]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 /*
114 * 'strct resync_pages' stores actual pages used for doing the resync
115 * IO, and it is per-bio, so make .bi_private points to it.
116 */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119 return bio->bi_private;
120 }
121
122 /*
123 * for resync bio, r10bio pointer can be retrieved from the per-bio
124 * 'struct resync_pages'.
125 */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128 return get_resync_pages(bio)->raid_bio;
129 }
130
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 int size = offsetof(struct r10bio, devs[conf->copies]);
135
136 /* allocate a r10bio with room for raid_disks entries in the
137 * bios array */
138 return kzalloc(size, gfp_flags);
139 }
140
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143 kfree(r10_bio);
144 }
145
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150
151 /*
152 * When performing a resync, we need to read and compare, so
153 * we need as many pages are there are copies.
154 * When performing a recovery, we need 2 bios, one for read,
155 * one for write (we recover only one drive per r10buf)
156 *
157 */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160 struct r10conf *conf = data;
161 struct r10bio *r10_bio;
162 struct bio *bio;
163 int j;
164 int nalloc, nalloc_rp;
165 struct resync_pages *rps;
166
167 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168 if (!r10_bio)
169 return NULL;
170
171 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173 nalloc = conf->copies; /* resync */
174 else
175 nalloc = 2; /* recovery */
176
177 /* allocate once for all bios */
178 if (!conf->have_replacement)
179 nalloc_rp = nalloc;
180 else
181 nalloc_rp = nalloc * 2;
182 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183 if (!rps)
184 goto out_free_r10bio;
185
186 /*
187 * Allocate bios.
188 */
189 for (j = nalloc ; j-- ; ) {
190 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191 if (!bio)
192 goto out_free_bio;
193 r10_bio->devs[j].bio = bio;
194 if (!conf->have_replacement)
195 continue;
196 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197 if (!bio)
198 goto out_free_bio;
199 r10_bio->devs[j].repl_bio = bio;
200 }
201 /*
202 * Allocate RESYNC_PAGES data pages and attach them
203 * where needed.
204 */
205 for (j = 0; j < nalloc; j++) {
206 struct bio *rbio = r10_bio->devs[j].repl_bio;
207 struct resync_pages *rp, *rp_repl;
208
209 rp = &rps[j];
210 if (rbio)
211 rp_repl = &rps[nalloc + j];
212
213 bio = r10_bio->devs[j].bio;
214
215 if (!j || test_bit(MD_RECOVERY_SYNC,
216 &conf->mddev->recovery)) {
217 if (resync_alloc_pages(rp, gfp_flags))
218 goto out_free_pages;
219 } else {
220 memcpy(rp, &rps[0], sizeof(*rp));
221 resync_get_all_pages(rp);
222 }
223
224 rp->idx = 0;
225 rp->raid_bio = r10_bio;
226 bio->bi_private = rp;
227 if (rbio) {
228 memcpy(rp_repl, rp, sizeof(*rp));
229 rbio->bi_private = rp_repl;
230 }
231 }
232
233 return r10_bio;
234
235 out_free_pages:
236 while (--j >= 0)
237 resync_free_pages(&rps[j * 2]);
238
239 j = 0;
240 out_free_bio:
241 for ( ; j < nalloc; j++) {
242 if (r10_bio->devs[j].bio)
243 bio_put(r10_bio->devs[j].bio);
244 if (r10_bio->devs[j].repl_bio)
245 bio_put(r10_bio->devs[j].repl_bio);
246 }
247 kfree(rps);
248 out_free_r10bio:
249 r10bio_pool_free(r10_bio, conf);
250 return NULL;
251 }
252
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255 struct r10conf *conf = data;
256 struct r10bio *r10bio = __r10_bio;
257 int j;
258 struct resync_pages *rp = NULL;
259
260 for (j = conf->copies; j--; ) {
261 struct bio *bio = r10bio->devs[j].bio;
262
263 rp = get_resync_pages(bio);
264 resync_free_pages(rp);
265 bio_put(bio);
266
267 bio = r10bio->devs[j].repl_bio;
268 if (bio)
269 bio_put(bio);
270 }
271
272 /* resync pages array stored in the 1st bio's .bi_private */
273 kfree(rp);
274
275 r10bio_pool_free(r10bio, conf);
276 }
277
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280 int i;
281
282 for (i = 0; i < conf->copies; i++) {
283 struct bio **bio = & r10_bio->devs[i].bio;
284 if (!BIO_SPECIAL(*bio))
285 bio_put(*bio);
286 *bio = NULL;
287 bio = &r10_bio->devs[i].repl_bio;
288 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289 bio_put(*bio);
290 *bio = NULL;
291 }
292 }
293
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296 struct r10conf *conf = r10_bio->mddev->private;
297
298 put_all_bios(conf, r10_bio);
299 mempool_free(r10_bio, conf->r10bio_pool);
300 }
301
302 static void put_buf(struct r10bio *r10_bio)
303 {
304 struct r10conf *conf = r10_bio->mddev->private;
305
306 mempool_free(r10_bio, conf->r10buf_pool);
307
308 lower_barrier(conf);
309 }
310
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313 unsigned long flags;
314 struct mddev *mddev = r10_bio->mddev;
315 struct r10conf *conf = mddev->private;
316
317 spin_lock_irqsave(&conf->device_lock, flags);
318 list_add(&r10_bio->retry_list, &conf->retry_list);
319 conf->nr_queued ++;
320 spin_unlock_irqrestore(&conf->device_lock, flags);
321
322 /* wake up frozen array... */
323 wake_up(&conf->wait_barrier);
324
325 md_wakeup_thread(mddev->thread);
326 }
327
328 /*
329 * raid_end_bio_io() is called when we have finished servicing a mirrored
330 * operation and are ready to return a success/failure code to the buffer
331 * cache layer.
332 */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335 struct bio *bio = r10_bio->master_bio;
336 struct r10conf *conf = r10_bio->mddev->private;
337
338 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339 bio->bi_status = BLK_STS_IOERR;
340
341 bio_endio(bio);
342 /*
343 * Wake up any possible resync thread that waits for the device
344 * to go idle.
345 */
346 allow_barrier(conf);
347
348 free_r10bio(r10_bio);
349 }
350
351 /*
352 * Update disk head position estimator based on IRQ completion info.
353 */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356 struct r10conf *conf = r10_bio->mddev->private;
357
358 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359 r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361
362 /*
363 * Find the disk number which triggered given bio
364 */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366 struct bio *bio, int *slotp, int *replp)
367 {
368 int slot;
369 int repl = 0;
370
371 for (slot = 0; slot < conf->copies; slot++) {
372 if (r10_bio->devs[slot].bio == bio)
373 break;
374 if (r10_bio->devs[slot].repl_bio == bio) {
375 repl = 1;
376 break;
377 }
378 }
379
380 BUG_ON(slot == conf->copies);
381 update_head_pos(slot, r10_bio);
382
383 if (slotp)
384 *slotp = slot;
385 if (replp)
386 *replp = repl;
387 return r10_bio->devs[slot].devnum;
388 }
389
390 static void raid10_end_read_request(struct bio *bio)
391 {
392 int uptodate = !bio->bi_status;
393 struct r10bio *r10_bio = bio->bi_private;
394 int slot, dev;
395 struct md_rdev *rdev;
396 struct r10conf *conf = r10_bio->mddev->private;
397
398 slot = r10_bio->read_slot;
399 dev = r10_bio->devs[slot].devnum;
400 rdev = r10_bio->devs[slot].rdev;
401 /*
402 * this branch is our 'one mirror IO has finished' event handler:
403 */
404 update_head_pos(slot, r10_bio);
405
406 if (uptodate) {
407 /*
408 * Set R10BIO_Uptodate in our master bio, so that
409 * we will return a good error code to the higher
410 * levels even if IO on some other mirrored buffer fails.
411 *
412 * The 'master' represents the composite IO operation to
413 * user-side. So if something waits for IO, then it will
414 * wait for the 'master' bio.
415 */
416 set_bit(R10BIO_Uptodate, &r10_bio->state);
417 } else {
418 /* If all other devices that store this block have
419 * failed, we want to return the error upwards rather
420 * than fail the last device. Here we redefine
421 * "uptodate" to mean "Don't want to retry"
422 */
423 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424 rdev->raid_disk))
425 uptodate = 1;
426 }
427 if (uptodate) {
428 raid_end_bio_io(r10_bio);
429 rdev_dec_pending(rdev, conf->mddev);
430 } else {
431 /*
432 * oops, read error - keep the refcount on the rdev
433 */
434 char b[BDEVNAME_SIZE];
435 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436 mdname(conf->mddev),
437 bdevname(rdev->bdev, b),
438 (unsigned long long)r10_bio->sector);
439 set_bit(R10BIO_ReadError, &r10_bio->state);
440 reschedule_retry(r10_bio);
441 }
442 }
443
444 static void close_write(struct r10bio *r10_bio)
445 {
446 /* clear the bitmap if all writes complete successfully */
447 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448 r10_bio->sectors,
449 !test_bit(R10BIO_Degraded, &r10_bio->state),
450 0);
451 md_write_end(r10_bio->mddev);
452 }
453
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456 if (atomic_dec_and_test(&r10_bio->remaining)) {
457 if (test_bit(R10BIO_WriteError, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else {
460 close_write(r10_bio);
461 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462 reschedule_retry(r10_bio);
463 else
464 raid_end_bio_io(r10_bio);
465 }
466 }
467 }
468
469 static void raid10_end_write_request(struct bio *bio)
470 {
471 struct r10bio *r10_bio = bio->bi_private;
472 int dev;
473 int dec_rdev = 1;
474 struct r10conf *conf = r10_bio->mddev->private;
475 int slot, repl;
476 struct md_rdev *rdev = NULL;
477 struct bio *to_put = NULL;
478 bool discard_error;
479
480 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
481
482 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483
484 if (repl)
485 rdev = conf->mirrors[dev].replacement;
486 if (!rdev) {
487 smp_rmb();
488 repl = 0;
489 rdev = conf->mirrors[dev].rdev;
490 }
491 /*
492 * this branch is our 'one mirror IO has finished' event handler:
493 */
494 if (bio->bi_status && !discard_error) {
495 if (repl)
496 /* Never record new bad blocks to replacement,
497 * just fail it.
498 */
499 md_error(rdev->mddev, rdev);
500 else {
501 set_bit(WriteErrorSeen, &rdev->flags);
502 if (!test_and_set_bit(WantReplacement, &rdev->flags))
503 set_bit(MD_RECOVERY_NEEDED,
504 &rdev->mddev->recovery);
505
506 dec_rdev = 0;
507 if (test_bit(FailFast, &rdev->flags) &&
508 (bio->bi_opf & MD_FAILFAST)) {
509 md_error(rdev->mddev, rdev);
510 if (!test_bit(Faulty, &rdev->flags))
511 /* This is the only remaining device,
512 * We need to retry the write without
513 * FailFast
514 */
515 set_bit(R10BIO_WriteError, &r10_bio->state);
516 else {
517 r10_bio->devs[slot].bio = NULL;
518 to_put = bio;
519 dec_rdev = 1;
520 }
521 } else
522 set_bit(R10BIO_WriteError, &r10_bio->state);
523 }
524 } else {
525 /*
526 * Set R10BIO_Uptodate in our master bio, so that
527 * we will return a good error code for to the higher
528 * levels even if IO on some other mirrored buffer fails.
529 *
530 * The 'master' represents the composite IO operation to
531 * user-side. So if something waits for IO, then it will
532 * wait for the 'master' bio.
533 */
534 sector_t first_bad;
535 int bad_sectors;
536
537 /*
538 * Do not set R10BIO_Uptodate if the current device is
539 * rebuilding or Faulty. This is because we cannot use
540 * such device for properly reading the data back (we could
541 * potentially use it, if the current write would have felt
542 * before rdev->recovery_offset, but for simplicity we don't
543 * check this here.
544 */
545 if (test_bit(In_sync, &rdev->flags) &&
546 !test_bit(Faulty, &rdev->flags))
547 set_bit(R10BIO_Uptodate, &r10_bio->state);
548
549 /* Maybe we can clear some bad blocks. */
550 if (is_badblock(rdev,
551 r10_bio->devs[slot].addr,
552 r10_bio->sectors,
553 &first_bad, &bad_sectors) && !discard_error) {
554 bio_put(bio);
555 if (repl)
556 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557 else
558 r10_bio->devs[slot].bio = IO_MADE_GOOD;
559 dec_rdev = 0;
560 set_bit(R10BIO_MadeGood, &r10_bio->state);
561 }
562 }
563
564 /*
565 *
566 * Let's see if all mirrored write operations have finished
567 * already.
568 */
569 one_write_done(r10_bio);
570 if (dec_rdev)
571 rdev_dec_pending(rdev, conf->mddev);
572 if (to_put)
573 bio_put(to_put);
574 }
575
576 /*
577 * RAID10 layout manager
578 * As well as the chunksize and raid_disks count, there are two
579 * parameters: near_copies and far_copies.
580 * near_copies * far_copies must be <= raid_disks.
581 * Normally one of these will be 1.
582 * If both are 1, we get raid0.
583 * If near_copies == raid_disks, we get raid1.
584 *
585 * Chunks are laid out in raid0 style with near_copies copies of the
586 * first chunk, followed by near_copies copies of the next chunk and
587 * so on.
588 * If far_copies > 1, then after 1/far_copies of the array has been assigned
589 * as described above, we start again with a device offset of near_copies.
590 * So we effectively have another copy of the whole array further down all
591 * the drives, but with blocks on different drives.
592 * With this layout, and block is never stored twice on the one device.
593 *
594 * raid10_find_phys finds the sector offset of a given virtual sector
595 * on each device that it is on.
596 *
597 * raid10_find_virt does the reverse mapping, from a device and a
598 * sector offset to a virtual address
599 */
600
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603 int n,f;
604 sector_t sector;
605 sector_t chunk;
606 sector_t stripe;
607 int dev;
608 int slot = 0;
609 int last_far_set_start, last_far_set_size;
610
611 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612 last_far_set_start *= geo->far_set_size;
613
614 last_far_set_size = geo->far_set_size;
615 last_far_set_size += (geo->raid_disks % geo->far_set_size);
616
617 /* now calculate first sector/dev */
618 chunk = r10bio->sector >> geo->chunk_shift;
619 sector = r10bio->sector & geo->chunk_mask;
620
621 chunk *= geo->near_copies;
622 stripe = chunk;
623 dev = sector_div(stripe, geo->raid_disks);
624 if (geo->far_offset)
625 stripe *= geo->far_copies;
626
627 sector += stripe << geo->chunk_shift;
628
629 /* and calculate all the others */
630 for (n = 0; n < geo->near_copies; n++) {
631 int d = dev;
632 int set;
633 sector_t s = sector;
634 r10bio->devs[slot].devnum = d;
635 r10bio->devs[slot].addr = s;
636 slot++;
637
638 for (f = 1; f < geo->far_copies; f++) {
639 set = d / geo->far_set_size;
640 d += geo->near_copies;
641
642 if ((geo->raid_disks % geo->far_set_size) &&
643 (d > last_far_set_start)) {
644 d -= last_far_set_start;
645 d %= last_far_set_size;
646 d += last_far_set_start;
647 } else {
648 d %= geo->far_set_size;
649 d += geo->far_set_size * set;
650 }
651 s += geo->stride;
652 r10bio->devs[slot].devnum = d;
653 r10bio->devs[slot].addr = s;
654 slot++;
655 }
656 dev++;
657 if (dev >= geo->raid_disks) {
658 dev = 0;
659 sector += (geo->chunk_mask + 1);
660 }
661 }
662 }
663
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666 struct geom *geo = &conf->geo;
667
668 if (conf->reshape_progress != MaxSector &&
669 ((r10bio->sector >= conf->reshape_progress) !=
670 conf->mddev->reshape_backwards)) {
671 set_bit(R10BIO_Previous, &r10bio->state);
672 geo = &conf->prev;
673 } else
674 clear_bit(R10BIO_Previous, &r10bio->state);
675
676 __raid10_find_phys(geo, r10bio);
677 }
678
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681 sector_t offset, chunk, vchunk;
682 /* Never use conf->prev as this is only called during resync
683 * or recovery, so reshape isn't happening
684 */
685 struct geom *geo = &conf->geo;
686 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687 int far_set_size = geo->far_set_size;
688 int last_far_set_start;
689
690 if (geo->raid_disks % geo->far_set_size) {
691 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692 last_far_set_start *= geo->far_set_size;
693
694 if (dev >= last_far_set_start) {
695 far_set_size = geo->far_set_size;
696 far_set_size += (geo->raid_disks % geo->far_set_size);
697 far_set_start = last_far_set_start;
698 }
699 }
700
701 offset = sector & geo->chunk_mask;
702 if (geo->far_offset) {
703 int fc;
704 chunk = sector >> geo->chunk_shift;
705 fc = sector_div(chunk, geo->far_copies);
706 dev -= fc * geo->near_copies;
707 if (dev < far_set_start)
708 dev += far_set_size;
709 } else {
710 while (sector >= geo->stride) {
711 sector -= geo->stride;
712 if (dev < (geo->near_copies + far_set_start))
713 dev += far_set_size - geo->near_copies;
714 else
715 dev -= geo->near_copies;
716 }
717 chunk = sector >> geo->chunk_shift;
718 }
719 vchunk = chunk * geo->raid_disks + dev;
720 sector_div(vchunk, geo->near_copies);
721 return (vchunk << geo->chunk_shift) + offset;
722 }
723
724 /*
725 * This routine returns the disk from which the requested read should
726 * be done. There is a per-array 'next expected sequential IO' sector
727 * number - if this matches on the next IO then we use the last disk.
728 * There is also a per-disk 'last know head position' sector that is
729 * maintained from IRQ contexts, both the normal and the resync IO
730 * completion handlers update this position correctly. If there is no
731 * perfect sequential match then we pick the disk whose head is closest.
732 *
733 * If there are 2 mirrors in the same 2 devices, performance degrades
734 * because position is mirror, not device based.
735 *
736 * The rdev for the device selected will have nr_pending incremented.
737 */
738
739 /*
740 * FIXME: possibly should rethink readbalancing and do it differently
741 * depending on near_copies / far_copies geometry.
