]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 bio->bi_error = -EIO;
311 if (done) {
312 bio_endio(bio);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio)
362 {
363 int uptodate = !bio->bi_error;
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
396 uptodate = 1;
397 }
398 if (uptodate) {
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
401 } else {
402 /*
403 * oops, read error - keep the refcount on the rdev
404 */
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
413 }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439 }
440
441 static void raid10_end_write_request(struct bio *bio)
442 {
443 struct r10bio *r10_bio = bio->bi_private;
444 int dev;
445 int dec_rdev = 1;
446 struct r10conf *conf = r10_bio->mddev->private;
447 int slot, repl;
448 struct md_rdev *rdev = NULL;
449
450 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
451
452 if (repl)
453 rdev = conf->mirrors[dev].replacement;
454 if (!rdev) {
455 smp_rmb();
456 repl = 0;
457 rdev = conf->mirrors[dev].rdev;
458 }
459 /*
460 * this branch is our 'one mirror IO has finished' event handler:
461 */
462 if (bio->bi_error) {
463 if (repl)
464 /* Never record new bad blocks to replacement,
465 * just fail it.
466 */
467 md_error(rdev->mddev, rdev);
468 else {
469 set_bit(WriteErrorSeen, &rdev->flags);
470 if (!test_and_set_bit(WantReplacement, &rdev->flags))
471 set_bit(MD_RECOVERY_NEEDED,
472 &rdev->mddev->recovery);
473 set_bit(R10BIO_WriteError, &r10_bio->state);
474 dec_rdev = 0;
475 }
476 } else {
477 /*
478 * Set R10BIO_Uptodate in our master bio, so that
479 * we will return a good error code for to the higher
480 * levels even if IO on some other mirrored buffer fails.
481 *
482 * The 'master' represents the composite IO operation to
483 * user-side. So if something waits for IO, then it will
484 * wait for the 'master' bio.
485 */
486 sector_t first_bad;
487 int bad_sectors;
488
489 /*
490 * Do not set R10BIO_Uptodate if the current device is
491 * rebuilding or Faulty. This is because we cannot use
492 * such device for properly reading the data back (we could
493 * potentially use it, if the current write would have felt
494 * before rdev->recovery_offset, but for simplicity we don't
495 * check this here.
496 */
497 if (test_bit(In_sync, &rdev->flags) &&
498 !test_bit(Faulty, &rdev->flags))
499 set_bit(R10BIO_Uptodate, &r10_bio->state);
500
501 /* Maybe we can clear some bad blocks. */
502 if (is_badblock(rdev,
503 r10_bio->devs[slot].addr,
504 r10_bio->sectors,
505 &first_bad, &bad_sectors)) {
506 bio_put(bio);
507 if (repl)
508 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
509 else
510 r10_bio->devs[slot].bio = IO_MADE_GOOD;
511 dec_rdev = 0;
512 set_bit(R10BIO_MadeGood, &r10_bio->state);
513 }
514 }
515
516 /*
517 *
518 * Let's see if all mirrored write operations have finished
519 * already.
520 */
521 one_write_done(r10_bio);
522 if (dec_rdev)
523 rdev_dec_pending(rdev, conf->mddev);
524 }
525
526 /*
527 * RAID10 layout manager
528 * As well as the chunksize and raid_disks count, there are two
529 * parameters: near_copies and far_copies.
530 * near_copies * far_copies must be <= raid_disks.
531 * Normally one of these will be 1.
532 * If both are 1, we get raid0.
533 * If near_copies == raid_disks, we get raid1.
534 *
535 * Chunks are laid out in raid0 style with near_copies copies of the
536 * first chunk, followed by near_copies copies of the next chunk and
537 * so on.
538 * If far_copies > 1, then after 1/far_copies of the array has been assigned
539 * as described above, we start again with a device offset of near_copies.
540 * So we effectively have another copy of the whole array further down all
541 * the drives, but with blocks on different drives.
542 * With this layout, and block is never stored twice on the one device.
543 *
544 * raid10_find_phys finds the sector offset of a given virtual sector
545 * on each device that it is on.
546 *
547 * raid10_find_virt does the reverse mapping, from a device and a
548 * sector offset to a virtual address
549 */
550
551 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
552 {
553 int n,f;
554 sector_t sector;
555 sector_t chunk;
556 sector_t stripe;
557 int dev;
558 int slot = 0;
559 int last_far_set_start, last_far_set_size;
560
561 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
562 last_far_set_start *= geo->far_set_size;
563
564 last_far_set_size = geo->far_set_size;
565 last_far_set_size += (geo->raid_disks % geo->far_set_size);
566
567 /* now calculate first sector/dev */
568 chunk = r10bio->sector >> geo->chunk_shift;
569 sector = r10bio->sector & geo->chunk_mask;
570
571 chunk *= geo->near_copies;
572 stripe = chunk;
573 dev = sector_div(stripe, geo->raid_disks);
574 if (geo->far_offset)
575 stripe *= geo->far_copies;
576
577 sector += stripe << geo->chunk_shift;
578
579 /* and calculate all the others */
580 for (n = 0; n < geo->near_copies; n++) {
581 int d = dev;
582 int set;
583 sector_t s = sector;
584 r10bio->devs[slot].devnum = d;
585 r10bio->devs[slot].addr = s;
586 slot++;
587
588 for (f = 1; f < geo->far_copies; f++) {
589 set = d / geo->far_set_size;
590 d += geo->near_copies;
591
592 if ((geo->raid_disks % geo->far_set_size) &&
593 (d > last_far_set_start)) {
594 d -= last_far_set_start;
595 d %= last_far_set_size;
596 d += last_far_set_start;
597 } else {
598 d %= geo->far_set_size;
599 d += geo->far_set_size * set;
600 }
601 s += geo->stride;
602 r10bio->devs[slot].devnum = d;
603 r10bio->devs[slot].addr = s;
604 slot++;
605 }
606 dev++;
607 if (dev >= geo->raid_disks) {
608 dev = 0;
609 sector += (geo->chunk_mask + 1);
610 }
611 }
612 }
613
614 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
615 {
616 struct geom *geo = &conf->geo;
617
618 if (conf->reshape_progress != MaxSector &&
619 ((r10bio->sector >= conf->reshape_progress) !=
620 conf->mddev->reshape_backwards)) {
621 set_bit(R10BIO_Previous, &r10bio->state);
622 geo = &conf->prev;
623 } else
624 clear_bit(R10BIO_Previous, &r10bio->state);
625
626 __raid10_find_phys(geo, r10bio);
627 }
628
629 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
630 {
631 sector_t offset, chunk, vchunk;
632 /* Never use conf->prev as this is only called during resync
633 * or recovery, so reshape isn't happening
634 */
635 struct geom *geo = &conf->geo;
636 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
637 int far_set_size = geo->far_set_size;
638 int last_far_set_start;
639
640 if (geo->raid_disks % geo->far_set_size) {
641 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
642 last_far_set_start *= geo->far_set_size;
643
644 if (dev >= last_far_set_start) {
645 far_set_size = geo->far_set_size;
646 far_set_size += (geo->raid_disks % geo->far_set_size);
647 far_set_start = last_far_set_start;
648 }
649 }
650
651 offset = sector & geo->chunk_mask;
652 if (geo->far_offset) {
653 int fc;
654 chunk = sector >> geo->chunk_shift;
655 fc = sector_div(chunk, geo->far_copies);
656 dev -= fc * geo->near_copies;
657 if (dev < far_set_start)
658 dev += far_set_size;
659 } else {
660 while (sector >= geo->stride) {
661 sector -= geo->stride;
662 if (dev < (geo->near_copies + far_set_start))
663 dev += far_set_size - geo->near_copies;
664 else
665 dev -= geo->near_copies;
666 }
667 chunk = sector >> geo->chunk_shift;
668 }
669 vchunk = chunk * geo->raid_disks + dev;
670 sector_div(vchunk, geo->near_copies);
671 return (vchunk << geo->chunk_shift) + offset;
672 }
673
674 /*
675 * This routine returns the disk from which the requested read should
676 * be done. There is a per-array 'next expected sequential IO' sector
677 * number - if this matches on the next IO then we use the last disk.
678 * There is also a per-disk 'last know head position' sector that is
679 * maintained from IRQ contexts, both the normal and the resync IO
680 * completion handlers update this position correctly. If there is no
681 * perfect sequential match then we pick the disk whose head is closest.
682 *
683 * If there are 2 mirrors in the same 2 devices, performance degrades
684 * because position is mirror, not device based.
685 *
686 * The rdev for the device selected will have nr_pending incremented.
687 */
688
689 /*
690 * FIXME: possibly should rethink readbalancing and do it differently
691 * depending on near_copies / far_copies geometry.
692 */
693 static struct md_rdev *read_balance(struct r10conf *conf,
694 struct r10bio *r10_bio,
695 int *max_sectors)
696 {
697 const sector_t this_sector = r10_bio->sector;
698 int disk, slot;
699 int sectors = r10_bio->sectors;
700 int best_good_sectors;
701 sector_t new_distance, best_dist;
702 struct md_rdev *best_rdev, *rdev = NULL;
703 int do_balance;
704 int best_slot;
705 struct geom *geo = &conf->geo;
706
707 raid10_find_phys(conf, r10_bio);
708 rcu_read_lock();
709 retry:
710 sectors = r10_bio->sectors;
711 best_slot = -1;
712 best_rdev = NULL;
713 best_dist = MaxSector;
714 best_good_sectors = 0;
715 do_balance = 1;
716 /*
717 * Check if we can balance. We can balance on the whole
718 * device if no resync is going on (recovery is ok), or below
719 * the resync window. We take the first readable disk when
720 * above the resync window.
721 */
722 if (conf->mddev->recovery_cp < MaxSector
723 && (this_sector + sectors >= conf->next_resync))
724 do_balance = 0;
725
726 for (slot = 0; slot < conf->copies ; slot++) {
727 sector_t first_bad;
728 int bad_sectors;
729 sector_t dev_sector;
730
731 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 continue;
733 disk = r10_bio->devs[slot].devnum;
734 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 if (rdev == NULL ||
739 test_bit(Faulty, &rdev->flags))
740 continue;
741 if (!test_bit(In_sync, &rdev->flags) &&
742 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 continue;
744
745 dev_sector = r10_bio->devs[slot].addr;
746 if (is_badblock(rdev, dev_sector, sectors,
747 &first_bad, &bad_sectors)) {
748 if (best_dist < MaxSector)
749 /* Already have a better slot */
750 continue;
751 if (first_bad <= dev_sector) {
752 /* Cannot read here. If this is the
753 * 'primary' device, then we must not read
754 * beyond 'bad_sectors' from another device.
755 */
756 bad_sectors -= (dev_sector - first_bad);
757 if (!do_balance && sectors > bad_sectors)
758 sectors = bad_sectors;
759 if (best_good_sectors > sectors)
760 best_good_sectors = sectors;
761 } else {
762 sector_t good_sectors =
763 first_bad - dev_sector;
764 if (good_sectors > best_good_sectors) {
765 best_good_sectors = good_sectors;
766 best_slot = slot;
767 best_rdev = rdev;
768 }
769 if (!do_balance)
770 /* Must read from here */
771 break;
772 }
773 continue;
774 } else
775 best_good_sectors = sectors;
776
777 if (!do_balance)
778 break;
779
780 /* This optimisation is debatable, and completely destroys
781 * sequential read speed for 'far copies' arrays. So only
782 * keep it for 'near' arrays, and review those later.
783 */
784 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 break;
786
787 /* for far > 1 always use the lowest address */
788 if (geo->far_copies > 1)
789 new_distance = r10_bio->devs[slot].addr;
790 else
791 new_distance = abs(r10_bio->devs[slot].addr -
792 conf->mirrors[disk].head_position);
793 if (new_distance < best_dist) {
794 best_dist = new_distance;
795 best_slot = slot;
796 best_rdev = rdev;
797 }
798 }
799 if (slot >= conf->copies) {
800 slot = best_slot;
801 rdev = best_rdev;
802 }
803
804 if (slot >= 0) {
805 atomic_inc(&rdev->nr_pending);
806 if (test_bit(Faulty, &rdev->flags)) {
807 /* Cannot risk returning a device that failed
808 * before we inc'ed nr_pending
809 */
810 rdev_dec_pending(rdev, conf->mddev);
811 goto retry;
812 }
813 r10_bio->read_slot = slot;
814 } else
815 rdev = NULL;
816 rcu_read_unlock();
817 *max_sectors = best_good_sectors;
818
819 return rdev;
820 }
821
822 static int raid10_congested(struct mddev *mddev, int bits)
823 {
824 struct r10conf *conf = mddev->private;
825 int i, ret = 0;
826
827 if ((bits & (1 << WB_async_congested)) &&
828 conf->pending_count >= max_queued_requests)
829 return 1;
830
831 rcu_read_lock();
832 for (i = 0;
833 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
834 && ret == 0;
835 i++) {
836 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
837 if (rdev && !test_bit(Faulty, &rdev->flags)) {
838 struct request_queue *q = bdev_get_queue(rdev->bdev);
839
840 ret |= bdi_congested(&q->backing_dev_info, bits);
841 }
842 }
843 rcu_read_unlock();
844 return ret;
845 }
846
847 static void flush_pending_writes(struct r10conf *conf)
848 {
849 /* Any writes that have been queued but are awaiting
850 * bitmap updates get flushed here.
851 */
852 spin_lock_irq(&conf->device_lock);
853
854 if (conf->pending_bio_list.head) {
855 struct bio *bio;
856 bio = bio_list_get(&conf->pending_bio_list);
857 conf->pending_count = 0;
858 spin_unlock_irq(&conf->device_lock);
859 /* flush any pending bitmap writes to disk
860 * before proceeding w/ I/O */
861 bitmap_unplug(conf->mddev->bitmap);
862 wake_up(&conf->wait_barrier);
863
864 while (bio) { /* submit pending writes */
865 struct bio *next = bio->bi_next;
866 bio->bi_next = NULL;
867 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
868 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
869 /* Just ignore it */
870 bio_endio(bio);
871 else
872 generic_make_request(bio);
873 bio = next;
874 }
875 } else
876 spin_unlock_irq(&conf->device_lock);
877 }
878
879 /* Barriers....
880 * Sometimes we need to suspend IO while we do something else,
881 * either some resync/recovery, or reconfigure the array.
882 * To do this we raise a 'barrier'.
883 * The 'barrier' is a counter that can be raised multiple times
884 * to count how many activities are happening which preclude
885 * normal IO.
886 * We can only raise the barrier if there is no pending IO.
887 * i.e. if nr_pending == 0.
888 * We choose only to raise the barrier if no-one is waiting for the
889 * barrier to go down. This means that as soon as an IO request
890 * is ready, no other operations which require a barrier will start
891 * until the IO request has had a chance.
892 *
893 * So: regular IO calls 'wait_barrier'. When that returns there
894 * is no backgroup IO happening, It must arrange to call
895 * allow_barrier when it has finished its IO.
896 * backgroup IO calls must call raise_barrier. Once that returns
897 * there is no normal IO happeing. It must arrange to call
898 * lower_barrier when the particular background IO completes.
899 */
900
901 static void raise_barrier(struct r10conf *conf, int force)
902 {
903 BUG_ON(force && !conf->barrier);
904 spin_lock_irq(&conf->resync_lock);
905
906 /* Wait until no block IO is waiting (unless 'force') */
907 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
908 conf->resync_lock);
909
910 /* block any new IO from starting */
911 conf->barrier++;
912
913 /* Now wait for all pending IO to complete */
914 wait_event_lock_irq(conf->wait_barrier,
915 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
916 conf->resync_lock);
917
918 spin_unlock_irq(&conf->resync_lock);
919 }
920
921 static void lower_barrier(struct r10conf *conf)
922 {
923 unsigned long flags;
924 spin_lock_irqsave(&conf->resync_lock, flags);
925 conf->barrier--;
926 spin_unlock_irqrestore(&conf->resync_lock, flags);
927 wake_up(&conf->wait_barrier);
928 }
929
930 static void wait_barrier(struct r10conf *conf)
931 {
932 spin_lock_irq(&conf->resync_lock);
933 if (conf->barrier) {
934 conf->nr_waiting++;
935 /* Wait for the barrier to drop.
936 * However if there are already pending
937 * requests (preventing the barrier from
938 * rising completely), and the
939 * pre-process bio queue isn't empty,
940 * then don't wait, as we need to empty
941 * that queue to get the nr_pending
942 * count down.
943 */
944 wait_event_lock_irq(conf->wait_barrier,
945 !conf->barrier ||
946 (conf->nr_pending &&
947 current->bio_list &&
948 !bio_list_empty(current->bio_list)),
949 conf->resync_lock);
950 conf->nr_waiting--;
951 }
952 conf->nr_pending++;
953 spin_unlock_irq(&conf->resync_lock);
954 }
955
956 static void allow_barrier(struct r10conf *conf)
957 {
958 unsigned long flags;
959 spin_lock_irqsave(&conf->resync_lock, flags);
960 conf->nr_pending--;
961 spin_unlock_irqrestore(&conf->resync_lock, flags);
962 wake_up(&conf->wait_barrier);
963 }
964
965 static void freeze_array(struct r10conf *conf, int extra)
966 {
967 /* stop syncio and normal IO and wait for everything to
968 * go quiet.
