]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid10.c
md: rename some drivers/md/ files to have an "md-" prefix
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 kfree(r10_bio);
137 }
138
139 /* amount of memory to reserve for resync requests */
140 #define RESYNC_WINDOW (1024*1024)
141 /* maximum number of concurrent requests, memory permitting */
142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
143
144 /*
145 * When performing a resync, we need to read and compare, so
146 * we need as many pages are there are copies.
147 * When performing a recovery, we need 2 bios, one for read,
148 * one for write (we recover only one drive per r10buf)
149 *
150 */
151 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
152 {
153 struct r10conf *conf = data;
154 struct r10bio *r10_bio;
155 struct bio *bio;
156 int j;
157 int nalloc, nalloc_rp;
158 struct resync_pages *rps;
159
160 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
161 if (!r10_bio)
162 return NULL;
163
164 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
165 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
166 nalloc = conf->copies; /* resync */
167 else
168 nalloc = 2; /* recovery */
169
170 /* allocate once for all bios */
171 if (!conf->have_replacement)
172 nalloc_rp = nalloc;
173 else
174 nalloc_rp = nalloc * 2;
175 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
176 if (!rps)
177 goto out_free_r10bio;
178
179 /*
180 * Allocate bios.
181 */
182 for (j = nalloc ; j-- ; ) {
183 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
184 if (!bio)
185 goto out_free_bio;
186 r10_bio->devs[j].bio = bio;
187 if (!conf->have_replacement)
188 continue;
189 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
190 if (!bio)
191 goto out_free_bio;
192 r10_bio->devs[j].repl_bio = bio;
193 }
194 /*
195 * Allocate RESYNC_PAGES data pages and attach them
196 * where needed.
197 */
198 for (j = 0; j < nalloc; j++) {
199 struct bio *rbio = r10_bio->devs[j].repl_bio;
200 struct resync_pages *rp, *rp_repl;
201
202 rp = &rps[j];
203 if (rbio)
204 rp_repl = &rps[nalloc + j];
205
206 bio = r10_bio->devs[j].bio;
207
208 if (!j || test_bit(MD_RECOVERY_SYNC,
209 &conf->mddev->recovery)) {
210 if (resync_alloc_pages(rp, gfp_flags))
211 goto out_free_pages;
212 } else {
213 memcpy(rp, &rps[0], sizeof(*rp));
214 resync_get_all_pages(rp);
215 }
216
217 rp->raid_bio = r10_bio;
218 bio->bi_private = rp;
219 if (rbio) {
220 memcpy(rp_repl, rp, sizeof(*rp));
221 rbio->bi_private = rp_repl;
222 }
223 }
224
225 return r10_bio;
226
227 out_free_pages:
228 while (--j >= 0)
229 resync_free_pages(&rps[j * 2]);
230
231 j = 0;
232 out_free_bio:
233 for ( ; j < nalloc; j++) {
234 if (r10_bio->devs[j].bio)
235 bio_put(r10_bio->devs[j].bio);
236 if (r10_bio->devs[j].repl_bio)
237 bio_put(r10_bio->devs[j].repl_bio);
238 }
239 kfree(rps);
240 out_free_r10bio:
241 r10bio_pool_free(r10_bio, conf);
242 return NULL;
243 }
244
245 static void r10buf_pool_free(void *__r10_bio, void *data)
246 {
247 struct r10conf *conf = data;
248 struct r10bio *r10bio = __r10_bio;
249 int j;
250 struct resync_pages *rp = NULL;
251
252 for (j = conf->copies; j--; ) {
253 struct bio *bio = r10bio->devs[j].bio;
254
255 rp = get_resync_pages(bio);
256 resync_free_pages(rp);
257 bio_put(bio);
258
259 bio = r10bio->devs[j].repl_bio;
260 if (bio)
261 bio_put(bio);
262 }
263
264 /* resync pages array stored in the 1st bio's .bi_private */
265 kfree(rp);
266
267 r10bio_pool_free(r10bio, conf);
268 }
269
270 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
271 {
272 int i;
273
274 for (i = 0; i < conf->copies; i++) {
275 struct bio **bio = & r10_bio->devs[i].bio;
276 if (!BIO_SPECIAL(*bio))
277 bio_put(*bio);
278 *bio = NULL;
279 bio = &r10_bio->devs[i].repl_bio;
280 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
281 bio_put(*bio);
282 *bio = NULL;
283 }
284 }
285
286 static void free_r10bio(struct r10bio *r10_bio)
287 {
288 struct r10conf *conf = r10_bio->mddev->private;
289
290 put_all_bios(conf, r10_bio);
291 mempool_free(r10_bio, conf->r10bio_pool);
292 }
293
294 static void put_buf(struct r10bio *r10_bio)
295 {
296 struct r10conf *conf = r10_bio->mddev->private;
297
298 mempool_free(r10_bio, conf->r10buf_pool);
299
300 lower_barrier(conf);
301 }
302
303 static void reschedule_retry(struct r10bio *r10_bio)
304 {
305 unsigned long flags;
306 struct mddev *mddev = r10_bio->mddev;
307 struct r10conf *conf = mddev->private;
308
309 spin_lock_irqsave(&conf->device_lock, flags);
310 list_add(&r10_bio->retry_list, &conf->retry_list);
311 conf->nr_queued ++;
312 spin_unlock_irqrestore(&conf->device_lock, flags);
313
314 /* wake up frozen array... */
315 wake_up(&conf->wait_barrier);
316
317 md_wakeup_thread(mddev->thread);
318 }
319
320 /*
321 * raid_end_bio_io() is called when we have finished servicing a mirrored
322 * operation and are ready to return a success/failure code to the buffer
323 * cache layer.
324 */
325 static void raid_end_bio_io(struct r10bio *r10_bio)
326 {
327 struct bio *bio = r10_bio->master_bio;
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
331 bio->bi_status = BLK_STS_IOERR;
332
333 bio_endio(bio);
334 /*
335 * Wake up any possible resync thread that waits for the device
336 * to go idle.
337 */
338 allow_barrier(conf);
339
340 free_r10bio(r10_bio);
341 }
342
343 /*
344 * Update disk head position estimator based on IRQ completion info.
345 */
346 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
347 {
348 struct r10conf *conf = r10_bio->mddev->private;
349
350 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
351 r10_bio->devs[slot].addr + (r10_bio->sectors);
352 }
353
354 /*
355 * Find the disk number which triggered given bio
356 */
357 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
358 struct bio *bio, int *slotp, int *replp)
359 {
360 int slot;
361 int repl = 0;
362
363 for (slot = 0; slot < conf->copies; slot++) {
364 if (r10_bio->devs[slot].bio == bio)
365 break;
366 if (r10_bio->devs[slot].repl_bio == bio) {
367 repl = 1;
368 break;
369 }
370 }
371
372 BUG_ON(slot == conf->copies);
373 update_head_pos(slot, r10_bio);
374
375 if (slotp)
376 *slotp = slot;
377 if (replp)
378 *replp = repl;
379 return r10_bio->devs[slot].devnum;
380 }
381
382 static void raid10_end_read_request(struct bio *bio)
383 {
384 int uptodate = !bio->bi_status;
385 struct r10bio *r10_bio = bio->bi_private;
386 int slot, dev;
387 struct md_rdev *rdev;
388 struct r10conf *conf = r10_bio->mddev->private;
389
390 slot = r10_bio->read_slot;
391 dev = r10_bio->devs[slot].devnum;
392 rdev = r10_bio->devs[slot].rdev;
393 /*
394 * this branch is our 'one mirror IO has finished' event handler:
395 */
396 update_head_pos(slot, r10_bio);
397
398 if (uptodate) {
399 /*
400 * Set R10BIO_Uptodate in our master bio, so that
401 * we will return a good error code to the higher
402 * levels even if IO on some other mirrored buffer fails.
403 *
404 * The 'master' represents the composite IO operation to
405 * user-side. So if something waits for IO, then it will
406 * wait for the 'master' bio.
407 */
408 set_bit(R10BIO_Uptodate, &r10_bio->state);
409 } else {
410 /* If all other devices that store this block have
411 * failed, we want to return the error upwards rather
412 * than fail the last device. Here we redefine
413 * "uptodate" to mean "Don't want to retry"
414 */
415 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
416 rdev->raid_disk))
417 uptodate = 1;
418 }
419 if (uptodate) {
420 raid_end_bio_io(r10_bio);
421 rdev_dec_pending(rdev, conf->mddev);
422 } else {
423 /*
424 * oops, read error - keep the refcount on the rdev
425 */
426 char b[BDEVNAME_SIZE];
427 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
428 mdname(conf->mddev),
429 bdevname(rdev->bdev, b),
430 (unsigned long long)r10_bio->sector);
431 set_bit(R10BIO_ReadError, &r10_bio->state);
432 reschedule_retry(r10_bio);
433 }
434 }
435
436 static void close_write(struct r10bio *r10_bio)
437 {
438 /* clear the bitmap if all writes complete successfully */
439 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
440 r10_bio->sectors,
441 !test_bit(R10BIO_Degraded, &r10_bio->state),
442 0);
443 md_write_end(r10_bio->mddev);
444 }
445
446 static void one_write_done(struct r10bio *r10_bio)
447 {
448 if (atomic_dec_and_test(&r10_bio->remaining)) {
449 if (test_bit(R10BIO_WriteError, &r10_bio->state))
450 reschedule_retry(r10_bio);
451 else {
452 close_write(r10_bio);
453 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
454 reschedule_retry(r10_bio);
455 else
456 raid_end_bio_io(r10_bio);
457 }
458 }
459 }
460
461 static void raid10_end_write_request(struct bio *bio)
462 {
463 struct r10bio *r10_bio = bio->bi_private;
464 int dev;
465 int dec_rdev = 1;
466 struct r10conf *conf = r10_bio->mddev->private;
467 int slot, repl;
468 struct md_rdev *rdev = NULL;
469 struct bio *to_put = NULL;
470 bool discard_error;
471
472 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
473
474 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
475
476 if (repl)
477 rdev = conf->mirrors[dev].replacement;
478 if (!rdev) {
479 smp_rmb();
480 repl = 0;
481 rdev = conf->mirrors[dev].rdev;
482 }
483 /*
484 * this branch is our 'one mirror IO has finished' event handler:
485 */
486 if (bio->bi_status && !discard_error) {
487 if (repl)
488 /* Never record new bad blocks to replacement,
489 * just fail it.
490 */
491 md_error(rdev->mddev, rdev);
492 else {
493 set_bit(WriteErrorSeen, &rdev->flags);
494 if (!test_and_set_bit(WantReplacement, &rdev->flags))
495 set_bit(MD_RECOVERY_NEEDED,
496 &rdev->mddev->recovery);
497
498 dec_rdev = 0;
499 if (test_bit(FailFast, &rdev->flags) &&
500 (bio->bi_opf & MD_FAILFAST)) {
501 md_error(rdev->mddev, rdev);
502 if (!test_bit(Faulty, &rdev->flags))
503 /* This is the only remaining device,
504 * We need to retry the write without
505 * FailFast
506 */
507 set_bit(R10BIO_WriteError, &r10_bio->state);
508 else {
509 r10_bio->devs[slot].bio = NULL;
510 to_put = bio;
511 dec_rdev = 1;
512 }
513 } else
514 set_bit(R10BIO_WriteError, &r10_bio->state);
515 }
516 } else {
517 /*
518 * Set R10BIO_Uptodate in our master bio, so that
519 * we will return a good error code for to the higher
520 * levels even if IO on some other mirrored buffer fails.
521 *
522 * The 'master' represents the composite IO operation to
523 * user-side. So if something waits for IO, then it will
524 * wait for the 'master' bio.
525 */
526 sector_t first_bad;
527 int bad_sectors;
528
529 /*
530 * Do not set R10BIO_Uptodate if the current device is
531 * rebuilding or Faulty. This is because we cannot use
532 * such device for properly reading the data back (we could
533 * potentially use it, if the current write would have felt
534 * before rdev->recovery_offset, but for simplicity we don't
535 * check this here.
536 */
537 if (test_bit(In_sync, &rdev->flags) &&
538 !test_bit(Faulty, &rdev->flags))
539 set_bit(R10BIO_Uptodate, &r10_bio->state);
540
541 /* Maybe we can clear some bad blocks. */
542 if (is_badblock(rdev,
543 r10_bio->devs[slot].addr,
544 r10_bio->sectors,
545 &first_bad, &bad_sectors) && !discard_error) {
546 bio_put(bio);
547 if (repl)
548 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
549 else
550 r10_bio->devs[slot].bio = IO_MADE_GOOD;
551 dec_rdev = 0;
552 set_bit(R10BIO_MadeGood, &r10_bio->state);
553 }
554 }
555
556 /*
557 *
558 * Let's see if all mirrored write operations have finished
559 * already.
560 */
561 one_write_done(r10_bio);
562 if (dec_rdev)
563 rdev_dec_pending(rdev, conf->mddev);
564 if (to_put)
565 bio_put(to_put);
566 }
567
568 /*
569 * RAID10 layout manager
570 * As well as the chunksize and raid_disks count, there are two
571 * parameters: near_copies and far_copies.
572 * near_copies * far_copies must be <= raid_disks.
573 * Normally one of these will be 1.
574 * If both are 1, we get raid0.
575 * If near_copies == raid_disks, we get raid1.
576 *
577 * Chunks are laid out in raid0 style with near_copies copies of the
578 * first chunk, followed by near_copies copies of the next chunk and
579 * so on.
580 * If far_copies > 1, then after 1/far_copies of the array has been assigned
581 * as described above, we start again with a device offset of near_copies.
582 * So we effectively have another copy of the whole array further down all
583 * the drives, but with blocks on different drives.
584 * With this layout, and block is never stored twice on the one device.
585 *
586 * raid10_find_phys finds the sector offset of a given virtual sector
587 * on each device that it is on.
588 *
589 * raid10_find_virt does the reverse mapping, from a device and a
590 * sector offset to a virtual address
591 */
592
593 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
594 {
595 int n,f;
596 sector_t sector;
597 sector_t chunk;
598 sector_t stripe;
599 int dev;
600 int slot = 0;
601 int last_far_set_start, last_far_set_size;
602
603 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
604 last_far_set_start *= geo->far_set_size;
605
606 last_far_set_size = geo->far_set_size;
607 last_far_set_size += (geo->raid_disks % geo->far_set_size);
608
609 /* now calculate first sector/dev */
610 chunk = r10bio->sector >> geo->chunk_shift;
611 sector = r10bio->sector & geo->chunk_mask;
612
613 chunk *= geo->near_copies;
614 stripe = chunk;
615 dev = sector_div(stripe, geo->raid_disks);
616 if (geo->far_offset)
617 stripe *= geo->far_copies;
618
619 sector += stripe << geo->chunk_shift;
620
621 /* and calculate all the others */
622 for (n = 0; n < geo->near_copies; n++) {
623 int d = dev;
624 int set;
625 sector_t s = sector;
626 r10bio->devs[slot].devnum = d;
627 r10bio->devs[slot].addr = s;
628 slot++;
629
630 for (f = 1; f < geo->far_copies; f++) {
631 set = d / geo->far_set_size;
632 d += geo->near_copies;
633
634 if ((geo->raid_disks % geo->far_set_size) &&
635 (d > last_far_set_start)) {
636 d -= last_far_set_start;
637 d %= last_far_set_size;
638 d += last_far_set_start;
639 } else {
640 d %= geo->far_set_size;
641 d += geo->far_set_size * set;
642 }
643 s += geo->stride;
644 r10bio->devs[slot].devnum = d;
645 r10bio->devs[slot].addr = s;
646 slot++;
647 }
648 dev++;
649 if (dev >= geo->raid_disks) {
650 dev = 0;
651 sector += (geo->chunk_mask + 1);
652 }
653 }
654 }
655
656 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
657 {
658 struct geom *geo = &conf->geo;
659
660 if (conf->reshape_progress != MaxSector &&
661 ((r10bio->sector >= conf->reshape_progress) !=
662 conf->mddev->reshape_backwards)) {
663 set_bit(R10BIO_Previous, &r10bio->state);
664 geo = &conf->prev;
665 } else
666 clear_bit(R10BIO_Previous, &r10bio->state);
667
668 __raid10_find_phys(geo, r10bio);
669 }
670
671 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
672 {
673 sector_t offset, chunk, vchunk;
674 /* Never use conf->prev as this is only called during resync
675 * or recovery, so reshape isn't happening
676 */
677 struct geom *geo = &conf->geo;
678 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
679 int far_set_size = geo->far_set_size;
680 int last_far_set_start;
681
682 if (geo->raid_disks % geo->far_set_size) {
683 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
684 last_far_set_start *= geo->far_set_size;
685
686 if (dev >= last_far_set_start) {
687 far_set_size = geo->far_set_size;
688 far_set_size += (geo->raid_disks % geo->far_set_size);
689 far_set_start = last_far_set_start;
690 }
691 }
692
693 offset = sector & geo->chunk_mask;
694 if (geo->far_offset) {
695 int fc;
696 chunk = sector >> geo->chunk_shift;
697 fc = sector_div(chunk, geo->far_copies);
698 dev -= fc * geo->near_copies;
699 if (dev < far_set_start)
700 dev += far_set_size;
701 } else {
702 while (sector >= geo->stride) {
703 sector -= geo->stride;
704 if (dev < (geo->near_copies + far_set_start))
705 dev += far_set_size - geo->near_copies;
706 else
707 dev -= geo->near_copies;
708 }
709 chunk = sector >> geo->chunk_shift;
710 }
711 vchunk = chunk * geo->raid_disks + dev;
712 sector_div(vchunk, geo->near_copies);
713 return (vchunk << geo->chunk_shift) + offset;
714 }
715
716 /*
717 * This routine returns the disk from which the requested read should
718 * be done. There is a per-array 'next expected sequential IO' sector
719 * number - if this matches on the next IO then we use the last disk.
