]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
ARM: at91: remove atmel_nand_data
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 /*
114 * 'strct resync_pages' stores actual pages used for doing the resync
115 * IO, and it is per-bio, so make .bi_private points to it.
116 */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119 return bio->bi_private;
120 }
121
122 /*
123 * for resync bio, r10bio pointer can be retrieved from the per-bio
124 * 'struct resync_pages'.
125 */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128 return get_resync_pages(bio)->raid_bio;
129 }
130
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 int size = offsetof(struct r10bio, devs[conf->copies]);
135
136 /* allocate a r10bio with room for raid_disks entries in the
137 * bios array */
138 return kzalloc(size, gfp_flags);
139 }
140
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143 kfree(r10_bio);
144 }
145
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150
151 /*
152 * When performing a resync, we need to read and compare, so
153 * we need as many pages are there are copies.
154 * When performing a recovery, we need 2 bios, one for read,
155 * one for write (we recover only one drive per r10buf)
156 *
157 */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160 struct r10conf *conf = data;
161 struct r10bio *r10_bio;
162 struct bio *bio;
163 int j;
164 int nalloc, nalloc_rp;
165 struct resync_pages *rps;
166
167 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168 if (!r10_bio)
169 return NULL;
170
171 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173 nalloc = conf->copies; /* resync */
174 else
175 nalloc = 2; /* recovery */
176
177 /* allocate once for all bios */
178 if (!conf->have_replacement)
179 nalloc_rp = nalloc;
180 else
181 nalloc_rp = nalloc * 2;
182 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183 if (!rps)
184 goto out_free_r10bio;
185
186 /*
187 * Allocate bios.
188 */
189 for (j = nalloc ; j-- ; ) {
190 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191 if (!bio)
192 goto out_free_bio;
193 r10_bio->devs[j].bio = bio;
194 if (!conf->have_replacement)
195 continue;
196 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197 if (!bio)
198 goto out_free_bio;
199 r10_bio->devs[j].repl_bio = bio;
200 }
201 /*
202 * Allocate RESYNC_PAGES data pages and attach them
203 * where needed.
204 */
205 for (j = 0; j < nalloc; j++) {
206 struct bio *rbio = r10_bio->devs[j].repl_bio;
207 struct resync_pages *rp, *rp_repl;
208
209 rp = &rps[j];
210 if (rbio)
211 rp_repl = &rps[nalloc + j];
212
213 bio = r10_bio->devs[j].bio;
214
215 if (!j || test_bit(MD_RECOVERY_SYNC,
216 &conf->mddev->recovery)) {
217 if (resync_alloc_pages(rp, gfp_flags))
218 goto out_free_pages;
219 } else {
220 memcpy(rp, &rps[0], sizeof(*rp));
221 resync_get_all_pages(rp);
222 }
223
224 rp->idx = 0;
225 rp->raid_bio = r10_bio;
226 bio->bi_private = rp;
227 if (rbio) {
228 memcpy(rp_repl, rp, sizeof(*rp));
229 rbio->bi_private = rp_repl;
230 }
231 }
232
233 return r10_bio;
234
235 out_free_pages:
236 while (--j >= 0)
237 resync_free_pages(&rps[j * 2]);
238
239 j = 0;
240 out_free_bio:
241 for ( ; j < nalloc; j++) {
242 if (r10_bio->devs[j].bio)
243 bio_put(r10_bio->devs[j].bio);
244 if (r10_bio->devs[j].repl_bio)
245 bio_put(r10_bio->devs[j].repl_bio);
246 }
247 kfree(rps);
248 out_free_r10bio:
249 r10bio_pool_free(r10_bio, conf);
250 return NULL;
251 }
252
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255 struct r10conf *conf = data;
256 struct r10bio *r10bio = __r10_bio;
257 int j;
258 struct resync_pages *rp = NULL;
259
260 for (j = conf->copies; j--; ) {
261 struct bio *bio = r10bio->devs[j].bio;
262
263 rp = get_resync_pages(bio);
264 resync_free_pages(rp);
265 bio_put(bio);
266
267 bio = r10bio->devs[j].repl_bio;
268 if (bio)
269 bio_put(bio);
270 }
271
272 /* resync pages array stored in the 1st bio's .bi_private */
273 kfree(rp);
274
275 r10bio_pool_free(r10bio, conf);
276 }
277
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280 int i;
281
282 for (i = 0; i < conf->copies; i++) {
283 struct bio **bio = & r10_bio->devs[i].bio;
284 if (!BIO_SPECIAL(*bio))
285 bio_put(*bio);
286 *bio = NULL;
287 bio = &r10_bio->devs[i].repl_bio;
288 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289 bio_put(*bio);
290 *bio = NULL;
291 }
292 }
293
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296 struct r10conf *conf = r10_bio->mddev->private;
297
298 put_all_bios(conf, r10_bio);
299 mempool_free(r10_bio, conf->r10bio_pool);
300 }
301
302 static void put_buf(struct r10bio *r10_bio)
303 {
304 struct r10conf *conf = r10_bio->mddev->private;
305
306 mempool_free(r10_bio, conf->r10buf_pool);
307
308 lower_barrier(conf);
309 }
310
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313 unsigned long flags;
314 struct mddev *mddev = r10_bio->mddev;
315 struct r10conf *conf = mddev->private;
316
317 spin_lock_irqsave(&conf->device_lock, flags);
318 list_add(&r10_bio->retry_list, &conf->retry_list);
319 conf->nr_queued ++;
320 spin_unlock_irqrestore(&conf->device_lock, flags);
321
322 /* wake up frozen array... */
323 wake_up(&conf->wait_barrier);
324
325 md_wakeup_thread(mddev->thread);
326 }
327
328 /*
329 * raid_end_bio_io() is called when we have finished servicing a mirrored
330 * operation and are ready to return a success/failure code to the buffer
331 * cache layer.
332 */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335 struct bio *bio = r10_bio->master_bio;
336 struct r10conf *conf = r10_bio->mddev->private;
337
338 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339 bio->bi_error = -EIO;
340
341 bio_endio(bio);
342 /*
343 * Wake up any possible resync thread that waits for the device
344 * to go idle.
345 */
346 allow_barrier(conf);
347
348 free_r10bio(r10_bio);
349 }
350
351 /*
352 * Update disk head position estimator based on IRQ completion info.
353 */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356 struct r10conf *conf = r10_bio->mddev->private;
357
358 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359 r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361
362 /*
363 * Find the disk number which triggered given bio
364 */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366 struct bio *bio, int *slotp, int *replp)
367 {
368 int slot;
369 int repl = 0;
370
371 for (slot = 0; slot < conf->copies; slot++) {
372 if (r10_bio->devs[slot].bio == bio)
373 break;
374 if (r10_bio->devs[slot].repl_bio == bio) {
375 repl = 1;
376 break;
377 }
378 }
379
380 BUG_ON(slot == conf->copies);
381 update_head_pos(slot, r10_bio);
382
383 if (slotp)
384 *slotp = slot;
385 if (replp)
386 *replp = repl;
387 return r10_bio->devs[slot].devnum;
388 }
389
390 static void raid10_end_read_request(struct bio *bio)
391 {
392 int uptodate = !bio->bi_error;
393 struct r10bio *r10_bio = bio->bi_private;
394 int slot, dev;
395 struct md_rdev *rdev;
396 struct r10conf *conf = r10_bio->mddev->private;
397
398 slot = r10_bio->read_slot;
399 dev = r10_bio->devs[slot].devnum;
400 rdev = r10_bio->devs[slot].rdev;
401 /*
402 * this branch is our 'one mirror IO has finished' event handler:
403 */
404 update_head_pos(slot, r10_bio);
405
406 if (uptodate) {
407 /*
408 * Set R10BIO_Uptodate in our master bio, so that
409 * we will return a good error code to the higher
410 * levels even if IO on some other mirrored buffer fails.
411 *
412 * The 'master' represents the composite IO operation to
413 * user-side. So if something waits for IO, then it will
414 * wait for the 'master' bio.
415 */
416 set_bit(R10BIO_Uptodate, &r10_bio->state);
417 } else {
418 /* If all other devices that store this block have
419 * failed, we want to return the error upwards rather
420 * than fail the last device. Here we redefine
421 * "uptodate" to mean "Don't want to retry"
422 */
423 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424 rdev->raid_disk))
425 uptodate = 1;
426 }
427 if (uptodate) {
428 raid_end_bio_io(r10_bio);
429 rdev_dec_pending(rdev, conf->mddev);
430 } else {
431 /*
432 * oops, read error - keep the refcount on the rdev
433 */
434 char b[BDEVNAME_SIZE];
435 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436 mdname(conf->mddev),
437 bdevname(rdev->bdev, b),
438 (unsigned long long)r10_bio->sector);
439 set_bit(R10BIO_ReadError, &r10_bio->state);
440 reschedule_retry(r10_bio);
441 }
442 }
443
444 static void close_write(struct r10bio *r10_bio)
445 {
446 /* clear the bitmap if all writes complete successfully */
447 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448 r10_bio->sectors,
449 !test_bit(R10BIO_Degraded, &r10_bio->state),
450 0);
451 md_write_end(r10_bio->mddev);
452 }
453
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456 if (atomic_dec_and_test(&r10_bio->remaining)) {
457 if (test_bit(R10BIO_WriteError, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else {
460 close_write(r10_bio);
461 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462 reschedule_retry(r10_bio);
463 else
464 raid_end_bio_io(r10_bio);
465 }
466 }
467 }
468
469 static void raid10_end_write_request(struct bio *bio)
470 {
471 struct r10bio *r10_bio = bio->bi_private;
472 int dev;
473 int dec_rdev = 1;
474 struct r10conf *conf = r10_bio->mddev->private;
475 int slot, repl;
476 struct md_rdev *rdev = NULL;
477 struct bio *to_put = NULL;
478 bool discard_error;
479
480 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
481
482 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483
484 if (repl)
485 rdev = conf->mirrors[dev].replacement;
486 if (!rdev) {
487 smp_rmb();
488 repl = 0;
489 rdev = conf->mirrors[dev].rdev;
490 }
491 /*
492 * this branch is our 'one mirror IO has finished' event handler:
493 */
494 if (bio->bi_error && !discard_error) {
495 if (repl)
496 /* Never record new bad blocks to replacement,
497 * just fail it.
498 */
499 md_error(rdev->mddev, rdev);
500 else {
501 set_bit(WriteErrorSeen, &rdev->flags);
502 if (!test_and_set_bit(WantReplacement, &rdev->flags))
503 set_bit(MD_RECOVERY_NEEDED,
504 &rdev->mddev->recovery);
505
506 dec_rdev = 0;
507 if (test_bit(FailFast, &rdev->flags) &&
508 (bio->bi_opf & MD_FAILFAST)) {
509 md_error(rdev->mddev, rdev);
510 if (!test_bit(Faulty, &rdev->flags))
511 /* This is the only remaining device,
512 * We need to retry the write without
513 * FailFast
514 */
515 set_bit(R10BIO_WriteError, &r10_bio->state);
516 else {
517 r10_bio->devs[slot].bio = NULL;
518 to_put = bio;
519 dec_rdev = 1;
520 }
521 } else
522 set_bit(R10BIO_WriteError, &r10_bio->state);
523 }
524 } else {
525 /*
526 * Set R10BIO_Uptodate in our master bio, so that
527 * we will return a good error code for to the higher
528 * levels even if IO on some other mirrored buffer fails.
529 *
530 * The 'master' represents the composite IO operation to
531 * user-side. So if something waits for IO, then it will
532 * wait for the 'master' bio.
533 */
534 sector_t first_bad;
535 int bad_sectors;
536
537 /*
538 * Do not set R10BIO_Uptodate if the current device is
539 * rebuilding or Faulty. This is because we cannot use
540 * such device for properly reading the data back (we could
541 * potentially use it, if the current write would have felt
542 * before rdev->recovery_offset, but for simplicity we don't
543 * check this here.
544 */
545 if (test_bit(In_sync, &rdev->flags) &&
546 !test_bit(Faulty, &rdev->flags))
547 set_bit(R10BIO_Uptodate, &r10_bio->state);
548
549 /* Maybe we can clear some bad blocks. */
550 if (is_badblock(rdev,
551 r10_bio->devs[slot].addr,
552 r10_bio->sectors,
553 &first_bad, &bad_sectors) && !discard_error) {
554 bio_put(bio);
555 if (repl)
556 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557 else
558 r10_bio->devs[slot].bio = IO_MADE_GOOD;
559 dec_rdev = 0;
560 set_bit(R10BIO_MadeGood, &r10_bio->state);
561 }
562 }
563
564 /*
565 *
566 * Let's see if all mirrored write operations have finished
567 * already.
568 */
569 one_write_done(r10_bio);
570 if (dec_rdev)
571 rdev_dec_pending(rdev, conf->mddev);
572 if (to_put)
573 bio_put(to_put);
574 }
575
576 /*
577 * RAID10 layout manager
578 * As well as the chunksize and raid_disks count, there are two
579 * parameters: near_copies and far_copies.
580 * near_copies * far_copies must be <= raid_disks.
581 * Normally one of these will be 1.
582 * If both are 1, we get raid0.
583 * If near_copies == raid_disks, we get raid1.
584 *
585 * Chunks are laid out in raid0 style with near_copies copies of the
586 * first chunk, followed by near_copies copies of the next chunk and
587 * so on.
588 * If far_copies > 1, then after 1/far_copies of the array has been assigned
589 * as described above, we start again with a device offset of near_copies.
590 * So we effectively have another copy of the whole array further down all
591 * the drives, but with blocks on different drives.
592 * With this layout, and block is never stored twice on the one device.
593 *
594 * raid10_find_phys finds the sector offset of a given virtual sector
595 * on each device that it is on.
596 *
597 * raid10_find_virt does the reverse mapping, from a device and a
598 * sector offset to a virtual address
599 */
600
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603 int n,f;
604 sector_t sector;
605 sector_t chunk;
606 sector_t stripe;
607 int dev;
608 int slot = 0;
609 int last_far_set_start, last_far_set_size;
610
611 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612 last_far_set_start *= geo->far_set_size;
613
614 last_far_set_size = geo->far_set_size;
615 last_far_set_size += (geo->raid_disks % geo->far_set_size);
616
617 /* now calculate first sector/dev */
618 chunk = r10bio->sector >> geo->chunk_shift;
619 sector = r10bio->sector & geo->chunk_mask;
620
621 chunk *= geo->near_copies;
622 stripe = chunk;
623 dev = sector_div(stripe, geo->raid_disks);
624 if (geo->far_offset)
625 stripe *= geo->far_copies;
626
627 sector += stripe << geo->chunk_shift;
628
629 /* and calculate all the others */
630 for (n = 0; n < geo->near_copies; n++) {
631 int d = dev;
632 int set;
633 sector_t s = sector;
634 r10bio->devs[slot].devnum = d;
635 r10bio->devs[slot].addr = s;
636 slot++;
637
638 for (f = 1; f < geo->far_copies; f++) {
639 set = d / geo->far_set_size;
640 d += geo->near_copies;
641
642 if ((geo->raid_disks % geo->far_set_size) &&
643 (d > last_far_set_start)) {
644 d -= last_far_set_start;
645 d %= last_far_set_size;
646 d += last_far_set_start;
647 } else {
648 d %= geo->far_set_size;
649 d += geo->far_set_size * set;
650 }
651 s += geo->stride;
652 r10bio->devs[slot].devnum = d;
653 r10bio->devs[slot].addr = s;
654 slot++;
655 }
656 dev++;
657 if (dev >= geo->raid_disks) {
658 dev = 0;
659 sector += (geo->chunk_mask + 1);
660 }
661 }
662 }
663
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666 struct geom *geo = &conf->geo;
667
668 if (conf->reshape_progress != MaxSector &&
669 ((r10bio->sector >= conf->reshape_progress) !=
670 conf->mddev->reshape_backwards)) {
671 set_bit(R10BIO_Previous, &r10bio->state);
672 geo = &conf->prev;
673 } else
674 clear_bit(R10BIO_Previous, &r10bio->state);
675
676 __raid10_find_phys(geo, r10bio);
677 }
678
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681 sector_t offset, chunk, vchunk;
682 /* Never use conf->prev as this is only called during resync
683 * or recovery, so reshape isn't happening
684 */
685 struct geom *geo = &conf->geo;
686 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687 int far_set_size = geo->far_set_size;
688 int last_far_set_start;
689
690 if (geo->raid_disks % geo->far_set_size) {
691 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692 last_far_set_start *= geo->far_set_size;
693
694 if (dev >= last_far_set_start) {
695 far_set_size = geo->far_set_size;
696 far_set_size += (geo->raid_disks % geo->far_set_size);
697 far_set_start = last_far_set_start;
698 }
699 }
700
701 offset = sector & geo->chunk_mask;
702 if (geo->far_offset) {
703 int fc;
704 chunk = sector >> geo->chunk_shift;
705 fc = sector_div(chunk, geo->far_copies);
706 dev -= fc * geo->near_copies;
707 if (dev < far_set_start)
708 dev += far_set_size;
709 } else {
710 while (sector >= geo->stride) {
711 sector -= geo->stride;
712 if (dev < (geo->near_copies + far_set_start))
713 dev += far_set_size - geo->near_copies;
714 else
715 dev -= geo->near_copies;
716 }
717 chunk = sector >> geo->chunk_shift;
718 }
719 vchunk = chunk * geo->raid_disks + dev;
720 sector_div(vchunk, geo->near_copies);
721 return (vchunk << geo->chunk_shift) + offset;
722 }
723
724 /*
725 * This routine returns the disk from which the requested read should
726 * be done. There is a per-array 'next expected sequential IO' sector
727 * number - if this matches on the next IO then we use the last disk.
728 * There is also a per-disk 'last know head position' sector that is
729 * maintained from IRQ contexts, both the normal and the resync IO
730 * completion handlers update this position correctly. If there is no
731 * perfect sequential match then we pick the disk whose head is closest.
732 *
733 * If there are 2 mirrors in the same 2 devices, performance degrades
734 * because position is mirror, not device based.
735 *
736 * The rdev for the device selected will have nr_pending incremented.
737 */
738
739 /*
740 * FIXME: possibly should rethink readbalancing and do it differently
741 * depending on near_copies / far_copies geometry.