969 * We increment barrier and nr_waiting, and then
970 * wait until nr_pending match nr_queued+extra
971 * This is called in the context of one normal IO request
972 * that has failed. Thus any sync request that might be pending
973 * will be blocked by nr_pending, and we need to wait for
974 * pending IO requests to complete or be queued for re-try.
975 * Thus the number queued (nr_queued) plus this request (extra)
976 * must match the number of pending IOs (nr_pending) before
977 * we continue.
978 */
979 spin_lock_irq(&conf->resync_lock);
980 conf->barrier++;
981 conf->nr_waiting++;
982 wait_event_lock_irq_cmd(conf->wait_barrier,
983 conf->nr_pending == conf->nr_queued+extra,
984 conf->resync_lock,
985 flush_pending_writes(conf));
986
987 spin_unlock_irq(&conf->resync_lock);
988 }
989
990 static void unfreeze_array(struct r10conf *conf)
991 {
992 /* reverse the effect of the freeze */
993 spin_lock_irq(&conf->resync_lock);
994 conf->barrier--;
995 conf->nr_waiting--;
996 wake_up(&conf->wait_barrier);
997 spin_unlock_irq(&conf->resync_lock);
998 }
999
1000 static sector_t choose_data_offset(struct r10bio *r10_bio,
1001 struct md_rdev *rdev)
1002 {
1003 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1004 test_bit(R10BIO_Previous, &r10_bio->state))
1005 return rdev->data_offset;
1006 else
1007 return rdev->new_data_offset;
1008 }
1009
1010 struct raid10_plug_cb {
1011 struct blk_plug_cb cb;
1012 struct bio_list pending;
1013 int pending_cnt;
1014 };
1015
1016 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1017 {
1018 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1019 cb);
1020 struct mddev *mddev = plug->cb.data;
1021 struct r10conf *conf = mddev->private;
1022 struct bio *bio;
1023
1024 if (from_schedule || current->bio_list) {
1025 spin_lock_irq(&conf->device_lock);
1026 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1027 conf->pending_count += plug->pending_cnt;
1028 spin_unlock_irq(&conf->device_lock);
1029 wake_up(&conf->wait_barrier);
1030 md_wakeup_thread(mddev->thread);
1031 kfree(plug);
1032 return;
1033 }
1034
1035 /* we aren't scheduling, so we can do the write-out directly. */
1036 bio = bio_list_get(&plug->pending);
1037 bitmap_unplug(mddev->bitmap);
1038 wake_up(&conf->wait_barrier);
1039
1040 while (bio) { /* submit pending writes */
1041 struct bio *next = bio->bi_next;
1042 bio->bi_next = NULL;
1043 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1044 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1045 /* Just ignore it */
1046 bio_endio(bio);
1047 else
1048 generic_make_request(bio);
1049 bio = next;
1050 }
1051 kfree(plug);
1052 }
1053
1054 static void __make_request(struct mddev *mddev, struct bio *bio)
1055 {
1056 struct r10conf *conf = mddev->private;
1057 struct r10bio *r10_bio;
1058 struct bio *read_bio;
1059 int i;
1060 const int rw = bio_data_dir(bio);
1061 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1062 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1063 const unsigned long do_discard = (bio->bi_rw
1064 & (REQ_DISCARD | REQ_SECURE));
1065 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1066 unsigned long flags;
1067 struct md_rdev *blocked_rdev;
1068 struct blk_plug_cb *cb;
1069 struct raid10_plug_cb *plug = NULL;
1070 int sectors_handled;
1071 int max_sectors;
1072 int sectors;
1073
1074 /*
1075 * Register the new request and wait if the reconstruction
1076 * thread has put up a bar for new requests.
1077 * Continue immediately if no resync is active currently.
1078 */
1079 wait_barrier(conf);
1080
1081 sectors = bio_sectors(bio);
1082 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1083 bio->bi_iter.bi_sector < conf->reshape_progress &&
1084 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1085 /* IO spans the reshape position. Need to wait for
1086 * reshape to pass
1087 */
1088 allow_barrier(conf);
1089 wait_event(conf->wait_barrier,
1090 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1091 conf->reshape_progress >= bio->bi_iter.bi_sector +
1092 sectors);
1093 wait_barrier(conf);
1094 }
1095 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1096 bio_data_dir(bio) == WRITE &&
1097 (mddev->reshape_backwards
1098 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1099 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1100 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1101 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1102 /* Need to update reshape_position in metadata */
1103 mddev->reshape_position = conf->reshape_progress;
1104 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1105 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1106 md_wakeup_thread(mddev->thread);
1107 wait_event(mddev->sb_wait,
1108 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1109
1110 conf->reshape_safe = mddev->reshape_position;
1111 }
1112
1113 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1114
1115 r10_bio->master_bio = bio;
1116 r10_bio->sectors = sectors;
1117
1118 r10_bio->mddev = mddev;
1119 r10_bio->sector = bio->bi_iter.bi_sector;
1120 r10_bio->state = 0;
1121
1122 /* We might need to issue multiple reads to different
1123 * devices if there are bad blocks around, so we keep
1124 * track of the number of reads in bio->bi_phys_segments.
1125 * If this is 0, there is only one r10_bio and no locking
1126 * will be needed when the request completes. If it is
1127 * non-zero, then it is the number of not-completed requests.
1128 */
1129 bio->bi_phys_segments = 0;
1130 bio_clear_flag(bio, BIO_SEG_VALID);
1131
1132 if (rw == READ) {
1133 /*
1134 * read balancing logic:
1135 */
1136 struct md_rdev *rdev;
1137 int slot;
1138
1139 read_again:
1140 rdev = read_balance(conf, r10_bio, &max_sectors);
1141 if (!rdev) {
1142 raid_end_bio_io(r10_bio);
1143 return;
1144 }
1145 slot = r10_bio->read_slot;
1146
1147 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1149 max_sectors);
1150
1151 r10_bio->devs[slot].bio = read_bio;
1152 r10_bio->devs[slot].rdev = rdev;
1153
1154 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1155 choose_data_offset(r10_bio, rdev);
1156 read_bio->bi_bdev = rdev->bdev;
1157 read_bio->bi_end_io = raid10_end_read_request;
1158 read_bio->bi_rw = READ | do_sync;
1159 read_bio->bi_private = r10_bio;
1160
1161 if (max_sectors < r10_bio->sectors) {
1162 /* Could not read all from this device, so we will
1163 * need another r10_bio.
1164 */
1165 sectors_handled = (r10_bio->sector + max_sectors
1166 - bio->bi_iter.bi_sector);
1167 r10_bio->sectors = max_sectors;
1168 spin_lock_irq(&conf->device_lock);
1169 if (bio->bi_phys_segments == 0)
1170 bio->bi_phys_segments = 2;
1171 else
1172 bio->bi_phys_segments++;
1173 spin_unlock_irq(&conf->device_lock);
1174 /* Cannot call generic_make_request directly
1175 * as that will be queued in __generic_make_request
1176 * and subsequent mempool_alloc might block
1177 * waiting for it. so hand bio over to raid10d.
1178 */
1179 reschedule_retry(r10_bio);
1180
1181 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1182
1183 r10_bio->master_bio = bio;
1184 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1185 r10_bio->state = 0;
1186 r10_bio->mddev = mddev;
1187 r10_bio->sector = bio->bi_iter.bi_sector +
1188 sectors_handled;
1189 goto read_again;
1190 } else
1191 generic_make_request(read_bio);
1192 return;
1193 }
1194
1195 /*
1196 * WRITE:
1197 */
1198 if (conf->pending_count >= max_queued_requests) {
1199 md_wakeup_thread(mddev->thread);
1200 wait_event(conf->wait_barrier,
1201 conf->pending_count < max_queued_requests);
1202 }
1203 /* first select target devices under rcu_lock and
1204 * inc refcount on their rdev. Record them by setting
1205 * bios[x] to bio
1206 * If there are known/acknowledged bad blocks on any device
1207 * on which we have seen a write error, we want to avoid
1208 * writing to those blocks. This potentially requires several
1209 * writes to write around the bad blocks. Each set of writes
1210 * gets its own r10_bio with a set of bios attached. The number
1211 * of r10_bios is recored in bio->bi_phys_segments just as with
1212 * the read case.
1213 */
1214
1215 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1216 raid10_find_phys(conf, r10_bio);
1217 retry_write:
1218 blocked_rdev = NULL;
1219 rcu_read_lock();
1220 max_sectors = r10_bio->sectors;
1221
1222 for (i = 0; i < conf->copies; i++) {
1223 int d = r10_bio->devs[i].devnum;
1224 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1225 struct md_rdev *rrdev = rcu_dereference(
1226 conf->mirrors[d].replacement);
1227 if (rdev == rrdev)
1228 rrdev = NULL;
1229 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1230 atomic_inc(&rdev->nr_pending);
1231 blocked_rdev = rdev;
1232 break;
1233 }
1234 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1235 atomic_inc(&rrdev->nr_pending);
1236 blocked_rdev = rrdev;
1237 break;
1238 }
1239 if (rdev && (test_bit(Faulty, &rdev->flags)))
1240 rdev = NULL;
1241 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1242 rrdev = NULL;
1243
1244 r10_bio->devs[i].bio = NULL;
1245 r10_bio->devs[i].repl_bio = NULL;
1246
1247 if (!rdev && !rrdev) {
1248 set_bit(R10BIO_Degraded, &r10_bio->state);
1249 continue;
1250 }
1251 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1252 sector_t first_bad;
1253 sector_t dev_sector = r10_bio->devs[i].addr;
1254 int bad_sectors;
1255 int is_bad;
1256
1257 is_bad = is_badblock(rdev, dev_sector,
1258 max_sectors,
1259 &first_bad, &bad_sectors);
1260 if (is_bad < 0) {
1261 /* Mustn't write here until the bad block
1262 * is acknowledged
1263 */
1264 atomic_inc(&rdev->nr_pending);
1265 set_bit(BlockedBadBlocks, &rdev->flags);
1266 blocked_rdev = rdev;
1267 break;
1268 }
1269 if (is_bad && first_bad <= dev_sector) {
1270 /* Cannot write here at all */
1271 bad_sectors -= (dev_sector - first_bad);
1272 if (bad_sectors < max_sectors)
1273 /* Mustn't write more than bad_sectors
1274 * to other devices yet
1275 */
1276 max_sectors = bad_sectors;
1277 /* We don't set R10BIO_Degraded as that
1278 * only applies if the disk is missing,
1279 * so it might be re-added, and we want to
1280 * know to recover this chunk.
1281 * In this case the device is here, and the
1282 * fact that this chunk is not in-sync is
1283 * recorded in the bad block log.
1284 */
1285 continue;
1286 }
1287 if (is_bad) {
1288 int good_sectors = first_bad - dev_sector;
1289 if (good_sectors < max_sectors)
1290 max_sectors = good_sectors;
1291 }
1292 }
1293 if (rdev) {
1294 r10_bio->devs[i].bio = bio;
1295 atomic_inc(&rdev->nr_pending);
1296 }
1297 if (rrdev) {
1298 r10_bio->devs[i].repl_bio = bio;
1299 atomic_inc(&rrdev->nr_pending);
1300 }
1301 }
1302 rcu_read_unlock();
1303
1304 if (unlikely(blocked_rdev)) {
1305 /* Have to wait for this device to get unblocked, then retry */
1306 int j;
1307 int d;
1308
1309 for (j = 0; j < i; j++) {
1310 if (r10_bio->devs[j].bio) {
1311 d = r10_bio->devs[j].devnum;
1312 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1313 }
1314 if (r10_bio->devs[j].repl_bio) {
1315 struct md_rdev *rdev;
1316 d = r10_bio->devs[j].devnum;
1317 rdev = conf->mirrors[d].replacement;
1318 if (!rdev) {
1319 /* Race with remove_disk */
1320 smp_mb();
1321 rdev = conf->mirrors[d].rdev;
1322 }
1323 rdev_dec_pending(rdev, mddev);
1324 }
1325 }
1326 allow_barrier(conf);
1327 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328 wait_barrier(conf);
1329 goto retry_write;
1330 }
1331
1332 if (max_sectors < r10_bio->sectors) {
1333 /* We are splitting this into multiple parts, so
1334 * we need to prepare for allocating another r10_bio.
1335 */
1336 r10_bio->sectors = max_sectors;
1337 spin_lock_irq(&conf->device_lock);
1338 if (bio->bi_phys_segments == 0)
1339 bio->bi_phys_segments = 2;
1340 else
1341 bio->bi_phys_segments++;
1342 spin_unlock_irq(&conf->device_lock);
1343 }
1344 sectors_handled = r10_bio->sector + max_sectors -
1345 bio->bi_iter.bi_sector;
1346
1347 atomic_set(&r10_bio->remaining, 1);
1348 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1349
1350 for (i = 0; i < conf->copies; i++) {
1351 struct bio *mbio;
1352 int d = r10_bio->devs[i].devnum;
1353 if (r10_bio->devs[i].bio) {
1354 struct md_rdev *rdev = conf->mirrors[d].rdev;
1355 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1356 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1357 max_sectors);
1358 r10_bio->devs[i].bio = mbio;
1359
1360 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1361 choose_data_offset(r10_bio,
1362 rdev));
1363 mbio->bi_bdev = rdev->bdev;
1364 mbio->bi_end_io = raid10_end_write_request;
1365 mbio->bi_rw =
1366 WRITE | do_sync | do_fua | do_discard | do_same;
1367 mbio->bi_private = r10_bio;
1368
1369 atomic_inc(&r10_bio->remaining);
1370
1371 cb = blk_check_plugged(raid10_unplug, mddev,
1372 sizeof(*plug));
1373 if (cb)
1374 plug = container_of(cb, struct raid10_plug_cb,
1375 cb);
1376 else
1377 plug = NULL;
1378 spin_lock_irqsave(&conf->device_lock, flags);
1379 if (plug) {
1380 bio_list_add(&plug->pending, mbio);
1381 plug->pending_cnt++;
1382 } else {
1383 bio_list_add(&conf->pending_bio_list, mbio);
1384 conf->pending_count++;
1385 }
1386 spin_unlock_irqrestore(&conf->device_lock, flags);
1387 if (!plug)
1388 md_wakeup_thread(mddev->thread);
1389 }
1390
1391 if (r10_bio->devs[i].repl_bio) {
1392 struct md_rdev *rdev = conf->mirrors[d].replacement;
1393 if (rdev == NULL) {
1394 /* Replacement just got moved to main 'rdev' */
1395 smp_mb();
1396 rdev = conf->mirrors[d].rdev;
1397 }
1398 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1399 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1400 max_sectors);
1401 r10_bio->devs[i].repl_bio = mbio;
1402
1403 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1404 choose_data_offset(
1405 r10_bio, rdev));
1406 mbio->bi_bdev = rdev->bdev;
1407 mbio->bi_end_io = raid10_end_write_request;
1408 mbio->bi_rw =
1409 WRITE | do_sync | do_fua | do_discard | do_same;
1410 mbio->bi_private = r10_bio;
1411
1412 atomic_inc(&r10_bio->remaining);
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 bio_list_add(&conf->pending_bio_list, mbio);
1415 conf->pending_count++;
1416 spin_unlock_irqrestore(&conf->device_lock, flags);
1417 if (!mddev_check_plugged(mddev))
1418 md_wakeup_thread(mddev->thread);
1419 }
1420 }
1421
1422 /* Don't remove the bias on 'remaining' (one_write_done) until
1423 * after checking if we need to go around again.
1424 */
1425
1426 if (sectors_handled < bio_sectors(bio)) {
1427 one_write_done(r10_bio);
1428 /* We need another r10_bio. It has already been counted
1429 * in bio->bi_phys_segments.
1430 */
1431 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1432
1433 r10_bio->master_bio = bio;
1434 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1435
1436 r10_bio->mddev = mddev;
1437 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1438 r10_bio->state = 0;
1439 goto retry_write;
1440 }
1441 one_write_done(r10_bio);
1442 }
1443
1444 static void make_request(struct mddev *mddev, struct bio *bio)
1445 {
1446 struct r10conf *conf = mddev->private;
1447 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1448 int chunk_sects = chunk_mask + 1;
1449
1450 struct bio *split;
1451
1452 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1453 md_flush_request(mddev, bio);
1454 return;
1455 }
1456
1457 md_write_start(mddev, bio);
1458
1459 do {
1460
1461 /*
1462 * If this request crosses a chunk boundary, we need to split
1463 * it.
1464 */
1465 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1466 bio_sectors(bio) > chunk_sects
1467 && (conf->geo.near_copies < conf->geo.raid_disks
1468 || conf->prev.near_copies <
1469 conf->prev.raid_disks))) {
1470 split = bio_split(bio, chunk_sects -
1471 (bio->bi_iter.bi_sector &
1472 (chunk_sects - 1)),
1473 GFP_NOIO, fs_bio_set);
1474 bio_chain(split, bio);
1475 } else {
1476 split = bio;
1477 }
1478
1479 __make_request(mddev, split);
1480 } while (split != bio);
1481
1482 /* In case raid10d snuck in to freeze_array */
1483 wake_up(&conf->wait_barrier);
1484 }
1485
1486 static void status(struct seq_file *seq, struct mddev *mddev)
1487 {
1488 struct r10conf *conf = mddev->private;
1489 int i;
1490
1491 if (conf->geo.near_copies < conf->geo.raid_disks)
1492 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1493 if (conf->geo.near_copies > 1)
1494 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1495 if (conf->geo.far_copies > 1) {
1496 if (conf->geo.far_offset)
1497 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1498 else
1499 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1500 }
1501 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1502 conf->geo.raid_disks - mddev->degraded);
1503 for (i = 0; i < conf->geo.raid_disks; i++)
1504 seq_printf(seq, "%s",
1505 conf->mirrors[i].rdev &&
1506 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1507 seq_printf(seq, "]");
1508 }
1509
1510 /* check if there are enough drives for
1511 * every block to appear on atleast one.