720 * There is also a per-disk 'last know head position' sector that is
721 * maintained from IRQ contexts, both the normal and the resync IO
722 * completion handlers update this position correctly. If there is no
723 * perfect sequential match then we pick the disk whose head is closest.
724 *
725 * If there are 2 mirrors in the same 2 devices, performance degrades
726 * because position is mirror, not device based.
727 *
728 * The rdev for the device selected will have nr_pending incremented.
729 */
730
731 /*
732 * FIXME: possibly should rethink readbalancing and do it differently
733 * depending on near_copies / far_copies geometry.
734 */
735 static struct md_rdev *read_balance(struct r10conf *conf,
736 struct r10bio *r10_bio,
737 int *max_sectors)
738 {
739 const sector_t this_sector = r10_bio->sector;
740 int disk, slot;
741 int sectors = r10_bio->sectors;
742 int best_good_sectors;
743 sector_t new_distance, best_dist;
744 struct md_rdev *best_rdev, *rdev = NULL;
745 int do_balance;
746 int best_slot;
747 struct geom *geo = &conf->geo;
748
749 raid10_find_phys(conf, r10_bio);
750 rcu_read_lock();
751 sectors = r10_bio->sectors;
752 best_slot = -1;
753 best_rdev = NULL;
754 best_dist = MaxSector;
755 best_good_sectors = 0;
756 do_balance = 1;
757 clear_bit(R10BIO_FailFast, &r10_bio->state);
758 /*
759 * Check if we can balance. We can balance on the whole
760 * device if no resync is going on (recovery is ok), or below
761 * the resync window. We take the first readable disk when
762 * above the resync window.
763 */
764 if (conf->mddev->recovery_cp < MaxSector
765 && (this_sector + sectors >= conf->next_resync))
766 do_balance = 0;
767
768 for (slot = 0; slot < conf->copies ; slot++) {
769 sector_t first_bad;
770 int bad_sectors;
771 sector_t dev_sector;
772
773 if (r10_bio->devs[slot].bio == IO_BLOCKED)
774 continue;
775 disk = r10_bio->devs[slot].devnum;
776 rdev = rcu_dereference(conf->mirrors[disk].replacement);
777 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
778 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
779 rdev = rcu_dereference(conf->mirrors[disk].rdev);
780 if (rdev == NULL ||
781 test_bit(Faulty, &rdev->flags))
782 continue;
783 if (!test_bit(In_sync, &rdev->flags) &&
784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 continue;
786
787 dev_sector = r10_bio->devs[slot].addr;
788 if (is_badblock(rdev, dev_sector, sectors,
789 &first_bad, &bad_sectors)) {
790 if (best_dist < MaxSector)
791 /* Already have a better slot */
792 continue;
793 if (first_bad <= dev_sector) {
794 /* Cannot read here. If this is the
795 * 'primary' device, then we must not read
796 * beyond 'bad_sectors' from another device.
797 */
798 bad_sectors -= (dev_sector - first_bad);
799 if (!do_balance && sectors > bad_sectors)
800 sectors = bad_sectors;
801 if (best_good_sectors > sectors)
802 best_good_sectors = sectors;
803 } else {
804 sector_t good_sectors =
805 first_bad - dev_sector;
806 if (good_sectors > best_good_sectors) {
807 best_good_sectors = good_sectors;
808 best_slot = slot;
809 best_rdev = rdev;
810 }
811 if (!do_balance)
812 /* Must read from here */
813 break;
814 }
815 continue;
816 } else
817 best_good_sectors = sectors;
818
819 if (!do_balance)
820 break;
821
822 if (best_slot >= 0)
823 /* At least 2 disks to choose from so failfast is OK */
824 set_bit(R10BIO_FailFast, &r10_bio->state);
825 /* This optimisation is debatable, and completely destroys
826 * sequential read speed for 'far copies' arrays. So only
827 * keep it for 'near' arrays, and review those later.
828 */
829 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
830 new_distance = 0;
831
832 /* for far > 1 always use the lowest address */
833 else if (geo->far_copies > 1)
834 new_distance = r10_bio->devs[slot].addr;
835 else
836 new_distance = abs(r10_bio->devs[slot].addr -
837 conf->mirrors[disk].head_position);
838 if (new_distance < best_dist) {
839 best_dist = new_distance;
840 best_slot = slot;
841 best_rdev = rdev;
842 }
843 }
844 if (slot >= conf->copies) {
845 slot = best_slot;
846 rdev = best_rdev;
847 }
848
849 if (slot >= 0) {
850 atomic_inc(&rdev->nr_pending);
851 r10_bio->read_slot = slot;
852 } else
853 rdev = NULL;
854 rcu_read_unlock();
855 *max_sectors = best_good_sectors;
856
857 return rdev;
858 }
859
860 static int raid10_congested(struct mddev *mddev, int bits)
861 {
862 struct r10conf *conf = mddev->private;
863 int i, ret = 0;
864
865 if ((bits & (1 << WB_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
869 rcu_read_lock();
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878 ret |= bdi_congested(q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883 }
884
885 static void flush_pending_writes(struct r10conf *conf)
886 {
887 /* Any writes that have been queued but are awaiting
888 * bitmap updates get flushed here.
889 */
890 spin_lock_irq(&conf->device_lock);
891
892 if (conf->pending_bio_list.head) {
893 struct bio *bio;
894 bio = bio_list_get(&conf->pending_bio_list);
895 conf->pending_count = 0;
896 spin_unlock_irq(&conf->device_lock);
897 /* flush any pending bitmap writes to disk
898 * before proceeding w/ I/O */
899 bitmap_unplug(conf->mddev->bitmap);
900 wake_up(&conf->wait_barrier);
901
902 while (bio) { /* submit pending writes */
903 struct bio *next = bio->bi_next;
904 struct md_rdev *rdev = (void*)bio->bi_disk;
905 bio->bi_next = NULL;
906 bio_set_dev(bio, rdev->bdev);
907 if (test_bit(Faulty, &rdev->flags)) {
908 bio_io_error(bio);
909 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
910 !blk_queue_discard(bio->bi_disk->queue)))
911 /* Just ignore it */
912 bio_endio(bio);
913 else
914 generic_make_request(bio);
915 bio = next;
916 }
917 } else
918 spin_unlock_irq(&conf->device_lock);
919 }
920
921 /* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down. This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'. When that returns there
936 * is no backgroup IO happening, It must arrange to call
937 * allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier. Once that returns
939 * there is no normal IO happeing. It must arrange to call
940 * lower_barrier when the particular background IO completes.
941 */
942
943 static void raise_barrier(struct r10conf *conf, int force)
944 {
945 BUG_ON(force && !conf->barrier);
946 spin_lock_irq(&conf->resync_lock);
947
948 /* Wait until no block IO is waiting (unless 'force') */
949 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950 conf->resync_lock);
951
952 /* block any new IO from starting */
953 conf->barrier++;
954
955 /* Now wait for all pending IO to complete */
956 wait_event_lock_irq(conf->wait_barrier,
957 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
958 conf->resync_lock);
959
960 spin_unlock_irq(&conf->resync_lock);
961 }
962
963 static void lower_barrier(struct r10conf *conf)
964 {
965 unsigned long flags;
966 spin_lock_irqsave(&conf->resync_lock, flags);
967 conf->barrier--;
968 spin_unlock_irqrestore(&conf->resync_lock, flags);
969 wake_up(&conf->wait_barrier);
970 }
971
972 static void wait_barrier(struct r10conf *conf)
973 {
974 spin_lock_irq(&conf->resync_lock);
975 if (conf->barrier) {
976 conf->nr_waiting++;
977 /* Wait for the barrier to drop.
978 * However if there are already pending
979 * requests (preventing the barrier from
980 * rising completely), and the
981 * pre-process bio queue isn't empty,
982 * then don't wait, as we need to empty
983 * that queue to get the nr_pending
984 * count down.
985 */
986 raid10_log(conf->mddev, "wait barrier");
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->barrier ||
989 (atomic_read(&conf->nr_pending) &&
990 current->bio_list &&
991 (!bio_list_empty(&current->bio_list[0]) ||
992 !bio_list_empty(&current->bio_list[1]))),
993 conf->resync_lock);
994 conf->nr_waiting--;
995 if (!conf->nr_waiting)
996 wake_up(&conf->wait_barrier);
997 }
998 atomic_inc(&conf->nr_pending);
999 spin_unlock_irq(&conf->resync_lock);
1000 }
1001
1002 static void allow_barrier(struct r10conf *conf)
1003 {
1004 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005 (conf->array_freeze_pending))
1006 wake_up(&conf->wait_barrier);
1007 }
1008
1009 static void freeze_array(struct r10conf *conf, int extra)
1010 {
1011 /* stop syncio and normal IO and wait for everything to
1012 * go quiet.
1013 * We increment barrier and nr_waiting, and then
1014 * wait until nr_pending match nr_queued+extra
1015 * This is called in the context of one normal IO request
1016 * that has failed. Thus any sync request that might be pending
1017 * will be blocked by nr_pending, and we need to wait for
1018 * pending IO requests to complete or be queued for re-try.
1019 * Thus the number queued (nr_queued) plus this request (extra)
1020 * must match the number of pending IOs (nr_pending) before
1021 * we continue.
1022 */
1023 spin_lock_irq(&conf->resync_lock);
1024 conf->array_freeze_pending++;
1025 conf->barrier++;
1026 conf->nr_waiting++;
1027 wait_event_lock_irq_cmd(conf->wait_barrier,
1028 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029 conf->resync_lock,
1030 flush_pending_writes(conf));
1031
1032 conf->array_freeze_pending--;
1033 spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static void unfreeze_array(struct r10conf *conf)
1037 {
1038 /* reverse the effect of the freeze */
1039 spin_lock_irq(&conf->resync_lock);
1040 conf->barrier--;
1041 conf->nr_waiting--;
1042 wake_up(&conf->wait_barrier);
1043 spin_unlock_irq(&conf->resync_lock);
1044 }
1045
1046 static sector_t choose_data_offset(struct r10bio *r10_bio,
1047 struct md_rdev *rdev)
1048 {
1049 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050 test_bit(R10BIO_Previous, &r10_bio->state))
1051 return rdev->data_offset;
1052 else
1053 return rdev->new_data_offset;
1054 }
1055
1056 struct raid10_plug_cb {
1057 struct blk_plug_cb cb;
1058 struct bio_list pending;
1059 int pending_cnt;
1060 };
1061
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1065 cb);
1066 struct mddev *mddev = plug->cb.data;
1067 struct r10conf *conf = mddev->private;
1068 struct bio *bio;
1069
1070 if (from_schedule || current->bio_list) {
1071 spin_lock_irq(&conf->device_lock);
1072 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073 conf->pending_count += plug->pending_cnt;
1074 spin_unlock_irq(&conf->device_lock);
1075 wake_up(&conf->wait_barrier);
1076 md_wakeup_thread(mddev->thread);
1077 kfree(plug);
1078 return;
1079 }
1080
1081 /* we aren't scheduling, so we can do the write-out directly. */
1082 bio = bio_list_get(&plug->pending);
1083 bitmap_unplug(mddev->bitmap);
1084 wake_up(&conf->wait_barrier);
1085
1086 while (bio) { /* submit pending writes */
1087 struct bio *next = bio->bi_next;
1088 struct md_rdev *rdev = (void*)bio->bi_disk;
1089 bio->bi_next = NULL;
1090 bio_set_dev(bio, rdev->bdev);
1091 if (test_bit(Faulty, &rdev->flags)) {
1092 bio_io_error(bio);
1093 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1094 !blk_queue_discard(bio->bi_disk->queue)))
1095 /* Just ignore it */
1096 bio_endio(bio);
1097 else
1098 generic_make_request(bio);
1099 bio = next;
1100 }
1101 kfree(plug);
1102 }
1103
1104 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1105 struct r10bio *r10_bio)
1106 {
1107 struct r10conf *conf = mddev->private;
1108 struct bio *read_bio;
1109 const int op = bio_op(bio);
1110 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1111 int max_sectors;
1112 sector_t sectors;
1113 struct md_rdev *rdev;
1114 char b[BDEVNAME_SIZE];
1115 int slot = r10_bio->read_slot;
1116 struct md_rdev *err_rdev = NULL;
1117 gfp_t gfp = GFP_NOIO;
1118
1119 if (r10_bio->devs[slot].rdev) {
1120 /*
1121 * This is an error retry, but we cannot
1122 * safely dereference the rdev in the r10_bio,
1123 * we must use the one in conf.
1124 * If it has already been disconnected (unlikely)
1125 * we lose the device name in error messages.
1126 */
1127 int disk;
1128 /*
1129 * As we are blocking raid10, it is a little safer to
1130 * use __GFP_HIGH.
1131 */
1132 gfp = GFP_NOIO | __GFP_HIGH;
1133
1134 rcu_read_lock();
1135 disk = r10_bio->devs[slot].devnum;
1136 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1137 if (err_rdev)
1138 bdevname(err_rdev->bdev, b);
1139 else {
1140 strcpy(b, "???");
1141 /* This never gets dereferenced */
1142 err_rdev = r10_bio->devs[slot].rdev;
1143 }
1144 rcu_read_unlock();
1145 }
1146 /*
1147 * Register the new request and wait if the reconstruction
1148 * thread has put up a bar for new requests.
1149 * Continue immediately if no resync is active currently.
1150 */
1151 wait_barrier(conf);
1152
1153 sectors = r10_bio->sectors;
1154 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155 bio->bi_iter.bi_sector < conf->reshape_progress &&
1156 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157 /*
1158 * IO spans the reshape position. Need to wait for reshape to
1159 * pass
1160 */
1161 raid10_log(conf->mddev, "wait reshape");
1162 allow_barrier(conf);
1163 wait_event(conf->wait_barrier,
1164 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165 conf->reshape_progress >= bio->bi_iter.bi_sector +
1166 sectors);
1167 wait_barrier(conf);
1168 }
1169
1170 rdev = read_balance(conf, r10_bio, &max_sectors);
1171 if (!rdev) {
1172 if (err_rdev) {
1173 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174 mdname(mddev), b,
1175 (unsigned long long)r10_bio->sector);
1176 }
1177 raid_end_bio_io(r10_bio);
1178 return;
1179 }
1180 if (err_rdev)
1181 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182 mdname(mddev),
1183 bdevname(rdev->bdev, b),
1184 (unsigned long long)r10_bio->sector);
1185 if (max_sectors < bio_sectors(bio)) {
1186 struct bio *split = bio_split(bio, max_sectors,
1187 gfp, conf->bio_split);
1188 bio_chain(split, bio);
1189 generic_make_request(bio);
1190 bio = split;
1191 r10_bio->master_bio = bio;
1192 r10_bio->sectors = max_sectors;
1193 }
1194 slot = r10_bio->read_slot;
1195
1196 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1197
1198 r10_bio->devs[slot].bio = read_bio;
1199 r10_bio->devs[slot].rdev = rdev;
1200
1201 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1202 choose_data_offset(r10_bio, rdev);
1203 bio_set_dev(read_bio, rdev->bdev);
1204 read_bio->bi_end_io = raid10_end_read_request;
1205 bio_set_op_attrs(read_bio, op, do_sync);
1206 if (test_bit(FailFast, &rdev->flags) &&
1207 test_bit(R10BIO_FailFast, &r10_bio->state))
1208 read_bio->bi_opf |= MD_FAILFAST;
1209 read_bio->bi_private = r10_bio;
1210
1211 if (mddev->gendisk)
1212 trace_block_bio_remap(read_bio->bi_disk->queue,
1213 read_bio, disk_devt(mddev->gendisk),
1214 r10_bio->sector);
1215 generic_make_request(read_bio);
1216 return;
1217 }
1218
1219 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1220 struct bio *bio, bool replacement,
1221 int n_copy)
1222 {
1223 const int op = bio_op(bio);
1224 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1226 unsigned long flags;
1227 struct blk_plug_cb *cb;
1228 struct raid10_plug_cb *plug = NULL;
1229 struct r10conf *conf = mddev->private;
1230 struct md_rdev *rdev;
1231 int devnum = r10_bio->devs[n_copy].devnum;
1232 struct bio *mbio;
1233
1234 if (replacement) {
1235 rdev = conf->mirrors[devnum].replacement;
1236 if (rdev == NULL) {
1237 /* Replacement just got moved to main 'rdev' */
1238 smp_mb();
1239 rdev = conf->mirrors[devnum].rdev;
1240 }
1241 } else
1242 rdev = conf->mirrors[devnum].rdev;
1243
1244 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1245 if (replacement)
1246 r10_bio->devs[n_copy].repl_bio = mbio;
1247 else
1248 r10_bio->devs[n_copy].bio = mbio;
1249
1250 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1251 choose_data_offset(r10_bio, rdev));
1252 bio_set_dev(mbio, rdev->bdev);
1253 mbio->bi_end_io = raid10_end_write_request;
1254 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1255 if (!replacement && test_bit(FailFast,
1256 &conf->mirrors[devnum].rdev->flags)
1257 && enough(conf, devnum))
1258 mbio->bi_opf |= MD_FAILFAST;
1259 mbio->bi_private = r10_bio;
1260
1261 if (conf->mddev->gendisk)
1262 trace_block_bio_remap(mbio->bi_disk->queue,
1263 mbio, disk_devt(conf->mddev->gendisk),
1264 r10_bio->sector);
1265 /* flush_pending_writes() needs access to the rdev so...*/
1266 mbio->bi_disk = (void *)rdev;
1267
1268 atomic_inc(&r10_bio->remaining);
1269
1270 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1271 if (cb)
1272 plug = container_of(cb, struct raid10_plug_cb, cb);
1273 else
1274 plug = NULL;
1275 if (plug) {
1276 bio_list_add(&plug->pending, mbio);
1277 plug->pending_cnt++;
1278 } else {
1279 spin_lock_irqsave(&conf->device_lock, flags);
1280 bio_list_add(&conf->pending_bio_list, mbio);
1281 conf->pending_count++;
1282 spin_unlock_irqrestore(&conf->device_lock, flags);
1283 md_wakeup_thread(mddev->thread);
1284 }
1285 }
1286
1287 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1288 struct r10bio *r10_bio)
1289 {
1290 struct r10conf *conf = mddev->private;
1291 int i;
1292 struct md_rdev *blocked_rdev;
1293 sector_t sectors;
1294 int max_sectors;
1295
1296 /*
1297 * Register the new request and wait if the reconstruction
1298 * thread has put up a bar for new requests.