742 */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744 struct r10bio *r10_bio,
745 int *max_sectors)
746 {
747 const sector_t this_sector = r10_bio->sector;
748 int disk, slot;
749 int sectors = r10_bio->sectors;
750 int best_good_sectors;
751 sector_t new_distance, best_dist;
752 struct md_rdev *best_rdev, *rdev = NULL;
753 int do_balance;
754 int best_slot;
755 struct geom *geo = &conf->geo;
756
757 raid10_find_phys(conf, r10_bio);
758 rcu_read_lock();
759 sectors = r10_bio->sectors;
760 best_slot = -1;
761 best_rdev = NULL;
762 best_dist = MaxSector;
763 best_good_sectors = 0;
764 do_balance = 1;
765 clear_bit(R10BIO_FailFast, &r10_bio->state);
766 /*
767 * Check if we can balance. We can balance on the whole
768 * device if no resync is going on (recovery is ok), or below
769 * the resync window. We take the first readable disk when
770 * above the resync window.
771 */
772 if (conf->mddev->recovery_cp < MaxSector
773 && (this_sector + sectors >= conf->next_resync))
774 do_balance = 0;
775
776 for (slot = 0; slot < conf->copies ; slot++) {
777 sector_t first_bad;
778 int bad_sectors;
779 sector_t dev_sector;
780
781 if (r10_bio->devs[slot].bio == IO_BLOCKED)
782 continue;
783 disk = r10_bio->devs[slot].devnum;
784 rdev = rcu_dereference(conf->mirrors[disk].replacement);
785 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787 rdev = rcu_dereference(conf->mirrors[disk].rdev);
788 if (rdev == NULL ||
789 test_bit(Faulty, &rdev->flags))
790 continue;
791 if (!test_bit(In_sync, &rdev->flags) &&
792 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793 continue;
794
795 dev_sector = r10_bio->devs[slot].addr;
796 if (is_badblock(rdev, dev_sector, sectors,
797 &first_bad, &bad_sectors)) {
798 if (best_dist < MaxSector)
799 /* Already have a better slot */
800 continue;
801 if (first_bad <= dev_sector) {
802 /* Cannot read here. If this is the
803 * 'primary' device, then we must not read
804 * beyond 'bad_sectors' from another device.
805 */
806 bad_sectors -= (dev_sector - first_bad);
807 if (!do_balance && sectors > bad_sectors)
808 sectors = bad_sectors;
809 if (best_good_sectors > sectors)
810 best_good_sectors = sectors;
811 } else {
812 sector_t good_sectors =
813 first_bad - dev_sector;
814 if (good_sectors > best_good_sectors) {
815 best_good_sectors = good_sectors;
816 best_slot = slot;
817 best_rdev = rdev;
818 }
819 if (!do_balance)
820 /* Must read from here */
821 break;
822 }
823 continue;
824 } else
825 best_good_sectors = sectors;
826
827 if (!do_balance)
828 break;
829
830 if (best_slot >= 0)
831 /* At least 2 disks to choose from so failfast is OK */
832 set_bit(R10BIO_FailFast, &r10_bio->state);
833 /* This optimisation is debatable, and completely destroys
834 * sequential read speed for 'far copies' arrays. So only
835 * keep it for 'near' arrays, and review those later.
836 */
837 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838 new_distance = 0;
839
840 /* for far > 1 always use the lowest address */
841 else if (geo->far_copies > 1)
842 new_distance = r10_bio->devs[slot].addr;
843 else
844 new_distance = abs(r10_bio->devs[slot].addr -
845 conf->mirrors[disk].head_position);
846 if (new_distance < best_dist) {
847 best_dist = new_distance;
848 best_slot = slot;
849 best_rdev = rdev;
850 }
851 }
852 if (slot >= conf->copies) {
853 slot = best_slot;
854 rdev = best_rdev;
855 }
856
857 if (slot >= 0) {
858 atomic_inc(&rdev->nr_pending);
859 r10_bio->read_slot = slot;
860 } else
861 rdev = NULL;
862 rcu_read_unlock();
863 *max_sectors = best_good_sectors;
864
865 return rdev;
866 }
867
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870 struct r10conf *conf = mddev->private;
871 int i, ret = 0;
872
873 if ((bits & (1 << WB_async_congested)) &&
874 conf->pending_count >= max_queued_requests)
875 return 1;
876
877 rcu_read_lock();
878 for (i = 0;
879 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880 && ret == 0;
881 i++) {
882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883 if (rdev && !test_bit(Faulty, &rdev->flags)) {
884 struct request_queue *q = bdev_get_queue(rdev->bdev);
885
886 ret |= bdi_congested(q->backing_dev_info, bits);
887 }
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895 /* Any writes that have been queued but are awaiting
896 * bitmap updates get flushed here.
897 */
898 spin_lock_irq(&conf->device_lock);
899
900 if (conf->pending_bio_list.head) {
901 struct bio *bio;
902 bio = bio_list_get(&conf->pending_bio_list);
903 conf->pending_count = 0;
904 spin_unlock_irq(&conf->device_lock);
905 /* flush any pending bitmap writes to disk
906 * before proceeding w/ I/O */
907 bitmap_unplug(conf->mddev->bitmap);
908 wake_up(&conf->wait_barrier);
909
910 while (bio) { /* submit pending writes */
911 struct bio *next = bio->bi_next;
912 struct md_rdev *rdev = (void*)bio->bi_bdev;
913 bio->bi_next = NULL;
914 bio->bi_bdev = rdev->bdev;
915 if (test_bit(Faulty, &rdev->flags)) {
916 bio->bi_status = BLK_STS_IOERR;
917 bio_endio(bio);
918 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
919 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920 /* Just ignore it */
921 bio_endio(bio);
922 else
923 generic_make_request(bio);
924 bio = next;
925 }
926 } else
927 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931 * Sometimes we need to suspend IO while we do something else,
932 * either some resync/recovery, or reconfigure the array.
933 * To do this we raise a 'barrier'.
934 * The 'barrier' is a counter that can be raised multiple times
935 * to count how many activities are happening which preclude
936 * normal IO.
937 * We can only raise the barrier if there is no pending IO.
938 * i.e. if nr_pending == 0.
939 * We choose only to raise the barrier if no-one is waiting for the
940 * barrier to go down. This means that as soon as an IO request
941 * is ready, no other operations which require a barrier will start
942 * until the IO request has had a chance.
943 *
944 * So: regular IO calls 'wait_barrier'. When that returns there
945 * is no backgroup IO happening, It must arrange to call
946 * allow_barrier when it has finished its IO.
947 * backgroup IO calls must call raise_barrier. Once that returns
948 * there is no normal IO happeing. It must arrange to call
949 * lower_barrier when the particular background IO completes.
950 */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954 BUG_ON(force && !conf->barrier);
955 spin_lock_irq(&conf->resync_lock);
956
957 /* Wait until no block IO is waiting (unless 'force') */
958 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959 conf->resync_lock);
960
961 /* block any new IO from starting */
962 conf->barrier++;
963
964 /* Now wait for all pending IO to complete */
965 wait_event_lock_irq(conf->wait_barrier,
966 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967 conf->resync_lock);
968
969 spin_unlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974 unsigned long flags;
975 spin_lock_irqsave(&conf->resync_lock, flags);
976 conf->barrier--;
977 spin_unlock_irqrestore(&conf->resync_lock, flags);
978 wake_up(&conf->wait_barrier);
979 }
980
981 static void wait_barrier(struct r10conf *conf)
982 {
983 spin_lock_irq(&conf->resync_lock);
984 if (conf->barrier) {
985 conf->nr_waiting++;
986 /* Wait for the barrier to drop.
987 * However if there are already pending
988 * requests (preventing the barrier from
989 * rising completely), and the
990 * pre-process bio queue isn't empty,
991 * then don't wait, as we need to empty
992 * that queue to get the nr_pending
993 * count down.
994 */
995 raid10_log(conf->mddev, "wait barrier");
996 wait_event_lock_irq(conf->wait_barrier,
997 !conf->barrier ||
998 (atomic_read(&conf->nr_pending) &&
999 current->bio_list &&
1000 (!bio_list_empty(&current->bio_list[0]) ||
1001 !bio_list_empty(&current->bio_list[1]))),
1002 conf->resync_lock);
1003 conf->nr_waiting--;
1004 if (!conf->nr_waiting)
1005 wake_up(&conf->wait_barrier);
1006 }
1007 atomic_inc(&conf->nr_pending);
1008 spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014 (conf->array_freeze_pending))
1015 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020 /* stop syncio and normal IO and wait for everything to
1021 * go quiet.
1022 * We increment barrier and nr_waiting, and then
1023 * wait until nr_pending match nr_queued+extra
1024 * This is called in the context of one normal IO request
1025 * that has failed. Thus any sync request that might be pending
1026 * will be blocked by nr_pending, and we need to wait for
1027 * pending IO requests to complete or be queued for re-try.
1028 * Thus the number queued (nr_queued) plus this request (extra)
1029 * must match the number of pending IOs (nr_pending) before
1030 * we continue.
1031 */
1032 spin_lock_irq(&conf->resync_lock);
1033 conf->array_freeze_pending++;
1034 conf->barrier++;
1035 conf->nr_waiting++;
1036 wait_event_lock_irq_cmd(conf->wait_barrier,
1037 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038 conf->resync_lock,
1039 flush_pending_writes(conf));
1040
1041 conf->array_freeze_pending--;
1042 spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047 /* reverse the effect of the freeze */
1048 spin_lock_irq(&conf->resync_lock);
1049 conf->barrier--;
1050 conf->nr_waiting--;
1051 wake_up(&conf->wait_barrier);
1052 spin_unlock_irq(&conf->resync_lock);
1053 }
1054
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056 struct md_rdev *rdev)
1057 {
1058 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059 test_bit(R10BIO_Previous, &r10_bio->state))
1060 return rdev->data_offset;
1061 else
1062 return rdev->new_data_offset;
1063 }
1064
1065 struct raid10_plug_cb {
1066 struct blk_plug_cb cb;
1067 struct bio_list pending;
1068 int pending_cnt;
1069 };
1070
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074 cb);
1075 struct mddev *mddev = plug->cb.data;
1076 struct r10conf *conf = mddev->private;
1077 struct bio *bio;
1078
1079 if (from_schedule || current->bio_list) {
1080 spin_lock_irq(&conf->device_lock);
1081 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082 conf->pending_count += plug->pending_cnt;
1083 spin_unlock_irq(&conf->device_lock);
1084 wake_up(&conf->wait_barrier);
1085 md_wakeup_thread(mddev->thread);
1086 kfree(plug);
1087 return;
1088 }
1089
1090 /* we aren't scheduling, so we can do the write-out directly. */
1091 bio = bio_list_get(&plug->pending);
1092 bitmap_unplug(mddev->bitmap);
1093 wake_up(&conf->wait_barrier);
1094
1095 while (bio) { /* submit pending writes */
1096 struct bio *next = bio->bi_next;
1097 struct md_rdev *rdev = (void*)bio->bi_bdev;
1098 bio->bi_next = NULL;
1099 bio->bi_bdev = rdev->bdev;
1100 if (test_bit(Faulty, &rdev->flags)) {
1101 bio->bi_status = BLK_STS_IOERR;
1102 bio_endio(bio);
1103 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1104 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105 /* Just ignore it */
1106 bio_endio(bio);
1107 else
1108 generic_make_request(bio);
1109 bio = next;
1110 }
1111 kfree(plug);
1112 }
1113
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115 struct r10bio *r10_bio)
1116 {
1117 struct r10conf *conf = mddev->private;
1118 struct bio *read_bio;
1119 const int op = bio_op(bio);
1120 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121 int max_sectors;
1122 sector_t sectors;
1123 struct md_rdev *rdev;
1124 char b[BDEVNAME_SIZE];
1125 int slot = r10_bio->read_slot;
1126 struct md_rdev *err_rdev = NULL;
1127 gfp_t gfp = GFP_NOIO;
1128
1129 if (r10_bio->devs[slot].rdev) {
1130 /*
1131 * This is an error retry, but we cannot
1132 * safely dereference the rdev in the r10_bio,
1133 * we must use the one in conf.
1134 * If it has already been disconnected (unlikely)
1135 * we lose the device name in error messages.
1136 */
1137 int disk;
1138 /*
1139 * As we are blocking raid10, it is a little safer to
1140 * use __GFP_HIGH.
1141 */
1142 gfp = GFP_NOIO | __GFP_HIGH;
1143
1144 rcu_read_lock();
1145 disk = r10_bio->devs[slot].devnum;
1146 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147 if (err_rdev)
1148 bdevname(err_rdev->bdev, b);
1149 else {
1150 strcpy(b, "???");
1151 /* This never gets dereferenced */
1152 err_rdev = r10_bio->devs[slot].rdev;
1153 }
1154 rcu_read_unlock();
1155 }
1156 /*
1157 * Register the new request and wait if the reconstruction
1158 * thread has put up a bar for new requests.
1159 * Continue immediately if no resync is active currently.
1160 */
1161 wait_barrier(conf);
1162
1163 sectors = r10_bio->sectors;
1164 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165 bio->bi_iter.bi_sector < conf->reshape_progress &&
1166 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167 /*
1168 * IO spans the reshape position. Need to wait for reshape to
1169 * pass
1170 */
1171 raid10_log(conf->mddev, "wait reshape");
1172 allow_barrier(conf);
1173 wait_event(conf->wait_barrier,
1174 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175 conf->reshape_progress >= bio->bi_iter.bi_sector +
1176 sectors);
1177 wait_barrier(conf);
1178 }
1179
1180 rdev = read_balance(conf, r10_bio, &max_sectors);
1181 if (!rdev) {
1182 if (err_rdev) {
1183 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184 mdname(mddev), b,
1185 (unsigned long long)r10_bio->sector);
1186 }
1187 raid_end_bio_io(r10_bio);
1188 return;
1189 }
1190 if (err_rdev)
1191 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192 mdname(mddev),
1193 bdevname(rdev->bdev, b),
1194 (unsigned long long)r10_bio->sector);
1195 if (max_sectors < bio_sectors(bio)) {
1196 struct bio *split = bio_split(bio, max_sectors,
1197 gfp, conf->bio_split);
1198 bio_chain(split, bio);
1199 generic_make_request(bio);
1200 bio = split;
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1203 }
1204 slot = r10_bio->read_slot;
1205
1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208 r10_bio->devs[slot].bio = read_bio;
1209 r10_bio->devs[slot].rdev = rdev;
1210
1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 choose_data_offset(r10_bio, rdev);
1213 read_bio->bi_bdev = rdev->bdev;
1214 read_bio->bi_end_io = raid10_end_read_request;
1215 bio_set_op_attrs(read_bio, op, do_sync);
1216 if (test_bit(FailFast, &rdev->flags) &&
1217 test_bit(R10BIO_FailFast, &r10_bio->state))
1218 read_bio->bi_opf |= MD_FAILFAST;
1219 read_bio->bi_private = r10_bio;
1220
1221 if (mddev->gendisk)
1222 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223 read_bio, disk_devt(mddev->gendisk),
1224 r10_bio->sector);
1225 generic_make_request(read_bio);
1226 return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
1231 int n_copy)
1232 {
1233 const int op = bio_op(bio);
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 unsigned long flags;
1237 struct blk_plug_cb *cb;
1238 struct raid10_plug_cb *plug = NULL;
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1242 struct bio *mbio;
1243
1244 if (replacement) {
1245 rdev = conf->mirrors[devnum].replacement;
1246 if (rdev == NULL) {
1247 /* Replacement just got moved to main 'rdev' */
1248 smp_mb();
1249 rdev = conf->mirrors[devnum].rdev;
1250 }
1251 } else
1252 rdev = conf->mirrors[devnum].rdev;
1253
1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 if (replacement)
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1257 else
1258 r10_bio->devs[n_copy].bio = mbio;
1259
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
1262 mbio->bi_bdev = rdev->bdev;
1263 mbio->bi_end_io = raid10_end_write_request;
1264 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 if (!replacement && test_bit(FailFast,
1266 &conf->mirrors[devnum].rdev->flags)
1267 && enough(conf, devnum))
1268 mbio->bi_opf |= MD_FAILFAST;
1269 mbio->bi_private = r10_bio;
1270
1271 if (conf->mddev->gendisk)
1272 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273 mbio, disk_devt(conf->mddev->gendisk),
1274 r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
1276 mbio->bi_bdev = (void *)rdev;
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 if (cb)
1282 plug = container_of(cb, struct raid10_plug_cb, cb);
1283 else
1284 plug = NULL;
1285 if (plug) {
1286 bio_list_add(&plug->pending, mbio);
1287 plug->pending_cnt++;
1288 } else {
1289 spin_lock_irqsave(&conf->device_lock, flags);
1290 bio_list_add(&conf->pending_bio_list, mbio);
1291 conf->pending_count++;
1292 spin_unlock_irqrestore(&conf->device_lock, flags);
1293 md_wakeup_thread(mddev->thread);
1294 }
1295 }
1296
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 struct r10bio *r10_bio)
1299 {
1300 struct r10conf *conf = mddev->private;
1301 int i;
1302 struct md_rdev *blocked_rdev;
1303 sector_t sectors;
1304 int max_sectors;
1305
1306 /*
1307 * Register the new request and wait if the reconstruction
1308 * thread has put up a bar for new requests.
1309 * Continue immediately if no resync is active currently.
1310 */
1311 wait_barrier(conf);
1312
1313 sectors = r10_bio->sectors;
1314 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1315 bio->bi_iter.bi_sector < conf->reshape_progress &&
1316 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1317 /*
1318 * IO spans the reshape position. Need to wait for reshape to
1319 * pass
1320 */
1321 raid10_log(conf->mddev, "wait reshape");
1322 allow_barrier(conf);
1323 wait_event(conf->wait_barrier,
1324 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1325 conf->reshape_progress >= bio->bi_iter.bi_sector +
1326 sectors);
1327 wait_barrier(conf);
1328 }
1329
1330 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1331 (mddev->reshape_backwards
1332 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1333 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1334 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1335 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1336 /* Need to update reshape_position in metadata */
1337 mddev->reshape_position = conf->reshape_progress;
1338 set_mask_bits(&mddev->sb_flags, 0,
1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340 md_wakeup_thread(mddev->thread);
1341 raid10_log(conf->mddev, "wait reshape metadata");
1342 wait_event(mddev->sb_wait,
1343 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1344
1345 conf->reshape_safe = mddev->reshape_position;
1346 }
1347
1348 if (conf->pending_count >= max_queued_requests) {
1349 md_wakeup_thread(mddev->thread);
1350 raid10_log(mddev, "wait queued");
1351 wait_event(conf->wait_barrier,
1352 conf->pending_count < max_queued_requests);
1353 }
1354 /* first select target devices under rcu_lock and
1355 * inc refcount on their rdev. Record them by setting
1356 * bios[x] to bio
1357 * If there are known/acknowledged bad blocks on any device
1358 * on which we have seen a write error, we want to avoid
1359 * writing to those blocks. This potentially requires several
1360 * writes to write around the bad blocks. Each set of writes
1361 * gets its own r10_bio with a set of bios attached.