1512 * Don't consider the device numbered 'ignore'
1513 * as we might be about to remove it.
1514 */
1515 static int _enough(struct r10conf *conf, int previous, int ignore)
1516 {
1517 int first = 0;
1518 int has_enough = 0;
1519 int disks, ncopies;
1520 if (previous) {
1521 disks = conf->prev.raid_disks;
1522 ncopies = conf->prev.near_copies;
1523 } else {
1524 disks = conf->geo.raid_disks;
1525 ncopies = conf->geo.near_copies;
1526 }
1527
1528 rcu_read_lock();
1529 do {
1530 int n = conf->copies;
1531 int cnt = 0;
1532 int this = first;
1533 while (n--) {
1534 struct md_rdev *rdev;
1535 if (this != ignore &&
1536 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1537 test_bit(In_sync, &rdev->flags))
1538 cnt++;
1539 this = (this+1) % disks;
1540 }
1541 if (cnt == 0)
1542 goto out;
1543 first = (first + ncopies) % disks;
1544 } while (first != 0);
1545 has_enough = 1;
1546 out:
1547 rcu_read_unlock();
1548 return has_enough;
1549 }
1550
1551 static int enough(struct r10conf *conf, int ignore)
1552 {
1553 /* when calling 'enough', both 'prev' and 'geo' must
1554 * be stable.
1555 * This is ensured if ->reconfig_mutex or ->device_lock
1556 * is held.
1557 */
1558 return _enough(conf, 0, ignore) &&
1559 _enough(conf, 1, ignore);
1560 }
1561
1562 static void error(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564 char b[BDEVNAME_SIZE];
1565 struct r10conf *conf = mddev->private;
1566 unsigned long flags;
1567
1568 /*
1569 * If it is not operational, then we have already marked it as dead
1570 * else if it is the last working disks, ignore the error, let the
1571 * next level up know.
1572 * else mark the drive as failed
1573 */
1574 spin_lock_irqsave(&conf->device_lock, flags);
1575 if (test_bit(In_sync, &rdev->flags)
1576 && !enough(conf, rdev->raid_disk)) {
1577 /*
1578 * Don't fail the drive, just return an IO error.
1579 */
1580 spin_unlock_irqrestore(&conf->device_lock, flags);
1581 return;
1582 }
1583 if (test_and_clear_bit(In_sync, &rdev->flags))
1584 mddev->degraded++;
1585 /*
1586 * If recovery is running, make sure it aborts.
1587 */
1588 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1589 set_bit(Blocked, &rdev->flags);
1590 set_bit(Faulty, &rdev->flags);
1591 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1592 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1593 spin_unlock_irqrestore(&conf->device_lock, flags);
1594 printk(KERN_ALERT
1595 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1596 "md/raid10:%s: Operation continuing on %d devices.\n",
1597 mdname(mddev), bdevname(rdev->bdev, b),
1598 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1599 }
1600
1601 static void print_conf(struct r10conf *conf)
1602 {
1603 int i;
1604 struct raid10_info *tmp;
1605
1606 printk(KERN_DEBUG "RAID10 conf printout:\n");
1607 if (!conf) {
1608 printk(KERN_DEBUG "(!conf)\n");
1609 return;
1610 }
1611 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1612 conf->geo.raid_disks);
1613
1614 for (i = 0; i < conf->geo.raid_disks; i++) {
1615 char b[BDEVNAME_SIZE];
1616 tmp = conf->mirrors + i;
1617 if (tmp->rdev)
1618 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619 i, !test_bit(In_sync, &tmp->rdev->flags),
1620 !test_bit(Faulty, &tmp->rdev->flags),
1621 bdevname(tmp->rdev->bdev,b));
1622 }
1623 }
1624
1625 static void close_sync(struct r10conf *conf)
1626 {
1627 wait_barrier(conf);
1628 allow_barrier(conf);
1629
1630 mempool_destroy(conf->r10buf_pool);
1631 conf->r10buf_pool = NULL;
1632 }
1633
1634 static int raid10_spare_active(struct mddev *mddev)
1635 {
1636 int i;
1637 struct r10conf *conf = mddev->private;
1638 struct raid10_info *tmp;
1639 int count = 0;
1640 unsigned long flags;
1641
1642 /*
1643 * Find all non-in_sync disks within the RAID10 configuration
1644 * and mark them in_sync
1645 */
1646 for (i = 0; i < conf->geo.raid_disks; i++) {
1647 tmp = conf->mirrors + i;
1648 if (tmp->replacement
1649 && tmp->replacement->recovery_offset == MaxSector
1650 && !test_bit(Faulty, &tmp->replacement->flags)
1651 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652 /* Replacement has just become active */
1653 if (!tmp->rdev
1654 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655 count++;
1656 if (tmp->rdev) {
1657 /* Replaced device not technically faulty,
1658 * but we need to be sure it gets removed
1659 * and never re-added.
1660 */
1661 set_bit(Faulty, &tmp->rdev->flags);
1662 sysfs_notify_dirent_safe(
1663 tmp->rdev->sysfs_state);
1664 }
1665 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666 } else if (tmp->rdev
1667 && tmp->rdev->recovery_offset == MaxSector
1668 && !test_bit(Faulty, &tmp->rdev->flags)
1669 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670 count++;
1671 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1672 }
1673 }
1674 spin_lock_irqsave(&conf->device_lock, flags);
1675 mddev->degraded -= count;
1676 spin_unlock_irqrestore(&conf->device_lock, flags);
1677
1678 print_conf(conf);
1679 return count;
1680 }
1681
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct r10conf *conf = mddev->private;
1685 int err = -EEXIST;
1686 int mirror;
1687 int first = 0;
1688 int last = conf->geo.raid_disks - 1;
1689
1690 if (mddev->recovery_cp < MaxSector)
1691 /* only hot-add to in-sync arrays, as recovery is
1692 * very different from resync
1693 */
1694 return -EBUSY;
1695 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696 return -EINVAL;
1697
1698 if (rdev->raid_disk >= 0)
1699 first = last = rdev->raid_disk;
1700
1701 if (rdev->saved_raid_disk >= first &&
1702 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 mirror = rdev->saved_raid_disk;
1704 else
1705 mirror = first;
1706 for ( ; mirror <= last ; mirror++) {
1707 struct raid10_info *p = &conf->mirrors[mirror];
1708 if (p->recovery_disabled == mddev->recovery_disabled)
1709 continue;
1710 if (p->rdev) {
1711 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 p->replacement != NULL)
1713 continue;
1714 clear_bit(In_sync, &rdev->flags);
1715 set_bit(Replacement, &rdev->flags);
1716 rdev->raid_disk = mirror;
1717 err = 0;
1718 if (mddev->gendisk)
1719 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 rdev->data_offset << 9);
1721 conf->fullsync = 1;
1722 rcu_assign_pointer(p->replacement, rdev);
1723 break;
1724 }
1725
1726 if (mddev->gendisk)
1727 disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 rdev->data_offset << 9);
1729
1730 p->head_position = 0;
1731 p->recovery_disabled = mddev->recovery_disabled - 1;
1732 rdev->raid_disk = mirror;
1733 err = 0;
1734 if (rdev->saved_raid_disk != mirror)
1735 conf->fullsync = 1;
1736 rcu_assign_pointer(p->rdev, rdev);
1737 break;
1738 }
1739 md_integrity_add_rdev(rdev, mddev);
1740 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1741 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1742
1743 print_conf(conf);
1744 return err;
1745 }
1746
1747 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1748 {
1749 struct r10conf *conf = mddev->private;
1750 int err = 0;
1751 int number = rdev->raid_disk;
1752 struct md_rdev **rdevp;
1753 struct raid10_info *p = conf->mirrors + number;
1754
1755 print_conf(conf);
1756 if (rdev == p->rdev)
1757 rdevp = &p->rdev;
1758 else if (rdev == p->replacement)
1759 rdevp = &p->replacement;
1760 else
1761 return 0;
1762
1763 if (test_bit(In_sync, &rdev->flags) ||
1764 atomic_read(&rdev->nr_pending)) {
1765 err = -EBUSY;
1766 goto abort;
1767 }
1768 /* Only remove faulty devices if recovery
1769 * is not possible.
1770 */
1771 if (!test_bit(Faulty, &rdev->flags) &&
1772 mddev->recovery_disabled != p->recovery_disabled &&
1773 (!p->replacement || p->replacement == rdev) &&
1774 number < conf->geo.raid_disks &&
1775 enough(conf, -1)) {
1776 err = -EBUSY;
1777 goto abort;
1778 }
1779 *rdevp = NULL;
1780 synchronize_rcu();
1781 if (atomic_read(&rdev->nr_pending)) {
1782 /* lost the race, try later */
1783 err = -EBUSY;
1784 *rdevp = rdev;
1785 goto abort;
1786 } else if (p->replacement) {
1787 /* We must have just cleared 'rdev' */
1788 p->rdev = p->replacement;
1789 clear_bit(Replacement, &p->replacement->flags);
1790 smp_mb(); /* Make sure other CPUs may see both as identical
1791 * but will never see neither -- if they are careful.
1792 */
1793 p->replacement = NULL;
1794 clear_bit(WantReplacement, &rdev->flags);
1795 } else
1796 /* We might have just remove the Replacement as faulty
1797 * Clear the flag just in case
1798 */
1799 clear_bit(WantReplacement, &rdev->flags);
1800
1801 err = md_integrity_register(mddev);
1802
1803 abort:
1804
1805 print_conf(conf);
1806 return err;
1807 }
1808
1809 static void end_sync_read(struct bio *bio)
1810 {
1811 struct r10bio *r10_bio = bio->bi_private;
1812 struct r10conf *conf = r10_bio->mddev->private;
1813 int d;
1814
1815 if (bio == r10_bio->master_bio) {
1816 /* this is a reshape read */
1817 d = r10_bio->read_slot; /* really the read dev */
1818 } else
1819 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1820
1821 if (!bio->bi_error)
1822 set_bit(R10BIO_Uptodate, &r10_bio->state);
1823 else
1824 /* The write handler will notice the lack of
1825 * R10BIO_Uptodate and record any errors etc
1826 */
1827 atomic_add(r10_bio->sectors,
1828 &conf->mirrors[d].rdev->corrected_errors);
1829
1830 /* for reconstruct, we always reschedule after a read.
1831 * for resync, only after all reads
1832 */
1833 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1834 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1835 atomic_dec_and_test(&r10_bio->remaining)) {
1836 /* we have read all the blocks,
1837 * do the comparison in process context in raid10d
1838 */
1839 reschedule_retry(r10_bio);
1840 }
1841 }
1842
1843 static void end_sync_request(struct r10bio *r10_bio)
1844 {
1845 struct mddev *mddev = r10_bio->mddev;
1846
1847 while (atomic_dec_and_test(&r10_bio->remaining)) {
1848 if (r10_bio->master_bio == NULL) {
1849 /* the primary of several recovery bios */
1850 sector_t s = r10_bio->sectors;
1851 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1852 test_bit(R10BIO_WriteError, &r10_bio->state))
1853 reschedule_retry(r10_bio);
1854 else
1855 put_buf(r10_bio);
1856 md_done_sync(mddev, s, 1);
1857 break;
1858 } else {
1859 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1860 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1861 test_bit(R10BIO_WriteError, &r10_bio->state))
1862 reschedule_retry(r10_bio);
1863 else
1864 put_buf(r10_bio);
1865 r10_bio = r10_bio2;
1866 }
1867 }
1868 }
1869
1870 static void end_sync_write(struct bio *bio)
1871 {
1872 struct r10bio *r10_bio = bio->bi_private;
1873 struct mddev *mddev = r10_bio->mddev;
1874 struct r10conf *conf = mddev->private;
1875 int d;
1876 sector_t first_bad;
1877 int bad_sectors;
1878 int slot;
1879 int repl;
1880 struct md_rdev *rdev = NULL;
1881
1882 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1883 if (repl)
1884 rdev = conf->mirrors[d].replacement;
1885 else
1886 rdev = conf->mirrors[d].rdev;
1887
1888 if (bio->bi_error) {
1889 if (repl)
1890 md_error(mddev, rdev);
1891 else {
1892 set_bit(WriteErrorSeen, &rdev->flags);
1893 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1894 set_bit(MD_RECOVERY_NEEDED,
1895 &rdev->mddev->recovery);
1896 set_bit(R10BIO_WriteError, &r10_bio->state);
1897 }
1898 } else if (is_badblock(rdev,
1899 r10_bio->devs[slot].addr,
1900 r10_bio->sectors,
1901 &first_bad, &bad_sectors))
1902 set_bit(R10BIO_MadeGood, &r10_bio->state);
1903
1904 rdev_dec_pending(rdev, mddev);
1905
1906 end_sync_request(r10_bio);
1907 }
1908
1909 /*
1910 * Note: sync and recover and handled very differently for raid10
1911 * This code is for resync.
1912 * For resync, we read through virtual addresses and read all blocks.
1913 * If there is any error, we schedule a write. The lowest numbered
1914 * drive is authoritative.
1915 * However requests come for physical address, so we need to map.
1916 * For every physical address there are raid_disks/copies virtual addresses,
1917 * which is always are least one, but is not necessarly an integer.
1918 * This means that a physical address can span multiple chunks, so we may
1919 * have to submit multiple io requests for a single sync request.
1920 */
1921 /*
1922 * We check if all blocks are in-sync and only write to blocks that
1923 * aren't in sync
1924 */
1925 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1926 {
1927 struct r10conf *conf = mddev->private;
1928 int i, first;
1929 struct bio *tbio, *fbio;
1930 int vcnt;
1931
1932 atomic_set(&r10_bio->remaining, 1);
1933
1934 /* find the first device with a block */
1935 for (i=0; i<conf->copies; i++)
1936 if (!r10_bio->devs[i].bio->bi_error)
1937 break;
1938
1939 if (i == conf->copies)
1940 goto done;
1941
1942 first = i;
1943 fbio = r10_bio->devs[i].bio;
1944
1945 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1946 /* now find blocks with errors */
1947 for (i=0 ; i < conf->copies ; i++) {
1948 int j, d;
1949
1950 tbio = r10_bio->devs[i].bio;
1951
1952 if (tbio->bi_end_io != end_sync_read)
1953 continue;
1954 if (i == first)
1955 continue;
1956 if (!r10_bio->devs[i].bio->bi_error) {
1957 /* We know that the bi_io_vec layout is the same for
1958 * both 'first' and 'i', so we just compare them.
1959 * All vec entries are PAGE_SIZE;
1960 */
1961 int sectors = r10_bio->sectors;
1962 for (j = 0; j < vcnt; j++) {
1963 int len = PAGE_SIZE;
1964 if (sectors < (len / 512))
1965 len = sectors * 512;
1966 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1967 page_address(tbio->bi_io_vec[j].bv_page),
1968 len))
1969 break;
1970 sectors -= len/512;
1971 }
1972 if (j == vcnt)
1973 continue;
1974 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1975 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1976 /* Don't fix anything. */
1977 continue;
1978 }
1979 /* Ok, we need to write this bio, either to correct an
1980 * inconsistency or to correct an unreadable block.
1981 * First we need to fixup bv_offset, bv_len and
1982 * bi_vecs, as the read request might have corrupted these
1983 */
1984 bio_reset(tbio);
1985
1986 tbio->bi_vcnt = vcnt;
1987 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1988 tbio->bi_rw = WRITE;
1989 tbio->bi_private = r10_bio;
1990 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1991 tbio->bi_end_io = end_sync_write;
1992
1993 bio_copy_data(tbio, fbio);
1994
1995 d = r10_bio->devs[i].devnum;
1996 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1997 atomic_inc(&r10_bio->remaining);
1998 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1999
2000 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2001 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2002 generic_make_request(tbio);
2003 }
2004
2005 /* Now write out to any replacement devices
2006 * that are active
2007 */
2008 for (i = 0; i < conf->copies; i++) {
2009 int d;
2010
2011 tbio = r10_bio->devs[i].repl_bio;
2012 if (!tbio || !tbio->bi_end_io)
2013 continue;
2014 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2015 && r10_bio->devs[i].bio != fbio)
2016 bio_copy_data(tbio, fbio);
2017 d = r10_bio->devs[i].devnum;
2018 atomic_inc(&r10_bio->remaining);
2019 md_sync_acct(conf->mirrors[d].replacement->bdev,
2020 bio_sectors(tbio));
2021 generic_make_request(tbio);
2022 }
2023
2024 done:
2025 if (atomic_dec_and_test(&r10_bio->remaining)) {
2026 md_done_sync(mddev, r10_bio->sectors, 1);
2027 put_buf(r10_bio);
2028 }
2029 }
2030
2031 /*
2032 * Now for the recovery code.
2033 * Recovery happens across physical sectors.
2034 * We recover all non-is_sync drives by finding the virtual address of
2035 * each, and then choose a working drive that also has that virt address.
2036 * There is a separate r10_bio for each non-in_sync drive.
2037 * Only the first two slots are in use. The first for reading,
2038 * The second for writing.