1299 * Continue immediately if no resync is active currently.
1300 */
1301 wait_barrier(conf);
1302
1303 sectors = r10_bio->sectors;
1304 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305 bio->bi_iter.bi_sector < conf->reshape_progress &&
1306 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1307 /*
1308 * IO spans the reshape position. Need to wait for reshape to
1309 * pass
1310 */
1311 raid10_log(conf->mddev, "wait reshape");
1312 allow_barrier(conf);
1313 wait_event(conf->wait_barrier,
1314 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1315 conf->reshape_progress >= bio->bi_iter.bi_sector +
1316 sectors);
1317 wait_barrier(conf);
1318 }
1319
1320 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1321 (mddev->reshape_backwards
1322 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1323 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1324 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1325 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1326 /* Need to update reshape_position in metadata */
1327 mddev->reshape_position = conf->reshape_progress;
1328 set_mask_bits(&mddev->sb_flags, 0,
1329 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1330 md_wakeup_thread(mddev->thread);
1331 raid10_log(conf->mddev, "wait reshape metadata");
1332 wait_event(mddev->sb_wait,
1333 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1334
1335 conf->reshape_safe = mddev->reshape_position;
1336 }
1337
1338 if (conf->pending_count >= max_queued_requests) {
1339 md_wakeup_thread(mddev->thread);
1340 raid10_log(mddev, "wait queued");
1341 wait_event(conf->wait_barrier,
1342 conf->pending_count < max_queued_requests);
1343 }
1344 /* first select target devices under rcu_lock and
1345 * inc refcount on their rdev. Record them by setting
1346 * bios[x] to bio
1347 * If there are known/acknowledged bad blocks on any device
1348 * on which we have seen a write error, we want to avoid
1349 * writing to those blocks. This potentially requires several
1350 * writes to write around the bad blocks. Each set of writes
1351 * gets its own r10_bio with a set of bios attached.
1352 */
1353
1354 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1355 raid10_find_phys(conf, r10_bio);
1356 retry_write:
1357 blocked_rdev = NULL;
1358 rcu_read_lock();
1359 max_sectors = r10_bio->sectors;
1360
1361 for (i = 0; i < conf->copies; i++) {
1362 int d = r10_bio->devs[i].devnum;
1363 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1364 struct md_rdev *rrdev = rcu_dereference(
1365 conf->mirrors[d].replacement);
1366 if (rdev == rrdev)
1367 rrdev = NULL;
1368 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1369 atomic_inc(&rdev->nr_pending);
1370 blocked_rdev = rdev;
1371 break;
1372 }
1373 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1374 atomic_inc(&rrdev->nr_pending);
1375 blocked_rdev = rrdev;
1376 break;
1377 }
1378 if (rdev && (test_bit(Faulty, &rdev->flags)))
1379 rdev = NULL;
1380 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1381 rrdev = NULL;
1382
1383 r10_bio->devs[i].bio = NULL;
1384 r10_bio->devs[i].repl_bio = NULL;
1385
1386 if (!rdev && !rrdev) {
1387 set_bit(R10BIO_Degraded, &r10_bio->state);
1388 continue;
1389 }
1390 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1391 sector_t first_bad;
1392 sector_t dev_sector = r10_bio->devs[i].addr;
1393 int bad_sectors;
1394 int is_bad;
1395
1396 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1397 &first_bad, &bad_sectors);
1398 if (is_bad < 0) {
1399 /* Mustn't write here until the bad block
1400 * is acknowledged
1401 */
1402 atomic_inc(&rdev->nr_pending);
1403 set_bit(BlockedBadBlocks, &rdev->flags);
1404 blocked_rdev = rdev;
1405 break;
1406 }
1407 if (is_bad && first_bad <= dev_sector) {
1408 /* Cannot write here at all */
1409 bad_sectors -= (dev_sector - first_bad);
1410 if (bad_sectors < max_sectors)
1411 /* Mustn't write more than bad_sectors
1412 * to other devices yet
1413 */
1414 max_sectors = bad_sectors;
1415 /* We don't set R10BIO_Degraded as that
1416 * only applies if the disk is missing,
1417 * so it might be re-added, and we want to
1418 * know to recover this chunk.
1419 * In this case the device is here, and the
1420 * fact that this chunk is not in-sync is
1421 * recorded in the bad block log.
1422 */
1423 continue;
1424 }
1425 if (is_bad) {
1426 int good_sectors = first_bad - dev_sector;
1427 if (good_sectors < max_sectors)
1428 max_sectors = good_sectors;
1429 }
1430 }
1431 if (rdev) {
1432 r10_bio->devs[i].bio = bio;
1433 atomic_inc(&rdev->nr_pending);
1434 }
1435 if (rrdev) {
1436 r10_bio->devs[i].repl_bio = bio;
1437 atomic_inc(&rrdev->nr_pending);
1438 }
1439 }
1440 rcu_read_unlock();
1441
1442 if (unlikely(blocked_rdev)) {
1443 /* Have to wait for this device to get unblocked, then retry */
1444 int j;
1445 int d;
1446
1447 for (j = 0; j < i; j++) {
1448 if (r10_bio->devs[j].bio) {
1449 d = r10_bio->devs[j].devnum;
1450 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1451 }
1452 if (r10_bio->devs[j].repl_bio) {
1453 struct md_rdev *rdev;
1454 d = r10_bio->devs[j].devnum;
1455 rdev = conf->mirrors[d].replacement;
1456 if (!rdev) {
1457 /* Race with remove_disk */
1458 smp_mb();
1459 rdev = conf->mirrors[d].rdev;
1460 }
1461 rdev_dec_pending(rdev, mddev);
1462 }
1463 }
1464 allow_barrier(conf);
1465 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1466 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1467 wait_barrier(conf);
1468 goto retry_write;
1469 }
1470
1471 if (max_sectors < r10_bio->sectors)
1472 r10_bio->sectors = max_sectors;
1473
1474 if (r10_bio->sectors < bio_sectors(bio)) {
1475 struct bio *split = bio_split(bio, r10_bio->sectors,
1476 GFP_NOIO, conf->bio_split);
1477 bio_chain(split, bio);
1478 generic_make_request(bio);
1479 bio = split;
1480 r10_bio->master_bio = bio;
1481 }
1482
1483 atomic_set(&r10_bio->remaining, 1);
1484 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1485
1486 for (i = 0; i < conf->copies; i++) {
1487 if (r10_bio->devs[i].bio)
1488 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1489 if (r10_bio->devs[i].repl_bio)
1490 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1491 }
1492 one_write_done(r10_bio);
1493 }
1494
1495 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1496 {
1497 struct r10conf *conf = mddev->private;
1498 struct r10bio *r10_bio;
1499
1500 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1501
1502 r10_bio->master_bio = bio;
1503 r10_bio->sectors = sectors;
1504
1505 r10_bio->mddev = mddev;
1506 r10_bio->sector = bio->bi_iter.bi_sector;
1507 r10_bio->state = 0;
1508 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1509
1510 if (bio_data_dir(bio) == READ)
1511 raid10_read_request(mddev, bio, r10_bio);
1512 else
1513 raid10_write_request(mddev, bio, r10_bio);
1514 }
1515
1516 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1517 {
1518 struct r10conf *conf = mddev->private;
1519 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1520 int chunk_sects = chunk_mask + 1;
1521 int sectors = bio_sectors(bio);
1522
1523 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1524 md_flush_request(mddev, bio);
1525 return true;
1526 }
1527
1528 if (!md_write_start(mddev, bio))
1529 return false;
1530
1531 /*
1532 * If this request crosses a chunk boundary, we need to split
1533 * it.
1534 */
1535 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1536 sectors > chunk_sects
1537 && (conf->geo.near_copies < conf->geo.raid_disks
1538 || conf->prev.near_copies <
1539 conf->prev.raid_disks)))
1540 sectors = chunk_sects -
1541 (bio->bi_iter.bi_sector &
1542 (chunk_sects - 1));
1543 __make_request(mddev, bio, sectors);
1544
1545 /* In case raid10d snuck in to freeze_array */
1546 wake_up(&conf->wait_barrier);
1547 return true;
1548 }
1549
1550 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1551 {
1552 struct r10conf *conf = mddev->private;
1553 int i;
1554
1555 if (conf->geo.near_copies < conf->geo.raid_disks)
1556 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1557 if (conf->geo.near_copies > 1)
1558 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1559 if (conf->geo.far_copies > 1) {
1560 if (conf->geo.far_offset)
1561 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1562 else
1563 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1564 if (conf->geo.far_set_size != conf->geo.raid_disks)
1565 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1566 }
1567 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1568 conf->geo.raid_disks - mddev->degraded);
1569 rcu_read_lock();
1570 for (i = 0; i < conf->geo.raid_disks; i++) {
1571 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1573 }
1574 rcu_read_unlock();
1575 seq_printf(seq, "]");
1576 }
1577
1578 /* check if there are enough drives for
1579 * every block to appear on atleast one.
1580 * Don't consider the device numbered 'ignore'
1581 * as we might be about to remove it.
1582 */
1583 static int _enough(struct r10conf *conf, int previous, int ignore)
1584 {
1585 int first = 0;
1586 int has_enough = 0;
1587 int disks, ncopies;
1588 if (previous) {
1589 disks = conf->prev.raid_disks;
1590 ncopies = conf->prev.near_copies;
1591 } else {
1592 disks = conf->geo.raid_disks;
1593 ncopies = conf->geo.near_copies;
1594 }
1595
1596 rcu_read_lock();
1597 do {
1598 int n = conf->copies;
1599 int cnt = 0;
1600 int this = first;
1601 while (n--) {
1602 struct md_rdev *rdev;
1603 if (this != ignore &&
1604 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1605 test_bit(In_sync, &rdev->flags))
1606 cnt++;
1607 this = (this+1) % disks;
1608 }
1609 if (cnt == 0)
1610 goto out;
1611 first = (first + ncopies) % disks;
1612 } while (first != 0);
1613 has_enough = 1;
1614 out:
1615 rcu_read_unlock();
1616 return has_enough;
1617 }
1618
1619 static int enough(struct r10conf *conf, int ignore)
1620 {
1621 /* when calling 'enough', both 'prev' and 'geo' must
1622 * be stable.
1623 * This is ensured if ->reconfig_mutex or ->device_lock
1624 * is held.
1625 */
1626 return _enough(conf, 0, ignore) &&
1627 _enough(conf, 1, ignore);
1628 }
1629
1630 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 char b[BDEVNAME_SIZE];
1633 struct r10conf *conf = mddev->private;
1634 unsigned long flags;
1635
1636 /*
1637 * If it is not operational, then we have already marked it as dead
1638 * else if it is the last working disks, ignore the error, let the
1639 * next level up know.
1640 * else mark the drive as failed
1641 */
1642 spin_lock_irqsave(&conf->device_lock, flags);
1643 if (test_bit(In_sync, &rdev->flags)
1644 && !enough(conf, rdev->raid_disk)) {
1645 /*
1646 * Don't fail the drive, just return an IO error.
1647 */
1648 spin_unlock_irqrestore(&conf->device_lock, flags);
1649 return;
1650 }
1651 if (test_and_clear_bit(In_sync, &rdev->flags))
1652 mddev->degraded++;
1653 /*
1654 * If recovery is running, make sure it aborts.
1655 */
1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 set_bit(Blocked, &rdev->flags);
1658 set_bit(Faulty, &rdev->flags);
1659 set_mask_bits(&mddev->sb_flags, 0,
1660 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661 spin_unlock_irqrestore(&conf->device_lock, flags);
1662 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1663 "md/raid10:%s: Operation continuing on %d devices.\n",
1664 mdname(mddev), bdevname(rdev->bdev, b),
1665 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1666 }
1667
1668 static void print_conf(struct r10conf *conf)
1669 {
1670 int i;
1671 struct md_rdev *rdev;
1672
1673 pr_debug("RAID10 conf printout:\n");
1674 if (!conf) {
1675 pr_debug("(!conf)\n");
1676 return;
1677 }
1678 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1679 conf->geo.raid_disks);
1680
1681 /* This is only called with ->reconfix_mutex held, so
1682 * rcu protection of rdev is not needed */
1683 for (i = 0; i < conf->geo.raid_disks; i++) {
1684 char b[BDEVNAME_SIZE];
1685 rdev = conf->mirrors[i].rdev;
1686 if (rdev)
1687 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1688 i, !test_bit(In_sync, &rdev->flags),
1689 !test_bit(Faulty, &rdev->flags),
1690 bdevname(rdev->bdev,b));
1691 }
1692 }
1693
1694 static void close_sync(struct r10conf *conf)
1695 {
1696 wait_barrier(conf);
1697 allow_barrier(conf);
1698
1699 mempool_destroy(conf->r10buf_pool);
1700 conf->r10buf_pool = NULL;
1701 }
1702
1703 static int raid10_spare_active(struct mddev *mddev)
1704 {
1705 int i;
1706 struct r10conf *conf = mddev->private;
1707 struct raid10_info *tmp;
1708 int count = 0;
1709 unsigned long flags;
1710
1711 /*
1712 * Find all non-in_sync disks within the RAID10 configuration
1713 * and mark them in_sync
1714 */
1715 for (i = 0; i < conf->geo.raid_disks; i++) {
1716 tmp = conf->mirrors + i;
1717 if (tmp->replacement
1718 && tmp->replacement->recovery_offset == MaxSector
1719 && !test_bit(Faulty, &tmp->replacement->flags)
1720 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1721 /* Replacement has just become active */
1722 if (!tmp->rdev
1723 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1724 count++;
1725 if (tmp->rdev) {
1726 /* Replaced device not technically faulty,
1727 * but we need to be sure it gets removed
1728 * and never re-added.
1729 */
1730 set_bit(Faulty, &tmp->rdev->flags);
1731 sysfs_notify_dirent_safe(
1732 tmp->rdev->sysfs_state);
1733 }
1734 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1735 } else if (tmp->rdev
1736 && tmp->rdev->recovery_offset == MaxSector
1737 && !test_bit(Faulty, &tmp->rdev->flags)
1738 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1739 count++;
1740 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1741 }
1742 }
1743 spin_lock_irqsave(&conf->device_lock, flags);
1744 mddev->degraded -= count;
1745 spin_unlock_irqrestore(&conf->device_lock, flags);
1746
1747 print_conf(conf);
1748 return count;
1749 }
1750
1751 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 struct r10conf *conf = mddev->private;
1754 int err = -EEXIST;
1755 int mirror;
1756 int first = 0;
1757 int last = conf->geo.raid_disks - 1;
1758
1759 if (mddev->recovery_cp < MaxSector)
1760 /* only hot-add to in-sync arrays, as recovery is
1761 * very different from resync
1762 */
1763 return -EBUSY;
1764 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1765 return -EINVAL;
1766
1767 if (md_integrity_add_rdev(rdev, mddev))
1768 return -ENXIO;
1769
1770 if (rdev->raid_disk >= 0)
1771 first = last = rdev->raid_disk;
1772
1773 if (rdev->saved_raid_disk >= first &&
1774 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1775 mirror = rdev->saved_raid_disk;
1776 else
1777 mirror = first;
1778 for ( ; mirror <= last ; mirror++) {
1779 struct raid10_info *p = &conf->mirrors[mirror];
1780 if (p->recovery_disabled == mddev->recovery_disabled)
1781 continue;
1782 if (p->rdev) {
1783 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1784 p->replacement != NULL)
1785 continue;
1786 clear_bit(In_sync, &rdev->flags);
1787 set_bit(Replacement, &rdev->flags);
1788 rdev->raid_disk = mirror;
1789 err = 0;
1790 if (mddev->gendisk)
1791 disk_stack_limits(mddev->gendisk, rdev->bdev,
1792 rdev->data_offset << 9);
1793 conf->fullsync = 1;
1794 rcu_assign_pointer(p->replacement, rdev);
1795 break;
1796 }
1797
1798 if (mddev->gendisk)
1799 disk_stack_limits(mddev->gendisk, rdev->bdev,
1800 rdev->data_offset << 9);
1801
1802 p->head_position = 0;
1803 p->recovery_disabled = mddev->recovery_disabled - 1;
1804 rdev->raid_disk = mirror;
1805 err = 0;
1806 if (rdev->saved_raid_disk != mirror)
1807 conf->fullsync = 1;
1808 rcu_assign_pointer(p->rdev, rdev);
1809 break;
1810 }
1811 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813
1814 print_conf(conf);
1815 return err;
1816 }
1817
1818 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820 struct r10conf *conf = mddev->private;
1821 int err = 0;
1822 int number = rdev->raid_disk;
1823 struct md_rdev **rdevp;
1824 struct raid10_info *p = conf->mirrors + number;
1825
1826 print_conf(conf);
1827 if (rdev == p->rdev)
1828 rdevp = &p->rdev;
1829 else if (rdev == p->replacement)
1830 rdevp = &p->replacement;
1831 else
1832 return 0;
1833
1834 if (test_bit(In_sync, &rdev->flags) ||
1835 atomic_read(&rdev->nr_pending)) {
1836 err = -EBUSY;
1837 goto abort;
1838 }
1839 /* Only remove non-faulty devices if recovery
1840 * is not possible.
