]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
cpufreq: CPPC: Don't set transition_latency
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 struct r10conf *conf = data;
157 struct r10bio *r10_bio;
158 struct bio *bio;
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 if (!r10_bio)
165 return NULL;
166
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
181
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
201 for (j = 0; j < nalloc; j++) {
202 struct bio *rbio = r10_bio->devs[j].repl_bio;
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
209 bio = r10_bio->devs[j].bio;
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
214 goto out_free_pages;
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
219
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
225 }
226 }
227
228 return r10_bio;
229
230 out_free_pages:
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
233
234 j = 0;
235 out_free_bio:
236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
242 kfree(rps);
243 out_free_r10bio:
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 struct r10conf *conf = data;
251 struct r10bio *r10bio = __r10_bio;
252 int j;
253 struct resync_pages *rp = NULL;
254
255 for (j = conf->copies; j--; ) {
256 struct bio *bio = r10bio->devs[j].bio;
257
258 rp = get_resync_pages(bio);
259 resync_free_pages(rp);
260 bio_put(bio);
261
262 bio = r10bio->devs[j].repl_bio;
263 if (bio)
264 bio_put(bio);
265 }
266
267 /* resync pages array stored in the 1st bio's .bi_private */
268 kfree(rp);
269
270 r10bio_pool_free(r10bio, conf);
271 }
272
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275 int i;
276
277 for (i = 0; i < conf->copies; i++) {
278 struct bio **bio = & r10_bio->devs[i].bio;
279 if (!BIO_SPECIAL(*bio))
280 bio_put(*bio);
281 *bio = NULL;
282 bio = &r10_bio->devs[i].repl_bio;
283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 bio_put(*bio);
285 *bio = NULL;
286 }
287 }
288
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291 struct r10conf *conf = r10_bio->mddev->private;
292
293 put_all_bios(conf, r10_bio);
294 mempool_free(r10_bio, conf->r10bio_pool);
295 }
296
297 static void put_buf(struct r10bio *r10_bio)
298 {
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 mempool_free(r10_bio, conf->r10buf_pool);
302
303 lower_barrier(conf);
304 }
305
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308 unsigned long flags;
309 struct mddev *mddev = r10_bio->mddev;
310 struct r10conf *conf = mddev->private;
311
312 spin_lock_irqsave(&conf->device_lock, flags);
313 list_add(&r10_bio->retry_list, &conf->retry_list);
314 conf->nr_queued ++;
315 spin_unlock_irqrestore(&conf->device_lock, flags);
316
317 /* wake up frozen array... */
318 wake_up(&conf->wait_barrier);
319
320 md_wakeup_thread(mddev->thread);
321 }
322
323 /*
324 * raid_end_bio_io() is called when we have finished servicing a mirrored
325 * operation and are ready to return a success/failure code to the buffer
326 * cache layer.
327 */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330 struct bio *bio = r10_bio->master_bio;
331 struct r10conf *conf = r10_bio->mddev->private;
332
333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 bio->bi_status = BLK_STS_IOERR;
335
336 bio_endio(bio);
337 /*
338 * Wake up any possible resync thread that waits for the device
339 * to go idle.
340 */
341 allow_barrier(conf);
342
343 free_r10bio(r10_bio);
344 }
345
346 /*
347 * Update disk head position estimator based on IRQ completion info.
348 */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351 struct r10conf *conf = r10_bio->mddev->private;
352
353 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356
357 /*
358 * Find the disk number which triggered given bio
359 */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 struct bio *bio, int *slotp, int *replp)
362 {
363 int slot;
364 int repl = 0;
365
366 for (slot = 0; slot < conf->copies; slot++) {
367 if (r10_bio->devs[slot].bio == bio)
368 break;
369 if (r10_bio->devs[slot].repl_bio == bio) {
370 repl = 1;
371 break;
372 }
373 }
374
375 BUG_ON(slot == conf->copies);
376 update_head_pos(slot, r10_bio);
377
378 if (slotp)
379 *slotp = slot;
380 if (replp)
381 *replp = repl;
382 return r10_bio->devs[slot].devnum;
383 }
384
385 static void raid10_end_read_request(struct bio *bio)
386 {
387 int uptodate = !bio->bi_status;
388 struct r10bio *r10_bio = bio->bi_private;
389 int slot;
390 struct md_rdev *rdev;
391 struct r10conf *conf = r10_bio->mddev->private;
392
393 slot = r10_bio->read_slot;
394 rdev = r10_bio->devs[slot].rdev;
395 /*
396 * this branch is our 'one mirror IO has finished' event handler:
397 */
398 update_head_pos(slot, r10_bio);
399
400 if (uptodate) {
401 /*
402 * Set R10BIO_Uptodate in our master bio, so that
403 * we will return a good error code to the higher
404 * levels even if IO on some other mirrored buffer fails.
405 *
406 * The 'master' represents the composite IO operation to
407 * user-side. So if something waits for IO, then it will
408 * wait for the 'master' bio.
409 */
410 set_bit(R10BIO_Uptodate, &r10_bio->state);
411 } else {
412 /* If all other devices that store this block have
413 * failed, we want to return the error upwards rather
414 * than fail the last device. Here we redefine
415 * "uptodate" to mean "Don't want to retry"
416 */
417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 rdev->raid_disk))
419 uptodate = 1;
420 }
421 if (uptodate) {
422 raid_end_bio_io(r10_bio);
423 rdev_dec_pending(rdev, conf->mddev);
424 } else {
425 /*
426 * oops, read error - keep the refcount on the rdev
427 */
428 char b[BDEVNAME_SIZE];
429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 mdname(conf->mddev),
431 bdevname(rdev->bdev, b),
432 (unsigned long long)r10_bio->sector);
433 set_bit(R10BIO_ReadError, &r10_bio->state);
434 reschedule_retry(r10_bio);
435 }
436 }
437
438 static void close_write(struct r10bio *r10_bio)
439 {
440 /* clear the bitmap if all writes complete successfully */
441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 r10_bio->sectors,
443 !test_bit(R10BIO_Degraded, &r10_bio->state),
444 0);
445 md_write_end(r10_bio->mddev);
446 }
447
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450 if (atomic_dec_and_test(&r10_bio->remaining)) {
451 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 reschedule_retry(r10_bio);
453 else {
454 close_write(r10_bio);
455 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 reschedule_retry(r10_bio);
457 else
458 raid_end_bio_io(r10_bio);
459 }
460 }
461 }
462
463 static void raid10_end_write_request(struct bio *bio)
464 {
465 struct r10bio *r10_bio = bio->bi_private;
466 int dev;
467 int dec_rdev = 1;
468 struct r10conf *conf = r10_bio->mddev->private;
469 int slot, repl;
470 struct md_rdev *rdev = NULL;
471 struct bio *to_put = NULL;
472 bool discard_error;
473
474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475
476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477
478 if (repl)
479 rdev = conf->mirrors[dev].replacement;
480 if (!rdev) {
481 smp_rmb();
482 repl = 0;
483 rdev = conf->mirrors[dev].rdev;
484 }
485 /*
486 * this branch is our 'one mirror IO has finished' event handler:
487 */
488 if (bio->bi_status && !discard_error) {
489 if (repl)
490 /* Never record new bad blocks to replacement,
491 * just fail it.
492 */
493 md_error(rdev->mddev, rdev);
494 else {
495 set_bit(WriteErrorSeen, &rdev->flags);
496 if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 set_bit(MD_RECOVERY_NEEDED,
498 &rdev->mddev->recovery);
499
500 dec_rdev = 0;
501 if (test_bit(FailFast, &rdev->flags) &&
502 (bio->bi_opf & MD_FAILFAST)) {
503 md_error(rdev->mddev, rdev);
504 if (!test_bit(Faulty, &rdev->flags))
505 /* This is the only remaining device,
506 * We need to retry the write without
507 * FailFast
508 */
509 set_bit(R10BIO_WriteError, &r10_bio->state);
510 else {
511 r10_bio->devs[slot].bio = NULL;
512 to_put = bio;
513 dec_rdev = 1;
514 }
515 } else
516 set_bit(R10BIO_WriteError, &r10_bio->state);
517 }
518 } else {
519 /*
520 * Set R10BIO_Uptodate in our master bio, so that
521 * we will return a good error code for to the higher
522 * levels even if IO on some other mirrored buffer fails.
523 *
524 * The 'master' represents the composite IO operation to
525 * user-side. So if something waits for IO, then it will
526 * wait for the 'master' bio.
527 */
528 sector_t first_bad;
529 int bad_sectors;
530
531 /*
532 * Do not set R10BIO_Uptodate if the current device is
533 * rebuilding or Faulty. This is because we cannot use
534 * such device for properly reading the data back (we could
535 * potentially use it, if the current write would have felt
536 * before rdev->recovery_offset, but for simplicity we don't
537 * check this here.
538 */
539 if (test_bit(In_sync, &rdev->flags) &&
540 !test_bit(Faulty, &rdev->flags))
541 set_bit(R10BIO_Uptodate, &r10_bio->state);
542
543 /* Maybe we can clear some bad blocks. */
544 if (is_badblock(rdev,
545 r10_bio->devs[slot].addr,
546 r10_bio->sectors,
547 &first_bad, &bad_sectors) && !discard_error) {
548 bio_put(bio);
549 if (repl)
550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 else
552 r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 dec_rdev = 0;
554 set_bit(R10BIO_MadeGood, &r10_bio->state);
555 }
556 }
557
558 /*
559 *
560 * Let's see if all mirrored write operations have finished
561 * already.
562 */
563 one_write_done(r10_bio);
564 if (dec_rdev)
565 rdev_dec_pending(rdev, conf->mddev);
566 if (to_put)
567 bio_put(to_put);
568 }
569
570 /*
571 * RAID10 layout manager
572 * As well as the chunksize and raid_disks count, there are two
573 * parameters: near_copies and far_copies.
574 * near_copies * far_copies must be <= raid_disks.
575 * Normally one of these will be 1.
576 * If both are 1, we get raid0.
577 * If near_copies == raid_disks, we get raid1.
578 *
579 * Chunks are laid out in raid0 style with near_copies copies of the
580 * first chunk, followed by near_copies copies of the next chunk and
581 * so on.
582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
583 * as described above, we start again with a device offset of near_copies.
584 * So we effectively have another copy of the whole array further down all
585 * the drives, but with blocks on different drives.
586 * With this layout, and block is never stored twice on the one device.
587 *
588 * raid10_find_phys finds the sector offset of a given virtual sector
589 * on each device that it is on.
590 *
591 * raid10_find_virt does the reverse mapping, from a device and a
592 * sector offset to a virtual address
593 */
594
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597 int n,f;
598 sector_t sector;
599 sector_t chunk;
600 sector_t stripe;
601 int dev;
602 int slot = 0;
603 int last_far_set_start, last_far_set_size;
604
605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 last_far_set_start *= geo->far_set_size;
607
608 last_far_set_size = geo->far_set_size;
609 last_far_set_size += (geo->raid_disks % geo->far_set_size);
610
611 /* now calculate first sector/dev */
612 chunk = r10bio->sector >> geo->chunk_shift;
613 sector = r10bio->sector & geo->chunk_mask;
614
615 chunk *= geo->near_copies;
616 stripe = chunk;
617 dev = sector_div(stripe, geo->raid_disks);
618 if (geo->far_offset)
619 stripe *= geo->far_copies;
620
621 sector += stripe << geo->chunk_shift;
622
623 /* and calculate all the others */
624 for (n = 0; n < geo->near_copies; n++) {
625 int d = dev;
626 int set;
627 sector_t s = sector;
628 r10bio->devs[slot].devnum = d;
629 r10bio->devs[slot].addr = s;
630 slot++;
631
632 for (f = 1; f < geo->far_copies; f++) {
633 set = d / geo->far_set_size;
634 d += geo->near_copies;
635
636 if ((geo->raid_disks % geo->far_set_size) &&
637 (d > last_far_set_start)) {
638 d -= last_far_set_start;
639 d %= last_far_set_size;
640 d += last_far_set_start;
641 } else {
642 d %= geo->far_set_size;
643 d += geo->far_set_size * set;
644 }
645 s += geo->stride;
646 r10bio->devs[slot].devnum = d;
647 r10bio->devs[slot].addr = s;
648 slot++;
649 }
650 dev++;
651 if (dev >= geo->raid_disks) {
652 dev = 0;
653 sector += (geo->chunk_mask + 1);
654 }
655 }
656 }
657
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660 struct geom *geo = &conf->geo;
661
662 if (conf->reshape_progress != MaxSector &&
663 ((r10bio->sector >= conf->reshape_progress) !=
664 conf->mddev->reshape_backwards)) {
665 set_bit(R10BIO_Previous, &r10bio->state);
666 geo = &conf->prev;
667 } else
668 clear_bit(R10BIO_Previous, &r10bio->state);
669
670 __raid10_find_phys(geo, r10bio);
671 }
672
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675 sector_t offset, chunk, vchunk;
676 /* Never use conf->prev as this is only called during resync
677 * or recovery, so reshape isn't happening
678 */
679 struct geom *geo = &conf->geo;
680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 int far_set_size = geo->far_set_size;
682 int last_far_set_start;
683
684 if (geo->raid_disks % geo->far_set_size) {
685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 last_far_set_start *= geo->far_set_size;
687
688 if (dev >= last_far_set_start) {
689 far_set_size = geo->far_set_size;
690 far_set_size += (geo->raid_disks % geo->far_set_size);
691 far_set_start = last_far_set_start;
692 }
693 }
694
695 offset = sector & geo->chunk_mask;
696 if (geo->far_offset) {
697 int fc;
698 chunk = sector >> geo->chunk_shift;
699 fc = sector_div(chunk, geo->far_copies);
700 dev -= fc * geo->near_copies;
701 if (dev < far_set_start)
702 dev += far_set_size;
703 } else {
704 while (sector >= geo->stride) {
705 sector -= geo->stride;
706 if (dev < (geo->near_copies + far_set_start))
707 dev += far_set_size - geo->near_copies;
708 else
709 dev -= geo->near_copies;
710 }
711 chunk = sector >> geo->chunk_shift;
712 }
713 vchunk = chunk * geo->raid_disks + dev;
714 sector_div(vchunk, geo->near_copies);
715 return (vchunk << geo->chunk_shift) + offset;
716 }
717
718 /*
719 * This routine returns the disk from which the requested read should
720 * be done. There is a per-array 'next expected sequential IO' sector
721 * number - if this matches on the next IO then we use the last disk.
722 * There is also a per-disk 'last know head position' sector that is
723 * maintained from IRQ contexts, both the normal and the resync IO
724 * completion handlers update this position correctly. If there is no
725 * perfect sequential match then we pick the disk whose head is closest.
726 *
727 * If there are 2 mirrors in the same 2 devices, performance degrades
728 * because position is mirror, not device based.
729 *
730 * The rdev for the device selected will have nr_pending incremented.
731 */
732
733 /*
734 * FIXME: possibly should rethink readbalancing and do it differently
735 * depending on near_copies / far_copies geometry.
736 */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 struct r10bio *r10_bio,
739 int *max_sectors)
740 {
741 const sector_t this_sector = r10_bio->sector;
742 int disk, slot;
743 int sectors = r10_bio->sectors;
744 int best_good_sectors;
745 sector_t new_distance, best_dist;
746 struct md_rdev *best_rdev, *rdev = NULL;
747 int do_balance;
748 int best_slot;
749 struct geom *geo = &conf->geo;
750
751 raid10_find_phys(conf, r10_bio);
752 rcu_read_lock();
753 best_slot = -1;
754 best_rdev = NULL;
755 best_dist = MaxSector;
756 best_good_sectors = 0;
757 do_balance = 1;
758 clear_bit(R10BIO_FailFast, &r10_bio->state);
759 /*
760 * Check if we can balance. We can balance on the whole
761 * device if no resync is going on (recovery is ok), or below
762 * the resync window. We take the first readable disk when
763 * above the resync window.
764 */
765 if ((conf->mddev->recovery_cp < MaxSector
766 && (this_sector + sectors >= conf->next_resync)) ||
767 (mddev_is_clustered(conf->mddev) &&
768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 this_sector + sectors)))
770 do_balance = 0;
771
772 for (slot = 0; slot < conf->copies ; slot++) {
773 sector_t first_bad;
774 int bad_sectors;
775 sector_t dev_sector;
776
777 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 continue;
779 disk = r10_bio->devs[slot].devnum;
780 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 if (rdev == NULL ||
785 test_bit(Faulty, &rdev->flags))
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 continue;
790
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_slot = slot;
813 best_rdev = rdev;
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
823 if (!do_balance)
824 break;
825
826 if (best_slot >= 0)
827 /* At least 2 disks to choose from so failfast is OK */
828 set_bit(R10BIO_FailFast, &r10_bio->state);
829 /* This optimisation is debatable, and completely destroys
830 * sequential read speed for 'far copies' arrays. So only
831 * keep it for 'near' arrays, and review those later.
832 */
833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 new_distance = 0;
835
836 /* for far > 1 always use the lowest address */
837 else if (geo->far_copies > 1)
838 new_distance = r10_bio->devs[slot].addr;
839 else
840 new_distance = abs(r10_bio->devs[slot].addr -
841 conf->mirrors[disk].head_position);
842 if (new_distance < best_dist) {
843 best_dist = new_distance;
844 best_slot = slot;
845 best_rdev = rdev;
846 }
847 }
848 if (slot >= conf->copies) {
849 slot = best_slot;
850 rdev = best_rdev;
851 }
852
853 if (slot >= 0) {
854 atomic_inc(&rdev->nr_pending);
855 r10_bio->read_slot = slot;
856 } else
857 rdev = NULL;
858 rcu_read_unlock();
859 *max_sectors = best_good_sectors;
860
861 return rdev;
862 }
863
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866 struct r10conf *conf = mddev->private;
867 int i, ret = 0;
868
869 if ((bits & (1 << WB_async_congested)) &&
870 conf->pending_count >= max_queued_requests)
871 return 1;
872
873 rcu_read_lock();
874 for (i = 0;
875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 && ret == 0;
877 i++) {
878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 struct request_queue *q = bdev_get_queue(rdev->bdev);
881
882 ret |= bdi_congested(q->backing_dev_info, bits);
883 }
884 }
885 rcu_read_unlock();
886 return ret;
887 }
888
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891 /* Any writes that have been queued but are awaiting
892 * bitmap updates get flushed here.