2039 *
2040 */
2041 static void fix_recovery_read_error(struct r10bio *r10_bio)
2042 {
2043 /* We got a read error during recovery.
2044 * We repeat the read in smaller page-sized sections.
2045 * If a read succeeds, write it to the new device or record
2046 * a bad block if we cannot.
2047 * If a read fails, record a bad block on both old and
2048 * new devices.
2049 */
2050 struct mddev *mddev = r10_bio->mddev;
2051 struct r10conf *conf = mddev->private;
2052 struct bio *bio = r10_bio->devs[0].bio;
2053 sector_t sect = 0;
2054 int sectors = r10_bio->sectors;
2055 int idx = 0;
2056 int dr = r10_bio->devs[0].devnum;
2057 int dw = r10_bio->devs[1].devnum;
2058
2059 while (sectors) {
2060 int s = sectors;
2061 struct md_rdev *rdev;
2062 sector_t addr;
2063 int ok;
2064
2065 if (s > (PAGE_SIZE>>9))
2066 s = PAGE_SIZE >> 9;
2067
2068 rdev = conf->mirrors[dr].rdev;
2069 addr = r10_bio->devs[0].addr + sect,
2070 ok = sync_page_io(rdev,
2071 addr,
2072 s << 9,
2073 bio->bi_io_vec[idx].bv_page,
2074 READ, false);
2075 if (ok) {
2076 rdev = conf->mirrors[dw].rdev;
2077 addr = r10_bio->devs[1].addr + sect;
2078 ok = sync_page_io(rdev,
2079 addr,
2080 s << 9,
2081 bio->bi_io_vec[idx].bv_page,
2082 WRITE, false);
2083 if (!ok) {
2084 set_bit(WriteErrorSeen, &rdev->flags);
2085 if (!test_and_set_bit(WantReplacement,
2086 &rdev->flags))
2087 set_bit(MD_RECOVERY_NEEDED,
2088 &rdev->mddev->recovery);
2089 }
2090 }
2091 if (!ok) {
2092 /* We don't worry if we cannot set a bad block -
2093 * it really is bad so there is no loss in not
2094 * recording it yet
2095 */
2096 rdev_set_badblocks(rdev, addr, s, 0);
2097
2098 if (rdev != conf->mirrors[dw].rdev) {
2099 /* need bad block on destination too */
2100 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2101 addr = r10_bio->devs[1].addr + sect;
2102 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2103 if (!ok) {
2104 /* just abort the recovery */
2105 printk(KERN_NOTICE
2106 "md/raid10:%s: recovery aborted"
2107 " due to read error\n",
2108 mdname(mddev));
2109
2110 conf->mirrors[dw].recovery_disabled
2111 = mddev->recovery_disabled;
2112 set_bit(MD_RECOVERY_INTR,
2113 &mddev->recovery);
2114 break;
2115 }
2116 }
2117 }
2118
2119 sectors -= s;
2120 sect += s;
2121 idx++;
2122 }
2123 }
2124
2125 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2126 {
2127 struct r10conf *conf = mddev->private;
2128 int d;
2129 struct bio *wbio, *wbio2;
2130
2131 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2132 fix_recovery_read_error(r10_bio);
2133 end_sync_request(r10_bio);
2134 return;
2135 }
2136
2137 /*
2138 * share the pages with the first bio
2139 * and submit the write request
2140 */
2141 d = r10_bio->devs[1].devnum;
2142 wbio = r10_bio->devs[1].bio;
2143 wbio2 = r10_bio->devs[1].repl_bio;
2144 /* Need to test wbio2->bi_end_io before we call
2145 * generic_make_request as if the former is NULL,
2146 * the latter is free to free wbio2.
2147 */
2148 if (wbio2 && !wbio2->bi_end_io)
2149 wbio2 = NULL;
2150 if (wbio->bi_end_io) {
2151 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2152 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2153 generic_make_request(wbio);
2154 }
2155 if (wbio2) {
2156 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2157 md_sync_acct(conf->mirrors[d].replacement->bdev,
2158 bio_sectors(wbio2));
2159 generic_make_request(wbio2);
2160 }
2161 }
2162
2163 /*
2164 * Used by fix_read_error() to decay the per rdev read_errors.
2165 * We halve the read error count for every hour that has elapsed
2166 * since the last recorded read error.
2167 *
2168 */
2169 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2170 {
2171 struct timespec cur_time_mon;
2172 unsigned long hours_since_last;
2173 unsigned int read_errors = atomic_read(&rdev->read_errors);
2174
2175 ktime_get_ts(&cur_time_mon);
2176
2177 if (rdev->last_read_error.tv_sec == 0 &&
2178 rdev->last_read_error.tv_nsec == 0) {
2179 /* first time we've seen a read error */
2180 rdev->last_read_error = cur_time_mon;
2181 return;
2182 }
2183
2184 hours_since_last = (cur_time_mon.tv_sec -
2185 rdev->last_read_error.tv_sec) / 3600;
2186
2187 rdev->last_read_error = cur_time_mon;
2188
2189 /*
2190 * if hours_since_last is > the number of bits in read_errors
2191 * just set read errors to 0. We do this to avoid
2192 * overflowing the shift of read_errors by hours_since_last.
2193 */
2194 if (hours_since_last >= 8 * sizeof(read_errors))
2195 atomic_set(&rdev->read_errors, 0);
2196 else
2197 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2198 }
2199
2200 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2201 int sectors, struct page *page, int rw)
2202 {
2203 sector_t first_bad;
2204 int bad_sectors;
2205
2206 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2207 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2208 return -1;
2209 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2210 /* success */
2211 return 1;
2212 if (rw == WRITE) {
2213 set_bit(WriteErrorSeen, &rdev->flags);
2214 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2215 set_bit(MD_RECOVERY_NEEDED,
2216 &rdev->mddev->recovery);
2217 }
2218 /* need to record an error - either for the block or the device */
2219 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2220 md_error(rdev->mddev, rdev);
2221 return 0;
2222 }
2223
2224 /*
2225 * This is a kernel thread which:
2226 *
2227 * 1. Retries failed read operations on working mirrors.
2228 * 2. Updates the raid superblock when problems encounter.
2229 * 3. Performs writes following reads for array synchronising.
2230 */
2231
2232 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2233 {
2234 int sect = 0; /* Offset from r10_bio->sector */
2235 int sectors = r10_bio->sectors;
2236 struct md_rdev*rdev;
2237 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2238 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2239
2240 /* still own a reference to this rdev, so it cannot
2241 * have been cleared recently.
2242 */
2243 rdev = conf->mirrors[d].rdev;
2244
2245 if (test_bit(Faulty, &rdev->flags))
2246 /* drive has already been failed, just ignore any
2247 more fix_read_error() attempts */
2248 return;
2249
2250 check_decay_read_errors(mddev, rdev);
2251 atomic_inc(&rdev->read_errors);
2252 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2253 char b[BDEVNAME_SIZE];
2254 bdevname(rdev->bdev, b);
2255
2256 printk(KERN_NOTICE
2257 "md/raid10:%s: %s: Raid device exceeded "
2258 "read_error threshold [cur %d:max %d]\n",
2259 mdname(mddev), b,
2260 atomic_read(&rdev->read_errors), max_read_errors);
2261 printk(KERN_NOTICE
2262 "md/raid10:%s: %s: Failing raid device\n",
2263 mdname(mddev), b);
2264 md_error(mddev, conf->mirrors[d].rdev);
2265 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2266 return;
2267 }
2268
2269 while(sectors) {
2270 int s = sectors;
2271 int sl = r10_bio->read_slot;
2272 int success = 0;
2273 int start;
2274
2275 if (s > (PAGE_SIZE>>9))
2276 s = PAGE_SIZE >> 9;
2277
2278 rcu_read_lock();
2279 do {
2280 sector_t first_bad;
2281 int bad_sectors;
2282
2283 d = r10_bio->devs[sl].devnum;
2284 rdev = rcu_dereference(conf->mirrors[d].rdev);
2285 if (rdev &&
2286 test_bit(In_sync, &rdev->flags) &&
2287 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2288 &first_bad, &bad_sectors) == 0) {
2289 atomic_inc(&rdev->nr_pending);
2290 rcu_read_unlock();
2291 success = sync_page_io(rdev,
2292 r10_bio->devs[sl].addr +
2293 sect,
2294 s<<9,
2295 conf->tmppage, READ, false);
2296 rdev_dec_pending(rdev, mddev);
2297 rcu_read_lock();
2298 if (success)
2299 break;
2300 }
2301 sl++;
2302 if (sl == conf->copies)
2303 sl = 0;
2304 } while (!success && sl != r10_bio->read_slot);
2305 rcu_read_unlock();
2306
2307 if (!success) {
2308 /* Cannot read from anywhere, just mark the block
2309 * as bad on the first device to discourage future
2310 * reads.
2311 */
2312 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2313 rdev = conf->mirrors[dn].rdev;
2314
2315 if (!rdev_set_badblocks(
2316 rdev,
2317 r10_bio->devs[r10_bio->read_slot].addr
2318 + sect,
2319 s, 0)) {
2320 md_error(mddev, rdev);
2321 r10_bio->devs[r10_bio->read_slot].bio
2322 = IO_BLOCKED;
2323 }
2324 break;
2325 }
2326
2327 start = sl;
2328 /* write it back and re-read */
2329 rcu_read_lock();
2330 while (sl != r10_bio->read_slot) {
2331 char b[BDEVNAME_SIZE];
2332
2333 if (sl==0)
2334 sl = conf->copies;
2335 sl--;
2336 d = r10_bio->devs[sl].devnum;
2337 rdev = rcu_dereference(conf->mirrors[d].rdev);
2338 if (!rdev ||
2339 !test_bit(In_sync, &rdev->flags))
2340 continue;
2341
2342 atomic_inc(&rdev->nr_pending);
2343 rcu_read_unlock();
2344 if (r10_sync_page_io(rdev,
2345 r10_bio->devs[sl].addr +
2346 sect,
2347 s, conf->tmppage, WRITE)
2348 == 0) {
2349 /* Well, this device is dead */
2350 printk(KERN_NOTICE
2351 "md/raid10:%s: read correction "
2352 "write failed"
2353 " (%d sectors at %llu on %s)\n",
2354 mdname(mddev), s,
2355 (unsigned long long)(
2356 sect +
2357 choose_data_offset(r10_bio,
2358 rdev)),
2359 bdevname(rdev->bdev, b));
2360 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2361 "drive\n",
2362 mdname(mddev),
2363 bdevname(rdev->bdev, b));
2364 }
2365 rdev_dec_pending(rdev, mddev);
2366 rcu_read_lock();
2367 }
2368 sl = start;
2369 while (sl != r10_bio->read_slot) {
2370 char b[BDEVNAME_SIZE];
2371
2372 if (sl==0)
2373 sl = conf->copies;
2374 sl--;
2375 d = r10_bio->devs[sl].devnum;
2376 rdev = rcu_dereference(conf->mirrors[d].rdev);
2377 if (!rdev ||
2378 !test_bit(In_sync, &rdev->flags))
2379 continue;
2380
2381 atomic_inc(&rdev->nr_pending);
2382 rcu_read_unlock();
2383 switch (r10_sync_page_io(rdev,
2384 r10_bio->devs[sl].addr +
2385 sect,
2386 s, conf->tmppage,
2387 READ)) {
2388 case 0:
2389 /* Well, this device is dead */
2390 printk(KERN_NOTICE
2391 "md/raid10:%s: unable to read back "
2392 "corrected sectors"
2393 " (%d sectors at %llu on %s)\n",
2394 mdname(mddev), s,
2395 (unsigned long long)(
2396 sect +
2397 choose_data_offset(r10_bio, rdev)),
2398 bdevname(rdev->bdev, b));
2399 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2400 "drive\n",
2401 mdname(mddev),
2402 bdevname(rdev->bdev, b));
2403 break;
2404 case 1:
2405 printk(KERN_INFO
2406 "md/raid10:%s: read error corrected"
2407 " (%d sectors at %llu on %s)\n",
2408 mdname(mddev), s,
2409 (unsigned long long)(
2410 sect +
2411 choose_data_offset(r10_bio, rdev)),
2412 bdevname(rdev->bdev, b));
2413 atomic_add(s, &rdev->corrected_errors);
2414 }
2415
2416 rdev_dec_pending(rdev, mddev);
2417 rcu_read_lock();
2418 }
2419 rcu_read_unlock();
2420
2421 sectors -= s;
2422 sect += s;
2423 }
2424 }
2425
2426 static int narrow_write_error(struct r10bio *r10_bio, int i)
2427 {
2428 struct bio *bio = r10_bio->master_bio;
2429 struct mddev *mddev = r10_bio->mddev;
2430 struct r10conf *conf = mddev->private;
2431 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2432 /* bio has the data to be written to slot 'i' where
2433 * we just recently had a write error.
2434 * We repeatedly clone the bio and trim down to one block,
2435 * then try the write. Where the write fails we record
2436 * a bad block.
2437 * It is conceivable that the bio doesn't exactly align with
2438 * blocks. We must handle this.
2439 *
2440 * We currently own a reference to the rdev.
2441 */
2442
2443 int block_sectors;
2444 sector_t sector;
2445 int sectors;
2446 int sect_to_write = r10_bio->sectors;
2447 int ok = 1;
2448
2449 if (rdev->badblocks.shift < 0)
2450 return 0;
2451
2452 block_sectors = roundup(1 << rdev->badblocks.shift,
2453 bdev_logical_block_size(rdev->bdev) >> 9);
2454 sector = r10_bio->sector;
2455 sectors = ((r10_bio->sector + block_sectors)
2456 & ~(sector_t)(block_sectors - 1))
2457 - sector;
2458
2459 while (sect_to_write) {
2460 struct bio *wbio;
2461 if (sectors > sect_to_write)
2462 sectors = sect_to_write;
2463 /* Write at 'sector' for 'sectors' */
2464 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2465 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2466 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2467 choose_data_offset(r10_bio, rdev) +
2468 (sector - r10_bio->sector));
2469 wbio->bi_bdev = rdev->bdev;
2470 if (submit_bio_wait(WRITE, wbio) == 0)
2471 /* Failure! */
2472 ok = rdev_set_badblocks(rdev, sector,
2473 sectors, 0)
2474 && ok;
2475
2476 bio_put(wbio);
2477 sect_to_write -= sectors;
2478 sector += sectors;
2479 sectors = block_sectors;
2480 }
2481 return ok;
2482 }
2483
2484 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2485 {
2486 int slot = r10_bio->read_slot;
2487 struct bio *bio;
2488 struct r10conf *conf = mddev->private;
2489 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2490 char b[BDEVNAME_SIZE];
2491 unsigned long do_sync;
2492 int max_sectors;
2493
2494 /* we got a read error. Maybe the drive is bad. Maybe just
2495 * the block and we can fix it.
2496 * We freeze all other IO, and try reading the block from
2497 * other devices. When we find one, we re-write
2498 * and check it that fixes the read error.
2499 * This is all done synchronously while the array is
2500 * frozen.
2501 */
2502 bio = r10_bio->devs[slot].bio;
2503 bdevname(bio->bi_bdev, b);
2504 bio_put(bio);
2505 r10_bio->devs[slot].bio = NULL;
2506
2507 if (mddev->ro == 0) {
2508 freeze_array(conf, 1);
2509 fix_read_error(conf, mddev, r10_bio);
2510 unfreeze_array(conf);
2511 } else
2512 r10_bio->devs[slot].bio = IO_BLOCKED;
2513
2514 rdev_dec_pending(rdev, mddev);
2515
2516 read_more:
2517 rdev = read_balance(conf, r10_bio, &max_sectors);
2518 if (rdev == NULL) {
2519 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2520 " read error for block %llu\n",
2521 mdname(mddev), b,
2522 (unsigned long long)r10_bio->sector);
2523 raid_end_bio_io(r10_bio);
2524 return;
2525 }
2526
2527 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2528 slot = r10_bio->read_slot;
2529 printk_ratelimited(
2530 KERN_ERR
2531 "md/raid10:%s: %s: redirecting "
2532 "sector %llu to another mirror\n",
2533 mdname(mddev),
2534 bdevname(rdev->bdev, b),
2535 (unsigned long long)r10_bio->sector);
2536 bio = bio_clone_mddev(r10_bio->master_bio,
2537 GFP_NOIO, mddev);
2538 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2539 r10_bio->devs[slot].bio = bio;
2540 r10_bio->devs[slot].rdev = rdev;
2541 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2542 + choose_data_offset(r10_bio, rdev);
2543 bio->bi_bdev = rdev->bdev;
2544 bio->bi_rw = READ | do_sync;
2545 bio->bi_private = r10_bio;
2546 bio->bi_end_io = raid10_end_read_request;
2547 if (max_sectors < r10_bio->sectors) {
2548 /* Drat - have to split this up more */
2549 struct bio *mbio = r10_bio->master_bio;
2550 int sectors_handled =
2551 r10_bio->sector + max_sectors
2552 - mbio->bi_iter.bi_sector;
2553 r10_bio->sectors = max_sectors;
2554 spin_lock_irq(&conf->device_lock);
2555 if (mbio->bi_phys_segments == 0)
2556 mbio->bi_phys_segments = 2;
2557 else
2558 mbio->bi_phys_segments++;
2559 spin_unlock_irq(&conf->device_lock);
2560 generic_make_request(bio);
2561
2562 r10_bio = mempool_alloc(conf->r10bio_pool,
2563 GFP_NOIO);
2564 r10_bio->master_bio = mbio;
2565 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2566 r10_bio->state = 0;
2567 set_bit(R10BIO_ReadError,
2568 &r10_bio->state);
2569 r10_bio->mddev = mddev;
2570 r10_bio->sector = mbio->bi_iter.bi_sector
2571 + sectors_handled;
2572
2573 goto read_more;
2574 } else
2575 generic_make_request(bio);
2576 }
2577
2578 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2579 {
2580 /* Some sort of write request has finished and it
2581 * succeeded in writing where we thought there was a
2582 * bad block. So forget the bad block.