742 */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744 struct r10bio *r10_bio,
745 int *max_sectors)
746 {
747 const sector_t this_sector = r10_bio->sector;
748 int disk, slot;
749 int sectors = r10_bio->sectors;
750 int best_good_sectors;
751 sector_t new_distance, best_dist;
752 struct md_rdev *best_rdev, *rdev = NULL;
753 int do_balance;
754 int best_slot;
755 struct geom *geo = &conf->geo;
756
757 raid10_find_phys(conf, r10_bio);
758 rcu_read_lock();
759 sectors = r10_bio->sectors;
760 best_slot = -1;
761 best_rdev = NULL;
762 best_dist = MaxSector;
763 best_good_sectors = 0;
764 do_balance = 1;
765 clear_bit(R10BIO_FailFast, &r10_bio->state);
766 /*
767 * Check if we can balance. We can balance on the whole
768 * device if no resync is going on (recovery is ok), or below
769 * the resync window. We take the first readable disk when
770 * above the resync window.
771 */
772 if (conf->mddev->recovery_cp < MaxSector
773 && (this_sector + sectors >= conf->next_resync))
774 do_balance = 0;
775
776 for (slot = 0; slot < conf->copies ; slot++) {
777 sector_t first_bad;
778 int bad_sectors;
779 sector_t dev_sector;
780
781 if (r10_bio->devs[slot].bio == IO_BLOCKED)
782 continue;
783 disk = r10_bio->devs[slot].devnum;
784 rdev = rcu_dereference(conf->mirrors[disk].replacement);
785 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787 rdev = rcu_dereference(conf->mirrors[disk].rdev);
788 if (rdev == NULL ||
789 test_bit(Faulty, &rdev->flags))
790 continue;
791 if (!test_bit(In_sync, &rdev->flags) &&
792 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793 continue;
794
795 dev_sector = r10_bio->devs[slot].addr;
796 if (is_badblock(rdev, dev_sector, sectors,
797 &first_bad, &bad_sectors)) {
798 if (best_dist < MaxSector)
799 /* Already have a better slot */
800 continue;
801 if (first_bad <= dev_sector) {
802 /* Cannot read here. If this is the
803 * 'primary' device, then we must not read
804 * beyond 'bad_sectors' from another device.
805 */
806 bad_sectors -= (dev_sector - first_bad);
807 if (!do_balance && sectors > bad_sectors)
808 sectors = bad_sectors;
809 if (best_good_sectors > sectors)
810 best_good_sectors = sectors;
811 } else {
812 sector_t good_sectors =
813 first_bad - dev_sector;
814 if (good_sectors > best_good_sectors) {
815 best_good_sectors = good_sectors;
816 best_slot = slot;
817 best_rdev = rdev;
818 }
819 if (!do_balance)
820 /* Must read from here */
821 break;
822 }
823 continue;
824 } else
825 best_good_sectors = sectors;
826
827 if (!do_balance)
828 break;
829
830 if (best_slot >= 0)
831 /* At least 2 disks to choose from so failfast is OK */
832 set_bit(R10BIO_FailFast, &r10_bio->state);
833 /* This optimisation is debatable, and completely destroys
834 * sequential read speed for 'far copies' arrays. So only
835 * keep it for 'near' arrays, and review those later.
836 */
837 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838 new_distance = 0;
839
840 /* for far > 1 always use the lowest address */
841 else if (geo->far_copies > 1)
842 new_distance = r10_bio->devs[slot].addr;
843 else
844 new_distance = abs(r10_bio->devs[slot].addr -
845 conf->mirrors[disk].head_position);
846 if (new_distance < best_dist) {
847 best_dist = new_distance;
848 best_slot = slot;
849 best_rdev = rdev;
850 }
851 }
852 if (slot >= conf->copies) {
853 slot = best_slot;
854 rdev = best_rdev;
855 }
856
857 if (slot >= 0) {
858 atomic_inc(&rdev->nr_pending);
859 r10_bio->read_slot = slot;
860 } else
861 rdev = NULL;
862 rcu_read_unlock();
863 *max_sectors = best_good_sectors;
864
865 return rdev;
866 }
867
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870 struct r10conf *conf = mddev->private;
871 int i, ret = 0;
872
873 if ((bits & (1 << WB_async_congested)) &&
874 conf->pending_count >= max_queued_requests)
875 return 1;
876
877 rcu_read_lock();
878 for (i = 0;
879 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880 && ret == 0;
881 i++) {
882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883 if (rdev && !test_bit(Faulty, &rdev->flags)) {
884 struct request_queue *q = bdev_get_queue(rdev->bdev);
885
886 ret |= bdi_congested(q->backing_dev_info, bits);
887 }
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895 /* Any writes that have been queued but are awaiting
896 * bitmap updates get flushed here.
897 */
898 spin_lock_irq(&conf->device_lock);
899
900 if (conf->pending_bio_list.head) {
901 struct bio *bio;
902 bio = bio_list_get(&conf->pending_bio_list);
903 conf->pending_count = 0;
904 spin_unlock_irq(&conf->device_lock);
905 /* flush any pending bitmap writes to disk
906 * before proceeding w/ I/O */
907 bitmap_unplug(conf->mddev->bitmap);
908 wake_up(&conf->wait_barrier);
909
910 while (bio) { /* submit pending writes */
911 struct bio *next = bio->bi_next;
912 struct md_rdev *rdev = (void*)bio->bi_bdev;
913 bio->bi_next = NULL;
914 bio->bi_bdev = rdev->bdev;
915 if (test_bit(Faulty, &rdev->flags)) {
916 bio->bi_error = -EIO;
917 bio_endio(bio);
918 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
919 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920 /* Just ignore it */
921 bio_endio(bio);
922 else
923 generic_make_request(bio);
924 bio = next;
925 }
926 } else
927 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931 * Sometimes we need to suspend IO while we do something else,
932 * either some resync/recovery, or reconfigure the array.
933 * To do this we raise a 'barrier'.
934 * The 'barrier' is a counter that can be raised multiple times
935 * to count how many activities are happening which preclude
936 * normal IO.
937 * We can only raise the barrier if there is no pending IO.
938 * i.e. if nr_pending == 0.
939 * We choose only to raise the barrier if no-one is waiting for the
940 * barrier to go down. This means that as soon as an IO request
941 * is ready, no other operations which require a barrier will start
942 * until the IO request has had a chance.
943 *
944 * So: regular IO calls 'wait_barrier'. When that returns there
945 * is no backgroup IO happening, It must arrange to call
946 * allow_barrier when it has finished its IO.
947 * backgroup IO calls must call raise_barrier. Once that returns
948 * there is no normal IO happeing. It must arrange to call
949 * lower_barrier when the particular background IO completes.
950 */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954 BUG_ON(force && !conf->barrier);
955 spin_lock_irq(&conf->resync_lock);
956
957 /* Wait until no block IO is waiting (unless 'force') */
958 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959 conf->resync_lock);
960
961 /* block any new IO from starting */
962 conf->barrier++;
963
964 /* Now wait for all pending IO to complete */
965 wait_event_lock_irq(conf->wait_barrier,
966 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967 conf->resync_lock);
968
969 spin_unlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974 unsigned long flags;
975 spin_lock_irqsave(&conf->resync_lock, flags);
976 conf->barrier--;
977 spin_unlock_irqrestore(&conf->resync_lock, flags);
978 wake_up(&conf->wait_barrier);
979 }
980
981 static void wait_barrier(struct r10conf *conf)
982 {
983 spin_lock_irq(&conf->resync_lock);
984 if (conf->barrier) {
985 conf->nr_waiting++;
986 /* Wait for the barrier to drop.
987 * However if there are already pending
988 * requests (preventing the barrier from
989 * rising completely), and the
990 * pre-process bio queue isn't empty,
991 * then don't wait, as we need to empty
992 * that queue to get the nr_pending
993 * count down.
994 */
995 raid10_log(conf->mddev, "wait barrier");
996 wait_event_lock_irq(conf->wait_barrier,
997 !conf->barrier ||
998 (atomic_read(&conf->nr_pending) &&
999 current->bio_list &&
1000 (!bio_list_empty(&current->bio_list[0]) ||
1001 !bio_list_empty(&current->bio_list[1]))),
1002 conf->resync_lock);
1003 conf->nr_waiting--;
1004 if (!conf->nr_waiting)
1005 wake_up(&conf->wait_barrier);
1006 }
1007 atomic_inc(&conf->nr_pending);
1008 spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014 (conf->array_freeze_pending))
1015 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020 /* stop syncio and normal IO and wait for everything to
1021 * go quiet.
1022 * We increment barrier and nr_waiting, and then
1023 * wait until nr_pending match nr_queued+extra
1024 * This is called in the context of one normal IO request
1025 * that has failed. Thus any sync request that might be pending
1026 * will be blocked by nr_pending, and we need to wait for
1027 * pending IO requests to complete or be queued for re-try.
1028 * Thus the number queued (nr_queued) plus this request (extra)
1029 * must match the number of pending IOs (nr_pending) before
1030 * we continue.
1031 */
1032 spin_lock_irq(&conf->resync_lock);
1033 conf->array_freeze_pending++;
1034 conf->barrier++;
1035 conf->nr_waiting++;
1036 wait_event_lock_irq_cmd(conf->wait_barrier,
1037 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038 conf->resync_lock,
1039 flush_pending_writes(conf));
1040
1041 conf->array_freeze_pending--;
1042 spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047 /* reverse the effect of the freeze */
1048 spin_lock_irq(&conf->resync_lock);
1049 conf->barrier--;
1050 conf->nr_waiting--;
1051 wake_up(&conf->wait_barrier);
1052 spin_unlock_irq(&conf->resync_lock);
1053 }
1054
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056 struct md_rdev *rdev)
1057 {
1058 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059 test_bit(R10BIO_Previous, &r10_bio->state))
1060 return rdev->data_offset;
1061 else
1062 return rdev->new_data_offset;
1063 }
1064
1065 struct raid10_plug_cb {
1066 struct blk_plug_cb cb;
1067 struct bio_list pending;
1068 int pending_cnt;
1069 };
1070
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074 cb);
1075 struct mddev *mddev = plug->cb.data;
1076 struct r10conf *conf = mddev->private;
1077 struct bio *bio;
1078
1079 if (from_schedule || current->bio_list) {
1080 spin_lock_irq(&conf->device_lock);
1081 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082 conf->pending_count += plug->pending_cnt;
1083 spin_unlock_irq(&conf->device_lock);
1084 wake_up(&conf->wait_barrier);
1085 md_wakeup_thread(mddev->thread);
1086 kfree(plug);
1087 return;
1088 }
1089
1090 /* we aren't scheduling, so we can do the write-out directly. */
1091 bio = bio_list_get(&plug->pending);
1092 bitmap_unplug(mddev->bitmap);
1093 wake_up(&conf->wait_barrier);
1094
1095 while (bio) { /* submit pending writes */
1096 struct bio *next = bio->bi_next;
1097 struct md_rdev *rdev = (void*)bio->bi_bdev;
1098 bio->bi_next = NULL;
1099 bio->bi_bdev = rdev->bdev;
1100 if (test_bit(Faulty, &rdev->flags)) {
1101 bio->bi_error = -EIO;
1102 bio_endio(bio);
1103 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1104 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105 /* Just ignore it */
1106 bio_endio(bio);
1107 else
1108 generic_make_request(bio);
1109 bio = next;
1110 }
1111 kfree(plug);
1112 }
1113
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115 struct r10bio *r10_bio)
1116 {
1117 struct r10conf *conf = mddev->private;
1118 struct bio *read_bio;
1119 const int op = bio_op(bio);
1120 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121 int max_sectors;
1122 sector_t sectors;
1123 struct md_rdev *rdev;
1124 char b[BDEVNAME_SIZE];
1125 int slot = r10_bio->read_slot;
1126 struct md_rdev *err_rdev = NULL;
1127 gfp_t gfp = GFP_NOIO;
1128
1129 if (r10_bio->devs[slot].rdev) {
1130 /*
1131 * This is an error retry, but we cannot
1132 * safely dereference the rdev in the r10_bio,
1133 * we must use the one in conf.
1134 * If it has already been disconnected (unlikely)
1135 * we lose the device name in error messages.
1136 */
1137 int disk;
1138 /*
1139 * As we are blocking raid10, it is a little safer to
1140 * use __GFP_HIGH.
1141 */
1142 gfp = GFP_NOIO | __GFP_HIGH;
1143
1144 rcu_read_lock();
1145 disk = r10_bio->devs[slot].devnum;
1146 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147 if (err_rdev)
1148 bdevname(err_rdev->bdev, b);
1149 else {
1150 strcpy(b, "???");
1151 /* This never gets dereferenced */
1152 err_rdev = r10_bio->devs[slot].rdev;
1153 }
1154 rcu_read_unlock();
1155 }
1156 /*
1157 * Register the new request and wait if the reconstruction
1158 * thread has put up a bar for new requests.
1159 * Continue immediately if no resync is active currently.
1160 */
1161 wait_barrier(conf);
1162
1163 sectors = r10_bio->sectors;
1164 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165 bio->bi_iter.bi_sector < conf->reshape_progress &&
1166 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167 /*
1168 * IO spans the reshape position. Need to wait for reshape to
1169 * pass
1170 */
1171 raid10_log(conf->mddev, "wait reshape");
1172 allow_barrier(conf);
1173 wait_event(conf->wait_barrier,
1174 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175 conf->reshape_progress >= bio->bi_iter.bi_sector +
1176 sectors);
1177 wait_barrier(conf);
1178 }
1179
1180 rdev = read_balance(conf, r10_bio, &max_sectors);
1181 if (!rdev) {
1182 if (err_rdev) {
1183 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184 mdname(mddev), b,
1185 (unsigned long long)r10_bio->sector);
1186 }
1187 raid_end_bio_io(r10_bio);
1188 return;
1189 }
1190 if (err_rdev)
1191 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192 mdname(mddev),
1193 bdevname(rdev->bdev, b),
1194 (unsigned long long)r10_bio->sector);
1195 if (max_sectors < bio_sectors(bio)) {
1196 struct bio *split = bio_split(bio, max_sectors,
1197 gfp, conf->bio_split);
1198 bio_chain(split, bio);
1199 generic_make_request(bio);
1200 bio = split;
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1203 }
1204 slot = r10_bio->read_slot;
1205
1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208 r10_bio->devs[slot].bio = read_bio;
1209 r10_bio->devs[slot].rdev = rdev;
1210
1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 choose_data_offset(r10_bio, rdev);
1213 read_bio->bi_bdev = rdev->bdev;
1214 read_bio->bi_end_io = raid10_end_read_request;
1215 bio_set_op_attrs(read_bio, op, do_sync);
1216 if (test_bit(FailFast, &rdev->flags) &&
1217 test_bit(R10BIO_FailFast, &r10_bio->state))
1218 read_bio->bi_opf |= MD_FAILFAST;
1219 read_bio->bi_private = r10_bio;
1220
1221 if (mddev->gendisk)
1222 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223 read_bio, disk_devt(mddev->gendisk),
1224 r10_bio->sector);
1225 generic_make_request(read_bio);
1226 return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
1231 int n_copy)
1232 {
1233 const int op = bio_op(bio);
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 unsigned long flags;
1237 struct blk_plug_cb *cb;
1238 struct raid10_plug_cb *plug = NULL;
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1242 struct bio *mbio;
1243
1244 if (replacement) {
1245 rdev = conf->mirrors[devnum].replacement;
1246 if (rdev == NULL) {
1247 /* Replacement just got moved to main 'rdev' */
1248 smp_mb();
1249 rdev = conf->mirrors[devnum].rdev;
1250 }
1251 } else
1252 rdev = conf->mirrors[devnum].rdev;
1253
1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 if (replacement)
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1257 else
1258 r10_bio->devs[n_copy].bio = mbio;
1259
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
1262 mbio->bi_bdev = rdev->bdev;
1263 mbio->bi_end_io = raid10_end_write_request;
1264 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 if (!replacement && test_bit(FailFast,
1266 &conf->mirrors[devnum].rdev->flags)
1267 && enough(conf, devnum))
1268 mbio->bi_opf |= MD_FAILFAST;
1269 mbio->bi_private = r10_bio;
1270
1271 if (conf->mddev->gendisk)
1272 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273 mbio, disk_devt(conf->mddev->gendisk),
1274 r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
1276 mbio->bi_bdev = (void *)rdev;
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 if (cb)
1282 plug = container_of(cb, struct raid10_plug_cb, cb);
1283 else
1284 plug = NULL;
1285 spin_lock_irqsave(&conf->device_lock, flags);
1286 if (plug) {
1287 bio_list_add(&plug->pending, mbio);
1288 plug->pending_cnt++;
1289 } else {
1290 bio_list_add(&conf->pending_bio_list, mbio);
1291 conf->pending_count++;
1292 }
1293 spin_unlock_irqrestore(&conf->device_lock, flags);
1294 if (!plug)
1295 md_wakeup_thread(mddev->thread);
1296 }
1297
1298 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1299 struct r10bio *r10_bio)
1300 {
1301 struct r10conf *conf = mddev->private;
1302 int i;
1303 struct md_rdev *blocked_rdev;
1304 sector_t sectors;
1305 int max_sectors;
1306
1307 md_write_start(mddev, bio);
1308
1309 /*
1310 * Register the new request and wait if the reconstruction
1311 * thread has put up a bar for new requests.
1312 * Continue immediately if no resync is active currently.
1313 */
1314 wait_barrier(conf);
1315
1316 sectors = r10_bio->sectors;
1317 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1318 bio->bi_iter.bi_sector < conf->reshape_progress &&
1319 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1320 /*
1321 * IO spans the reshape position. Need to wait for reshape to
1322 * pass
1323 */
1324 raid10_log(conf->mddev, "wait reshape");
1325 allow_barrier(conf);
1326 wait_event(conf->wait_barrier,
1327 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1328 conf->reshape_progress >= bio->bi_iter.bi_sector +
1329 sectors);
1330 wait_barrier(conf);
1331 }
1332
1333 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1334 (mddev->reshape_backwards
1335 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1336 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1337 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1338 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1339 /* Need to update reshape_position in metadata */
1340 mddev->reshape_position = conf->reshape_progress;
1341 set_mask_bits(&mddev->sb_flags, 0,
1342 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1343 md_wakeup_thread(mddev->thread);
1344 raid10_log(conf->mddev, "wait reshape metadata");
1345 wait_event(mddev->sb_wait,
1346 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1347
1348 conf->reshape_safe = mddev->reshape_position;
1349 }
1350
1351 if (conf->pending_count >= max_queued_requests) {
1352 md_wakeup_thread(mddev->thread);
1353 raid10_log(mddev, "wait queued");
1354 wait_event(conf->wait_barrier,
1355 conf->pending_count < max_queued_requests);
1356 }
1357 /* first select target devices under rcu_lock and
1358 * inc refcount on their rdev. Record them by setting
1359 * bios[x] to bio
1360 * If there are known/acknowledged bad blocks on any device
1361 * on which we have seen a write error, we want to avoid
1362 * writing to those blocks. This potentially requires several
1363 * writes to write around the bad blocks. Each set of writes
1364 * gets its own r10_bio with a set of bios attached.