893 */
894 spin_lock_irq(&conf->device_lock);
895
896 if (conf->pending_bio_list.head) {
897 struct blk_plug plug;
898 struct bio *bio;
899
900 bio = bio_list_get(&conf->pending_bio_list);
901 conf->pending_count = 0;
902 spin_unlock_irq(&conf->device_lock);
903 blk_start_plug(&plug);
904 /* flush any pending bitmap writes to disk
905 * before proceeding w/ I/O */
906 bitmap_unplug(conf->mddev->bitmap);
907 wake_up(&conf->wait_barrier);
908
909 while (bio) { /* submit pending writes */
910 struct bio *next = bio->bi_next;
911 struct md_rdev *rdev = (void*)bio->bi_disk;
912 bio->bi_next = NULL;
913 bio_set_dev(bio, rdev->bdev);
914 if (test_bit(Faulty, &rdev->flags)) {
915 bio_io_error(bio);
916 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
917 !blk_queue_discard(bio->bi_disk->queue)))
918 /* Just ignore it */
919 bio_endio(bio);
920 else
921 generic_make_request(bio);
922 bio = next;
923 }
924 blk_finish_plug(&plug);
925 } else
926 spin_unlock_irq(&conf->device_lock);
927 }
928
929 /* Barriers....
930 * Sometimes we need to suspend IO while we do something else,
931 * either some resync/recovery, or reconfigure the array.
932 * To do this we raise a 'barrier'.
933 * The 'barrier' is a counter that can be raised multiple times
934 * to count how many activities are happening which preclude
935 * normal IO.
936 * We can only raise the barrier if there is no pending IO.
937 * i.e. if nr_pending == 0.
938 * We choose only to raise the barrier if no-one is waiting for the
939 * barrier to go down. This means that as soon as an IO request
940 * is ready, no other operations which require a barrier will start
941 * until the IO request has had a chance.
942 *
943 * So: regular IO calls 'wait_barrier'. When that returns there
944 * is no backgroup IO happening, It must arrange to call
945 * allow_barrier when it has finished its IO.
946 * backgroup IO calls must call raise_barrier. Once that returns
947 * there is no normal IO happeing. It must arrange to call
948 * lower_barrier when the particular background IO completes.
949 */
950
951 static void raise_barrier(struct r10conf *conf, int force)
952 {
953 BUG_ON(force && !conf->barrier);
954 spin_lock_irq(&conf->resync_lock);
955
956 /* Wait until no block IO is waiting (unless 'force') */
957 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
958 conf->resync_lock);
959
960 /* block any new IO from starting */
961 conf->barrier++;
962
963 /* Now wait for all pending IO to complete */
964 wait_event_lock_irq(conf->wait_barrier,
965 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
966 conf->resync_lock);
967
968 spin_unlock_irq(&conf->resync_lock);
969 }
970
971 static void lower_barrier(struct r10conf *conf)
972 {
973 unsigned long flags;
974 spin_lock_irqsave(&conf->resync_lock, flags);
975 conf->barrier--;
976 spin_unlock_irqrestore(&conf->resync_lock, flags);
977 wake_up(&conf->wait_barrier);
978 }
979
980 static void wait_barrier(struct r10conf *conf)
981 {
982 spin_lock_irq(&conf->resync_lock);
983 if (conf->barrier) {
984 conf->nr_waiting++;
985 /* Wait for the barrier to drop.
986 * However if there are already pending
987 * requests (preventing the barrier from
988 * rising completely), and the
989 * pre-process bio queue isn't empty,
990 * then don't wait, as we need to empty
991 * that queue to get the nr_pending
992 * count down.
993 */
994 raid10_log(conf->mddev, "wait barrier");
995 wait_event_lock_irq(conf->wait_barrier,
996 !conf->barrier ||
997 (atomic_read(&conf->nr_pending) &&
998 current->bio_list &&
999 (!bio_list_empty(&current->bio_list[0]) ||
1000 !bio_list_empty(&current->bio_list[1]))),
1001 conf->resync_lock);
1002 conf->nr_waiting--;
1003 if (!conf->nr_waiting)
1004 wake_up(&conf->wait_barrier);
1005 }
1006 atomic_inc(&conf->nr_pending);
1007 spin_unlock_irq(&conf->resync_lock);
1008 }
1009
1010 static void allow_barrier(struct r10conf *conf)
1011 {
1012 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1013 (conf->array_freeze_pending))
1014 wake_up(&conf->wait_barrier);
1015 }
1016
1017 static void freeze_array(struct r10conf *conf, int extra)
1018 {
1019 /* stop syncio and normal IO and wait for everything to
1020 * go quiet.
1021 * We increment barrier and nr_waiting, and then
1022 * wait until nr_pending match nr_queued+extra
1023 * This is called in the context of one normal IO request
1024 * that has failed. Thus any sync request that might be pending
1025 * will be blocked by nr_pending, and we need to wait for
1026 * pending IO requests to complete or be queued for re-try.
1027 * Thus the number queued (nr_queued) plus this request (extra)
1028 * must match the number of pending IOs (nr_pending) before
1029 * we continue.
1030 */
1031 spin_lock_irq(&conf->resync_lock);
1032 conf->array_freeze_pending++;
1033 conf->barrier++;
1034 conf->nr_waiting++;
1035 wait_event_lock_irq_cmd(conf->wait_barrier,
1036 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1037 conf->resync_lock,
1038 flush_pending_writes(conf));
1039
1040 conf->array_freeze_pending--;
1041 spin_unlock_irq(&conf->resync_lock);
1042 }
1043
1044 static void unfreeze_array(struct r10conf *conf)
1045 {
1046 /* reverse the effect of the freeze */
1047 spin_lock_irq(&conf->resync_lock);
1048 conf->barrier--;
1049 conf->nr_waiting--;
1050 wake_up(&conf->wait_barrier);
1051 spin_unlock_irq(&conf->resync_lock);
1052 }
1053
1054 static sector_t choose_data_offset(struct r10bio *r10_bio,
1055 struct md_rdev *rdev)
1056 {
1057 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1058 test_bit(R10BIO_Previous, &r10_bio->state))
1059 return rdev->data_offset;
1060 else
1061 return rdev->new_data_offset;
1062 }
1063
1064 struct raid10_plug_cb {
1065 struct blk_plug_cb cb;
1066 struct bio_list pending;
1067 int pending_cnt;
1068 };
1069
1070 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1071 {
1072 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1073 cb);
1074 struct mddev *mddev = plug->cb.data;
1075 struct r10conf *conf = mddev->private;
1076 struct bio *bio;
1077
1078 if (from_schedule || current->bio_list) {
1079 spin_lock_irq(&conf->device_lock);
1080 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1081 conf->pending_count += plug->pending_cnt;
1082 spin_unlock_irq(&conf->device_lock);
1083 wake_up(&conf->wait_barrier);
1084 md_wakeup_thread(mddev->thread);
1085 kfree(plug);
1086 return;
1087 }
1088
1089 /* we aren't scheduling, so we can do the write-out directly. */
1090 bio = bio_list_get(&plug->pending);
1091 bitmap_unplug(mddev->bitmap);
1092 wake_up(&conf->wait_barrier);
1093
1094 while (bio) { /* submit pending writes */
1095 struct bio *next = bio->bi_next;
1096 struct md_rdev *rdev = (void*)bio->bi_disk;
1097 bio->bi_next = NULL;
1098 bio_set_dev(bio, rdev->bdev);
1099 if (test_bit(Faulty, &rdev->flags)) {
1100 bio_io_error(bio);
1101 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1102 !blk_queue_discard(bio->bi_disk->queue)))
1103 /* Just ignore it */
1104 bio_endio(bio);
1105 else
1106 generic_make_request(bio);
1107 bio = next;
1108 }
1109 kfree(plug);
1110 }
1111
1112 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1113 struct r10bio *r10_bio)
1114 {
1115 struct r10conf *conf = mddev->private;
1116 struct bio *read_bio;
1117 const int op = bio_op(bio);
1118 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1119 int max_sectors;
1120 sector_t sectors;
1121 struct md_rdev *rdev;
1122 char b[BDEVNAME_SIZE];
1123 int slot = r10_bio->read_slot;
1124 struct md_rdev *err_rdev = NULL;
1125 gfp_t gfp = GFP_NOIO;
1126
1127 if (r10_bio->devs[slot].rdev) {
1128 /*
1129 * This is an error retry, but we cannot
1130 * safely dereference the rdev in the r10_bio,
1131 * we must use the one in conf.
1132 * If it has already been disconnected (unlikely)
1133 * we lose the device name in error messages.
1134 */
1135 int disk;
1136 /*
1137 * As we are blocking raid10, it is a little safer to
1138 * use __GFP_HIGH.
1139 */
1140 gfp = GFP_NOIO | __GFP_HIGH;
1141
1142 rcu_read_lock();
1143 disk = r10_bio->devs[slot].devnum;
1144 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1145 if (err_rdev)
1146 bdevname(err_rdev->bdev, b);
1147 else {
1148 strcpy(b, "???");
1149 /* This never gets dereferenced */
1150 err_rdev = r10_bio->devs[slot].rdev;
1151 }
1152 rcu_read_unlock();
1153 }
1154 /*
1155 * Register the new request and wait if the reconstruction
1156 * thread has put up a bar for new requests.
1157 * Continue immediately if no resync is active currently.
1158 */
1159 wait_barrier(conf);
1160
1161 sectors = r10_bio->sectors;
1162 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1163 bio->bi_iter.bi_sector < conf->reshape_progress &&
1164 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1165 /*
1166 * IO spans the reshape position. Need to wait for reshape to
1167 * pass
1168 */
1169 raid10_log(conf->mddev, "wait reshape");
1170 allow_barrier(conf);
1171 wait_event(conf->wait_barrier,
1172 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1173 conf->reshape_progress >= bio->bi_iter.bi_sector +
1174 sectors);
1175 wait_barrier(conf);
1176 }
1177
1178 rdev = read_balance(conf, r10_bio, &max_sectors);
1179 if (!rdev) {
1180 if (err_rdev) {
1181 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 mdname(mddev), b,
1183 (unsigned long long)r10_bio->sector);
1184 }
1185 raid_end_bio_io(r10_bio);
1186 return;
1187 }
1188 if (err_rdev)
1189 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190 mdname(mddev),
1191 bdevname(rdev->bdev, b),
1192 (unsigned long long)r10_bio->sector);
1193 if (max_sectors < bio_sectors(bio)) {
1194 struct bio *split = bio_split(bio, max_sectors,
1195 gfp, conf->bio_split);
1196 bio_chain(split, bio);
1197 generic_make_request(bio);
1198 bio = split;
1199 r10_bio->master_bio = bio;
1200 r10_bio->sectors = max_sectors;
1201 }
1202 slot = r10_bio->read_slot;
1203
1204 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1205
1206 r10_bio->devs[slot].bio = read_bio;
1207 r10_bio->devs[slot].rdev = rdev;
1208
1209 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1210 choose_data_offset(r10_bio, rdev);
1211 bio_set_dev(read_bio, rdev->bdev);
1212 read_bio->bi_end_io = raid10_end_read_request;
1213 bio_set_op_attrs(read_bio, op, do_sync);
1214 if (test_bit(FailFast, &rdev->flags) &&
1215 test_bit(R10BIO_FailFast, &r10_bio->state))
1216 read_bio->bi_opf |= MD_FAILFAST;
1217 read_bio->bi_private = r10_bio;
1218
1219 if (mddev->gendisk)
1220 trace_block_bio_remap(read_bio->bi_disk->queue,
1221 read_bio, disk_devt(mddev->gendisk),
1222 r10_bio->sector);
1223 generic_make_request(read_bio);
1224 return;
1225 }
1226
1227 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1228 struct bio *bio, bool replacement,
1229 int n_copy)
1230 {
1231 const int op = bio_op(bio);
1232 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1233 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1234 unsigned long flags;
1235 struct blk_plug_cb *cb;
1236 struct raid10_plug_cb *plug = NULL;
1237 struct r10conf *conf = mddev->private;
1238 struct md_rdev *rdev;
1239 int devnum = r10_bio->devs[n_copy].devnum;
1240 struct bio *mbio;
1241
1242 if (replacement) {
1243 rdev = conf->mirrors[devnum].replacement;
1244 if (rdev == NULL) {
1245 /* Replacement just got moved to main 'rdev' */
1246 smp_mb();
1247 rdev = conf->mirrors[devnum].rdev;
1248 }
1249 } else
1250 rdev = conf->mirrors[devnum].rdev;
1251
1252 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1253 if (replacement)
1254 r10_bio->devs[n_copy].repl_bio = mbio;
1255 else
1256 r10_bio->devs[n_copy].bio = mbio;
1257
1258 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1259 choose_data_offset(r10_bio, rdev));
1260 bio_set_dev(mbio, rdev->bdev);
1261 mbio->bi_end_io = raid10_end_write_request;
1262 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1263 if (!replacement && test_bit(FailFast,
1264 &conf->mirrors[devnum].rdev->flags)
1265 && enough(conf, devnum))
1266 mbio->bi_opf |= MD_FAILFAST;
1267 mbio->bi_private = r10_bio;
1268
1269 if (conf->mddev->gendisk)
1270 trace_block_bio_remap(mbio->bi_disk->queue,
1271 mbio, disk_devt(conf->mddev->gendisk),
1272 r10_bio->sector);
1273 /* flush_pending_writes() needs access to the rdev so...*/
1274 mbio->bi_disk = (void *)rdev;
1275
1276 atomic_inc(&r10_bio->remaining);
1277
1278 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279 if (cb)
1280 plug = container_of(cb, struct raid10_plug_cb, cb);
1281 else
1282 plug = NULL;
1283 if (plug) {
1284 bio_list_add(&plug->pending, mbio);
1285 plug->pending_cnt++;
1286 } else {
1287 spin_lock_irqsave(&conf->device_lock, flags);
1288 bio_list_add(&conf->pending_bio_list, mbio);
1289 conf->pending_count++;
1290 spin_unlock_irqrestore(&conf->device_lock, flags);
1291 md_wakeup_thread(mddev->thread);
1292 }
1293 }
1294
1295 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1296 struct r10bio *r10_bio)
1297 {
1298 struct r10conf *conf = mddev->private;
1299 int i;
1300 struct md_rdev *blocked_rdev;
1301 sector_t sectors;
1302 int max_sectors;
1303
1304 if ((mddev_is_clustered(mddev) &&
1305 md_cluster_ops->area_resyncing(mddev, WRITE,
1306 bio->bi_iter.bi_sector,
1307 bio_end_sector(bio)))) {
1308 DEFINE_WAIT(w);
1309 for (;;) {
1310 prepare_to_wait(&conf->wait_barrier,
1311 &w, TASK_IDLE);
1312 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1313 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1314 break;
1315 schedule();
1316 }
1317 finish_wait(&conf->wait_barrier, &w);
1318 }
1319
1320 /*
1321 * Register the new request and wait if the reconstruction
1322 * thread has put up a bar for new requests.
1323 * Continue immediately if no resync is active currently.
1324 */
1325 wait_barrier(conf);
1326
1327 sectors = r10_bio->sectors;
1328 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1329 bio->bi_iter.bi_sector < conf->reshape_progress &&
1330 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1331 /*
1332 * IO spans the reshape position. Need to wait for reshape to
1333 * pass
1334 */
1335 raid10_log(conf->mddev, "wait reshape");
1336 allow_barrier(conf);
1337 wait_event(conf->wait_barrier,
1338 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1339 conf->reshape_progress >= bio->bi_iter.bi_sector +
1340 sectors);
1341 wait_barrier(conf);
1342 }
1343
1344 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345 (mddev->reshape_backwards
1346 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1347 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1348 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1349 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1350 /* Need to update reshape_position in metadata */
1351 mddev->reshape_position = conf->reshape_progress;
1352 set_mask_bits(&mddev->sb_flags, 0,
1353 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1354 md_wakeup_thread(mddev->thread);
1355 raid10_log(conf->mddev, "wait reshape metadata");
1356 wait_event(mddev->sb_wait,
1357 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1358
1359 conf->reshape_safe = mddev->reshape_position;
1360 }
1361
1362 if (conf->pending_count >= max_queued_requests) {
1363 md_wakeup_thread(mddev->thread);
1364 raid10_log(mddev, "wait queued");
1365 wait_event(conf->wait_barrier,
1366 conf->pending_count < max_queued_requests);
1367 }
1368 /* first select target devices under rcu_lock and
1369 * inc refcount on their rdev. Record them by setting
1370 * bios[x] to bio
1371 * If there are known/acknowledged bad blocks on any device
1372 * on which we have seen a write error, we want to avoid
1373 * writing to those blocks. This potentially requires several
1374 * writes to write around the bad blocks. Each set of writes
1375 * gets its own r10_bio with a set of bios attached.
1376 */
1377
1378 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1379 raid10_find_phys(conf, r10_bio);
1380 retry_write:
1381 blocked_rdev = NULL;
1382 rcu_read_lock();
1383 max_sectors = r10_bio->sectors;
1384
1385 for (i = 0; i < conf->copies; i++) {
1386 int d = r10_bio->devs[i].devnum;
1387 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1388 struct md_rdev *rrdev = rcu_dereference(
1389 conf->mirrors[d].replacement);
1390 if (rdev == rrdev)
1391 rrdev = NULL;
1392 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1393 atomic_inc(&rdev->nr_pending);
1394 blocked_rdev = rdev;
1395 break;
1396 }
1397 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1398 atomic_inc(&rrdev->nr_pending);
1399 blocked_rdev = rrdev;
1400 break;
1401 }
1402 if (rdev && (test_bit(Faulty, &rdev->flags)))
1403 rdev = NULL;
1404 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1405 rrdev = NULL;
1406
1407 r10_bio->devs[i].bio = NULL;
1408 r10_bio->devs[i].repl_bio = NULL;
1409
1410 if (!rdev && !rrdev) {
1411 set_bit(R10BIO_Degraded, &r10_bio->state);
1412 continue;
1413 }
1414 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1415 sector_t first_bad;
1416 sector_t dev_sector = r10_bio->devs[i].addr;
1417 int bad_sectors;
1418 int is_bad;
1419
1420 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1421 &first_bad, &bad_sectors);
1422 if (is_bad < 0) {
1423 /* Mustn't write here until the bad block
1424 * is acknowledged
1425 */
1426 atomic_inc(&rdev->nr_pending);
1427 set_bit(BlockedBadBlocks, &rdev->flags);
1428 blocked_rdev = rdev;
1429 break;
1430 }
1431 if (is_bad && first_bad <= dev_sector) {
1432 /* Cannot write here at all */
1433 bad_sectors -= (dev_sector - first_bad);
1434 if (bad_sectors < max_sectors)
1435 /* Mustn't write more than bad_sectors
1436 * to other devices yet
1437 */
1438 max_sectors = bad_sectors;
1439 /* We don't set R10BIO_Degraded as that
1440 * only applies if the disk is missing,
1441 * so it might be re-added, and we want to
1442 * know to recover this chunk.
1443 * In this case the device is here, and the
1444 * fact that this chunk is not in-sync is
1445 * recorded in the bad block log.