1362 */
1363
1364 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1365 raid10_find_phys(conf, r10_bio);
1366 retry_write:
1367 blocked_rdev = NULL;
1368 rcu_read_lock();
1369 max_sectors = r10_bio->sectors;
1370
1371 for (i = 0; i < conf->copies; i++) {
1372 int d = r10_bio->devs[i].devnum;
1373 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1374 struct md_rdev *rrdev = rcu_dereference(
1375 conf->mirrors[d].replacement);
1376 if (rdev == rrdev)
1377 rrdev = NULL;
1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1379 atomic_inc(&rdev->nr_pending);
1380 blocked_rdev = rdev;
1381 break;
1382 }
1383 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1384 atomic_inc(&rrdev->nr_pending);
1385 blocked_rdev = rrdev;
1386 break;
1387 }
1388 if (rdev && (test_bit(Faulty, &rdev->flags)))
1389 rdev = NULL;
1390 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1391 rrdev = NULL;
1392
1393 r10_bio->devs[i].bio = NULL;
1394 r10_bio->devs[i].repl_bio = NULL;
1395
1396 if (!rdev && !rrdev) {
1397 set_bit(R10BIO_Degraded, &r10_bio->state);
1398 continue;
1399 }
1400 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1401 sector_t first_bad;
1402 sector_t dev_sector = r10_bio->devs[i].addr;
1403 int bad_sectors;
1404 int is_bad;
1405
1406 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1407 &first_bad, &bad_sectors);
1408 if (is_bad < 0) {
1409 /* Mustn't write here until the bad block
1410 * is acknowledged
1411 */
1412 atomic_inc(&rdev->nr_pending);
1413 set_bit(BlockedBadBlocks, &rdev->flags);
1414 blocked_rdev = rdev;
1415 break;
1416 }
1417 if (is_bad && first_bad <= dev_sector) {
1418 /* Cannot write here at all */
1419 bad_sectors -= (dev_sector - first_bad);
1420 if (bad_sectors < max_sectors)
1421 /* Mustn't write more than bad_sectors
1422 * to other devices yet
1423 */
1424 max_sectors = bad_sectors;
1425 /* We don't set R10BIO_Degraded as that
1426 * only applies if the disk is missing,
1427 * so it might be re-added, and we want to
1428 * know to recover this chunk.
1429 * In this case the device is here, and the
1430 * fact that this chunk is not in-sync is
1431 * recorded in the bad block log.
1432 */
1433 continue;
1434 }
1435 if (is_bad) {
1436 int good_sectors = first_bad - dev_sector;
1437 if (good_sectors < max_sectors)
1438 max_sectors = good_sectors;
1439 }
1440 }
1441 if (rdev) {
1442 r10_bio->devs[i].bio = bio;
1443 atomic_inc(&rdev->nr_pending);
1444 }
1445 if (rrdev) {
1446 r10_bio->devs[i].repl_bio = bio;
1447 atomic_inc(&rrdev->nr_pending);
1448 }
1449 }
1450 rcu_read_unlock();
1451
1452 if (unlikely(blocked_rdev)) {
1453 /* Have to wait for this device to get unblocked, then retry */
1454 int j;
1455 int d;
1456
1457 for (j = 0; j < i; j++) {
1458 if (r10_bio->devs[j].bio) {
1459 d = r10_bio->devs[j].devnum;
1460 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1461 }
1462 if (r10_bio->devs[j].repl_bio) {
1463 struct md_rdev *rdev;
1464 d = r10_bio->devs[j].devnum;
1465 rdev = conf->mirrors[d].replacement;
1466 if (!rdev) {
1467 /* Race with remove_disk */
1468 smp_mb();
1469 rdev = conf->mirrors[d].rdev;
1470 }
1471 rdev_dec_pending(rdev, mddev);
1472 }
1473 }
1474 allow_barrier(conf);
1475 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1476 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1477 wait_barrier(conf);
1478 goto retry_write;
1479 }
1480
1481 if (max_sectors < r10_bio->sectors)
1482 r10_bio->sectors = max_sectors;
1483
1484 if (r10_bio->sectors < bio_sectors(bio)) {
1485 struct bio *split = bio_split(bio, r10_bio->sectors,
1486 GFP_NOIO, conf->bio_split);
1487 bio_chain(split, bio);
1488 generic_make_request(bio);
1489 bio = split;
1490 r10_bio->master_bio = bio;
1491 }
1492
1493 atomic_set(&r10_bio->remaining, 1);
1494 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495
1496 for (i = 0; i < conf->copies; i++) {
1497 if (r10_bio->devs[i].bio)
1498 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1499 if (r10_bio->devs[i].repl_bio)
1500 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1501 }
1502 one_write_done(r10_bio);
1503 }
1504
1505 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1506 {
1507 struct r10conf *conf = mddev->private;
1508 struct r10bio *r10_bio;
1509
1510 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1511
1512 r10_bio->master_bio = bio;
1513 r10_bio->sectors = sectors;
1514
1515 r10_bio->mddev = mddev;
1516 r10_bio->sector = bio->bi_iter.bi_sector;
1517 r10_bio->state = 0;
1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1519
1520 if (bio_data_dir(bio) == READ)
1521 raid10_read_request(mddev, bio, r10_bio);
1522 else
1523 raid10_write_request(mddev, bio, r10_bio);
1524 }
1525
1526 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1527 {
1528 struct r10conf *conf = mddev->private;
1529 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1530 int chunk_sects = chunk_mask + 1;
1531 int sectors = bio_sectors(bio);
1532
1533 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1534 md_flush_request(mddev, bio);
1535 return true;
1536 }
1537
1538 if (!md_write_start(mddev, bio))
1539 return false;
1540
1541 /*
1542 * If this request crosses a chunk boundary, we need to split
1543 * it.
1544 */
1545 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1546 sectors > chunk_sects
1547 && (conf->geo.near_copies < conf->geo.raid_disks
1548 || conf->prev.near_copies <
1549 conf->prev.raid_disks)))
1550 sectors = chunk_sects -
1551 (bio->bi_iter.bi_sector &
1552 (chunk_sects - 1));
1553 __make_request(mddev, bio, sectors);
1554
1555 /* In case raid10d snuck in to freeze_array */
1556 wake_up(&conf->wait_barrier);
1557 return true;
1558 }
1559
1560 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1561 {
1562 struct r10conf *conf = mddev->private;
1563 int i;
1564
1565 if (conf->geo.near_copies < conf->geo.raid_disks)
1566 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1567 if (conf->geo.near_copies > 1)
1568 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1569 if (conf->geo.far_copies > 1) {
1570 if (conf->geo.far_offset)
1571 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1572 else
1573 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1574 if (conf->geo.far_set_size != conf->geo.raid_disks)
1575 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1576 }
1577 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1578 conf->geo.raid_disks - mddev->degraded);
1579 rcu_read_lock();
1580 for (i = 0; i < conf->geo.raid_disks; i++) {
1581 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1582 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1583 }
1584 rcu_read_unlock();
1585 seq_printf(seq, "]");
1586 }
1587
1588 /* check if there are enough drives for
1589 * every block to appear on atleast one.
1590 * Don't consider the device numbered 'ignore'
1591 * as we might be about to remove it.
1592 */
1593 static int _enough(struct r10conf *conf, int previous, int ignore)
1594 {
1595 int first = 0;
1596 int has_enough = 0;
1597 int disks, ncopies;
1598 if (previous) {
1599 disks = conf->prev.raid_disks;
1600 ncopies = conf->prev.near_copies;
1601 } else {
1602 disks = conf->geo.raid_disks;
1603 ncopies = conf->geo.near_copies;
1604 }
1605
1606 rcu_read_lock();
1607 do {
1608 int n = conf->copies;
1609 int cnt = 0;
1610 int this = first;
1611 while (n--) {
1612 struct md_rdev *rdev;
1613 if (this != ignore &&
1614 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1615 test_bit(In_sync, &rdev->flags))
1616 cnt++;
1617 this = (this+1) % disks;
1618 }
1619 if (cnt == 0)
1620 goto out;
1621 first = (first + ncopies) % disks;
1622 } while (first != 0);
1623 has_enough = 1;
1624 out:
1625 rcu_read_unlock();
1626 return has_enough;
1627 }
1628
1629 static int enough(struct r10conf *conf, int ignore)
1630 {
1631 /* when calling 'enough', both 'prev' and 'geo' must
1632 * be stable.
1633 * This is ensured if ->reconfig_mutex or ->device_lock
1634 * is held.
1635 */
1636 return _enough(conf, 0, ignore) &&
1637 _enough(conf, 1, ignore);
1638 }
1639
1640 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1641 {
1642 char b[BDEVNAME_SIZE];
1643 struct r10conf *conf = mddev->private;
1644 unsigned long flags;
1645
1646 /*
1647 * If it is not operational, then we have already marked it as dead
1648 * else if it is the last working disks, ignore the error, let the
1649 * next level up know.
1650 * else mark the drive as failed
1651 */
1652 spin_lock_irqsave(&conf->device_lock, flags);
1653 if (test_bit(In_sync, &rdev->flags)
1654 && !enough(conf, rdev->raid_disk)) {
1655 /*
1656 * Don't fail the drive, just return an IO error.
1657 */
1658 spin_unlock_irqrestore(&conf->device_lock, flags);
1659 return;
1660 }
1661 if (test_and_clear_bit(In_sync, &rdev->flags))
1662 mddev->degraded++;
1663 /*
1664 * If recovery is running, make sure it aborts.
1665 */
1666 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1667 set_bit(Blocked, &rdev->flags);
1668 set_bit(Faulty, &rdev->flags);
1669 set_mask_bits(&mddev->sb_flags, 0,
1670 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1671 spin_unlock_irqrestore(&conf->device_lock, flags);
1672 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1673 "md/raid10:%s: Operation continuing on %d devices.\n",
1674 mdname(mddev), bdevname(rdev->bdev, b),
1675 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1676 }
1677
1678 static void print_conf(struct r10conf *conf)
1679 {
1680 int i;
1681 struct md_rdev *rdev;
1682
1683 pr_debug("RAID10 conf printout:\n");
1684 if (!conf) {
1685 pr_debug("(!conf)\n");
1686 return;
1687 }
1688 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1689 conf->geo.raid_disks);
1690
1691 /* This is only called with ->reconfix_mutex held, so
1692 * rcu protection of rdev is not needed */
1693 for (i = 0; i < conf->geo.raid_disks; i++) {
1694 char b[BDEVNAME_SIZE];
1695 rdev = conf->mirrors[i].rdev;
1696 if (rdev)
1697 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1698 i, !test_bit(In_sync, &rdev->flags),
1699 !test_bit(Faulty, &rdev->flags),
1700 bdevname(rdev->bdev,b));
1701 }
1702 }
1703
1704 static void close_sync(struct r10conf *conf)
1705 {
1706 wait_barrier(conf);
1707 allow_barrier(conf);
1708
1709 mempool_destroy(conf->r10buf_pool);
1710 conf->r10buf_pool = NULL;
1711 }
1712
1713 static int raid10_spare_active(struct mddev *mddev)
1714 {
1715 int i;
1716 struct r10conf *conf = mddev->private;
1717 struct raid10_info *tmp;
1718 int count = 0;
1719 unsigned long flags;
1720
1721 /*
1722 * Find all non-in_sync disks within the RAID10 configuration
1723 * and mark them in_sync
1724 */
1725 for (i = 0; i < conf->geo.raid_disks; i++) {
1726 tmp = conf->mirrors + i;
1727 if (tmp->replacement
1728 && tmp->replacement->recovery_offset == MaxSector
1729 && !test_bit(Faulty, &tmp->replacement->flags)
1730 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1731 /* Replacement has just become active */
1732 if (!tmp->rdev
1733 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1734 count++;
1735 if (tmp->rdev) {
1736 /* Replaced device not technically faulty,
1737 * but we need to be sure it gets removed
1738 * and never re-added.
1739 */
1740 set_bit(Faulty, &tmp->rdev->flags);
1741 sysfs_notify_dirent_safe(
1742 tmp->rdev->sysfs_state);
1743 }
1744 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1745 } else if (tmp->rdev
1746 && tmp->rdev->recovery_offset == MaxSector
1747 && !test_bit(Faulty, &tmp->rdev->flags)
1748 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1749 count++;
1750 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1751 }
1752 }
1753 spin_lock_irqsave(&conf->device_lock, flags);
1754 mddev->degraded -= count;
1755 spin_unlock_irqrestore(&conf->device_lock, flags);
1756
1757 print_conf(conf);
1758 return count;
1759 }
1760
1761 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1762 {
1763 struct r10conf *conf = mddev->private;
1764 int err = -EEXIST;
1765 int mirror;
1766 int first = 0;
1767 int last = conf->geo.raid_disks - 1;
1768
1769 if (mddev->recovery_cp < MaxSector)
1770 /* only hot-add to in-sync arrays, as recovery is
1771 * very different from resync
1772 */
1773 return -EBUSY;
1774 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1775 return -EINVAL;
1776
1777 if (md_integrity_add_rdev(rdev, mddev))
1778 return -ENXIO;
1779
1780 if (rdev->raid_disk >= 0)
1781 first = last = rdev->raid_disk;
1782
1783 if (rdev->saved_raid_disk >= first &&
1784 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1785 mirror = rdev->saved_raid_disk;
1786 else
1787 mirror = first;
1788 for ( ; mirror <= last ; mirror++) {
1789 struct raid10_info *p = &conf->mirrors[mirror];
1790 if (p->recovery_disabled == mddev->recovery_disabled)
1791 continue;
1792 if (p->rdev) {
1793 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1794 p->replacement != NULL)
1795 continue;
1796 clear_bit(In_sync, &rdev->flags);
1797 set_bit(Replacement, &rdev->flags);
1798 rdev->raid_disk = mirror;
1799 err = 0;
1800 if (mddev->gendisk)
1801 disk_stack_limits(mddev->gendisk, rdev->bdev,
1802 rdev->data_offset << 9);
1803 conf->fullsync = 1;
1804 rcu_assign_pointer(p->replacement, rdev);
1805 break;
1806 }
1807
1808 if (mddev->gendisk)
1809 disk_stack_limits(mddev->gendisk, rdev->bdev,
1810 rdev->data_offset << 9);
1811
1812 p->head_position = 0;
1813 p->recovery_disabled = mddev->recovery_disabled - 1;
1814 rdev->raid_disk = mirror;
1815 err = 0;
1816 if (rdev->saved_raid_disk != mirror)
1817 conf->fullsync = 1;
1818 rcu_assign_pointer(p->rdev, rdev);
1819 break;
1820 }
1821 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1822 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1823
1824 print_conf(conf);
1825 return err;
1826 }
1827
1828 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1829 {
1830 struct r10conf *conf = mddev->private;
1831 int err = 0;
1832 int number = rdev->raid_disk;
1833 struct md_rdev **rdevp;
1834 struct raid10_info *p = conf->mirrors + number;
1835
1836 print_conf(conf);
1837 if (rdev == p->rdev)
1838 rdevp = &p->rdev;
1839 else if (rdev == p->replacement)
1840 rdevp = &p->replacement;
1841 else
1842 return 0;
1843
1844 if (test_bit(In_sync, &rdev->flags) ||
1845 atomic_read(&rdev->nr_pending)) {
1846 err = -EBUSY;
1847 goto abort;
1848 }
1849 /* Only remove non-faulty devices if recovery
1850 * is not possible.
1851 */
1852 if (!test_bit(Faulty, &rdev->flags) &&
1853 mddev->recovery_disabled != p->recovery_disabled &&
1854 (!p->replacement || p->replacement == rdev) &&
1855 number < conf->geo.raid_disks &&
1856 enough(conf, -1)) {
1857 err = -EBUSY;
1858 goto abort;
1859 }
1860 *rdevp = NULL;
1861 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1862 synchronize_rcu();
1863 if (atomic_read(&rdev->nr_pending)) {
1864 /* lost the race, try later */
1865 err = -EBUSY;
1866 *rdevp = rdev;
1867 goto abort;
1868 }
1869 }
1870 if (p->replacement) {
1871 /* We must have just cleared 'rdev' */
1872 p->rdev = p->replacement;
1873 clear_bit(Replacement, &p->replacement->flags);
1874 smp_mb(); /* Make sure other CPUs may see both as identical
1875 * but will never see neither -- if they are careful.
1876 */
1877 p->replacement = NULL;
1878 }
1879
1880 clear_bit(WantReplacement, &rdev->flags);
1881 err = md_integrity_register(mddev);
1882
1883 abort:
1884
1885 print_conf(conf);
1886 return err;
1887 }
1888
1889 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1890 {
1891 struct r10conf *conf = r10_bio->mddev->private;
1892
1893 if (!bio->bi_status)
1894 set_bit(R10BIO_Uptodate, &r10_bio->state);
1895 else
1896 /* The write handler will notice the lack of
1897 * R10BIO_Uptodate and record any errors etc
1898 */
1899 atomic_add(r10_bio->sectors,
1900 &conf->mirrors[d].rdev->corrected_errors);
1901
1902 /* for reconstruct, we always reschedule after a read.