1365 */
1366
1367 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1368 raid10_find_phys(conf, r10_bio);
1369 retry_write:
1370 blocked_rdev = NULL;
1371 rcu_read_lock();
1372 max_sectors = r10_bio->sectors;
1373
1374 for (i = 0; i < conf->copies; i++) {
1375 int d = r10_bio->devs[i].devnum;
1376 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1377 struct md_rdev *rrdev = rcu_dereference(
1378 conf->mirrors[d].replacement);
1379 if (rdev == rrdev)
1380 rrdev = NULL;
1381 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1382 atomic_inc(&rdev->nr_pending);
1383 blocked_rdev = rdev;
1384 break;
1385 }
1386 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1387 atomic_inc(&rrdev->nr_pending);
1388 blocked_rdev = rrdev;
1389 break;
1390 }
1391 if (rdev && (test_bit(Faulty, &rdev->flags)))
1392 rdev = NULL;
1393 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1394 rrdev = NULL;
1395
1396 r10_bio->devs[i].bio = NULL;
1397 r10_bio->devs[i].repl_bio = NULL;
1398
1399 if (!rdev && !rrdev) {
1400 set_bit(R10BIO_Degraded, &r10_bio->state);
1401 continue;
1402 }
1403 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1404 sector_t first_bad;
1405 sector_t dev_sector = r10_bio->devs[i].addr;
1406 int bad_sectors;
1407 int is_bad;
1408
1409 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1410 &first_bad, &bad_sectors);
1411 if (is_bad < 0) {
1412 /* Mustn't write here until the bad block
1413 * is acknowledged
1414 */
1415 atomic_inc(&rdev->nr_pending);
1416 set_bit(BlockedBadBlocks, &rdev->flags);
1417 blocked_rdev = rdev;
1418 break;
1419 }
1420 if (is_bad && first_bad <= dev_sector) {
1421 /* Cannot write here at all */
1422 bad_sectors -= (dev_sector - first_bad);
1423 if (bad_sectors < max_sectors)
1424 /* Mustn't write more than bad_sectors
1425 * to other devices yet
1426 */
1427 max_sectors = bad_sectors;
1428 /* We don't set R10BIO_Degraded as that
1429 * only applies if the disk is missing,
1430 * so it might be re-added, and we want to
1431 * know to recover this chunk.
1432 * In this case the device is here, and the
1433 * fact that this chunk is not in-sync is
1434 * recorded in the bad block log.
1435 */
1436 continue;
1437 }
1438 if (is_bad) {
1439 int good_sectors = first_bad - dev_sector;
1440 if (good_sectors < max_sectors)
1441 max_sectors = good_sectors;
1442 }
1443 }
1444 if (rdev) {
1445 r10_bio->devs[i].bio = bio;
1446 atomic_inc(&rdev->nr_pending);
1447 }
1448 if (rrdev) {
1449 r10_bio->devs[i].repl_bio = bio;
1450 atomic_inc(&rrdev->nr_pending);
1451 }
1452 }
1453 rcu_read_unlock();
1454
1455 if (unlikely(blocked_rdev)) {
1456 /* Have to wait for this device to get unblocked, then retry */
1457 int j;
1458 int d;
1459
1460 for (j = 0; j < i; j++) {
1461 if (r10_bio->devs[j].bio) {
1462 d = r10_bio->devs[j].devnum;
1463 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1464 }
1465 if (r10_bio->devs[j].repl_bio) {
1466 struct md_rdev *rdev;
1467 d = r10_bio->devs[j].devnum;
1468 rdev = conf->mirrors[d].replacement;
1469 if (!rdev) {
1470 /* Race with remove_disk */
1471 smp_mb();
1472 rdev = conf->mirrors[d].rdev;
1473 }
1474 rdev_dec_pending(rdev, mddev);
1475 }
1476 }
1477 allow_barrier(conf);
1478 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1479 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480 wait_barrier(conf);
1481 goto retry_write;
1482 }
1483
1484 if (max_sectors < r10_bio->sectors)
1485 r10_bio->sectors = max_sectors;
1486
1487 if (r10_bio->sectors < bio_sectors(bio)) {
1488 struct bio *split = bio_split(bio, r10_bio->sectors,
1489 GFP_NOIO, conf->bio_split);
1490 bio_chain(split, bio);
1491 generic_make_request(bio);
1492 bio = split;
1493 r10_bio->master_bio = bio;
1494 }
1495
1496 atomic_set(&r10_bio->remaining, 1);
1497 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1498
1499 for (i = 0; i < conf->copies; i++) {
1500 if (r10_bio->devs[i].bio)
1501 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1502 if (r10_bio->devs[i].repl_bio)
1503 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1504 }
1505 one_write_done(r10_bio);
1506 }
1507
1508 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1509 {
1510 struct r10conf *conf = mddev->private;
1511 struct r10bio *r10_bio;
1512
1513 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1514
1515 r10_bio->master_bio = bio;
1516 r10_bio->sectors = sectors;
1517
1518 r10_bio->mddev = mddev;
1519 r10_bio->sector = bio->bi_iter.bi_sector;
1520 r10_bio->state = 0;
1521 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1522
1523 if (bio_data_dir(bio) == READ)
1524 raid10_read_request(mddev, bio, r10_bio);
1525 else
1526 raid10_write_request(mddev, bio, r10_bio);
1527 }
1528
1529 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1530 {
1531 struct r10conf *conf = mddev->private;
1532 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1533 int chunk_sects = chunk_mask + 1;
1534 int sectors = bio_sectors(bio);
1535
1536 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537 md_flush_request(mddev, bio);
1538 return;
1539 }
1540
1541 /*
1542 * If this request crosses a chunk boundary, we need to split
1543 * it.
1544 */
1545 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1546 sectors > chunk_sects
1547 && (conf->geo.near_copies < conf->geo.raid_disks
1548 || conf->prev.near_copies <
1549 conf->prev.raid_disks)))
1550 sectors = chunk_sects -
1551 (bio->bi_iter.bi_sector &
1552 (chunk_sects - 1));
1553 __make_request(mddev, bio, sectors);
1554
1555 /* In case raid10d snuck in to freeze_array */
1556 wake_up(&conf->wait_barrier);
1557 }
1558
1559 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1560 {
1561 struct r10conf *conf = mddev->private;
1562 int i;
1563
1564 if (conf->geo.near_copies < conf->geo.raid_disks)
1565 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1566 if (conf->geo.near_copies > 1)
1567 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1568 if (conf->geo.far_copies > 1) {
1569 if (conf->geo.far_offset)
1570 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1571 else
1572 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1573 if (conf->geo.far_set_size != conf->geo.raid_disks)
1574 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1575 }
1576 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1577 conf->geo.raid_disks - mddev->degraded);
1578 rcu_read_lock();
1579 for (i = 0; i < conf->geo.raid_disks; i++) {
1580 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1581 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1582 }
1583 rcu_read_unlock();
1584 seq_printf(seq, "]");
1585 }
1586
1587 /* check if there are enough drives for
1588 * every block to appear on atleast one.
1589 * Don't consider the device numbered 'ignore'
1590 * as we might be about to remove it.
1591 */
1592 static int _enough(struct r10conf *conf, int previous, int ignore)
1593 {
1594 int first = 0;
1595 int has_enough = 0;
1596 int disks, ncopies;
1597 if (previous) {
1598 disks = conf->prev.raid_disks;
1599 ncopies = conf->prev.near_copies;
1600 } else {
1601 disks = conf->geo.raid_disks;
1602 ncopies = conf->geo.near_copies;
1603 }
1604
1605 rcu_read_lock();
1606 do {
1607 int n = conf->copies;
1608 int cnt = 0;
1609 int this = first;
1610 while (n--) {
1611 struct md_rdev *rdev;
1612 if (this != ignore &&
1613 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1614 test_bit(In_sync, &rdev->flags))
1615 cnt++;
1616 this = (this+1) % disks;
1617 }
1618 if (cnt == 0)
1619 goto out;
1620 first = (first + ncopies) % disks;
1621 } while (first != 0);
1622 has_enough = 1;
1623 out:
1624 rcu_read_unlock();
1625 return has_enough;
1626 }
1627
1628 static int enough(struct r10conf *conf, int ignore)
1629 {
1630 /* when calling 'enough', both 'prev' and 'geo' must
1631 * be stable.
1632 * This is ensured if ->reconfig_mutex or ->device_lock
1633 * is held.
1634 */
1635 return _enough(conf, 0, ignore) &&
1636 _enough(conf, 1, ignore);
1637 }
1638
1639 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1640 {
1641 char b[BDEVNAME_SIZE];
1642 struct r10conf *conf = mddev->private;
1643 unsigned long flags;
1644
1645 /*
1646 * If it is not operational, then we have already marked it as dead
1647 * else if it is the last working disks, ignore the error, let the
1648 * next level up know.
1649 * else mark the drive as failed
1650 */
1651 spin_lock_irqsave(&conf->device_lock, flags);
1652 if (test_bit(In_sync, &rdev->flags)
1653 && !enough(conf, rdev->raid_disk)) {
1654 /*
1655 * Don't fail the drive, just return an IO error.
1656 */
1657 spin_unlock_irqrestore(&conf->device_lock, flags);
1658 return;
1659 }
1660 if (test_and_clear_bit(In_sync, &rdev->flags))
1661 mddev->degraded++;
1662 /*
1663 * If recovery is running, make sure it aborts.
1664 */
1665 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1666 set_bit(Blocked, &rdev->flags);
1667 set_bit(Faulty, &rdev->flags);
1668 set_mask_bits(&mddev->sb_flags, 0,
1669 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670 spin_unlock_irqrestore(&conf->device_lock, flags);
1671 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1672 "md/raid10:%s: Operation continuing on %d devices.\n",
1673 mdname(mddev), bdevname(rdev->bdev, b),
1674 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1675 }
1676
1677 static void print_conf(struct r10conf *conf)
1678 {
1679 int i;
1680 struct md_rdev *rdev;
1681
1682 pr_debug("RAID10 conf printout:\n");
1683 if (!conf) {
1684 pr_debug("(!conf)\n");
1685 return;
1686 }
1687 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1688 conf->geo.raid_disks);
1689
1690 /* This is only called with ->reconfix_mutex held, so
1691 * rcu protection of rdev is not needed */
1692 for (i = 0; i < conf->geo.raid_disks; i++) {
1693 char b[BDEVNAME_SIZE];
1694 rdev = conf->mirrors[i].rdev;
1695 if (rdev)
1696 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697 i, !test_bit(In_sync, &rdev->flags),
1698 !test_bit(Faulty, &rdev->flags),
1699 bdevname(rdev->bdev,b));
1700 }
1701 }
1702
1703 static void close_sync(struct r10conf *conf)
1704 {
1705 wait_barrier(conf);
1706 allow_barrier(conf);
1707
1708 mempool_destroy(conf->r10buf_pool);
1709 conf->r10buf_pool = NULL;
1710 }
1711
1712 static int raid10_spare_active(struct mddev *mddev)
1713 {
1714 int i;
1715 struct r10conf *conf = mddev->private;
1716 struct raid10_info *tmp;
1717 int count = 0;
1718 unsigned long flags;
1719
1720 /*
1721 * Find all non-in_sync disks within the RAID10 configuration
1722 * and mark them in_sync
1723 */
1724 for (i = 0; i < conf->geo.raid_disks; i++) {
1725 tmp = conf->mirrors + i;
1726 if (tmp->replacement
1727 && tmp->replacement->recovery_offset == MaxSector
1728 && !test_bit(Faulty, &tmp->replacement->flags)
1729 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1730 /* Replacement has just become active */
1731 if (!tmp->rdev
1732 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1733 count++;
1734 if (tmp->rdev) {
1735 /* Replaced device not technically faulty,
1736 * but we need to be sure it gets removed
1737 * and never re-added.
1738 */
1739 set_bit(Faulty, &tmp->rdev->flags);
1740 sysfs_notify_dirent_safe(
1741 tmp->rdev->sysfs_state);
1742 }
1743 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1744 } else if (tmp->rdev
1745 && tmp->rdev->recovery_offset == MaxSector
1746 && !test_bit(Faulty, &tmp->rdev->flags)
1747 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1748 count++;
1749 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1750 }
1751 }
1752 spin_lock_irqsave(&conf->device_lock, flags);
1753 mddev->degraded -= count;
1754 spin_unlock_irqrestore(&conf->device_lock, flags);
1755
1756 print_conf(conf);
1757 return count;
1758 }
1759
1760 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1761 {
1762 struct r10conf *conf = mddev->private;
1763 int err = -EEXIST;
1764 int mirror;
1765 int first = 0;
1766 int last = conf->geo.raid_disks - 1;
1767
1768 if (mddev->recovery_cp < MaxSector)
1769 /* only hot-add to in-sync arrays, as recovery is
1770 * very different from resync
1771 */
1772 return -EBUSY;
1773 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1774 return -EINVAL;
1775
1776 if (md_integrity_add_rdev(rdev, mddev))
1777 return -ENXIO;
1778
1779 if (rdev->raid_disk >= 0)
1780 first = last = rdev->raid_disk;
1781
1782 if (rdev->saved_raid_disk >= first &&
1783 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1784 mirror = rdev->saved_raid_disk;
1785 else
1786 mirror = first;
1787 for ( ; mirror <= last ; mirror++) {
1788 struct raid10_info *p = &conf->mirrors[mirror];
1789 if (p->recovery_disabled == mddev->recovery_disabled)
1790 continue;
1791 if (p->rdev) {
1792 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1793 p->replacement != NULL)
1794 continue;
1795 clear_bit(In_sync, &rdev->flags);
1796 set_bit(Replacement, &rdev->flags);
1797 rdev->raid_disk = mirror;
1798 err = 0;
1799 if (mddev->gendisk)
1800 disk_stack_limits(mddev->gendisk, rdev->bdev,
1801 rdev->data_offset << 9);
1802 conf->fullsync = 1;
1803 rcu_assign_pointer(p->replacement, rdev);
1804 break;
1805 }
1806
1807 if (mddev->gendisk)
1808 disk_stack_limits(mddev->gendisk, rdev->bdev,
1809 rdev->data_offset << 9);
1810
1811 p->head_position = 0;
1812 p->recovery_disabled = mddev->recovery_disabled - 1;
1813 rdev->raid_disk = mirror;
1814 err = 0;
1815 if (rdev->saved_raid_disk != mirror)
1816 conf->fullsync = 1;
1817 rcu_assign_pointer(p->rdev, rdev);
1818 break;
1819 }
1820 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1821 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1822
1823 print_conf(conf);
1824 return err;
1825 }
1826
1827 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1828 {
1829 struct r10conf *conf = mddev->private;
1830 int err = 0;
1831 int number = rdev->raid_disk;
1832 struct md_rdev **rdevp;
1833 struct raid10_info *p = conf->mirrors + number;
1834
1835 print_conf(conf);
1836 if (rdev == p->rdev)
1837 rdevp = &p->rdev;
1838 else if (rdev == p->replacement)
1839 rdevp = &p->replacement;
1840 else
1841 return 0;
1842
1843 if (test_bit(In_sync, &rdev->flags) ||
1844 atomic_read(&rdev->nr_pending)) {
1845 err = -EBUSY;
1846 goto abort;
1847 }
1848 /* Only remove non-faulty devices if recovery
1849 * is not possible.
1850 */
1851 if (!test_bit(Faulty, &rdev->flags) &&
1852 mddev->recovery_disabled != p->recovery_disabled &&
1853 (!p->replacement || p->replacement == rdev) &&
1854 number < conf->geo.raid_disks &&
1855 enough(conf, -1)) {
1856 err = -EBUSY;
1857 goto abort;
1858 }
1859 *rdevp = NULL;
1860 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1861 synchronize_rcu();
1862 if (atomic_read(&rdev->nr_pending)) {
1863 /* lost the race, try later */
1864 err = -EBUSY;
1865 *rdevp = rdev;
1866 goto abort;
1867 }
1868 }
1869 if (p->replacement) {
1870 /* We must have just cleared 'rdev' */
1871 p->rdev = p->replacement;
1872 clear_bit(Replacement, &p->replacement->flags);
1873 smp_mb(); /* Make sure other CPUs may see both as identical
1874 * but will never see neither -- if they are careful.
1875 */
1876 p->replacement = NULL;
1877 }
1878
1879 clear_bit(WantReplacement, &rdev->flags);
1880 err = md_integrity_register(mddev);
1881
1882 abort:
1883
1884 print_conf(conf);
1885 return err;
1886 }
1887
1888 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1889 {
1890 struct r10conf *conf = r10_bio->mddev->private;
1891
1892 if (!bio->bi_error)
1893 set_bit(R10BIO_Uptodate, &r10_bio->state);
1894 else
1895 /* The write handler will notice the lack of
1896 * R10BIO_Uptodate and record any errors etc
1897 */
1898 atomic_add(r10_bio->sectors,
1899 &conf->mirrors[d].rdev->corrected_errors);
1900
1901 /* for reconstruct, we always reschedule after a read.