1841 */
1842 if (!test_bit(Faulty, &rdev->flags) &&
1843 mddev->recovery_disabled != p->recovery_disabled &&
1844 (!p->replacement || p->replacement == rdev) &&
1845 number < conf->geo.raid_disks &&
1846 enough(conf, -1)) {
1847 err = -EBUSY;
1848 goto abort;
1849 }
1850 *rdevp = NULL;
1851 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1852 synchronize_rcu();
1853 if (atomic_read(&rdev->nr_pending)) {
1854 /* lost the race, try later */
1855 err = -EBUSY;
1856 *rdevp = rdev;
1857 goto abort;
1858 }
1859 }
1860 if (p->replacement) {
1861 /* We must have just cleared 'rdev' */
1862 p->rdev = p->replacement;
1863 clear_bit(Replacement, &p->replacement->flags);
1864 smp_mb(); /* Make sure other CPUs may see both as identical
1865 * but will never see neither -- if they are careful.
1866 */
1867 p->replacement = NULL;
1868 }
1869
1870 clear_bit(WantReplacement, &rdev->flags);
1871 err = md_integrity_register(mddev);
1872
1873 abort:
1874
1875 print_conf(conf);
1876 return err;
1877 }
1878
1879 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1880 {
1881 struct r10conf *conf = r10_bio->mddev->private;
1882
1883 if (!bio->bi_status)
1884 set_bit(R10BIO_Uptodate, &r10_bio->state);
1885 else
1886 /* The write handler will notice the lack of
1887 * R10BIO_Uptodate and record any errors etc
1888 */
1889 atomic_add(r10_bio->sectors,
1890 &conf->mirrors[d].rdev->corrected_errors);
1891
1892 /* for reconstruct, we always reschedule after a read.
1893 * for resync, only after all reads
1894 */
1895 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1896 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1897 atomic_dec_and_test(&r10_bio->remaining)) {
1898 /* we have read all the blocks,
1899 * do the comparison in process context in raid10d
1900 */
1901 reschedule_retry(r10_bio);
1902 }
1903 }
1904
1905 static void end_sync_read(struct bio *bio)
1906 {
1907 struct r10bio *r10_bio = get_resync_r10bio(bio);
1908 struct r10conf *conf = r10_bio->mddev->private;
1909 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1910
1911 __end_sync_read(r10_bio, bio, d);
1912 }
1913
1914 static void end_reshape_read(struct bio *bio)
1915 {
1916 /* reshape read bio isn't allocated from r10buf_pool */
1917 struct r10bio *r10_bio = bio->bi_private;
1918
1919 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1920 }
1921
1922 static void end_sync_request(struct r10bio *r10_bio)
1923 {
1924 struct mddev *mddev = r10_bio->mddev;
1925
1926 while (atomic_dec_and_test(&r10_bio->remaining)) {
1927 if (r10_bio->master_bio == NULL) {
1928 /* the primary of several recovery bios */
1929 sector_t s = r10_bio->sectors;
1930 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931 test_bit(R10BIO_WriteError, &r10_bio->state))
1932 reschedule_retry(r10_bio);
1933 else
1934 put_buf(r10_bio);
1935 md_done_sync(mddev, s, 1);
1936 break;
1937 } else {
1938 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1939 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940 test_bit(R10BIO_WriteError, &r10_bio->state))
1941 reschedule_retry(r10_bio);
1942 else
1943 put_buf(r10_bio);
1944 r10_bio = r10_bio2;
1945 }
1946 }
1947 }
1948
1949 static void end_sync_write(struct bio *bio)
1950 {
1951 struct r10bio *r10_bio = get_resync_r10bio(bio);
1952 struct mddev *mddev = r10_bio->mddev;
1953 struct r10conf *conf = mddev->private;
1954 int d;
1955 sector_t first_bad;
1956 int bad_sectors;
1957 int slot;
1958 int repl;
1959 struct md_rdev *rdev = NULL;
1960
1961 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1962 if (repl)
1963 rdev = conf->mirrors[d].replacement;
1964 else
1965 rdev = conf->mirrors[d].rdev;
1966
1967 if (bio->bi_status) {
1968 if (repl)
1969 md_error(mddev, rdev);
1970 else {
1971 set_bit(WriteErrorSeen, &rdev->flags);
1972 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1973 set_bit(MD_RECOVERY_NEEDED,
1974 &rdev->mddev->recovery);
1975 set_bit(R10BIO_WriteError, &r10_bio->state);
1976 }
1977 } else if (is_badblock(rdev,
1978 r10_bio->devs[slot].addr,
1979 r10_bio->sectors,
1980 &first_bad, &bad_sectors))
1981 set_bit(R10BIO_MadeGood, &r10_bio->state);
1982
1983 rdev_dec_pending(rdev, mddev);
1984
1985 end_sync_request(r10_bio);
1986 }
1987
1988 /*
1989 * Note: sync and recover and handled very differently for raid10
1990 * This code is for resync.
1991 * For resync, we read through virtual addresses and read all blocks.
1992 * If there is any error, we schedule a write. The lowest numbered
1993 * drive is authoritative.
1994 * However requests come for physical address, so we need to map.
1995 * For every physical address there are raid_disks/copies virtual addresses,
1996 * which is always are least one, but is not necessarly an integer.
1997 * This means that a physical address can span multiple chunks, so we may
1998 * have to submit multiple io requests for a single sync request.
1999 */
2000 /*
2001 * We check if all blocks are in-sync and only write to blocks that
2002 * aren't in sync
2003 */
2004 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2005 {
2006 struct r10conf *conf = mddev->private;
2007 int i, first;
2008 struct bio *tbio, *fbio;
2009 int vcnt;
2010 struct page **tpages, **fpages;
2011
2012 atomic_set(&r10_bio->remaining, 1);
2013
2014 /* find the first device with a block */
2015 for (i=0; i<conf->copies; i++)
2016 if (!r10_bio->devs[i].bio->bi_status)
2017 break;
2018
2019 if (i == conf->copies)
2020 goto done;
2021
2022 first = i;
2023 fbio = r10_bio->devs[i].bio;
2024 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2025 fbio->bi_iter.bi_idx = 0;
2026 fpages = get_resync_pages(fbio)->pages;
2027
2028 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2029 /* now find blocks with errors */
2030 for (i=0 ; i < conf->copies ; i++) {
2031 int j, d;
2032 struct md_rdev *rdev;
2033 struct resync_pages *rp;
2034
2035 tbio = r10_bio->devs[i].bio;
2036
2037 if (tbio->bi_end_io != end_sync_read)
2038 continue;
2039 if (i == first)
2040 continue;
2041
2042 tpages = get_resync_pages(tbio)->pages;
2043 d = r10_bio->devs[i].devnum;
2044 rdev = conf->mirrors[d].rdev;
2045 if (!r10_bio->devs[i].bio->bi_status) {
2046 /* We know that the bi_io_vec layout is the same for
2047 * both 'first' and 'i', so we just compare them.
2048 * All vec entries are PAGE_SIZE;
2049 */
2050 int sectors = r10_bio->sectors;
2051 for (j = 0; j < vcnt; j++) {
2052 int len = PAGE_SIZE;
2053 if (sectors < (len / 512))
2054 len = sectors * 512;
2055 if (memcmp(page_address(fpages[j]),
2056 page_address(tpages[j]),
2057 len))
2058 break;
2059 sectors -= len/512;
2060 }
2061 if (j == vcnt)
2062 continue;
2063 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2064 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2065 /* Don't fix anything. */
2066 continue;
2067 } else if (test_bit(FailFast, &rdev->flags)) {
2068 /* Just give up on this device */
2069 md_error(rdev->mddev, rdev);
2070 continue;
2071 }
2072 /* Ok, we need to write this bio, either to correct an
2073 * inconsistency or to correct an unreadable block.
2074 * First we need to fixup bv_offset, bv_len and
2075 * bi_vecs, as the read request might have corrupted these
2076 */
2077 rp = get_resync_pages(tbio);
2078 bio_reset(tbio);
2079
2080 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2081
2082 rp->raid_bio = r10_bio;
2083 tbio->bi_private = rp;
2084 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2085 tbio->bi_end_io = end_sync_write;
2086 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2087
2088 bio_copy_data(tbio, fbio);
2089
2090 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2091 atomic_inc(&r10_bio->remaining);
2092 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2093
2094 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2095 tbio->bi_opf |= MD_FAILFAST;
2096 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2097 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2098 generic_make_request(tbio);
2099 }
2100
2101 /* Now write out to any replacement devices
2102 * that are active
2103 */
2104 for (i = 0; i < conf->copies; i++) {
2105 int d;
2106
2107 tbio = r10_bio->devs[i].repl_bio;
2108 if (!tbio || !tbio->bi_end_io)
2109 continue;
2110 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2111 && r10_bio->devs[i].bio != fbio)
2112 bio_copy_data(tbio, fbio);
2113 d = r10_bio->devs[i].devnum;
2114 atomic_inc(&r10_bio->remaining);
2115 md_sync_acct(conf->mirrors[d].replacement->bdev,
2116 bio_sectors(tbio));
2117 generic_make_request(tbio);
2118 }
2119
2120 done:
2121 if (atomic_dec_and_test(&r10_bio->remaining)) {
2122 md_done_sync(mddev, r10_bio->sectors, 1);
2123 put_buf(r10_bio);
2124 }
2125 }
2126
2127 /*
2128 * Now for the recovery code.
2129 * Recovery happens across physical sectors.
2130 * We recover all non-is_sync drives by finding the virtual address of
2131 * each, and then choose a working drive that also has that virt address.
2132 * There is a separate r10_bio for each non-in_sync drive.
2133 * Only the first two slots are in use. The first for reading,
2134 * The second for writing.
2135 *
2136 */
2137 static void fix_recovery_read_error(struct r10bio *r10_bio)
2138 {
2139 /* We got a read error during recovery.
2140 * We repeat the read in smaller page-sized sections.
2141 * If a read succeeds, write it to the new device or record
2142 * a bad block if we cannot.
2143 * If a read fails, record a bad block on both old and
2144 * new devices.
2145 */
2146 struct mddev *mddev = r10_bio->mddev;
2147 struct r10conf *conf = mddev->private;
2148 struct bio *bio = r10_bio->devs[0].bio;
2149 sector_t sect = 0;
2150 int sectors = r10_bio->sectors;
2151 int idx = 0;
2152 int dr = r10_bio->devs[0].devnum;
2153 int dw = r10_bio->devs[1].devnum;
2154 struct page **pages = get_resync_pages(bio)->pages;
2155
2156 while (sectors) {
2157 int s = sectors;
2158 struct md_rdev *rdev;
2159 sector_t addr;
2160 int ok;
2161
2162 if (s > (PAGE_SIZE>>9))
2163 s = PAGE_SIZE >> 9;
2164
2165 rdev = conf->mirrors[dr].rdev;
2166 addr = r10_bio->devs[0].addr + sect,
2167 ok = sync_page_io(rdev,
2168 addr,
2169 s << 9,
2170 pages[idx],
2171 REQ_OP_READ, 0, false);
2172 if (ok) {
2173 rdev = conf->mirrors[dw].rdev;
2174 addr = r10_bio->devs[1].addr + sect;
2175 ok = sync_page_io(rdev,
2176 addr,
2177 s << 9,
2178 pages[idx],
2179 REQ_OP_WRITE, 0, false);
2180 if (!ok) {
2181 set_bit(WriteErrorSeen, &rdev->flags);
2182 if (!test_and_set_bit(WantReplacement,
2183 &rdev->flags))
2184 set_bit(MD_RECOVERY_NEEDED,
2185 &rdev->mddev->recovery);
2186 }
2187 }
2188 if (!ok) {
2189 /* We don't worry if we cannot set a bad block -
2190 * it really is bad so there is no loss in not
2191 * recording it yet
2192 */
2193 rdev_set_badblocks(rdev, addr, s, 0);
2194
2195 if (rdev != conf->mirrors[dw].rdev) {
2196 /* need bad block on destination too */
2197 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2198 addr = r10_bio->devs[1].addr + sect;
2199 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2200 if (!ok) {
2201 /* just abort the recovery */
2202 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2203 mdname(mddev));
2204
2205 conf->mirrors[dw].recovery_disabled
2206 = mddev->recovery_disabled;
2207 set_bit(MD_RECOVERY_INTR,
2208 &mddev->recovery);
2209 break;
2210 }
2211 }
2212 }
2213
2214 sectors -= s;
2215 sect += s;
2216 idx++;
2217 }
2218 }
2219
2220 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2221 {
2222 struct r10conf *conf = mddev->private;
2223 int d;
2224 struct bio *wbio, *wbio2;
2225
2226 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2227 fix_recovery_read_error(r10_bio);
2228 end_sync_request(r10_bio);
2229 return;
2230 }
2231
2232 /*
2233 * share the pages with the first bio
2234 * and submit the write request
2235 */
2236 d = r10_bio->devs[1].devnum;
2237 wbio = r10_bio->devs[1].bio;
2238 wbio2 = r10_bio->devs[1].repl_bio;
2239 /* Need to test wbio2->bi_end_io before we call
2240 * generic_make_request as if the former is NULL,
2241 * the latter is free to free wbio2.
2242 */
2243 if (wbio2 && !wbio2->bi_end_io)
2244 wbio2 = NULL;
2245 if (wbio->bi_end_io) {
2246 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2247 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2248 generic_make_request(wbio);
2249 }
2250 if (wbio2) {
2251 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2252 md_sync_acct(conf->mirrors[d].replacement->bdev,
2253 bio_sectors(wbio2));
2254 generic_make_request(wbio2);
2255 }
2256 }
2257
2258 /*
2259 * Used by fix_read_error() to decay the per rdev read_errors.
2260 * We halve the read error count for every hour that has elapsed
2261 * since the last recorded read error.
2262 *
2263 */
2264 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2265 {
2266 long cur_time_mon;
2267 unsigned long hours_since_last;
2268 unsigned int read_errors = atomic_read(&rdev->read_errors);
2269
2270 cur_time_mon = ktime_get_seconds();
2271
2272 if (rdev->last_read_error == 0) {
2273 /* first time we've seen a read error */
2274 rdev->last_read_error = cur_time_mon;
2275 return;
2276 }
2277
2278 hours_since_last = (long)(cur_time_mon -
2279 rdev->last_read_error) / 3600;
2280
2281 rdev->last_read_error = cur_time_mon;
2282
2283 /*
2284 * if hours_since_last is > the number of bits in read_errors
2285 * just set read errors to 0. We do this to avoid
2286 * overflowing the shift of read_errors by hours_since_last.
2287 */
2288 if (hours_since_last >= 8 * sizeof(read_errors))
2289 atomic_set(&rdev->read_errors, 0);
2290 else
2291 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2292 }
2293
2294 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2295 int sectors, struct page *page, int rw)
2296 {
2297 sector_t first_bad;
2298 int bad_sectors;
2299
2300 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2301 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2302 return -1;
2303 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2304 /* success */
2305 return 1;
2306 if (rw == WRITE) {
2307 set_bit(WriteErrorSeen, &rdev->flags);
2308 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309 set_bit(MD_RECOVERY_NEEDED,
2310 &rdev->mddev->recovery);
2311 }
2312 /* need to record an error - either for the block or the device */
2313 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2314 md_error(rdev->mddev, rdev);
2315 return 0;
2316 }
2317
2318 /*
2319 * This is a kernel thread which:
2320 *
2321 * 1. Retries failed read operations on working mirrors.
2322 * 2. Updates the raid superblock when problems encounter.
2323 * 3. Performs writes following reads for array synchronising.