1446 */
1447 continue;
1448 }
1449 if (is_bad) {
1450 int good_sectors = first_bad - dev_sector;
1451 if (good_sectors < max_sectors)
1452 max_sectors = good_sectors;
1453 }
1454 }
1455 if (rdev) {
1456 r10_bio->devs[i].bio = bio;
1457 atomic_inc(&rdev->nr_pending);
1458 }
1459 if (rrdev) {
1460 r10_bio->devs[i].repl_bio = bio;
1461 atomic_inc(&rrdev->nr_pending);
1462 }
1463 }
1464 rcu_read_unlock();
1465
1466 if (unlikely(blocked_rdev)) {
1467 /* Have to wait for this device to get unblocked, then retry */
1468 int j;
1469 int d;
1470
1471 for (j = 0; j < i; j++) {
1472 if (r10_bio->devs[j].bio) {
1473 d = r10_bio->devs[j].devnum;
1474 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1475 }
1476 if (r10_bio->devs[j].repl_bio) {
1477 struct md_rdev *rdev;
1478 d = r10_bio->devs[j].devnum;
1479 rdev = conf->mirrors[d].replacement;
1480 if (!rdev) {
1481 /* Race with remove_disk */
1482 smp_mb();
1483 rdev = conf->mirrors[d].rdev;
1484 }
1485 rdev_dec_pending(rdev, mddev);
1486 }
1487 }
1488 allow_barrier(conf);
1489 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1490 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1491 wait_barrier(conf);
1492 goto retry_write;
1493 }
1494
1495 if (max_sectors < r10_bio->sectors)
1496 r10_bio->sectors = max_sectors;
1497
1498 if (r10_bio->sectors < bio_sectors(bio)) {
1499 struct bio *split = bio_split(bio, r10_bio->sectors,
1500 GFP_NOIO, conf->bio_split);
1501 bio_chain(split, bio);
1502 generic_make_request(bio);
1503 bio = split;
1504 r10_bio->master_bio = bio;
1505 }
1506
1507 atomic_set(&r10_bio->remaining, 1);
1508 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1509
1510 for (i = 0; i < conf->copies; i++) {
1511 if (r10_bio->devs[i].bio)
1512 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1513 if (r10_bio->devs[i].repl_bio)
1514 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1515 }
1516 one_write_done(r10_bio);
1517 }
1518
1519 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1520 {
1521 struct r10conf *conf = mddev->private;
1522 struct r10bio *r10_bio;
1523
1524 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1525
1526 r10_bio->master_bio = bio;
1527 r10_bio->sectors = sectors;
1528
1529 r10_bio->mddev = mddev;
1530 r10_bio->sector = bio->bi_iter.bi_sector;
1531 r10_bio->state = 0;
1532 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1533
1534 if (bio_data_dir(bio) == READ)
1535 raid10_read_request(mddev, bio, r10_bio);
1536 else
1537 raid10_write_request(mddev, bio, r10_bio);
1538 }
1539
1540 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542 struct r10conf *conf = mddev->private;
1543 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1544 int chunk_sects = chunk_mask + 1;
1545 int sectors = bio_sectors(bio);
1546
1547 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1548 md_flush_request(mddev, bio);
1549 return true;
1550 }
1551
1552 if (!md_write_start(mddev, bio))
1553 return false;
1554
1555 /*
1556 * If this request crosses a chunk boundary, we need to split
1557 * it.
1558 */
1559 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1560 sectors > chunk_sects
1561 && (conf->geo.near_copies < conf->geo.raid_disks
1562 || conf->prev.near_copies <
1563 conf->prev.raid_disks)))
1564 sectors = chunk_sects -
1565 (bio->bi_iter.bi_sector &
1566 (chunk_sects - 1));
1567 __make_request(mddev, bio, sectors);
1568
1569 /* In case raid10d snuck in to freeze_array */
1570 wake_up(&conf->wait_barrier);
1571 return true;
1572 }
1573
1574 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1575 {
1576 struct r10conf *conf = mddev->private;
1577 int i;
1578
1579 if (conf->geo.near_copies < conf->geo.raid_disks)
1580 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1581 if (conf->geo.near_copies > 1)
1582 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1583 if (conf->geo.far_copies > 1) {
1584 if (conf->geo.far_offset)
1585 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1586 else
1587 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1588 if (conf->geo.far_set_size != conf->geo.raid_disks)
1589 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1590 }
1591 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1592 conf->geo.raid_disks - mddev->degraded);
1593 rcu_read_lock();
1594 for (i = 0; i < conf->geo.raid_disks; i++) {
1595 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1596 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597 }
1598 rcu_read_unlock();
1599 seq_printf(seq, "]");
1600 }
1601
1602 /* check if there are enough drives for
1603 * every block to appear on atleast one.
1604 * Don't consider the device numbered 'ignore'
1605 * as we might be about to remove it.
1606 */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609 int first = 0;
1610 int has_enough = 0;
1611 int disks, ncopies;
1612 if (previous) {
1613 disks = conf->prev.raid_disks;
1614 ncopies = conf->prev.near_copies;
1615 } else {
1616 disks = conf->geo.raid_disks;
1617 ncopies = conf->geo.near_copies;
1618 }
1619
1620 rcu_read_lock();
1621 do {
1622 int n = conf->copies;
1623 int cnt = 0;
1624 int this = first;
1625 while (n--) {
1626 struct md_rdev *rdev;
1627 if (this != ignore &&
1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 test_bit(In_sync, &rdev->flags))
1630 cnt++;
1631 this = (this+1) % disks;
1632 }
1633 if (cnt == 0)
1634 goto out;
1635 first = (first + ncopies) % disks;
1636 } while (first != 0);
1637 has_enough = 1;
1638 out:
1639 rcu_read_unlock();
1640 return has_enough;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 /* when calling 'enough', both 'prev' and 'geo' must
1646 * be stable.
1647 * This is ensured if ->reconfig_mutex or ->device_lock
1648 * is held.
1649 */
1650 return _enough(conf, 0, ignore) &&
1651 _enough(conf, 1, ignore);
1652 }
1653
1654 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 char b[BDEVNAME_SIZE];
1657 struct r10conf *conf = mddev->private;
1658 unsigned long flags;
1659
1660 /*
1661 * If it is not operational, then we have already marked it as dead
1662 * else if it is the last working disks, ignore the error, let the
1663 * next level up know.
1664 * else mark the drive as failed
1665 */
1666 spin_lock_irqsave(&conf->device_lock, flags);
1667 if (test_bit(In_sync, &rdev->flags)
1668 && !enough(conf, rdev->raid_disk)) {
1669 /*
1670 * Don't fail the drive, just return an IO error.
1671 */
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1673 return;
1674 }
1675 if (test_and_clear_bit(In_sync, &rdev->flags))
1676 mddev->degraded++;
1677 /*
1678 * If recovery is running, make sure it aborts.
1679 */
1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 set_bit(Blocked, &rdev->flags);
1682 set_bit(Faulty, &rdev->flags);
1683 set_mask_bits(&mddev->sb_flags, 0,
1684 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1685 spin_unlock_irqrestore(&conf->device_lock, flags);
1686 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 "md/raid10:%s: Operation continuing on %d devices.\n",
1688 mdname(mddev), bdevname(rdev->bdev, b),
1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691
1692 static void print_conf(struct r10conf *conf)
1693 {
1694 int i;
1695 struct md_rdev *rdev;
1696
1697 pr_debug("RAID10 conf printout:\n");
1698 if (!conf) {
1699 pr_debug("(!conf)\n");
1700 return;
1701 }
1702 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 conf->geo.raid_disks);
1704
1705 /* This is only called with ->reconfix_mutex held, so
1706 * rcu protection of rdev is not needed */
1707 for (i = 0; i < conf->geo.raid_disks; i++) {
1708 char b[BDEVNAME_SIZE];
1709 rdev = conf->mirrors[i].rdev;
1710 if (rdev)
1711 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1712 i, !test_bit(In_sync, &rdev->flags),
1713 !test_bit(Faulty, &rdev->flags),
1714 bdevname(rdev->bdev,b));
1715 }
1716 }
1717
1718 static void close_sync(struct r10conf *conf)
1719 {
1720 wait_barrier(conf);
1721 allow_barrier(conf);
1722
1723 mempool_destroy(conf->r10buf_pool);
1724 conf->r10buf_pool = NULL;
1725 }
1726
1727 static int raid10_spare_active(struct mddev *mddev)
1728 {
1729 int i;
1730 struct r10conf *conf = mddev->private;
1731 struct raid10_info *tmp;
1732 int count = 0;
1733 unsigned long flags;
1734
1735 /*
1736 * Find all non-in_sync disks within the RAID10 configuration
1737 * and mark them in_sync
1738 */
1739 for (i = 0; i < conf->geo.raid_disks; i++) {
1740 tmp = conf->mirrors + i;
1741 if (tmp->replacement
1742 && tmp->replacement->recovery_offset == MaxSector
1743 && !test_bit(Faulty, &tmp->replacement->flags)
1744 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1745 /* Replacement has just become active */
1746 if (!tmp->rdev
1747 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1748 count++;
1749 if (tmp->rdev) {
1750 /* Replaced device not technically faulty,
1751 * but we need to be sure it gets removed
1752 * and never re-added.
1753 */
1754 set_bit(Faulty, &tmp->rdev->flags);
1755 sysfs_notify_dirent_safe(
1756 tmp->rdev->sysfs_state);
1757 }
1758 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1759 } else if (tmp->rdev
1760 && tmp->rdev->recovery_offset == MaxSector
1761 && !test_bit(Faulty, &tmp->rdev->flags)
1762 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1763 count++;
1764 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1765 }
1766 }
1767 spin_lock_irqsave(&conf->device_lock, flags);
1768 mddev->degraded -= count;
1769 spin_unlock_irqrestore(&conf->device_lock, flags);
1770
1771 print_conf(conf);
1772 return count;
1773 }
1774
1775 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1776 {
1777 struct r10conf *conf = mddev->private;
1778 int err = -EEXIST;
1779 int mirror;
1780 int first = 0;
1781 int last = conf->geo.raid_disks - 1;
1782
1783 if (mddev->recovery_cp < MaxSector)
1784 /* only hot-add to in-sync arrays, as recovery is
1785 * very different from resync
1786 */
1787 return -EBUSY;
1788 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1789 return -EINVAL;
1790
1791 if (md_integrity_add_rdev(rdev, mddev))
1792 return -ENXIO;
1793
1794 if (rdev->raid_disk >= 0)
1795 first = last = rdev->raid_disk;
1796
1797 if (rdev->saved_raid_disk >= first &&
1798 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799 mirror = rdev->saved_raid_disk;
1800 else
1801 mirror = first;
1802 for ( ; mirror <= last ; mirror++) {
1803 struct raid10_info *p = &conf->mirrors[mirror];
1804 if (p->recovery_disabled == mddev->recovery_disabled)
1805 continue;
1806 if (p->rdev) {
1807 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808 p->replacement != NULL)
1809 continue;
1810 clear_bit(In_sync, &rdev->flags);
1811 set_bit(Replacement, &rdev->flags);
1812 rdev->raid_disk = mirror;
1813 err = 0;
1814 if (mddev->gendisk)
1815 disk_stack_limits(mddev->gendisk, rdev->bdev,
1816 rdev->data_offset << 9);
1817 conf->fullsync = 1;
1818 rcu_assign_pointer(p->replacement, rdev);
1819 break;
1820 }
1821
1822 if (mddev->gendisk)
1823 disk_stack_limits(mddev->gendisk, rdev->bdev,
1824 rdev->data_offset << 9);
1825
1826 p->head_position = 0;
1827 p->recovery_disabled = mddev->recovery_disabled - 1;
1828 rdev->raid_disk = mirror;
1829 err = 0;
1830 if (rdev->saved_raid_disk != mirror)
1831 conf->fullsync = 1;
1832 rcu_assign_pointer(p->rdev, rdev);
1833 break;
1834 }
1835 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1836 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1837
1838 print_conf(conf);
1839 return err;
1840 }
1841
1842 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1843 {
1844 struct r10conf *conf = mddev->private;
1845 int err = 0;
1846 int number = rdev->raid_disk;
1847 struct md_rdev **rdevp;
1848 struct raid10_info *p = conf->mirrors + number;
1849
1850 print_conf(conf);
1851 if (rdev == p->rdev)
1852 rdevp = &p->rdev;
1853 else if (rdev == p->replacement)
1854 rdevp = &p->replacement;
1855 else
1856 return 0;
1857
1858 if (test_bit(In_sync, &rdev->flags) ||
1859 atomic_read(&rdev->nr_pending)) {
1860 err = -EBUSY;
1861 goto abort;
1862 }
1863 /* Only remove non-faulty devices if recovery
1864 * is not possible.
1865 */
1866 if (!test_bit(Faulty, &rdev->flags) &&
1867 mddev->recovery_disabled != p->recovery_disabled &&
1868 (!p->replacement || p->replacement == rdev) &&
1869 number < conf->geo.raid_disks &&
1870 enough(conf, -1)) {
1871 err = -EBUSY;
1872 goto abort;
1873 }
1874 *rdevp = NULL;
1875 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1876 synchronize_rcu();
1877 if (atomic_read(&rdev->nr_pending)) {
1878 /* lost the race, try later */
1879 err = -EBUSY;
1880 *rdevp = rdev;
1881 goto abort;
1882 }
1883 }
1884 if (p->replacement) {
1885 /* We must have just cleared 'rdev' */
1886 p->rdev = p->replacement;
1887 clear_bit(Replacement, &p->replacement->flags);
1888 smp_mb(); /* Make sure other CPUs may see both as identical
1889 * but will never see neither -- if they are careful.
1890 */
1891 p->replacement = NULL;
1892 }
1893
1894 clear_bit(WantReplacement, &rdev->flags);
1895 err = md_integrity_register(mddev);
1896
1897 abort:
1898
1899 print_conf(conf);
1900 return err;
1901 }
1902
1903 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1904 {
1905 struct r10conf *conf = r10_bio->mddev->private;
1906
1907 if (!bio->bi_status)
1908 set_bit(R10BIO_Uptodate, &r10_bio->state);
1909 else
1910 /* The write handler will notice the lack of
1911 * R10BIO_Uptodate and record any errors etc
1912 */
1913 atomic_add(r10_bio->sectors,
1914 &conf->mirrors[d].rdev->corrected_errors);
1915
1916 /* for reconstruct, we always reschedule after a read.
1917 * for resync, only after all reads
1918 */
1919 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1920 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1921 atomic_dec_and_test(&r10_bio->remaining)) {
1922 /* we have read all the blocks,
1923 * do the comparison in process context in raid10d
1924 */
1925 reschedule_retry(r10_bio);
1926 }
1927 }
1928
1929 static void end_sync_read(struct bio *bio)
1930 {
1931 struct r10bio *r10_bio = get_resync_r10bio(bio);
1932 struct r10conf *conf = r10_bio->mddev->private;
1933 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1934
1935 __end_sync_read(r10_bio, bio, d);
1936 }
1937
1938 static void end_reshape_read(struct bio *bio)
1939 {
1940 /* reshape read bio isn't allocated from r10buf_pool */
1941 struct r10bio *r10_bio = bio->bi_private;
1942
1943 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1944 }
1945
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948 struct mddev *mddev = r10_bio->mddev;
1949
1950 while (atomic_dec_and_test(&r10_bio->remaining)) {
1951 if (r10_bio->master_bio == NULL) {
1952 /* the primary of several recovery bios */
1953 sector_t s = r10_bio->sectors;
1954 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955 test_bit(R10BIO_WriteError, &r10_bio->state))
1956 reschedule_retry(r10_bio);
1957 else
1958 put_buf(r10_bio);
1959 md_done_sync(mddev, s, 1);
1960 break;
1961 } else {
1962 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964 test_bit(R10BIO_WriteError, &r10_bio->state))
1965 reschedule_retry(r10_bio);
1966 else
1967 put_buf(r10_bio);
1968 r10_bio = r10_bio2;
1969 }
1970 }
1971 }
1972
1973 static void end_sync_write(struct bio *bio)
1974 {
1975 struct r10bio *r10_bio = get_resync_r10bio(bio);
1976 struct mddev *mddev = r10_bio->mddev;
1977 struct r10conf *conf = mddev->private;
1978 int d;
1979 sector_t first_bad;
1980 int bad_sectors;
1981 int slot;
1982 int repl;
1983 struct md_rdev *rdev = NULL;
1984
1985 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1986 if (repl)
1987 rdev = conf->mirrors[d].replacement;
1988 else
1989 rdev = conf->mirrors[d].rdev;
1990
1991 if (bio->bi_status) {
1992 if (repl)
1993 md_error(mddev, rdev);
1994 else {
1995 set_bit(WriteErrorSeen, &rdev->flags);
1996 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997 set_bit(MD_RECOVERY_NEEDED,
1998 &rdev->mddev->recovery);
1999 set_bit(R10BIO_WriteError, &r10_bio->state);
2000 }
2001 } else if (is_badblock(rdev,
2002 r10_bio->devs[slot].addr,
2003 r10_bio->sectors,
2004 &first_bad, &bad_sectors))
2005 set_bit(R10BIO_MadeGood, &r10_bio->state);
2006
2007 rdev_dec_pending(rdev, mddev);
2008
2009 end_sync_request(r10_bio);
2010 }
2011
2012 /*
2013 * Note: sync and recover and handled very differently for raid10
2014 * This code is for resync.
2015 * For resync, we read through virtual addresses and read all blocks.
2016 * If there is any error, we schedule a write. The lowest numbered
2017 * drive is authoritative.
2018 * However requests come for physical address, so we need to map.
2019 * For every physical address there are raid_disks/copies virtual addresses,
2020 * which is always are least one, but is not necessarly an integer.
2021 * This means that a physical address can span multiple chunks, so we may
2022 * have to submit multiple io requests for a single sync request.
2023 */
2024 /*
2025 * We check if all blocks are in-sync and only write to blocks that
2026 * aren't in sync
2027 */
2028 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2029 {
2030 struct r10conf *conf = mddev->private;
2031 int i, first;
2032 struct bio *tbio, *fbio;
2033 int vcnt;
2034 struct page **tpages, **fpages;
2035
2036 atomic_set(&r10_bio->remaining, 1);
2037
2038 /* find the first device with a block */
2039 for (i=0; i<conf->copies; i++)
2040 if (!r10_bio->devs[i].bio->bi_status)
2041 break;
2042
2043 if (i == conf->copies)
2044 goto done;
2045
2046 first = i;
2047 fbio = r10_bio->devs[i].bio;
2048 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2049 fbio->bi_iter.bi_idx = 0;
2050 fpages = get_resync_pages(fbio)->pages;
2051
2052 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053 /* now find blocks with errors */
2054 for (i=0 ; i < conf->copies ; i++) {
2055 int j, d;
2056 struct md_rdev *rdev;
2057 struct resync_pages *rp;
2058
2059 tbio = r10_bio->devs[i].bio;
2060
2061 if (tbio->bi_end_io != end_sync_read)
2062 continue;
2063 if (i == first)
2064 continue;
2065
2066 tpages = get_resync_pages(tbio)->pages;
2067 d = r10_bio->devs[i].devnum;
2068 rdev = conf->mirrors[d].rdev;
2069 if (!r10_bio->devs[i].bio->bi_status) {
2070 /* We know that the bi_io_vec layout is the same for
2071 * both 'first' and 'i', so we just compare them.