1902 * for resync, only after all reads
1903 */
1904 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1905 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1906 atomic_dec_and_test(&r10_bio->remaining)) {
1907 /* we have read all the blocks,
1908 * do the comparison in process context in raid10d
1909 */
1910 reschedule_retry(r10_bio);
1911 }
1912 }
1913
1914 static void end_sync_read(struct bio *bio)
1915 {
1916 struct r10bio *r10_bio = get_resync_r10bio(bio);
1917 struct r10conf *conf = r10_bio->mddev->private;
1918 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1919
1920 __end_sync_read(r10_bio, bio, d);
1921 }
1922
1923 static void end_reshape_read(struct bio *bio)
1924 {
1925 /* reshape read bio isn't allocated from r10buf_pool */
1926 struct r10bio *r10_bio = bio->bi_private;
1927
1928 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1929 }
1930
1931 static void end_sync_request(struct r10bio *r10_bio)
1932 {
1933 struct mddev *mddev = r10_bio->mddev;
1934
1935 while (atomic_dec_and_test(&r10_bio->remaining)) {
1936 if (r10_bio->master_bio == NULL) {
1937 /* the primary of several recovery bios */
1938 sector_t s = r10_bio->sectors;
1939 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940 test_bit(R10BIO_WriteError, &r10_bio->state))
1941 reschedule_retry(r10_bio);
1942 else
1943 put_buf(r10_bio);
1944 md_done_sync(mddev, s, 1);
1945 break;
1946 } else {
1947 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1948 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1949 test_bit(R10BIO_WriteError, &r10_bio->state))
1950 reschedule_retry(r10_bio);
1951 else
1952 put_buf(r10_bio);
1953 r10_bio = r10_bio2;
1954 }
1955 }
1956 }
1957
1958 static void end_sync_write(struct bio *bio)
1959 {
1960 struct r10bio *r10_bio = get_resync_r10bio(bio);
1961 struct mddev *mddev = r10_bio->mddev;
1962 struct r10conf *conf = mddev->private;
1963 int d;
1964 sector_t first_bad;
1965 int bad_sectors;
1966 int slot;
1967 int repl;
1968 struct md_rdev *rdev = NULL;
1969
1970 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1971 if (repl)
1972 rdev = conf->mirrors[d].replacement;
1973 else
1974 rdev = conf->mirrors[d].rdev;
1975
1976 if (bio->bi_error) {
1977 if (repl)
1978 md_error(mddev, rdev);
1979 else {
1980 set_bit(WriteErrorSeen, &rdev->flags);
1981 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1982 set_bit(MD_RECOVERY_NEEDED,
1983 &rdev->mddev->recovery);
1984 set_bit(R10BIO_WriteError, &r10_bio->state);
1985 }
1986 } else if (is_badblock(rdev,
1987 r10_bio->devs[slot].addr,
1988 r10_bio->sectors,
1989 &first_bad, &bad_sectors))
1990 set_bit(R10BIO_MadeGood, &r10_bio->state);
1991
1992 rdev_dec_pending(rdev, mddev);
1993
1994 end_sync_request(r10_bio);
1995 }
1996
1997 /*
1998 * Note: sync and recover and handled very differently for raid10
1999 * This code is for resync.
2000 * For resync, we read through virtual addresses and read all blocks.
2001 * If there is any error, we schedule a write. The lowest numbered
2002 * drive is authoritative.
2003 * However requests come for physical address, so we need to map.
2004 * For every physical address there are raid_disks/copies virtual addresses,
2005 * which is always are least one, but is not necessarly an integer.
2006 * This means that a physical address can span multiple chunks, so we may
2007 * have to submit multiple io requests for a single sync request.
2008 */
2009 /*
2010 * We check if all blocks are in-sync and only write to blocks that
2011 * aren't in sync
2012 */
2013 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2014 {
2015 struct r10conf *conf = mddev->private;
2016 int i, first;
2017 struct bio *tbio, *fbio;
2018 int vcnt;
2019 struct page **tpages, **fpages;
2020
2021 atomic_set(&r10_bio->remaining, 1);
2022
2023 /* find the first device with a block */
2024 for (i=0; i<conf->copies; i++)
2025 if (!r10_bio->devs[i].bio->bi_error)
2026 break;
2027
2028 if (i == conf->copies)
2029 goto done;
2030
2031 first = i;
2032 fbio = r10_bio->devs[i].bio;
2033 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2034 fbio->bi_iter.bi_idx = 0;
2035 fpages = get_resync_pages(fbio)->pages;
2036
2037 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2038 /* now find blocks with errors */
2039 for (i=0 ; i < conf->copies ; i++) {
2040 int j, d;
2041 struct md_rdev *rdev;
2042 struct resync_pages *rp;
2043
2044 tbio = r10_bio->devs[i].bio;
2045
2046 if (tbio->bi_end_io != end_sync_read)
2047 continue;
2048 if (i == first)
2049 continue;
2050
2051 tpages = get_resync_pages(tbio)->pages;
2052 d = r10_bio->devs[i].devnum;
2053 rdev = conf->mirrors[d].rdev;
2054 if (!r10_bio->devs[i].bio->bi_error) {
2055 /* We know that the bi_io_vec layout is the same for
2056 * both 'first' and 'i', so we just compare them.
2057 * All vec entries are PAGE_SIZE;
2058 */
2059 int sectors = r10_bio->sectors;
2060 for (j = 0; j < vcnt; j++) {
2061 int len = PAGE_SIZE;
2062 if (sectors < (len / 512))
2063 len = sectors * 512;
2064 if (memcmp(page_address(fpages[j]),
2065 page_address(tpages[j]),
2066 len))
2067 break;
2068 sectors -= len/512;
2069 }
2070 if (j == vcnt)
2071 continue;
2072 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2073 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2074 /* Don't fix anything. */
2075 continue;
2076 } else if (test_bit(FailFast, &rdev->flags)) {
2077 /* Just give up on this device */
2078 md_error(rdev->mddev, rdev);
2079 continue;
2080 }
2081 /* Ok, we need to write this bio, either to correct an
2082 * inconsistency or to correct an unreadable block.
2083 * First we need to fixup bv_offset, bv_len and
2084 * bi_vecs, as the read request might have corrupted these
2085 */
2086 rp = get_resync_pages(tbio);
2087 bio_reset(tbio);
2088
2089 tbio->bi_vcnt = vcnt;
2090 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2091 rp->raid_bio = r10_bio;
2092 tbio->bi_private = rp;
2093 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2094 tbio->bi_end_io = end_sync_write;
2095 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2096
2097 bio_copy_data(tbio, fbio);
2098
2099 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2100 atomic_inc(&r10_bio->remaining);
2101 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2102
2103 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2104 tbio->bi_opf |= MD_FAILFAST;
2105 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2106 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2107 generic_make_request(tbio);
2108 }
2109
2110 /* Now write out to any replacement devices
2111 * that are active
2112 */
2113 for (i = 0; i < conf->copies; i++) {
2114 int d;
2115
2116 tbio = r10_bio->devs[i].repl_bio;
2117 if (!tbio || !tbio->bi_end_io)
2118 continue;
2119 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2120 && r10_bio->devs[i].bio != fbio)
2121 bio_copy_data(tbio, fbio);
2122 d = r10_bio->devs[i].devnum;
2123 atomic_inc(&r10_bio->remaining);
2124 md_sync_acct(conf->mirrors[d].replacement->bdev,
2125 bio_sectors(tbio));
2126 generic_make_request(tbio);
2127 }
2128
2129 done:
2130 if (atomic_dec_and_test(&r10_bio->remaining)) {
2131 md_done_sync(mddev, r10_bio->sectors, 1);
2132 put_buf(r10_bio);
2133 }
2134 }
2135
2136 /*
2137 * Now for the recovery code.
2138 * Recovery happens across physical sectors.
2139 * We recover all non-is_sync drives by finding the virtual address of
2140 * each, and then choose a working drive that also has that virt address.
2141 * There is a separate r10_bio for each non-in_sync drive.
2142 * Only the first two slots are in use. The first for reading,
2143 * The second for writing.
2144 *
2145 */
2146 static void fix_recovery_read_error(struct r10bio *r10_bio)
2147 {
2148 /* We got a read error during recovery.
2149 * We repeat the read in smaller page-sized sections.
2150 * If a read succeeds, write it to the new device or record
2151 * a bad block if we cannot.
2152 * If a read fails, record a bad block on both old and
2153 * new devices.
2154 */
2155 struct mddev *mddev = r10_bio->mddev;
2156 struct r10conf *conf = mddev->private;
2157 struct bio *bio = r10_bio->devs[0].bio;
2158 sector_t sect = 0;
2159 int sectors = r10_bio->sectors;
2160 int idx = 0;
2161 int dr = r10_bio->devs[0].devnum;
2162 int dw = r10_bio->devs[1].devnum;
2163 struct page **pages = get_resync_pages(bio)->pages;
2164
2165 while (sectors) {
2166 int s = sectors;
2167 struct md_rdev *rdev;
2168 sector_t addr;
2169 int ok;
2170
2171 if (s > (PAGE_SIZE>>9))
2172 s = PAGE_SIZE >> 9;
2173
2174 rdev = conf->mirrors[dr].rdev;
2175 addr = r10_bio->devs[0].addr + sect,
2176 ok = sync_page_io(rdev,
2177 addr,
2178 s << 9,
2179 pages[idx],
2180 REQ_OP_READ, 0, false);
2181 if (ok) {
2182 rdev = conf->mirrors[dw].rdev;
2183 addr = r10_bio->devs[1].addr + sect;
2184 ok = sync_page_io(rdev,
2185 addr,
2186 s << 9,
2187 pages[idx],
2188 REQ_OP_WRITE, 0, false);
2189 if (!ok) {
2190 set_bit(WriteErrorSeen, &rdev->flags);
2191 if (!test_and_set_bit(WantReplacement,
2192 &rdev->flags))
2193 set_bit(MD_RECOVERY_NEEDED,
2194 &rdev->mddev->recovery);
2195 }
2196 }
2197 if (!ok) {
2198 /* We don't worry if we cannot set a bad block -
2199 * it really is bad so there is no loss in not
2200 * recording it yet
2201 */
2202 rdev_set_badblocks(rdev, addr, s, 0);
2203
2204 if (rdev != conf->mirrors[dw].rdev) {
2205 /* need bad block on destination too */
2206 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2207 addr = r10_bio->devs[1].addr + sect;
2208 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2209 if (!ok) {
2210 /* just abort the recovery */
2211 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2212 mdname(mddev));
2213
2214 conf->mirrors[dw].recovery_disabled
2215 = mddev->recovery_disabled;
2216 set_bit(MD_RECOVERY_INTR,
2217 &mddev->recovery);
2218 break;
2219 }
2220 }
2221 }
2222
2223 sectors -= s;
2224 sect += s;
2225 idx++;
2226 }
2227 }
2228
2229 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2230 {
2231 struct r10conf *conf = mddev->private;
2232 int d;
2233 struct bio *wbio, *wbio2;
2234
2235 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2236 fix_recovery_read_error(r10_bio);
2237 end_sync_request(r10_bio);
2238 return;
2239 }
2240
2241 /*
2242 * share the pages with the first bio
2243 * and submit the write request
2244 */
2245 d = r10_bio->devs[1].devnum;
2246 wbio = r10_bio->devs[1].bio;
2247 wbio2 = r10_bio->devs[1].repl_bio;
2248 /* Need to test wbio2->bi_end_io before we call
2249 * generic_make_request as if the former is NULL,
2250 * the latter is free to free wbio2.
2251 */
2252 if (wbio2 && !wbio2->bi_end_io)
2253 wbio2 = NULL;
2254 if (wbio->bi_end_io) {
2255 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2256 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2257 generic_make_request(wbio);
2258 }
2259 if (wbio2) {
2260 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2261 md_sync_acct(conf->mirrors[d].replacement->bdev,
2262 bio_sectors(wbio2));
2263 generic_make_request(wbio2);
2264 }
2265 }
2266
2267 /*
2268 * Used by fix_read_error() to decay the per rdev read_errors.
2269 * We halve the read error count for every hour that has elapsed
2270 * since the last recorded read error.
2271 *
2272 */
2273 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2274 {
2275 long cur_time_mon;
2276 unsigned long hours_since_last;
2277 unsigned int read_errors = atomic_read(&rdev->read_errors);
2278
2279 cur_time_mon = ktime_get_seconds();
2280
2281 if (rdev->last_read_error == 0) {
2282 /* first time we've seen a read error */
2283 rdev->last_read_error = cur_time_mon;
2284 return;
2285 }
2286
2287 hours_since_last = (long)(cur_time_mon -
2288 rdev->last_read_error) / 3600;
2289
2290 rdev->last_read_error = cur_time_mon;
2291
2292 /*
2293 * if hours_since_last is > the number of bits in read_errors
2294 * just set read errors to 0. We do this to avoid
2295 * overflowing the shift of read_errors by hours_since_last.
2296 */
2297 if (hours_since_last >= 8 * sizeof(read_errors))
2298 atomic_set(&rdev->read_errors, 0);
2299 else
2300 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2301 }
2302
2303 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2304 int sectors, struct page *page, int rw)
2305 {
2306 sector_t first_bad;
2307 int bad_sectors;
2308
2309 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2310 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2311 return -1;
2312 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2313 /* success */
2314 return 1;
2315 if (rw == WRITE) {
2316 set_bit(WriteErrorSeen, &rdev->flags);
2317 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2318 set_bit(MD_RECOVERY_NEEDED,
2319 &rdev->mddev->recovery);
2320 }
2321 /* need to record an error - either for the block or the device */
2322 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2323 md_error(rdev->mddev, rdev);
2324 return 0;
2325 }
2326
2327 /*
2328 * This is a kernel thread which:
2329 *
2330 * 1. Retries failed read operations on working mirrors.
2331 * 2. Updates the raid superblock when problems encounter.
2332 * 3. Performs writes following reads for array synchronising.
2333 */
2334
2335 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2336 {
2337 int sect = 0; /* Offset from r10_bio->sector */
2338 int sectors = r10_bio->sectors;
2339 struct md_rdev*rdev;
2340 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2341 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2342
2343 /* still own a reference to this rdev, so it cannot
2344 * have been cleared recently.
2345 */
2346 rdev = conf->mirrors[d].rdev;
2347
2348 if (test_bit(Faulty, &rdev->flags))
2349 /* drive has already been failed, just ignore any
2350 more fix_read_error() attempts */
2351 return;
2352
2353 check_decay_read_errors(mddev, rdev);
2354 atomic_inc(&rdev->read_errors);
2355 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2356 char b[BDEVNAME_SIZE];
2357 bdevname(rdev->bdev, b);
2358
2359 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2360 mdname(mddev), b,
2361 atomic_read(&rdev->read_errors), max_read_errors);
2362 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2363 mdname(mddev), b);
2364 md_error(mddev, rdev);
2365 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2366 return;
2367 }
2368
2369 while(sectors) {
2370 int s = sectors;
2371 int sl = r10_bio->read_slot;
2372 int success = 0;
2373 int start;
2374
2375 if (s > (PAGE_SIZE>>9))
2376 s = PAGE_SIZE >> 9;
2377
2378 rcu_read_lock();
2379 do {
2380 sector_t first_bad;
2381 int bad_sectors;
2382
2383 d = r10_bio->devs[sl].devnum;
2384 rdev = rcu_dereference(conf->mirrors[d].rdev);
2385 if (rdev &&
2386 test_bit(In_sync, &rdev->flags) &&
2387 !test_bit(Faulty, &rdev->flags) &&
2388 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2389 &first_bad, &bad_sectors) == 0) {
2390 atomic_inc(&rdev->nr_pending);
2391 rcu_read_unlock();
2392 success = sync_page_io(rdev,
2393 r10_bio->devs[sl].addr +
2394 sect,
2395 s<<9,
2396 conf->tmppage,
2397 REQ_OP_READ, 0, false);
2398 rdev_dec_pending(rdev, mddev);
2399 rcu_read_lock();
2400 if (success)
2401 break;
2402 }
2403 sl++;
2404 if (sl == conf->copies)
2405 sl = 0;
2406 } while (!success && sl != r10_bio->read_slot);
2407 rcu_read_unlock();
2408
2409 if (!success) {
2410 /* Cannot read from anywhere, just mark the block
2411 * as bad on the first device to discourage future
2412 * reads.
2413 */
2414 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2415 rdev = conf->mirrors[dn].rdev;
2416
2417 if (!rdev_set_badblocks(
2418 rdev,
2419 r10_bio->devs[r10_bio->read_slot].addr
2420 + sect,
2421 s, 0)) {
2422 md_error(mddev, rdev);
2423 r10_bio->devs[r10_bio->read_slot].bio
2424 = IO_BLOCKED;
2425 }
2426 break;
2427 }
2428
2429 start = sl;
2430 /* write it back and re-read */
2431 rcu_read_lock();
2432 while (sl != r10_bio->read_slot) {
2433 char b[BDEVNAME_SIZE];
2434
2435 if (sl==0)
2436 sl = conf->copies;
2437 sl--;
2438 d = r10_bio->devs[sl].devnum;
2439 rdev = rcu_dereference(conf->mirrors[d].rdev);
2440 if (!rdev ||
2441 test_bit(Faulty, &rdev->flags) ||
2442 !test_bit(In_sync, &rdev->flags))
2443 continue;
2444
2445 atomic_inc(&rdev->nr_pending);
2446 rcu_read_unlock();
2447 if (r10_sync_page_io(rdev,
2448 r10_bio->devs[sl].addr +
2449 sect,
2450 s, conf->tmppage, WRITE)
2451 == 0) {
2452 /* Well, this device is dead */
2453 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2454 mdname(mddev), s,
2455 (unsigned long long)(
2456 sect +
2457 choose_data_offset(r10_bio,
2458 rdev)),
2459 bdevname(rdev->bdev, b));
2460 pr_notice("md/raid10:%s: %s: failing drive\n",
2461 mdname(mddev),
2462 bdevname(rdev->bdev, b));
2463 }
2464 rdev_dec_pending(rdev, mddev);
2465 rcu_read_lock();
2466 }
2467 sl = start;
2468 while (sl != r10_bio->read_slot) {
2469 char b[BDEVNAME_SIZE];
2470
2471 if (sl==0)
2472 sl = conf->copies;
2473 sl--;
2474 d = r10_bio->devs[sl].devnum;
2475 rdev = rcu_dereference(conf->mirrors[d].rdev);
2476 if (!rdev ||
2477 test_bit(Faulty, &rdev->flags) ||
2478 !test_bit(In_sync, &rdev->flags))
2479 continue;
2480
2481 atomic_inc(&rdev->nr_pending);
2482 rcu_read_unlock();
2483 switch (r10_sync_page_io(rdev,
2484 r10_bio->devs[sl].addr +
2485 sect,
2486 s, conf->tmppage,
2487 READ)) {
2488 case 0:
2489 /* Well, this device is dead */
2490 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2491 mdname(mddev), s,
2492 (unsigned long long)(
2493 sect +
2494 choose_data_offset(r10_bio, rdev)),
2495 bdevname(rdev->bdev, b));
2496 pr_notice("md/raid10:%s: %s: failing drive\n",
2497 mdname(mddev),
2498 bdevname(rdev->bdev, b));
2499 break;
2500 case 1:
2501 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2502 mdname(mddev), s,
2503 (unsigned long long)(
2504 sect +
2505 choose_data_offset(r10_bio, rdev)),
2506 bdevname(rdev->bdev, b));
2507 atomic_add(s, &rdev->corrected_errors);
2508 }
2509
2510 rdev_dec_pending(rdev, mddev);
2511 rcu_read_lock();
2512 }
2513 rcu_read_unlock();
2514
2515 sectors -= s;
2516 sect += s;
2517 }
2518 }
2519
2520 static int narrow_write_error(struct r10bio *r10_bio, int i)
2521 {
2522 struct bio *bio = r10_bio->master_bio;
2523 struct mddev *mddev = r10_bio->mddev;
2524 struct r10conf *conf = mddev->private;
2525 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2526 /* bio has the data to be written to slot 'i' where
2527 * we just recently had a write error.
