = -1;
2480 int write_targets = 0, read_targets = 0;
2481 sector_t sync_blocks;
2482 int still_degraded = 0;
2483 int good_sectors = RESYNC_SECTORS;
2484 int min_bad = 0; /* number of sectors that are bad in all devices */
2485
2486 if (!conf->r1buf_pool)
2487 if (init_resync(conf))
2488 return 0;
2489
2490 max_sector = mddev->dev_sectors;
2491 if (sector_nr >= max_sector) {
2492 /* If we aborted, we need to abort the
2493 * sync on the 'current' bitmap chunk (there will
2494 * only be one in raid1 resync.
2495 * We can find the current addess in mddev->curr_resync
2496 */
2497 if (mddev->curr_resync < max_sector) /* aborted */
2498 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2499 &sync_blocks, 1);
2500 else /* completed sync */
2501 conf->fullsync = 0;
2502
2503 bitmap_close_sync(mddev->bitmap);
2504 close_sync(conf);
2505 return 0;
2506 }
2507
2508 if (mddev->bitmap == NULL &&
2509 mddev->recovery_cp == MaxSector &&
2510 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2511 conf->fullsync == 0) {
2512 *skipped = 1;
2513 return max_sector - sector_nr;
2514 }
2515 /* before building a request, check if we can skip these blocks..
2516 * This call the bitmap_start_sync doesn't actually record anything
2517 */
2518 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2519 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2520 /* We can skip this block, and probably several more */
2521 *skipped = 1;
2522 return sync_blocks;
2523 }
2524 /*
2525 * If there is non-resync activity waiting for a turn,
2526 * and resync is going fast enough,
2527 * then let it though before starting on this new sync request.
2528 */
2529 if (!go_faster && conf->nr_waiting)
2530 msleep_interruptible(1000);
2531
2532 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2533 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2534
2535 raise_barrier(conf, sector_nr);
2536
2537 rcu_read_lock();
2538 /*
2539 * If we get a correctably read error during resync or recovery,
2540 * we might want to read from a different device. So we
2541 * flag all drives that could conceivably be read from for READ,
2542 * and any others (which will be non-In_sync devices) for WRITE.
2543 * If a read fails, we try reading from something else for which READ
2544 * is OK.
2545 */
2546
2547 r1_bio->mddev = mddev;
2548 r1_bio->sector = sector_nr;
2549 r1_bio->state = 0;
2550 set_bit(R1BIO_IsSync, &r1_bio->state);
2551
2552 for (i = 0; i < conf->raid_disks * 2; i++) {
2553 struct md_rdev *rdev;
2554 bio = r1_bio->bios[i];
2555 bio_reset(bio);
2556
2557 rdev = rcu_dereference(conf->mirrors[i].rdev);
2558 if (rdev == NULL ||
2559 test_bit(Faulty, &rdev->flags)) {
2560 if (i < conf->raid_disks)
2561 still_degraded = 1;
2562 } else if (!test_bit(In_sync, &rdev->flags)) {
2563 bio->bi_rw = WRITE;
2564 bio->bi_end_io = end_sync_write;
2565 write_targets ++;
2566 } else {
2567 /* may need to read from here */
2568 sector_t first_bad = MaxSector;
2569 int bad_sectors;
2570
2571 if (is_badblock(rdev, sector_nr, good_sectors,
2572 &first_bad, &bad_sectors)) {
2573 if (first_bad > sector_nr)
2574 good_sectors = first_bad - sector_nr;
2575 else {
2576 bad_sectors -= (sector_nr - first_bad);
2577 if (min_bad == 0 ||
2578 min_bad > bad_sectors)
2579 min_bad = bad_sectors;
2580 }
2581 }
2582 if (sector_nr < first_bad) {
2583 if (test_bit(WriteMostly, &rdev->flags)) {
2584 if (wonly < 0)
2585 wonly = i;
2586 } else {
2587 if (disk < 0)
2588 disk = i;
2589 }
2590 bio->bi_rw = READ;
2591 bio->bi_end_io = end_sync_read;
2592 read_targets++;
2593 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2594 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2595 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2596 /*
2597 * The device is suitable for reading (InSync),
2598 * but has bad block(s) here. Let's try to correct them,
2599 * if we are doing resync or repair. Otherwise, leave
2600 * this device alone for this sync request.