2072 * All vec entries are PAGE_SIZE;
2073 */
2074 int sectors = r10_bio->sectors;
2075 for (j = 0; j < vcnt; j++) {
2076 int len = PAGE_SIZE;
2077 if (sectors < (len / 512))
2078 len = sectors * 512;
2079 if (memcmp(page_address(fpages[j]),
2080 page_address(tpages[j]),
2081 len))
2082 break;
2083 sectors -= len/512;
2084 }
2085 if (j == vcnt)
2086 continue;
2087 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2088 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089 /* Don't fix anything. */
2090 continue;
2091 } else if (test_bit(FailFast, &rdev->flags)) {
2092 /* Just give up on this device */
2093 md_error(rdev->mddev, rdev);
2094 continue;
2095 }
2096 /* Ok, we need to write this bio, either to correct an
2097 * inconsistency or to correct an unreadable block.
2098 * First we need to fixup bv_offset, bv_len and
2099 * bi_vecs, as the read request might have corrupted these
2100 */
2101 rp = get_resync_pages(tbio);
2102 bio_reset(tbio);
2103
2104 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2105
2106 rp->raid_bio = r10_bio;
2107 tbio->bi_private = rp;
2108 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2109 tbio->bi_end_io = end_sync_write;
2110 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2111
2112 bio_copy_data(tbio, fbio);
2113
2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 atomic_inc(&r10_bio->remaining);
2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117
2118 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2119 tbio->bi_opf |= MD_FAILFAST;
2120 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2121 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2122 generic_make_request(tbio);
2123 }
2124
2125 /* Now write out to any replacement devices
2126 * that are active
2127 */
2128 for (i = 0; i < conf->copies; i++) {
2129 int d;
2130
2131 tbio = r10_bio->devs[i].repl_bio;
2132 if (!tbio || !tbio->bi_end_io)
2133 continue;
2134 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2135 && r10_bio->devs[i].bio != fbio)
2136 bio_copy_data(tbio, fbio);
2137 d = r10_bio->devs[i].devnum;
2138 atomic_inc(&r10_bio->remaining);
2139 md_sync_acct(conf->mirrors[d].replacement->bdev,
2140 bio_sectors(tbio));
2141 generic_make_request(tbio);
2142 }
2143
2144 done:
2145 if (atomic_dec_and_test(&r10_bio->remaining)) {
2146 md_done_sync(mddev, r10_bio->sectors, 1);
2147 put_buf(r10_bio);
2148 }
2149 }
2150
2151 /*
2152 * Now for the recovery code.
2153 * Recovery happens across physical sectors.
2154 * We recover all non-is_sync drives by finding the virtual address of
2155 * each, and then choose a working drive that also has that virt address.
2156 * There is a separate r10_bio for each non-in_sync drive.
2157 * Only the first two slots are in use. The first for reading,
2158 * The second for writing.
2159 *
2160 */
2161 static void fix_recovery_read_error(struct r10bio *r10_bio)
2162 {
2163 /* We got a read error during recovery.
2164 * We repeat the read in smaller page-sized sections.
2165 * If a read succeeds, write it to the new device or record
2166 * a bad block if we cannot.
2167 * If a read fails, record a bad block on both old and
2168 * new devices.
2169 */
2170 struct mddev *mddev = r10_bio->mddev;
2171 struct r10conf *conf = mddev->private;
2172 struct bio *bio = r10_bio->devs[0].bio;
2173 sector_t sect = 0;
2174 int sectors = r10_bio->sectors;
2175 int idx = 0;
2176 int dr = r10_bio->devs[0].devnum;
2177 int dw = r10_bio->devs[1].devnum;
2178 struct page **pages = get_resync_pages(bio)->pages;
2179
2180 while (sectors) {
2181 int s = sectors;
2182 struct md_rdev *rdev;
2183 sector_t addr;
2184 int ok;
2185
2186 if (s > (PAGE_SIZE>>9))
2187 s = PAGE_SIZE >> 9;
2188
2189 rdev = conf->mirrors[dr].rdev;
2190 addr = r10_bio->devs[0].addr + sect,
2191 ok = sync_page_io(rdev,
2192 addr,
2193 s << 9,
2194 pages[idx],
2195 REQ_OP_READ, 0, false);
2196 if (ok) {
2197 rdev = conf->mirrors[dw].rdev;
2198 addr = r10_bio->devs[1].addr + sect;
2199 ok = sync_page_io(rdev,
2200 addr,
2201 s << 9,
2202 pages[idx],
2203 REQ_OP_WRITE, 0, false);
2204 if (!ok) {
2205 set_bit(WriteErrorSeen, &rdev->flags);
2206 if (!test_and_set_bit(WantReplacement,
2207 &rdev->flags))
2208 set_bit(MD_RECOVERY_NEEDED,
2209 &rdev->mddev->recovery);
2210 }
2211 }
2212 if (!ok) {
2213 /* We don't worry if we cannot set a bad block -
2214 * it really is bad so there is no loss in not
2215 * recording it yet
2216 */
2217 rdev_set_badblocks(rdev, addr, s, 0);
2218
2219 if (rdev != conf->mirrors[dw].rdev) {
2220 /* need bad block on destination too */
2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222 addr = r10_bio->devs[1].addr + sect;
2223 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224 if (!ok) {
2225 /* just abort the recovery */
2226 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2227 mdname(mddev));
2228
2229 conf->mirrors[dw].recovery_disabled
2230 = mddev->recovery_disabled;
2231 set_bit(MD_RECOVERY_INTR,
2232 &mddev->recovery);
2233 break;
2234 }
2235 }
2236 }
2237
2238 sectors -= s;
2239 sect += s;
2240 idx++;
2241 }
2242 }
2243
2244 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2245 {
2246 struct r10conf *conf = mddev->private;
2247 int d;
2248 struct bio *wbio, *wbio2;
2249
2250 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2251 fix_recovery_read_error(r10_bio);
2252 end_sync_request(r10_bio);
2253 return;
2254 }
2255
2256 /*
2257 * share the pages with the first bio
2258 * and submit the write request
2259 */
2260 d = r10_bio->devs[1].devnum;
2261 wbio = r10_bio->devs[1].bio;
2262 wbio2 = r10_bio->devs[1].repl_bio;
2263 /* Need to test wbio2->bi_end_io before we call
2264 * generic_make_request as if the former is NULL,
2265 * the latter is free to free wbio2.
2266 */
2267 if (wbio2 && !wbio2->bi_end_io)
2268 wbio2 = NULL;
2269 if (wbio->bi_end_io) {
2270 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2271 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2272 generic_make_request(wbio);
2273 }
2274 if (wbio2) {
2275 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2276 md_sync_acct(conf->mirrors[d].replacement->bdev,
2277 bio_sectors(wbio2));
2278 generic_make_request(wbio2);
2279 }
2280 }
2281
2282 /*
2283 * Used by fix_read_error() to decay the per rdev read_errors.
2284 * We halve the read error count for every hour that has elapsed
2285 * since the last recorded read error.
2286 *
2287 */
2288 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2289 {
2290 long cur_time_mon;
2291 unsigned long hours_since_last;
2292 unsigned int read_errors = atomic_read(&rdev->read_errors);
2293
2294 cur_time_mon = ktime_get_seconds();
2295
2296 if (rdev->last_read_error == 0) {
2297 /* first time we've seen a read error */
2298 rdev->last_read_error = cur_time_mon;
2299 return;
2300 }
2301
2302 hours_since_last = (long)(cur_time_mon -
2303 rdev->last_read_error) / 3600;
2304
2305 rdev->last_read_error = cur_time_mon;
2306
2307 /*
2308 * if hours_since_last is > the number of bits in read_errors
2309 * just set read errors to 0. We do this to avoid
2310 * overflowing the shift of read_errors by hours_since_last.
2311 */
2312 if (hours_since_last >= 8 * sizeof(read_errors))
2313 atomic_set(&rdev->read_errors, 0);
2314 else
2315 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2316 }
2317
2318 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2319 int sectors, struct page *page, int rw)
2320 {
2321 sector_t first_bad;
2322 int bad_sectors;
2323
2324 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2325 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2326 return -1;
2327 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2328 /* success */
2329 return 1;
2330 if (rw == WRITE) {
2331 set_bit(WriteErrorSeen, &rdev->flags);
2332 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2333 set_bit(MD_RECOVERY_NEEDED,
2334 &rdev->mddev->recovery);
2335 }
2336 /* need to record an error - either for the block or the device */
2337 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2338 md_error(rdev->mddev, rdev);
2339 return 0;
2340 }
2341
2342 /*
2343 * This is a kernel thread which:
2344 *
2345 * 1. Retries failed read operations on working mirrors.
2346 * 2. Updates the raid superblock when problems encounter.
2347 * 3. Performs writes following reads for array synchronising.
2348 */
2349
2350 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2351 {
2352 int sect = 0; /* Offset from r10_bio->sector */
2353 int sectors = r10_bio->sectors;
2354 struct md_rdev*rdev;
2355 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2356 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2357
2358 /* still own a reference to this rdev, so it cannot
2359 * have been cleared recently.
2360 */
2361 rdev = conf->mirrors[d].rdev;
2362
2363 if (test_bit(Faulty, &rdev->flags))
2364 /* drive has already been failed, just ignore any
2365 more fix_read_error() attempts */
2366 return;
2367
2368 check_decay_read_errors(mddev, rdev);
2369 atomic_inc(&rdev->read_errors);
2370 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2371 char b[BDEVNAME_SIZE];
2372 bdevname(rdev->bdev, b);
2373
2374 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2375 mdname(mddev), b,
2376 atomic_read(&rdev->read_errors), max_read_errors);
2377 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2378 mdname(mddev), b);
2379 md_error(mddev, rdev);
2380 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2381 return;
2382 }
2383
2384 while(sectors) {
2385 int s = sectors;
2386 int sl = r10_bio->read_slot;
2387 int success = 0;
2388 int start;
2389
2390 if (s > (PAGE_SIZE>>9))
2391 s = PAGE_SIZE >> 9;
2392
2393 rcu_read_lock();
2394 do {
2395 sector_t first_bad;
2396 int bad_sectors;
2397
2398 d = r10_bio->devs[sl].devnum;
2399 rdev = rcu_dereference(conf->mirrors[d].rdev);
2400 if (rdev &&
2401 test_bit(In_sync, &rdev->flags) &&
2402 !test_bit(Faulty, &rdev->flags) &&
2403 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2404 &first_bad, &bad_sectors) == 0) {
2405 atomic_inc(&rdev->nr_pending);
2406 rcu_read_unlock();
2407 success = sync_page_io(rdev,
2408 r10_bio->devs[sl].addr +
2409 sect,
2410 s<<9,
2411 conf->tmppage,
2412 REQ_OP_READ, 0, false);
2413 rdev_dec_pending(rdev, mddev);
2414 rcu_read_lock();
2415 if (success)
2416 break;
2417 }
2418 sl++;
2419 if (sl == conf->copies)
2420 sl = 0;
2421 } while (!success && sl != r10_bio->read_slot);
2422 rcu_read_unlock();
2423
2424 if (!success) {
2425 /* Cannot read from anywhere, just mark the block
2426 * as bad on the first device to discourage future
2427 * reads.
2428 */
2429 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430 rdev = conf->mirrors[dn].rdev;
2431
2432 if (!rdev_set_badblocks(
2433 rdev,
2434 r10_bio->devs[r10_bio->read_slot].addr
2435 + sect,
2436 s, 0)) {
2437 md_error(mddev, rdev);
2438 r10_bio->devs[r10_bio->read_slot].bio
2439 = IO_BLOCKED;
2440 }
2441 break;
2442 }
2443
2444 start = sl;
2445 /* write it back and re-read */
2446 rcu_read_lock();
2447 while (sl != r10_bio->read_slot) {
2448 char b[BDEVNAME_SIZE];
2449
2450 if (sl==0)
2451 sl = conf->copies;
2452 sl--;
2453 d = r10_bio->devs[sl].devnum;
2454 rdev = rcu_dereference(conf->mirrors[d].rdev);
2455 if (!rdev ||
2456 test_bit(Faulty, &rdev->flags) ||
2457 !test_bit(In_sync, &rdev->flags))
2458 continue;
2459
2460 atomic_inc(&rdev->nr_pending);
2461 rcu_read_unlock();
2462 if (r10_sync_page_io(rdev,
2463 r10_bio->devs[sl].addr +
2464 sect,
2465 s, conf->tmppage, WRITE)
2466 == 0) {
2467 /* Well, this device is dead */
2468 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2469 mdname(mddev), s,
2470 (unsigned long long)(
2471 sect +
2472 choose_data_offset(r10_bio,
2473 rdev)),
2474 bdevname(rdev->bdev, b));
2475 pr_notice("md/raid10:%s: %s: failing drive\n",
2476 mdname(mddev),
2477 bdevname(rdev->bdev, b));
2478 }
2479 rdev_dec_pending(rdev, mddev);
2480 rcu_read_lock();
2481 }
2482 sl = start;
2483 while (sl != r10_bio->read_slot) {
2484 char b[BDEVNAME_SIZE];
2485
2486 if (sl==0)
2487 sl = conf->copies;
2488 sl--;
2489 d = r10_bio->devs[sl].devnum;
2490 rdev = rcu_dereference(conf->mirrors[d].rdev);
2491 if (!rdev ||
2492 test_bit(Faulty, &rdev->flags) ||
2493 !test_bit(In_sync, &rdev->flags))
2494 continue;
2495
2496 atomic_inc(&rdev->nr_pending);
2497 rcu_read_unlock();
2498 switch (r10_sync_page_io(rdev,
2499 r10_bio->devs[sl].addr +
2500 sect,
2501 s, conf->tmppage,
2502 READ)) {
2503 case 0:
2504 /* Well, this device is dead */
2505 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2506 mdname(mddev), s,
2507 (unsigned long long)(
2508 sect +
2509 choose_data_offset(r10_bio, rdev)),
2510 bdevname(rdev->bdev, b));
2511 pr_notice("md/raid10:%s: %s: failing drive\n",
2512 mdname(mddev),
2513 bdevname(rdev->bdev, b));
2514 break;
2515 case 1:
2516 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2517 mdname(mddev), s,
2518 (unsigned long long)(
2519 sect +
2520 choose_data_offset(r10_bio, rdev)),
2521 bdevname(rdev->bdev, b));
2522 atomic_add(s, &rdev->corrected_errors);
2523 }
2524
2525 rdev_dec_pending(rdev, mddev);
2526 rcu_read_lock();
2527 }
2528 rcu_read_unlock();
2529
2530 sectors -= s;
2531 sect += s;
2532 }
2533 }
2534
2535 static int narrow_write_error(struct r10bio *r10_bio, int i)
2536 {
2537 struct bio *bio = r10_bio->master_bio;
2538 struct mddev *mddev = r10_bio->mddev;
2539 struct r10conf *conf = mddev->private;
2540 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2541 /* bio has the data to be written to slot 'i' where
2542 * we just recently had a write error.
2543 * We repeatedly clone the bio and trim down to one block,
2544 * then try the write. Where the write fails we record
2545 * a bad block.
2546 * It is conceivable that the bio doesn't exactly align with
2547 * blocks. We must handle this.
2548 *
2549 * We currently own a reference to the rdev.
2550 */
2551
2552 int block_sectors;
2553 sector_t sector;
2554 int sectors;
2555 int sect_to_write = r10_bio->sectors;
2556 int ok = 1;
2557
2558 if (rdev->badblocks.shift < 0)
2559 return 0;
2560
2561 block_sectors = roundup(1 << rdev->badblocks.shift,
2562 bdev_logical_block_size(rdev->bdev) >> 9);
2563 sector = r10_bio->sector;
2564 sectors = ((r10_bio->sector + block_sectors)
2565 & ~(sector_t)(block_sectors - 1))
2566 - sector;
2567
2568 while (sect_to_write) {
2569 struct bio *wbio;
2570 sector_t wsector;
2571 if (sectors > sect_to_write)
2572 sectors = sect_to_write;
2573 /* Write at 'sector' for 'sectors' */
2574 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2575 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2576 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2577 wbio->bi_iter.bi_sector = wsector +
2578 choose_data_offset(r10_bio, rdev);
2579 bio_set_dev(wbio, rdev->bdev);
2580 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2581
2582 if (submit_bio_wait(wbio) < 0)
2583 /* Failure! */
2584 ok = rdev_set_badblocks(rdev, wsector,
2585 sectors, 0)
2586 && ok;
2587
2588 bio_put(wbio);
2589 sect_to_write -= sectors;
2590 sector += sectors;
2591 sectors = block_sectors;
2592 }
2593 return ok;
2594 }
2595
2596 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2597 {
2598 int slot = r10_bio->read_slot;
2599 struct bio *bio;
2600 struct r10conf *conf = mddev->private;
2601 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2602
2603 /* we got a read error. Maybe the drive is bad. Maybe just
2604 * the block and we can fix it.
2605 * We freeze all other IO, and try reading the block from
2606 * other devices. When we find one, we re-write
2607 * and check it that fixes the read error.
2608 * This is all done synchronously while the array is
2609 * frozen.
2610 */
2611 bio = r10_bio->devs[slot].bio;
2612 bio_put(bio);
2613 r10_bio->devs[slot].bio = NULL;
2614
2615 if (mddev->ro)
2616 r10_bio->devs[slot].bio = IO_BLOCKED;
2617 else if (!test_bit(FailFast, &rdev->flags)) {
2618 freeze_array(conf, 1);
2619 fix_read_error(conf, mddev, r10_bio);
2620 unfreeze_array(conf);
2621 } else
2622 md_error(mddev, rdev);
2623
2624 rdev_dec_pending(rdev, mddev);
2625 allow_barrier(conf);
2626 r10_bio->state = 0;
2627 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2628 }
2629
2630 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2631 {
2632 /* Some sort of write request has finished and it
2633 * succeeded in writing where we thought there was a
2634 * bad block. So forget the bad block.
2635 * Or possibly if failed and we need to record
2636 * a bad block.