2528 * We repeatedly clone the bio and trim down to one block,
2529 * then try the write. Where the write fails we record
2530 * a bad block.
2531 * It is conceivable that the bio doesn't exactly align with
2532 * blocks. We must handle this.
2533 *
2534 * We currently own a reference to the rdev.
2535 */
2536
2537 int block_sectors;
2538 sector_t sector;
2539 int sectors;
2540 int sect_to_write = r10_bio->sectors;
2541 int ok = 1;
2542
2543 if (rdev->badblocks.shift < 0)
2544 return 0;
2545
2546 block_sectors = roundup(1 << rdev->badblocks.shift,
2547 bdev_logical_block_size(rdev->bdev) >> 9);
2548 sector = r10_bio->sector;
2549 sectors = ((r10_bio->sector + block_sectors)
2550 & ~(sector_t)(block_sectors - 1))
2551 - sector;
2552
2553 while (sect_to_write) {
2554 struct bio *wbio;
2555 sector_t wsector;
2556 if (sectors > sect_to_write)
2557 sectors = sect_to_write;
2558 /* Write at 'sector' for 'sectors' */
2559 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2560 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2561 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2562 wbio->bi_iter.bi_sector = wsector +
2563 choose_data_offset(r10_bio, rdev);
2564 wbio->bi_bdev = rdev->bdev;
2565 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2566
2567 if (submit_bio_wait(wbio) < 0)
2568 /* Failure! */
2569 ok = rdev_set_badblocks(rdev, wsector,
2570 sectors, 0)
2571 && ok;
2572
2573 bio_put(wbio);
2574 sect_to_write -= sectors;
2575 sector += sectors;
2576 sectors = block_sectors;
2577 }
2578 return ok;
2579 }
2580
2581 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2582 {
2583 int slot = r10_bio->read_slot;
2584 struct bio *bio;
2585 struct r10conf *conf = mddev->private;
2586 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2587 dev_t bio_dev;
2588 sector_t bio_last_sector;
2589
2590 /* we got a read error. Maybe the drive is bad. Maybe just
2591 * the block and we can fix it.
2592 * We freeze all other IO, and try reading the block from
2593 * other devices. When we find one, we re-write
2594 * and check it that fixes the read error.
2595 * This is all done synchronously while the array is
2596 * frozen.
2597 */
2598 bio = r10_bio->devs[slot].bio;
2599 bio_dev = bio->bi_bdev->bd_dev;
2600 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2601 bio_put(bio);
2602 r10_bio->devs[slot].bio = NULL;
2603
2604 if (mddev->ro)
2605 r10_bio->devs[slot].bio = IO_BLOCKED;
2606 else if (!test_bit(FailFast, &rdev->flags)) {
2607 freeze_array(conf, 1);
2608 fix_read_error(conf, mddev, r10_bio);
2609 unfreeze_array(conf);
2610 } else
2611 md_error(mddev, rdev);
2612
2613 rdev_dec_pending(rdev, mddev);
2614 allow_barrier(conf);
2615 r10_bio->state = 0;
2616 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2617 }
2618
2619 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2620 {
2621 /* Some sort of write request has finished and it
2622 * succeeded in writing where we thought there was a
2623 * bad block. So forget the bad block.
2624 * Or possibly if failed and we need to record
2625 * a bad block.
2626 */
2627 int m;
2628 struct md_rdev *rdev;
2629
2630 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2631 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2632 for (m = 0; m < conf->copies; m++) {
2633 int dev = r10_bio->devs[m].devnum;
2634 rdev = conf->mirrors[dev].rdev;
2635 if (r10_bio->devs[m].bio == NULL)
2636 continue;
2637 if (!r10_bio->devs[m].bio->bi_error) {
2638 rdev_clear_badblocks(
2639 rdev,
2640 r10_bio->devs[m].addr,
2641 r10_bio->sectors, 0);
2642 } else {
2643 if (!rdev_set_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
2646 r10_bio->sectors, 0))
2647 md_error(conf->mddev, rdev);
2648 }
2649 rdev = conf->mirrors[dev].replacement;
2650 if (r10_bio->devs[m].repl_bio == NULL)
2651 continue;
2652
2653 if (!r10_bio->devs[m].repl_bio->bi_error) {
2654 rdev_clear_badblocks(
2655 rdev,
2656 r10_bio->devs[m].addr,
2657 r10_bio->sectors, 0);
2658 } else {
2659 if (!rdev_set_badblocks(
2660 rdev,
2661 r10_bio->devs[m].addr,
2662 r10_bio->sectors, 0))
2663 md_error(conf->mddev, rdev);
2664 }
2665 }
2666 put_buf(r10_bio);
2667 } else {
2668 bool fail = false;
2669 for (m = 0; m < conf->copies; m++) {
2670 int dev = r10_bio->devs[m].devnum;
2671 struct bio *bio = r10_bio->devs[m].bio;
2672 rdev = conf->mirrors[dev].rdev;
2673 if (bio == IO_MADE_GOOD) {
2674 rdev_clear_badblocks(
2675 rdev,
2676 r10_bio->devs[m].addr,
2677 r10_bio->sectors, 0);
2678 rdev_dec_pending(rdev, conf->mddev);
2679 } else if (bio != NULL && bio->bi_error) {
2680 fail = true;
2681 if (!narrow_write_error(r10_bio, m)) {
2682 md_error(conf->mddev, rdev);
2683 set_bit(R10BIO_Degraded,
2684 &r10_bio->state);
2685 }
2686 rdev_dec_pending(rdev, conf->mddev);
2687 }
2688 bio = r10_bio->devs[m].repl_bio;
2689 rdev = conf->mirrors[dev].replacement;
2690 if (rdev && bio == IO_MADE_GOOD) {
2691 rdev_clear_badblocks(
2692 rdev,
2693 r10_bio->devs[m].addr,
2694 r10_bio->sectors, 0);
2695 rdev_dec_pending(rdev, conf->mddev);
2696 }
2697 }
2698 if (fail) {
2699 spin_lock_irq(&conf->device_lock);
2700 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2701 conf->nr_queued++;
2702 spin_unlock_irq(&conf->device_lock);
2703 /*
2704 * In case freeze_array() is waiting for condition
2705 * nr_pending == nr_queued + extra to be true.
2706 */
2707 wake_up(&conf->wait_barrier);
2708 md_wakeup_thread(conf->mddev->thread);
2709 } else {
2710 if (test_bit(R10BIO_WriteError,
2711 &r10_bio->state))
2712 close_write(r10_bio);
2713 raid_end_bio_io(r10_bio);
2714 }
2715 }
2716 }
2717
2718 static void raid10d(struct md_thread *thread)
2719 {
2720 struct mddev *mddev = thread->mddev;
2721 struct r10bio *r10_bio;
2722 unsigned long flags;
2723 struct r10conf *conf = mddev->private;
2724 struct list_head *head = &conf->retry_list;
2725 struct blk_plug plug;
2726
2727 md_check_recovery(mddev);
2728
2729 if (!list_empty_careful(&conf->bio_end_io_list) &&
2730 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2731 LIST_HEAD(tmp);
2732 spin_lock_irqsave(&conf->device_lock, flags);
2733 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2734 while (!list_empty(&conf->bio_end_io_list)) {
2735 list_move(conf->bio_end_io_list.prev, &tmp);
2736 conf->nr_queued--;
2737 }
2738 }
2739 spin_unlock_irqrestore(&conf->device_lock, flags);
2740 while (!list_empty(&tmp)) {
2741 r10_bio = list_first_entry(&tmp, struct r10bio,
2742 retry_list);
2743 list_del(&r10_bio->retry_list);
2744 if (mddev->degraded)
2745 set_bit(R10BIO_Degraded, &r10_bio->state);
2746
2747 if (test_bit(R10BIO_WriteError,
2748 &r10_bio->state))
2749 close_write(r10_bio);
2750 raid_end_bio_io(r10_bio);
2751 }
2752 }
2753
2754 blk_start_plug(&plug);
2755 for (;;) {
2756
2757 flush_pending_writes(conf);
2758
2759 spin_lock_irqsave(&conf->device_lock, flags);
2760 if (list_empty(head)) {
2761 spin_unlock_irqrestore(&conf->device_lock, flags);
2762 break;
2763 }
2764 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2765 list_del(head->prev);
2766 conf->nr_queued--;
2767 spin_unlock_irqrestore(&conf->device_lock, flags);
2768
2769 mddev = r10_bio->mddev;
2770 conf = mddev->private;
2771 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2772 test_bit(R10BIO_WriteError, &r10_bio->state))
2773 handle_write_completed(conf, r10_bio);
2774 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2775 reshape_request_write(mddev, r10_bio);
2776 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2777 sync_request_write(mddev, r10_bio);
2778 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2779 recovery_request_write(mddev, r10_bio);
2780 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2781 handle_read_error(mddev, r10_bio);
2782 else
2783 WARN_ON_ONCE(1);
2784
2785 cond_resched();
2786 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2787 md_check_recovery(mddev);
2788 }
2789 blk_finish_plug(&plug);
2790 }
2791
2792 static int init_resync(struct r10conf *conf)
2793 {
2794 int buffs;
2795 int i;
2796
2797 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2798 BUG_ON(conf->r10buf_pool);
2799 conf->have_replacement = 0;
2800 for (i = 0; i < conf->geo.raid_disks; i++)
2801 if (conf->mirrors[i].replacement)
2802 conf->have_replacement = 1;
2803 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2804 if (!conf->r10buf_pool)
2805 return -ENOMEM;
2806 conf->next_resync = 0;
2807 return 0;
2808 }
2809
2810 /*
2811 * perform a "sync" on one "block"
2812 *
2813 * We need to make sure that no normal I/O request - particularly write
2814 * requests - conflict with active sync requests.
2815 *
2816 * This is achieved by tracking pending requests and a 'barrier' concept
2817 * that can be installed to exclude normal IO requests.
2818 *
2819 * Resync and recovery are handled very differently.
2820 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2821 *
2822 * For resync, we iterate over virtual addresses, read all copies,
2823 * and update if there are differences. If only one copy is live,
2824 * skip it.
2825 * For recovery, we iterate over physical addresses, read a good
2826 * value for each non-in_sync drive, and over-write.
2827 *
2828 * So, for recovery we may have several outstanding complex requests for a
2829 * given address, one for each out-of-sync device. We model this by allocating
2830 * a number of r10_bio structures, one for each out-of-sync device.
2831 * As we setup these structures, we collect all bio's together into a list
2832 * which we then process collectively to add pages, and then process again
2833 * to pass to generic_make_request.
2834 *
2835 * The r10_bio structures are linked using a borrowed master_bio pointer.
2836 * This link is counted in ->remaining. When the r10_bio that points to NULL
2837 * has its remaining count decremented to 0, the whole complex operation
2838 * is complete.
2839 *
2840 */
2841
2842 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2843 int *skipped)
2844 {
2845 struct r10conf *conf = mddev->private;
2846 struct r10bio *r10_bio;
2847 struct bio *biolist = NULL, *bio;
2848 sector_t max_sector, nr_sectors;
2849 int i;
2850 int max_sync;
2851 sector_t sync_blocks;
2852 sector_t sectors_skipped = 0;
2853 int chunks_skipped = 0;
2854 sector_t chunk_mask = conf->geo.chunk_mask;
2855
2856 if (!conf->r10buf_pool)
2857 if (init_resync(conf))
2858 return 0;
2859
2860 /*
2861 * Allow skipping a full rebuild for incremental assembly
2862 * of a clean array, like RAID1 does.
2863 */
2864 if (mddev->bitmap == NULL &&
2865 mddev->recovery_cp == MaxSector &&
2866 mddev->reshape_position == MaxSector &&
2867 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2868 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2869 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2870 conf->fullsync == 0) {
2871 *skipped = 1;
2872 return mddev->dev_sectors - sector_nr;
2873 }
2874
2875 skipped:
2876 max_sector = mddev->dev_sectors;
2877 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2878 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2879 max_sector = mddev->resync_max_sectors;
2880 if (sector_nr >= max_sector) {
2881 /* If we aborted, we need to abort the
2882 * sync on the 'current' bitmap chucks (there can
2883 * be several when recovering multiple devices).
2884 * as we may have started syncing it but not finished.
2885 * We can find the current address in
2886 * mddev->curr_resync, but for recovery,
2887 * we need to convert that to several
2888 * virtual addresses.
2889 */
2890 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2891 end_reshape(conf);
2892 close_sync(conf);
2893 return 0;
2894 }
2895
2896 if (mddev->curr_resync < max_sector) { /* aborted */
2897 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2898 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2899 &sync_blocks, 1);
2900 else for (i = 0; i < conf->geo.raid_disks; i++) {
2901 sector_t sect =
2902 raid10_find_virt(conf, mddev->curr_resync, i);
2903 bitmap_end_sync(mddev->bitmap, sect,
2904 &sync_blocks, 1);
2905 }
2906 } else {
2907 /* completed sync */
2908 if ((!mddev->bitmap || conf->fullsync)
2909 && conf->have_replacement
2910 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2911 /* Completed a full sync so the replacements
2912 * are now fully recovered.
2913 */
2914 rcu_read_lock();
2915 for (i = 0; i < conf->geo.raid_disks; i++) {
2916 struct md_rdev *rdev =
2917 rcu_dereference(conf->mirrors[i].replacement);
2918 if (rdev)
2919 rdev->recovery_offset = MaxSector;
2920 }
2921 rcu_read_unlock();
2922 }
2923 conf->fullsync = 0;
2924 }
2925 bitmap_close_sync(mddev->bitmap);
2926 close_sync(conf);
2927 *skipped = 1;
2928 return sectors_skipped;
2929 }
2930
2931 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2932 return reshape_request(mddev, sector_nr, skipped);
2933
2934 if (chunks_skipped >= conf->geo.raid_disks) {
2935 /* if there has been nothing to do on any drive,
2936 * then there is nothing to do at all..
2937 */
2938 *skipped = 1;
2939 return (max_sector - sector_nr) + sectors_skipped;
2940 }
2941
2942 if (max_sector > mddev->resync_max)
2943 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2944
2945 /* make sure whole request will fit in a chunk - if chunks
2946 * are meaningful
2947 */
2948 if (conf->geo.near_copies < conf->geo.raid_disks &&
2949 max_sector > (sector_nr | chunk_mask))
2950 max_sector = (sector_nr | chunk_mask) + 1;
2951
2952 /*
2953 * If there is non-resync activity waiting for a turn, then let it
2954 * though before starting on this new sync request.
2955 */
2956 if (conf->nr_waiting)
2957 schedule_timeout_uninterruptible(1);
2958
2959 /* Again, very different code for resync and recovery.
2960 * Both must result in an r10bio with a list of bios that
2961 * have bi_end_io, bi_sector, bi_bdev set,
2962 * and bi_private set to the r10bio.
2963 * For recovery, we may actually create several r10bios
2964 * with 2 bios in each, that correspond to the bios in the main one.
2965 * In this case, the subordinate r10bios link back through a
2966 * borrowed master_bio pointer, and the counter in the master
2967 * includes a ref from each subordinate.
2968 */
2969 /* First, we decide what to do and set ->bi_end_io
2970 * To end_sync_read if we want to read, and
2971 * end_sync_write if we will want to write.
2972 */
2973
2974 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2975 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2976 /* recovery... the complicated one */
2977 int j;
2978 r10_bio = NULL;
2979
2980 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2981 int still_degraded;
2982 struct r10bio *rb2;
2983 sector_t sect;
2984 int must_sync;
2985 int any_working;
2986 struct raid10_info *mirror = &conf->mirrors[i];
2987 struct md_rdev *mrdev, *mreplace;
2988
2989 rcu_read_lock();
2990 mrdev = rcu_dereference(mirror->rdev);
2991 mreplace = rcu_dereference(mirror->replacement);
2992
2993 if ((mrdev == NULL ||
2994 test_bit(Faulty, &mrdev->flags) ||
2995 test_bit(In_sync, &mrdev->flags)) &&
2996 (mreplace == NULL ||
2997 test_bit(Faulty, &mreplace->flags))) {
2998 rcu_read_unlock();
2999 continue;
3000 }
3001
3002 still_degraded = 0;
3003 /* want to reconstruct this device */
3004 rb2 = r10_bio;
3005 sect = raid10_find_virt(conf, sector_nr, i);
3006 if (sect >= mddev->resync_max_sectors) {
3007 /* last stripe is not complete - don't
3008 * try to recover this sector.