2583 * Or possibly if failed and we need to record
2584 * a bad block.
2585 */
2586 int m;
2587 struct md_rdev *rdev;
2588
2589 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2590 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2591 for (m = 0; m < conf->copies; m++) {
2592 int dev = r10_bio->devs[m].devnum;
2593 rdev = conf->mirrors[dev].rdev;
2594 if (r10_bio->devs[m].bio == NULL)
2595 continue;
2596 if (!r10_bio->devs[m].bio->bi_error) {
2597 rdev_clear_badblocks(
2598 rdev,
2599 r10_bio->devs[m].addr,
2600 r10_bio->sectors, 0);
2601 } else {
2602 if (!rdev_set_badblocks(
2603 rdev,
2604 r10_bio->devs[m].addr,
2605 r10_bio->sectors, 0))
2606 md_error(conf->mddev, rdev);
2607 }
2608 rdev = conf->mirrors[dev].replacement;
2609 if (r10_bio->devs[m].repl_bio == NULL)
2610 continue;
2611
2612 if (!r10_bio->devs[m].repl_bio->bi_error) {
2613 rdev_clear_badblocks(
2614 rdev,
2615 r10_bio->devs[m].addr,
2616 r10_bio->sectors, 0);
2617 } else {
2618 if (!rdev_set_badblocks(
2619 rdev,
2620 r10_bio->devs[m].addr,
2621 r10_bio->sectors, 0))
2622 md_error(conf->mddev, rdev);
2623 }
2624 }
2625 put_buf(r10_bio);
2626 } else {
2627 bool fail = false;
2628 for (m = 0; m < conf->copies; m++) {
2629 int dev = r10_bio->devs[m].devnum;
2630 struct bio *bio = r10_bio->devs[m].bio;
2631 rdev = conf->mirrors[dev].rdev;
2632 if (bio == IO_MADE_GOOD) {
2633 rdev_clear_badblocks(
2634 rdev,
2635 r10_bio->devs[m].addr,
2636 r10_bio->sectors, 0);
2637 rdev_dec_pending(rdev, conf->mddev);
2638 } else if (bio != NULL && bio->bi_error) {
2639 fail = true;
2640 if (!narrow_write_error(r10_bio, m)) {
2641 md_error(conf->mddev, rdev);
2642 set_bit(R10BIO_Degraded,
2643 &r10_bio->state);
2644 }
2645 rdev_dec_pending(rdev, conf->mddev);
2646 }
2647 bio = r10_bio->devs[m].repl_bio;
2648 rdev = conf->mirrors[dev].replacement;
2649 if (rdev && bio == IO_MADE_GOOD) {
2650 rdev_clear_badblocks(
2651 rdev,
2652 r10_bio->devs[m].addr,
2653 r10_bio->sectors, 0);
2654 rdev_dec_pending(rdev, conf->mddev);
2655 }
2656 }
2657 if (test_bit(R10BIO_WriteError,
2658 &r10_bio->state))
2659 close_write(r10_bio);
2660 if (fail) {
2661 spin_lock_irq(&conf->device_lock);
2662 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2663 spin_unlock_irq(&conf->device_lock);
2664 md_wakeup_thread(conf->mddev->thread);
2665 } else
2666 raid_end_bio_io(r10_bio);
2667 }
2668 }
2669
2670 static void raid10d(struct md_thread *thread)
2671 {
2672 struct mddev *mddev = thread->mddev;
2673 struct r10bio *r10_bio;
2674 unsigned long flags;
2675 struct r10conf *conf = mddev->private;
2676 struct list_head *head = &conf->retry_list;
2677 struct blk_plug plug;
2678
2679 md_check_recovery(mddev);
2680
2681 if (!list_empty_careful(&conf->bio_end_io_list) &&
2682 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2683 LIST_HEAD(tmp);
2684 spin_lock_irqsave(&conf->device_lock, flags);
2685 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2686 list_add(&tmp, &conf->bio_end_io_list);
2687 list_del_init(&conf->bio_end_io_list);
2688 }
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
2690 while (!list_empty(&tmp)) {
2691 r10_bio = list_first_entry(&conf->bio_end_io_list,
2692 struct r10bio, retry_list);
2693 list_del(&r10_bio->retry_list);
2694 raid_end_bio_io(r10_bio);
2695 }
2696 }
2697
2698 blk_start_plug(&plug);
2699 for (;;) {
2700
2701 flush_pending_writes(conf);
2702
2703 spin_lock_irqsave(&conf->device_lock, flags);
2704 if (list_empty(head)) {
2705 spin_unlock_irqrestore(&conf->device_lock, flags);
2706 break;
2707 }
2708 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2709 list_del(head->prev);
2710 conf->nr_queued--;
2711 spin_unlock_irqrestore(&conf->device_lock, flags);
2712
2713 mddev = r10_bio->mddev;
2714 conf = mddev->private;
2715 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2716 test_bit(R10BIO_WriteError, &r10_bio->state))
2717 handle_write_completed(conf, r10_bio);
2718 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2719 reshape_request_write(mddev, r10_bio);
2720 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2721 sync_request_write(mddev, r10_bio);
2722 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2723 recovery_request_write(mddev, r10_bio);
2724 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2725 handle_read_error(mddev, r10_bio);
2726 else {
2727 /* just a partial read to be scheduled from a
2728 * separate context
2729 */
2730 int slot = r10_bio->read_slot;
2731 generic_make_request(r10_bio->devs[slot].bio);
2732 }
2733
2734 cond_resched();
2735 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2736 md_check_recovery(mddev);
2737 }
2738 blk_finish_plug(&plug);
2739 }
2740
2741 static int init_resync(struct r10conf *conf)
2742 {
2743 int buffs;
2744 int i;
2745
2746 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2747 BUG_ON(conf->r10buf_pool);
2748 conf->have_replacement = 0;
2749 for (i = 0; i < conf->geo.raid_disks; i++)
2750 if (conf->mirrors[i].replacement)
2751 conf->have_replacement = 1;
2752 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2753 if (!conf->r10buf_pool)
2754 return -ENOMEM;
2755 conf->next_resync = 0;
2756 return 0;
2757 }
2758
2759 /*
2760 * perform a "sync" on one "block"
2761 *
2762 * We need to make sure that no normal I/O request - particularly write
2763 * requests - conflict with active sync requests.
2764 *
2765 * This is achieved by tracking pending requests and a 'barrier' concept
2766 * that can be installed to exclude normal IO requests.
2767 *
2768 * Resync and recovery are handled very differently.
2769 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2770 *
2771 * For resync, we iterate over virtual addresses, read all copies,
2772 * and update if there are differences. If only one copy is live,
2773 * skip it.
2774 * For recovery, we iterate over physical addresses, read a good
2775 * value for each non-in_sync drive, and over-write.
2776 *
2777 * So, for recovery we may have several outstanding complex requests for a
2778 * given address, one for each out-of-sync device. We model this by allocating
2779 * a number of r10_bio structures, one for each out-of-sync device.
2780 * As we setup these structures, we collect all bio's together into a list
2781 * which we then process collectively to add pages, and then process again
2782 * to pass to generic_make_request.
2783 *
2784 * The r10_bio structures are linked using a borrowed master_bio pointer.
2785 * This link is counted in ->remaining. When the r10_bio that points to NULL
2786 * has its remaining count decremented to 0, the whole complex operation
2787 * is complete.
2788 *
2789 */
2790
2791 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2792 int *skipped)
2793 {
2794 struct r10conf *conf = mddev->private;
2795 struct r10bio *r10_bio;
2796 struct bio *biolist = NULL, *bio;
2797 sector_t max_sector, nr_sectors;
2798 int i;
2799 int max_sync;
2800 sector_t sync_blocks;
2801 sector_t sectors_skipped = 0;
2802 int chunks_skipped = 0;
2803 sector_t chunk_mask = conf->geo.chunk_mask;
2804
2805 if (!conf->r10buf_pool)
2806 if (init_resync(conf))
2807 return 0;
2808
2809 /*
2810 * Allow skipping a full rebuild for incremental assembly
2811 * of a clean array, like RAID1 does.
2812 */
2813 if (mddev->bitmap == NULL &&
2814 mddev->recovery_cp == MaxSector &&
2815 mddev->reshape_position == MaxSector &&
2816 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2817 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2818 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2819 conf->fullsync == 0) {
2820 *skipped = 1;
2821 return mddev->dev_sectors - sector_nr;
2822 }
2823
2824 skipped:
2825 max_sector = mddev->dev_sectors;
2826 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2827 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2828 max_sector = mddev->resync_max_sectors;
2829 if (sector_nr >= max_sector) {
2830 /* If we aborted, we need to abort the
2831 * sync on the 'current' bitmap chucks (there can
2832 * be several when recovering multiple devices).
2833 * as we may have started syncing it but not finished.
2834 * We can find the current address in
2835 * mddev->curr_resync, but for recovery,
2836 * we need to convert that to several
2837 * virtual addresses.
2838 */
2839 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2840 end_reshape(conf);
2841 close_sync(conf);
2842 return 0;
2843 }
2844
2845 if (mddev->curr_resync < max_sector) { /* aborted */
2846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2847 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2848 &sync_blocks, 1);
2849 else for (i = 0; i < conf->geo.raid_disks; i++) {
2850 sector_t sect =
2851 raid10_find_virt(conf, mddev->curr_resync, i);
2852 bitmap_end_sync(mddev->bitmap, sect,
2853 &sync_blocks, 1);
2854 }
2855 } else {
2856 /* completed sync */
2857 if ((!mddev->bitmap || conf->fullsync)
2858 && conf->have_replacement
2859 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2860 /* Completed a full sync so the replacements
2861 * are now fully recovered.
2862 */
2863 for (i = 0; i < conf->geo.raid_disks; i++)
2864 if (conf->mirrors[i].replacement)
2865 conf->mirrors[i].replacement
2866 ->recovery_offset
2867 = MaxSector;
2868 }
2869 conf->fullsync = 0;
2870 }
2871 bitmap_close_sync(mddev->bitmap);
2872 close_sync(conf);
2873 *skipped = 1;
2874 return sectors_skipped;
2875 }
2876
2877 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2878 return reshape_request(mddev, sector_nr, skipped);
2879
2880 if (chunks_skipped >= conf->geo.raid_disks) {
2881 /* if there has been nothing to do on any drive,
2882 * then there is nothing to do at all..
2883 */
2884 *skipped = 1;
2885 return (max_sector - sector_nr) + sectors_skipped;
2886 }
2887
2888 if (max_sector > mddev->resync_max)
2889 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2890
2891 /* make sure whole request will fit in a chunk - if chunks
2892 * are meaningful
2893 */
2894 if (conf->geo.near_copies < conf->geo.raid_disks &&
2895 max_sector > (sector_nr | chunk_mask))
2896 max_sector = (sector_nr | chunk_mask) + 1;
2897
2898 /* Again, very different code for resync and recovery.
2899 * Both must result in an r10bio with a list of bios that
2900 * have bi_end_io, bi_sector, bi_bdev set,
2901 * and bi_private set to the r10bio.
2902 * For recovery, we may actually create several r10bios
2903 * with 2 bios in each, that correspond to the bios in the main one.
2904 * In this case, the subordinate r10bios link back through a
2905 * borrowed master_bio pointer, and the counter in the master
2906 * includes a ref from each subordinate.
2907 */
2908 /* First, we decide what to do and set ->bi_end_io
2909 * To end_sync_read if we want to read, and
2910 * end_sync_write if we will want to write.
2911 */
2912
2913 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2914 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2915 /* recovery... the complicated one */
2916 int j;
2917 r10_bio = NULL;
2918
2919 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2920 int still_degraded;
2921 struct r10bio *rb2;
2922 sector_t sect;
2923 int must_sync;
2924 int any_working;
2925 struct raid10_info *mirror = &conf->mirrors[i];
2926
2927 if ((mirror->rdev == NULL ||
2928 test_bit(In_sync, &mirror->rdev->flags))
2929 &&
2930 (mirror->replacement == NULL ||
2931 test_bit(Faulty,
2932 &mirror->replacement->flags)))
2933 continue;
2934
2935 still_degraded = 0;
2936 /* want to reconstruct this device */
2937 rb2 = r10_bio;
2938 sect = raid10_find_virt(conf, sector_nr, i);
2939 if (sect >= mddev->resync_max_sectors) {
2940 /* last stripe is not complete - don't
2941 * try to recover this sector.
2942 */
2943 continue;
2944 }
2945 /* Unless we are doing a full sync, or a replacement
2946 * we only need to recover the block if it is set in
2947 * the bitmap
2948 */
2949 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2950 &sync_blocks, 1);
2951 if (sync_blocks < max_sync)
2952 max_sync = sync_blocks;
2953 if (!must_sync &&
2954 mirror->replacement == NULL &&
2955 !conf->fullsync) {
2956 /* yep, skip the sync_blocks here, but don't assume
2957 * that there will never be anything to do here
2958 */
2959 chunks_skipped = -1;
2960 continue;
2961 }
2962
2963 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2964 r10_bio->state = 0;
2965 raise_barrier(conf, rb2 != NULL);
2966 atomic_set(&r10_bio->remaining, 0);
2967
2968 r10_bio->master_bio = (struct bio*)rb2;
2969 if (rb2)
2970 atomic_inc(&rb2->remaining);
2971 r10_bio->mddev = mddev;
2972 set_bit(R10BIO_IsRecover, &r10_bio->state);
2973 r10_bio->sector = sect;
2974
2975 raid10_find_phys(conf, r10_bio);
2976
2977 /* Need to check if the array will still be
2978 * degraded
2979 */
2980 for (j = 0; j < conf->geo.raid_disks; j++)
2981 if (conf->mirrors[j].rdev == NULL ||
2982 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2983 still_degraded = 1;
2984 break;
2985 }
2986
2987 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2988 &sync_blocks, still_degraded);
2989
2990 any_working = 0;
2991 for (j=0; j<conf->copies;j++) {
2992 int k;
2993 int d = r10_bio->devs[j].devnum;
2994 sector_t from_addr, to_addr;
2995 struct md_rdev *rdev;
2996 sector_t sector, first_bad;
2997 int bad_sectors;
2998 if (!conf->mirrors[d].rdev ||
2999 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3000 continue;
3001 /* This is where we read from */
3002 any_working = 1;
3003 rdev = conf->mirrors[d].rdev;
3004 sector = r10_bio->devs[j].addr;
3005
3006 if (is_badblock(rdev, sector, max_sync,
3007 &first_bad, &bad_sectors)) {
3008 if (first_bad > sector)
3009 max_sync = first_bad - sector;
3010 else {
3011 bad_sectors -= (sector
3012 - first_bad);
3013 if (max_sync > bad_sectors)
3014 max_sync = bad_sectors;
3015 continue;
3016 }
3017 }
3018 bio = r10_bio->devs[0].bio;
3019 bio_reset(bio);
3020 bio->bi_next = biolist;
3021 biolist = bio;
3022 bio->bi_private = r10_bio;
3023 bio->bi_end_io = end_sync_read;
3024 bio->bi_rw = READ;
3025 from_addr = r10_bio->devs[j].addr;
3026 bio->bi_iter.bi_sector = from_addr +
3027 rdev->data_offset;
3028 bio->bi_bdev = rdev->bdev;
3029 atomic_inc(&rdev->nr_pending);
3030 /* and we write to 'i' (if not in_sync) */
3031
3032 for (k=0; k<conf->copies; k++)
3033 if (r10_bio->devs[k].devnum == i)
3034 break;
3035 BUG_ON(k == conf->copies);
3036 to_addr = r10_bio->devs[k].addr;
3037 r10_bio->devs[0].devnum = d;
3038 r10_bio->devs[0].addr = from_addr;
3039 r10_bio->devs[1].devnum = i;
3040 r10_bio->devs[1].addr = to_addr;
3041
3042 rdev = mirror->rdev;
3043 if (!test_bit(In_sync, &rdev->flags)) {
3044 bio = r10_bio->devs[1].bio;
3045 bio_reset(bio);
3046 bio->bi_next = biolist;
3047 biolist = bio;
3048 bio->bi_private = r10_bio;
3049 bio->bi_end_io = end_sync_write;
3050 bio->bi_rw = WRITE;
3051 bio->bi_iter.bi_sector = to_addr
3052 + rdev->data_offset;
3053 bio->bi_bdev = rdev->bdev;
3054 atomic_inc(&r10_bio->remaining);
3055 } else
3056 r10_bio->devs[1].bio->bi_end_io = NULL;
3057
3058 /* and maybe write to replacement */
3059 bio = r10_bio->devs[1].repl_bio;
3060 if (bio)
3061 bio->bi_end_io = NULL;
3062 rdev = mirror->replacement;
3063 /* Note: if rdev != NULL, then bio
3064 * cannot be NULL as r10buf_pool_alloc will
3065 * have allocated it.