2637 */
2638 int m;
2639 struct md_rdev *rdev;
2640
2641 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2642 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2643 for (m = 0; m < conf->copies; m++) {
2644 int dev = r10_bio->devs[m].devnum;
2645 rdev = conf->mirrors[dev].rdev;
2646 if (r10_bio->devs[m].bio == NULL ||
2647 r10_bio->devs[m].bio->bi_end_io == NULL)
2648 continue;
2649 if (!r10_bio->devs[m].bio->bi_status) {
2650 rdev_clear_badblocks(
2651 rdev,
2652 r10_bio->devs[m].addr,
2653 r10_bio->sectors, 0);
2654 } else {
2655 if (!rdev_set_badblocks(
2656 rdev,
2657 r10_bio->devs[m].addr,
2658 r10_bio->sectors, 0))
2659 md_error(conf->mddev, rdev);
2660 }
2661 rdev = conf->mirrors[dev].replacement;
2662 if (r10_bio->devs[m].repl_bio == NULL ||
2663 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2664 continue;
2665
2666 if (!r10_bio->devs[m].repl_bio->bi_status) {
2667 rdev_clear_badblocks(
2668 rdev,
2669 r10_bio->devs[m].addr,
2670 r10_bio->sectors, 0);
2671 } else {
2672 if (!rdev_set_badblocks(
2673 rdev,
2674 r10_bio->devs[m].addr,
2675 r10_bio->sectors, 0))
2676 md_error(conf->mddev, rdev);
2677 }
2678 }
2679 put_buf(r10_bio);
2680 } else {
2681 bool fail = false;
2682 for (m = 0; m < conf->copies; m++) {
2683 int dev = r10_bio->devs[m].devnum;
2684 struct bio *bio = r10_bio->devs[m].bio;
2685 rdev = conf->mirrors[dev].rdev;
2686 if (bio == IO_MADE_GOOD) {
2687 rdev_clear_badblocks(
2688 rdev,
2689 r10_bio->devs[m].addr,
2690 r10_bio->sectors, 0);
2691 rdev_dec_pending(rdev, conf->mddev);
2692 } else if (bio != NULL && bio->bi_status) {
2693 fail = true;
2694 if (!narrow_write_error(r10_bio, m)) {
2695 md_error(conf->mddev, rdev);
2696 set_bit(R10BIO_Degraded,
2697 &r10_bio->state);
2698 }
2699 rdev_dec_pending(rdev, conf->mddev);
2700 }
2701 bio = r10_bio->devs[m].repl_bio;
2702 rdev = conf->mirrors[dev].replacement;
2703 if (rdev && bio == IO_MADE_GOOD) {
2704 rdev_clear_badblocks(
2705 rdev,
2706 r10_bio->devs[m].addr,
2707 r10_bio->sectors, 0);
2708 rdev_dec_pending(rdev, conf->mddev);
2709 }
2710 }
2711 if (fail) {
2712 spin_lock_irq(&conf->device_lock);
2713 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2714 conf->nr_queued++;
2715 spin_unlock_irq(&conf->device_lock);
2716 /*
2717 * In case freeze_array() is waiting for condition
2718 * nr_pending == nr_queued + extra to be true.
2719 */
2720 wake_up(&conf->wait_barrier);
2721 md_wakeup_thread(conf->mddev->thread);
2722 } else {
2723 if (test_bit(R10BIO_WriteError,
2724 &r10_bio->state))
2725 close_write(r10_bio);
2726 raid_end_bio_io(r10_bio);
2727 }
2728 }
2729 }
2730
2731 static void raid10d(struct md_thread *thread)
2732 {
2733 struct mddev *mddev = thread->mddev;
2734 struct r10bio *r10_bio;
2735 unsigned long flags;
2736 struct r10conf *conf = mddev->private;
2737 struct list_head *head = &conf->retry_list;
2738 struct blk_plug plug;
2739
2740 md_check_recovery(mddev);
2741
2742 if (!list_empty_careful(&conf->bio_end_io_list) &&
2743 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2744 LIST_HEAD(tmp);
2745 spin_lock_irqsave(&conf->device_lock, flags);
2746 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2747 while (!list_empty(&conf->bio_end_io_list)) {
2748 list_move(conf->bio_end_io_list.prev, &tmp);
2749 conf->nr_queued--;
2750 }
2751 }
2752 spin_unlock_irqrestore(&conf->device_lock, flags);
2753 while (!list_empty(&tmp)) {
2754 r10_bio = list_first_entry(&tmp, struct r10bio,
2755 retry_list);
2756 list_del(&r10_bio->retry_list);
2757 if (mddev->degraded)
2758 set_bit(R10BIO_Degraded, &r10_bio->state);
2759
2760 if (test_bit(R10BIO_WriteError,
2761 &r10_bio->state))
2762 close_write(r10_bio);
2763 raid_end_bio_io(r10_bio);
2764 }
2765 }
2766
2767 blk_start_plug(&plug);
2768 for (;;) {
2769
2770 flush_pending_writes(conf);
2771
2772 spin_lock_irqsave(&conf->device_lock, flags);
2773 if (list_empty(head)) {
2774 spin_unlock_irqrestore(&conf->device_lock, flags);
2775 break;
2776 }
2777 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2778 list_del(head->prev);
2779 conf->nr_queued--;
2780 spin_unlock_irqrestore(&conf->device_lock, flags);
2781
2782 mddev = r10_bio->mddev;
2783 conf = mddev->private;
2784 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2785 test_bit(R10BIO_WriteError, &r10_bio->state))
2786 handle_write_completed(conf, r10_bio);
2787 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2788 reshape_request_write(mddev, r10_bio);
2789 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2790 sync_request_write(mddev, r10_bio);
2791 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2792 recovery_request_write(mddev, r10_bio);
2793 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2794 handle_read_error(mddev, r10_bio);
2795 else
2796 WARN_ON_ONCE(1);
2797
2798 cond_resched();
2799 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2800 md_check_recovery(mddev);
2801 }
2802 blk_finish_plug(&plug);
2803 }
2804
2805 static int init_resync(struct r10conf *conf)
2806 {
2807 int buffs;
2808 int i;
2809
2810 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2811 BUG_ON(conf->r10buf_pool);
2812 conf->have_replacement = 0;
2813 for (i = 0; i < conf->geo.raid_disks; i++)
2814 if (conf->mirrors[i].replacement)
2815 conf->have_replacement = 1;
2816 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2817 if (!conf->r10buf_pool)
2818 return -ENOMEM;
2819 conf->next_resync = 0;
2820 return 0;
2821 }
2822
2823 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2824 {
2825 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2826 struct rsync_pages *rp;
2827 struct bio *bio;
2828 int nalloc;
2829 int i;
2830
2831 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2832 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2833 nalloc = conf->copies; /* resync */
2834 else
2835 nalloc = 2; /* recovery */
2836
2837 for (i = 0; i < nalloc; i++) {
2838 bio = r10bio->devs[i].bio;
2839 rp = bio->bi_private;
2840 bio_reset(bio);
2841 bio->bi_private = rp;
2842 bio = r10bio->devs[i].repl_bio;
2843 if (bio) {
2844 rp = bio->bi_private;
2845 bio_reset(bio);
2846 bio->bi_private = rp;
2847 }
2848 }
2849 return r10bio;
2850 }
2851
2852 /*
2853 * Set cluster_sync_high since we need other nodes to add the
2854 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2855 */
2856 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2857 {
2858 sector_t window_size;
2859 int extra_chunk, chunks;
2860
2861 /*
2862 * First, here we define "stripe" as a unit which across
2863 * all member devices one time, so we get chunks by use
2864 * raid_disks / near_copies. Otherwise, if near_copies is
2865 * close to raid_disks, then resync window could increases
2866 * linearly with the increase of raid_disks, which means
2867 * we will suspend a really large IO window while it is not
2868 * necessary. If raid_disks is not divisible by near_copies,
2869 * an extra chunk is needed to ensure the whole "stripe" is
2870 * covered.
2871 */
2872
2873 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2874 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2875 extra_chunk = 0;
2876 else
2877 extra_chunk = 1;
2878 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2879
2880 /*
2881 * At least use a 32M window to align with raid1's resync window
2882 */
2883 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2884 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2885
2886 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2887 }
2888
2889 /*
2890 * perform a "sync" on one "block"
2891 *
2892 * We need to make sure that no normal I/O request - particularly write
2893 * requests - conflict with active sync requests.
2894 *
2895 * This is achieved by tracking pending requests and a 'barrier' concept
2896 * that can be installed to exclude normal IO requests.
2897 *
2898 * Resync and recovery are handled very differently.
2899 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2900 *
2901 * For resync, we iterate over virtual addresses, read all copies,
2902 * and update if there are differences. If only one copy is live,
2903 * skip it.
2904 * For recovery, we iterate over physical addresses, read a good
2905 * value for each non-in_sync drive, and over-write.
2906 *
2907 * So, for recovery we may have several outstanding complex requests for a
2908 * given address, one for each out-of-sync device. We model this by allocating
2909 * a number of r10_bio structures, one for each out-of-sync device.
2910 * As we setup these structures, we collect all bio's together into a list
2911 * which we then process collectively to add pages, and then process again
2912 * to pass to generic_make_request.
2913 *
2914 * The r10_bio structures are linked using a borrowed master_bio pointer.
2915 * This link is counted in ->remaining. When the r10_bio that points to NULL
2916 * has its remaining count decremented to 0, the whole complex operation
2917 * is complete.
2918 *
2919 */
2920
2921 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2922 int *skipped)
2923 {
2924 struct r10conf *conf = mddev->private;
2925 struct r10bio *r10_bio;
2926 struct bio *biolist = NULL, *bio;
2927 sector_t max_sector, nr_sectors;
2928 int i;
2929 int max_sync;
2930 sector_t sync_blocks;
2931 sector_t sectors_skipped = 0;
2932 int chunks_skipped = 0;
2933 sector_t chunk_mask = conf->geo.chunk_mask;
2934 int page_idx = 0;
2935
2936 if (!conf->r10buf_pool)
2937 if (init_resync(conf))
2938 return 0;
2939
2940 /*
2941 * Allow skipping a full rebuild for incremental assembly
2942 * of a clean array, like RAID1 does.
2943 */
2944 if (mddev->bitmap == NULL &&
2945 mddev->recovery_cp == MaxSector &&
2946 mddev->reshape_position == MaxSector &&
2947 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2948 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2949 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2950 conf->fullsync == 0) {
2951 *skipped = 1;
2952 return mddev->dev_sectors - sector_nr;
2953 }
2954
2955 skipped:
2956 max_sector = mddev->dev_sectors;
2957 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2958 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2959 max_sector = mddev->resync_max_sectors;
2960 if (sector_nr >= max_sector) {
2961 conf->cluster_sync_low = 0;
2962 conf->cluster_sync_high = 0;
2963
2964 /* If we aborted, we need to abort the
2965 * sync on the 'current' bitmap chucks (there can
2966 * be several when recovering multiple devices).
2967 * as we may have started syncing it but not finished.
2968 * We can find the current address in
2969 * mddev->curr_resync, but for recovery,
2970 * we need to convert that to several
2971 * virtual addresses.
2972 */
2973 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2974 end_reshape(conf);
2975 close_sync(conf);
2976 return 0;
2977 }
2978
2979 if (mddev->curr_resync < max_sector) { /* aborted */
2980 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2981 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2982 &sync_blocks, 1);
2983 else for (i = 0; i < conf->geo.raid_disks; i++) {
2984 sector_t sect =
2985 raid10_find_virt(conf, mddev->curr_resync, i);
2986 bitmap_end_sync(mddev->bitmap, sect,
2987 &sync_blocks, 1);
2988 }
2989 } else {
2990 /* completed sync */
2991 if ((!mddev->bitmap || conf->fullsync)
2992 && conf->have_replacement
2993 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2994 /* Completed a full sync so the replacements
2995 * are now fully recovered.
2996 */
2997 rcu_read_lock();
2998 for (i = 0; i < conf->geo.raid_disks; i++) {
2999 struct md_rdev *rdev =
3000 rcu_dereference(conf->mirrors[i].replacement);
3001 if (rdev)
3002 rdev->recovery_offset = MaxSector;
3003 }
3004 rcu_read_unlock();
3005 }
3006 conf->fullsync = 0;
3007 }
3008 bitmap_close_sync(mddev->bitmap);
3009 close_sync(conf);
3010 *skipped = 1;
3011 return sectors_skipped;
3012 }
3013
3014 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3015 return reshape_request(mddev, sector_nr, skipped);
3016
3017 if (chunks_skipped >= conf->geo.raid_disks) {
3018 /* if there has been nothing to do on any drive,
3019 * then there is nothing to do at all..
3020 */
3021 *skipped = 1;
3022 return (max_sector - sector_nr) + sectors_skipped;
3023 }
3024
3025 if (max_sector > mddev->resync_max)
3026 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3027
3028 /* make sure whole request will fit in a chunk - if chunks
3029 * are meaningful
3030 */
3031 if (conf->geo.near_copies < conf->geo.raid_disks &&
3032 max_sector > (sector_nr | chunk_mask))
3033 max_sector = (sector_nr | chunk_mask) + 1;
3034
3035 /*
3036 * If there is non-resync activity waiting for a turn, then let it
3037 * though before starting on this new sync request.
3038 */
3039 if (conf->nr_waiting)
3040 schedule_timeout_uninterruptible(1);
3041
3042 /* Again, very different code for resync and recovery.
3043 * Both must result in an r10bio with a list of bios that
3044 * have bi_end_io, bi_sector, bi_disk set,
3045 * and bi_private set to the r10bio.
3046 * For recovery, we may actually create several r10bios
3047 * with 2 bios in each, that correspond to the bios in the main one.
3048 * In this case, the subordinate r10bios link back through a
3049 * borrowed master_bio pointer, and the counter in the master
3050 * includes a ref from each subordinate.
3051 */
3052 /* First, we decide what to do and set ->bi_end_io
3053 * To end_sync_read if we want to read, and
3054 * end_sync_write if we will want to write.
3055 */
3056
3057 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3058 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3059 /* recovery... the complicated one */
3060 int j;
3061 r10_bio = NULL;
3062
3063 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3064 int still_degraded;
3065 struct r10bio *rb2;
3066 sector_t sect;
3067 int must_sync;
3068 int any_working;
3069 struct raid10_info *mirror = &conf->mirrors[i];
3070 struct md_rdev *mrdev, *mreplace;
3071
3072 rcu_read_lock();
3073 mrdev = rcu_dereference(mirror->rdev);
3074 mreplace = rcu_dereference(mirror->replacement);
3075
3076 if ((mrdev == NULL ||
3077 test_bit(Faulty, &mrdev->flags) ||
3078 test_bit(In_sync, &mrdev->flags)) &&
3079 (mreplace == NULL ||
3080 test_bit(Faulty, &mreplace->flags))) {
3081 rcu_read_unlock();
3082 continue;
3083 }
3084
3085 still_degraded = 0;
3086 /* want to reconstruct this device */
3087 rb2 = r10_bio;
3088 sect = raid10_find_virt(conf, sector_nr, i);
3089 if (sect >= mddev->resync_max_sectors) {
3090 /* last stripe is not complete - don't
3091 * try to recover this sector.
3092 */
3093 rcu_read_unlock();
3094 continue;
3095 }
3096 if (mreplace && test_bit(Faulty, &mreplace->flags))
3097 mreplace = NULL;
3098 /* Unless we are doing a full sync, or a replacement
3099 * we only need to recover the block if it is set in
3100 * the bitmap
3101 */
3102 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3103 &sync_blocks, 1);
3104 if (sync_blocks < max_sync)
3105 max_sync = sync_blocks;
3106 if (!must_sync &&
3107 mreplace == NULL &&
3108 !conf->fullsync) {
3109 /* yep, skip the sync_blocks here, but don't assume
3110 * that there will never be anything to do here
3111 */
3112 chunks_skipped = -1;
3113 rcu_read_unlock();
3114 continue;
3115 }
3116 atomic_inc(&mrdev->nr_pending);
3117 if (mreplace)
3118 atomic_inc(&mreplace->nr_pending);
3119 rcu_read_unlock();
3120
3121 r10_bio = raid10_alloc_init_r10buf(conf);
3122 r10_bio->state = 0;
3123 raise_barrier(conf, rb2 != NULL);
3124 atomic_set(&r10_bio->remaining, 0);
3125
3126 r10_bio->master_bio = (struct bio*)rb2;
3127 if (rb2)
3128 atomic_inc(&rb2->remaining);
3129 r10_bio->mddev = mddev;
3130 set_bit(R10BIO_IsRecover, &r10_bio->state);
3131 r10_bio->sector = sect;
3132
3133 raid10_find_phys(conf, r10_bio);
3134
3135 /* Need to check if the array will still be
3136 * degraded
3137 */
3138 rcu_read_lock();
3139 for (j = 0; j < conf->geo.raid_disks; j++) {
3140 struct md_rdev *rdev = rcu_dereference(
3141 conf->mirrors[j].rdev);
3142 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3143 still_degraded = 1;
3144 break;
3145 }
3146 }
3147
3148 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3149 &sync_blocks, still_degraded);
3150
3151 any_working = 0;
3152 for (j=0; j<conf->copies;j++) {
3153 int k;
3154 int d = r10_bio->devs[j].devnum;
3155 sector_t from_addr, to_addr;
3156 struct md_rdev *rdev =
3157 rcu_dereference(conf->mirrors[d].rdev);
3158 sector_t sector, first_bad;
3159 int bad_sectors;
3160 if (!rdev ||
3161 !test_bit(In_sync, &rdev->flags))
3162 continue;
3163 /* This is where we read from */
3164 any_working = 1;
3165 sector = r10_bio->devs[j].addr;
3166
3167 if (is_badblock(rdev, sector, max_sync,
3168 &first_bad, &bad_sectors)) {
3169 if (first_bad > sector)
3170 max_sync = first_bad - sector;
3171 else {
3172 bad_sectors -= (sector
3173 - first_bad);
3174 if (max_sync > bad_sectors)
3175 max_sync = bad_sectors;
3176 continue;
3177 }
3178 }
3179 bio = r10_bio->devs[0].bio;
3180 bio->bi_next = biolist;
3181 biolist = bio;
3182 bio->bi_end_io = end_sync_read;
3183 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3184 if (test_bit(FailFast, &rdev->flags))
3185 bio->bi_opf |= MD_FAILFAST;
3186 from_addr = r10_bio->devs[j].addr;
3187 bio->bi_iter.bi_sector = from_addr +
3188 rdev->data_offset;
3189 bio_set_dev(bio, rdev->bdev);
3190 atomic_inc(&rdev->nr_pending);
3191 /* and we write to 'i' (if not in_sync) */
3192
3193 for (k=0; k<conf->copies; k++)
3194 if (r10_bio->devs[k].devnum == i)
3195 break;
3196 BUG_ON(k == conf->copies);
3197 to_addr = r10_bio->devs[k].addr;
3198 r10_bio->devs[0].devnum = d;
3199 r10_bio->devs[0].addr = from_addr;
3200 r10_bio->devs[1].devnum = i;
3201 r10_bio->devs[1].addr = to_addr;
3202
3203 if (!test_bit(In_sync, &mrdev->flags)) {
3204 bio = r10_bio->devs[1].bio;
3205 bio->bi_next = biolist;
3206 biolist = bio;
3207 bio->bi_end_io = end_sync_write;
3208 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3209 bio->bi_iter.bi_sector = to_addr
3210 + mrdev->data_offset;
3211 bio_set_dev(bio, mrdev->bdev);
3212 atomic_inc(&r10_bio->remaining);
3213 } else
3214 r10_bio->devs[1].bio->bi_end_io = NULL;
3215
3216 /* and maybe write to replacement */
3217 bio = r10_bio->devs[1].repl_bio;
3218 if (bio)
3219 bio->bi_end_io = NULL;
3220 /* Note: if mreplace != NULL, then bio
3221 * cannot be NULL as r10buf_pool_alloc will
3222 * have allocated it.