2601 */
2602 bio->bi_rw = WRITE;
2603 bio->bi_end_io = end_sync_write;
2604 write_targets++;
2605 }
2606 }
2607 if (bio->bi_end_io) {
2608 atomic_inc(&rdev->nr_pending);
2609 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2610 bio->bi_bdev = rdev->bdev;
2611 bio->bi_private = r1_bio;
2612 }
2613 }
2614 rcu_read_unlock();
2615 if (disk < 0)
2616 disk = wonly;
2617 r1_bio->read_disk = disk;
2618
2619 if (read_targets == 0 && min_bad > 0) {
2620 /* These sectors are bad on all InSync devices, so we
2621 * need to mark them bad on all write targets
2622 */
2623 int ok = 1;
2624 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2625 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2626 struct md_rdev *rdev = conf->mirrors[i].rdev;
2627 ok = rdev_set_badblocks(rdev, sector_nr,
2628 min_bad, 0
2629 ) && ok;
2630 }
2631 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2632 *skipped = 1;
2633 put_buf(r1_bio);
2634
2635 if (!ok) {
2636 /* Cannot record the badblocks, so need to
2637 * abort the resync.
2638 * If there are multiple read targets, could just
2639 * fail the really bad ones ???
2640 */
2641 conf->recovery_disabled = mddev->recovery_disabled;
2642 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2643 return 0;
2644 } else
2645 return min_bad;
2646
2647 }
2648 if (min_bad > 0 && min_bad < good_sectors) {
2649 /* only resync enough to reach the next bad->good
2650 * transition */
2651 good_sectors = min_bad;
2652 }
2653
2654 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2655 /* extra read targets are also write targets */
2656 write_targets += read_targets-1;
2657
2658 if (write_targets == 0 || read_targets == 0) {
2659 /* There is nowhere to write, so all non-sync
2660 * drives must be failed - so we are finished
2661 */
2662 sector_t rv;
2663 if (min_bad > 0)
2664 max_sector = sector_nr + min_bad;
2665 rv = max_sector - sector_nr;
2666 *skipped = 1;
2667 put_buf(r1_bio);
2668 return rv;
2669 }
2670
2671 if (max_sector > mddev->resync_max)
2672 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2673 if (max_sector > sector_nr + good_sectors)
2674 max_sector = sector_nr + good_sectors;
2675 nr_sectors = 0;
2676 sync_blocks = 0;
2677 do {
2678 struct page *page;
2679 int len = PAGE_SIZE;
2680 if (sector_nr + (len>>9) > max_sector)
2681 len = (max_sector - sector_nr) << 9;
2682 if (len == 0)
2683 break;
2684 if (sync_blocks == 0) {
2685 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2686 &sync_blocks, still_degraded) &&
2687 !conf->fullsync &&
2688 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2689 break;
2690 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2691 if ((len >> 9) > sync_blocks)
2692 len = sync_blocks<<9;
2693 }
2694
2695 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2696 bio = r1_bio->bios[i];
2697 if (bio->bi_end_io) {
2698 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2699 if (bio_add_page(bio, page, len, 0) == 0) {
2700 /* stop here */
2701 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2702 while (i > 0) {
2703 i--;
2704 bio = r1_bio->bios[i];
2705 if (bio->bi_end_io==NULL)
2706 continue;
2707 /* remove last page from this bio */
2708 bio->bi_vcnt--;
2709 bio->bi_iter.bi_size -= len;
2710 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2711 }
2712 goto bio_full;
2713 }
2714 }
2715 }
2716 nr_sectors += len>>9;
2717 sector_nr += len>>9;
2718 sync_blocks -= (len>>9);
2719 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2720 bio_full:
2721 r1_bio->sectors = nr_sectors;