2324 */
2325
2326 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2327 {
2328 int sect = 0; /* Offset from r10_bio->sector */
2329 int sectors = r10_bio->sectors;
2330 struct md_rdev*rdev;
2331 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2332 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2333
2334 /* still own a reference to this rdev, so it cannot
2335 * have been cleared recently.
2336 */
2337 rdev = conf->mirrors[d].rdev;
2338
2339 if (test_bit(Faulty, &rdev->flags))
2340 /* drive has already been failed, just ignore any
2341 more fix_read_error() attempts */
2342 return;
2343
2344 check_decay_read_errors(mddev, rdev);
2345 atomic_inc(&rdev->read_errors);
2346 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2347 char b[BDEVNAME_SIZE];
2348 bdevname(rdev->bdev, b);
2349
2350 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2351 mdname(mddev), b,
2352 atomic_read(&rdev->read_errors), max_read_errors);
2353 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2354 mdname(mddev), b);
2355 md_error(mddev, rdev);
2356 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2357 return;
2358 }
2359
2360 while(sectors) {
2361 int s = sectors;
2362 int sl = r10_bio->read_slot;
2363 int success = 0;
2364 int start;
2365
2366 if (s > (PAGE_SIZE>>9))
2367 s = PAGE_SIZE >> 9;
2368
2369 rcu_read_lock();
2370 do {
2371 sector_t first_bad;
2372 int bad_sectors;
2373
2374 d = r10_bio->devs[sl].devnum;
2375 rdev = rcu_dereference(conf->mirrors[d].rdev);
2376 if (rdev &&
2377 test_bit(In_sync, &rdev->flags) &&
2378 !test_bit(Faulty, &rdev->flags) &&
2379 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2380 &first_bad, &bad_sectors) == 0) {
2381 atomic_inc(&rdev->nr_pending);
2382 rcu_read_unlock();
2383 success = sync_page_io(rdev,
2384 r10_bio->devs[sl].addr +
2385 sect,
2386 s<<9,
2387 conf->tmppage,
2388 REQ_OP_READ, 0, false);
2389 rdev_dec_pending(rdev, mddev);
2390 rcu_read_lock();
2391 if (success)
2392 break;
2393 }
2394 sl++;
2395 if (sl == conf->copies)
2396 sl = 0;
2397 } while (!success && sl != r10_bio->read_slot);
2398 rcu_read_unlock();
2399
2400 if (!success) {
2401 /* Cannot read from anywhere, just mark the block
2402 * as bad on the first device to discourage future
2403 * reads.
2404 */
2405 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2406 rdev = conf->mirrors[dn].rdev;
2407
2408 if (!rdev_set_badblocks(
2409 rdev,
2410 r10_bio->devs[r10_bio->read_slot].addr
2411 + sect,
2412 s, 0)) {
2413 md_error(mddev, rdev);
2414 r10_bio->devs[r10_bio->read_slot].bio
2415 = IO_BLOCKED;
2416 }
2417 break;
2418 }
2419
2420 start = sl;
2421 /* write it back and re-read */
2422 rcu_read_lock();
2423 while (sl != r10_bio->read_slot) {
2424 char b[BDEVNAME_SIZE];
2425
2426 if (sl==0)
2427 sl = conf->copies;
2428 sl--;
2429 d = r10_bio->devs[sl].devnum;
2430 rdev = rcu_dereference(conf->mirrors[d].rdev);
2431 if (!rdev ||
2432 test_bit(Faulty, &rdev->flags) ||
2433 !test_bit(In_sync, &rdev->flags))
2434 continue;
2435
2436 atomic_inc(&rdev->nr_pending);
2437 rcu_read_unlock();
2438 if (r10_sync_page_io(rdev,
2439 r10_bio->devs[sl].addr +
2440 sect,
2441 s, conf->tmppage, WRITE)
2442 == 0) {
2443 /* Well, this device is dead */
2444 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2445 mdname(mddev), s,
2446 (unsigned long long)(
2447 sect +
2448 choose_data_offset(r10_bio,
2449 rdev)),
2450 bdevname(rdev->bdev, b));
2451 pr_notice("md/raid10:%s: %s: failing drive\n",
2452 mdname(mddev),
2453 bdevname(rdev->bdev, b));
2454 }
2455 rdev_dec_pending(rdev, mddev);
2456 rcu_read_lock();
2457 }
2458 sl = start;
2459 while (sl != r10_bio->read_slot) {
2460 char b[BDEVNAME_SIZE];
2461
2462 if (sl==0)
2463 sl = conf->copies;
2464 sl--;
2465 d = r10_bio->devs[sl].devnum;
2466 rdev = rcu_dereference(conf->mirrors[d].rdev);
2467 if (!rdev ||
2468 test_bit(Faulty, &rdev->flags) ||
2469 !test_bit(In_sync, &rdev->flags))
2470 continue;
2471
2472 atomic_inc(&rdev->nr_pending);
2473 rcu_read_unlock();
2474 switch (r10_sync_page_io(rdev,
2475 r10_bio->devs[sl].addr +
2476 sect,
2477 s, conf->tmppage,
2478 READ)) {
2479 case 0:
2480 /* Well, this device is dead */
2481 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2482 mdname(mddev), s,
2483 (unsigned long long)(
2484 sect +
2485 choose_data_offset(r10_bio, rdev)),
2486 bdevname(rdev->bdev, b));
2487 pr_notice("md/raid10:%s: %s: failing drive\n",
2488 mdname(mddev),
2489 bdevname(rdev->bdev, b));
2490 break;
2491 case 1:
2492 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2493 mdname(mddev), s,
2494 (unsigned long long)(
2495 sect +
2496 choose_data_offset(r10_bio, rdev)),
2497 bdevname(rdev->bdev, b));
2498 atomic_add(s, &rdev->corrected_errors);
2499 }
2500
2501 rdev_dec_pending(rdev, mddev);
2502 rcu_read_lock();
2503 }
2504 rcu_read_unlock();
2505
2506 sectors -= s;
2507 sect += s;
2508 }
2509 }
2510
2511 static int narrow_write_error(struct r10bio *r10_bio, int i)
2512 {
2513 struct bio *bio = r10_bio->master_bio;
2514 struct mddev *mddev = r10_bio->mddev;
2515 struct r10conf *conf = mddev->private;
2516 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2517 /* bio has the data to be written to slot 'i' where
2518 * we just recently had a write error.
2519 * We repeatedly clone the bio and trim down to one block,
2520 * then try the write. Where the write fails we record
2521 * a bad block.
2522 * It is conceivable that the bio doesn't exactly align with
2523 * blocks. We must handle this.
2524 *
2525 * We currently own a reference to the rdev.
2526 */
2527
2528 int block_sectors;
2529 sector_t sector;
2530 int sectors;
2531 int sect_to_write = r10_bio->sectors;
2532 int ok = 1;
2533
2534 if (rdev->badblocks.shift < 0)
2535 return 0;
2536
2537 block_sectors = roundup(1 << rdev->badblocks.shift,
2538 bdev_logical_block_size(rdev->bdev) >> 9);
2539 sector = r10_bio->sector;
2540 sectors = ((r10_bio->sector + block_sectors)
2541 & ~(sector_t)(block_sectors - 1))
2542 - sector;
2543
2544 while (sect_to_write) {
2545 struct bio *wbio;
2546 sector_t wsector;
2547 if (sectors > sect_to_write)
2548 sectors = sect_to_write;
2549 /* Write at 'sector' for 'sectors' */
2550 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2551 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2552 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2553 wbio->bi_iter.bi_sector = wsector +
2554 choose_data_offset(r10_bio, rdev);
2555 bio_set_dev(wbio, rdev->bdev);
2556 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2557
2558 if (submit_bio_wait(wbio) < 0)
2559 /* Failure! */
2560 ok = rdev_set_badblocks(rdev, wsector,
2561 sectors, 0)
2562 && ok;
2563
2564 bio_put(wbio);
2565 sect_to_write -= sectors;
2566 sector += sectors;
2567 sectors = block_sectors;
2568 }
2569 return ok;
2570 }
2571
2572 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2573 {
2574 int slot = r10_bio->read_slot;
2575 struct bio *bio;
2576 struct r10conf *conf = mddev->private;
2577 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2578 sector_t bio_last_sector;
2579
2580 /* we got a read error. Maybe the drive is bad. Maybe just
2581 * the block and we can fix it.
2582 * We freeze all other IO, and try reading the block from
2583 * other devices. When we find one, we re-write
2584 * and check it that fixes the read error.
2585 * This is all done synchronously while the array is
2586 * frozen.
2587 */
2588 bio = r10_bio->devs[slot].bio;
2589 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2590 bio_put(bio);
2591 r10_bio->devs[slot].bio = NULL;
2592
2593 if (mddev->ro)
2594 r10_bio->devs[slot].bio = IO_BLOCKED;
2595 else if (!test_bit(FailFast, &rdev->flags)) {
2596 freeze_array(conf, 1);
2597 fix_read_error(conf, mddev, r10_bio);
2598 unfreeze_array(conf);
2599 } else
2600 md_error(mddev, rdev);
2601
2602 rdev_dec_pending(rdev, mddev);
2603 allow_barrier(conf);
2604 r10_bio->state = 0;
2605 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2606 }
2607
2608 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2609 {
2610 /* Some sort of write request has finished and it
2611 * succeeded in writing where we thought there was a
2612 * bad block. So forget the bad block.
2613 * Or possibly if failed and we need to record
2614 * a bad block.
2615 */
2616 int m;
2617 struct md_rdev *rdev;
2618
2619 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2620 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2621 for (m = 0; m < conf->copies; m++) {
2622 int dev = r10_bio->devs[m].devnum;
2623 rdev = conf->mirrors[dev].rdev;
2624 if (r10_bio->devs[m].bio == NULL)
2625 continue;
2626 if (!r10_bio->devs[m].bio->bi_status) {
2627 rdev_clear_badblocks(
2628 rdev,
2629 r10_bio->devs[m].addr,
2630 r10_bio->sectors, 0);
2631 } else {
2632 if (!rdev_set_badblocks(
2633 rdev,
2634 r10_bio->devs[m].addr,
2635 r10_bio->sectors, 0))
2636 md_error(conf->mddev, rdev);
2637 }
2638 rdev = conf->mirrors[dev].replacement;
2639 if (r10_bio->devs[m].repl_bio == NULL)
2640 continue;
2641
2642 if (!r10_bio->devs[m].repl_bio->bi_status) {
2643 rdev_clear_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
2646 r10_bio->sectors, 0);
2647 } else {
2648 if (!rdev_set_badblocks(
2649 rdev,
2650 r10_bio->devs[m].addr,
2651 r10_bio->sectors, 0))
2652 md_error(conf->mddev, rdev);
2653 }
2654 }
2655 put_buf(r10_bio);
2656 } else {
2657 bool fail = false;
2658 for (m = 0; m < conf->copies; m++) {
2659 int dev = r10_bio->devs[m].devnum;
2660 struct bio *bio = r10_bio->devs[m].bio;
2661 rdev = conf->mirrors[dev].rdev;
2662 if (bio == IO_MADE_GOOD) {
2663 rdev_clear_badblocks(
2664 rdev,
2665 r10_bio->devs[m].addr,
2666 r10_bio->sectors, 0);
2667 rdev_dec_pending(rdev, conf->mddev);
2668 } else if (bio != NULL && bio->bi_status) {
2669 fail = true;
2670 if (!narrow_write_error(r10_bio, m)) {
2671 md_error(conf->mddev, rdev);
2672 set_bit(R10BIO_Degraded,
2673 &r10_bio->state);
2674 }
2675 rdev_dec_pending(rdev, conf->mddev);
2676 }
2677 bio = r10_bio->devs[m].repl_bio;
2678 rdev = conf->mirrors[dev].replacement;
2679 if (rdev && bio == IO_MADE_GOOD) {
2680 rdev_clear_badblocks(
2681 rdev,
2682 r10_bio->devs[m].addr,
2683 r10_bio->sectors, 0);
2684 rdev_dec_pending(rdev, conf->mddev);
2685 }
2686 }
2687 if (fail) {
2688 spin_lock_irq(&conf->device_lock);
2689 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2690 conf->nr_queued++;
2691 spin_unlock_irq(&conf->device_lock);
2692 /*
2693 * In case freeze_array() is waiting for condition
2694 * nr_pending == nr_queued + extra to be true.
2695 */
2696 wake_up(&conf->wait_barrier);
2697 md_wakeup_thread(conf->mddev->thread);
2698 } else {
2699 if (test_bit(R10BIO_WriteError,
2700 &r10_bio->state))
2701 close_write(r10_bio);
2702 raid_end_bio_io(r10_bio);
2703 }
2704 }
2705 }
2706
2707 static void raid10d(struct md_thread *thread)
2708 {
2709 struct mddev *mddev = thread->mddev;
2710 struct r10bio *r10_bio;
2711 unsigned long flags;
2712 struct r10conf *conf = mddev->private;
2713 struct list_head *head = &conf->retry_list;
2714 struct blk_plug plug;
2715
2716 md_check_recovery(mddev);
2717
2718 if (!list_empty_careful(&conf->bio_end_io_list) &&
2719 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2720 LIST_HEAD(tmp);
2721 spin_lock_irqsave(&conf->device_lock, flags);
2722 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2723 while (!list_empty(&conf->bio_end_io_list)) {
2724 list_move(conf->bio_end_io_list.prev, &tmp);
2725 conf->nr_queued--;
2726 }
2727 }
2728 spin_unlock_irqrestore(&conf->device_lock, flags);
2729 while (!list_empty(&tmp)) {
2730 r10_bio = list_first_entry(&tmp, struct r10bio,
2731 retry_list);
2732 list_del(&r10_bio->retry_list);
2733 if (mddev->degraded)
2734 set_bit(R10BIO_Degraded, &r10_bio->state);
2735
2736 if (test_bit(R10BIO_WriteError,
2737 &r10_bio->state))
2738 close_write(r10_bio);
2739 raid_end_bio_io(r10_bio);
2740 }
2741 }
2742
2743 blk_start_plug(&plug);
2744 for (;;) {
2745
2746 flush_pending_writes(conf);
2747
2748 spin_lock_irqsave(&conf->device_lock, flags);
2749 if (list_empty(head)) {
2750 spin_unlock_irqrestore(&conf->device_lock, flags);
2751 break;
2752 }
2753 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2754 list_del(head->prev);
2755 conf->nr_queued--;
2756 spin_unlock_irqrestore(&conf->device_lock, flags);
2757
2758 mddev = r10_bio->mddev;
2759 conf = mddev->private;
2760 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2761 test_bit(R10BIO_WriteError, &r10_bio->state))
2762 handle_write_completed(conf, r10_bio);
2763 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2764 reshape_request_write(mddev, r10_bio);
2765 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2766 sync_request_write(mddev, r10_bio);
2767 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2768 recovery_request_write(mddev, r10_bio);
2769 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2770 handle_read_error(mddev, r10_bio);
2771 else
2772 WARN_ON_ONCE(1);
2773
2774 cond_resched();
2775 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2776 md_check_recovery(mddev);
2777 }
2778 blk_finish_plug(&plug);
2779 }
2780
2781 static int init_resync(struct r10conf *conf)
2782 {
2783 int buffs;
2784 int i;
2785
2786 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2787 BUG_ON(conf->r10buf_pool);
2788 conf->have_replacement = 0;
2789 for (i = 0; i < conf->geo.raid_disks; i++)
2790 if (conf->mirrors[i].replacement)
2791 conf->have_replacement = 1;
2792 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2793 if (!conf->r10buf_pool)
2794 return -ENOMEM;
2795 conf->next_resync = 0;
2796 return 0;
2797 }
2798
2799 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2800 {
2801 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2802 struct rsync_pages *rp;
2803 struct bio *bio;
2804 int nalloc;
2805 int i;
2806
2807 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2808 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2809 nalloc = conf->copies; /* resync */
2810 else
2811 nalloc = 2; /* recovery */
2812
2813 for (i = 0; i < nalloc; i++) {
2814 bio = r10bio->devs[i].bio;
2815 rp = bio->bi_private;
2816 bio_reset(bio);
2817 bio->bi_private = rp;
2818 bio = r10bio->devs[i].repl_bio;
2819 if (bio) {
2820 rp = bio->bi_private;
2821 bio_reset(bio);
2822 bio->bi_private = rp;
2823 }
2824 }
2825 return r10bio;
2826 }
2827
2828 /*
2829 * perform a "sync" on one "block"
2830 *
2831 * We need to make sure that no normal I/O request - particularly write
2832 * requests - conflict with active sync requests.
2833 *
2834 * This is achieved by tracking pending requests and a 'barrier' concept
2835 * that can be installed to exclude normal IO requests.
2836 *
2837 * Resync and recovery are handled very differently.
2838 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2839 *
2840 * For resync, we iterate over virtual addresses, read all copies,
2841 * and update if there are differences. If only one copy is live,
2842 * skip it.
2843 * For recovery, we iterate over physical addresses, read a good
2844 * value for each non-in_sync drive, and over-write.
2845 *
2846 * So, for recovery we may have several outstanding complex requests for a
2847 * given address, one for each out-of-sync device. We model this by allocating
2848 * a number of r10_bio structures, one for each out-of-sync device.
2849 * As we setup these structures, we collect all bio's together into a list
2850 * which we then process collectively to add pages, and then process again
2851 * to pass to generic_make_request.