3223 * So the second test here is pointless.
3224 * But it keeps semantic-checkers happy, and
3225 * this comment keeps human reviewers
3226 * happy.
3227 */
3228 if (mreplace == NULL || bio == NULL ||
3229 test_bit(Faulty, &mreplace->flags))
3230 break;
3231 bio->bi_next = biolist;
3232 biolist = bio;
3233 bio->bi_end_io = end_sync_write;
3234 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3235 bio->bi_iter.bi_sector = to_addr +
3236 mreplace->data_offset;
3237 bio_set_dev(bio, mreplace->bdev);
3238 atomic_inc(&r10_bio->remaining);
3239 break;
3240 }
3241 rcu_read_unlock();
3242 if (j == conf->copies) {
3243 /* Cannot recover, so abort the recovery or
3244 * record a bad block */
3245 if (any_working) {
3246 /* problem is that there are bad blocks
3247 * on other device(s)
3248 */
3249 int k;
3250 for (k = 0; k < conf->copies; k++)
3251 if (r10_bio->devs[k].devnum == i)
3252 break;
3253 if (!test_bit(In_sync,
3254 &mrdev->flags)
3255 && !rdev_set_badblocks(
3256 mrdev,
3257 r10_bio->devs[k].addr,
3258 max_sync, 0))
3259 any_working = 0;
3260 if (mreplace &&
3261 !rdev_set_badblocks(
3262 mreplace,
3263 r10_bio->devs[k].addr,
3264 max_sync, 0))
3265 any_working = 0;
3266 }
3267 if (!any_working) {
3268 if (!test_and_set_bit(MD_RECOVERY_INTR,
3269 &mddev->recovery))
3270 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3271 mdname(mddev));
3272 mirror->recovery_disabled
3273 = mddev->recovery_disabled;
3274 }
3275 put_buf(r10_bio);
3276 if (rb2)
3277 atomic_dec(&rb2->remaining);
3278 r10_bio = rb2;
3279 rdev_dec_pending(mrdev, mddev);
3280 if (mreplace)
3281 rdev_dec_pending(mreplace, mddev);
3282 break;
3283 }
3284 rdev_dec_pending(mrdev, mddev);
3285 if (mreplace)
3286 rdev_dec_pending(mreplace, mddev);
3287 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3288 /* Only want this if there is elsewhere to
3289 * read from. 'j' is currently the first
3290 * readable copy.
3291 */
3292 int targets = 1;
3293 for (; j < conf->copies; j++) {
3294 int d = r10_bio->devs[j].devnum;
3295 if (conf->mirrors[d].rdev &&
3296 test_bit(In_sync,
3297 &conf->mirrors[d].rdev->flags))
3298 targets++;
3299 }
3300 if (targets == 1)
3301 r10_bio->devs[0].bio->bi_opf
3302 &= ~MD_FAILFAST;
3303 }
3304 }
3305 if (biolist == NULL) {
3306 while (r10_bio) {
3307 struct r10bio *rb2 = r10_bio;
3308 r10_bio = (struct r10bio*) rb2->master_bio;
3309 rb2->master_bio = NULL;
3310 put_buf(rb2);
3311 }
3312 goto giveup;
3313 }
3314 } else {
3315 /* resync. Schedule a read for every block at this virt offset */
3316 int count = 0;
3317
3318 /*
3319 * Since curr_resync_completed could probably not update in
3320 * time, and we will set cluster_sync_low based on it.
3321 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3322 * safety reason, which ensures curr_resync_completed is
3323 * updated in bitmap_cond_end_sync.
3324 */
3325 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3326 mddev_is_clustered(mddev) &&
3327 (sector_nr + 2 * RESYNC_SECTORS >
3328 conf->cluster_sync_high));
3329
3330 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3331 &sync_blocks, mddev->degraded) &&
3332 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3333 &mddev->recovery)) {
3334 /* We can skip this block */
3335 *skipped = 1;
3336 return sync_blocks + sectors_skipped;
3337 }
3338 if (sync_blocks < max_sync)
3339 max_sync = sync_blocks;
3340 r10_bio = raid10_alloc_init_r10buf(conf);
3341 r10_bio->state = 0;
3342
3343 r10_bio->mddev = mddev;
3344 atomic_set(&r10_bio->remaining, 0);
3345 raise_barrier(conf, 0);
3346 conf->next_resync = sector_nr;
3347
3348 r10_bio->master_bio = NULL;
3349 r10_bio->sector = sector_nr;
3350 set_bit(R10BIO_IsSync, &r10_bio->state);
3351 raid10_find_phys(conf, r10_bio);
3352 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3353
3354 for (i = 0; i < conf->copies; i++) {
3355 int d = r10_bio->devs[i].devnum;
3356 sector_t first_bad, sector;
3357 int bad_sectors;
3358 struct md_rdev *rdev;
3359
3360 if (r10_bio->devs[i].repl_bio)
3361 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3362
3363 bio = r10_bio->devs[i].bio;
3364 bio->bi_status = BLK_STS_IOERR;
3365 rcu_read_lock();
3366 rdev = rcu_dereference(conf->mirrors[d].rdev);
3367 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3368 rcu_read_unlock();
3369 continue;
3370 }
3371 sector = r10_bio->devs[i].addr;
3372 if (is_badblock(rdev, sector, max_sync,
3373 &first_bad, &bad_sectors)) {
3374 if (first_bad > sector)
3375 max_sync = first_bad - sector;
3376 else {
3377 bad_sectors -= (sector - first_bad);
3378 if (max_sync > bad_sectors)
3379 max_sync = bad_sectors;
3380 rcu_read_unlock();
3381 continue;
3382 }
3383 }
3384 atomic_inc(&rdev->nr_pending);
3385 atomic_inc(&r10_bio->remaining);
3386 bio->bi_next = biolist;
3387 biolist = bio;
3388 bio->bi_end_io = end_sync_read;
3389 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3390 if (test_bit(FailFast, &rdev->flags))
3391 bio->bi_opf |= MD_FAILFAST;
3392 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3393 bio_set_dev(bio, rdev->bdev);
3394 count++;
3395
3396 rdev = rcu_dereference(conf->mirrors[d].replacement);
3397 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3398 rcu_read_unlock();
3399 continue;
3400 }
3401 atomic_inc(&rdev->nr_pending);
3402
3403 /* Need to set up for writing to the replacement */
3404 bio = r10_bio->devs[i].repl_bio;
3405 bio->bi_status = BLK_STS_IOERR;
3406
3407 sector = r10_bio->devs[i].addr;
3408 bio->bi_next = biolist;
3409 biolist = bio;
3410 bio->bi_end_io = end_sync_write;
3411 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3412 if (test_bit(FailFast, &rdev->flags))
3413 bio->bi_opf |= MD_FAILFAST;
3414 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3415 bio_set_dev(bio, rdev->bdev);
3416 count++;
3417 rcu_read_unlock();
3418 }
3419
3420 if (count < 2) {
3421 for (i=0; i<conf->copies; i++) {
3422 int d = r10_bio->devs[i].devnum;
3423 if (r10_bio->devs[i].bio->bi_end_io)
3424 rdev_dec_pending(conf->mirrors[d].rdev,
3425 mddev);
3426 if (r10_bio->devs[i].repl_bio &&
3427 r10_bio->devs[i].repl_bio->bi_end_io)
3428 rdev_dec_pending(
3429 conf->mirrors[d].replacement,
3430 mddev);
3431 }
3432 put_buf(r10_bio);
3433 biolist = NULL;
3434 goto giveup;
3435 }
3436 }
3437
3438 nr_sectors = 0;
3439 if (sector_nr + max_sync < max_sector)
3440 max_sector = sector_nr + max_sync;
3441 do {
3442 struct page *page;
3443 int len = PAGE_SIZE;
3444 if (sector_nr + (len>>9) > max_sector)
3445 len = (max_sector - sector_nr) << 9;
3446 if (len == 0)
3447 break;
3448 for (bio= biolist ; bio ; bio=bio->bi_next) {
3449 struct resync_pages *rp = get_resync_pages(bio);
3450 page = resync_fetch_page(rp, page_idx);
3451 /*
3452 * won't fail because the vec table is big enough
3453 * to hold all these pages
3454 */
3455 bio_add_page(bio, page, len, 0);
3456 }
3457 nr_sectors += len>>9;
3458 sector_nr += len>>9;
3459 } while (++page_idx < RESYNC_PAGES);
3460 r10_bio->sectors = nr_sectors;
3461
3462 if (mddev_is_clustered(mddev) &&
3463 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3464 /* It is resync not recovery */
3465 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3466 conf->cluster_sync_low = mddev->curr_resync_completed;
3467 raid10_set_cluster_sync_high(conf);
3468 /* Send resync message */
3469 md_cluster_ops->resync_info_update(mddev,
3470 conf->cluster_sync_low,
3471 conf->cluster_sync_high);
3472 }
3473 } else if (mddev_is_clustered(mddev)) {
3474 /* This is recovery not resync */
3475 sector_t sect_va1, sect_va2;
3476 bool broadcast_msg = false;
3477
3478 for (i = 0; i < conf->geo.raid_disks; i++) {
3479 /*
3480 * sector_nr is a device address for recovery, so we
3481 * need translate it to array address before compare
3482 * with cluster_sync_high.
3483 */
3484 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3485
3486 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3487 broadcast_msg = true;
3488 /*
3489 * curr_resync_completed is similar as
3490 * sector_nr, so make the translation too.
3491 */
3492 sect_va2 = raid10_find_virt(conf,
3493 mddev->curr_resync_completed, i);
3494
3495 if (conf->cluster_sync_low == 0 ||
3496 conf->cluster_sync_low > sect_va2)
3497 conf->cluster_sync_low = sect_va2;
3498 }
3499 }
3500 if (broadcast_msg) {
3501 raid10_set_cluster_sync_high(conf);
3502 md_cluster_ops->resync_info_update(mddev,
3503 conf->cluster_sync_low,
3504 conf->cluster_sync_high);
3505 }
3506 }
3507
3508 while (biolist) {
3509 bio = biolist;
3510 biolist = biolist->bi_next;
3511
3512 bio->bi_next = NULL;
3513 r10_bio = get_resync_r10bio(bio);
3514 r10_bio->sectors = nr_sectors;
3515
3516 if (bio->bi_end_io == end_sync_read) {
3517 md_sync_acct_bio(bio, nr_sectors);
3518 bio->bi_status = 0;
3519 generic_make_request(bio);
3520 }
3521 }
3522
3523 if (sectors_skipped)
3524 /* pretend they weren't skipped, it makes
3525 * no important difference in this case
3526 */
3527 md_done_sync(mddev, sectors_skipped, 1);
3528
3529 return sectors_skipped + nr_sectors;
3530 giveup:
3531 /* There is nowhere to write, so all non-sync
3532 * drives must be failed or in resync, all drives
3533 * have a bad block, so try the next chunk...
3534 */
3535 if (sector_nr + max_sync < max_sector)
3536 max_sector = sector_nr + max_sync;
3537
3538 sectors_skipped += (max_sector - sector_nr);
3539 chunks_skipped ++;
3540 sector_nr = max_sector;
3541 goto skipped;
3542 }
3543
3544 static sector_t
3545 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3546 {
3547 sector_t size;
3548 struct r10conf *conf = mddev->private;
3549
3550 if (!raid_disks)
3551 raid_disks = min(conf->geo.raid_disks,
3552 conf->prev.raid_disks);
3553 if (!sectors)
3554 sectors = conf->dev_sectors;
3555
3556 size = sectors >> conf->geo.chunk_shift;
3557 sector_div(size, conf->geo.far_copies);
3558 size = size * raid_disks;
3559 sector_div(size, conf->geo.near_copies);
3560
3561 return size << conf->geo.chunk_shift;
3562 }
3563
3564 static void calc_sectors(struct r10conf *conf, sector_t size)
3565 {
3566 /* Calculate the number of sectors-per-device that will
3567 * actually be used, and set conf->dev_sectors and
3568 * conf->stride
3569 */
3570
3571 size = size >> conf->geo.chunk_shift;
3572 sector_div(size, conf->geo.far_copies);
3573 size = size * conf->geo.raid_disks;
3574 sector_div(size, conf->geo.near_copies);
3575 /* 'size' is now the number of chunks in the array */
3576 /* calculate "used chunks per device" */
3577 size = size * conf->copies;
3578
3579 /* We need to round up when dividing by raid_disks to
3580 * get the stride size.
3581 */
3582 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3583
3584 conf->dev_sectors = size << conf->geo.chunk_shift;
3585
3586 if (conf->geo.far_offset)
3587 conf->geo.stride = 1 << conf->geo.chunk_shift;
3588 else {
3589 sector_div(size, conf->geo.far_copies);
3590 conf->geo.stride = size << conf->geo.chunk_shift;
3591 }
3592 }
3593
3594 enum geo_type {geo_new, geo_old, geo_start};
3595 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3596 {
3597 int nc, fc, fo;
3598 int layout, chunk, disks;
3599 switch (new) {
3600 case geo_old:
3601 layout = mddev->layout;
3602 chunk = mddev->chunk_sectors;
3603 disks = mddev->raid_disks - mddev->delta_disks;
3604 break;
3605 case geo_new:
3606 layout = mddev->new_layout;
3607 chunk = mddev->new_chunk_sectors;
3608 disks = mddev->raid_disks;
3609 break;
3610 default: /* avoid 'may be unused' warnings */
3611 case geo_start: /* new when starting reshape - raid_disks not
3612 * updated yet. */
3613 layout = mddev->new_layout;
3614 chunk = mddev->new_chunk_sectors;
3615 disks = mddev->raid_disks + mddev->delta_disks;
3616 break;
3617 }
3618 if (layout >> 19)
3619 return -1;
3620 if (chunk < (PAGE_SIZE >> 9) ||
3621 !is_power_of_2(chunk))
3622 return -2;
3623 nc = layout & 255;
3624 fc = (layout >> 8) & 255;
3625 fo = layout & (1<<16);
3626 geo->raid_disks = disks;
3627 geo->near_copies = nc;
3628 geo->far_copies = fc;
3629 geo->far_offset = fo;
3630 switch (layout >> 17) {
3631 case 0: /* original layout. simple but not always optimal */
3632 geo->far_set_size = disks;
3633 break;
3634 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3635 * actually using this, but leave code here just in case.*/
3636 geo->far_set_size = disks/fc;
3637 WARN(geo->far_set_size < fc,
3638 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3639 break;
3640 case 2: /* "improved" layout fixed to match documentation */
3641 geo->far_set_size = fc * nc;
3642 break;
3643 default: /* Not a valid layout */
3644 return -1;
3645 }
3646 geo->chunk_mask = chunk - 1;
3647 geo->chunk_shift = ffz(~chunk);
3648 return nc*fc;
3649 }
3650
3651 static struct r10conf *setup_conf(struct mddev *mddev)
3652 {
3653 struct r10conf *conf = NULL;
3654 int err = -EINVAL;
3655 struct geom geo;
3656 int copies;
3657
3658 copies = setup_geo(&geo, mddev, geo_new);
3659
3660 if (copies == -2) {
3661 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3662 mdname(mddev), PAGE_SIZE);
3663 goto out;
3664 }
3665
3666 if (copies < 2 || copies > mddev->raid_disks) {
3667 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3668 mdname(mddev), mddev->new_layout);
3669 goto out;
3670 }
3671
3672 err = -ENOMEM;
3673 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3674 if (!conf)
3675 goto out;
3676
3677 /* FIXME calc properly */
3678 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3679 max(0,-mddev->delta_disks)),
3680 GFP_KERNEL);
3681 if (!conf->mirrors)
3682 goto out;
3683
3684 conf->tmppage = alloc_page(GFP_KERNEL);
3685 if (!conf->tmppage)
3686 goto out;
3687
3688 conf->geo = geo;
3689 conf->copies = copies;
3690 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3691 r10bio_pool_free, conf);
3692 if (!conf->r10bio_pool)
3693 goto out;
3694
3695 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3696 if (!conf->bio_split)
3697 goto out;
3698
3699 calc_sectors(conf, mddev->dev_sectors);
3700 if (mddev->reshape_position == MaxSector) {
3701 conf->prev = conf->geo;
3702 conf->reshape_progress = MaxSector;
3703 } else {
3704 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3705 err = -EINVAL;
3706 goto out;
3707 }
3708 conf->reshape_progress = mddev->reshape_position;
3709 if (conf->prev.far_offset)
3710 conf->prev.stride = 1 << conf->prev.chunk_shift;
3711 else
3712 /* far_copies must be 1 */
3713 conf->prev.stride = conf->dev_sectors;
3714 }
3715 conf->reshape_safe = conf->reshape_progress;
3716 spin_lock_init(&conf->device_lock);
3717 INIT_LIST_HEAD(&conf->retry_list);
3718 INIT_LIST_HEAD(&conf->bio_end_io_list);
3719
3720 spin_lock_init(&conf->resync_lock);
3721 init_waitqueue_head(&conf->wait_barrier);
3722 atomic_set(&conf->nr_pending, 0);
3723
3724 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3725 if (!conf->thread)
3726 goto out;
3727
3728 conf->mddev = mddev;
3729 return conf;
3730
3731 out:
3732 if (conf) {
3733 mempool_destroy(conf->r10bio_pool);
3734 kfree(conf->mirrors);
3735 safe_put_page(conf->tmppage);
3736 if (conf->bio_split)
3737 bioset_free(conf->bio_split);
3738 kfree(conf);
3739 }
3740 return ERR_PTR(err);
3741 }
3742
3743 static int raid10_run(struct mddev *mddev)
3744 {
3745 struct r10conf *conf;
3746 int i, disk_idx, chunk_size;
3747 struct raid10_info *disk;
3748 struct md_rdev *rdev;
3749 sector_t size;
3750 sector_t min_offset_diff = 0;
3751 int first = 1;
3752 bool discard_supported = false;
3753
3754 if (mddev_init_writes_pending(mddev) < 0)
3755 return -ENOMEM;
3756
3757 if (mddev->private == NULL) {
3758 conf = setup_conf(mddev);
3759 if (IS_ERR(conf))
3760 return PTR_ERR(conf);
3761 mddev->private = conf;
3762 }
3763 conf = mddev->private;
3764 if (!conf)
3765 goto out;
3766
3767 if (mddev_is_clustered(conf->mddev)) {
3768 int fc, fo;
3769
3770 fc = (mddev->layout >> 8) & 255;
3771 fo = mddev->layout & (1<<16);
3772 if (fc > 1 || fo > 0) {
3773 pr_err("only near layout is supported by clustered"
3774 " raid10\n");
3775 goto out;
3776 }
3777 }
3778
3779 mddev->thread = conf->thread;
3780 conf->thread = NULL;
3781
3782 chunk_size = mddev->chunk_sectors << 9;
3783 if (mddev->queue) {
3784 blk_queue_max_discard_sectors(mddev->queue,
3785 mddev->chunk_sectors);
3786 blk_queue_max_write_same_sectors(mddev->queue, 0);
3787 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3788 blk_queue_io_min(mddev->queue, chunk_size);
3789 if (conf->geo.raid_disks % conf->geo.near_copies)
3790 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3791 else
3792 blk_queue_io_opt(mddev->queue, chunk_size *
3793 (conf->geo.raid_disks / conf->geo.near_copies));
3794 }
3795
3796 rdev_for_each(rdev, mddev) {
3797 long long diff;
3798
3799 disk_idx = rdev->raid_disk;
3800 if (disk_idx < 0)
3801 continue;
3802 if (disk_idx >= conf->geo.raid_disks &&
3803 disk_idx >= conf->prev.raid_disks)
3804 continue;
3805 disk = conf->mirrors + disk_idx;
3806
3807 if (test_bit(Replacement, &rdev->flags)) {
3808 if (disk->replacement)
3809 goto out_free_conf;
3810 disk->replacement = rdev;
3811 } else {
3812 if (disk->rdev)
3813 goto out_free_conf;
3814 disk->rdev = rdev;
3815 }
3816 diff = (rdev->new_data_offset - rdev->data_offset);
3817 if (!mddev->reshape_backwards)
3818 diff = -diff;
3819 if (diff < 0)
3820 diff = 0;
3821 if (first || diff < min_offset_diff)
3822 min_offset_diff = diff;
3823
3824 if (mddev->gendisk)
3825 disk_stack_limits(mddev->gendisk, rdev->bdev,
3826 rdev->data_offset << 9);
3827
3828 disk->head_position = 0;
3829
3830 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3831 discard_supported = true;
3832 first = 0;
3833 }
3834
3835 if (mddev->queue) {
3836 if (discard_supported)
3837 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3838 mddev->queue);
3839 else
3840 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3841 mddev->queue);
3842 }
3843 /* need to check that every block has at least one working mirror */
3844 if (!enough(conf, -1)) {
3845 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3846 mdname(mddev));
3847 goto out_free_conf;
3848 }
3849
3850 if (conf->reshape_progress != MaxSector) {
3851 /* must ensure that shape change is supported */
3852 if (conf->geo.far_copies != 1 &&
3853 conf->geo.far_offset == 0)
3854 goto out_free_conf;
3855 if (conf->prev.far_copies != 1 &&
3856 conf->prev.far_offset == 0)
3857 goto out_free_conf;
3858 }
3859
3860 mddev->degraded = 0;
3861 for (i = 0;
3862 i < conf->geo.raid_disks
3863 || i < conf->prev.raid_disks;
3864 i++) {
3865
3866 disk = conf->mirrors + i;
3867
3868 if (!disk->rdev && disk->replacement) {
3869 /* The replacement is all we have - use it */
3870 disk->rdev = disk->replacement;
3871 disk->replacement = NULL;
3872 clear_bit(Replacement, &disk->rdev->flags);
3873 }
3874
3875 if (!disk->rdev ||
3876 !test_bit(In_sync, &disk->rdev->flags)) {
3877 disk->head_position = 0;
3878 mddev->degraded++;
3879 if (disk->rdev &&
3880 disk->rdev->saved_raid_disk < 0)
3881 conf->fullsync = 1;
3882 }
3883 disk->recovery_disabled = mddev->recovery_disabled - 1;
3884 }
3885
3886 if (mddev->recovery_cp != MaxSector)
3887 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3888 mdname(mddev));
3889 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3890 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3891 conf->geo.raid_disks);
3892 /*
3893 * Ok, everything is just fine now
3894 */
3895 mddev->dev_sectors = conf->dev_sectors;
3896 size = raid10_size(mddev, 0, 0);
3897 md_set_array_sectors(mddev, size);
3898 mddev->resync_max_sectors = size;
3899 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3900
3901 if (mddev->queue) {
3902 int stripe = conf->geo.raid_disks *
3903 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3904
3905 /* Calculate max read-ahead size.