3066 * So the second test here is pointless.
3067 * But it keeps semantic-checkers happy, and
3068 * this comment keeps human reviewers
3069 * happy.
3070 */
3071 if (rdev == NULL || bio == NULL ||
3072 test_bit(Faulty, &rdev->flags))
3073 break;
3074 bio_reset(bio);
3075 bio->bi_next = biolist;
3076 biolist = bio;
3077 bio->bi_private = r10_bio;
3078 bio->bi_end_io = end_sync_write;
3079 bio->bi_rw = WRITE;
3080 bio->bi_iter.bi_sector = to_addr +
3081 rdev->data_offset;
3082 bio->bi_bdev = rdev->bdev;
3083 atomic_inc(&r10_bio->remaining);
3084 break;
3085 }
3086 if (j == conf->copies) {
3087 /* Cannot recover, so abort the recovery or
3088 * record a bad block */
3089 if (any_working) {
3090 /* problem is that there are bad blocks
3091 * on other device(s)
3092 */
3093 int k;
3094 for (k = 0; k < conf->copies; k++)
3095 if (r10_bio->devs[k].devnum == i)
3096 break;
3097 if (!test_bit(In_sync,
3098 &mirror->rdev->flags)
3099 && !rdev_set_badblocks(
3100 mirror->rdev,
3101 r10_bio->devs[k].addr,
3102 max_sync, 0))
3103 any_working = 0;
3104 if (mirror->replacement &&
3105 !rdev_set_badblocks(
3106 mirror->replacement,
3107 r10_bio->devs[k].addr,
3108 max_sync, 0))
3109 any_working = 0;
3110 }
3111 if (!any_working) {
3112 if (!test_and_set_bit(MD_RECOVERY_INTR,
3113 &mddev->recovery))
3114 printk(KERN_INFO "md/raid10:%s: insufficient "
3115 "working devices for recovery.\n",
3116 mdname(mddev));
3117 mirror->recovery_disabled
3118 = mddev->recovery_disabled;
3119 }
3120 put_buf(r10_bio);
3121 if (rb2)
3122 atomic_dec(&rb2->remaining);
3123 r10_bio = rb2;
3124 break;
3125 }
3126 }
3127 if (biolist == NULL) {
3128 while (r10_bio) {
3129 struct r10bio *rb2 = r10_bio;
3130 r10_bio = (struct r10bio*) rb2->master_bio;
3131 rb2->master_bio = NULL;
3132 put_buf(rb2);
3133 }
3134 goto giveup;
3135 }
3136 } else {
3137 /* resync. Schedule a read for every block at this virt offset */
3138 int count = 0;
3139
3140 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3141
3142 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3143 &sync_blocks, mddev->degraded) &&
3144 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3145 &mddev->recovery)) {
3146 /* We can skip this block */
3147 *skipped = 1;
3148 return sync_blocks + sectors_skipped;
3149 }
3150 if (sync_blocks < max_sync)
3151 max_sync = sync_blocks;
3152 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3153 r10_bio->state = 0;
3154
3155 r10_bio->mddev = mddev;
3156 atomic_set(&r10_bio->remaining, 0);
3157 raise_barrier(conf, 0);
3158 conf->next_resync = sector_nr;
3159
3160 r10_bio->master_bio = NULL;
3161 r10_bio->sector = sector_nr;
3162 set_bit(R10BIO_IsSync, &r10_bio->state);
3163 raid10_find_phys(conf, r10_bio);
3164 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3165
3166 for (i = 0; i < conf->copies; i++) {
3167 int d = r10_bio->devs[i].devnum;
3168 sector_t first_bad, sector;
3169 int bad_sectors;
3170
3171 if (r10_bio->devs[i].repl_bio)
3172 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3173
3174 bio = r10_bio->devs[i].bio;
3175 bio_reset(bio);
3176 bio->bi_error = -EIO;
3177 if (conf->mirrors[d].rdev == NULL ||
3178 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3179 continue;
3180 sector = r10_bio->devs[i].addr;
3181 if (is_badblock(conf->mirrors[d].rdev,
3182 sector, max_sync,
3183 &first_bad, &bad_sectors)) {
3184 if (first_bad > sector)
3185 max_sync = first_bad - sector;
3186 else {
3187 bad_sectors -= (sector - first_bad);
3188 if (max_sync > bad_sectors)
3189 max_sync = bad_sectors;
3190 continue;
3191 }
3192 }
3193 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3194 atomic_inc(&r10_bio->remaining);
3195 bio->bi_next = biolist;
3196 biolist = bio;
3197 bio->bi_private = r10_bio;
3198 bio->bi_end_io = end_sync_read;
3199 bio->bi_rw = READ;
3200 bio->bi_iter.bi_sector = sector +
3201 conf->mirrors[d].rdev->data_offset;
3202 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3203 count++;
3204
3205 if (conf->mirrors[d].replacement == NULL ||
3206 test_bit(Faulty,
3207 &conf->mirrors[d].replacement->flags))
3208 continue;
3209
3210 /* Need to set up for writing to the replacement */
3211 bio = r10_bio->devs[i].repl_bio;
3212 bio_reset(bio);
3213 bio->bi_error = -EIO;
3214
3215 sector = r10_bio->devs[i].addr;
3216 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3217 bio->bi_next = biolist;
3218 biolist = bio;
3219 bio->bi_private = r10_bio;
3220 bio->bi_end_io = end_sync_write;
3221 bio->bi_rw = WRITE;
3222 bio->bi_iter.bi_sector = sector +
3223 conf->mirrors[d].replacement->data_offset;
3224 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3225 count++;
3226 }
3227
3228 if (count < 2) {
3229 for (i=0; i<conf->copies; i++) {
3230 int d = r10_bio->devs[i].devnum;
3231 if (r10_bio->devs[i].bio->bi_end_io)
3232 rdev_dec_pending(conf->mirrors[d].rdev,
3233 mddev);
3234 if (r10_bio->devs[i].repl_bio &&
3235 r10_bio->devs[i].repl_bio->bi_end_io)
3236 rdev_dec_pending(
3237 conf->mirrors[d].replacement,
3238 mddev);
3239 }
3240 put_buf(r10_bio);
3241 biolist = NULL;
3242 goto giveup;
3243 }
3244 }
3245
3246 nr_sectors = 0;
3247 if (sector_nr + max_sync < max_sector)
3248 max_sector = sector_nr + max_sync;
3249 do {
3250 struct page *page;
3251 int len = PAGE_SIZE;
3252 if (sector_nr + (len>>9) > max_sector)
3253 len = (max_sector - sector_nr) << 9;
3254 if (len == 0)
3255 break;
3256 for (bio= biolist ; bio ; bio=bio->bi_next) {
3257 struct bio *bio2;
3258 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3259 if (bio_add_page(bio, page, len, 0))
3260 continue;
3261
3262 /* stop here */
3263 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3264 for (bio2 = biolist;
3265 bio2 && bio2 != bio;
3266 bio2 = bio2->bi_next) {
3267 /* remove last page from this bio */
3268 bio2->bi_vcnt--;
3269 bio2->bi_iter.bi_size -= len;
3270 bio_clear_flag(bio2, BIO_SEG_VALID);
3271 }
3272 goto bio_full;
3273 }
3274 nr_sectors += len>>9;
3275 sector_nr += len>>9;
3276 } while (biolist->bi_vcnt < RESYNC_PAGES);
3277 bio_full:
3278 r10_bio->sectors = nr_sectors;
3279
3280 while (biolist) {
3281 bio = biolist;
3282 biolist = biolist->bi_next;
3283
3284 bio->bi_next = NULL;
3285 r10_bio = bio->bi_private;
3286 r10_bio->sectors = nr_sectors;
3287
3288 if (bio->bi_end_io == end_sync_read) {
3289 md_sync_acct(bio->bi_bdev, nr_sectors);
3290 bio->bi_error = 0;
3291 generic_make_request(bio);
3292 }
3293 }
3294
3295 if (sectors_skipped)
3296 /* pretend they weren't skipped, it makes
3297 * no important difference in this case
3298 */
3299 md_done_sync(mddev, sectors_skipped, 1);
3300
3301 return sectors_skipped + nr_sectors;
3302 giveup:
3303 /* There is nowhere to write, so all non-sync
3304 * drives must be failed or in resync, all drives
3305 * have a bad block, so try the next chunk...
3306 */
3307 if (sector_nr + max_sync < max_sector)
3308 max_sector = sector_nr + max_sync;
3309
3310 sectors_skipped += (max_sector - sector_nr);
3311 chunks_skipped ++;
3312 sector_nr = max_sector;
3313 goto skipped;
3314 }
3315
3316 static sector_t
3317 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3318 {
3319 sector_t size;
3320 struct r10conf *conf = mddev->private;
3321
3322 if (!raid_disks)
3323 raid_disks = min(conf->geo.raid_disks,
3324 conf->prev.raid_disks);
3325 if (!sectors)
3326 sectors = conf->dev_sectors;
3327
3328 size = sectors >> conf->geo.chunk_shift;
3329 sector_div(size, conf->geo.far_copies);
3330 size = size * raid_disks;
3331 sector_div(size, conf->geo.near_copies);
3332
3333 return size << conf->geo.chunk_shift;
3334 }
3335
3336 static void calc_sectors(struct r10conf *conf, sector_t size)
3337 {
3338 /* Calculate the number of sectors-per-device that will
3339 * actually be used, and set conf->dev_sectors and
3340 * conf->stride
3341 */
3342
3343 size = size >> conf->geo.chunk_shift;
3344 sector_div(size, conf->geo.far_copies);
3345 size = size * conf->geo.raid_disks;
3346 sector_div(size, conf->geo.near_copies);
3347 /* 'size' is now the number of chunks in the array */
3348 /* calculate "used chunks per device" */
3349 size = size * conf->copies;
3350
3351 /* We need to round up when dividing by raid_disks to
3352 * get the stride size.
3353 */
3354 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3355
3356 conf->dev_sectors = size << conf->geo.chunk_shift;
3357
3358 if (conf->geo.far_offset)
3359 conf->geo.stride = 1 << conf->geo.chunk_shift;
3360 else {
3361 sector_div(size, conf->geo.far_copies);
3362 conf->geo.stride = size << conf->geo.chunk_shift;
3363 }
3364 }
3365
3366 enum geo_type {geo_new, geo_old, geo_start};
3367 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3368 {
3369 int nc, fc, fo;
3370 int layout, chunk, disks;
3371 switch (new) {
3372 case geo_old:
3373 layout = mddev->layout;
3374 chunk = mddev->chunk_sectors;
3375 disks = mddev->raid_disks - mddev->delta_disks;
3376 break;
3377 case geo_new:
3378 layout = mddev->new_layout;
3379 chunk = mddev->new_chunk_sectors;
3380 disks = mddev->raid_disks;
3381 break;
3382 default: /* avoid 'may be unused' warnings */
3383 case geo_start: /* new when starting reshape - raid_disks not
3384 * updated yet. */
3385 layout = mddev->new_layout;
3386 chunk = mddev->new_chunk_sectors;
3387 disks = mddev->raid_disks + mddev->delta_disks;
3388 break;
3389 }
3390 if (layout >> 18)
3391 return -1;
3392 if (chunk < (PAGE_SIZE >> 9) ||
3393 !is_power_of_2(chunk))
3394 return -2;
3395 nc = layout & 255;
3396 fc = (layout >> 8) & 255;
3397 fo = layout & (1<<16);
3398 geo->raid_disks = disks;
3399 geo->near_copies = nc;
3400 geo->far_copies = fc;
3401 geo->far_offset = fo;
3402 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3403 geo->chunk_mask = chunk - 1;
3404 geo->chunk_shift = ffz(~chunk);
3405 return nc*fc;
3406 }
3407
3408 static struct r10conf *setup_conf(struct mddev *mddev)
3409 {
3410 struct r10conf *conf = NULL;
3411 int err = -EINVAL;
3412 struct geom geo;
3413 int copies;
3414
3415 copies = setup_geo(&geo, mddev, geo_new);
3416
3417 if (copies == -2) {
3418 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3419 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3420 mdname(mddev), PAGE_SIZE);
3421 goto out;
3422 }
3423
3424 if (copies < 2 || copies > mddev->raid_disks) {
3425 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3426 mdname(mddev), mddev->new_layout);
3427 goto out;
3428 }
3429
3430 err = -ENOMEM;
3431 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3432 if (!conf)
3433 goto out;
3434
3435 /* FIXME calc properly */
3436 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3437 max(0,-mddev->delta_disks)),
3438 GFP_KERNEL);
3439 if (!conf->mirrors)
3440 goto out;
3441
3442 conf->tmppage = alloc_page(GFP_KERNEL);
3443 if (!conf->tmppage)
3444 goto out;
3445
3446 conf->geo = geo;
3447 conf->copies = copies;
3448 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3449 r10bio_pool_free, conf);
3450 if (!conf->r10bio_pool)
3451 goto out;
3452
3453 calc_sectors(conf, mddev->dev_sectors);
3454 if (mddev->reshape_position == MaxSector) {
3455 conf->prev = conf->geo;
3456 conf->reshape_progress = MaxSector;
3457 } else {
3458 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3459 err = -EINVAL;
3460 goto out;
3461 }
3462 conf->reshape_progress = mddev->reshape_position;
3463 if (conf->prev.far_offset)
3464 conf->prev.stride = 1 << conf->prev.chunk_shift;
3465 else
3466 /* far_copies must be 1 */
3467 conf->prev.stride = conf->dev_sectors;
3468 }
3469 conf->reshape_safe = conf->reshape_progress;
3470 spin_lock_init(&conf->device_lock);
3471 INIT_LIST_HEAD(&conf->retry_list);
3472 INIT_LIST_HEAD(&conf->bio_end_io_list);
3473
3474 spin_lock_init(&conf->resync_lock);
3475 init_waitqueue_head(&conf->wait_barrier);
3476
3477 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3478 if (!conf->thread)
3479 goto out;
3480
3481 conf->mddev = mddev;
3482 return conf;
3483
3484 out:
3485 if (err == -ENOMEM)
3486 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3487 mdname(mddev));
3488 if (conf) {
3489 if (conf->r10bio_pool)
3490 mempool_destroy(conf->r10bio_pool);
3491 kfree(conf->mirrors);
3492 safe_put_page(conf->tmppage);
3493 kfree(conf);
3494 }
3495 return ERR_PTR(err);
3496 }
3497
3498 static int run(struct mddev *mddev)
3499 {
3500 struct r10conf *conf;
3501 int i, disk_idx, chunk_size;
3502 struct raid10_info *disk;
3503 struct md_rdev *rdev;
3504 sector_t size;
3505 sector_t min_offset_diff = 0;
3506 int first = 1;
3507 bool discard_supported = false;
3508
3509 if (mddev->private == NULL) {
3510 conf = setup_conf(mddev);
3511 if (IS_ERR(conf))
3512 return PTR_ERR(conf);
3513 mddev->private = conf;
3514 }
3515 conf = mddev->private;
3516 if (!conf)
3517 goto out;
3518
3519 mddev->thread = conf->thread;
3520 conf->thread = NULL;
3521
3522 chunk_size = mddev->chunk_sectors << 9;
3523 if (mddev->queue) {
3524 blk_queue_max_discard_sectors(mddev->queue,
3525 mddev->chunk_sectors);
3526 blk_queue_max_write_same_sectors(mddev->queue, 0);
3527 blk_queue_io_min(mddev->queue, chunk_size);
3528 if (conf->geo.raid_disks % conf->geo.near_copies)
3529 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3530 else
3531 blk_queue_io_opt(mddev->queue, chunk_size *
3532 (conf->geo.raid_disks / conf->geo.near_copies));
3533 }
3534
3535 rdev_for_each(rdev, mddev) {
3536 long long diff;
3537 struct request_queue *q;
3538
3539 disk_idx = rdev->raid_disk;
3540 if (disk_idx < 0)
3541 continue;
3542 if (disk_idx >= conf->geo.raid_disks &&
3543 disk_idx >= conf->prev.raid_disks)
3544 continue;
3545 disk = conf->mirrors + disk_idx;
3546
3547 if (test_bit(Replacement, &rdev->flags)) {
3548 if (disk->replacement)
3549 goto out_free_conf;
3550 disk->replacement = rdev;
3551 } else {
3552 if (disk->rdev)
3553 goto out_free_conf;
3554 disk->rdev = rdev;
3555 }
3556 q = bdev_get_queue(rdev->bdev);
3557 diff = (rdev->new_data_offset - rdev->data_offset);
3558 if (!mddev->reshape_backwards)
3559 diff = -diff;
3560 if (diff < 0)
3561 diff = 0;
3562 if (first || diff < min_offset_diff)
3563 min_offset_diff = diff;
3564
3565 if (mddev->gendisk)
3566 disk_stack_limits(mddev->gendisk, rdev->bdev,
3567 rdev->data_offset << 9);
3568
3569 disk->head_position = 0;
3570
3571 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3572 discard_supported = true;
3573 }
3574
3575 if (mddev->queue) {
3576 if (discard_supported)
3577 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3578 mddev->queue);
3579 else
3580 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3581 mddev->queue);
3582 }
3583 /* need to check that every block has at least one working mirror */
3584 if (!enough(conf, -1)) {
3585 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3586 mdname(mddev));
3587 goto out_free_conf;
3588 }
3589
3590 if (conf->reshape_progress != MaxSector) {
3591 /* must ensure that shape change is supported */
3592 if (conf->geo.far_copies != 1 &&
3593 conf->geo.far_offset == 0)
3594 goto out_free_conf;
3595 if (conf->prev.far_copies != 1 &&
3596 conf->prev.far_offset == 0)
3597 goto out_free_conf;
3598 }
3599
3600 mddev->degraded = 0;
3601 for (i = 0;
3602 i < conf->geo.raid_disks
3603 || i < conf->prev.raid_disks;
3604 i++) {
3605
3606 disk = conf->mirrors + i;
3607
3608 if (!disk->rdev && disk->replacement) {
3609 /* The replacement is all we have - use it */
3610 disk->rdev = disk->replacement;
3611 disk->replacement = NULL;
3612 clear_bit(Replacement, &disk->rdev->flags);
3613 }
3614
3615 if (!disk->rdev ||
3616 !test_bit(In_sync, &disk->rdev->flags)) {
3617 disk->head_position = 0;
3618 mddev->degraded++;
3619 if (disk->rdev &&
3620 disk->rdev->saved_raid_disk < 0)
3621 conf->fullsync = 1;
3622 }
3623 disk->recovery_disabled = mddev->recovery_disabled - 1;
3624 }
3625
3626 if (mddev->recovery_cp != MaxSector)
3627 printk(KERN_NOTICE "md/raid10:%s: not clean"
3628 " -- starting background reconstruction\n",
3629 mdname(mddev));
3630 printk(KERN_INFO
3631 "md/raid10:%s: active with %d out of %d devices\n",
3632 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3633 conf->geo.raid_disks);
3634 /*
3635 * Ok, everything is just fine now
3636 */
3637 mddev->dev_sectors = conf->dev_sectors;
3638 size = raid10_size(mddev, 0, 0);
3639 md_set_array_sectors(mddev, size);
3640 mddev->resync_max_sectors = size;
3641
3642 if (mddev->queue) {
3643 int stripe = conf->geo.raid_disks *
3644 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3645
3646 /* Calculate max read-ahead size.