2722
2723 /* For a user-requested sync, we read all readable devices and do a
2724 * compare
2725 */
2726 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2727 atomic_set(&r1_bio->remaining, read_targets);
2728 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2729 bio = r1_bio->bios[i];
2730 if (bio->bi_end_io == end_sync_read) {
2731 read_targets--;
2732 md_sync_acct(bio->bi_bdev, nr_sectors);
2733 generic_make_request(bio);
2734 }
2735 }
2736 } else {
2737 atomic_set(&r1_bio->remaining, 1);
2738 bio = r1_bio->bios[r1_bio->read_disk];
2739 md_sync_acct(bio->bi_bdev, nr_sectors);
2740 generic_make_request(bio);
2741
2742 }
2743 return nr_sectors;
2744 }
2745
2746 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2747 {
2748 if (sectors)
2749 return sectors;
2750
2751 return mddev->dev_sectors;
2752 }
2753
2754 static struct r1conf *setup_conf(struct mddev *mddev)
2755 {
2756 struct r1conf *conf;
2757 int i;
2758 struct raid1_info *disk;
2759 struct md_rdev *rdev;
2760 int err = -ENOMEM;
2761
2762 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2763 if (!conf)
2764 goto abort;
2765
2766 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2767 * mddev->raid_disks * 2,
2768 GFP_KERNEL);
2769 if (!conf->mirrors)
2770 goto abort;
2771
2772 conf->tmppage = alloc_page(GFP_KERNEL);
2773 if (!conf->tmppage)
2774 goto abort;
2775
2776 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2777 if (!conf->poolinfo)
2778 goto abort;
2779 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2780 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2781 r1bio_pool_free,
2782 conf->poolinfo);
2783 if (!conf->r1bio_pool)
2784 goto abort;
2785
2786 conf->poolinfo->mddev = mddev;
2787
2788 err = -EINVAL;
2789 spin_lock_init(&conf->device_lock);
2790 rdev_for_each(rdev, mddev) {
2791 struct request_queue *q;
2792 int disk_idx = rdev->raid_disk;
2793 if (disk_idx >= mddev->raid_disks
2794 || disk_idx < 0)
2795 continue;
2796 if (test_bit(Replacement, &rdev->flags))
2797 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2798 else
2799 disk = conf->mirrors + disk_idx;
2800
2801 if (disk->rdev)
2802 goto abort;
2803 disk->rdev = rdev;
2804 q = bdev_get_queue(rdev->bdev);
2805 if (q->merge_bvec_fn)
2806 mddev->merge_check_needed = 1;
2807
2808 disk->head_position = 0;
2809 disk->seq_start = MaxSector;
2810 }
2811 conf->raid_disks = mddev->raid_disks;
2812 conf->mddev = mddev;
2813 INIT_LIST_HEAD(&conf->retry_list);
2814
2815 spin_lock_init(&conf->resync_lock);
2816 init_waitqueue_head(&conf->wait_barrier);
2817
2818 bio_list_init(&conf->pending_bio_list);
2819 conf->pending_count = 0;
2820 conf->recovery_disabled = mddev->recovery_disabled - 1;
2821
2822 conf->start_next_window = MaxSector;
2823 conf->current_window_requests = conf->next_window_requests = 0;
2824
2825 err = -EIO;
2826 for (i = 0; i < conf->raid_disks * 2; i++) {
2827
2828 disk = conf->mirrors + i;
2829
2830 if (i < conf->raid_disks &&
2831 disk[conf->raid_disks].rdev) {
2832 /* This slot has a replacement. */
2833 if (!disk->rdev) {
2834 /* No original, just make the replacement
2835 * a recovering spare
2836 */
2837 disk->rdev =
2838 disk[conf->raid_disks].rdev;
2839 disk[conf->raid_disks].rdev = NULL;
2840 } else if (!test_bit(In_sync, &disk->rdev->flags))
2841 /* Original is not in_sync - bad */
2842 goto abort;
2843 }
2844
2845 if (!disk->rdev ||
2846 !test_bit(In_sync, &disk->rdev->flags)) {
2847 disk->head_position = 0;
2848 if (disk->rdev &&
2849 (disk->rdev->saved_raid_disk < 0))