1903 * for resync, only after all reads
1904 */
1905 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1906 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1907 atomic_dec_and_test(&r10_bio->remaining)) {
1908 /* we have read all the blocks,
1909 * do the comparison in process context in raid10d
1910 */
1911 reschedule_retry(r10_bio);
1912 }
1913 }
1914
1915 static void end_sync_read(struct bio *bio)
1916 {
1917 struct r10bio *r10_bio = get_resync_r10bio(bio);
1918 struct r10conf *conf = r10_bio->mddev->private;
1919 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1920
1921 __end_sync_read(r10_bio, bio, d);
1922 }
1923
1924 static void end_reshape_read(struct bio *bio)
1925 {
1926 /* reshape read bio isn't allocated from r10buf_pool */
1927 struct r10bio *r10_bio = bio->bi_private;
1928
1929 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1930 }
1931
1932 static void end_sync_request(struct r10bio *r10_bio)
1933 {
1934 struct mddev *mddev = r10_bio->mddev;
1935
1936 while (atomic_dec_and_test(&r10_bio->remaining)) {
1937 if (r10_bio->master_bio == NULL) {
1938 /* the primary of several recovery bios */
1939 sector_t s = r10_bio->sectors;
1940 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1941 test_bit(R10BIO_WriteError, &r10_bio->state))
1942 reschedule_retry(r10_bio);
1943 else
1944 put_buf(r10_bio);
1945 md_done_sync(mddev, s, 1);
1946 break;
1947 } else {
1948 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1949 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1950 test_bit(R10BIO_WriteError, &r10_bio->state))
1951 reschedule_retry(r10_bio);
1952 else
1953 put_buf(r10_bio);
1954 r10_bio = r10_bio2;
1955 }
1956 }
1957 }
1958
1959 static void end_sync_write(struct bio *bio)
1960 {
1961 struct r10bio *r10_bio = get_resync_r10bio(bio);
1962 struct mddev *mddev = r10_bio->mddev;
1963 struct r10conf *conf = mddev->private;
1964 int d;
1965 sector_t first_bad;
1966 int bad_sectors;
1967 int slot;
1968 int repl;
1969 struct md_rdev *rdev = NULL;
1970
1971 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1972 if (repl)
1973 rdev = conf->mirrors[d].replacement;
1974 else
1975 rdev = conf->mirrors[d].rdev;
1976
1977 if (bio->bi_status) {
1978 if (repl)
1979 md_error(mddev, rdev);
1980 else {
1981 set_bit(WriteErrorSeen, &rdev->flags);
1982 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1983 set_bit(MD_RECOVERY_NEEDED,
1984 &rdev->mddev->recovery);
1985 set_bit(R10BIO_WriteError, &r10_bio->state);
1986 }
1987 } else if (is_badblock(rdev,
1988 r10_bio->devs[slot].addr,
1989 r10_bio->sectors,
1990 &first_bad, &bad_sectors))
1991 set_bit(R10BIO_MadeGood, &r10_bio->state);
1992
1993 rdev_dec_pending(rdev, mddev);
1994
1995 end_sync_request(r10_bio);
1996 }
1997
1998 /*
1999 * Note: sync and recover and handled very differently for raid10
2000 * This code is for resync.
2001 * For resync, we read through virtual addresses and read all blocks.
2002 * If there is any error, we schedule a write. The lowest numbered
2003 * drive is authoritative.
2004 * However requests come for physical address, so we need to map.
2005 * For every physical address there are raid_disks/copies virtual addresses,
2006 * which is always are least one, but is not necessarly an integer.
2007 * This means that a physical address can span multiple chunks, so we may
2008 * have to submit multiple io requests for a single sync request.
2009 */
2010 /*
2011 * We check if all blocks are in-sync and only write to blocks that
2012 * aren't in sync
2013 */
2014 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2015 {
2016 struct r10conf *conf = mddev->private;
2017 int i, first;
2018 struct bio *tbio, *fbio;
2019 int vcnt;
2020 struct page **tpages, **fpages;
2021
2022 atomic_set(&r10_bio->remaining, 1);
2023
2024 /* find the first device with a block */
2025 for (i=0; i<conf->copies; i++)
2026 if (!r10_bio->devs[i].bio->bi_status)
2027 break;
2028
2029 if (i == conf->copies)
2030 goto done;
2031
2032 first = i;
2033 fbio = r10_bio->devs[i].bio;
2034 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2035 fbio->bi_iter.bi_idx = 0;
2036 fpages = get_resync_pages(fbio)->pages;
2037
2038 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2039 /* now find blocks with errors */
2040 for (i=0 ; i < conf->copies ; i++) {
2041 int j, d;
2042 struct md_rdev *rdev;
2043 struct resync_pages *rp;
2044
2045 tbio = r10_bio->devs[i].bio;
2046
2047 if (tbio->bi_end_io != end_sync_read)
2048 continue;
2049 if (i == first)
2050 continue;
2051
2052 tpages = get_resync_pages(tbio)->pages;
2053 d = r10_bio->devs[i].devnum;
2054 rdev = conf->mirrors[d].rdev;
2055 if (!r10_bio->devs[i].bio->bi_status) {
2056 /* We know that the bi_io_vec layout is the same for
2057 * both 'first' and 'i', so we just compare them.
2058 * All vec entries are PAGE_SIZE;
2059 */
2060 int sectors = r10_bio->sectors;
2061 for (j = 0; j < vcnt; j++) {
2062 int len = PAGE_SIZE;
2063 if (sectors < (len / 512))
2064 len = sectors * 512;
2065 if (memcmp(page_address(fpages[j]),
2066 page_address(tpages[j]),
2067 len))
2068 break;
2069 sectors -= len/512;
2070 }
2071 if (j == vcnt)
2072 continue;
2073 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2074 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2075 /* Don't fix anything. */
2076 continue;
2077 } else if (test_bit(FailFast, &rdev->flags)) {
2078 /* Just give up on this device */
2079 md_error(rdev->mddev, rdev);
2080 continue;
2081 }
2082 /* Ok, we need to write this bio, either to correct an
2083 * inconsistency or to correct an unreadable block.
2084 * First we need to fixup bv_offset, bv_len and
2085 * bi_vecs, as the read request might have corrupted these
2086 */
2087 rp = get_resync_pages(tbio);
2088 bio_reset(tbio);
2089
2090 tbio->bi_vcnt = vcnt;
2091 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2092 rp->raid_bio = r10_bio;
2093 tbio->bi_private = rp;
2094 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2095 tbio->bi_end_io = end_sync_write;
2096 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2097
2098 bio_copy_data(tbio, fbio);
2099
2100 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2101 atomic_inc(&r10_bio->remaining);
2102 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2103
2104 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2105 tbio->bi_opf |= MD_FAILFAST;
2106 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2107 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2108 generic_make_request(tbio);
2109 }
2110
2111 /* Now write out to any replacement devices
2112 * that are active
2113 */
2114 for (i = 0; i < conf->copies; i++) {
2115 int d;
2116
2117 tbio = r10_bio->devs[i].repl_bio;
2118 if (!tbio || !tbio->bi_end_io)
2119 continue;
2120 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2121 && r10_bio->devs[i].bio != fbio)
2122 bio_copy_data(tbio, fbio);
2123 d = r10_bio->devs[i].devnum;
2124 atomic_inc(&r10_bio->remaining);
2125 md_sync_acct(conf->mirrors[d].replacement->bdev,
2126 bio_sectors(tbio));
2127 generic_make_request(tbio);
2128 }
2129
2130 done:
2131 if (atomic_dec_and_test(&r10_bio->remaining)) {
2132 md_done_sync(mddev, r10_bio->sectors, 1);
2133 put_buf(r10_bio);
2134 }
2135 }
2136
2137 /*
2138 * Now for the recovery code.
2139 * Recovery happens across physical sectors.
2140 * We recover all non-is_sync drives by finding the virtual address of
2141 * each, and then choose a working drive that also has that virt address.
2142 * There is a separate r10_bio for each non-in_sync drive.
2143 * Only the first two slots are in use. The first for reading,
2144 * The second for writing.
2145 *
2146 */
2147 static void fix_recovery_read_error(struct r10bio *r10_bio)
2148 {
2149 /* We got a read error during recovery.
2150 * We repeat the read in smaller page-sized sections.
2151 * If a read succeeds, write it to the new device or record
2152 * a bad block if we cannot.
2153 * If a read fails, record a bad block on both old and
2154 * new devices.
2155 */
2156 struct mddev *mddev = r10_bio->mddev;
2157 struct r10conf *conf = mddev->private;
2158 struct bio *bio = r10_bio->devs[0].bio;
2159 sector_t sect = 0;
2160 int sectors = r10_bio->sectors;
2161 int idx = 0;
2162 int dr = r10_bio->devs[0].devnum;
2163 int dw = r10_bio->devs[1].devnum;
2164 struct page **pages = get_resync_pages(bio)->pages;
2165
2166 while (sectors) {
2167 int s = sectors;
2168 struct md_rdev *rdev;
2169 sector_t addr;
2170 int ok;
2171
2172 if (s > (PAGE_SIZE>>9))
2173 s = PAGE_SIZE >> 9;
2174
2175 rdev = conf->mirrors[dr].rdev;
2176 addr = r10_bio->devs[0].addr + sect,
2177 ok = sync_page_io(rdev,
2178 addr,
2179 s << 9,
2180 pages[idx],
2181 REQ_OP_READ, 0, false);
2182 if (ok) {
2183 rdev = conf->mirrors[dw].rdev;
2184 addr = r10_bio->devs[1].addr + sect;
2185 ok = sync_page_io(rdev,
2186 addr,
2187 s << 9,
2188 pages[idx],
2189 REQ_OP_WRITE, 0, false);
2190 if (!ok) {
2191 set_bit(WriteErrorSeen, &rdev->flags);
2192 if (!test_and_set_bit(WantReplacement,
2193 &rdev->flags))
2194 set_bit(MD_RECOVERY_NEEDED,
2195 &rdev->mddev->recovery);
2196 }
2197 }
2198 if (!ok) {
2199 /* We don't worry if we cannot set a bad block -
2200 * it really is bad so there is no loss in not
2201 * recording it yet
2202 */
2203 rdev_set_badblocks(rdev, addr, s, 0);
2204
2205 if (rdev != conf->mirrors[dw].rdev) {
2206 /* need bad block on destination too */
2207 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2208 addr = r10_bio->devs[1].addr + sect;
2209 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2210 if (!ok) {
2211 /* just abort the recovery */
2212 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2213 mdname(mddev));
2214
2215 conf->mirrors[dw].recovery_disabled
2216 = mddev->recovery_disabled;
2217 set_bit(MD_RECOVERY_INTR,
2218 &mddev->recovery);
2219 break;
2220 }
2221 }
2222 }
2223
2224 sectors -= s;
2225 sect += s;
2226 idx++;
2227 }
2228 }
2229
2230 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2231 {
2232 struct r10conf *conf = mddev->private;
2233 int d;
2234 struct bio *wbio, *wbio2;
2235
2236 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2237 fix_recovery_read_error(r10_bio);
2238 end_sync_request(r10_bio);
2239 return;
2240 }
2241
2242 /*
2243 * share the pages with the first bio
2244 * and submit the write request
2245 */
2246 d = r10_bio->devs[1].devnum;
2247 wbio = r10_bio->devs[1].bio;
2248 wbio2 = r10_bio->devs[1].repl_bio;
2249 /* Need to test wbio2->bi_end_io before we call
2250 * generic_make_request as if the former is NULL,
2251 * the latter is free to free wbio2.
2252 */
2253 if (wbio2 && !wbio2->bi_end_io)
2254 wbio2 = NULL;
2255 if (wbio->bi_end_io) {
2256 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258 generic_make_request(wbio);
2259 }
2260 if (wbio2) {
2261 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263 bio_sectors(wbio2));
2264 generic_make_request(wbio2);
2265 }
2266 }
2267
2268 /*
2269 * Used by fix_read_error() to decay the per rdev read_errors.
2270 * We halve the read error count for every hour that has elapsed
2271 * since the last recorded read error.
2272 *
2273 */
2274 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2275 {
2276 long cur_time_mon;
2277 unsigned long hours_since_last;
2278 unsigned int read_errors = atomic_read(&rdev->read_errors);
2279
2280 cur_time_mon = ktime_get_seconds();
2281
2282 if (rdev->last_read_error == 0) {
2283 /* first time we've seen a read error */
2284 rdev->last_read_error = cur_time_mon;
2285 return;
2286 }
2287
2288 hours_since_last = (long)(cur_time_mon -
2289 rdev->last_read_error) / 3600;
2290
2291 rdev->last_read_error = cur_time_mon;
2292
2293 /*
2294 * if hours_since_last is > the number of bits in read_errors
2295 * just set read errors to 0. We do this to avoid
2296 * overflowing the shift of read_errors by hours_since_last.
2297 */
2298 if (hours_since_last >= 8 * sizeof(read_errors))
2299 atomic_set(&rdev->read_errors, 0);
2300 else
2301 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2302 }
2303
2304 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2305 int sectors, struct page *page, int rw)
2306 {
2307 sector_t first_bad;
2308 int bad_sectors;
2309
2310 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2311 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2312 return -1;
2313 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2314 /* success */
2315 return 1;
2316 if (rw == WRITE) {
2317 set_bit(WriteErrorSeen, &rdev->flags);
2318 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319 set_bit(MD_RECOVERY_NEEDED,
2320 &rdev->mddev->recovery);
2321 }
2322 /* need to record an error - either for the block or the device */
2323 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2324 md_error(rdev->mddev, rdev);
2325 return 0;
2326 }
2327
2328 /*
2329 * This is a kernel thread which:
2330 *
2331 * 1. Retries failed read operations on working mirrors.
2332 * 2. Updates the raid superblock when problems encounter.
2333 * 3. Performs writes following reads for array synchronising.
2334 */
2335
2336 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2337 {
2338 int sect = 0; /* Offset from r10_bio->sector */
2339 int sectors = r10_bio->sectors;
2340 struct md_rdev*rdev;
2341 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2342 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2343
2344 /* still own a reference to this rdev, so it cannot
2345 * have been cleared recently.
2346 */
2347 rdev = conf->mirrors[d].rdev;
2348
2349 if (test_bit(Faulty, &rdev->flags))
2350 /* drive has already been failed, just ignore any
2351 more fix_read_error() attempts */
2352 return;
2353
2354 check_decay_read_errors(mddev, rdev);
2355 atomic_inc(&rdev->read_errors);
2356 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2357 char b[BDEVNAME_SIZE];
2358 bdevname(rdev->bdev, b);
2359
2360 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2361 mdname(mddev), b,
2362 atomic_read(&rdev->read_errors), max_read_errors);
2363 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2364 mdname(mddev), b);
2365 md_error(mddev, rdev);
2366 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2367 return;
2368 }
2369
2370 while(sectors) {
2371 int s = sectors;
2372 int sl = r10_bio->read_slot;
2373 int success = 0;
2374 int start;
2375
2376 if (s > (PAGE_SIZE>>9))
2377 s = PAGE_SIZE >> 9;
2378
2379 rcu_read_lock();
2380 do {
2381 sector_t first_bad;
2382 int bad_sectors;
2383
2384 d = r10_bio->devs[sl].devnum;
2385 rdev = rcu_dereference(conf->mirrors[d].rdev);
2386 if (rdev &&
2387 test_bit(In_sync, &rdev->flags) &&
2388 !test_bit(Faulty, &rdev->flags) &&
2389 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2390 &first_bad, &bad_sectors) == 0) {
2391 atomic_inc(&rdev->nr_pending);
2392 rcu_read_unlock();
2393 success = sync_page_io(rdev,
2394 r10_bio->devs[sl].addr +
2395 sect,
2396 s<<9,
2397 conf->tmppage,
2398 REQ_OP_READ, 0, false);
2399 rdev_dec_pending(rdev, mddev);
2400 rcu_read_lock();
2401 if (success)
2402 break;
2403 }
2404 sl++;
2405 if (sl == conf->copies)
2406 sl = 0;
2407 } while (!success && sl != r10_bio->read_slot);
2408 rcu_read_unlock();
2409
2410 if (!success) {
2411 /* Cannot read from anywhere, just mark the block
2412 * as bad on the first device to discourage future
2413 * reads.
2414 */
2415 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2416 rdev = conf->mirrors[dn].rdev;
2417
2418 if (!rdev_set_badblocks(
2419 rdev,
2420 r10_bio->devs[r10_bio->read_slot].addr
2421 + sect,
2422 s, 0)) {
2423 md_error(mddev, rdev);
2424 r10_bio->devs[r10_bio->read_slot].bio
2425 = IO_BLOCKED;
2426 }
2427 break;
2428 }
2429
2430 start = sl;
2431 /* write it back and re-read */
2432 rcu_read_lock();
2433 while (sl != r10_bio->read_slot) {
2434 char b[BDEVNAME_SIZE];
2435
2436 if (sl==0)
2437 sl = conf->copies;
2438 sl--;
2439 d = r10_bio->devs[sl].devnum;
2440 rdev = rcu_dereference(conf->mirrors[d].rdev);
2441 if (!rdev ||
2442 test_bit(Faulty, &rdev->flags) ||
2443 !test_bit(In_sync, &rdev->flags))
2444 continue;
2445
2446 atomic_inc(&rdev->nr_pending);
2447 rcu_read_unlock();
2448 if (r10_sync_page_io(rdev,
2449 r10_bio->devs[sl].addr +
2450 sect,
2451 s, conf->tmppage, WRITE)
2452 == 0) {
2453 /* Well, this device is dead */
2454 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2455 mdname(mddev), s,
2456 (unsigned long long)(
2457 sect +
2458 choose_data_offset(r10_bio,
2459 rdev)),
2460 bdevname(rdev->bdev, b));
2461 pr_notice("md/raid10:%s: %s: failing drive\n",
2462 mdname(mddev),
2463 bdevname(rdev->bdev, b));
2464 }
2465 rdev_dec_pending(rdev, mddev);
2466 rcu_read_lock();
2467 }
2468 sl = start;
2469 while (sl != r10_bio->read_slot) {
2470 char b[BDEVNAME_SIZE];
2471
2472 if (sl==0)
2473 sl = conf->copies;
2474 sl--;
2475 d = r10_bio->devs[sl].devnum;
2476 rdev = rcu_dereference(conf->mirrors[d].rdev);
2477 if (!rdev ||
2478 test_bit(Faulty, &rdev->flags) ||
2479 !test_bit(In_sync, &rdev->flags))
2480 continue;
2481
2482 atomic_inc(&rdev->nr_pending);
2483 rcu_read_unlock();
2484 switch (r10_sync_page_io(rdev,
2485 r10_bio->devs[sl].addr +
2486 sect,
2487 s, conf->tmppage,
2488 READ)) {
2489 case 0:
2490 /* Well, this device is dead */
2491 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2492 mdname(mddev), s,
2493 (unsigned long long)(
2494 sect +
2495 choose_data_offset(r10_bio, rdev)),
2496 bdevname(rdev->bdev, b));
2497 pr_notice("md/raid10:%s: %s: failing drive\n",
2498 mdname(mddev),
2499 bdevname(rdev->bdev, b));
2500 break;
2501 case 1:
2502 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2503 mdname(mddev), s,
2504 (unsigned long long)(
2505 sect +
2506 choose_data_offset(r10_bio, rdev)),
2507 bdevname(rdev->bdev, b));
2508 atomic_add(s, &rdev->corrected_errors);
2509 }
2510
2511 rdev_dec_pending(rdev, mddev);
2512 rcu_read_lock();
2513 }
2514 rcu_read_unlock();
2515
2516 sectors -= s;
2517 sect += s;
2518 }
2519 }
2520
2521 static int narrow_write_error(struct r10bio *r10_bio, int i)
2522 {
2523 struct bio *bio = r10_bio->master_bio;
2524 struct mddev *mddev = r10_bio->mddev;
2525 struct r10conf *conf = mddev->private;
2526 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2527 /* bio has the data to be written to slot 'i' where
2528 * we just recently had a write error.