3009 */
3010 rcu_read_unlock();
3011 continue;
3012 }
3013 if (mreplace && test_bit(Faulty, &mreplace->flags))
3014 mreplace = NULL;
3015 /* Unless we are doing a full sync, or a replacement
3016 * we only need to recover the block if it is set in
3017 * the bitmap
3018 */
3019 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3020 &sync_blocks, 1);
3021 if (sync_blocks < max_sync)
3022 max_sync = sync_blocks;
3023 if (!must_sync &&
3024 mreplace == NULL &&
3025 !conf->fullsync) {
3026 /* yep, skip the sync_blocks here, but don't assume
3027 * that there will never be anything to do here
3028 */
3029 chunks_skipped = -1;
3030 rcu_read_unlock();
3031 continue;
3032 }
3033 atomic_inc(&mrdev->nr_pending);
3034 if (mreplace)
3035 atomic_inc(&mreplace->nr_pending);
3036 rcu_read_unlock();
3037
3038 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3039 r10_bio->state = 0;
3040 raise_barrier(conf, rb2 != NULL);
3041 atomic_set(&r10_bio->remaining, 0);
3042
3043 r10_bio->master_bio = (struct bio*)rb2;
3044 if (rb2)
3045 atomic_inc(&rb2->remaining);
3046 r10_bio->mddev = mddev;
3047 set_bit(R10BIO_IsRecover, &r10_bio->state);
3048 r10_bio->sector = sect;
3049
3050 raid10_find_phys(conf, r10_bio);
3051
3052 /* Need to check if the array will still be
3053 * degraded
3054 */
3055 rcu_read_lock();
3056 for (j = 0; j < conf->geo.raid_disks; j++) {
3057 struct md_rdev *rdev = rcu_dereference(
3058 conf->mirrors[j].rdev);
3059 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3060 still_degraded = 1;
3061 break;
3062 }
3063 }
3064
3065 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3066 &sync_blocks, still_degraded);
3067
3068 any_working = 0;
3069 for (j=0; j<conf->copies;j++) {
3070 int k;
3071 int d = r10_bio->devs[j].devnum;
3072 sector_t from_addr, to_addr;
3073 struct md_rdev *rdev =
3074 rcu_dereference(conf->mirrors[d].rdev);
3075 sector_t sector, first_bad;
3076 int bad_sectors;
3077 if (!rdev ||
3078 !test_bit(In_sync, &rdev->flags))
3079 continue;
3080 /* This is where we read from */
3081 any_working = 1;
3082 sector = r10_bio->devs[j].addr;
3083
3084 if (is_badblock(rdev, sector, max_sync,
3085 &first_bad, &bad_sectors)) {
3086 if (first_bad > sector)
3087 max_sync = first_bad - sector;
3088 else {
3089 bad_sectors -= (sector
3090 - first_bad);
3091 if (max_sync > bad_sectors)
3092 max_sync = bad_sectors;
3093 continue;
3094 }
3095 }
3096 bio = r10_bio->devs[0].bio;
3097 bio->bi_next = biolist;
3098 biolist = bio;
3099 bio->bi_end_io = end_sync_read;
3100 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3101 if (test_bit(FailFast, &rdev->flags))
3102 bio->bi_opf |= MD_FAILFAST;
3103 from_addr = r10_bio->devs[j].addr;
3104 bio->bi_iter.bi_sector = from_addr +
3105 rdev->data_offset;
3106 bio->bi_bdev = rdev->bdev;
3107 atomic_inc(&rdev->nr_pending);
3108 /* and we write to 'i' (if not in_sync) */
3109
3110 for (k=0; k<conf->copies; k++)
3111 if (r10_bio->devs[k].devnum == i)
3112 break;
3113 BUG_ON(k == conf->copies);
3114 to_addr = r10_bio->devs[k].addr;
3115 r10_bio->devs[0].devnum = d;
3116 r10_bio->devs[0].addr = from_addr;
3117 r10_bio->devs[1].devnum = i;
3118 r10_bio->devs[1].addr = to_addr;
3119
3120 if (!test_bit(In_sync, &mrdev->flags)) {
3121 bio = r10_bio->devs[1].bio;
3122 bio->bi_next = biolist;
3123 biolist = bio;
3124 bio->bi_end_io = end_sync_write;
3125 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3126 bio->bi_iter.bi_sector = to_addr
3127 + mrdev->data_offset;
3128 bio->bi_bdev = mrdev->bdev;
3129 atomic_inc(&r10_bio->remaining);
3130 } else
3131 r10_bio->devs[1].bio->bi_end_io = NULL;
3132
3133 /* and maybe write to replacement */
3134 bio = r10_bio->devs[1].repl_bio;
3135 if (bio)
3136 bio->bi_end_io = NULL;
3137 /* Note: if mreplace != NULL, then bio
3138 * cannot be NULL as r10buf_pool_alloc will
3139 * have allocated it.
3140 * So the second test here is pointless.
3141 * But it keeps semantic-checkers happy, and
3142 * this comment keeps human reviewers
3143 * happy.
3144 */
3145 if (mreplace == NULL || bio == NULL ||
3146 test_bit(Faulty, &mreplace->flags))
3147 break;
3148 bio->bi_next = biolist;
3149 biolist = bio;
3150 bio->bi_end_io = end_sync_write;
3151 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3152 bio->bi_iter.bi_sector = to_addr +
3153 mreplace->data_offset;
3154 bio->bi_bdev = mreplace->bdev;
3155 atomic_inc(&r10_bio->remaining);
3156 break;
3157 }
3158 rcu_read_unlock();
3159 if (j == conf->copies) {
3160 /* Cannot recover, so abort the recovery or
3161 * record a bad block */
3162 if (any_working) {
3163 /* problem is that there are bad blocks
3164 * on other device(s)
3165 */
3166 int k;
3167 for (k = 0; k < conf->copies; k++)
3168 if (r10_bio->devs[k].devnum == i)
3169 break;
3170 if (!test_bit(In_sync,
3171 &mrdev->flags)
3172 && !rdev_set_badblocks(
3173 mrdev,
3174 r10_bio->devs[k].addr,
3175 max_sync, 0))
3176 any_working = 0;
3177 if (mreplace &&
3178 !rdev_set_badblocks(
3179 mreplace,
3180 r10_bio->devs[k].addr,
3181 max_sync, 0))
3182 any_working = 0;
3183 }
3184 if (!any_working) {
3185 if (!test_and_set_bit(MD_RECOVERY_INTR,
3186 &mddev->recovery))
3187 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3188 mdname(mddev));
3189 mirror->recovery_disabled
3190 = mddev->recovery_disabled;
3191 }
3192 put_buf(r10_bio);
3193 if (rb2)
3194 atomic_dec(&rb2->remaining);
3195 r10_bio = rb2;
3196 rdev_dec_pending(mrdev, mddev);
3197 if (mreplace)
3198 rdev_dec_pending(mreplace, mddev);
3199 break;
3200 }
3201 rdev_dec_pending(mrdev, mddev);
3202 if (mreplace)
3203 rdev_dec_pending(mreplace, mddev);
3204 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3205 /* Only want this if there is elsewhere to
3206 * read from. 'j' is currently the first
3207 * readable copy.
3208 */
3209 int targets = 1;
3210 for (; j < conf->copies; j++) {
3211 int d = r10_bio->devs[j].devnum;
3212 if (conf->mirrors[d].rdev &&
3213 test_bit(In_sync,
3214 &conf->mirrors[d].rdev->flags))
3215 targets++;
3216 }
3217 if (targets == 1)
3218 r10_bio->devs[0].bio->bi_opf
3219 &= ~MD_FAILFAST;
3220 }
3221 }
3222 if (biolist == NULL) {
3223 while (r10_bio) {
3224 struct r10bio *rb2 = r10_bio;
3225 r10_bio = (struct r10bio*) rb2->master_bio;
3226 rb2->master_bio = NULL;
3227 put_buf(rb2);
3228 }
3229 goto giveup;
3230 }
3231 } else {
3232 /* resync. Schedule a read for every block at this virt offset */
3233 int count = 0;
3234
3235 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3236
3237 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3238 &sync_blocks, mddev->degraded) &&
3239 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3240 &mddev->recovery)) {
3241 /* We can skip this block */
3242 *skipped = 1;
3243 return sync_blocks + sectors_skipped;
3244 }
3245 if (sync_blocks < max_sync)
3246 max_sync = sync_blocks;
3247 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3248 r10_bio->state = 0;
3249
3250 r10_bio->mddev = mddev;
3251 atomic_set(&r10_bio->remaining, 0);
3252 raise_barrier(conf, 0);
3253 conf->next_resync = sector_nr;
3254
3255 r10_bio->master_bio = NULL;
3256 r10_bio->sector = sector_nr;
3257 set_bit(R10BIO_IsSync, &r10_bio->state);
3258 raid10_find_phys(conf, r10_bio);
3259 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3260
3261 for (i = 0; i < conf->copies; i++) {
3262 int d = r10_bio->devs[i].devnum;
3263 sector_t first_bad, sector;
3264 int bad_sectors;
3265 struct md_rdev *rdev;
3266
3267 if (r10_bio->devs[i].repl_bio)
3268 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3269
3270 bio = r10_bio->devs[i].bio;
3271 bio->bi_error = -EIO;
3272 rcu_read_lock();
3273 rdev = rcu_dereference(conf->mirrors[d].rdev);
3274 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3275 rcu_read_unlock();
3276 continue;
3277 }
3278 sector = r10_bio->devs[i].addr;
3279 if (is_badblock(rdev, sector, max_sync,
3280 &first_bad, &bad_sectors)) {
3281 if (first_bad > sector)
3282 max_sync = first_bad - sector;
3283 else {
3284 bad_sectors -= (sector - first_bad);
3285 if (max_sync > bad_sectors)
3286 max_sync = bad_sectors;
3287 rcu_read_unlock();
3288 continue;
3289 }
3290 }
3291 atomic_inc(&rdev->nr_pending);
3292 atomic_inc(&r10_bio->remaining);
3293 bio->bi_next = biolist;
3294 biolist = bio;
3295 bio->bi_end_io = end_sync_read;
3296 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3297 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3298 bio->bi_opf |= MD_FAILFAST;
3299 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3300 bio->bi_bdev = rdev->bdev;
3301 count++;
3302
3303 rdev = rcu_dereference(conf->mirrors[d].replacement);
3304 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3305 rcu_read_unlock();
3306 continue;
3307 }
3308 atomic_inc(&rdev->nr_pending);
3309 rcu_read_unlock();
3310
3311 /* Need to set up for writing to the replacement */
3312 bio = r10_bio->devs[i].repl_bio;
3313 bio->bi_error = -EIO;
3314
3315 sector = r10_bio->devs[i].addr;
3316 bio->bi_next = biolist;
3317 biolist = bio;
3318 bio->bi_end_io = end_sync_write;
3319 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3320 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3321 bio->bi_opf |= MD_FAILFAST;
3322 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3323 bio->bi_bdev = rdev->bdev;
3324 count++;
3325 }
3326
3327 if (count < 2) {
3328 for (i=0; i<conf->copies; i++) {
3329 int d = r10_bio->devs[i].devnum;
3330 if (r10_bio->devs[i].bio->bi_end_io)
3331 rdev_dec_pending(conf->mirrors[d].rdev,
3332 mddev);
3333 if (r10_bio->devs[i].repl_bio &&
3334 r10_bio->devs[i].repl_bio->bi_end_io)
3335 rdev_dec_pending(
3336 conf->mirrors[d].replacement,
3337 mddev);
3338 }
3339 put_buf(r10_bio);
3340 biolist = NULL;
3341 goto giveup;
3342 }
3343 }
3344
3345 nr_sectors = 0;
3346 if (sector_nr + max_sync < max_sector)
3347 max_sector = sector_nr + max_sync;
3348 do {
3349 struct page *page;
3350 int len = PAGE_SIZE;
3351 if (sector_nr + (len>>9) > max_sector)
3352 len = (max_sector - sector_nr) << 9;
3353 if (len == 0)
3354 break;
3355 for (bio= biolist ; bio ; bio=bio->bi_next) {
3356 struct resync_pages *rp = get_resync_pages(bio);
3357 page = resync_fetch_page(rp, rp->idx++);
3358 /*
3359 * won't fail because the vec table is big enough
3360 * to hold all these pages
3361 */
3362 bio_add_page(bio, page, len, 0);
3363 }
3364 nr_sectors += len>>9;
3365 sector_nr += len>>9;
3366 } while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3367 r10_bio->sectors = nr_sectors;
3368
3369 while (biolist) {
3370 bio = biolist;
3371 biolist = biolist->bi_next;
3372
3373 bio->bi_next = NULL;
3374 r10_bio = get_resync_r10bio(bio);
3375 r10_bio->sectors = nr_sectors;
3376
3377 if (bio->bi_end_io == end_sync_read) {
3378 md_sync_acct(bio->bi_bdev, nr_sectors);
3379 bio->bi_error = 0;
3380 generic_make_request(bio);
3381 }
3382 }
3383
3384 if (sectors_skipped)
3385 /* pretend they weren't skipped, it makes
3386 * no important difference in this case
3387 */
3388 md_done_sync(mddev, sectors_skipped, 1);
3389
3390 return sectors_skipped + nr_sectors;
3391 giveup:
3392 /* There is nowhere to write, so all non-sync
3393 * drives must be failed or in resync, all drives
3394 * have a bad block, so try the next chunk...
3395 */
3396 if (sector_nr + max_sync < max_sector)
3397 max_sector = sector_nr + max_sync;
3398
3399 sectors_skipped += (max_sector - sector_nr);
3400 chunks_skipped ++;
3401 sector_nr = max_sector;
3402 goto skipped;
3403 }
3404
3405 static sector_t
3406 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3407 {
3408 sector_t size;
3409 struct r10conf *conf = mddev->private;
3410
3411 if (!raid_disks)
3412 raid_disks = min(conf->geo.raid_disks,
3413 conf->prev.raid_disks);
3414 if (!sectors)
3415 sectors = conf->dev_sectors;
3416
3417 size = sectors >> conf->geo.chunk_shift;
3418 sector_div(size, conf->geo.far_copies);
3419 size = size * raid_disks;
3420 sector_div(size, conf->geo.near_copies);
3421
3422 return size << conf->geo.chunk_shift;
3423 }
3424
3425 static void calc_sectors(struct r10conf *conf, sector_t size)
3426 {
3427 /* Calculate the number of sectors-per-device that will
3428 * actually be used, and set conf->dev_sectors and
3429 * conf->stride
3430 */
3431
3432 size = size >> conf->geo.chunk_shift;
3433 sector_div(size, conf->geo.far_copies);
3434 size = size * conf->geo.raid_disks;
3435 sector_div(size, conf->geo.near_copies);
3436 /* 'size' is now the number of chunks in the array */
3437 /* calculate "used chunks per device" */
3438 size = size * conf->copies;
3439
3440 /* We need to round up when dividing by raid_disks to
3441 * get the stride size.
3442 */
3443 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3444
3445 conf->dev_sectors = size << conf->geo.chunk_shift;
3446
3447 if (conf->geo.far_offset)
3448 conf->geo.stride = 1 << conf->geo.chunk_shift;
3449 else {
3450 sector_div(size, conf->geo.far_copies);
3451 conf->geo.stride = size << conf->geo.chunk_shift;
3452 }
3453 }
3454
3455 enum geo_type {geo_new, geo_old, geo_start};
3456 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3457 {
3458 int nc, fc, fo;
3459 int layout, chunk, disks;
3460 switch (new) {
3461 case geo_old:
3462 layout = mddev->layout;
3463 chunk = mddev->chunk_sectors;
3464 disks = mddev->raid_disks - mddev->delta_disks;
3465 break;
3466 case geo_new:
3467 layout = mddev->new_layout;
3468 chunk = mddev->new_chunk_sectors;
3469 disks = mddev->raid_disks;
3470 break;
3471 default: /* avoid 'may be unused' warnings */
3472 case geo_start: /* new when starting reshape - raid_disks not
3473 * updated yet. */
3474 layout = mddev->new_layout;
3475 chunk = mddev->new_chunk_sectors;
3476 disks = mddev->raid_disks + mddev->delta_disks;
3477 break;
3478 }
3479 if (layout >> 19)
3480 return -1;
3481 if (chunk < (PAGE_SIZE >> 9) ||
3482 !is_power_of_2(chunk))
3483 return -2;
3484 nc = layout & 255;
3485 fc = (layout >> 8) & 255;
3486 fo = layout & (1<<16);
3487 geo->raid_disks = disks;
3488 geo->near_copies = nc;
3489 geo->far_copies = fc;
3490 geo->far_offset = fo;
3491 switch (layout >> 17) {
3492 case 0: /* original layout. simple but not always optimal */
3493 geo->far_set_size = disks;
3494 break;
3495 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3496 * actually using this, but leave code here just in case.*/
3497 geo->far_set_size = disks/fc;
3498 WARN(geo->far_set_size < fc,
3499 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3500 break;
3501 case 2: /* "improved" layout fixed to match documentation */
3502 geo->far_set_size = fc * nc;
3503 break;
3504 default: /* Not a valid layout */
3505 return -1;
3506 }
3507 geo->chunk_mask = chunk - 1;
3508 geo->chunk_shift = ffz(~chunk);
3509 return nc*fc;
3510 }
3511
3512 static struct r10conf *setup_conf(struct mddev *mddev)
3513 {
3514 struct r10conf *conf = NULL;
3515 int err = -EINVAL;
3516 struct geom geo;
3517 int copies;
3518
3519 copies = setup_geo(&geo, mddev, geo_new);
3520
3521 if (copies == -2) {
3522 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3523 mdname(mddev), PAGE_SIZE);
3524 goto out;
3525 }
3526
3527 if (copies < 2 || copies > mddev->raid_disks) {
3528 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3529 mdname(mddev), mddev->new_layout);
3530 goto out;
3531 }
3532
3533 err = -ENOMEM;
3534 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3535 if (!conf)
3536 goto out;
3537
3538 /* FIXME calc properly */
3539 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3540 max(0,-mddev->delta_disks)),
3541 GFP_KERNEL);
3542 if (!conf->mirrors)
3543 goto out;
3544
3545 conf->tmppage = alloc_page(GFP_KERNEL);
3546 if (!conf->tmppage)
3547 goto out;
3548
3549 conf->geo = geo;
3550 conf->copies = copies;
3551 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3552 r10bio_pool_free, conf);
3553 if (!conf->r10bio_pool)
3554 goto out;
3555
3556 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
3557 if (!conf->bio_split)
3558 goto out;
3559
3560 calc_sectors(conf, mddev->dev_sectors);
3561 if (mddev->reshape_position == MaxSector) {
3562 conf->prev = conf->geo;
3563 conf->reshape_progress = MaxSector;
3564 } else {
3565 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3566 err = -EINVAL;
3567 goto out;
3568 }
3569 conf->reshape_progress = mddev->reshape_position;
3570 if (conf->prev.far_offset)
3571 conf->prev.stride = 1 << conf->prev.chunk_shift;
3572 else
3573 /* far_copies must be 1 */
3574 conf->prev.stride = conf->dev_sectors;
3575 }
3576 conf->reshape_safe = conf->reshape_progress;
3577 spin_lock_init(&conf->device_lock);
3578 INIT_LIST_HEAD(&conf->retry_list);
3579 INIT_LIST_HEAD(&conf->bio_end_io_list);
3580
3581 spin_lock_init(&conf->resync_lock);
3582 init_waitqueue_head(&conf->wait_barrier);
3583 atomic_set(&conf->nr_pending, 0);
3584
3585 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3586 if (!conf->thread)
3587 goto out;
3588
3589 conf->mddev = mddev;
3590 return conf;
3591
3592 out:
3593 if (conf) {
3594 mempool_destroy(conf->r10bio_pool);
3595 kfree(conf->mirrors);
3596 safe_put_page(conf->tmppage);
3597 if (conf->bio_split)
3598 bioset_free(conf->bio_split);
3599 kfree(conf);
3600 }
3601 return ERR_PTR(err);
3602 }
3603
3604 static int raid10_run(struct mddev *mddev)
3605 {
3606 struct r10conf *conf;
3607 int i, disk_idx, chunk_size;
3608 struct raid10_info *disk;
3609 struct md_rdev *rdev;
3610 sector_t size;
3611 sector_t min_offset_diff = 0;
3612 int first = 1;
3613 bool discard_supported = false;
3614
3615 if (mddev->private == NULL) {
3616 conf = setup_conf(mddev);
3617 if (IS_ERR(conf))
3618 return PTR_ERR(conf);
3619 mddev->private = conf;
3620 }
3621 conf = mddev->private;
3622 if (!conf)
3623 goto out;
3624
3625 mddev->thread = conf->thread;
3626 conf->thread = NULL;
3627
3628 chunk_size = mddev->chunk_sectors << 9;
3629 if (mddev->queue) {
3630 blk_queue_max_discard_sectors(mddev->queue,
3631 mddev->chunk_sectors);
3632 blk_queue_max_write_same_sectors(mddev->queue, 0);
3633 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3634 blk_queue_io_min(mddev->queue, chunk_size);
3635 if (conf->geo.raid_disks % conf->geo.near_copies)
3636 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3637 else
3638 blk_queue_io_opt(mddev->queue, chunk_size *
3639 (conf->geo.raid_disks / conf->geo.near_copies));
3640 }
3641
3642 rdev_for_each(rdev, mddev) {
3643 long long diff;
3644
3645 disk_idx = rdev->raid_disk;
3646 if (disk_idx < 0)
3647 continue;
3648 if (disk_idx >= conf->geo.raid_disks &&
3649 disk_idx >= conf->prev.raid_disks)
3650 continue;
3651 disk = conf->mirrors + disk_idx;
3652
3653 if (test_bit(Replacement, &rdev->flags)) {
3654 if (disk->replacement)
3655 goto out_free_conf;
3656 disk->replacement = rdev;
3657 } else {
3658 if (disk->rdev)
3659 goto out_free_conf;
3660 disk->rdev = rdev;
3661 }
3662 diff = (rdev->new_data_offset - rdev->data_offset);
3663 if (!mddev->reshape_backwards)
3664 diff = -diff;
3665 if (diff < 0)
3666 diff = 0;
3667 if (first || diff < min_offset_diff)
3668 min_offset_diff = diff;
3669
3670 if (mddev->gendisk)
3671 disk_stack_limits(mddev->gendisk, rdev->bdev,
3672 rdev->data_offset << 9);
3673
3674 disk->head_position = 0;
3675
3676 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3677 discard_supported = true;
3678 first = 0;
3679 }
3680
3681 if (mddev->queue) {
3682 if (discard_supported)
3683 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3684 mddev->queue);
3685 else
3686 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3687 mddev->queue);
3688 }
3689 /* need to check that every block has at least one working mirror */
3690 if (!enough(conf, -1)) {
3691 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3692 mdname(mddev));
3693 goto out_free_conf;
3694 }
3695
3696 if (conf->reshape_progress != MaxSector) {
3697 /* must ensure that shape change is supported */
3698 if (conf->geo.far_copies != 1 &&
3699 conf->geo.far_offset == 0)
3700 goto out_free_conf;
3701 if (conf->prev.far_copies != 1 &&
3702 conf->prev.far_offset == 0)
3703 goto out_free_conf;
3704 }
3705
3706 mddev->degraded = 0;
3707 for (i = 0;
3708 i < conf->geo.raid_disks
3709 || i < conf->prev.raid_disks;
3710 i++) {
3711
3712 disk = conf->mirrors + i;
3713
3714 if (!disk->rdev && disk->replacement) {
3715 /* The replacement is all we have - use it */
3716 disk->rdev = disk->replacement;
3717 disk->replacement = NULL;
3718 clear_bit(Replacement, &disk->rdev->flags);
3719 }
3720
3721 if (!disk->rdev ||
3722 !test_bit(In_sync, &disk->rdev->flags)) {
3723 disk->head_position = 0;
3724 mddev->degraded++;
3725 if (disk->rdev &&
3726 disk->rdev->saved_raid_disk < 0)
3727 conf->fullsync = 1;
3728 }
3729 disk->recovery_disabled = mddev->recovery_disabled - 1;
3730 }
3731
3732 if (mddev->recovery_cp != MaxSector)
3733 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3734 mdname(mddev));
3735 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3736 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3737 conf->geo.raid_disks);
3738 /*
3739 * Ok, everything is just fine now
3740 */
3741 mddev->dev_sectors = conf->dev_sectors;
3742 size = raid10_size(mddev, 0, 0);
3743 md_set_array_sectors(mddev, size);
3744 mddev->resync_max_sectors = size;
3745 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3746
3747 if (mddev->queue) {
3748 int stripe = conf->geo.raid_disks *
3749 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3750
3751 /* Calculate max read-ahead size.