2850 conf->fullsync = 1;
2851 }
2852 }
2853
2854 err = -ENOMEM;
2855 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2856 if (!conf->thread) {
2857 printk(KERN_ERR
2858 "md/raid1:%s: couldn't allocate thread\n",
2859 mdname(mddev));
2860 goto abort;
2861 }
2862
2863 return conf;
2864
2865 abort:
2866 if (conf) {
2867 if (conf->r1bio_pool)
2868 mempool_destroy(conf->r1bio_pool);
2869 kfree(conf->mirrors);
2870 safe_put_page(conf->tmppage);
2871 kfree(conf->poolinfo);
2872 kfree(conf);
2873 }
2874 return ERR_PTR(err);
2875 }
2876
2877 static void raid1_free(struct mddev *mddev, void *priv);
2878 static int run(struct mddev *mddev)
2879 {
2880 struct r1conf *conf;
2881 int i;
2882 struct md_rdev *rdev;
2883 int ret;
2884 bool discard_supported = false;
2885
2886 if (mddev->level != 1) {
2887 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2888 mdname(mddev), mddev->level);
2889 return -EIO;
2890 }
2891 if (mddev->reshape_position != MaxSector) {
2892 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2893 mdname(mddev));
2894 return -EIO;
2895 }
2896 /*
2897 * copy the already verified devices into our private RAID1
2898 * bookkeeping area. [whatever we allocate in run(),
2899 * should be freed in raid1_free()]
2900 */
2901 if (mddev->private == NULL)
2902 conf = setup_conf(mddev);
2903 else
2904 conf = mddev->private;
2905
2906 if (IS_ERR(conf))
2907 return PTR_ERR(conf);
2908
2909 if (mddev->queue)
2910 blk_queue_max_write_same_sectors(mddev->queue, 0);
2911
2912 rdev_for_each(rdev, mddev) {
2913 if (!mddev->gendisk)
2914 continue;
2915 disk_stack_limits(mddev->gendisk, rdev->bdev,
2916 rdev->data_offset << 9);
2917 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2918 discard_supported = true;
2919 }
2920
2921 mddev->degraded = 0;
2922 for (i=0; i < conf->raid_disks; i++)
2923 if (conf->mirrors[i].rdev == NULL ||
2924 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2925 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2926 mddev->degraded++;
2927
2928 if (conf->raid_disks - mddev->degraded == 1)
2929 mddev->recovery_cp = MaxSector;
2930
2931 if (mddev->recovery_cp != MaxSector)
2932 printk(KERN_NOTICE "md/raid1:%s: not clean"
2933 " -- starting background reconstruction\n",
2934 mdname(mddev));
2935 printk(KERN_INFO
2936 "md/raid1:%s: active with %d out of %d mirrors\n",
2937 mdname(mddev), mddev->raid_disks - mddev->degraded,
2938 mddev->raid_disks);
2939
2940 /*
2941 * Ok, everything is just fine now
2942 */
2943 mddev->thread = conf->thread;
2944 conf->thread = NULL;
2945 mddev->private = conf;
2946
2947 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2948
2949 if (mddev->queue) {
2950 if (discard_supported)
2951 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2952 mddev->queue);
2953 else
2954 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2955 mddev->queue);
2956 }
2957
2958 ret = md_integrity_register(mddev);
2959 if (ret) {
2960 md_unregister_thread(&mddev->thread);
2961 raid1_free(mddev, conf);
2962 }
2963 return ret;
2964 }
2965
2966 static void raid1_free(struct mddev *mddev, void *priv)
2967 {
2968 struct r1conf *conf = priv;
2969
2970 if (conf->r1bio_pool)
2971 mempool_destroy(conf->r1bio_pool);
2972 kfree(conf->mirrors);
2973 safe_put_page(conf->tmppage);
2974 kfree(conf->poolinfo);
2975 kfree(conf);
2976 }
2977
2978 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2979 {
2980 /* no resync is happening, and there is enough space
2981 * on all devices, so we can resize.