2529 * We repeatedly clone the bio and trim down to one block,
2530 * then try the write. Where the write fails we record
2531 * a bad block.
2532 * It is conceivable that the bio doesn't exactly align with
2533 * blocks. We must handle this.
2534 *
2535 * We currently own a reference to the rdev.
2536 */
2537
2538 int block_sectors;
2539 sector_t sector;
2540 int sectors;
2541 int sect_to_write = r10_bio->sectors;
2542 int ok = 1;
2543
2544 if (rdev->badblocks.shift < 0)
2545 return 0;
2546
2547 block_sectors = roundup(1 << rdev->badblocks.shift,
2548 bdev_logical_block_size(rdev->bdev) >> 9);
2549 sector = r10_bio->sector;
2550 sectors = ((r10_bio->sector + block_sectors)
2551 & ~(sector_t)(block_sectors - 1))
2552 - sector;
2553
2554 while (sect_to_write) {
2555 struct bio *wbio;
2556 sector_t wsector;
2557 if (sectors > sect_to_write)
2558 sectors = sect_to_write;
2559 /* Write at 'sector' for 'sectors' */
2560 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2561 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2562 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2563 wbio->bi_iter.bi_sector = wsector +
2564 choose_data_offset(r10_bio, rdev);
2565 wbio->bi_bdev = rdev->bdev;
2566 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2567
2568 if (submit_bio_wait(wbio) < 0)
2569 /* Failure! */
2570 ok = rdev_set_badblocks(rdev, wsector,
2571 sectors, 0)
2572 && ok;
2573
2574 bio_put(wbio);
2575 sect_to_write -= sectors;
2576 sector += sectors;
2577 sectors = block_sectors;
2578 }
2579 return ok;
2580 }
2581
2582 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2583 {
2584 int slot = r10_bio->read_slot;
2585 struct bio *bio;
2586 struct r10conf *conf = mddev->private;
2587 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2588 dev_t bio_dev;
2589 sector_t bio_last_sector;
2590
2591 /* we got a read error. Maybe the drive is bad. Maybe just
2592 * the block and we can fix it.
2593 * We freeze all other IO, and try reading the block from
2594 * other devices. When we find one, we re-write
2595 * and check it that fixes the read error.
2596 * This is all done synchronously while the array is
2597 * frozen.
2598 */
2599 bio = r10_bio->devs[slot].bio;
2600 bio_dev = bio->bi_bdev->bd_dev;
2601 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2602 bio_put(bio);
2603 r10_bio->devs[slot].bio = NULL;
2604
2605 if (mddev->ro)
2606 r10_bio->devs[slot].bio = IO_BLOCKED;
2607 else if (!test_bit(FailFast, &rdev->flags)) {
2608 freeze_array(conf, 1);
2609 fix_read_error(conf, mddev, r10_bio);
2610 unfreeze_array(conf);
2611 } else
2612 md_error(mddev, rdev);
2613
2614 rdev_dec_pending(rdev, mddev);
2615 allow_barrier(conf);
2616 r10_bio->state = 0;
2617 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2618 }
2619
2620 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2621 {
2622 /* Some sort of write request has finished and it
2623 * succeeded in writing where we thought there was a
2624 * bad block. So forget the bad block.
2625 * Or possibly if failed and we need to record
2626 * a bad block.
2627 */
2628 int m;
2629 struct md_rdev *rdev;
2630
2631 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2632 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2633 for (m = 0; m < conf->copies; m++) {
2634 int dev = r10_bio->devs[m].devnum;
2635 rdev = conf->mirrors[dev].rdev;
2636 if (r10_bio->devs[m].bio == NULL)
2637 continue;
2638 if (!r10_bio->devs[m].bio->bi_status) {
2639 rdev_clear_badblocks(
2640 rdev,
2641 r10_bio->devs[m].addr,
2642 r10_bio->sectors, 0);
2643 } else {
2644 if (!rdev_set_badblocks(
2645 rdev,
2646 r10_bio->devs[m].addr,
2647 r10_bio->sectors, 0))
2648 md_error(conf->mddev, rdev);
2649 }
2650 rdev = conf->mirrors[dev].replacement;
2651 if (r10_bio->devs[m].repl_bio == NULL)
2652 continue;
2653
2654 if (!r10_bio->devs[m].repl_bio->bi_status) {
2655 rdev_clear_badblocks(
2656 rdev,
2657 r10_bio->devs[m].addr,
2658 r10_bio->sectors, 0);
2659 } else {
2660 if (!rdev_set_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
2663 r10_bio->sectors, 0))
2664 md_error(conf->mddev, rdev);
2665 }
2666 }
2667 put_buf(r10_bio);
2668 } else {
2669 bool fail = false;
2670 for (m = 0; m < conf->copies; m++) {
2671 int dev = r10_bio->devs[m].devnum;
2672 struct bio *bio = r10_bio->devs[m].bio;
2673 rdev = conf->mirrors[dev].rdev;
2674 if (bio == IO_MADE_GOOD) {
2675 rdev_clear_badblocks(
2676 rdev,
2677 r10_bio->devs[m].addr,
2678 r10_bio->sectors, 0);
2679 rdev_dec_pending(rdev, conf->mddev);
2680 } else if (bio != NULL && bio->bi_status) {
2681 fail = true;
2682 if (!narrow_write_error(r10_bio, m)) {
2683 md_error(conf->mddev, rdev);
2684 set_bit(R10BIO_Degraded,
2685 &r10_bio->state);
2686 }
2687 rdev_dec_pending(rdev, conf->mddev);
2688 }
2689 bio = r10_bio->devs[m].repl_bio;
2690 rdev = conf->mirrors[dev].replacement;
2691 if (rdev && bio == IO_MADE_GOOD) {
2692 rdev_clear_badblocks(
2693 rdev,
2694 r10_bio->devs[m].addr,
2695 r10_bio->sectors, 0);
2696 rdev_dec_pending(rdev, conf->mddev);
2697 }
2698 }
2699 if (fail) {
2700 spin_lock_irq(&conf->device_lock);
2701 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2702 conf->nr_queued++;
2703 spin_unlock_irq(&conf->device_lock);
2704 /*
2705 * In case freeze_array() is waiting for condition
2706 * nr_pending == nr_queued + extra to be true.
2707 */
2708 wake_up(&conf->wait_barrier);
2709 md_wakeup_thread(conf->mddev->thread);
2710 } else {
2711 if (test_bit(R10BIO_WriteError,
2712 &r10_bio->state))
2713 close_write(r10_bio);
2714 raid_end_bio_io(r10_bio);
2715 }
2716 }
2717 }
2718
2719 static void raid10d(struct md_thread *thread)
2720 {
2721 struct mddev *mddev = thread->mddev;
2722 struct r10bio *r10_bio;
2723 unsigned long flags;
2724 struct r10conf *conf = mddev->private;
2725 struct list_head *head = &conf->retry_list;
2726 struct blk_plug plug;
2727
2728 md_check_recovery(mddev);
2729
2730 if (!list_empty_careful(&conf->bio_end_io_list) &&
2731 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2732 LIST_HEAD(tmp);
2733 spin_lock_irqsave(&conf->device_lock, flags);
2734 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2735 while (!list_empty(&conf->bio_end_io_list)) {
2736 list_move(conf->bio_end_io_list.prev, &tmp);
2737 conf->nr_queued--;
2738 }
2739 }
2740 spin_unlock_irqrestore(&conf->device_lock, flags);
2741 while (!list_empty(&tmp)) {
2742 r10_bio = list_first_entry(&tmp, struct r10bio,
2743 retry_list);
2744 list_del(&r10_bio->retry_list);
2745 if (mddev->degraded)
2746 set_bit(R10BIO_Degraded, &r10_bio->state);
2747
2748 if (test_bit(R10BIO_WriteError,
2749 &r10_bio->state))
2750 close_write(r10_bio);
2751 raid_end_bio_io(r10_bio);
2752 }
2753 }
2754
2755 blk_start_plug(&plug);
2756 for (;;) {
2757
2758 flush_pending_writes(conf);
2759
2760 spin_lock_irqsave(&conf->device_lock, flags);
2761 if (list_empty(head)) {
2762 spin_unlock_irqrestore(&conf->device_lock, flags);
2763 break;
2764 }
2765 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766 list_del(head->prev);
2767 conf->nr_queued--;
2768 spin_unlock_irqrestore(&conf->device_lock, flags);
2769
2770 mddev = r10_bio->mddev;
2771 conf = mddev->private;
2772 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773 test_bit(R10BIO_WriteError, &r10_bio->state))
2774 handle_write_completed(conf, r10_bio);
2775 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776 reshape_request_write(mddev, r10_bio);
2777 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778 sync_request_write(mddev, r10_bio);
2779 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780 recovery_request_write(mddev, r10_bio);
2781 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782 handle_read_error(mddev, r10_bio);
2783 else
2784 WARN_ON_ONCE(1);
2785
2786 cond_resched();
2787 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2788 md_check_recovery(mddev);
2789 }
2790 blk_finish_plug(&plug);
2791 }
2792
2793 static int init_resync(struct r10conf *conf)
2794 {
2795 int buffs;
2796 int i;
2797
2798 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2799 BUG_ON(conf->r10buf_pool);
2800 conf->have_replacement = 0;
2801 for (i = 0; i < conf->geo.raid_disks; i++)
2802 if (conf->mirrors[i].replacement)
2803 conf->have_replacement = 1;
2804 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2805 if (!conf->r10buf_pool)
2806 return -ENOMEM;
2807 conf->next_resync = 0;
2808 return 0;
2809 }
2810
2811 /*
2812 * perform a "sync" on one "block"
2813 *
2814 * We need to make sure that no normal I/O request - particularly write
2815 * requests - conflict with active sync requests.
2816 *
2817 * This is achieved by tracking pending requests and a 'barrier' concept
2818 * that can be installed to exclude normal IO requests.
2819 *
2820 * Resync and recovery are handled very differently.
2821 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2822 *
2823 * For resync, we iterate over virtual addresses, read all copies,
2824 * and update if there are differences. If only one copy is live,
2825 * skip it.
2826 * For recovery, we iterate over physical addresses, read a good
2827 * value for each non-in_sync drive, and over-write.
2828 *
2829 * So, for recovery we may have several outstanding complex requests for a
2830 * given address, one for each out-of-sync device. We model this by allocating
2831 * a number of r10_bio structures, one for each out-of-sync device.
2832 * As we setup these structures, we collect all bio's together into a list
2833 * which we then process collectively to add pages, and then process again
2834 * to pass to generic_make_request.
2835 *
2836 * The r10_bio structures are linked using a borrowed master_bio pointer.
2837 * This link is counted in ->remaining. When the r10_bio that points to NULL
2838 * has its remaining count decremented to 0, the whole complex operation
2839 * is complete.
2840 *
2841 */
2842
2843 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2844 int *skipped)
2845 {
2846 struct r10conf *conf = mddev->private;
2847 struct r10bio *r10_bio;
2848 struct bio *biolist = NULL, *bio;
2849 sector_t max_sector, nr_sectors;
2850 int i;
2851 int max_sync;
2852 sector_t sync_blocks;
2853 sector_t sectors_skipped = 0;
2854 int chunks_skipped = 0;
2855 sector_t chunk_mask = conf->geo.chunk_mask;
2856
2857 if (!conf->r10buf_pool)
2858 if (init_resync(conf))
2859 return 0;
2860
2861 /*
2862 * Allow skipping a full rebuild for incremental assembly
2863 * of a clean array, like RAID1 does.
2864 */
2865 if (mddev->bitmap == NULL &&
2866 mddev->recovery_cp == MaxSector &&
2867 mddev->reshape_position == MaxSector &&
2868 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2869 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2870 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2871 conf->fullsync == 0) {
2872 *skipped = 1;
2873 return mddev->dev_sectors - sector_nr;
2874 }
2875
2876 skipped:
2877 max_sector = mddev->dev_sectors;
2878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2879 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2880 max_sector = mddev->resync_max_sectors;
2881 if (sector_nr >= max_sector) {
2882 /* If we aborted, we need to abort the
2883 * sync on the 'current' bitmap chucks (there can
2884 * be several when recovering multiple devices).
2885 * as we may have started syncing it but not finished.
2886 * We can find the current address in
2887 * mddev->curr_resync, but for recovery,
2888 * we need to convert that to several
2889 * virtual addresses.
2890 */
2891 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2892 end_reshape(conf);
2893 close_sync(conf);
2894 return 0;
2895 }
2896
2897 if (mddev->curr_resync < max_sector) { /* aborted */
2898 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2899 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2900 &sync_blocks, 1);
2901 else for (i = 0; i < conf->geo.raid_disks; i++) {
2902 sector_t sect =
2903 raid10_find_virt(conf, mddev->curr_resync, i);
2904 bitmap_end_sync(mddev->bitmap, sect,
2905 &sync_blocks, 1);
2906 }
2907 } else {
2908 /* completed sync */
2909 if ((!mddev->bitmap || conf->fullsync)
2910 && conf->have_replacement
2911 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2912 /* Completed a full sync so the replacements
2913 * are now fully recovered.
2914 */
2915 rcu_read_lock();
2916 for (i = 0; i < conf->geo.raid_disks; i++) {
2917 struct md_rdev *rdev =
2918 rcu_dereference(conf->mirrors[i].replacement);
2919 if (rdev)
2920 rdev->recovery_offset = MaxSector;
2921 }
2922 rcu_read_unlock();
2923 }
2924 conf->fullsync = 0;
2925 }
2926 bitmap_close_sync(mddev->bitmap);
2927 close_sync(conf);
2928 *skipped = 1;
2929 return sectors_skipped;
2930 }
2931
2932 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2933 return reshape_request(mddev, sector_nr, skipped);
2934
2935 if (chunks_skipped >= conf->geo.raid_disks) {
2936 /* if there has been nothing to do on any drive,
2937 * then there is nothing to do at all..
2938 */
2939 *skipped = 1;
2940 return (max_sector - sector_nr) + sectors_skipped;
2941 }
2942
2943 if (max_sector > mddev->resync_max)
2944 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2945
2946 /* make sure whole request will fit in a chunk - if chunks
2947 * are meaningful
2948 */
2949 if (conf->geo.near_copies < conf->geo.raid_disks &&
2950 max_sector > (sector_nr | chunk_mask))
2951 max_sector = (sector_nr | chunk_mask) + 1;
2952
2953 /*
2954 * If there is non-resync activity waiting for a turn, then let it
2955 * though before starting on this new sync request.
2956 */
2957 if (conf->nr_waiting)
2958 schedule_timeout_uninterruptible(1);
2959
2960 /* Again, very different code for resync and recovery.
2961 * Both must result in an r10bio with a list of bios that
2962 * have bi_end_io, bi_sector, bi_bdev set,
2963 * and bi_private set to the r10bio.
2964 * For recovery, we may actually create several r10bios
2965 * with 2 bios in each, that correspond to the bios in the main one.
2966 * In this case, the subordinate r10bios link back through a
2967 * borrowed master_bio pointer, and the counter in the master
2968 * includes a ref from each subordinate.
2969 */
2970 /* First, we decide what to do and set ->bi_end_io
2971 * To end_sync_read if we want to read, and
2972 * end_sync_write if we will want to write.
2973 */
2974
2975 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2976 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2977 /* recovery... the complicated one */
2978 int j;
2979 r10_bio = NULL;
2980
2981 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2982 int still_degraded;
2983 struct r10bio *rb2;
2984 sector_t sect;
2985 int must_sync;
2986 int any_working;
2987 struct raid10_info *mirror = &conf->mirrors[i];
2988 struct md_rdev *mrdev, *mreplace;
2989
2990 rcu_read_lock();
2991 mrdev = rcu_dereference(mirror->rdev);
2992 mreplace = rcu_dereference(mirror->replacement);
2993
2994 if ((mrdev == NULL ||
2995 test_bit(Faulty, &mrdev->flags) ||
2996 test_bit(In_sync, &mrdev->flags)) &&
2997 (mreplace == NULL ||
2998 test_bit(Faulty, &mreplace->flags))) {
2999 rcu_read_unlock();
3000 continue;
3001 }
3002
3003 still_degraded = 0;
3004 /* want to reconstruct this device */
3005 rb2 = r10_bio;
3006 sect = raid10_find_virt(conf, sector_nr, i);
3007 if (sect >= mddev->resync_max_sectors) {
3008 /* last stripe is not complete - don't
3009 * try to recover this sector.