2852 *
2853 * The r10_bio structures are linked using a borrowed master_bio pointer.
2854 * This link is counted in ->remaining. When the r10_bio that points to NULL
2855 * has its remaining count decremented to 0, the whole complex operation
2856 * is complete.
2857 *
2858 */
2859
2860 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2861 int *skipped)
2862 {
2863 struct r10conf *conf = mddev->private;
2864 struct r10bio *r10_bio;
2865 struct bio *biolist = NULL, *bio;
2866 sector_t max_sector, nr_sectors;
2867 int i;
2868 int max_sync;
2869 sector_t sync_blocks;
2870 sector_t sectors_skipped = 0;
2871 int chunks_skipped = 0;
2872 sector_t chunk_mask = conf->geo.chunk_mask;
2873 int page_idx = 0;
2874
2875 if (!conf->r10buf_pool)
2876 if (init_resync(conf))
2877 return 0;
2878
2879 /*
2880 * Allow skipping a full rebuild for incremental assembly
2881 * of a clean array, like RAID1 does.
2882 */
2883 if (mddev->bitmap == NULL &&
2884 mddev->recovery_cp == MaxSector &&
2885 mddev->reshape_position == MaxSector &&
2886 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2887 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2888 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2889 conf->fullsync == 0) {
2890 *skipped = 1;
2891 return mddev->dev_sectors - sector_nr;
2892 }
2893
2894 skipped:
2895 max_sector = mddev->dev_sectors;
2896 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2897 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2898 max_sector = mddev->resync_max_sectors;
2899 if (sector_nr >= max_sector) {
2900 /* If we aborted, we need to abort the
2901 * sync on the 'current' bitmap chucks (there can
2902 * be several when recovering multiple devices).
2903 * as we may have started syncing it but not finished.
2904 * We can find the current address in
2905 * mddev->curr_resync, but for recovery,
2906 * we need to convert that to several
2907 * virtual addresses.
2908 */
2909 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2910 end_reshape(conf);
2911 close_sync(conf);
2912 return 0;
2913 }
2914
2915 if (mddev->curr_resync < max_sector) { /* aborted */
2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2917 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2918 &sync_blocks, 1);
2919 else for (i = 0; i < conf->geo.raid_disks; i++) {
2920 sector_t sect =
2921 raid10_find_virt(conf, mddev->curr_resync, i);
2922 bitmap_end_sync(mddev->bitmap, sect,
2923 &sync_blocks, 1);
2924 }
2925 } else {
2926 /* completed sync */
2927 if ((!mddev->bitmap || conf->fullsync)
2928 && conf->have_replacement
2929 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2930 /* Completed a full sync so the replacements
2931 * are now fully recovered.
2932 */
2933 rcu_read_lock();
2934 for (i = 0; i < conf->geo.raid_disks; i++) {
2935 struct md_rdev *rdev =
2936 rcu_dereference(conf->mirrors[i].replacement);
2937 if (rdev)
2938 rdev->recovery_offset = MaxSector;
2939 }
2940 rcu_read_unlock();
2941 }
2942 conf->fullsync = 0;
2943 }
2944 bitmap_close_sync(mddev->bitmap);
2945 close_sync(conf);
2946 *skipped = 1;
2947 return sectors_skipped;
2948 }
2949
2950 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2951 return reshape_request(mddev, sector_nr, skipped);
2952
2953 if (chunks_skipped >= conf->geo.raid_disks) {
2954 /* if there has been nothing to do on any drive,
2955 * then there is nothing to do at all..
2956 */
2957 *skipped = 1;
2958 return (max_sector - sector_nr) + sectors_skipped;
2959 }
2960
2961 if (max_sector > mddev->resync_max)
2962 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2963
2964 /* make sure whole request will fit in a chunk - if chunks
2965 * are meaningful
2966 */
2967 if (conf->geo.near_copies < conf->geo.raid_disks &&
2968 max_sector > (sector_nr | chunk_mask))
2969 max_sector = (sector_nr | chunk_mask) + 1;
2970
2971 /*
2972 * If there is non-resync activity waiting for a turn, then let it
2973 * though before starting on this new sync request.
2974 */
2975 if (conf->nr_waiting)
2976 schedule_timeout_uninterruptible(1);
2977
2978 /* Again, very different code for resync and recovery.
2979 * Both must result in an r10bio with a list of bios that
2980 * have bi_end_io, bi_sector, bi_disk set,
2981 * and bi_private set to the r10bio.
2982 * For recovery, we may actually create several r10bios
2983 * with 2 bios in each, that correspond to the bios in the main one.
2984 * In this case, the subordinate r10bios link back through a
2985 * borrowed master_bio pointer, and the counter in the master
2986 * includes a ref from each subordinate.
2987 */
2988 /* First, we decide what to do and set ->bi_end_io
2989 * To end_sync_read if we want to read, and
2990 * end_sync_write if we will want to write.
2991 */
2992
2993 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2994 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2995 /* recovery... the complicated one */
2996 int j;
2997 r10_bio = NULL;
2998
2999 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3000 int still_degraded;
3001 struct r10bio *rb2;
3002 sector_t sect;
3003 int must_sync;
3004 int any_working;
3005 struct raid10_info *mirror = &conf->mirrors[i];
3006 struct md_rdev *mrdev, *mreplace;
3007
3008 rcu_read_lock();
3009 mrdev = rcu_dereference(mirror->rdev);
3010 mreplace = rcu_dereference(mirror->replacement);
3011
3012 if ((mrdev == NULL ||
3013 test_bit(Faulty, &mrdev->flags) ||
3014 test_bit(In_sync, &mrdev->flags)) &&
3015 (mreplace == NULL ||
3016 test_bit(Faulty, &mreplace->flags))) {
3017 rcu_read_unlock();
3018 continue;
3019 }
3020
3021 still_degraded = 0;
3022 /* want to reconstruct this device */
3023 rb2 = r10_bio;
3024 sect = raid10_find_virt(conf, sector_nr, i);
3025 if (sect >= mddev->resync_max_sectors) {
3026 /* last stripe is not complete - don't
3027 * try to recover this sector.
3028 */
3029 rcu_read_unlock();
3030 continue;
3031 }
3032 if (mreplace && test_bit(Faulty, &mreplace->flags))
3033 mreplace = NULL;
3034 /* Unless we are doing a full sync, or a replacement
3035 * we only need to recover the block if it is set in
3036 * the bitmap
3037 */
3038 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3039 &sync_blocks, 1);
3040 if (sync_blocks < max_sync)
3041 max_sync = sync_blocks;
3042 if (!must_sync &&
3043 mreplace == NULL &&
3044 !conf->fullsync) {
3045 /* yep, skip the sync_blocks here, but don't assume
3046 * that there will never be anything to do here
3047 */
3048 chunks_skipped = -1;
3049 rcu_read_unlock();
3050 continue;
3051 }
3052 atomic_inc(&mrdev->nr_pending);
3053 if (mreplace)
3054 atomic_inc(&mreplace->nr_pending);
3055 rcu_read_unlock();
3056
3057 r10_bio = raid10_alloc_init_r10buf(conf);
3058 r10_bio->state = 0;
3059 raise_barrier(conf, rb2 != NULL);
3060 atomic_set(&r10_bio->remaining, 0);
3061
3062 r10_bio->master_bio = (struct bio*)rb2;
3063 if (rb2)
3064 atomic_inc(&rb2->remaining);
3065 r10_bio->mddev = mddev;
3066 set_bit(R10BIO_IsRecover, &r10_bio->state);
3067 r10_bio->sector = sect;
3068
3069 raid10_find_phys(conf, r10_bio);
3070
3071 /* Need to check if the array will still be
3072 * degraded
3073 */
3074 rcu_read_lock();
3075 for (j = 0; j < conf->geo.raid_disks; j++) {
3076 struct md_rdev *rdev = rcu_dereference(
3077 conf->mirrors[j].rdev);
3078 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3079 still_degraded = 1;
3080 break;
3081 }
3082 }
3083
3084 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3085 &sync_blocks, still_degraded);
3086
3087 any_working = 0;
3088 for (j=0; j<conf->copies;j++) {
3089 int k;
3090 int d = r10_bio->devs[j].devnum;
3091 sector_t from_addr, to_addr;
3092 struct md_rdev *rdev =
3093 rcu_dereference(conf->mirrors[d].rdev);
3094 sector_t sector, first_bad;
3095 int bad_sectors;
3096 if (!rdev ||
3097 !test_bit(In_sync, &rdev->flags))
3098 continue;
3099 /* This is where we read from */
3100 any_working = 1;
3101 sector = r10_bio->devs[j].addr;
3102
3103 if (is_badblock(rdev, sector, max_sync,
3104 &first_bad, &bad_sectors)) {
3105 if (first_bad > sector)
3106 max_sync = first_bad - sector;
3107 else {
3108 bad_sectors -= (sector
3109 - first_bad);
3110 if (max_sync > bad_sectors)
3111 max_sync = bad_sectors;
3112 continue;
3113 }
3114 }
3115 bio = r10_bio->devs[0].bio;
3116 bio->bi_next = biolist;
3117 biolist = bio;
3118 bio->bi_end_io = end_sync_read;
3119 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3120 if (test_bit(FailFast, &rdev->flags))
3121 bio->bi_opf |= MD_FAILFAST;
3122 from_addr = r10_bio->devs[j].addr;
3123 bio->bi_iter.bi_sector = from_addr +
3124 rdev->data_offset;
3125 bio_set_dev(bio, rdev->bdev);
3126 atomic_inc(&rdev->nr_pending);
3127 /* and we write to 'i' (if not in_sync) */
3128
3129 for (k=0; k<conf->copies; k++)
3130 if (r10_bio->devs[k].devnum == i)
3131 break;
3132 BUG_ON(k == conf->copies);
3133 to_addr = r10_bio->devs[k].addr;
3134 r10_bio->devs[0].devnum = d;
3135 r10_bio->devs[0].addr = from_addr;
3136 r10_bio->devs[1].devnum = i;
3137 r10_bio->devs[1].addr = to_addr;
3138
3139 if (!test_bit(In_sync, &mrdev->flags)) {
3140 bio = r10_bio->devs[1].bio;
3141 bio->bi_next = biolist;
3142 biolist = bio;
3143 bio->bi_end_io = end_sync_write;
3144 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3145 bio->bi_iter.bi_sector = to_addr
3146 + mrdev->data_offset;
3147 bio_set_dev(bio, mrdev->bdev);
3148 atomic_inc(&r10_bio->remaining);
3149 } else
3150 r10_bio->devs[1].bio->bi_end_io = NULL;
3151
3152 /* and maybe write to replacement */
3153 bio = r10_bio->devs[1].repl_bio;
3154 if (bio)
3155 bio->bi_end_io = NULL;
3156 /* Note: if mreplace != NULL, then bio
3157 * cannot be NULL as r10buf_pool_alloc will
3158 * have allocated it.
3159 * So the second test here is pointless.
3160 * But it keeps semantic-checkers happy, and
3161 * this comment keeps human reviewers
3162 * happy.
3163 */
3164 if (mreplace == NULL || bio == NULL ||
3165 test_bit(Faulty, &mreplace->flags))
3166 break;
3167 bio->bi_next = biolist;
3168 biolist = bio;
3169 bio->bi_end_io = end_sync_write;
3170 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3171 bio->bi_iter.bi_sector = to_addr +
3172 mreplace->data_offset;
3173 bio_set_dev(bio, mreplace->bdev);
3174 atomic_inc(&r10_bio->remaining);
3175 break;
3176 }
3177 rcu_read_unlock();
3178 if (j == conf->copies) {
3179 /* Cannot recover, so abort the recovery or
3180 * record a bad block */
3181 if (any_working) {
3182 /* problem is that there are bad blocks
3183 * on other device(s)
3184 */
3185 int k;
3186 for (k = 0; k < conf->copies; k++)
3187 if (r10_bio->devs[k].devnum == i)
3188 break;
3189 if (!test_bit(In_sync,
3190 &mrdev->flags)
3191 && !rdev_set_badblocks(
3192 mrdev,
3193 r10_bio->devs[k].addr,
3194 max_sync, 0))
3195 any_working = 0;
3196 if (mreplace &&
3197 !rdev_set_badblocks(
3198 mreplace,
3199 r10_bio->devs[k].addr,
3200 max_sync, 0))
3201 any_working = 0;
3202 }
3203 if (!any_working) {
3204 if (!test_and_set_bit(MD_RECOVERY_INTR,
3205 &mddev->recovery))
3206 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3207 mdname(mddev));
3208 mirror->recovery_disabled
3209 = mddev->recovery_disabled;
3210 }
3211 put_buf(r10_bio);
3212 if (rb2)
3213 atomic_dec(&rb2->remaining);
3214 r10_bio = rb2;
3215 rdev_dec_pending(mrdev, mddev);
3216 if (mreplace)
3217 rdev_dec_pending(mreplace, mddev);
3218 break;
3219 }
3220 rdev_dec_pending(mrdev, mddev);
3221 if (mreplace)
3222 rdev_dec_pending(mreplace, mddev);
3223 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3224 /* Only want this if there is elsewhere to
3225 * read from. 'j' is currently the first
3226 * readable copy.
3227 */
3228 int targets = 1;
3229 for (; j < conf->copies; j++) {
3230 int d = r10_bio->devs[j].devnum;
3231 if (conf->mirrors[d].rdev &&
3232 test_bit(In_sync,
3233 &conf->mirrors[d].rdev->flags))
3234 targets++;
3235 }
3236 if (targets == 1)
3237 r10_bio->devs[0].bio->bi_opf
3238 &= ~MD_FAILFAST;
3239 }
3240 }
3241 if (biolist == NULL) {
3242 while (r10_bio) {
3243 struct r10bio *rb2 = r10_bio;
3244 r10_bio = (struct r10bio*) rb2->master_bio;
3245 rb2->master_bio = NULL;
3246 put_buf(rb2);
3247 }
3248 goto giveup;
3249 }
3250 } else {
3251 /* resync. Schedule a read for every block at this virt offset */
3252 int count = 0;
3253
3254 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3255
3256 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3257 &sync_blocks, mddev->degraded) &&
3258 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3259 &mddev->recovery)) {
3260 /* We can skip this block */
3261 *skipped = 1;
3262 return sync_blocks + sectors_skipped;
3263 }
3264 if (sync_blocks < max_sync)
3265 max_sync = sync_blocks;
3266 r10_bio = raid10_alloc_init_r10buf(conf);
3267 r10_bio->state = 0;
3268
3269 r10_bio->mddev = mddev;
3270 atomic_set(&r10_bio->remaining, 0);
3271 raise_barrier(conf, 0);
3272 conf->next_resync = sector_nr;
3273
3274 r10_bio->master_bio = NULL;
3275 r10_bio->sector = sector_nr;
3276 set_bit(R10BIO_IsSync, &r10_bio->state);
3277 raid10_find_phys(conf, r10_bio);
3278 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3279
3280 for (i = 0; i < conf->copies; i++) {
3281 int d = r10_bio->devs[i].devnum;
3282 sector_t first_bad, sector;
3283 int bad_sectors;
3284 struct md_rdev *rdev;
3285
3286 if (r10_bio->devs[i].repl_bio)
3287 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288
3289 bio = r10_bio->devs[i].bio;
3290 bio->bi_status = BLK_STS_IOERR;
3291 rcu_read_lock();
3292 rdev = rcu_dereference(conf->mirrors[d].rdev);
3293 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3294 rcu_read_unlock();
3295 continue;
3296 }
3297 sector = r10_bio->devs[i].addr;
3298 if (is_badblock(rdev, sector, max_sync,
3299 &first_bad, &bad_sectors)) {
3300 if (first_bad > sector)
3301 max_sync = first_bad - sector;
3302 else {
3303 bad_sectors -= (sector - first_bad);
3304 if (max_sync > bad_sectors)
3305 max_sync = bad_sectors;
3306 rcu_read_unlock();
3307 continue;
3308 }
3309 }
3310 atomic_inc(&rdev->nr_pending);
3311 atomic_inc(&r10_bio->remaining);
3312 bio->bi_next = biolist;
3313 biolist = bio;
3314 bio->bi_end_io = end_sync_read;
3315 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3316 if (test_bit(FailFast, &rdev->flags))
3317 bio->bi_opf |= MD_FAILFAST;
3318 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3319 bio_set_dev(bio, rdev->bdev);
3320 count++;
3321
3322 rdev = rcu_dereference(conf->mirrors[d].replacement);
3323 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3324 rcu_read_unlock();
3325 continue;
3326 }
3327 atomic_inc(&rdev->nr_pending);
3328
3329 /* Need to set up for writing to the replacement */
3330 bio = r10_bio->devs[i].repl_bio;
3331 bio->bi_status = BLK_STS_IOERR;
3332
3333 sector = r10_bio->devs[i].addr;
3334 bio->bi_next = biolist;
3335 biolist = bio;
3336 bio->bi_end_io = end_sync_write;
3337 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3338 if (test_bit(FailFast, &rdev->flags))
3339 bio->bi_opf |= MD_FAILFAST;
3340 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3341 bio_set_dev(bio, rdev->bdev);
3342 count++;
3343 rcu_read_unlock();
3344 }
3345
3346 if (count < 2) {
3347 for (i=0; i<conf->copies; i++) {
3348 int d = r10_bio->devs[i].devnum;
3349 if (r10_bio->devs[i].bio->bi_end_io)
3350 rdev_dec_pending(conf->mirrors[d].rdev,
3351 mddev);
3352 if (r10_bio->devs[i].repl_bio &&
3353 r10_bio->devs[i].repl_bio->bi_end_io)
3354 rdev_dec_pending(
3355 conf->mirrors[d].replacement,
3356 mddev);
3357 }
3358 put_buf(r10_bio);
3359 biolist = NULL;
3360 goto giveup;
3361 }
3362 }
3363
3364 nr_sectors = 0;
3365 if (sector_nr + max_sync < max_sector)
3366 max_sector = sector_nr + max_sync;
3367 do {
3368 struct page *page;
3369 int len = PAGE_SIZE;
3370 if (sector_nr + (len>>9) > max_sector)
3371 len = (max_sector - sector_nr) << 9;
3372 if (len == 0)
3373 break;
3374 for (bio= biolist ; bio ; bio=bio->bi_next) {
3375 struct resync_pages *rp = get_resync_pages(bio);
3376 page = resync_fetch_page(rp, page_idx);
3377 /*
3378 * won't fail because the vec table is big enough
3379 * to hold all these pages
3380 */
3381 bio_add_page(bio, page, len, 0);
3382 }
3383 nr_sectors += len>>9;
3384 sector_nr += len>>9;
3385 } while (++page_idx < RESYNC_PAGES);
3386 r10_bio->sectors = nr_sectors;
3387
3388 while (biolist) {
3389 bio = biolist;
3390 biolist = biolist->bi_next;
3391
3392 bio->bi_next = NULL;
3393 r10_bio = get_resync_r10bio(bio);
3394 r10_bio->sectors = nr_sectors;
3395
3396 if (bio->bi_end_io == end_sync_read) {
3397 md_sync_acct_bio(bio, nr_sectors);
3398 bio->bi_status = 0;
3399 generic_make_request(bio);
3400 }
3401 }
3402
3403 if (sectors_skipped)
3404 /* pretend they weren't skipped, it makes
3405 * no important difference in this case
3406 */
3407 md_done_sync(mddev, sectors_skipped, 1);
3408
3409 return sectors_skipped + nr_sectors;
3410 giveup:
3411 /* There is nowhere to write, so all non-sync
3412 * drives must be failed or in resync, all drives
3413 * have a bad block, so try the next chunk...