3752 * We need to readahead at least twice a whole stripe....
3753 * maybe...
3754 */
3755 stripe /= conf->geo.near_copies;
3756 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3757 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3758 }
3759
3760 if (md_integrity_register(mddev))
3761 goto out_free_conf;
3762
3763 if (conf->reshape_progress != MaxSector) {
3764 unsigned long before_length, after_length;
3765
3766 before_length = ((1 << conf->prev.chunk_shift) *
3767 conf->prev.far_copies);
3768 after_length = ((1 << conf->geo.chunk_shift) *
3769 conf->geo.far_copies);
3770
3771 if (max(before_length, after_length) > min_offset_diff) {
3772 /* This cannot work */
3773 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3774 goto out_free_conf;
3775 }
3776 conf->offset_diff = min_offset_diff;
3777
3778 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3779 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3780 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3781 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3782 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3783 "reshape");
3784 }
3785
3786 return 0;
3787
3788 out_free_conf:
3789 md_unregister_thread(&mddev->thread);
3790 mempool_destroy(conf->r10bio_pool);
3791 safe_put_page(conf->tmppage);
3792 kfree(conf->mirrors);
3793 kfree(conf);
3794 mddev->private = NULL;
3795 out:
3796 return -EIO;
3797 }
3798
3799 static void raid10_free(struct mddev *mddev, void *priv)
3800 {
3801 struct r10conf *conf = priv;
3802
3803 mempool_destroy(conf->r10bio_pool);
3804 safe_put_page(conf->tmppage);
3805 kfree(conf->mirrors);
3806 kfree(conf->mirrors_old);
3807 kfree(conf->mirrors_new);
3808 if (conf->bio_split)
3809 bioset_free(conf->bio_split);
3810 kfree(conf);
3811 }
3812
3813 static void raid10_quiesce(struct mddev *mddev, int state)
3814 {
3815 struct r10conf *conf = mddev->private;
3816
3817 switch(state) {
3818 case 1:
3819 raise_barrier(conf, 0);
3820 break;
3821 case 0:
3822 lower_barrier(conf);
3823 break;
3824 }
3825 }
3826
3827 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3828 {
3829 /* Resize of 'far' arrays is not supported.
3830 * For 'near' and 'offset' arrays we can set the
3831 * number of sectors used to be an appropriate multiple
3832 * of the chunk size.
3833 * For 'offset', this is far_copies*chunksize.
3834 * For 'near' the multiplier is the LCM of
3835 * near_copies and raid_disks.
3836 * So if far_copies > 1 && !far_offset, fail.
3837 * Else find LCM(raid_disks, near_copy)*far_copies and
3838 * multiply by chunk_size. Then round to this number.
3839 * This is mostly done by raid10_size()
3840 */
3841 struct r10conf *conf = mddev->private;
3842 sector_t oldsize, size;
3843
3844 if (mddev->reshape_position != MaxSector)
3845 return -EBUSY;
3846
3847 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3848 return -EINVAL;
3849
3850 oldsize = raid10_size(mddev, 0, 0);
3851 size = raid10_size(mddev, sectors, 0);
3852 if (mddev->external_size &&
3853 mddev->array_sectors > size)
3854 return -EINVAL;
3855 if (mddev->bitmap) {
3856 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3857 if (ret)
3858 return ret;
3859 }
3860 md_set_array_sectors(mddev, size);
3861 if (sectors > mddev->dev_sectors &&
3862 mddev->recovery_cp > oldsize) {
3863 mddev->recovery_cp = oldsize;
3864 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3865 }
3866 calc_sectors(conf, sectors);
3867 mddev->dev_sectors = conf->dev_sectors;
3868 mddev->resync_max_sectors = size;
3869 return 0;
3870 }
3871
3872 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3873 {
3874 struct md_rdev *rdev;
3875 struct r10conf *conf;
3876
3877 if (mddev->degraded > 0) {
3878 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3879 mdname(mddev));
3880 return ERR_PTR(-EINVAL);
3881 }
3882 sector_div(size, devs);
3883
3884 /* Set new parameters */
3885 mddev->new_level = 10;
3886 /* new layout: far_copies = 1, near_copies = 2 */
3887 mddev->new_layout = (1<<8) + 2;
3888 mddev->new_chunk_sectors = mddev->chunk_sectors;
3889 mddev->delta_disks = mddev->raid_disks;
3890 mddev->raid_disks *= 2;
3891 /* make sure it will be not marked as dirty */
3892 mddev->recovery_cp = MaxSector;
3893 mddev->dev_sectors = size;
3894
3895 conf = setup_conf(mddev);
3896 if (!IS_ERR(conf)) {
3897 rdev_for_each(rdev, mddev)
3898 if (rdev->raid_disk >= 0) {
3899 rdev->new_raid_disk = rdev->raid_disk * 2;
3900 rdev->sectors = size;
3901 }
3902 conf->barrier = 1;
3903 }
3904
3905 return conf;
3906 }
3907
3908 static void *raid10_takeover(struct mddev *mddev)
3909 {
3910 struct r0conf *raid0_conf;
3911
3912 /* raid10 can take over:
3913 * raid0 - providing it has only two drives
3914 */
3915 if (mddev->level == 0) {
3916 /* for raid0 takeover only one zone is supported */
3917 raid0_conf = mddev->private;
3918 if (raid0_conf->nr_strip_zones > 1) {
3919 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3920 mdname(mddev));
3921 return ERR_PTR(-EINVAL);
3922 }
3923 return raid10_takeover_raid0(mddev,
3924 raid0_conf->strip_zone->zone_end,
3925 raid0_conf->strip_zone->nb_dev);
3926 }
3927 return ERR_PTR(-EINVAL);
3928 }
3929
3930 static int raid10_check_reshape(struct mddev *mddev)
3931 {
3932 /* Called when there is a request to change
3933 * - layout (to ->new_layout)
3934 * - chunk size (to ->new_chunk_sectors)
3935 * - raid_disks (by delta_disks)
3936 * or when trying to restart a reshape that was ongoing.
3937 *
3938 * We need to validate the request and possibly allocate
3939 * space if that might be an issue later.
3940 *
3941 * Currently we reject any reshape of a 'far' mode array,
3942 * allow chunk size to change if new is generally acceptable,
3943 * allow raid_disks to increase, and allow
3944 * a switch between 'near' mode and 'offset' mode.
3945 */
3946 struct r10conf *conf = mddev->private;
3947 struct geom geo;
3948
3949 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3950 return -EINVAL;
3951
3952 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3953 /* mustn't change number of copies */
3954 return -EINVAL;
3955 if (geo.far_copies > 1 && !geo.far_offset)
3956 /* Cannot switch to 'far' mode */
3957 return -EINVAL;
3958
3959 if (mddev->array_sectors & geo.chunk_mask)
3960 /* not factor of array size */
3961 return -EINVAL;
3962
3963 if (!enough(conf, -1))
3964 return -EINVAL;
3965
3966 kfree(conf->mirrors_new);
3967 conf->mirrors_new = NULL;
3968 if (mddev->delta_disks > 0) {
3969 /* allocate new 'mirrors' list */
3970 conf->mirrors_new = kzalloc(
3971 sizeof(struct raid10_info)
3972 *(mddev->raid_disks +
3973 mddev->delta_disks),
3974 GFP_KERNEL);
3975 if (!conf->mirrors_new)
3976 return -ENOMEM;
3977 }
3978 return 0;
3979 }
3980
3981 /*
3982 * Need to check if array has failed when deciding whether to:
3983 * - start an array
3984 * - remove non-faulty devices
3985 * - add a spare
3986 * - allow a reshape
3987 * This determination is simple when no reshape is happening.
3988 * However if there is a reshape, we need to carefully check
3989 * both the before and after sections.
3990 * This is because some failed devices may only affect one
3991 * of the two sections, and some non-in_sync devices may
3992 * be insync in the section most affected by failed devices.
3993 */
3994 static int calc_degraded(struct r10conf *conf)
3995 {
3996 int degraded, degraded2;
3997 int i;
3998
3999 rcu_read_lock();
4000 degraded = 0;
4001 /* 'prev' section first */
4002 for (i = 0; i < conf->prev.raid_disks; i++) {
4003 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4004 if (!rdev || test_bit(Faulty, &rdev->flags))
4005 degraded++;
4006 else if (!test_bit(In_sync, &rdev->flags))
4007 /* When we can reduce the number of devices in
4008 * an array, this might not contribute to
4009 * 'degraded'. It does now.
4010 */
4011 degraded++;
4012 }
4013 rcu_read_unlock();
4014 if (conf->geo.raid_disks == conf->prev.raid_disks)
4015 return degraded;
4016 rcu_read_lock();
4017 degraded2 = 0;
4018 for (i = 0; i < conf->geo.raid_disks; i++) {
4019 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4020 if (!rdev || test_bit(Faulty, &rdev->flags))
4021 degraded2++;
4022 else if (!test_bit(In_sync, &rdev->flags)) {
4023 /* If reshape is increasing the number of devices,
4024 * this section has already been recovered, so
4025 * it doesn't contribute to degraded.
4026 * else it does.
4027 */
4028 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4029 degraded2++;
4030 }
4031 }
4032 rcu_read_unlock();
4033 if (degraded2 > degraded)
4034 return degraded2;
4035 return degraded;
4036 }
4037
4038 static int raid10_start_reshape(struct mddev *mddev)
4039 {
4040 /* A 'reshape' has been requested. This commits
4041 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4042 * This also checks if there are enough spares and adds them
4043 * to the array.
4044 * We currently require enough spares to make the final
4045 * array non-degraded. We also require that the difference
4046 * between old and new data_offset - on each device - is
4047 * enough that we never risk over-writing.
4048 */
4049
4050 unsigned long before_length, after_length;
4051 sector_t min_offset_diff = 0;
4052 int first = 1;
4053 struct geom new;
4054 struct r10conf *conf = mddev->private;
4055 struct md_rdev *rdev;
4056 int spares = 0;
4057 int ret;
4058
4059 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4060 return -EBUSY;
4061
4062 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4063 return -EINVAL;
4064
4065 before_length = ((1 << conf->prev.chunk_shift) *
4066 conf->prev.far_copies);
4067 after_length = ((1 << conf->geo.chunk_shift) *
4068 conf->geo.far_copies);
4069
4070 rdev_for_each(rdev, mddev) {
4071 if (!test_bit(In_sync, &rdev->flags)
4072 && !test_bit(Faulty, &rdev->flags))
4073 spares++;
4074 if (rdev->raid_disk >= 0) {
4075 long long diff = (rdev->new_data_offset
4076 - rdev->data_offset);
4077 if (!mddev->reshape_backwards)
4078 diff = -diff;
4079 if (diff < 0)
4080 diff = 0;
4081 if (first || diff < min_offset_diff)
4082 min_offset_diff = diff;
4083 first = 0;
4084 }
4085 }
4086
4087 if (max(before_length, after_length) > min_offset_diff)
4088 return -EINVAL;
4089
4090 if (spares < mddev->delta_disks)
4091 return -EINVAL;
4092
4093 conf->offset_diff = min_offset_diff;
4094 spin_lock_irq(&conf->device_lock);
4095 if (conf->mirrors_new) {
4096 memcpy(conf->mirrors_new, conf->mirrors,
4097 sizeof(struct raid10_info)*conf->prev.raid_disks);
4098 smp_mb();
4099 kfree(conf->mirrors_old);
4100 conf->mirrors_old = conf->mirrors;
4101 conf->mirrors = conf->mirrors_new;
4102 conf->mirrors_new = NULL;
4103 }
4104 setup_geo(&conf->geo, mddev, geo_start);
4105 smp_mb();
4106 if (mddev->reshape_backwards) {
4107 sector_t size = raid10_size(mddev, 0, 0);
4108 if (size < mddev->array_sectors) {
4109 spin_unlock_irq(&conf->device_lock);
4110 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4111 mdname(mddev));
4112 return -EINVAL;
4113 }
4114 mddev->resync_max_sectors = size;
4115 conf->reshape_progress = size;
4116 } else
4117 conf->reshape_progress = 0;
4118 conf->reshape_safe = conf->reshape_progress;
4119 spin_unlock_irq(&conf->device_lock);
4120
4121 if (mddev->delta_disks && mddev->bitmap) {
4122 ret = bitmap_resize(mddev->bitmap,
4123 raid10_size(mddev, 0,
4124 conf->geo.raid_disks),
4125 0, 0);
4126 if (ret)
4127 goto abort;
4128 }
4129 if (mddev->delta_disks > 0) {
4130 rdev_for_each(rdev, mddev)
4131 if (rdev->raid_disk < 0 &&
4132 !test_bit(Faulty, &rdev->flags)) {
4133 if (raid10_add_disk(mddev, rdev) == 0) {
4134 if (rdev->raid_disk >=
4135 conf->prev.raid_disks)
4136 set_bit(In_sync, &rdev->flags);
4137 else
4138 rdev->recovery_offset = 0;
4139
4140 if (sysfs_link_rdev(mddev, rdev))
4141 /* Failure here is OK */;
4142 }
4143 } else if (rdev->raid_disk >= conf->prev.raid_disks
4144 && !test_bit(Faulty, &rdev->flags)) {
4145 /* This is a spare that was manually added */
4146 set_bit(In_sync, &rdev->flags);
4147 }
4148 }
4149 /* When a reshape changes the number of devices,
4150 * ->degraded is measured against the larger of the
4151 * pre and post numbers.
4152 */
4153 spin_lock_irq(&conf->device_lock);
4154 mddev->degraded = calc_degraded(conf);
4155 spin_unlock_irq(&conf->device_lock);
4156 mddev->raid_disks = conf->geo.raid_disks;
4157 mddev->reshape_position = conf->reshape_progress;
4158 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4159
4160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4161 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4162 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4163 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4164 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4165
4166 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4167 "reshape");
4168 if (!mddev->sync_thread) {
4169 ret = -EAGAIN;
4170 goto abort;
4171 }
4172 conf->reshape_checkpoint = jiffies;
4173 md_wakeup_thread(mddev->sync_thread);
4174 md_new_event(mddev);
4175 return 0;
4176
4177 abort:
4178 mddev->recovery = 0;
4179 spin_lock_irq(&conf->device_lock);
4180 conf->geo = conf->prev;
4181 mddev->raid_disks = conf->geo.raid_disks;
4182 rdev_for_each(rdev, mddev)
4183 rdev->new_data_offset = rdev->data_offset;
4184 smp_wmb();
4185 conf->reshape_progress = MaxSector;
4186 conf->reshape_safe = MaxSector;
4187 mddev->reshape_position = MaxSector;
4188 spin_unlock_irq(&conf->device_lock);
4189 return ret;
4190 }
4191
4192 /* Calculate the last device-address that could contain
4193 * any block from the chunk that includes the array-address 's'
4194 * and report the next address.