3010 */
3011 rcu_read_unlock();
3012 continue;
3013 }
3014 if (mreplace && test_bit(Faulty, &mreplace->flags))
3015 mreplace = NULL;
3016 /* Unless we are doing a full sync, or a replacement
3017 * we only need to recover the block if it is set in
3018 * the bitmap
3019 */
3020 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3021 &sync_blocks, 1);
3022 if (sync_blocks < max_sync)
3023 max_sync = sync_blocks;
3024 if (!must_sync &&
3025 mreplace == NULL &&
3026 !conf->fullsync) {
3027 /* yep, skip the sync_blocks here, but don't assume
3028 * that there will never be anything to do here
3029 */
3030 chunks_skipped = -1;
3031 rcu_read_unlock();
3032 continue;
3033 }
3034 atomic_inc(&mrdev->nr_pending);
3035 if (mreplace)
3036 atomic_inc(&mreplace->nr_pending);
3037 rcu_read_unlock();
3038
3039 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3040 r10_bio->state = 0;
3041 raise_barrier(conf, rb2 != NULL);
3042 atomic_set(&r10_bio->remaining, 0);
3043
3044 r10_bio->master_bio = (struct bio*)rb2;
3045 if (rb2)
3046 atomic_inc(&rb2->remaining);
3047 r10_bio->mddev = mddev;
3048 set_bit(R10BIO_IsRecover, &r10_bio->state);
3049 r10_bio->sector = sect;
3050
3051 raid10_find_phys(conf, r10_bio);
3052
3053 /* Need to check if the array will still be
3054 * degraded
3055 */
3056 rcu_read_lock();
3057 for (j = 0; j < conf->geo.raid_disks; j++) {
3058 struct md_rdev *rdev = rcu_dereference(
3059 conf->mirrors[j].rdev);
3060 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3061 still_degraded = 1;
3062 break;
3063 }
3064 }
3065
3066 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3067 &sync_blocks, still_degraded);
3068
3069 any_working = 0;
3070 for (j=0; j<conf->copies;j++) {
3071 int k;
3072 int d = r10_bio->devs[j].devnum;
3073 sector_t from_addr, to_addr;
3074 struct md_rdev *rdev =
3075 rcu_dereference(conf->mirrors[d].rdev);
3076 sector_t sector, first_bad;
3077 int bad_sectors;
3078 if (!rdev ||
3079 !test_bit(In_sync, &rdev->flags))
3080 continue;
3081 /* This is where we read from */
3082 any_working = 1;
3083 sector = r10_bio->devs[j].addr;
3084
3085 if (is_badblock(rdev, sector, max_sync,
3086 &first_bad, &bad_sectors)) {
3087 if (first_bad > sector)
3088 max_sync = first_bad - sector;
3089 else {
3090 bad_sectors -= (sector
3091 - first_bad);
3092 if (max_sync > bad_sectors)
3093 max_sync = bad_sectors;
3094 continue;
3095 }
3096 }
3097 bio = r10_bio->devs[0].bio;
3098 bio->bi_next = biolist;
3099 biolist = bio;
3100 bio->bi_end_io = end_sync_read;
3101 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3102 if (test_bit(FailFast, &rdev->flags))
3103 bio->bi_opf |= MD_FAILFAST;
3104 from_addr = r10_bio->devs[j].addr;
3105 bio->bi_iter.bi_sector = from_addr +
3106 rdev->data_offset;
3107 bio->bi_bdev = rdev->bdev;
3108 atomic_inc(&rdev->nr_pending);
3109 /* and we write to 'i' (if not in_sync) */
3110
3111 for (k=0; k<conf->copies; k++)
3112 if (r10_bio->devs[k].devnum == i)
3113 break;
3114 BUG_ON(k == conf->copies);
3115 to_addr = r10_bio->devs[k].addr;
3116 r10_bio->devs[0].devnum = d;
3117 r10_bio->devs[0].addr = from_addr;
3118 r10_bio->devs[1].devnum = i;
3119 r10_bio->devs[1].addr = to_addr;
3120
3121 if (!test_bit(In_sync, &mrdev->flags)) {
3122 bio = r10_bio->devs[1].bio;
3123 bio->bi_next = biolist;
3124 biolist = bio;
3125 bio->bi_end_io = end_sync_write;
3126 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3127 bio->bi_iter.bi_sector = to_addr
3128 + mrdev->data_offset;
3129 bio->bi_bdev = mrdev->bdev;
3130 atomic_inc(&r10_bio->remaining);
3131 } else
3132 r10_bio->devs[1].bio->bi_end_io = NULL;
3133
3134 /* and maybe write to replacement */
3135 bio = r10_bio->devs[1].repl_bio;
3136 if (bio)
3137 bio->bi_end_io = NULL;
3138 /* Note: if mreplace != NULL, then bio
3139 * cannot be NULL as r10buf_pool_alloc will
3140 * have allocated it.
3141 * So the second test here is pointless.
3142 * But it keeps semantic-checkers happy, and
3143 * this comment keeps human reviewers
3144 * happy.
3145 */
3146 if (mreplace == NULL || bio == NULL ||
3147 test_bit(Faulty, &mreplace->flags))
3148 break;
3149 bio->bi_next = biolist;
3150 biolist = bio;
3151 bio->bi_end_io = end_sync_write;
3152 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3153 bio->bi_iter.bi_sector = to_addr +
3154 mreplace->data_offset;
3155 bio->bi_bdev = mreplace->bdev;
3156 atomic_inc(&r10_bio->remaining);
3157 break;
3158 }
3159 rcu_read_unlock();
3160 if (j == conf->copies) {
3161 /* Cannot recover, so abort the recovery or
3162 * record a bad block */
3163 if (any_working) {
3164 /* problem is that there are bad blocks
3165 * on other device(s)
3166 */
3167 int k;
3168 for (k = 0; k < conf->copies; k++)
3169 if (r10_bio->devs[k].devnum == i)
3170 break;
3171 if (!test_bit(In_sync,
3172 &mrdev->flags)
3173 && !rdev_set_badblocks(
3174 mrdev,
3175 r10_bio->devs[k].addr,
3176 max_sync, 0))
3177 any_working = 0;
3178 if (mreplace &&
3179 !rdev_set_badblocks(
3180 mreplace,
3181 r10_bio->devs[k].addr,
3182 max_sync, 0))
3183 any_working = 0;
3184 }
3185 if (!any_working) {
3186 if (!test_and_set_bit(MD_RECOVERY_INTR,
3187 &mddev->recovery))
3188 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3189 mdname(mddev));
3190 mirror->recovery_disabled
3191 = mddev->recovery_disabled;
3192 }
3193 put_buf(r10_bio);
3194 if (rb2)
3195 atomic_dec(&rb2->remaining);
3196 r10_bio = rb2;
3197 rdev_dec_pending(mrdev, mddev);
3198 if (mreplace)
3199 rdev_dec_pending(mreplace, mddev);
3200 break;
3201 }
3202 rdev_dec_pending(mrdev, mddev);
3203 if (mreplace)
3204 rdev_dec_pending(mreplace, mddev);
3205 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3206 /* Only want this if there is elsewhere to
3207 * read from. 'j' is currently the first
3208 * readable copy.
3209 */
3210 int targets = 1;
3211 for (; j < conf->copies; j++) {
3212 int d = r10_bio->devs[j].devnum;
3213 if (conf->mirrors[d].rdev &&
3214 test_bit(In_sync,
3215 &conf->mirrors[d].rdev->flags))
3216 targets++;
3217 }
3218 if (targets == 1)
3219 r10_bio->devs[0].bio->bi_opf
3220 &= ~MD_FAILFAST;
3221 }
3222 }
3223 if (biolist == NULL) {
3224 while (r10_bio) {
3225 struct r10bio *rb2 = r10_bio;
3226 r10_bio = (struct r10bio*) rb2->master_bio;
3227 rb2->master_bio = NULL;
3228 put_buf(rb2);
3229 }
3230 goto giveup;
3231 }
3232 } else {
3233 /* resync. Schedule a read for every block at this virt offset */
3234 int count = 0;
3235
3236 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3237
3238 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3239 &sync_blocks, mddev->degraded) &&
3240 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3241 &mddev->recovery)) {
3242 /* We can skip this block */
3243 *skipped = 1;
3244 return sync_blocks + sectors_skipped;
3245 }
3246 if (sync_blocks < max_sync)
3247 max_sync = sync_blocks;
3248 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3249 r10_bio->state = 0;
3250
3251 r10_bio->mddev = mddev;
3252 atomic_set(&r10_bio->remaining, 0);
3253 raise_barrier(conf, 0);
3254 conf->next_resync = sector_nr;
3255
3256 r10_bio->master_bio = NULL;
3257 r10_bio->sector = sector_nr;
3258 set_bit(R10BIO_IsSync, &r10_bio->state);
3259 raid10_find_phys(conf, r10_bio);
3260 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3261
3262 for (i = 0; i < conf->copies; i++) {
3263 int d = r10_bio->devs[i].devnum;
3264 sector_t first_bad, sector;
3265 int bad_sectors;
3266 struct md_rdev *rdev;
3267
3268 if (r10_bio->devs[i].repl_bio)
3269 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3270
3271 bio = r10_bio->devs[i].bio;
3272 bio->bi_status = BLK_STS_IOERR;
3273 rcu_read_lock();
3274 rdev = rcu_dereference(conf->mirrors[d].rdev);
3275 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3276 rcu_read_unlock();
3277 continue;
3278 }
3279 sector = r10_bio->devs[i].addr;
3280 if (is_badblock(rdev, sector, max_sync,
3281 &first_bad, &bad_sectors)) {
3282 if (first_bad > sector)
3283 max_sync = first_bad - sector;
3284 else {
3285 bad_sectors -= (sector - first_bad);
3286 if (max_sync > bad_sectors)
3287 max_sync = bad_sectors;
3288 rcu_read_unlock();
3289 continue;
3290 }
3291 }
3292 atomic_inc(&rdev->nr_pending);
3293 atomic_inc(&r10_bio->remaining);
3294 bio->bi_next = biolist;
3295 biolist = bio;
3296 bio->bi_end_io = end_sync_read;
3297 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3298 if (test_bit(FailFast, &rdev->flags))
3299 bio->bi_opf |= MD_FAILFAST;
3300 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3301 bio->bi_bdev = rdev->bdev;
3302 count++;
3303
3304 rdev = rcu_dereference(conf->mirrors[d].replacement);
3305 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3306 rcu_read_unlock();
3307 continue;
3308 }
3309 atomic_inc(&rdev->nr_pending);
3310
3311 /* Need to set up for writing to the replacement */
3312 bio = r10_bio->devs[i].repl_bio;
3313 bio->bi_status = BLK_STS_IOERR;
3314
3315 sector = r10_bio->devs[i].addr;
3316 bio->bi_next = biolist;
3317 biolist = bio;
3318 bio->bi_end_io = end_sync_write;
3319 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3320 if (test_bit(FailFast, &rdev->flags))
3321 bio->bi_opf |= MD_FAILFAST;
3322 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3323 bio->bi_bdev = rdev->bdev;
3324 count++;
3325 rcu_read_unlock();
3326 }
3327
3328 if (count < 2) {
3329 for (i=0; i<conf->copies; i++) {
3330 int d = r10_bio->devs[i].devnum;
3331 if (r10_bio->devs[i].bio->bi_end_io)
3332 rdev_dec_pending(conf->mirrors[d].rdev,
3333 mddev);
3334 if (r10_bio->devs[i].repl_bio &&
3335 r10_bio->devs[i].repl_bio->bi_end_io)
3336 rdev_dec_pending(
3337 conf->mirrors[d].replacement,
3338 mddev);
3339 }
3340 put_buf(r10_bio);
3341 biolist = NULL;
3342 goto giveup;
3343 }
3344 }
3345
3346 nr_sectors = 0;
3347 if (sector_nr + max_sync < max_sector)
3348 max_sector = sector_nr + max_sync;
3349 do {
3350 struct page *page;
3351 int len = PAGE_SIZE;
3352 if (sector_nr + (len>>9) > max_sector)
3353 len = (max_sector - sector_nr) << 9;
3354 if (len == 0)
3355 break;
3356 for (bio= biolist ; bio ; bio=bio->bi_next) {
3357 struct resync_pages *rp = get_resync_pages(bio);
3358 page = resync_fetch_page(rp, rp->idx++);
3359 /*
3360 * won't fail because the vec table is big enough
3361 * to hold all these pages
3362 */
3363 bio_add_page(bio, page, len, 0);
3364 }
3365 nr_sectors += len>>9;
3366 sector_nr += len>>9;
3367 } while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3368 r10_bio->sectors = nr_sectors;
3369
3370 while (biolist) {
3371 bio = biolist;
3372 biolist = biolist->bi_next;
3373
3374 bio->bi_next = NULL;
3375 r10_bio = get_resync_r10bio(bio);
3376 r10_bio->sectors = nr_sectors;
3377
3378 if (bio->bi_end_io == end_sync_read) {
3379 md_sync_acct(bio->bi_bdev, nr_sectors);
3380 bio->bi_status = 0;
3381 generic_make_request(bio);
3382 }
3383 }
3384
3385 if (sectors_skipped)
3386 /* pretend they weren't skipped, it makes
3387 * no important difference in this case
3388 */
3389 md_done_sync(mddev, sectors_skipped, 1);
3390
3391 return sectors_skipped + nr_sectors;
3392 giveup:
3393 /* There is nowhere to write, so all non-sync
3394 * drives must be failed or in resync, all drives
3395 * have a bad block, so try the next chunk...
3396 */
3397 if (sector_nr + max_sync < max_sector)
3398 max_sector = sector_nr + max_sync;
3399
3400 sectors_skipped += (max_sector - sector_nr);
3401 chunks_skipped ++;
3402 sector_nr = max_sector;
3403 goto skipped;
3404 }
3405
3406 static sector_t
3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3408 {
3409 sector_t size;
3410 struct r10conf *conf = mddev->private;
3411
3412 if (!raid_disks)
3413 raid_disks = min(conf->geo.raid_disks,
3414 conf->prev.raid_disks);
3415 if (!sectors)
3416 sectors = conf->dev_sectors;
3417
3418 size = sectors >> conf->geo.chunk_shift;
3419 sector_div(size, conf->geo.far_copies);
3420 size = size * raid_disks;
3421 sector_div(size, conf->geo.near_copies);
3422
3423 return size << conf->geo.chunk_shift;
3424 }
3425
3426 static void calc_sectors(struct r10conf *conf, sector_t size)
3427 {
3428 /* Calculate the number of sectors-per-device that will
3429 * actually be used, and set conf->dev_sectors and
3430 * conf->stride
3431 */
3432
3433 size = size >> conf->geo.chunk_shift;
3434 sector_div(size, conf->geo.far_copies);
3435 size = size * conf->geo.raid_disks;
3436 sector_div(size, conf->geo.near_copies);
3437 /* 'size' is now the number of chunks in the array */
3438 /* calculate "used chunks per device" */
3439 size = size * conf->copies;
3440
3441 /* We need to round up when dividing by raid_disks to
3442 * get the stride size.
3443 */
3444 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3445
3446 conf->dev_sectors = size << conf->geo.chunk_shift;
3447
3448 if (conf->geo.far_offset)
3449 conf->geo.stride = 1 << conf->geo.chunk_shift;
3450 else {
3451 sector_div(size, conf->geo.far_copies);
3452 conf->geo.stride = size << conf->geo.chunk_shift;
3453 }
3454 }
3455
3456 enum geo_type {geo_new, geo_old, geo_start};
3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3458 {
3459 int nc, fc, fo;
3460 int layout, chunk, disks;
3461 switch (new) {
3462 case geo_old:
3463 layout = mddev->layout;
3464 chunk = mddev->chunk_sectors;
3465 disks = mddev->raid_disks - mddev->delta_disks;
3466 break;
3467 case geo_new:
3468 layout = mddev->new_layout;
3469 chunk = mddev->new_chunk_sectors;
3470 disks = mddev->raid_disks;
3471 break;
3472 default: /* avoid 'may be unused' warnings */
3473 case geo_start: /* new when starting reshape - raid_disks not
3474 * updated yet. */
3475 layout = mddev->new_layout;
3476 chunk = mddev->new_chunk_sectors;
3477 disks = mddev->raid_disks + mddev->delta_disks;
3478 break;
3479 }
3480 if (layout >> 19)
3481 return -1;
3482 if (chunk < (PAGE_SIZE >> 9) ||
3483 !is_power_of_2(chunk))
3484 return -2;
3485 nc = layout & 255;
3486 fc = (layout >> 8) & 255;
3487 fo = layout & (1<<16);
3488 geo->raid_disks = disks;
3489 geo->near_copies = nc;
3490 geo->far_copies = fc;
3491 geo->far_offset = fo;
3492 switch (layout >> 17) {
3493 case 0: /* original layout. simple but not always optimal */
3494 geo->far_set_size = disks;
3495 break;
3496 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3497 * actually using this, but leave code here just in case.*/
3498 geo->far_set_size = disks/fc;
3499 WARN(geo->far_set_size < fc,
3500 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3501 break;
3502 case 2: /* "improved" layout fixed to match documentation */
3503 geo->far_set_size = fc * nc;
3504 break;
3505 default: /* Not a valid layout */
3506 return -1;
3507 }
3508 geo->chunk_mask = chunk - 1;
3509 geo->chunk_shift = ffz(~chunk);
3510 return nc*fc;
3511 }
3512
3513 static struct r10conf *setup_conf(struct mddev *mddev)
3514 {
3515 struct r10conf *conf = NULL;
3516 int err = -EINVAL;
3517 struct geom geo;
3518 int copies;
3519
3520 copies = setup_geo(&geo, mddev, geo_new);
3521
3522 if (copies == -2) {
3523 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3524 mdname(mddev), PAGE_SIZE);
3525 goto out;
3526 }
3527
3528 if (copies < 2 || copies > mddev->raid_disks) {
3529 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3530 mdname(mddev), mddev->new_layout);
3531 goto out;
3532 }
3533
3534 err = -ENOMEM;
3535 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3536 if (!conf)
3537 goto out;
3538
3539 /* FIXME calc properly */
3540 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3541 max(0,-mddev->delta_disks)),
3542 GFP_KERNEL);
3543 if (!conf->mirrors)
3544 goto out;
3545
3546 conf->tmppage = alloc_page(GFP_KERNEL);
3547 if (!conf->tmppage)
3548 goto out;
3549
3550 conf->geo = geo;
3551 conf->copies = copies;
3552 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3553 r10bio_pool_free, conf);
3554 if (!conf->r10bio_pool)
3555 goto out;
3556
3557 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3558 if (!conf->bio_split)
3559 goto out;
3560
3561 calc_sectors(conf, mddev->dev_sectors);
3562 if (mddev->reshape_position == MaxSector) {
3563 conf->prev = conf->geo;
3564 conf->reshape_progress = MaxSector;
3565 } else {
3566 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3567 err = -EINVAL;
3568 goto out;
3569 }
3570 conf->reshape_progress = mddev->reshape_position;
3571 if (conf->prev.far_offset)
3572 conf->prev.stride = 1 << conf->prev.chunk_shift;
3573 else
3574 /* far_copies must be 1 */
3575 conf->prev.stride = conf->dev_sectors;
3576 }
3577 conf->reshape_safe = conf->reshape_progress;
3578 spin_lock_init(&conf->device_lock);
3579 INIT_LIST_HEAD(&conf->retry_list);
3580 INIT_LIST_HEAD(&conf->bio_end_io_list);
3581
3582 spin_lock_init(&conf->resync_lock);
3583 init_waitqueue_head(&conf->wait_barrier);
3584 atomic_set(&conf->nr_pending, 0);
3585
3586 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3587 if (!conf->thread)
3588 goto out;
3589
3590 conf->mddev = mddev;
3591 return conf;
3592
3593 out:
3594 if (conf) {
3595 mempool_destroy(conf->r10bio_pool);
3596 kfree(conf->mirrors);
3597 safe_put_page(conf->tmppage);
3598 if (conf->bio_split)
3599 bioset_free(conf->bio_split);
3600 kfree(conf);
3601 }
3602 return ERR_PTR(err);
3603 }
3604
3605 static int raid10_run(struct mddev *mddev)
3606 {
3607 struct r10conf *conf;
3608 int i, disk_idx, chunk_size;
3609 struct raid10_info *disk;
3610 struct md_rdev *rdev;
3611 sector_t size;
3612 sector_t min_offset_diff = 0;
3613 int first = 1;
3614 bool discard_supported = false;
3615
3616 if (mddev_init_writes_pending(mddev) < 0)
3617 return -ENOMEM;
3618
3619 if (mddev->private == NULL) {
3620 conf = setup_conf(mddev);
3621 if (IS_ERR(conf))
3622 return PTR_ERR(conf);
3623 mddev->private = conf;
3624 }
3625 conf = mddev->private;
3626 if (!conf)
3627 goto out;
3628
3629 mddev->thread = conf->thread;
3630 conf->thread = NULL;
3631
3632 chunk_size = mddev->chunk_sectors << 9;
3633 if (mddev->queue) {
3634 blk_queue_max_discard_sectors(mddev->queue,
3635 mddev->chunk_sectors);
3636 blk_queue_max_write_same_sectors(mddev->queue, 0);
3637 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3638 blk_queue_io_min(mddev->queue, chunk_size);
3639 if (conf->geo.raid_disks % conf->geo.near_copies)
3640 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3641 else
3642 blk_queue_io_opt(mddev->queue, chunk_size *
3643 (conf->geo.raid_disks / conf->geo.near_copies));
3644 }
3645
3646 rdev_for_each(rdev, mddev) {
3647 long long diff;
3648
3649 disk_idx = rdev->raid_disk;
3650 if (disk_idx < 0)
3651 continue;
3652 if (disk_idx >= conf->geo.raid_disks &&
3653 disk_idx >= conf->prev.raid_disks)
3654 continue;
3655 disk = conf->mirrors + disk_idx;
3656
3657 if (test_bit(Replacement, &rdev->flags)) {
3658 if (disk->replacement)
3659 goto out_free_conf;
3660 disk->replacement = rdev;
3661 } else {
3662 if (disk->rdev)
3663 goto out_free_conf;
3664 disk->rdev = rdev;
3665 }
3666 diff = (rdev->new_data_offset - rdev->data_offset);
3667 if (!mddev->reshape_backwards)
3668 diff = -diff;
3669 if (diff < 0)
3670 diff = 0;
3671 if (first || diff < min_offset_diff)
3672 min_offset_diff = diff;
3673
3674 if (mddev->gendisk)
3675 disk_stack_limits(mddev->gendisk, rdev->bdev,
3676 rdev->data_offset << 9);
3677
3678 disk->head_position = 0;
3679
3680 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3681 discard_supported = true;
3682 first = 0;
3683 }
3684
3685 if (mddev->queue) {
3686 if (discard_supported)
3687 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3688 mddev->queue);
3689 else
3690 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3691 mddev->queue);
3692 }
3693 /* need to check that every block has at least one working mirror */
3694 if (!enough(conf, -1)) {
3695 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3696 mdname(mddev));
3697 goto out_free_conf;
3698 }
3699
3700 if (conf->reshape_progress != MaxSector) {
3701 /* must ensure that shape change is supported */
3702 if (conf->geo.far_copies != 1 &&
3703 conf->geo.far_offset == 0)
3704 goto out_free_conf;
3705 if (conf->prev.far_copies != 1 &&
3706 conf->prev.far_offset == 0)
3707 goto out_free_conf;
3708 }
3709
3710 mddev->degraded = 0;
3711 for (i = 0;
3712 i < conf->geo.raid_disks
3713 || i < conf->prev.raid_disks;
3714 i++) {
3715
3716 disk = conf->mirrors + i;
3717
3718 if (!disk->rdev && disk->replacement) {
3719 /* The replacement is all we have - use it */
3720 disk->rdev = disk->replacement;
3721 disk->replacement = NULL;
3722 clear_bit(Replacement, &disk->rdev->flags);
3723 }
3724
3725 if (!disk->rdev ||
3726 !test_bit(In_sync, &disk->rdev->flags)) {
3727 disk->head_position = 0;
3728 mddev->degraded++;
3729 if (disk->rdev &&
3730 disk->rdev->saved_raid_disk < 0)
3731 conf->fullsync = 1;
3732 }
3733 disk->recovery_disabled = mddev->recovery_disabled - 1;
3734 }
3735
3736 if (mddev->recovery_cp != MaxSector)
3737 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3738 mdname(mddev));
3739 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3740 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3741 conf->geo.raid_disks);
3742 /*
3743 * Ok, everything is just fine now
3744 */
3745 mddev->dev_sectors = conf->dev_sectors;
3746 size = raid10_size(mddev, 0, 0);
3747 md_set_array_sectors(mddev, size);
3748 mddev->resync_max_sectors = size;
3749 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3750
3751 if (mddev->queue) {
3752 int stripe = conf->geo.raid_disks *
3753 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3754
3755 /* Calculate max read-ahead size.