3414 */
3415 if (sector_nr + max_sync < max_sector)
3416 max_sector = sector_nr + max_sync;
3417
3418 sectors_skipped += (max_sector - sector_nr);
3419 chunks_skipped ++;
3420 sector_nr = max_sector;
3421 goto skipped;
3422 }
3423
3424 static sector_t
3425 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3426 {
3427 sector_t size;
3428 struct r10conf *conf = mddev->private;
3429
3430 if (!raid_disks)
3431 raid_disks = min(conf->geo.raid_disks,
3432 conf->prev.raid_disks);
3433 if (!sectors)
3434 sectors = conf->dev_sectors;
3435
3436 size = sectors >> conf->geo.chunk_shift;
3437 sector_div(size, conf->geo.far_copies);
3438 size = size * raid_disks;
3439 sector_div(size, conf->geo.near_copies);
3440
3441 return size << conf->geo.chunk_shift;
3442 }
3443
3444 static void calc_sectors(struct r10conf *conf, sector_t size)
3445 {
3446 /* Calculate the number of sectors-per-device that will
3447 * actually be used, and set conf->dev_sectors and
3448 * conf->stride
3449 */
3450
3451 size = size >> conf->geo.chunk_shift;
3452 sector_div(size, conf->geo.far_copies);
3453 size = size * conf->geo.raid_disks;
3454 sector_div(size, conf->geo.near_copies);
3455 /* 'size' is now the number of chunks in the array */
3456 /* calculate "used chunks per device" */
3457 size = size * conf->copies;
3458
3459 /* We need to round up when dividing by raid_disks to
3460 * get the stride size.
3461 */
3462 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3463
3464 conf->dev_sectors = size << conf->geo.chunk_shift;
3465
3466 if (conf->geo.far_offset)
3467 conf->geo.stride = 1 << conf->geo.chunk_shift;
3468 else {
3469 sector_div(size, conf->geo.far_copies);
3470 conf->geo.stride = size << conf->geo.chunk_shift;
3471 }
3472 }
3473
3474 enum geo_type {geo_new, geo_old, geo_start};
3475 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3476 {
3477 int nc, fc, fo;
3478 int layout, chunk, disks;
3479 switch (new) {
3480 case geo_old:
3481 layout = mddev->layout;
3482 chunk = mddev->chunk_sectors;
3483 disks = mddev->raid_disks - mddev->delta_disks;
3484 break;
3485 case geo_new:
3486 layout = mddev->new_layout;
3487 chunk = mddev->new_chunk_sectors;
3488 disks = mddev->raid_disks;
3489 break;
3490 default: /* avoid 'may be unused' warnings */
3491 case geo_start: /* new when starting reshape - raid_disks not
3492 * updated yet. */
3493 layout = mddev->new_layout;
3494 chunk = mddev->new_chunk_sectors;
3495 disks = mddev->raid_disks + mddev->delta_disks;
3496 break;
3497 }
3498 if (layout >> 19)
3499 return -1;
3500 if (chunk < (PAGE_SIZE >> 9) ||
3501 !is_power_of_2(chunk))
3502 return -2;
3503 nc = layout & 255;
3504 fc = (layout >> 8) & 255;
3505 fo = layout & (1<<16);
3506 geo->raid_disks = disks;
3507 geo->near_copies = nc;
3508 geo->far_copies = fc;
3509 geo->far_offset = fo;
3510 switch (layout >> 17) {
3511 case 0: /* original layout. simple but not always optimal */
3512 geo->far_set_size = disks;
3513 break;
3514 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3515 * actually using this, but leave code here just in case.*/
3516 geo->far_set_size = disks/fc;
3517 WARN(geo->far_set_size < fc,
3518 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3519 break;
3520 case 2: /* "improved" layout fixed to match documentation */
3521 geo->far_set_size = fc * nc;
3522 break;
3523 default: /* Not a valid layout */
3524 return -1;
3525 }
3526 geo->chunk_mask = chunk - 1;
3527 geo->chunk_shift = ffz(~chunk);
3528 return nc*fc;
3529 }
3530
3531 static struct r10conf *setup_conf(struct mddev *mddev)
3532 {
3533 struct r10conf *conf = NULL;
3534 int err = -EINVAL;
3535 struct geom geo;
3536 int copies;
3537
3538 copies = setup_geo(&geo, mddev, geo_new);
3539
3540 if (copies == -2) {
3541 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3542 mdname(mddev), PAGE_SIZE);
3543 goto out;
3544 }
3545
3546 if (copies < 2 || copies > mddev->raid_disks) {
3547 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3548 mdname(mddev), mddev->new_layout);
3549 goto out;
3550 }
3551
3552 err = -ENOMEM;
3553 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3554 if (!conf)
3555 goto out;
3556
3557 /* FIXME calc properly */
3558 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3559 max(0,-mddev->delta_disks)),
3560 GFP_KERNEL);
3561 if (!conf->mirrors)
3562 goto out;
3563
3564 conf->tmppage = alloc_page(GFP_KERNEL);
3565 if (!conf->tmppage)
3566 goto out;
3567
3568 conf->geo = geo;
3569 conf->copies = copies;
3570 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3571 r10bio_pool_free, conf);
3572 if (!conf->r10bio_pool)
3573 goto out;
3574
3575 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3576 if (!conf->bio_split)
3577 goto out;
3578
3579 calc_sectors(conf, mddev->dev_sectors);
3580 if (mddev->reshape_position == MaxSector) {
3581 conf->prev = conf->geo;
3582 conf->reshape_progress = MaxSector;
3583 } else {
3584 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3585 err = -EINVAL;
3586 goto out;
3587 }
3588 conf->reshape_progress = mddev->reshape_position;
3589 if (conf->prev.far_offset)
3590 conf->prev.stride = 1 << conf->prev.chunk_shift;
3591 else
3592 /* far_copies must be 1 */
3593 conf->prev.stride = conf->dev_sectors;
3594 }
3595 conf->reshape_safe = conf->reshape_progress;
3596 spin_lock_init(&conf->device_lock);
3597 INIT_LIST_HEAD(&conf->retry_list);
3598 INIT_LIST_HEAD(&conf->bio_end_io_list);
3599
3600 spin_lock_init(&conf->resync_lock);
3601 init_waitqueue_head(&conf->wait_barrier);
3602 atomic_set(&conf->nr_pending, 0);
3603
3604 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3605 if (!conf->thread)
3606 goto out;
3607
3608 conf->mddev = mddev;
3609 return conf;
3610
3611 out:
3612 if (conf) {
3613 mempool_destroy(conf->r10bio_pool);
3614 kfree(conf->mirrors);
3615 safe_put_page(conf->tmppage);
3616 if (conf->bio_split)
3617 bioset_free(conf->bio_split);
3618 kfree(conf);
3619 }
3620 return ERR_PTR(err);
3621 }
3622
3623 static int raid10_run(struct mddev *mddev)
3624 {
3625 struct r10conf *conf;
3626 int i, disk_idx, chunk_size;
3627 struct raid10_info *disk;
3628 struct md_rdev *rdev;
3629 sector_t size;
3630 sector_t min_offset_diff = 0;
3631 int first = 1;
3632 bool discard_supported = false;
3633
3634 if (mddev_init_writes_pending(mddev) < 0)
3635 return -ENOMEM;
3636
3637 if (mddev->private == NULL) {
3638 conf = setup_conf(mddev);
3639 if (IS_ERR(conf))
3640 return PTR_ERR(conf);
3641 mddev->private = conf;
3642 }
3643 conf = mddev->private;
3644 if (!conf)
3645 goto out;
3646
3647 mddev->thread = conf->thread;
3648 conf->thread = NULL;
3649
3650 chunk_size = mddev->chunk_sectors << 9;
3651 if (mddev->queue) {
3652 blk_queue_max_discard_sectors(mddev->queue,
3653 mddev->chunk_sectors);
3654 blk_queue_max_write_same_sectors(mddev->queue, 0);
3655 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3656 blk_queue_io_min(mddev->queue, chunk_size);
3657 if (conf->geo.raid_disks % conf->geo.near_copies)
3658 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3659 else
3660 blk_queue_io_opt(mddev->queue, chunk_size *
3661 (conf->geo.raid_disks / conf->geo.near_copies));
3662 }
3663
3664 rdev_for_each(rdev, mddev) {
3665 long long diff;
3666
3667 disk_idx = rdev->raid_disk;
3668 if (disk_idx < 0)
3669 continue;
3670 if (disk_idx >= conf->geo.raid_disks &&
3671 disk_idx >= conf->prev.raid_disks)
3672 continue;
3673 disk = conf->mirrors + disk_idx;
3674
3675 if (test_bit(Replacement, &rdev->flags)) {
3676 if (disk->replacement)
3677 goto out_free_conf;
3678 disk->replacement = rdev;
3679 } else {
3680 if (disk->rdev)
3681 goto out_free_conf;
3682 disk->rdev = rdev;
3683 }
3684 diff = (rdev->new_data_offset - rdev->data_offset);
3685 if (!mddev->reshape_backwards)
3686 diff = -diff;
3687 if (diff < 0)
3688 diff = 0;
3689 if (first || diff < min_offset_diff)
3690 min_offset_diff = diff;
3691
3692 if (mddev->gendisk)
3693 disk_stack_limits(mddev->gendisk, rdev->bdev,
3694 rdev->data_offset << 9);
3695
3696 disk->head_position = 0;
3697
3698 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3699 discard_supported = true;
3700 first = 0;
3701 }
3702
3703 if (mddev->queue) {
3704 if (discard_supported)
3705 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3706 mddev->queue);
3707 else
3708 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3709 mddev->queue);
3710 }
3711 /* need to check that every block has at least one working mirror */
3712 if (!enough(conf, -1)) {
3713 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3714 mdname(mddev));
3715 goto out_free_conf;
3716 }
3717
3718 if (conf->reshape_progress != MaxSector) {
3719 /* must ensure that shape change is supported */
3720 if (conf->geo.far_copies != 1 &&
3721 conf->geo.far_offset == 0)
3722 goto out_free_conf;
3723 if (conf->prev.far_copies != 1 &&
3724 conf->prev.far_offset == 0)
3725 goto out_free_conf;
3726 }
3727
3728 mddev->degraded = 0;
3729 for (i = 0;
3730 i < conf->geo.raid_disks
3731 || i < conf->prev.raid_disks;
3732 i++) {
3733
3734 disk = conf->mirrors + i;
3735
3736 if (!disk->rdev && disk->replacement) {
3737 /* The replacement is all we have - use it */
3738 disk->rdev = disk->replacement;
3739 disk->replacement = NULL;
3740 clear_bit(Replacement, &disk->rdev->flags);
3741 }
3742
3743 if (!disk->rdev ||
3744 !test_bit(In_sync, &disk->rdev->flags)) {
3745 disk->head_position = 0;
3746 mddev->degraded++;
3747 if (disk->rdev &&
3748 disk->rdev->saved_raid_disk < 0)
3749 conf->fullsync = 1;
3750 }
3751 disk->recovery_disabled = mddev->recovery_disabled - 1;
3752 }
3753
3754 if (mddev->recovery_cp != MaxSector)
3755 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3756 mdname(mddev));
3757 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3758 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3759 conf->geo.raid_disks);
3760 /*
3761 * Ok, everything is just fine now
3762 */
3763 mddev->dev_sectors = conf->dev_sectors;
3764 size = raid10_size(mddev, 0, 0);
3765 md_set_array_sectors(mddev, size);
3766 mddev->resync_max_sectors = size;
3767 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3768
3769 if (mddev->queue) {
3770 int stripe = conf->geo.raid_disks *
3771 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3772
3773 /* Calculate max read-ahead size.
3774 * We need to readahead at least twice a whole stripe....
3775 * maybe...
3776 */
3777 stripe /= conf->geo.near_copies;
3778 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3779 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3780 }
3781
3782 if (md_integrity_register(mddev))
3783 goto out_free_conf;
3784
3785 if (conf->reshape_progress != MaxSector) {
3786 unsigned long before_length, after_length;
3787
3788 before_length = ((1 << conf->prev.chunk_shift) *
3789 conf->prev.far_copies);
3790 after_length = ((1 << conf->geo.chunk_shift) *
3791 conf->geo.far_copies);
3792
3793 if (max(before_length, after_length) > min_offset_diff) {
3794 /* This cannot work */
3795 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3796 goto out_free_conf;
3797 }
3798 conf->offset_diff = min_offset_diff;
3799
3800 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3801 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3802 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3803 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3804 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3805 "reshape");
3806 }
3807
3808 return 0;
3809
3810 out_free_conf:
3811 md_unregister_thread(&mddev->thread);
3812 mempool_destroy(conf->r10bio_pool);
3813 safe_put_page(conf->tmppage);
3814 kfree(conf->mirrors);
3815 kfree(conf);
3816 mddev->private = NULL;
3817 out:
3818 return -EIO;
3819 }
3820
3821 static void raid10_free(struct mddev *mddev, void *priv)
3822 {
3823 struct r10conf *conf = priv;
3824
3825 mempool_destroy(conf->r10bio_pool);
3826 safe_put_page(conf->tmppage);
3827 kfree(conf->mirrors);
3828 kfree(conf->mirrors_old);
3829 kfree(conf->mirrors_new);
3830 if (conf->bio_split)
3831 bioset_free(conf->bio_split);
3832 kfree(conf);
3833 }
3834
3835 static void raid10_quiesce(struct mddev *mddev, int state)
3836 {
3837 struct r10conf *conf = mddev->private;
3838
3839 switch(state) {
3840 case 1:
3841 raise_barrier(conf, 0);
3842 break;
3843 case 0:
3844 lower_barrier(conf);
3845 break;
3846 }
3847 }
3848
3849 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3850 {
3851 /* Resize of 'far' arrays is not supported.
3852 * For 'near' and 'offset' arrays we can set the
3853 * number of sectors used to be an appropriate multiple
3854 * of the chunk size.
3855 * For 'offset', this is far_copies*chunksize.
3856 * For 'near' the multiplier is the LCM of
3857 * near_copies and raid_disks.
3858 * So if far_copies > 1 && !far_offset, fail.
3859 * Else find LCM(raid_disks, near_copy)*far_copies and
3860 * multiply by chunk_size. Then round to this number.