2982 * We need to make sure resync covers any new space.
2983 * If the array is shrinking we should possibly wait until
2984 * any io in the removed space completes, but it hardly seems
2985 * worth it.
2986 */
2987 sector_t newsize = raid1_size(mddev, sectors, 0);
2988 if (mddev->external_size &&
2989 mddev->array_sectors > newsize)
2990 return -EINVAL;
2991 if (mddev->bitmap) {
2992 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2993 if (ret)
2994 return ret;
2995 }
2996 md_set_array_sectors(mddev, newsize);
2997 set_capacity(mddev->gendisk, mddev->array_sectors);
2998 revalidate_disk(mddev->gendisk);
2999 if (sectors > mddev->dev_sectors &&
3000 mddev->recovery_cp > mddev->dev_sectors) {
3001 mddev->recovery_cp = mddev->dev_sectors;
3002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3003 }
3004 mddev->dev_sectors = sectors;
3005 mddev->resync_max_sectors = sectors;
3006 return 0;
3007 }
3008
3009 static int raid1_reshape(struct mddev *mddev)
3010 {
3011 /* We need to:
3012 * 1/ resize the r1bio_pool
3013 * 2/ resize conf->mirrors
3014 *
3015 * We allocate a new r1bio_pool if we can.
3016 * Then raise a device barrier and wait until all IO stops.
3017 * Then resize conf->mirrors and swap in the new r1bio pool.
3018 *
3019 * At the same time, we "pack" the devices so that all the missing
3020 * devices have the higher raid_disk numbers.
3021 */
3022 mempool_t *newpool, *oldpool;
3023 struct pool_info *newpoolinfo;
3024 struct raid1_info *newmirrors;
3025 struct r1conf *conf = mddev->private;
3026 int cnt, raid_disks;
3027 unsigned long flags;
3028 int d, d2, err;
3029
3030 /* Cannot change chunk_size, layout, or level */
3031 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3032 mddev->layout != mddev->new_layout ||
3033 mddev->level != mddev->new_level) {
3034 mddev->new_chunk_sectors = mddev->chunk_sectors;
3035 mddev->new_layout = mddev->layout;
3036 mddev->new_level = mddev->level;
3037 return -EINVAL;
3038 }
3039
3040 err = md_allow_write(mddev);
3041 if (err)
3042 return err;
3043
3044 raid_disks = mddev->raid_disks + mddev->delta_disks;
3045
3046 if (raid_disks < conf->raid_disks) {
3047 cnt=0;
3048 for (d= 0; d < conf->raid_disks; d++)
3049 if (conf->mirrors[d].rdev)
3050 cnt++;
3051 if (cnt > raid_disks)
3052 return -EBUSY;
3053 }
3054
3055 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3056 if (!newpoolinfo)
3057 return -ENOMEM;
3058 newpoolinfo->mddev = mddev;
3059 newpoolinfo->raid_disks = raid_disks * 2;
3060
3061 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3062 r1bio_pool_free, newpoolinfo);
3063 if (!newpool) {
3064 kfree(newpoolinfo);
3065 return -ENOMEM;
3066 }
3067 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3068 GFP_KERNEL);
3069 if (!newmirrors) {
3070 kfree(newpoolinfo);
3071 mempool_destroy(newpool);
3072 return -ENOMEM;
3073 }
3074
3075 freeze_array(conf, 0);
3076
3077 /* ok, everything is stopped */
3078 oldpool = conf->r1bio_pool;
3079 conf->r1bio_pool = newpool;
3080
3081 for (d = d2 = 0; d < conf->raid_disks; d++) {