3647 * We need to readahead at least twice a whole stripe....
3648 * maybe...
3649 */
3650 stripe /= conf->geo.near_copies;
3651 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3652 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3653 }
3654
3655 if (md_integrity_register(mddev))
3656 goto out_free_conf;
3657
3658 if (conf->reshape_progress != MaxSector) {
3659 unsigned long before_length, after_length;
3660
3661 before_length = ((1 << conf->prev.chunk_shift) *
3662 conf->prev.far_copies);
3663 after_length = ((1 << conf->geo.chunk_shift) *
3664 conf->geo.far_copies);
3665
3666 if (max(before_length, after_length) > min_offset_diff) {
3667 /* This cannot work */
3668 printk("md/raid10: offset difference not enough to continue reshape\n");
3669 goto out_free_conf;
3670 }
3671 conf->offset_diff = min_offset_diff;
3672
3673 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3674 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3675 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3676 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3677 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3678 "reshape");
3679 }
3680
3681 return 0;
3682
3683 out_free_conf:
3684 md_unregister_thread(&mddev->thread);
3685 if (conf->r10bio_pool)
3686 mempool_destroy(conf->r10bio_pool);
3687 safe_put_page(conf->tmppage);
3688 kfree(conf->mirrors);
3689 kfree(conf);
3690 mddev->private = NULL;
3691 out:
3692 return -EIO;
3693 }
3694
3695 static void raid10_free(struct mddev *mddev, void *priv)
3696 {
3697 struct r10conf *conf = priv;
3698
3699 if (conf->r10bio_pool)
3700 mempool_destroy(conf->r10bio_pool);
3701 safe_put_page(conf->tmppage);
3702 kfree(conf->mirrors);
3703 kfree(conf->mirrors_old);
3704 kfree(conf->mirrors_new);
3705 kfree(conf);
3706 }
3707
3708 static void raid10_quiesce(struct mddev *mddev, int state)
3709 {
3710 struct r10conf *conf = mddev->private;
3711
3712 switch(state) {
3713 case 1:
3714 raise_barrier(conf, 0);
3715 break;
3716 case 0:
3717 lower_barrier(conf);
3718 break;
3719 }
3720 }
3721
3722 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3723 {
3724 /* Resize of 'far' arrays is not supported.
3725 * For 'near' and 'offset' arrays we can set the
3726 * number of sectors used to be an appropriate multiple
3727 * of the chunk size.
3728 * For 'offset', this is far_copies*chunksize.
3729 * For 'near' the multiplier is the LCM of
3730 * near_copies and raid_disks.
3731 * So if far_copies > 1 && !far_offset, fail.
3732 * Else find LCM(raid_disks, near_copy)*far_copies and
3733 * multiply by chunk_size. Then round to this number.
3734 * This is mostly done by raid10_size()
3735 */
3736 struct r10conf *conf = mddev->private;
3737 sector_t oldsize, size;
3738
3739 if (mddev->reshape_position != MaxSector)
3740 return -EBUSY;
3741
3742 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3743 return -EINVAL;
3744
3745 oldsize = raid10_size(mddev, 0, 0);
3746 size = raid10_size(mddev, sectors, 0);
3747 if (mddev->external_size &&
3748 mddev->array_sectors > size)
3749 return -EINVAL;
3750 if (mddev->bitmap) {
3751 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3752 if (ret)
3753 return ret;
3754 }
3755 md_set_array_sectors(mddev, size);
3756 set_capacity(mddev->gendisk, mddev->array_sectors);
3757 revalidate_disk(mddev->gendisk);
3758 if (sectors > mddev->dev_sectors &&
3759 mddev->recovery_cp > oldsize) {
3760 mddev->recovery_cp = oldsize;
3761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3762 }
3763 calc_sectors(conf, sectors);
3764 mddev->dev_sectors = conf->dev_sectors;
3765 mddev->resync_max_sectors = size;
3766 return 0;
3767 }
3768
3769 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3770 {
3771 struct md_rdev *rdev;
3772 struct r10conf *conf;
3773
3774 if (mddev->degraded > 0) {
3775 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3776 mdname(mddev));
3777 return ERR_PTR(-EINVAL);
3778 }
3779 sector_div(size, devs);
3780
3781 /* Set new parameters */
3782 mddev->new_level = 10;
3783 /* new layout: far_copies = 1, near_copies = 2 */
3784 mddev->new_layout = (1<<8) + 2;
3785 mddev->new_chunk_sectors = mddev->chunk_sectors;
3786 mddev->delta_disks = mddev->raid_disks;
3787 mddev->raid_disks *= 2;
3788 /* make sure it will be not marked as dirty */
3789 mddev->recovery_cp = MaxSector;
3790 mddev->dev_sectors = size;
3791
3792 conf = setup_conf(mddev);
3793 if (!IS_ERR(conf)) {
3794 rdev_for_each(rdev, mddev)
3795 if (rdev->raid_disk >= 0) {
3796 rdev->new_raid_disk = rdev->raid_disk * 2;
3797 rdev->sectors = size;
3798 }
3799 conf->barrier = 1;
3800 }
3801
3802 return conf;
3803 }
3804
3805 static void *raid10_takeover(struct mddev *mddev)
3806 {
3807 struct r0conf *raid0_conf;
3808
3809 /* raid10 can take over:
3810 * raid0 - providing it has only two drives
3811 */
3812 if (mddev->level == 0) {
3813 /* for raid0 takeover only one zone is supported */
3814 raid0_conf = mddev->private;
3815 if (raid0_conf->nr_strip_zones > 1) {
3816 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3817 " with more than one zone.\n",
3818 mdname(mddev));
3819 return ERR_PTR(-EINVAL);
3820 }
3821 return raid10_takeover_raid0(mddev,
3822 raid0_conf->strip_zone->zone_end,
3823 raid0_conf->strip_zone->nb_dev);
3824 }
3825 return ERR_PTR(-EINVAL);
3826 }
3827
3828 static int raid10_check_reshape(struct mddev *mddev)
3829 {
3830 /* Called when there is a request to change
3831 * - layout (to ->new_layout)
3832 * - chunk size (to ->new_chunk_sectors)
3833 * - raid_disks (by delta_disks)
3834 * or when trying to restart a reshape that was ongoing.
3835 *
3836 * We need to validate the request and possibly allocate
3837 * space if that might be an issue later.
3838 *
3839 * Currently we reject any reshape of a 'far' mode array,
3840 * allow chunk size to change if new is generally acceptable,
3841 * allow raid_disks to increase, and allow
3842 * a switch between 'near' mode and 'offset' mode.
3843 */
3844 struct r10conf *conf = mddev->private;
3845 struct geom geo;
3846
3847 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3848 return -EINVAL;
3849
3850 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3851 /* mustn't change number of copies */
3852 return -EINVAL;
3853 if (geo.far_copies > 1 && !geo.far_offset)
3854 /* Cannot switch to 'far' mode */
3855 return -EINVAL;
3856
3857 if (mddev->array_sectors & geo.chunk_mask)
3858 /* not factor of array size */
3859 return -EINVAL;
3860
3861 if (!enough(conf, -1))
3862 return -EINVAL;
3863
3864 kfree(conf->mirrors_new);
3865 conf->mirrors_new = NULL;
3866 if (mddev->delta_disks > 0) {
3867 /* allocate new 'mirrors' list */
3868 conf->mirrors_new = kzalloc(
3869 sizeof(struct raid10_info)
3870 *(mddev->raid_disks +
3871 mddev->delta_disks),
3872 GFP_KERNEL);
3873 if (!conf->mirrors_new)
3874 return -ENOMEM;
3875 }
3876 return 0;
3877 }
3878
3879 /*
3880 * Need to check if array has failed when deciding whether to:
3881 * - start an array
3882 * - remove non-faulty devices
3883 * - add a spare
3884 * - allow a reshape
3885 * This determination is simple when no reshape is happening.
3886 * However if there is a reshape, we need to carefully check
3887 * both the before and after sections.
3888 * This is because some failed devices may only affect one
3889 * of the two sections, and some non-in_sync devices may
3890 * be insync in the section most affected by failed devices.
3891 */
3892 static int calc_degraded(struct r10conf *conf)
3893 {
3894 int degraded, degraded2;
3895 int i;
3896
3897 rcu_read_lock();
3898 degraded = 0;
3899 /* 'prev' section first */
3900 for (i = 0; i < conf->prev.raid_disks; i++) {
3901 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3902 if (!rdev || test_bit(Faulty, &rdev->flags))
3903 degraded++;
3904 else if (!test_bit(In_sync, &rdev->flags))
3905 /* When we can reduce the number of devices in
3906 * an array, this might not contribute to
3907 * 'degraded'. It does now.
3908 */
3909 degraded++;
3910 }
3911 rcu_read_unlock();
3912 if (conf->geo.raid_disks == conf->prev.raid_disks)
3913 return degraded;
3914 rcu_read_lock();
3915 degraded2 = 0;
3916 for (i = 0; i < conf->geo.raid_disks; i++) {
3917 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3918 if (!rdev || test_bit(Faulty, &rdev->flags))
3919 degraded2++;
3920 else if (!test_bit(In_sync, &rdev->flags)) {
3921 /* If reshape is increasing the number of devices,
3922 * this section has already been recovered, so
3923 * it doesn't contribute to degraded.
3924 * else it does.
3925 */
3926 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3927 degraded2++;
3928 }
3929 }
3930 rcu_read_unlock();
3931 if (degraded2 > degraded)
3932 return degraded2;
3933 return degraded;
3934 }
3935
3936 static int raid10_start_reshape(struct mddev *mddev)
3937 {
3938 /* A 'reshape' has been requested. This commits
3939 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3940 * This also checks if there are enough spares and adds them
3941 * to the array.
3942 * We currently require enough spares to make the final
3943 * array non-degraded. We also require that the difference
3944 * between old and new data_offset - on each device - is
3945 * enough that we never risk over-writing.
3946 */
3947
3948 unsigned long before_length, after_length;
3949 sector_t min_offset_diff = 0;
3950 int first = 1;
3951 struct geom new;
3952 struct r10conf *conf = mddev->private;
3953 struct md_rdev *rdev;
3954 int spares = 0;
3955 int ret;
3956
3957 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3958 return -EBUSY;
3959
3960 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3961 return -EINVAL;
3962
3963 before_length = ((1 << conf->prev.chunk_shift) *
3964 conf->prev.far_copies);
3965 after_length = ((1 << conf->geo.chunk_shift) *
3966 conf->geo.far_copies);
3967
3968 rdev_for_each(rdev, mddev) {
3969 if (!test_bit(In_sync, &rdev->flags)
3970 && !test_bit(Faulty, &rdev->flags))
3971 spares++;
3972 if (rdev->raid_disk >= 0) {
3973 long long diff = (rdev->new_data_offset
3974 - rdev->data_offset);
3975 if (!mddev->reshape_backwards)
3976 diff = -diff;
3977 if (diff < 0)
3978 diff = 0;
3979 if (first || diff < min_offset_diff)
3980 min_offset_diff = diff;
3981 }
3982 }
3983
3984 if (max(before_length, after_length) > min_offset_diff)
3985 return -EINVAL;
3986
3987 if (spares < mddev->delta_disks)
3988 return -EINVAL;
3989
3990 conf->offset_diff = min_offset_diff;
3991 spin_lock_irq(&conf->device_lock);
3992 if (conf->mirrors_new) {
3993 memcpy(conf->mirrors_new, conf->mirrors,
3994 sizeof(struct raid10_info)*conf->prev.raid_disks);
3995 smp_mb();
3996 kfree(conf->mirrors_old);
3997 conf->mirrors_old = conf->mirrors;
3998 conf->mirrors = conf->mirrors_new;
3999 conf->mirrors_new = NULL;
4000 }
4001 setup_geo(&conf->geo, mddev, geo_start);
4002 smp_mb();
4003 if (mddev->reshape_backwards) {
4004 sector_t size = raid10_size(mddev, 0, 0);
4005 if (size < mddev->array_sectors) {
4006 spin_unlock_irq(&conf->device_lock);
4007 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4008 mdname(mddev));
4009 return -EINVAL;
4010 }
4011 mddev->resync_max_sectors = size;
4012 conf->reshape_progress = size;
4013 } else
4014 conf->reshape_progress = 0;
4015 conf->reshape_safe = conf->reshape_progress;
4016 spin_unlock_irq(&conf->device_lock);
4017
4018 if (mddev->delta_disks && mddev->bitmap) {
4019 ret = bitmap_resize(mddev->bitmap,
4020 raid10_size(mddev, 0,
4021 conf->geo.raid_disks),
4022 0, 0);
4023 if (ret)
4024 goto abort;
4025 }
4026 if (mddev->delta_disks > 0) {
4027 rdev_for_each(rdev, mddev)
4028 if (rdev->raid_disk < 0 &&
4029 !test_bit(Faulty, &rdev->flags)) {
4030 if (raid10_add_disk(mddev, rdev) == 0) {
4031 if (rdev->raid_disk >=
4032 conf->prev.raid_disks)
4033 set_bit(In_sync, &rdev->flags);
4034 else
4035 rdev->recovery_offset = 0;
4036
4037 if (sysfs_link_rdev(mddev, rdev))
4038 /* Failure here is OK */;
4039 }
4040 } else if (rdev->raid_disk >= conf->prev.raid_disks
4041 && !test_bit(Faulty, &rdev->flags)) {
4042 /* This is a spare that was manually added */
4043 set_bit(In_sync, &rdev->flags);
4044 }
4045 }
4046 /* When a reshape changes the number of devices,
4047 * ->degraded is measured against the larger of the
4048 * pre and post numbers.
4049 */
4050 spin_lock_irq(&conf->device_lock);
4051 mddev->degraded = calc_degraded(conf);
4052 spin_unlock_irq(&conf->device_lock);
4053 mddev->raid_disks = conf->geo.raid_disks;
4054 mddev->reshape_position = conf->reshape_progress;
4055 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4056
4057 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4058 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4059 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4060 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4061 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4062
4063 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4064 "reshape");
4065 if (!mddev->sync_thread) {
4066 ret = -EAGAIN;
4067 goto abort;
4068 }
4069 conf->reshape_checkpoint = jiffies;
4070 md_wakeup_thread(mddev->sync_thread);
4071 md_new_event(mddev);
4072 return 0;
4073
4074 abort:
4075 mddev->recovery = 0;
4076 spin_lock_irq(&conf->device_lock);
4077 conf->geo = conf->prev;
4078 mddev->raid_disks = conf->geo.raid_disks;
4079 rdev_for_each(rdev, mddev)
4080 rdev->new_data_offset = rdev->data_offset;
4081 smp_wmb();
4082 conf->reshape_progress = MaxSector;
4083 conf->reshape_safe = MaxSector;
4084 mddev->reshape_position = MaxSector;
4085 spin_unlock_irq(&conf->device_lock);
4086 return ret;
4087 }
4088
4089 /* Calculate the last device-address that could contain
4090 * any block from the chunk that includes the array-address 's'
4091 * and report the next address.
4092 * i.e. the address returned will be chunk-aligned and after
4093 * any data that is in the chunk containing 's'.
4094 */
4095 static sector_t last_dev_address(sector_t s, struct geom *geo)
4096 {
4097 s = (s | geo->chunk_mask) + 1;
4098 s >>= geo->chunk_shift;
4099 s *= geo->near_copies;
4100 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4101 s *= geo->far_copies;
4102 s <<= geo->chunk_shift;
4103 return s;
4104 }
4105
4106 /* Calculate the first device-address that could contain
4107 * any block from the chunk that includes the array-address 's'.