4195 * i.e. the address returned will be chunk-aligned and after
4196 * any data that is in the chunk containing 's'.
4197 */
4198 static sector_t last_dev_address(sector_t s, struct geom *geo)
4199 {
4200 s = (s | geo->chunk_mask) + 1;
4201 s >>= geo->chunk_shift;
4202 s *= geo->near_copies;
4203 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4204 s *= geo->far_copies;
4205 s <<= geo->chunk_shift;
4206 return s;
4207 }
4208
4209 /* Calculate the first device-address that could contain
4210 * any block from the chunk that includes the array-address 's'.
4211 * This too will be the start of a chunk
4212 */
4213 static sector_t first_dev_address(sector_t s, struct geom *geo)
4214 {
4215 s >>= geo->chunk_shift;
4216 s *= geo->near_copies;
4217 sector_div(s, geo->raid_disks);
4218 s *= geo->far_copies;
4219 s <<= geo->chunk_shift;
4220 return s;
4221 }
4222
4223 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4224 int *skipped)
4225 {
4226 /* We simply copy at most one chunk (smallest of old and new)
4227 * at a time, possibly less if that exceeds RESYNC_PAGES,
4228 * or we hit a bad block or something.
4229 * This might mean we pause for normal IO in the middle of
4230 * a chunk, but that is not a problem as mddev->reshape_position
4231 * can record any location.
4232 *
4233 * If we will want to write to a location that isn't
4234 * yet recorded as 'safe' (i.e. in metadata on disk) then
4235 * we need to flush all reshape requests and update the metadata.
4236 *
4237 * When reshaping forwards (e.g. to more devices), we interpret
4238 * 'safe' as the earliest block which might not have been copied
4239 * down yet. We divide this by previous stripe size and multiply
4240 * by previous stripe length to get lowest device offset that we
4241 * cannot write to yet.
4242 * We interpret 'sector_nr' as an address that we want to write to.
4243 * From this we use last_device_address() to find where we might
4244 * write to, and first_device_address on the 'safe' position.
4245 * If this 'next' write position is after the 'safe' position,
4246 * we must update the metadata to increase the 'safe' position.
4247 *
4248 * When reshaping backwards, we round in the opposite direction
4249 * and perform the reverse test: next write position must not be
4250 * less than current safe position.
4251 *
4252 * In all this the minimum difference in data offsets
4253 * (conf->offset_diff - always positive) allows a bit of slack,
4254 * so next can be after 'safe', but not by more than offset_diff
4255 *
4256 * We need to prepare all the bios here before we start any IO
4257 * to ensure the size we choose is acceptable to all devices.
4258 * The means one for each copy for write-out and an extra one for
4259 * read-in.
4260 * We store the read-in bio in ->master_bio and the others in
4261 * ->devs[x].bio and ->devs[x].repl_bio.
4262 */
4263 struct r10conf *conf = mddev->private;
4264 struct r10bio *r10_bio;
4265 sector_t next, safe, last;
4266 int max_sectors;
4267 int nr_sectors;
4268 int s;
4269 struct md_rdev *rdev;
4270 int need_flush = 0;
4271 struct bio *blist;
4272 struct bio *bio, *read_bio;
4273 int sectors_done = 0;
4274 struct page **pages;
4275
4276 if (sector_nr == 0) {
4277 /* If restarting in the middle, skip the initial sectors */
4278 if (mddev->reshape_backwards &&
4279 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4280 sector_nr = (raid10_size(mddev, 0, 0)
4281 - conf->reshape_progress);
4282 } else if (!mddev->reshape_backwards &&
4283 conf->reshape_progress > 0)
4284 sector_nr = conf->reshape_progress;
4285 if (sector_nr) {
4286 mddev->curr_resync_completed = sector_nr;
4287 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4288 *skipped = 1;
4289 return sector_nr;
4290 }
4291 }
4292
4293 /* We don't use sector_nr to track where we are up to
4294 * as that doesn't work well for ->reshape_backwards.
4295 * So just use ->reshape_progress.
4296 */
4297 if (mddev->reshape_backwards) {
4298 /* 'next' is the earliest device address that we might
4299 * write to for this chunk in the new layout
4300 */
4301 next = first_dev_address(conf->reshape_progress - 1,
4302 &conf->geo);
4303
4304 /* 'safe' is the last device address that we might read from
4305 * in the old layout after a restart
4306 */
4307 safe = last_dev_address(conf->reshape_safe - 1,
4308 &conf->prev);
4309
4310 if (next + conf->offset_diff < safe)
4311 need_flush = 1;
4312
4313 last = conf->reshape_progress - 1;
4314 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4315 & conf->prev.chunk_mask);
4316 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4317 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4318 } else {
4319 /* 'next' is after the last device address that we
4320 * might write to for this chunk in the new layout
4321 */
4322 next = last_dev_address(conf->reshape_progress, &conf->geo);
4323
4324 /* 'safe' is the earliest device address that we might
4325 * read from in the old layout after a restart
4326 */
4327 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4328
4329 /* Need to update metadata if 'next' might be beyond 'safe'
4330 * as that would possibly corrupt data
4331 */
4332 if (next > safe + conf->offset_diff)
4333 need_flush = 1;
4334
4335 sector_nr = conf->reshape_progress;
4336 last = sector_nr | (conf->geo.chunk_mask
4337 & conf->prev.chunk_mask);
4338
4339 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4340 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4341 }
4342
4343 if (need_flush ||
4344 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4345 /* Need to update reshape_position in metadata */
4346 wait_barrier(conf);
4347 mddev->reshape_position = conf->reshape_progress;
4348 if (mddev->reshape_backwards)
4349 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4350 - conf->reshape_progress;
4351 else
4352 mddev->curr_resync_completed = conf->reshape_progress;
4353 conf->reshape_checkpoint = jiffies;
4354 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4355 md_wakeup_thread(mddev->thread);
4356 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4357 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4358 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4359 allow_barrier(conf);
4360 return sectors_done;
4361 }
4362 conf->reshape_safe = mddev->reshape_position;
4363 allow_barrier(conf);
4364 }
4365
4366 read_more:
4367 /* Now schedule reads for blocks from sector_nr to last */
4368 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4369 r10_bio->state = 0;
4370 raise_barrier(conf, sectors_done != 0);
4371 atomic_set(&r10_bio->remaining, 0);
4372 r10_bio->mddev = mddev;
4373 r10_bio->sector = sector_nr;
4374 set_bit(R10BIO_IsReshape, &r10_bio->state);
4375 r10_bio->sectors = last - sector_nr + 1;
4376 rdev = read_balance(conf, r10_bio, &max_sectors);
4377 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4378
4379 if (!rdev) {
4380 /* Cannot read from here, so need to record bad blocks
4381 * on all the target devices.
4382 */
4383 // FIXME
4384 mempool_free(r10_bio, conf->r10buf_pool);
4385 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4386 return sectors_done;
4387 }
4388
4389 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4390
4391 read_bio->bi_bdev = rdev->bdev;
4392 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4393 + rdev->data_offset);
4394 read_bio->bi_private = r10_bio;
4395 read_bio->bi_end_io = end_reshape_read;
4396 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4397 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4398 read_bio->bi_error = 0;
4399 read_bio->bi_vcnt = 0;
4400 read_bio->bi_iter.bi_size = 0;
4401 r10_bio->master_bio = read_bio;
4402 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4403
4404 /* Now find the locations in the new layout */
4405 __raid10_find_phys(&conf->geo, r10_bio);
4406
4407 blist = read_bio;
4408 read_bio->bi_next = NULL;
4409
4410 rcu_read_lock();
4411 for (s = 0; s < conf->copies*2; s++) {
4412 struct bio *b;
4413 int d = r10_bio->devs[s/2].devnum;
4414 struct md_rdev *rdev2;
4415 if (s&1) {
4416 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4417 b = r10_bio->devs[s/2].repl_bio;
4418 } else {
4419 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4420 b = r10_bio->devs[s/2].bio;
4421 }
4422 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4423 continue;
4424
4425 b->bi_bdev = rdev2->bdev;
4426 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4427 rdev2->new_data_offset;
4428 b->bi_end_io = end_reshape_write;
4429 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4430 b->bi_next = blist;
4431 blist = b;
4432 }
4433
4434 /* Now add as many pages as possible to all of these bios. */
4435
4436 nr_sectors = 0;
4437 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4438 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4439 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4440 int len = (max_sectors - s) << 9;
4441 if (len > PAGE_SIZE)
4442 len = PAGE_SIZE;
4443 for (bio = blist; bio ; bio = bio->bi_next) {
4444 /*
4445 * won't fail because the vec table is big enough
4446 * to hold all these pages
4447 */
4448 bio_add_page(bio, page, len, 0);
4449 }
4450 sector_nr += len >> 9;
4451 nr_sectors += len >> 9;
4452 }
4453 rcu_read_unlock();
4454 r10_bio->sectors = nr_sectors;
4455
4456 /* Now submit the read */
4457 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4458 atomic_inc(&r10_bio->remaining);
4459 read_bio->bi_next = NULL;
4460 generic_make_request(read_bio);
4461 sector_nr += nr_sectors;
4462 sectors_done += nr_sectors;
4463 if (sector_nr <= last)
4464 goto read_more;
4465
4466 /* Now that we have done the whole section we can
4467 * update reshape_progress
4468 */
4469 if (mddev->reshape_backwards)
4470 conf->reshape_progress -= sectors_done;
4471 else
4472 conf->reshape_progress += sectors_done;
4473
4474 return sectors_done;
4475 }
4476
4477 static void end_reshape_request(struct r10bio *r10_bio);
4478 static int handle_reshape_read_error(struct mddev *mddev,
4479 struct r10bio *r10_bio);
4480 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4481 {
4482 /* Reshape read completed. Hopefully we have a block
4483 * to write out.
4484 * If we got a read error then we do sync 1-page reads from
4485 * elsewhere until we find the data - or give up.
4486 */
4487 struct r10conf *conf = mddev->private;
4488 int s;
4489
4490 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4491 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4492 /* Reshape has been aborted */
4493 md_done_sync(mddev, r10_bio->sectors, 0);
4494 return;
4495 }
4496
4497 /* We definitely have the data in the pages, schedule the
4498 * writes.
4499 */
4500 atomic_set(&r10_bio->remaining, 1);
4501 for (s = 0; s < conf->copies*2; s++) {
4502 struct bio *b;
4503 int d = r10_bio->devs[s/2].devnum;
4504 struct md_rdev *rdev;
4505 rcu_read_lock();
4506 if (s&1) {
4507 rdev = rcu_dereference(conf->mirrors[d].replacement);
4508 b = r10_bio->devs[s/2].repl_bio;
4509 } else {
4510 rdev = rcu_dereference(conf->mirrors[d].rdev);
4511 b = r10_bio->devs[s/2].bio;
4512 }
4513 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4514 rcu_read_unlock();
4515 continue;
4516 }
4517 atomic_inc(&rdev->nr_pending);
4518 rcu_read_unlock();
4519 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4520 atomic_inc(&r10_bio->remaining);
4521 b->bi_next = NULL;
4522 generic_make_request(b);
4523 }
4524 end_reshape_request(r10_bio);
4525 }
4526
4527 static void end_reshape(struct r10conf *conf)
4528 {
4529 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4530 return;
4531
4532 spin_lock_irq(&conf->device_lock);
4533 conf->prev = conf->geo;
4534 md_finish_reshape(conf->mddev);
4535 smp_wmb();
4536 conf->reshape_progress = MaxSector;
4537 conf->reshape_safe = MaxSector;
4538 spin_unlock_irq(&conf->device_lock);
4539
4540 /* read-ahead size must cover two whole stripes, which is
4541 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4542 */
4543 if (conf->mddev->queue) {
4544 int stripe = conf->geo.raid_disks *
4545 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4546 stripe /= conf->geo.near_copies;
4547 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4548 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4549 }
4550 conf->fullsync = 0;
4551 }
4552
4553 static int handle_reshape_read_error(struct mddev *mddev,
4554 struct r10bio *r10_bio)
4555 {
4556 /* Use sync reads to get the blocks from somewhere else */
4557 int sectors = r10_bio->sectors;
4558 struct r10conf *conf = mddev->private;
4559 struct {
4560 struct r10bio r10_bio;
4561 struct r10dev devs[conf->copies];
4562 } on_stack;
4563 struct r10bio *r10b = &on_stack.r10_bio;
4564 int slot = 0;
4565 int idx = 0;
4566 struct page **pages;
4567
4568 /* reshape IOs share pages from .devs[0].bio */
4569 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4570
4571 r10b->sector = r10_bio->sector;
4572 __raid10_find_phys(&conf->prev, r10b);
4573
4574 while (sectors) {
4575 int s = sectors;
4576 int success = 0;
4577 int first_slot = slot;
4578
4579 if (s > (PAGE_SIZE >> 9))
4580 s = PAGE_SIZE >> 9;
4581
4582 rcu_read_lock();
4583 while (!success) {
4584 int d = r10b->devs[slot].devnum;
4585 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4586 sector_t addr;
4587 if (rdev == NULL ||
4588 test_bit(Faulty, &rdev->flags) ||
4589 !test_bit(In_sync, &rdev->flags))
4590 goto failed;
4591
4592 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4593 atomic_inc(&rdev->nr_pending);
4594 rcu_read_unlock();
4595 success = sync_page_io(rdev,
4596 addr,
4597 s << 9,
4598 pages[idx],
4599 REQ_OP_READ, 0, false);
4600 rdev_dec_pending(rdev, mddev);
4601 rcu_read_lock();
4602 if (success)
4603 break;
4604 failed:
4605 slot++;
4606 if (slot >= conf->copies)
4607 slot = 0;
4608 if (slot == first_slot)
4609 break;
4610 }
4611 rcu_read_unlock();
4612 if (!success) {
4613 /* couldn't read this block, must give up */
4614 set_bit(MD_RECOVERY_INTR,
4615 &mddev->recovery);
4616 return -EIO;
4617 }
4618 sectors -= s;
4619 idx++;
4620 }
4621 return 0;
4622 }
4623
4624 static void end_reshape_write(struct bio *bio)
4625 {
4626 struct r10bio *r10_bio = get_resync_r10bio(bio);
4627 struct mddev *mddev = r10_bio->mddev;
4628 struct r10conf *conf = mddev->private;
4629 int d;
4630 int slot;
4631 int repl;
4632 struct md_rdev *rdev = NULL;
4633
4634 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4635 if (repl)
4636 rdev = conf->mirrors[d].replacement;
4637 if (!rdev) {
4638 smp_mb();
4639 rdev = conf->mirrors[d].rdev;
4640 }
4641
4642 if (bio->bi_error) {
4643 /* FIXME should record badblock */
4644 md_error(mddev, rdev);
4645 }
4646
4647 rdev_dec_pending(rdev, mddev);
4648 end_reshape_request(r10_bio);
4649 }
4650
4651 static void end_reshape_request(struct r10bio *r10_bio)
4652 {
4653 if (!atomic_dec_and_test(&r10_bio->remaining))
4654 return;
4655 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4656 bio_put(r10_bio->master_bio);
4657 put_buf(r10_bio);
4658 }
4659
4660 static void raid10_finish_reshape(struct mddev *mddev)
4661 {
4662 struct r10conf *conf = mddev->private;
4663
4664 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4665 return;
4666
4667 if (mddev->delta_disks > 0) {
4668 sector_t size = raid10_size(mddev, 0, 0);
4669 md_set_array_sectors(mddev, size);
4670 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4671 mddev->recovery_cp = mddev->resync_max_sectors;
4672 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4673 }
4674 mddev->resync_max_sectors = size;
4675 if (mddev->queue) {
4676 set_capacity(mddev->gendisk, mddev->array_sectors);
4677 revalidate_disk(mddev->gendisk);
4678 }
4679 } else {
4680 int d;
4681 rcu_read_lock();
4682 for (d = conf->geo.raid_disks ;
4683 d < conf->geo.raid_disks - mddev->delta_disks;
4684 d++) {
4685 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4686 if (rdev)
4687 clear_bit(In_sync, &rdev->flags);
4688 rdev = rcu_dereference(conf->mirrors[d].replacement);
4689 if (rdev)
4690 clear_bit(In_sync, &rdev->flags);
4691 }
4692 rcu_read_unlock();
4693 }
4694 mddev->layout = mddev->new_layout;
4695 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4696 mddev->reshape_position = MaxSector;
4697 mddev->delta_disks = 0;
4698 mddev->reshape_backwards = 0;
4699 }
4700
4701 static struct md_personality raid10_personality =
4702 {
4703 .name = "raid10",
4704 .level = 10,
4705 .owner = THIS_MODULE,
4706 .make_request = raid10_make_request,
4707 .run = raid10_run,
4708 .free = raid10_free,
4709 .status = raid10_status,
4710 .error_handler = raid10_error,
4711 .hot_add_disk = raid10_add_disk,
4712 .hot_remove_disk= raid10_remove_disk,
4713 .spare_active = raid10_spare_active,
4714 .sync_request = raid10_sync_request,
4715 .quiesce = raid10_quiesce,
4716 .size = raid10_size,
4717 .resize = raid10_resize,
4718 .takeover = raid10_takeover,
4719 .check_reshape = raid10_check_reshape,
4720 .start_reshape = raid10_start_reshape,
4721 .finish_reshape = raid10_finish_reshape,
4722 .congested = raid10_congested,
4723 };
4724
4725 static int __init raid_init(void)
4726 {
4727 return register_md_personality(&raid10_personality);
4728 }
4729
4730 static void raid_exit(void)
4731 {
4732 unregister_md_personality(&raid10_personality);
4733 }
4734
4735 module_init(raid_init);
4736 module_exit(raid_exit);
4737 MODULE_LICENSE("GPL");
4738 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4739 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4740 MODULE_ALIAS("md-raid10");
4741 MODULE_ALIAS("md-level-10");
4742
4743 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);