3082 struct md_rdev *rdev = conf->mirrors[d].rdev;
3083 if (rdev && rdev->raid_disk != d2) {
3084 sysfs_unlink_rdev(mddev, rdev);
3085 rdev->raid_disk = d2;
3086 sysfs_unlink_rdev(mddev, rdev);
3087 if (sysfs_link_rdev(mddev, rdev))
3088 printk(KERN_WARNING
3089 "md/raid1:%s: cannot register rd%d\n",
3090 mdname(mddev), rdev->raid_disk);
3091 }
3092 if (rdev)
3093 newmirrors[d2++].rdev = rdev;
3094 }
3095 kfree(conf->mirrors);
3096 conf->mirrors = newmirrors;
3097 kfree(conf->poolinfo);
3098 conf->poolinfo = newpoolinfo;
3099
3100 spin_lock_irqsave(&conf->device_lock, flags);
3101 mddev->degraded += (raid_disks - conf->raid_disks);
3102 spin_unlock_irqrestore(&conf->device_lock, flags);
3103 conf->raid_disks = mddev->raid_disks = raid_disks;
3104 mddev->delta_disks = 0;
3105
3106 unfreeze_array(conf);
3107
3108 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3109 md_wakeup_thread(mddev->thread);
3110
3111 mempool_destroy(oldpool);
3112 return 0;
3113 }
3114
3115 static void raid1_quiesce(struct mddev *mddev, int state)
3116 {
3117 struct r1conf *conf = mddev->private;
3118
3119 switch(state) {
3120 case 2: /* wake for suspend */
3121 wake_up(&conf->wait_barrier);
3122 break;
3123 case 1:
3124 freeze_array(conf, 0);
3125 break;
3126 case 0:
3127 unfreeze_array(conf);
3128 break;
3129 }
3130 }
3131
3132 static void *raid1_takeover(struct mddev *mddev)
3133 {
3134 /* raid1 can take over:
3135 * raid5 with 2 devices, any layout or chunk size
3136 */
3137 if (mddev->level == 5 && mddev->raid_disks == 2) {
3138 struct r1conf *conf;
3139 mddev->new_level = 1;
3140 mddev->new_layout = 0;
3141 mddev->new_chunk_sectors = 0;
3142 conf = setup_conf(mddev);
3143 if (!IS_ERR(conf))
3144 /* Array must appear to be quiesced */
3145 conf->array_frozen = 1;
3146 return conf;
3147 }
3148 return ERR_PTR(-EINVAL);
3149 }
3150
3151 static struct md_personality raid1_personality =
3152 {
3153 .name = "raid1",
3154 .level = 1,
3155 .owner = THIS_MODULE,
3156 .make_request = make_request,
3157 .run = run,
3158 .free = raid1_free,
3159 .status = status,
3160 .error_handler = error,
3161 .hot_add_disk = raid1_add_disk,
3162 .hot_remove_disk= raid1_remove_disk,
3163 .spare_active = raid1_spare_active,
3164 .sync_request = sync_request,
3165 .resize = raid1_resize,
3166 .size = raid1_size,
3167 .check_reshape = raid1_reshape,
3168 .quiesce = raid1_quiesce,
3169 .takeover = raid1_takeover,
3170 .congested = raid1_congested,
3171 .mergeable_bvec = raid1_mergeable_bvec,
3172 };
3173
3174 static int __init raid_init(void)
3175 {
3176 return register_md_personality(&raid1_personality);
3177 }
3178
3179 static void raid_exit(void)
3180 {
3181 unregister_md_personality(&raid1_personality);
3182 }
3183
3184 module_init(raid_init);
3185 module_exit(raid_exit);
3186 MODULE_LICENSE("GPL");
3187 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3188 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3189 MODULE_ALIAS("md-raid1");
3190 MODULE_ALIAS("md-level-1");
3191
3192 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);