4108 * This too will be the start of a chunk
4109 */
4110 static sector_t first_dev_address(sector_t s, struct geom *geo)
4111 {
4112 s >>= geo->chunk_shift;
4113 s *= geo->near_copies;
4114 sector_div(s, geo->raid_disks);
4115 s *= geo->far_copies;
4116 s <<= geo->chunk_shift;
4117 return s;
4118 }
4119
4120 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4121 int *skipped)
4122 {
4123 /* We simply copy at most one chunk (smallest of old and new)
4124 * at a time, possibly less if that exceeds RESYNC_PAGES,
4125 * or we hit a bad block or something.
4126 * This might mean we pause for normal IO in the middle of
4127 * a chunk, but that is not a problem as mddev->reshape_position
4128 * can record any location.
4129 *
4130 * If we will want to write to a location that isn't
4131 * yet recorded as 'safe' (i.e. in metadata on disk) then
4132 * we need to flush all reshape requests and update the metadata.
4133 *
4134 * When reshaping forwards (e.g. to more devices), we interpret
4135 * 'safe' as the earliest block which might not have been copied
4136 * down yet. We divide this by previous stripe size and multiply
4137 * by previous stripe length to get lowest device offset that we
4138 * cannot write to yet.
4139 * We interpret 'sector_nr' as an address that we want to write to.
4140 * From this we use last_device_address() to find where we might
4141 * write to, and first_device_address on the 'safe' position.
4142 * If this 'next' write position is after the 'safe' position,
4143 * we must update the metadata to increase the 'safe' position.
4144 *
4145 * When reshaping backwards, we round in the opposite direction
4146 * and perform the reverse test: next write position must not be
4147 * less than current safe position.
4148 *
4149 * In all this the minimum difference in data offsets
4150 * (conf->offset_diff - always positive) allows a bit of slack,
4151 * so next can be after 'safe', but not by more than offset_diff
4152 *
4153 * We need to prepare all the bios here before we start any IO
4154 * to ensure the size we choose is acceptable to all devices.
4155 * The means one for each copy for write-out and an extra one for
4156 * read-in.
4157 * We store the read-in bio in ->master_bio and the others in
4158 * ->devs[x].bio and ->devs[x].repl_bio.
4159 */
4160 struct r10conf *conf = mddev->private;
4161 struct r10bio *r10_bio;
4162 sector_t next, safe, last;
4163 int max_sectors;
4164 int nr_sectors;
4165 int s;
4166 struct md_rdev *rdev;
4167 int need_flush = 0;
4168 struct bio *blist;
4169 struct bio *bio, *read_bio;
4170 int sectors_done = 0;
4171
4172 if (sector_nr == 0) {
4173 /* If restarting in the middle, skip the initial sectors */
4174 if (mddev->reshape_backwards &&
4175 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4176 sector_nr = (raid10_size(mddev, 0, 0)
4177 - conf->reshape_progress);
4178 } else if (!mddev->reshape_backwards &&
4179 conf->reshape_progress > 0)
4180 sector_nr = conf->reshape_progress;
4181 if (sector_nr) {
4182 mddev->curr_resync_completed = sector_nr;
4183 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4184 *skipped = 1;
4185 return sector_nr;
4186 }
4187 }
4188
4189 /* We don't use sector_nr to track where we are up to
4190 * as that doesn't work well for ->reshape_backwards.
4191 * So just use ->reshape_progress.
4192 */
4193 if (mddev->reshape_backwards) {
4194 /* 'next' is the earliest device address that we might
4195 * write to for this chunk in the new layout
4196 */
4197 next = first_dev_address(conf->reshape_progress - 1,
4198 &conf->geo);
4199
4200 /* 'safe' is the last device address that we might read from
4201 * in the old layout after a restart
4202 */
4203 safe = last_dev_address(conf->reshape_safe - 1,
4204 &conf->prev);
4205
4206 if (next + conf->offset_diff < safe)
4207 need_flush = 1;
4208
4209 last = conf->reshape_progress - 1;
4210 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4211 & conf->prev.chunk_mask);
4212 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4213 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4214 } else {
4215 /* 'next' is after the last device address that we
4216 * might write to for this chunk in the new layout
4217 */
4218 next = last_dev_address(conf->reshape_progress, &conf->geo);
4219
4220 /* 'safe' is the earliest device address that we might
4221 * read from in the old layout after a restart
4222 */
4223 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4224
4225 /* Need to update metadata if 'next' might be beyond 'safe'
4226 * as that would possibly corrupt data
4227 */
4228 if (next > safe + conf->offset_diff)
4229 need_flush = 1;
4230
4231 sector_nr = conf->reshape_progress;
4232 last = sector_nr | (conf->geo.chunk_mask
4233 & conf->prev.chunk_mask);
4234
4235 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4236 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4237 }
4238
4239 if (need_flush ||
4240 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4241 /* Need to update reshape_position in metadata */
4242 wait_barrier(conf);
4243 mddev->reshape_position = conf->reshape_progress;
4244 if (mddev->reshape_backwards)
4245 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4246 - conf->reshape_progress;
4247 else
4248 mddev->curr_resync_completed = conf->reshape_progress;
4249 conf->reshape_checkpoint = jiffies;
4250 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4251 md_wakeup_thread(mddev->thread);
4252 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4253 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4254 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4255 allow_barrier(conf);
4256 return sectors_done;
4257 }
4258 conf->reshape_safe = mddev->reshape_position;
4259 allow_barrier(conf);
4260 }
4261
4262 read_more:
4263 /* Now schedule reads for blocks from sector_nr to last */
4264 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4265 r10_bio->state = 0;
4266 raise_barrier(conf, sectors_done != 0);
4267 atomic_set(&r10_bio->remaining, 0);
4268 r10_bio->mddev = mddev;
4269 r10_bio->sector = sector_nr;
4270 set_bit(R10BIO_IsReshape, &r10_bio->state);
4271 r10_bio->sectors = last - sector_nr + 1;
4272 rdev = read_balance(conf, r10_bio, &max_sectors);
4273 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4274
4275 if (!rdev) {
4276 /* Cannot read from here, so need to record bad blocks
4277 * on all the target devices.
4278 */
4279 // FIXME
4280 mempool_free(r10_bio, conf->r10buf_pool);
4281 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4282 return sectors_done;
4283 }
4284
4285 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4286
4287 read_bio->bi_bdev = rdev->bdev;
4288 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4289 + rdev->data_offset);
4290 read_bio->bi_private = r10_bio;
4291 read_bio->bi_end_io = end_sync_read;
4292 read_bio->bi_rw = READ;
4293 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4294 read_bio->bi_error = 0;
4295 read_bio->bi_vcnt = 0;
4296 read_bio->bi_iter.bi_size = 0;
4297 r10_bio->master_bio = read_bio;
4298 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4299
4300 /* Now find the locations in the new layout */
4301 __raid10_find_phys(&conf->geo, r10_bio);
4302
4303 blist = read_bio;
4304 read_bio->bi_next = NULL;
4305
4306 for (s = 0; s < conf->copies*2; s++) {
4307 struct bio *b;
4308 int d = r10_bio->devs[s/2].devnum;
4309 struct md_rdev *rdev2;
4310 if (s&1) {
4311 rdev2 = conf->mirrors[d].replacement;
4312 b = r10_bio->devs[s/2].repl_bio;
4313 } else {
4314 rdev2 = conf->mirrors[d].rdev;
4315 b = r10_bio->devs[s/2].bio;
4316 }
4317 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4318 continue;
4319
4320 bio_reset(b);
4321 b->bi_bdev = rdev2->bdev;
4322 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4323 rdev2->new_data_offset;
4324 b->bi_private = r10_bio;
4325 b->bi_end_io = end_reshape_write;
4326 b->bi_rw = WRITE;
4327 b->bi_next = blist;
4328 blist = b;
4329 }
4330
4331 /* Now add as many pages as possible to all of these bios. */
4332
4333 nr_sectors = 0;
4334 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4335 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4336 int len = (max_sectors - s) << 9;
4337 if (len > PAGE_SIZE)
4338 len = PAGE_SIZE;
4339 for (bio = blist; bio ; bio = bio->bi_next) {
4340 struct bio *bio2;
4341 if (bio_add_page(bio, page, len, 0))
4342 continue;
4343
4344 /* Didn't fit, must stop */
4345 for (bio2 = blist;
4346 bio2 && bio2 != bio;
4347 bio2 = bio2->bi_next) {
4348 /* Remove last page from this bio */
4349 bio2->bi_vcnt--;
4350 bio2->bi_iter.bi_size -= len;
4351 bio_clear_flag(bio2, BIO_SEG_VALID);
4352 }
4353 goto bio_full;
4354 }
4355 sector_nr += len >> 9;
4356 nr_sectors += len >> 9;
4357 }
4358 bio_full:
4359 r10_bio->sectors = nr_sectors;
4360
4361 /* Now submit the read */
4362 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4363 atomic_inc(&r10_bio->remaining);
4364 read_bio->bi_next = NULL;
4365 generic_make_request(read_bio);
4366 sector_nr += nr_sectors;
4367 sectors_done += nr_sectors;
4368 if (sector_nr <= last)
4369 goto read_more;
4370
4371 /* Now that we have done the whole section we can
4372 * update reshape_progress
4373 */
4374 if (mddev->reshape_backwards)
4375 conf->reshape_progress -= sectors_done;
4376 else
4377 conf->reshape_progress += sectors_done;
4378
4379 return sectors_done;
4380 }
4381
4382 static void end_reshape_request(struct r10bio *r10_bio);
4383 static int handle_reshape_read_error(struct mddev *mddev,
4384 struct r10bio *r10_bio);
4385 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4386 {
4387 /* Reshape read completed. Hopefully we have a block
4388 * to write out.
4389 * If we got a read error then we do sync 1-page reads from
4390 * elsewhere until we find the data - or give up.
4391 */
4392 struct r10conf *conf = mddev->private;
4393 int s;
4394
4395 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4396 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4397 /* Reshape has been aborted */
4398 md_done_sync(mddev, r10_bio->sectors, 0);
4399 return;
4400 }
4401
4402 /* We definitely have the data in the pages, schedule the
4403 * writes.
4404 */
4405 atomic_set(&r10_bio->remaining, 1);
4406 for (s = 0; s < conf->copies*2; s++) {
4407 struct bio *b;
4408 int d = r10_bio->devs[s/2].devnum;
4409 struct md_rdev *rdev;
4410 if (s&1) {
4411 rdev = conf->mirrors[d].replacement;
4412 b = r10_bio->devs[s/2].repl_bio;
4413 } else {
4414 rdev = conf->mirrors[d].rdev;
4415 b = r10_bio->devs[s/2].bio;
4416 }
4417 if (!rdev || test_bit(Faulty, &rdev->flags))
4418 continue;
4419 atomic_inc(&rdev->nr_pending);
4420 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4421 atomic_inc(&r10_bio->remaining);
4422 b->bi_next = NULL;
4423 generic_make_request(b);
4424 }
4425 end_reshape_request(r10_bio);
4426 }
4427
4428 static void end_reshape(struct r10conf *conf)
4429 {
4430 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4431 return;
4432
4433 spin_lock_irq(&conf->device_lock);
4434 conf->prev = conf->geo;
4435 md_finish_reshape(conf->mddev);
4436 smp_wmb();
4437 conf->reshape_progress = MaxSector;
4438 conf->reshape_safe = MaxSector;
4439 spin_unlock_irq(&conf->device_lock);
4440
4441 /* read-ahead size must cover two whole stripes, which is
4442 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4443 */
4444 if (conf->mddev->queue) {
4445 int stripe = conf->geo.raid_disks *
4446 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4447 stripe /= conf->geo.near_copies;
4448 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4449 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4450 }
4451 conf->fullsync = 0;
4452 }
4453
4454 static int handle_reshape_read_error(struct mddev *mddev,
4455 struct r10bio *r10_bio)
4456 {
4457 /* Use sync reads to get the blocks from somewhere else */
4458 int sectors = r10_bio->sectors;
4459 struct r10conf *conf = mddev->private;
4460 struct {
4461 struct r10bio r10_bio;
4462 struct r10dev devs[conf->copies];
4463 } on_stack;
4464 struct r10bio *r10b = &on_stack.r10_bio;
4465 int slot = 0;
4466 int idx = 0;
4467 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4468
4469 r10b->sector = r10_bio->sector;
4470 __raid10_find_phys(&conf->prev, r10b);
4471
4472 while (sectors) {
4473 int s = sectors;
4474 int success = 0;
4475 int first_slot = slot;
4476
4477 if (s > (PAGE_SIZE >> 9))
4478 s = PAGE_SIZE >> 9;
4479
4480 while (!success) {
4481 int d = r10b->devs[slot].devnum;
4482 struct md_rdev *rdev = conf->mirrors[d].rdev;
4483 sector_t addr;
4484 if (rdev == NULL ||
4485 test_bit(Faulty, &rdev->flags) ||
4486 !test_bit(In_sync, &rdev->flags))
4487 goto failed;
4488
4489 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4490 success = sync_page_io(rdev,
4491 addr,
4492 s << 9,
4493 bvec[idx].bv_page,
4494 READ, false);
4495 if (success)
4496 break;
4497 failed:
4498 slot++;
4499 if (slot >= conf->copies)
4500 slot = 0;
4501 if (slot == first_slot)
4502 break;
4503 }
4504 if (!success) {
4505 /* couldn't read this block, must give up */
4506 set_bit(MD_RECOVERY_INTR,
4507 &mddev->recovery);
4508 return -EIO;
4509 }
4510 sectors -= s;
4511 idx++;
4512 }
4513 return 0;
4514 }
4515
4516 static void end_reshape_write(struct bio *bio)
4517 {
4518 struct r10bio *r10_bio = bio->bi_private;
4519 struct mddev *mddev = r10_bio->mddev;
4520 struct r10conf *conf = mddev->private;
4521 int d;
4522 int slot;
4523 int repl;
4524 struct md_rdev *rdev = NULL;
4525
4526 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4527 if (repl)
4528 rdev = conf->mirrors[d].replacement;
4529 if (!rdev) {
4530 smp_mb();
4531 rdev = conf->mirrors[d].rdev;
4532 }
4533
4534 if (bio->bi_error) {
4535 /* FIXME should record badblock */
4536 md_error(mddev, rdev);
4537 }
4538
4539 rdev_dec_pending(rdev, mddev);
4540 end_reshape_request(r10_bio);
4541 }
4542
4543 static void end_reshape_request(struct r10bio *r10_bio)
4544 {
4545 if (!atomic_dec_and_test(&r10_bio->remaining))
4546 return;
4547 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4548 bio_put(r10_bio->master_bio);
4549 put_buf(r10_bio);
4550 }
4551
4552 static void raid10_finish_reshape(struct mddev *mddev)
4553 {
4554 struct r10conf *conf = mddev->private;
4555
4556 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4557 return;
4558
4559 if (mddev->delta_disks > 0) {
4560 sector_t size = raid10_size(mddev, 0, 0);
4561 md_set_array_sectors(mddev, size);
4562 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4563 mddev->recovery_cp = mddev->resync_max_sectors;
4564 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4565 }
4566 mddev->resync_max_sectors = size;
4567 set_capacity(mddev->gendisk, mddev->array_sectors);
4568 revalidate_disk(mddev->gendisk);
4569 } else {
4570 int d;
4571 for (d = conf->geo.raid_disks ;
4572 d < conf->geo.raid_disks - mddev->delta_disks;
4573 d++) {
4574 struct md_rdev *rdev = conf->mirrors[d].rdev;
4575 if (rdev)
4576 clear_bit(In_sync, &rdev->flags);
4577 rdev = conf->mirrors[d].replacement;
4578 if (rdev)
4579 clear_bit(In_sync, &rdev->flags);
4580 }
4581 }
4582 mddev->layout = mddev->new_layout;
4583 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4584 mddev->reshape_position = MaxSector;
4585 mddev->delta_disks = 0;
4586 mddev->reshape_backwards = 0;
4587 }
4588
4589 static struct md_personality raid10_personality =
4590 {
4591 .name = "raid10",
4592 .level = 10,
4593 .owner = THIS_MODULE,
4594 .make_request = make_request,
4595 .run = run,
4596 .free = raid10_free,
4597 .status = status,
4598 .error_handler = error,
4599 .hot_add_disk = raid10_add_disk,
4600 .hot_remove_disk= raid10_remove_disk,
4601 .spare_active = raid10_spare_active,
4602 .sync_request = sync_request,
4603 .quiesce = raid10_quiesce,
4604 .size = raid10_size,
4605 .resize = raid10_resize,
4606 .takeover = raid10_takeover,
4607 .check_reshape = raid10_check_reshape,
4608 .start_reshape = raid10_start_reshape,
4609 .finish_reshape = raid10_finish_reshape,
4610 .congested = raid10_congested,
4611 };
4612
4613 static int __init raid_init(void)
4614 {
4615 return register_md_personality(&raid10_personality);
4616 }
4617
4618 static void raid_exit(void)
4619 {
4620 unregister_md_personality(&raid10_personality);
4621 }
4622
4623 module_init(raid_init);
4624 module_exit(raid_exit);
4625 MODULE_LICENSE("GPL");
4626 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4627 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4628 MODULE_ALIAS("md-raid10");
4629 MODULE_ALIAS("md-level-10");
4630
4631 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);