3906 * We need to readahead at least twice a whole stripe....
3907 * maybe...
3908 */
3909 stripe /= conf->geo.near_copies;
3910 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3911 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3912 }
3913
3914 if (md_integrity_register(mddev))
3915 goto out_free_conf;
3916
3917 if (conf->reshape_progress != MaxSector) {
3918 unsigned long before_length, after_length;
3919
3920 before_length = ((1 << conf->prev.chunk_shift) *
3921 conf->prev.far_copies);
3922 after_length = ((1 << conf->geo.chunk_shift) *
3923 conf->geo.far_copies);
3924
3925 if (max(before_length, after_length) > min_offset_diff) {
3926 /* This cannot work */
3927 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3928 goto out_free_conf;
3929 }
3930 conf->offset_diff = min_offset_diff;
3931
3932 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3933 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3934 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3935 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3936 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3937 "reshape");
3938 }
3939
3940 return 0;
3941
3942 out_free_conf:
3943 md_unregister_thread(&mddev->thread);
3944 mempool_destroy(conf->r10bio_pool);
3945 safe_put_page(conf->tmppage);
3946 kfree(conf->mirrors);
3947 kfree(conf);
3948 mddev->private = NULL;
3949 out:
3950 return -EIO;
3951 }
3952
3953 static void raid10_free(struct mddev *mddev, void *priv)
3954 {
3955 struct r10conf *conf = priv;
3956
3957 mempool_destroy(conf->r10bio_pool);
3958 safe_put_page(conf->tmppage);
3959 kfree(conf->mirrors);
3960 kfree(conf->mirrors_old);
3961 kfree(conf->mirrors_new);
3962 if (conf->bio_split)
3963 bioset_free(conf->bio_split);
3964 kfree(conf);
3965 }
3966
3967 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3968 {
3969 struct r10conf *conf = mddev->private;
3970
3971 if (quiesce)
3972 raise_barrier(conf, 0);
3973 else
3974 lower_barrier(conf);
3975 }
3976
3977 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3978 {
3979 /* Resize of 'far' arrays is not supported.
3980 * For 'near' and 'offset' arrays we can set the
3981 * number of sectors used to be an appropriate multiple
3982 * of the chunk size.
3983 * For 'offset', this is far_copies*chunksize.
3984 * For 'near' the multiplier is the LCM of
3985 * near_copies and raid_disks.
3986 * So if far_copies > 1 && !far_offset, fail.
3987 * Else find LCM(raid_disks, near_copy)*far_copies and
3988 * multiply by chunk_size. Then round to this number.
3989 * This is mostly done by raid10_size()
3990 */
3991 struct r10conf *conf = mddev->private;
3992 sector_t oldsize, size;
3993
3994 if (mddev->reshape_position != MaxSector)
3995 return -EBUSY;
3996
3997 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3998 return -EINVAL;
3999
4000 oldsize = raid10_size(mddev, 0, 0);
4001 size = raid10_size(mddev, sectors, 0);
4002 if (mddev->external_size &&
4003 mddev->array_sectors > size)
4004 return -EINVAL;
4005 if (mddev->bitmap) {
4006 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4007 if (ret)
4008 return ret;
4009 }
4010 md_set_array_sectors(mddev, size);
4011 if (sectors > mddev->dev_sectors &&
4012 mddev->recovery_cp > oldsize) {
4013 mddev->recovery_cp = oldsize;
4014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4015 }
4016 calc_sectors(conf, sectors);
4017 mddev->dev_sectors = conf->dev_sectors;
4018 mddev->resync_max_sectors = size;
4019 return 0;
4020 }
4021
4022 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4023 {
4024 struct md_rdev *rdev;
4025 struct r10conf *conf;
4026
4027 if (mddev->degraded > 0) {
4028 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4029 mdname(mddev));
4030 return ERR_PTR(-EINVAL);
4031 }
4032 sector_div(size, devs);
4033
4034 /* Set new parameters */
4035 mddev->new_level = 10;
4036 /* new layout: far_copies = 1, near_copies = 2 */
4037 mddev->new_layout = (1<<8) + 2;
4038 mddev->new_chunk_sectors = mddev->chunk_sectors;
4039 mddev->delta_disks = mddev->raid_disks;
4040 mddev->raid_disks *= 2;
4041 /* make sure it will be not marked as dirty */
4042 mddev->recovery_cp = MaxSector;
4043 mddev->dev_sectors = size;
4044
4045 conf = setup_conf(mddev);
4046 if (!IS_ERR(conf)) {
4047 rdev_for_each(rdev, mddev)
4048 if (rdev->raid_disk >= 0) {
4049 rdev->new_raid_disk = rdev->raid_disk * 2;
4050 rdev->sectors = size;
4051 }
4052 conf->barrier = 1;
4053 }
4054
4055 return conf;
4056 }
4057
4058 static void *raid10_takeover(struct mddev *mddev)
4059 {
4060 struct r0conf *raid0_conf;
4061
4062 /* raid10 can take over:
4063 * raid0 - providing it has only two drives
4064 */
4065 if (mddev->level == 0) {
4066 /* for raid0 takeover only one zone is supported */
4067 raid0_conf = mddev->private;
4068 if (raid0_conf->nr_strip_zones > 1) {
4069 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4070 mdname(mddev));
4071 return ERR_PTR(-EINVAL);
4072 }
4073 return raid10_takeover_raid0(mddev,
4074 raid0_conf->strip_zone->zone_end,
4075 raid0_conf->strip_zone->nb_dev);
4076 }
4077 return ERR_PTR(-EINVAL);
4078 }
4079
4080 static int raid10_check_reshape(struct mddev *mddev)
4081 {
4082 /* Called when there is a request to change
4083 * - layout (to ->new_layout)
4084 * - chunk size (to ->new_chunk_sectors)
4085 * - raid_disks (by delta_disks)
4086 * or when trying to restart a reshape that was ongoing.
4087 *
4088 * We need to validate the request and possibly allocate
4089 * space if that might be an issue later.
4090 *
4091 * Currently we reject any reshape of a 'far' mode array,
4092 * allow chunk size to change if new is generally acceptable,
4093 * allow raid_disks to increase, and allow
4094 * a switch between 'near' mode and 'offset' mode.
4095 */
4096 struct r10conf *conf = mddev->private;
4097 struct geom geo;
4098
4099 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4100 return -EINVAL;
4101
4102 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4103 /* mustn't change number of copies */
4104 return -EINVAL;
4105 if (geo.far_copies > 1 && !geo.far_offset)
4106 /* Cannot switch to 'far' mode */
4107 return -EINVAL;
4108
4109 if (mddev->array_sectors & geo.chunk_mask)
4110 /* not factor of array size */
4111 return -EINVAL;
4112
4113 if (!enough(conf, -1))
4114 return -EINVAL;
4115
4116 kfree(conf->mirrors_new);
4117 conf->mirrors_new = NULL;
4118 if (mddev->delta_disks > 0) {
4119 /* allocate new 'mirrors' list */
4120 conf->mirrors_new = kzalloc(
4121 sizeof(struct raid10_info)
4122 *(mddev->raid_disks +
4123 mddev->delta_disks),
4124 GFP_KERNEL);
4125 if (!conf->mirrors_new)
4126 return -ENOMEM;
4127 }
4128 return 0;
4129 }
4130
4131 /*
4132 * Need to check if array has failed when deciding whether to:
4133 * - start an array
4134 * - remove non-faulty devices
4135 * - add a spare
4136 * - allow a reshape
4137 * This determination is simple when no reshape is happening.
4138 * However if there is a reshape, we need to carefully check
4139 * both the before and after sections.
4140 * This is because some failed devices may only affect one
4141 * of the two sections, and some non-in_sync devices may
4142 * be insync in the section most affected by failed devices.
4143 */
4144 static int calc_degraded(struct r10conf *conf)
4145 {
4146 int degraded, degraded2;
4147 int i;
4148
4149 rcu_read_lock();
4150 degraded = 0;
4151 /* 'prev' section first */
4152 for (i = 0; i < conf->prev.raid_disks; i++) {
4153 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4154 if (!rdev || test_bit(Faulty, &rdev->flags))
4155 degraded++;
4156 else if (!test_bit(In_sync, &rdev->flags))
4157 /* When we can reduce the number of devices in
4158 * an array, this might not contribute to
4159 * 'degraded'. It does now.
4160 */
4161 degraded++;
4162 }
4163 rcu_read_unlock();
4164 if (conf->geo.raid_disks == conf->prev.raid_disks)
4165 return degraded;
4166 rcu_read_lock();
4167 degraded2 = 0;
4168 for (i = 0; i < conf->geo.raid_disks; i++) {
4169 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4170 if (!rdev || test_bit(Faulty, &rdev->flags))
4171 degraded2++;
4172 else if (!test_bit(In_sync, &rdev->flags)) {
4173 /* If reshape is increasing the number of devices,
4174 * this section has already been recovered, so
4175 * it doesn't contribute to degraded.
4176 * else it does.
4177 */
4178 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4179 degraded2++;
4180 }
4181 }
4182 rcu_read_unlock();
4183 if (degraded2 > degraded)
4184 return degraded2;
4185 return degraded;
4186 }
4187
4188 static int raid10_start_reshape(struct mddev *mddev)
4189 {
4190 /* A 'reshape' has been requested. This commits
4191 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4192 * This also checks if there are enough spares and adds them
4193 * to the array.
4194 * We currently require enough spares to make the final
4195 * array non-degraded. We also require that the difference
4196 * between old and new data_offset - on each device - is
4197 * enough that we never risk over-writing.
4198 */
4199
4200 unsigned long before_length, after_length;
4201 sector_t min_offset_diff = 0;
4202 int first = 1;
4203 struct geom new;
4204 struct r10conf *conf = mddev->private;
4205 struct md_rdev *rdev;
4206 int spares = 0;
4207 int ret;
4208
4209 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4210 return -EBUSY;
4211
4212 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4213 return -EINVAL;
4214
4215 before_length = ((1 << conf->prev.chunk_shift) *
4216 conf->prev.far_copies);
4217 after_length = ((1 << conf->geo.chunk_shift) *
4218 conf->geo.far_copies);
4219
4220 rdev_for_each(rdev, mddev) {
4221 if (!test_bit(In_sync, &rdev->flags)
4222 && !test_bit(Faulty, &rdev->flags))
4223 spares++;
4224 if (rdev->raid_disk >= 0) {
4225 long long diff = (rdev->new_data_offset
4226 - rdev->data_offset);
4227 if (!mddev->reshape_backwards)
4228 diff = -diff;
4229 if (diff < 0)
4230 diff = 0;
4231 if (first || diff < min_offset_diff)
4232 min_offset_diff = diff;
4233 first = 0;
4234 }
4235 }
4236
4237 if (max(before_length, after_length) > min_offset_diff)
4238 return -EINVAL;
4239
4240 if (spares < mddev->delta_disks)
4241 return -EINVAL;
4242
4243 conf->offset_diff = min_offset_diff;
4244 spin_lock_irq(&conf->device_lock);
4245 if (conf->mirrors_new) {
4246 memcpy(conf->mirrors_new, conf->mirrors,
4247 sizeof(struct raid10_info)*conf->prev.raid_disks);
4248 smp_mb();
4249 kfree(conf->mirrors_old);
4250 conf->mirrors_old = conf->mirrors;
4251 conf->mirrors = conf->mirrors_new;
4252 conf->mirrors_new = NULL;
4253 }
4254 setup_geo(&conf->geo, mddev, geo_start);
4255 smp_mb();
4256 if (mddev->reshape_backwards) {
4257 sector_t size = raid10_size(mddev, 0, 0);
4258 if (size < mddev->array_sectors) {
4259 spin_unlock_irq(&conf->device_lock);
4260 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4261 mdname(mddev));
4262 return -EINVAL;
4263 }
4264 mddev->resync_max_sectors = size;
4265 conf->reshape_progress = size;
4266 } else
4267 conf->reshape_progress = 0;
4268 conf->reshape_safe = conf->reshape_progress;
4269 spin_unlock_irq(&conf->device_lock);
4270
4271 if (mddev->delta_disks && mddev->bitmap) {
4272 ret = bitmap_resize(mddev->bitmap,
4273 raid10_size(mddev, 0,
4274 conf->geo.raid_disks),
4275 0, 0);
4276 if (ret)
4277 goto abort;
4278 }
4279 if (mddev->delta_disks > 0) {
4280 rdev_for_each(rdev, mddev)
4281 if (rdev->raid_disk < 0 &&
4282 !test_bit(Faulty, &rdev->flags)) {
4283 if (raid10_add_disk(mddev, rdev) == 0) {
4284 if (rdev->raid_disk >=
4285 conf->prev.raid_disks)
4286 set_bit(In_sync, &rdev->flags);
4287 else
4288 rdev->recovery_offset = 0;
4289
4290 if (sysfs_link_rdev(mddev, rdev))
4291 /* Failure here is OK */;
4292 }
4293 } else if (rdev->raid_disk >= conf->prev.raid_disks
4294 && !test_bit(Faulty, &rdev->flags)) {
4295 /* This is a spare that was manually added */
4296 set_bit(In_sync, &rdev->flags);
4297 }
4298 }
4299 /* When a reshape changes the number of devices,
4300 * ->degraded is measured against the larger of the
4301 * pre and post numbers.