3756 * We need to readahead at least twice a whole stripe....
3757 * maybe...
3758 */
3759 stripe /= conf->geo.near_copies;
3760 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3761 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3762 }
3763
3764 if (md_integrity_register(mddev))
3765 goto out_free_conf;
3766
3767 if (conf->reshape_progress != MaxSector) {
3768 unsigned long before_length, after_length;
3769
3770 before_length = ((1 << conf->prev.chunk_shift) *
3771 conf->prev.far_copies);
3772 after_length = ((1 << conf->geo.chunk_shift) *
3773 conf->geo.far_copies);
3774
3775 if (max(before_length, after_length) > min_offset_diff) {
3776 /* This cannot work */
3777 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3778 goto out_free_conf;
3779 }
3780 conf->offset_diff = min_offset_diff;
3781
3782 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3783 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3784 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3785 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3786 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3787 "reshape");
3788 }
3789
3790 return 0;
3791
3792 out_free_conf:
3793 md_unregister_thread(&mddev->thread);
3794 mempool_destroy(conf->r10bio_pool);
3795 safe_put_page(conf->tmppage);
3796 kfree(conf->mirrors);
3797 kfree(conf);
3798 mddev->private = NULL;
3799 out:
3800 return -EIO;
3801 }
3802
3803 static void raid10_free(struct mddev *mddev, void *priv)
3804 {
3805 struct r10conf *conf = priv;
3806
3807 mempool_destroy(conf->r10bio_pool);
3808 safe_put_page(conf->tmppage);
3809 kfree(conf->mirrors);
3810 kfree(conf->mirrors_old);
3811 kfree(conf->mirrors_new);
3812 if (conf->bio_split)
3813 bioset_free(conf->bio_split);
3814 kfree(conf);
3815 }
3816
3817 static void raid10_quiesce(struct mddev *mddev, int state)
3818 {
3819 struct r10conf *conf = mddev->private;
3820
3821 switch(state) {
3822 case 1:
3823 raise_barrier(conf, 0);
3824 break;
3825 case 0:
3826 lower_barrier(conf);
3827 break;
3828 }
3829 }
3830
3831 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3832 {
3833 /* Resize of 'far' arrays is not supported.
3834 * For 'near' and 'offset' arrays we can set the
3835 * number of sectors used to be an appropriate multiple
3836 * of the chunk size.
3837 * For 'offset', this is far_copies*chunksize.
3838 * For 'near' the multiplier is the LCM of
3839 * near_copies and raid_disks.
3840 * So if far_copies > 1 && !far_offset, fail.
3841 * Else find LCM(raid_disks, near_copy)*far_copies and
3842 * multiply by chunk_size. Then round to this number.
3843 * This is mostly done by raid10_size()
3844 */
3845 struct r10conf *conf = mddev->private;
3846 sector_t oldsize, size;
3847
3848 if (mddev->reshape_position != MaxSector)
3849 return -EBUSY;
3850
3851 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3852 return -EINVAL;
3853
3854 oldsize = raid10_size(mddev, 0, 0);
3855 size = raid10_size(mddev, sectors, 0);
3856 if (mddev->external_size &&
3857 mddev->array_sectors > size)
3858 return -EINVAL;
3859 if (mddev->bitmap) {
3860 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3861 if (ret)
3862 return ret;
3863 }
3864 md_set_array_sectors(mddev, size);
3865 if (sectors > mddev->dev_sectors &&
3866 mddev->recovery_cp > oldsize) {
3867 mddev->recovery_cp = oldsize;
3868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3869 }
3870 calc_sectors(conf, sectors);
3871 mddev->dev_sectors = conf->dev_sectors;
3872 mddev->resync_max_sectors = size;
3873 return 0;
3874 }
3875
3876 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3877 {
3878 struct md_rdev *rdev;
3879 struct r10conf *conf;
3880
3881 if (mddev->degraded > 0) {
3882 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3883 mdname(mddev));
3884 return ERR_PTR(-EINVAL);
3885 }
3886 sector_div(size, devs);
3887
3888 /* Set new parameters */
3889 mddev->new_level = 10;
3890 /* new layout: far_copies = 1, near_copies = 2 */
3891 mddev->new_layout = (1<<8) + 2;
3892 mddev->new_chunk_sectors = mddev->chunk_sectors;
3893 mddev->delta_disks = mddev->raid_disks;
3894 mddev->raid_disks *= 2;
3895 /* make sure it will be not marked as dirty */
3896 mddev->recovery_cp = MaxSector;
3897 mddev->dev_sectors = size;
3898
3899 conf = setup_conf(mddev);
3900 if (!IS_ERR(conf)) {
3901 rdev_for_each(rdev, mddev)
3902 if (rdev->raid_disk >= 0) {
3903 rdev->new_raid_disk = rdev->raid_disk * 2;
3904 rdev->sectors = size;
3905 }
3906 conf->barrier = 1;
3907 }
3908
3909 return conf;
3910 }
3911
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914 struct r0conf *raid0_conf;
3915
3916 /* raid10 can take over:
3917 * raid0 - providing it has only two drives
3918 */
3919 if (mddev->level == 0) {
3920 /* for raid0 takeover only one zone is supported */
3921 raid0_conf = mddev->private;
3922 if (raid0_conf->nr_strip_zones > 1) {
3923 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3924 mdname(mddev));
3925 return ERR_PTR(-EINVAL);
3926 }
3927 return raid10_takeover_raid0(mddev,
3928 raid0_conf->strip_zone->zone_end,
3929 raid0_conf->strip_zone->nb_dev);
3930 }
3931 return ERR_PTR(-EINVAL);
3932 }
3933
3934 static int raid10_check_reshape(struct mddev *mddev)
3935 {
3936 /* Called when there is a request to change
3937 * - layout (to ->new_layout)
3938 * - chunk size (to ->new_chunk_sectors)
3939 * - raid_disks (by delta_disks)
3940 * or when trying to restart a reshape that was ongoing.
3941 *
3942 * We need to validate the request and possibly allocate
3943 * space if that might be an issue later.
3944 *
3945 * Currently we reject any reshape of a 'far' mode array,
3946 * allow chunk size to change if new is generally acceptable,
3947 * allow raid_disks to increase, and allow
3948 * a switch between 'near' mode and 'offset' mode.
3949 */
3950 struct r10conf *conf = mddev->private;
3951 struct geom geo;
3952
3953 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3954 return -EINVAL;
3955
3956 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3957 /* mustn't change number of copies */
3958 return -EINVAL;
3959 if (geo.far_copies > 1 && !geo.far_offset)
3960 /* Cannot switch to 'far' mode */
3961 return -EINVAL;
3962
3963 if (mddev->array_sectors & geo.chunk_mask)
3964 /* not factor of array size */
3965 return -EINVAL;
3966
3967 if (!enough(conf, -1))
3968 return -EINVAL;
3969
3970 kfree(conf->mirrors_new);
3971 conf->mirrors_new = NULL;
3972 if (mddev->delta_disks > 0) {
3973 /* allocate new 'mirrors' list */
3974 conf->mirrors_new = kzalloc(
3975 sizeof(struct raid10_info)
3976 *(mddev->raid_disks +
3977 mddev->delta_disks),
3978 GFP_KERNEL);
3979 if (!conf->mirrors_new)
3980 return -ENOMEM;
3981 }
3982 return 0;
3983 }
3984
3985 /*
3986 * Need to check if array has failed when deciding whether to:
3987 * - start an array
3988 * - remove non-faulty devices
3989 * - add a spare
3990 * - allow a reshape
3991 * This determination is simple when no reshape is happening.
3992 * However if there is a reshape, we need to carefully check
3993 * both the before and after sections.
3994 * This is because some failed devices may only affect one
3995 * of the two sections, and some non-in_sync devices may
3996 * be insync in the section most affected by failed devices.
3997 */
3998 static int calc_degraded(struct r10conf *conf)
3999 {
4000 int degraded, degraded2;
4001 int i;
4002
4003 rcu_read_lock();
4004 degraded = 0;
4005 /* 'prev' section first */
4006 for (i = 0; i < conf->prev.raid_disks; i++) {
4007 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4008 if (!rdev || test_bit(Faulty, &rdev->flags))
4009 degraded++;
4010 else if (!test_bit(In_sync, &rdev->flags))
4011 /* When we can reduce the number of devices in
4012 * an array, this might not contribute to
4013 * 'degraded'. It does now.
4014 */
4015 degraded++;
4016 }
4017 rcu_read_unlock();
4018 if (conf->geo.raid_disks == conf->prev.raid_disks)
4019 return degraded;
4020 rcu_read_lock();
4021 degraded2 = 0;
4022 for (i = 0; i < conf->geo.raid_disks; i++) {
4023 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4024 if (!rdev || test_bit(Faulty, &rdev->flags))
4025 degraded2++;
4026 else if (!test_bit(In_sync, &rdev->flags)) {
4027 /* If reshape is increasing the number of devices,
4028 * this section has already been recovered, so
4029 * it doesn't contribute to degraded.
4030 * else it does.
4031 */
4032 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4033 degraded2++;
4034 }
4035 }
4036 rcu_read_unlock();
4037 if (degraded2 > degraded)
4038 return degraded2;
4039 return degraded;
4040 }
4041
4042 static int raid10_start_reshape(struct mddev *mddev)
4043 {
4044 /* A 'reshape' has been requested. This commits
4045 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4046 * This also checks if there are enough spares and adds them
4047 * to the array.
4048 * We currently require enough spares to make the final
4049 * array non-degraded. We also require that the difference
4050 * between old and new data_offset - on each device - is
4051 * enough that we never risk over-writing.
4052 */
4053
4054 unsigned long before_length, after_length;
4055 sector_t min_offset_diff = 0;
4056 int first = 1;
4057 struct geom new;
4058 struct r10conf *conf = mddev->private;
4059 struct md_rdev *rdev;
4060 int spares = 0;
4061 int ret;
4062
4063 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4064 return -EBUSY;
4065
4066 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4067 return -EINVAL;
4068
4069 before_length = ((1 << conf->prev.chunk_shift) *
4070 conf->prev.far_copies);
4071 after_length = ((1 << conf->geo.chunk_shift) *
4072 conf->geo.far_copies);
4073
4074 rdev_for_each(rdev, mddev) {
4075 if (!test_bit(In_sync, &rdev->flags)
4076 && !test_bit(Faulty, &rdev->flags))
4077 spares++;
4078 if (rdev->raid_disk >= 0) {
4079 long long diff = (rdev->new_data_offset
4080 - rdev->data_offset);
4081 if (!mddev->reshape_backwards)
4082 diff = -diff;
4083 if (diff < 0)
4084 diff = 0;
4085 if (first || diff < min_offset_diff)
4086 min_offset_diff = diff;
4087 first = 0;
4088 }
4089 }
4090
4091 if (max(before_length, after_length) > min_offset_diff)
4092 return -EINVAL;
4093
4094 if (spares < mddev->delta_disks)
4095 return -EINVAL;
4096
4097 conf->offset_diff = min_offset_diff;
4098 spin_lock_irq(&conf->device_lock);
4099 if (conf->mirrors_new) {
4100 memcpy(conf->mirrors_new, conf->mirrors,
4101 sizeof(struct raid10_info)*conf->prev.raid_disks);
4102 smp_mb();
4103 kfree(conf->mirrors_old);
4104 conf->mirrors_old = conf->mirrors;
4105 conf->mirrors = conf->mirrors_new;
4106 conf->mirrors_new = NULL;
4107 }
4108 setup_geo(&conf->geo, mddev, geo_start);
4109 smp_mb();
4110 if (mddev->reshape_backwards) {
4111 sector_t size = raid10_size(mddev, 0, 0);
4112 if (size < mddev->array_sectors) {
4113 spin_unlock_irq(&conf->device_lock);
4114 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4115 mdname(mddev));
4116 return -EINVAL;
4117 }
4118 mddev->resync_max_sectors = size;
4119 conf->reshape_progress = size;
4120 } else
4121 conf->reshape_progress = 0;
4122 conf->reshape_safe = conf->reshape_progress;
4123 spin_unlock_irq(&conf->device_lock);
4124
4125 if (mddev->delta_disks && mddev->bitmap) {
4126 ret = bitmap_resize(mddev->bitmap,
4127 raid10_size(mddev, 0,
4128 conf->geo.raid_disks),
4129 0, 0);
4130 if (ret)
4131 goto abort;
4132 }
4133 if (mddev->delta_disks > 0) {
4134 rdev_for_each(rdev, mddev)
4135 if (rdev->raid_disk < 0 &&
4136 !test_bit(Faulty, &rdev->flags)) {
4137 if (raid10_add_disk(mddev, rdev) == 0) {
4138 if (rdev->raid_disk >=
4139 conf->prev.raid_disks)
4140 set_bit(In_sync, &rdev->flags);
4141 else
4142 rdev->recovery_offset = 0;
4143
4144 if (sysfs_link_rdev(mddev, rdev))
4145 /* Failure here is OK */;
4146 }
4147 } else if (rdev->raid_disk >= conf->prev.raid_disks
4148 && !test_bit(Faulty, &rdev->flags)) {
4149 /* This is a spare that was manually added */
4150 set_bit(In_sync, &rdev->flags);
4151 }
4152 }
4153 /* When a reshape changes the number of devices,
4154 * ->degraded is measured against the larger of the
4155 * pre and post numbers.