4302 */
4303 spin_lock_irq(&conf->device_lock);
4304 mddev->degraded = calc_degraded(conf);
4305 spin_unlock_irq(&conf->device_lock);
4306 mddev->raid_disks = conf->geo.raid_disks;
4307 mddev->reshape_position = conf->reshape_progress;
4308 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4309
4310 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4313 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4314 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4315
4316 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4317 "reshape");
4318 if (!mddev->sync_thread) {
4319 ret = -EAGAIN;
4320 goto abort;
4321 }
4322 conf->reshape_checkpoint = jiffies;
4323 md_wakeup_thread(mddev->sync_thread);
4324 md_new_event(mddev);
4325 return 0;
4326
4327 abort:
4328 mddev->recovery = 0;
4329 spin_lock_irq(&conf->device_lock);
4330 conf->geo = conf->prev;
4331 mddev->raid_disks = conf->geo.raid_disks;
4332 rdev_for_each(rdev, mddev)
4333 rdev->new_data_offset = rdev->data_offset;
4334 smp_wmb();
4335 conf->reshape_progress = MaxSector;
4336 conf->reshape_safe = MaxSector;
4337 mddev->reshape_position = MaxSector;
4338 spin_unlock_irq(&conf->device_lock);
4339 return ret;
4340 }
4341
4342 /* Calculate the last device-address that could contain
4343 * any block from the chunk that includes the array-address 's'
4344 * and report the next address.
4345 * i.e. the address returned will be chunk-aligned and after
4346 * any data that is in the chunk containing 's'.
4347 */
4348 static sector_t last_dev_address(sector_t s, struct geom *geo)
4349 {
4350 s = (s | geo->chunk_mask) + 1;
4351 s >>= geo->chunk_shift;
4352 s *= geo->near_copies;
4353 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4354 s *= geo->far_copies;
4355 s <<= geo->chunk_shift;
4356 return s;
4357 }
4358
4359 /* Calculate the first device-address that could contain
4360 * any block from the chunk that includes the array-address 's'.
4361 * This too will be the start of a chunk
4362 */
4363 static sector_t first_dev_address(sector_t s, struct geom *geo)
4364 {
4365 s >>= geo->chunk_shift;
4366 s *= geo->near_copies;
4367 sector_div(s, geo->raid_disks);
4368 s *= geo->far_copies;
4369 s <<= geo->chunk_shift;
4370 return s;
4371 }
4372
4373 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4374 int *skipped)
4375 {
4376 /* We simply copy at most one chunk (smallest of old and new)
4377 * at a time, possibly less if that exceeds RESYNC_PAGES,
4378 * or we hit a bad block or something.
4379 * This might mean we pause for normal IO in the middle of
4380 * a chunk, but that is not a problem as mddev->reshape_position
4381 * can record any location.
4382 *
4383 * If we will want to write to a location that isn't
4384 * yet recorded as 'safe' (i.e. in metadata on disk) then
4385 * we need to flush all reshape requests and update the metadata.
4386 *
4387 * When reshaping forwards (e.g. to more devices), we interpret
4388 * 'safe' as the earliest block which might not have been copied
4389 * down yet. We divide this by previous stripe size and multiply
4390 * by previous stripe length to get lowest device offset that we
4391 * cannot write to yet.
4392 * We interpret 'sector_nr' as an address that we want to write to.
4393 * From this we use last_device_address() to find where we might
4394 * write to, and first_device_address on the 'safe' position.
4395 * If this 'next' write position is after the 'safe' position,
4396 * we must update the metadata to increase the 'safe' position.
4397 *
4398 * When reshaping backwards, we round in the opposite direction
4399 * and perform the reverse test: next write position must not be
4400 * less than current safe position.
4401 *
4402 * In all this the minimum difference in data offsets
4403 * (conf->offset_diff - always positive) allows a bit of slack,
4404 * so next can be after 'safe', but not by more than offset_diff
4405 *
4406 * We need to prepare all the bios here before we start any IO
4407 * to ensure the size we choose is acceptable to all devices.
4408 * The means one for each copy for write-out and an extra one for
4409 * read-in.
4410 * We store the read-in bio in ->master_bio and the others in
4411 * ->devs[x].bio and ->devs[x].repl_bio.
4412 */
4413 struct r10conf *conf = mddev->private;
4414 struct r10bio *r10_bio;
4415 sector_t next, safe, last;
4416 int max_sectors;
4417 int nr_sectors;
4418 int s;
4419 struct md_rdev *rdev;
4420 int need_flush = 0;
4421 struct bio *blist;
4422 struct bio *bio, *read_bio;
4423 int sectors_done = 0;
4424 struct page **pages;
4425
4426 if (sector_nr == 0) {
4427 /* If restarting in the middle, skip the initial sectors */
4428 if (mddev->reshape_backwards &&
4429 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4430 sector_nr = (raid10_size(mddev, 0, 0)
4431 - conf->reshape_progress);
4432 } else if (!mddev->reshape_backwards &&
4433 conf->reshape_progress > 0)
4434 sector_nr = conf->reshape_progress;
4435 if (sector_nr) {
4436 mddev->curr_resync_completed = sector_nr;
4437 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4438 *skipped = 1;
4439 return sector_nr;
4440 }
4441 }
4442
4443 /* We don't use sector_nr to track where we are up to
4444 * as that doesn't work well for ->reshape_backwards.
4445 * So just use ->reshape_progress.
4446 */
4447 if (mddev->reshape_backwards) {
4448 /* 'next' is the earliest device address that we might
4449 * write to for this chunk in the new layout
4450 */
4451 next = first_dev_address(conf->reshape_progress - 1,
4452 &conf->geo);
4453
4454 /* 'safe' is the last device address that we might read from
4455 * in the old layout after a restart
4456 */
4457 safe = last_dev_address(conf->reshape_safe - 1,
4458 &conf->prev);
4459
4460 if (next + conf->offset_diff < safe)
4461 need_flush = 1;
4462
4463 last = conf->reshape_progress - 1;
4464 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4465 & conf->prev.chunk_mask);
4466 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4467 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4468 } else {
4469 /* 'next' is after the last device address that we
4470 * might write to for this chunk in the new layout
4471 */
4472 next = last_dev_address(conf->reshape_progress, &conf->geo);
4473
4474 /* 'safe' is the earliest device address that we might
4475 * read from in the old layout after a restart
4476 */
4477 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4478
4479 /* Need to update metadata if 'next' might be beyond 'safe'
4480 * as that would possibly corrupt data
4481 */
4482 if (next > safe + conf->offset_diff)
4483 need_flush = 1;
4484
4485 sector_nr = conf->reshape_progress;
4486 last = sector_nr | (conf->geo.chunk_mask
4487 & conf->prev.chunk_mask);
4488
4489 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4490 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4491 }
4492
4493 if (need_flush ||
4494 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4495 /* Need to update reshape_position in metadata */
4496 wait_barrier(conf);
4497 mddev->reshape_position = conf->reshape_progress;
4498 if (mddev->reshape_backwards)
4499 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4500 - conf->reshape_progress;
4501 else
4502 mddev->curr_resync_completed = conf->reshape_progress;
4503 conf->reshape_checkpoint = jiffies;
4504 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4505 md_wakeup_thread(mddev->thread);
4506 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4507 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4508 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4509 allow_barrier(conf);
4510 return sectors_done;
4511 }
4512 conf->reshape_safe = mddev->reshape_position;
4513 allow_barrier(conf);
4514 }
4515
4516 read_more:
4517 /* Now schedule reads for blocks from sector_nr to last */
4518 r10_bio = raid10_alloc_init_r10buf(conf);
4519 r10_bio->state = 0;
4520 raise_barrier(conf, sectors_done != 0);
4521 atomic_set(&r10_bio->remaining, 0);
4522 r10_bio->mddev = mddev;
4523 r10_bio->sector = sector_nr;
4524 set_bit(R10BIO_IsReshape, &r10_bio->state);
4525 r10_bio->sectors = last - sector_nr + 1;
4526 rdev = read_balance(conf, r10_bio, &max_sectors);
4527 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4528
4529 if (!rdev) {
4530 /* Cannot read from here, so need to record bad blocks
4531 * on all the target devices.
4532 */
4533 // FIXME
4534 mempool_free(r10_bio, conf->r10buf_pool);
4535 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4536 return sectors_done;
4537 }
4538
4539 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4540
4541 bio_set_dev(read_bio, rdev->bdev);
4542 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4543 + rdev->data_offset);
4544 read_bio->bi_private = r10_bio;
4545 read_bio->bi_end_io = end_reshape_read;
4546 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4547 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4548 read_bio->bi_status = 0;
4549 read_bio->bi_vcnt = 0;
4550 read_bio->bi_iter.bi_size = 0;
4551 r10_bio->master_bio = read_bio;
4552 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4553
4554 /* Now find the locations in the new layout */
4555 __raid10_find_phys(&conf->geo, r10_bio);
4556
4557 blist = read_bio;
4558 read_bio->bi_next = NULL;
4559
4560 rcu_read_lock();
4561 for (s = 0; s < conf->copies*2; s++) {
4562 struct bio *b;
4563 int d = r10_bio->devs[s/2].devnum;
4564 struct md_rdev *rdev2;
4565 if (s&1) {
4566 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4567 b = r10_bio->devs[s/2].repl_bio;
4568 } else {
4569 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4570 b = r10_bio->devs[s/2].bio;
4571 }
4572 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4573 continue;
4574
4575 bio_set_dev(b, rdev2->bdev);
4576 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4577 rdev2->new_data_offset;
4578 b->bi_end_io = end_reshape_write;
4579 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4580 b->bi_next = blist;
4581 blist = b;
4582 }
4583
4584 /* Now add as many pages as possible to all of these bios. */
4585
4586 nr_sectors = 0;
4587 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4588 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4589 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4590 int len = (max_sectors - s) << 9;
4591 if (len > PAGE_SIZE)
4592 len = PAGE_SIZE;
4593 for (bio = blist; bio ; bio = bio->bi_next) {
4594 /*
4595 * won't fail because the vec table is big enough
4596 * to hold all these pages
4597 */
4598 bio_add_page(bio, page, len, 0);
4599 }
4600 sector_nr += len >> 9;
4601 nr_sectors += len >> 9;
4602 }
4603 rcu_read_unlock();
4604 r10_bio->sectors = nr_sectors;
4605
4606 /* Now submit the read */
4607 md_sync_acct_bio(read_bio, r10_bio->sectors);
4608 atomic_inc(&r10_bio->remaining);
4609 read_bio->bi_next = NULL;
4610 generic_make_request(read_bio);
4611 sector_nr += nr_sectors;
4612 sectors_done += nr_sectors;
4613 if (sector_nr <= last)
4614 goto read_more;
4615
4616 /* Now that we have done the whole section we can
4617 * update reshape_progress
4618 */
4619 if (mddev->reshape_backwards)
4620 conf->reshape_progress -= sectors_done;
4621 else
4622 conf->reshape_progress += sectors_done;
4623
4624 return sectors_done;
4625 }
4626
4627 static void end_reshape_request(struct r10bio *r10_bio);
4628 static int handle_reshape_read_error(struct mddev *mddev,
4629 struct r10bio *r10_bio);
4630 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4631 {
4632 /* Reshape read completed. Hopefully we have a block
4633 * to write out.
4634 * If we got a read error then we do sync 1-page reads from
4635 * elsewhere until we find the data - or give up.
4636 */
4637 struct r10conf *conf = mddev->private;
4638 int s;
4639
4640 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4641 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4642 /* Reshape has been aborted */
4643 md_done_sync(mddev, r10_bio->sectors, 0);
4644 return;
4645 }
4646
4647 /* We definitely have the data in the pages, schedule the
4648 * writes.
4649 */
4650 atomic_set(&r10_bio->remaining, 1);
4651 for (s = 0; s < conf->copies*2; s++) {
4652 struct bio *b;
4653 int d = r10_bio->devs[s/2].devnum;
4654 struct md_rdev *rdev;
4655 rcu_read_lock();
4656 if (s&1) {
4657 rdev = rcu_dereference(conf->mirrors[d].replacement);
4658 b = r10_bio->devs[s/2].repl_bio;
4659 } else {
4660 rdev = rcu_dereference(conf->mirrors[d].rdev);
4661 b = r10_bio->devs[s/2].bio;
4662 }
4663 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4664 rcu_read_unlock();
4665 continue;
4666 }
4667 atomic_inc(&rdev->nr_pending);
4668 rcu_read_unlock();
4669 md_sync_acct_bio(b, r10_bio->sectors);
4670 atomic_inc(&r10_bio->remaining);
4671 b->bi_next = NULL;
4672 generic_make_request(b);
4673 }
4674 end_reshape_request(r10_bio);
4675 }
4676
4677 static void end_reshape(struct r10conf *conf)
4678 {
4679 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4680 return;
4681
4682 spin_lock_irq(&conf->device_lock);
4683 conf->prev = conf->geo;
4684 md_finish_reshape(conf->mddev);
4685 smp_wmb();
4686 conf->reshape_progress = MaxSector;
4687 conf->reshape_safe = MaxSector;
4688 spin_unlock_irq(&conf->device_lock);
4689
4690 /* read-ahead size must cover two whole stripes, which is
4691 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4692 */
4693 if (conf->mddev->queue) {
4694 int stripe = conf->geo.raid_disks *
4695 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4696 stripe /= conf->geo.near_copies;
4697 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4698 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4699 }
4700 conf->fullsync = 0;
4701 }
4702
4703 static int handle_reshape_read_error(struct mddev *mddev,
4704 struct r10bio *r10_bio)
4705 {
4706 /* Use sync reads to get the blocks from somewhere else */
4707 int sectors = r10_bio->sectors;
4708 struct r10conf *conf = mddev->private;
4709 struct r10bio *r10b;
4710 int slot = 0;
4711 int idx = 0;
4712 struct page **pages;
4713
4714 r10b = kmalloc(sizeof(*r10b) +
4715 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4716 if (!r10b) {
4717 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4718 return -ENOMEM;
4719 }
4720
4721 /* reshape IOs share pages from .devs[0].bio */
4722 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4723
4724 r10b->sector = r10_bio->sector;
4725 __raid10_find_phys(&conf->prev, r10b);
4726
4727 while (sectors) {
4728 int s = sectors;
4729 int success = 0;
4730 int first_slot = slot;
4731
4732 if (s > (PAGE_SIZE >> 9))
4733 s = PAGE_SIZE >> 9;
4734
4735 rcu_read_lock();
4736 while (!success) {
4737 int d = r10b->devs[slot].devnum;
4738 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4739 sector_t addr;
4740 if (rdev == NULL ||
4741 test_bit(Faulty, &rdev->flags) ||
4742 !test_bit(In_sync, &rdev->flags))
4743 goto failed;
4744
4745 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4746 atomic_inc(&rdev->nr_pending);
4747 rcu_read_unlock();
4748 success = sync_page_io(rdev,
4749 addr,
4750 s << 9,
4751 pages[idx],
4752 REQ_OP_READ, 0, false);
4753 rdev_dec_pending(rdev, mddev);
4754 rcu_read_lock();
4755 if (success)
4756 break;
4757 failed:
4758 slot++;
4759 if (slot >= conf->copies)
4760 slot = 0;
4761 if (slot == first_slot)
4762 break;
4763 }
4764 rcu_read_unlock();
4765 if (!success) {
4766 /* couldn't read this block, must give up */
4767 set_bit(MD_RECOVERY_INTR,
4768 &mddev->recovery);
4769 kfree(r10b);
4770 return -EIO;
4771 }
4772 sectors -= s;
4773 idx++;
4774 }
4775 kfree(r10b);
4776 return 0;
4777 }
4778
4779 static void end_reshape_write(struct bio *bio)
4780 {
4781 struct r10bio *r10_bio = get_resync_r10bio(bio);
4782 struct mddev *mddev = r10_bio->mddev;
4783 struct r10conf *conf = mddev->private;
4784 int d;
4785 int slot;
4786 int repl;
4787 struct md_rdev *rdev = NULL;
4788
4789 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4790 if (repl)
4791 rdev = conf->mirrors[d].replacement;
4792 if (!rdev) {
4793 smp_mb();
4794 rdev = conf->mirrors[d].rdev;
4795 }
4796
4797 if (bio->bi_status) {
4798 /* FIXME should record badblock */
4799 md_error(mddev, rdev);
4800 }
4801
4802 rdev_dec_pending(rdev, mddev);
4803 end_reshape_request(r10_bio);
4804 }
4805
4806 static void end_reshape_request(struct r10bio *r10_bio)
4807 {
4808 if (!atomic_dec_and_test(&r10_bio->remaining))
4809 return;
4810 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4811 bio_put(r10_bio->master_bio);
4812 put_buf(r10_bio);
4813 }
4814
4815 static void raid10_finish_reshape(struct mddev *mddev)
4816 {
4817 struct r10conf *conf = mddev->private;
4818
4819 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4820 return;
4821
4822 if (mddev->delta_disks > 0) {
4823 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4824 mddev->recovery_cp = mddev->resync_max_sectors;
4825 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4826 }
4827 mddev->resync_max_sectors = mddev->array_sectors;
4828 } else {
4829 int d;
4830 rcu_read_lock();
4831 for (d = conf->geo.raid_disks ;
4832 d < conf->geo.raid_disks - mddev->delta_disks;
4833 d++) {
4834 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4835 if (rdev)
4836 clear_bit(In_sync, &rdev->flags);
4837 rdev = rcu_dereference(conf->mirrors[d].replacement);
4838 if (rdev)
4839 clear_bit(In_sync, &rdev->flags);
4840 }
4841 rcu_read_unlock();
4842 }
4843 mddev->layout = mddev->new_layout;
4844 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4845 mddev->reshape_position = MaxSector;
4846 mddev->delta_disks = 0;
4847 mddev->reshape_backwards = 0;
4848 }
4849
4850 static struct md_personality raid10_personality =
4851 {
4852 .name = "raid10",
4853 .level = 10,
4854 .owner = THIS_MODULE,
4855 .make_request = raid10_make_request,
4856 .run = raid10_run,
4857 .free = raid10_free,
4858 .status = raid10_status,
4859 .error_handler = raid10_error,
4860 .hot_add_disk = raid10_add_disk,
4861 .hot_remove_disk= raid10_remove_disk,
4862 .spare_active = raid10_spare_active,
4863 .sync_request = raid10_sync_request,
4864 .quiesce = raid10_quiesce,
4865 .size = raid10_size,
4866 .resize = raid10_resize,
4867 .takeover = raid10_takeover,
4868 .check_reshape = raid10_check_reshape,
4869 .start_reshape = raid10_start_reshape,
4870 .finish_reshape = raid10_finish_reshape,
4871 .congested = raid10_congested,
4872 };
4873
4874 static int __init raid_init(void)
4875 {
4876 return register_md_personality(&raid10_personality);
4877 }
4878
4879 static void raid_exit(void)
4880 {
4881 unregister_md_personality(&raid10_personality);
4882 }
4883
4884 module_init(raid_init);
4885 module_exit(raid_exit);
4886 MODULE_LICENSE("GPL");
4887 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4888 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4889 MODULE_ALIAS("md-raid10");
4890 MODULE_ALIAS("md-level-10");
4891
4892 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);