4156 */
4157 spin_lock_irq(&conf->device_lock);
4158 mddev->degraded = calc_degraded(conf);
4159 spin_unlock_irq(&conf->device_lock);
4160 mddev->raid_disks = conf->geo.raid_disks;
4161 mddev->reshape_position = conf->reshape_progress;
4162 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4163
4164 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4165 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4166 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4167 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4168 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4169
4170 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4171 "reshape");
4172 if (!mddev->sync_thread) {
4173 ret = -EAGAIN;
4174 goto abort;
4175 }
4176 conf->reshape_checkpoint = jiffies;
4177 md_wakeup_thread(mddev->sync_thread);
4178 md_new_event(mddev);
4179 return 0;
4180
4181 abort:
4182 mddev->recovery = 0;
4183 spin_lock_irq(&conf->device_lock);
4184 conf->geo = conf->prev;
4185 mddev->raid_disks = conf->geo.raid_disks;
4186 rdev_for_each(rdev, mddev)
4187 rdev->new_data_offset = rdev->data_offset;
4188 smp_wmb();
4189 conf->reshape_progress = MaxSector;
4190 conf->reshape_safe = MaxSector;
4191 mddev->reshape_position = MaxSector;
4192 spin_unlock_irq(&conf->device_lock);
4193 return ret;
4194 }
4195
4196 /* Calculate the last device-address that could contain
4197 * any block from the chunk that includes the array-address 's'
4198 * and report the next address.
4199 * i.e. the address returned will be chunk-aligned and after
4200 * any data that is in the chunk containing 's'.
4201 */
4202 static sector_t last_dev_address(sector_t s, struct geom *geo)
4203 {
4204 s = (s | geo->chunk_mask) + 1;
4205 s >>= geo->chunk_shift;
4206 s *= geo->near_copies;
4207 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4208 s *= geo->far_copies;
4209 s <<= geo->chunk_shift;
4210 return s;
4211 }
4212
4213 /* Calculate the first device-address that could contain
4214 * any block from the chunk that includes the array-address 's'.
4215 * This too will be the start of a chunk
4216 */
4217 static sector_t first_dev_address(sector_t s, struct geom *geo)
4218 {
4219 s >>= geo->chunk_shift;
4220 s *= geo->near_copies;
4221 sector_div(s, geo->raid_disks);
4222 s *= geo->far_copies;
4223 s <<= geo->chunk_shift;
4224 return s;
4225 }
4226
4227 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4228 int *skipped)
4229 {
4230 /* We simply copy at most one chunk (smallest of old and new)
4231 * at a time, possibly less if that exceeds RESYNC_PAGES,
4232 * or we hit a bad block or something.
4233 * This might mean we pause for normal IO in the middle of
4234 * a chunk, but that is not a problem as mddev->reshape_position
4235 * can record any location.
4236 *
4237 * If we will want to write to a location that isn't
4238 * yet recorded as 'safe' (i.e. in metadata on disk) then
4239 * we need to flush all reshape requests and update the metadata.
4240 *
4241 * When reshaping forwards (e.g. to more devices), we interpret
4242 * 'safe' as the earliest block which might not have been copied
4243 * down yet. We divide this by previous stripe size and multiply
4244 * by previous stripe length to get lowest device offset that we
4245 * cannot write to yet.
4246 * We interpret 'sector_nr' as an address that we want to write to.
4247 * From this we use last_device_address() to find where we might
4248 * write to, and first_device_address on the 'safe' position.
4249 * If this 'next' write position is after the 'safe' position,
4250 * we must update the metadata to increase the 'safe' position.
4251 *
4252 * When reshaping backwards, we round in the opposite direction
4253 * and perform the reverse test: next write position must not be
4254 * less than current safe position.
4255 *
4256 * In all this the minimum difference in data offsets
4257 * (conf->offset_diff - always positive) allows a bit of slack,
4258 * so next can be after 'safe', but not by more than offset_diff
4259 *
4260 * We need to prepare all the bios here before we start any IO
4261 * to ensure the size we choose is acceptable to all devices.
4262 * The means one for each copy for write-out and an extra one for
4263 * read-in.
4264 * We store the read-in bio in ->master_bio and the others in
4265 * ->devs[x].bio and ->devs[x].repl_bio.
4266 */
4267 struct r10conf *conf = mddev->private;
4268 struct r10bio *r10_bio;
4269 sector_t next, safe, last;
4270 int max_sectors;
4271 int nr_sectors;
4272 int s;
4273 struct md_rdev *rdev;
4274 int need_flush = 0;
4275 struct bio *blist;
4276 struct bio *bio, *read_bio;
4277 int sectors_done = 0;
4278 struct page **pages;
4279
4280 if (sector_nr == 0) {
4281 /* If restarting in the middle, skip the initial sectors */
4282 if (mddev->reshape_backwards &&
4283 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4284 sector_nr = (raid10_size(mddev, 0, 0)
4285 - conf->reshape_progress);
4286 } else if (!mddev->reshape_backwards &&
4287 conf->reshape_progress > 0)
4288 sector_nr = conf->reshape_progress;
4289 if (sector_nr) {
4290 mddev->curr_resync_completed = sector_nr;
4291 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4292 *skipped = 1;
4293 return sector_nr;
4294 }
4295 }
4296
4297 /* We don't use sector_nr to track where we are up to
4298 * as that doesn't work well for ->reshape_backwards.
4299 * So just use ->reshape_progress.
4300 */
4301 if (mddev->reshape_backwards) {
4302 /* 'next' is the earliest device address that we might
4303 * write to for this chunk in the new layout
4304 */
4305 next = first_dev_address(conf->reshape_progress - 1,
4306 &conf->geo);
4307
4308 /* 'safe' is the last device address that we might read from
4309 * in the old layout after a restart
4310 */
4311 safe = last_dev_address(conf->reshape_safe - 1,
4312 &conf->prev);
4313
4314 if (next + conf->offset_diff < safe)
4315 need_flush = 1;
4316
4317 last = conf->reshape_progress - 1;
4318 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4319 & conf->prev.chunk_mask);
4320 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4321 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4322 } else {
4323 /* 'next' is after the last device address that we
4324 * might write to for this chunk in the new layout
4325 */
4326 next = last_dev_address(conf->reshape_progress, &conf->geo);
4327
4328 /* 'safe' is the earliest device address that we might
4329 * read from in the old layout after a restart
4330 */
4331 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4332
4333 /* Need to update metadata if 'next' might be beyond 'safe'
4334 * as that would possibly corrupt data
4335 */
4336 if (next > safe + conf->offset_diff)
4337 need_flush = 1;
4338
4339 sector_nr = conf->reshape_progress;
4340 last = sector_nr | (conf->geo.chunk_mask
4341 & conf->prev.chunk_mask);
4342
4343 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4344 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4345 }
4346
4347 if (need_flush ||
4348 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4349 /* Need to update reshape_position in metadata */
4350 wait_barrier(conf);
4351 mddev->reshape_position = conf->reshape_progress;
4352 if (mddev->reshape_backwards)
4353 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4354 - conf->reshape_progress;
4355 else
4356 mddev->curr_resync_completed = conf->reshape_progress;
4357 conf->reshape_checkpoint = jiffies;
4358 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4359 md_wakeup_thread(mddev->thread);
4360 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4361 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4362 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4363 allow_barrier(conf);
4364 return sectors_done;
4365 }
4366 conf->reshape_safe = mddev->reshape_position;
4367 allow_barrier(conf);
4368 }
4369
4370 read_more:
4371 /* Now schedule reads for blocks from sector_nr to last */
4372 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4373 r10_bio->state = 0;
4374 raise_barrier(conf, sectors_done != 0);
4375 atomic_set(&r10_bio->remaining, 0);
4376 r10_bio->mddev = mddev;
4377 r10_bio->sector = sector_nr;
4378 set_bit(R10BIO_IsReshape, &r10_bio->state);
4379 r10_bio->sectors = last - sector_nr + 1;
4380 rdev = read_balance(conf, r10_bio, &max_sectors);
4381 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4382
4383 if (!rdev) {
4384 /* Cannot read from here, so need to record bad blocks
4385 * on all the target devices.
4386 */
4387 // FIXME
4388 mempool_free(r10_bio, conf->r10buf_pool);
4389 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4390 return sectors_done;
4391 }
4392
4393 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4394
4395 read_bio->bi_bdev = rdev->bdev;
4396 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4397 + rdev->data_offset);
4398 read_bio->bi_private = r10_bio;
4399 read_bio->bi_end_io = end_reshape_read;
4400 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4401 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4402 read_bio->bi_status = 0;
4403 read_bio->bi_vcnt = 0;
4404 read_bio->bi_iter.bi_size = 0;
4405 r10_bio->master_bio = read_bio;
4406 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4407
4408 /* Now find the locations in the new layout */
4409 __raid10_find_phys(&conf->geo, r10_bio);
4410
4411 blist = read_bio;
4412 read_bio->bi_next = NULL;
4413
4414 rcu_read_lock();
4415 for (s = 0; s < conf->copies*2; s++) {
4416 struct bio *b;
4417 int d = r10_bio->devs[s/2].devnum;
4418 struct md_rdev *rdev2;
4419 if (s&1) {
4420 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4421 b = r10_bio->devs[s/2].repl_bio;
4422 } else {
4423 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4424 b = r10_bio->devs[s/2].bio;
4425 }
4426 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4427 continue;
4428
4429 b->bi_bdev = rdev2->bdev;
4430 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4431 rdev2->new_data_offset;
4432 b->bi_end_io = end_reshape_write;
4433 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4434 b->bi_next = blist;
4435 blist = b;
4436 }
4437
4438 /* Now add as many pages as possible to all of these bios. */
4439
4440 nr_sectors = 0;
4441 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4442 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4443 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4444 int len = (max_sectors - s) << 9;
4445 if (len > PAGE_SIZE)
4446 len = PAGE_SIZE;
4447 for (bio = blist; bio ; bio = bio->bi_next) {
4448 /*
4449 * won't fail because the vec table is big enough
4450 * to hold all these pages
4451 */
4452 bio_add_page(bio, page, len, 0);
4453 }
4454 sector_nr += len >> 9;
4455 nr_sectors += len >> 9;
4456 }
4457 rcu_read_unlock();
4458 r10_bio->sectors = nr_sectors;
4459
4460 /* Now submit the read */
4461 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4462 atomic_inc(&r10_bio->remaining);
4463 read_bio->bi_next = NULL;
4464 generic_make_request(read_bio);
4465 sector_nr += nr_sectors;
4466 sectors_done += nr_sectors;
4467 if (sector_nr <= last)
4468 goto read_more;
4469
4470 /* Now that we have done the whole section we can
4471 * update reshape_progress
4472 */
4473 if (mddev->reshape_backwards)
4474 conf->reshape_progress -= sectors_done;
4475 else
4476 conf->reshape_progress += sectors_done;
4477
4478 return sectors_done;
4479 }
4480
4481 static void end_reshape_request(struct r10bio *r10_bio);
4482 static int handle_reshape_read_error(struct mddev *mddev,
4483 struct r10bio *r10_bio);
4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4485 {
4486 /* Reshape read completed. Hopefully we have a block
4487 * to write out.
4488 * If we got a read error then we do sync 1-page reads from
4489 * elsewhere until we find the data - or give up.
4490 */
4491 struct r10conf *conf = mddev->private;
4492 int s;
4493
4494 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4495 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4496 /* Reshape has been aborted */
4497 md_done_sync(mddev, r10_bio->sectors, 0);
4498 return;
4499 }
4500
4501 /* We definitely have the data in the pages, schedule the
4502 * writes.
4503 */
4504 atomic_set(&r10_bio->remaining, 1);
4505 for (s = 0; s < conf->copies*2; s++) {
4506 struct bio *b;
4507 int d = r10_bio->devs[s/2].devnum;
4508 struct md_rdev *rdev;
4509 rcu_read_lock();
4510 if (s&1) {
4511 rdev = rcu_dereference(conf->mirrors[d].replacement);
4512 b = r10_bio->devs[s/2].repl_bio;
4513 } else {
4514 rdev = rcu_dereference(conf->mirrors[d].rdev);
4515 b = r10_bio->devs[s/2].bio;
4516 }
4517 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4518 rcu_read_unlock();
4519 continue;
4520 }
4521 atomic_inc(&rdev->nr_pending);
4522 rcu_read_unlock();
4523 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4524 atomic_inc(&r10_bio->remaining);
4525 b->bi_next = NULL;
4526 generic_make_request(b);
4527 }
4528 end_reshape_request(r10_bio);
4529 }
4530
4531 static void end_reshape(struct r10conf *conf)
4532 {
4533 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4534 return;
4535
4536 spin_lock_irq(&conf->device_lock);
4537 conf->prev = conf->geo;
4538 md_finish_reshape(conf->mddev);
4539 smp_wmb();
4540 conf->reshape_progress = MaxSector;
4541 conf->reshape_safe = MaxSector;
4542 spin_unlock_irq(&conf->device_lock);
4543
4544 /* read-ahead size must cover two whole stripes, which is
4545 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4546 */
4547 if (conf->mddev->queue) {
4548 int stripe = conf->geo.raid_disks *
4549 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4550 stripe /= conf->geo.near_copies;
4551 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4552 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4553 }
4554 conf->fullsync = 0;
4555 }
4556
4557 static int handle_reshape_read_error(struct mddev *mddev,
4558 struct r10bio *r10_bio)
4559 {
4560 /* Use sync reads to get the blocks from somewhere else */
4561 int sectors = r10_bio->sectors;
4562 struct r10conf *conf = mddev->private;
4563 struct {
4564 struct r10bio r10_bio;
4565 struct r10dev devs[conf->copies];
4566 } on_stack;
4567 struct r10bio *r10b = &on_stack.r10_bio;
4568 int slot = 0;
4569 int idx = 0;
4570 struct page **pages;
4571
4572 /* reshape IOs share pages from .devs[0].bio */
4573 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4574
4575 r10b->sector = r10_bio->sector;
4576 __raid10_find_phys(&conf->prev, r10b);
4577
4578 while (sectors) {
4579 int s = sectors;
4580 int success = 0;
4581 int first_slot = slot;
4582
4583 if (s > (PAGE_SIZE >> 9))
4584 s = PAGE_SIZE >> 9;
4585
4586 rcu_read_lock();
4587 while (!success) {
4588 int d = r10b->devs[slot].devnum;
4589 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4590 sector_t addr;
4591 if (rdev == NULL ||
4592 test_bit(Faulty, &rdev->flags) ||
4593 !test_bit(In_sync, &rdev->flags))
4594 goto failed;
4595
4596 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4597 atomic_inc(&rdev->nr_pending);
4598 rcu_read_unlock();
4599 success = sync_page_io(rdev,
4600 addr,
4601 s << 9,
4602 pages[idx],
4603 REQ_OP_READ, 0, false);
4604 rdev_dec_pending(rdev, mddev);
4605 rcu_read_lock();
4606 if (success)
4607 break;
4608 failed:
4609 slot++;
4610 if (slot >= conf->copies)
4611 slot = 0;
4612 if (slot == first_slot)
4613 break;
4614 }
4615 rcu_read_unlock();
4616 if (!success) {
4617 /* couldn't read this block, must give up */
4618 set_bit(MD_RECOVERY_INTR,
4619 &mddev->recovery);
4620 return -EIO;
4621 }
4622 sectors -= s;
4623 idx++;
4624 }
4625 return 0;
4626 }
4627
4628 static void end_reshape_write(struct bio *bio)
4629 {
4630 struct r10bio *r10_bio = get_resync_r10bio(bio);
4631 struct mddev *mddev = r10_bio->mddev;
4632 struct r10conf *conf = mddev->private;
4633 int d;
4634 int slot;
4635 int repl;
4636 struct md_rdev *rdev = NULL;
4637
4638 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4639 if (repl)
4640 rdev = conf->mirrors[d].replacement;
4641 if (!rdev) {
4642 smp_mb();
4643 rdev = conf->mirrors[d].rdev;
4644 }
4645
4646 if (bio->bi_status) {
4647 /* FIXME should record badblock */
4648 md_error(mddev, rdev);
4649 }
4650
4651 rdev_dec_pending(rdev, mddev);
4652 end_reshape_request(r10_bio);
4653 }
4654
4655 static void end_reshape_request(struct r10bio *r10_bio)
4656 {
4657 if (!atomic_dec_and_test(&r10_bio->remaining))
4658 return;
4659 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4660 bio_put(r10_bio->master_bio);
4661 put_buf(r10_bio);
4662 }
4663
4664 static void raid10_finish_reshape(struct mddev *mddev)
4665 {
4666 struct r10conf *conf = mddev->private;
4667
4668 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4669 return;
4670
4671 if (mddev->delta_disks > 0) {
4672 sector_t size = raid10_size(mddev, 0, 0);
4673 md_set_array_sectors(mddev, size);
4674 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4675 mddev->recovery_cp = mddev->resync_max_sectors;
4676 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4677 }
4678 mddev->resync_max_sectors = size;
4679 if (mddev->queue) {
4680 set_capacity(mddev->gendisk, mddev->array_sectors);
4681 revalidate_disk(mddev->gendisk);
4682 }
4683 } else {
4684 int d;
4685 rcu_read_lock();
4686 for (d = conf->geo.raid_disks ;
4687 d < conf->geo.raid_disks - mddev->delta_disks;
4688 d++) {
4689 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4690 if (rdev)
4691 clear_bit(In_sync, &rdev->flags);
4692 rdev = rcu_dereference(conf->mirrors[d].replacement);
4693 if (rdev)
4694 clear_bit(In_sync, &rdev->flags);
4695 }
4696 rcu_read_unlock();
4697 }
4698 mddev->layout = mddev->new_layout;
4699 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4700 mddev->reshape_position = MaxSector;
4701 mddev->delta_disks = 0;
4702 mddev->reshape_backwards = 0;
4703 }
4704
4705 static struct md_personality raid10_personality =
4706 {
4707 .name = "raid10",
4708 .level = 10,
4709 .owner = THIS_MODULE,
4710 .make_request = raid10_make_request,
4711 .run = raid10_run,
4712 .free = raid10_free,
4713 .status = raid10_status,
4714 .error_handler = raid10_error,
4715 .hot_add_disk = raid10_add_disk,
4716 .hot_remove_disk= raid10_remove_disk,
4717 .spare_active = raid10_spare_active,
4718 .sync_request = raid10_sync_request,
4719 .quiesce = raid10_quiesce,
4720 .size = raid10_size,
4721 .resize = raid10_resize,
4722 .takeover = raid10_takeover,
4723 .check_reshape = raid10_check_reshape,
4724 .start_reshape = raid10_start_reshape,
4725 .finish_reshape = raid10_finish_reshape,
4726 .congested = raid10_congested,
4727 };
4728
4729 static int __init raid_init(void)
4730 {
4731 return register_md_personality(&raid10_personality);
4732 }
4733
4734 static void raid_exit(void)
4735 {
4736 unregister_md_personality(&raid10_personality);
4737 }
4738
4739 module_init(raid_init);
4740 module_exit(raid_exit);
4741 MODULE_LICENSE("GPL");
4742 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4743 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4744 MODULE_ALIAS("md-raid10");
4745 MODULE_ALIAS("md-level-10");
4746
4747 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);