3861 * This is mostly done by raid10_size()
3862 */
3863 struct r10conf *conf = mddev->private;
3864 sector_t oldsize, size;
3865
3866 if (mddev->reshape_position != MaxSector)
3867 return -EBUSY;
3868
3869 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3870 return -EINVAL;
3871
3872 oldsize = raid10_size(mddev, 0, 0);
3873 size = raid10_size(mddev, sectors, 0);
3874 if (mddev->external_size &&
3875 mddev->array_sectors > size)
3876 return -EINVAL;
3877 if (mddev->bitmap) {
3878 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3879 if (ret)
3880 return ret;
3881 }
3882 md_set_array_sectors(mddev, size);
3883 if (sectors > mddev->dev_sectors &&
3884 mddev->recovery_cp > oldsize) {
3885 mddev->recovery_cp = oldsize;
3886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3887 }
3888 calc_sectors(conf, sectors);
3889 mddev->dev_sectors = conf->dev_sectors;
3890 mddev->resync_max_sectors = size;
3891 return 0;
3892 }
3893
3894 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3895 {
3896 struct md_rdev *rdev;
3897 struct r10conf *conf;
3898
3899 if (mddev->degraded > 0) {
3900 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3901 mdname(mddev));
3902 return ERR_PTR(-EINVAL);
3903 }
3904 sector_div(size, devs);
3905
3906 /* Set new parameters */
3907 mddev->new_level = 10;
3908 /* new layout: far_copies = 1, near_copies = 2 */
3909 mddev->new_layout = (1<<8) + 2;
3910 mddev->new_chunk_sectors = mddev->chunk_sectors;
3911 mddev->delta_disks = mddev->raid_disks;
3912 mddev->raid_disks *= 2;
3913 /* make sure it will be not marked as dirty */
3914 mddev->recovery_cp = MaxSector;
3915 mddev->dev_sectors = size;
3916
3917 conf = setup_conf(mddev);
3918 if (!IS_ERR(conf)) {
3919 rdev_for_each(rdev, mddev)
3920 if (rdev->raid_disk >= 0) {
3921 rdev->new_raid_disk = rdev->raid_disk * 2;
3922 rdev->sectors = size;
3923 }
3924 conf->barrier = 1;
3925 }
3926
3927 return conf;
3928 }
3929
3930 static void *raid10_takeover(struct mddev *mddev)
3931 {
3932 struct r0conf *raid0_conf;
3933
3934 /* raid10 can take over:
3935 * raid0 - providing it has only two drives
3936 */
3937 if (mddev->level == 0) {
3938 /* for raid0 takeover only one zone is supported */
3939 raid0_conf = mddev->private;
3940 if (raid0_conf->nr_strip_zones > 1) {
3941 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3942 mdname(mddev));
3943 return ERR_PTR(-EINVAL);
3944 }
3945 return raid10_takeover_raid0(mddev,
3946 raid0_conf->strip_zone->zone_end,
3947 raid0_conf->strip_zone->nb_dev);
3948 }
3949 return ERR_PTR(-EINVAL);
3950 }
3951
3952 static int raid10_check_reshape(struct mddev *mddev)
3953 {
3954 /* Called when there is a request to change
3955 * - layout (to ->new_layout)
3956 * - chunk size (to ->new_chunk_sectors)
3957 * - raid_disks (by delta_disks)
3958 * or when trying to restart a reshape that was ongoing.
3959 *
3960 * We need to validate the request and possibly allocate
3961 * space if that might be an issue later.
3962 *
3963 * Currently we reject any reshape of a 'far' mode array,
3964 * allow chunk size to change if new is generally acceptable,
3965 * allow raid_disks to increase, and allow
3966 * a switch between 'near' mode and 'offset' mode.
3967 */
3968 struct r10conf *conf = mddev->private;
3969 struct geom geo;
3970
3971 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3972 return -EINVAL;
3973
3974 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3975 /* mustn't change number of copies */
3976 return -EINVAL;
3977 if (geo.far_copies > 1 && !geo.far_offset)
3978 /* Cannot switch to 'far' mode */
3979 return -EINVAL;
3980
3981 if (mddev->array_sectors & geo.chunk_mask)
3982 /* not factor of array size */
3983 return -EINVAL;
3984
3985 if (!enough(conf, -1))
3986 return -EINVAL;
3987
3988 kfree(conf->mirrors_new);
3989 conf->mirrors_new = NULL;
3990 if (mddev->delta_disks > 0) {
3991 /* allocate new 'mirrors' list */
3992 conf->mirrors_new = kzalloc(
3993 sizeof(struct raid10_info)
3994 *(mddev->raid_disks +
3995 mddev->delta_disks),
3996 GFP_KERNEL);
3997 if (!conf->mirrors_new)
3998 return -ENOMEM;
3999 }
4000 return 0;
4001 }
4002
4003 /*
4004 * Need to check if array has failed when deciding whether to:
4005 * - start an array
4006 * - remove non-faulty devices
4007 * - add a spare
4008 * - allow a reshape
4009 * This determination is simple when no reshape is happening.
4010 * However if there is a reshape, we need to carefully check
4011 * both the before and after sections.
4012 * This is because some failed devices may only affect one
4013 * of the two sections, and some non-in_sync devices may
4014 * be insync in the section most affected by failed devices.
4015 */
4016 static int calc_degraded(struct r10conf *conf)
4017 {
4018 int degraded, degraded2;
4019 int i;
4020
4021 rcu_read_lock();
4022 degraded = 0;
4023 /* 'prev' section first */
4024 for (i = 0; i < conf->prev.raid_disks; i++) {
4025 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4026 if (!rdev || test_bit(Faulty, &rdev->flags))
4027 degraded++;
4028 else if (!test_bit(In_sync, &rdev->flags))
4029 /* When we can reduce the number of devices in
4030 * an array, this might not contribute to
4031 * 'degraded'. It does now.
4032 */
4033 degraded++;
4034 }
4035 rcu_read_unlock();
4036 if (conf->geo.raid_disks == conf->prev.raid_disks)
4037 return degraded;
4038 rcu_read_lock();
4039 degraded2 = 0;
4040 for (i = 0; i < conf->geo.raid_disks; i++) {
4041 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4042 if (!rdev || test_bit(Faulty, &rdev->flags))
4043 degraded2++;
4044 else if (!test_bit(In_sync, &rdev->flags)) {
4045 /* If reshape is increasing the number of devices,
4046 * this section has already been recovered, so
4047 * it doesn't contribute to degraded.
4048 * else it does.
4049 */
4050 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4051 degraded2++;
4052 }
4053 }
4054 rcu_read_unlock();
4055 if (degraded2 > degraded)
4056 return degraded2;
4057 return degraded;
4058 }
4059
4060 static int raid10_start_reshape(struct mddev *mddev)
4061 {
4062 /* A 'reshape' has been requested. This commits
4063 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4064 * This also checks if there are enough spares and adds them
4065 * to the array.
4066 * We currently require enough spares to make the final
4067 * array non-degraded. We also require that the difference
4068 * between old and new data_offset - on each device - is
4069 * enough that we never risk over-writing.
4070 */
4071
4072 unsigned long before_length, after_length;
4073 sector_t min_offset_diff = 0;
4074 int first = 1;
4075 struct geom new;
4076 struct r10conf *conf = mddev->private;
4077 struct md_rdev *rdev;
4078 int spares = 0;
4079 int ret;
4080
4081 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4082 return -EBUSY;
4083
4084 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4085 return -EINVAL;
4086
4087 before_length = ((1 << conf->prev.chunk_shift) *
4088 conf->prev.far_copies);
4089 after_length = ((1 << conf->geo.chunk_shift) *
4090 conf->geo.far_copies);
4091
4092 rdev_for_each(rdev, mddev) {
4093 if (!test_bit(In_sync, &rdev->flags)
4094 && !test_bit(Faulty, &rdev->flags))
4095 spares++;
4096 if (rdev->raid_disk >= 0) {
4097 long long diff = (rdev->new_data_offset
4098 - rdev->data_offset);
4099 if (!mddev->reshape_backwards)
4100 diff = -diff;
4101 if (diff < 0)
4102 diff = 0;
4103 if (first || diff < min_offset_diff)
4104 min_offset_diff = diff;
4105 first = 0;
4106 }
4107 }
4108
4109 if (max(before_length, after_length) > min_offset_diff)
4110 return -EINVAL;
4111
4112 if (spares < mddev->delta_disks)
4113 return -EINVAL;
4114
4115 conf->offset_diff = min_offset_diff;
4116 spin_lock_irq(&conf->device_lock);
4117 if (conf->mirrors_new) {
4118 memcpy(conf->mirrors_new, conf->mirrors,
4119 sizeof(struct raid10_info)*conf->prev.raid_disks);
4120 smp_mb();
4121 kfree(conf->mirrors_old);
4122 conf->mirrors_old = conf->mirrors;
4123 conf->mirrors = conf->mirrors_new;
4124 conf->mirrors_new = NULL;
4125 }
4126 setup_geo(&conf->geo, mddev, geo_start);
4127 smp_mb();
4128 if (mddev->reshape_backwards) {
4129 sector_t size = raid10_size(mddev, 0, 0);
4130 if (size < mddev->array_sectors) {
4131 spin_unlock_irq(&conf->device_lock);
4132 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4133 mdname(mddev));
4134 return -EINVAL;
4135 }
4136 mddev->resync_max_sectors = size;
4137 conf->reshape_progress = size;
4138 } else
4139 conf->reshape_progress = 0;
4140 conf->reshape_safe = conf->reshape_progress;
4141 spin_unlock_irq(&conf->device_lock);
4142
4143 if (mddev->delta_disks && mddev->bitmap) {
4144 ret = bitmap_resize(mddev->bitmap,
4145 raid10_size(mddev, 0,
4146 conf->geo.raid_disks),
4147 0, 0);
4148 if (ret)
4149 goto abort;
4150 }
4151 if (mddev->delta_disks > 0) {
4152 rdev_for_each(rdev, mddev)
4153 if (rdev->raid_disk < 0 &&
4154 !test_bit(Faulty, &rdev->flags)) {
4155 if (raid10_add_disk(mddev, rdev) == 0) {
4156 if (rdev->raid_disk >=
4157 conf->prev.raid_disks)
4158 set_bit(In_sync, &rdev->flags);
4159 else
4160 rdev->recovery_offset = 0;
4161
4162 if (sysfs_link_rdev(mddev, rdev))
4163 /* Failure here is OK */;
4164 }
4165 } else if (rdev->raid_disk >= conf->prev.raid_disks
4166 && !test_bit(Faulty, &rdev->flags)) {
4167 /* This is a spare that was manually added */
4168 set_bit(In_sync, &rdev->flags);
4169 }
4170 }
4171 /* When a reshape changes the number of devices,
4172 * ->degraded is measured against the larger of the
4173 * pre and post numbers.
4174 */
4175 spin_lock_irq(&conf->device_lock);
4176 mddev->degraded = calc_degraded(conf);
4177 spin_unlock_irq(&conf->device_lock);
4178 mddev->raid_disks = conf->geo.raid_disks;
4179 mddev->reshape_position = conf->reshape_progress;
4180 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4181
4182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4185 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4187
4188 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4189 "reshape");
4190 if (!mddev->sync_thread) {
4191 ret = -EAGAIN;
4192 goto abort;
4193 }
4194 conf->reshape_checkpoint = jiffies;
4195 md_wakeup_thread(mddev->sync_thread);
4196 md_new_event(mddev);
4197 return 0;
4198
4199 abort:
4200 mddev->recovery = 0;
4201 spin_lock_irq(&conf->device_lock);
4202 conf->geo = conf->prev;
4203 mddev->raid_disks = conf->geo.raid_disks;
4204 rdev_for_each(rdev, mddev)
4205 rdev->new_data_offset = rdev->data_offset;
4206 smp_wmb();
4207 conf->reshape_progress = MaxSector;
4208 conf->reshape_safe = MaxSector;
4209 mddev->reshape_position = MaxSector;
4210 spin_unlock_irq(&conf->device_lock);
4211 return ret;
4212 }
4213
4214 /* Calculate the last device-address that could contain
4215 * any block from the chunk that includes the array-address 's'
4216 * and report the next address.
4217 * i.e. the address returned will be chunk-aligned and after
4218 * any data that is in the chunk containing 's'.
4219 */
4220 static sector_t last_dev_address(sector_t s, struct geom *geo)
4221 {
4222 s = (s | geo->chunk_mask) + 1;
4223 s >>= geo->chunk_shift;
4224 s *= geo->near_copies;
4225 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4226 s *= geo->far_copies;
4227 s <<= geo->chunk_shift;
4228 return s;
4229 }
4230
4231 /* Calculate the first device-address that could contain
4232 * any block from the chunk that includes the array-address 's'.
4233 * This too will be the start of a chunk
4234 */
4235 static sector_t first_dev_address(sector_t s, struct geom *geo)
4236 {
4237 s >>= geo->chunk_shift;
4238 s *= geo->near_copies;
4239 sector_div(s, geo->raid_disks);
4240 s *= geo->far_copies;
4241 s <<= geo->chunk_shift;
4242 return s;
4243 }
4244
4245 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4246 int *skipped)
4247 {
4248 /* We simply copy at most one chunk (smallest of old and new)
4249 * at a time, possibly less if that exceeds RESYNC_PAGES,
4250 * or we hit a bad block or something.
4251 * This might mean we pause for normal IO in the middle of
4252 * a chunk, but that is not a problem as mddev->reshape_position
4253 * can record any location.
4254 *
4255 * If we will want to write to a location that isn't
4256 * yet recorded as 'safe' (i.e. in metadata on disk) then
4257 * we need to flush all reshape requests and update the metadata.
4258 *
4259 * When reshaping forwards (e.g. to more devices), we interpret
4260 * 'safe' as the earliest block which might not have been copied
4261 * down yet. We divide this by previous stripe size and multiply
4262 * by previous stripe length to get lowest device offset that we
4263 * cannot write to yet.
4264 * We interpret 'sector_nr' as an address that we want to write to.
4265 * From this we use last_device_address() to find where we might
4266 * write to, and first_device_address on the 'safe' position.
4267 * If this 'next' write position is after the 'safe' position,
4268 * we must update the metadata to increase the 'safe' position.
4269 *
4270 * When reshaping backwards, we round in the opposite direction
4271 * and perform the reverse test: next write position must not be
4272 * less than current safe position.
4273 *
4274 * In all this the minimum difference in data offsets
4275 * (conf->offset_diff - always positive) allows a bit of slack,
4276 * so next can be after 'safe', but not by more than offset_diff
4277 *
4278 * We need to prepare all the bios here before we start any IO
4279 * to ensure the size we choose is acceptable to all devices.
4280 * The means one for each copy for write-out and an extra one for
4281 * read-in.
4282 * We store the read-in bio in ->master_bio and the others in
4283 * ->devs[x].bio and ->devs[x].repl_bio.
4284 */
4285 struct r10conf *conf = mddev->private;
4286 struct r10bio *r10_bio;
4287 sector_t next, safe, last;
4288 int max_sectors;
4289 int nr_sectors;
4290 int s;
4291 struct md_rdev *rdev;
4292 int need_flush = 0;
4293 struct bio *blist;
4294 struct bio *bio, *read_bio;
4295 int sectors_done = 0;
4296 struct page **pages;
4297
4298 if (sector_nr == 0) {
4299 /* If restarting in the middle, skip the initial sectors */
4300 if (mddev->reshape_backwards &&
4301 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4302 sector_nr = (raid10_size(mddev, 0, 0)
4303 - conf->reshape_progress);
4304 } else if (!mddev->reshape_backwards &&
4305 conf->reshape_progress > 0)
4306 sector_nr = conf->reshape_progress;
4307 if (sector_nr) {
4308 mddev->curr_resync_completed = sector_nr;
4309 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4310 *skipped = 1;
4311 return sector_nr;
4312 }
4313 }
4314
4315 /* We don't use sector_nr to track where we are up to
4316 * as that doesn't work well for ->reshape_backwards.
4317 * So just use ->reshape_progress.
4318 */
4319 if (mddev->reshape_backwards) {
4320 /* 'next' is the earliest device address that we might
4321 * write to for this chunk in the new layout
4322 */
4323 next = first_dev_address(conf->reshape_progress - 1,
4324 &conf->geo);
4325
4326 /* 'safe' is the last device address that we might read from
4327 * in the old layout after a restart
4328 */
4329 safe = last_dev_address(conf->reshape_safe - 1,
4330 &conf->prev);
4331
4332 if (next + conf->offset_diff < safe)
4333 need_flush = 1;
4334
4335 last = conf->reshape_progress - 1;
4336 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4337 & conf->prev.chunk_mask);
4338 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4339 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4340 } else {
4341 /* 'next' is after the last device address that we
4342 * might write to for this chunk in the new layout
4343 */
4344 next = last_dev_address(conf->reshape_progress, &conf->geo);
4345
4346 /* 'safe' is the earliest device address that we might
4347 * read from in the old layout after a restart
4348 */
4349 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4350
4351 /* Need to update metadata if 'next' might be beyond 'safe'
4352 * as that would possibly corrupt data
4353 */
4354 if (next > safe + conf->offset_diff)
4355 need_flush = 1;
4356
4357 sector_nr = conf->reshape_progress;
4358 last = sector_nr | (conf->geo.chunk_mask
4359 & conf->prev.chunk_mask);
4360
4361 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4362 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4363 }
4364
4365 if (need_flush ||
4366 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4367 /* Need to update reshape_position in metadata */
4368 wait_barrier(conf);
4369 mddev->reshape_position = conf->reshape_progress;
4370 if (mddev->reshape_backwards)
4371 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4372 - conf->reshape_progress;
4373 else
4374 mddev->curr_resync_completed = conf->reshape_progress;
4375 conf->reshape_checkpoint = jiffies;
4376 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4377 md_wakeup_thread(mddev->thread);
4378 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4379 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4380 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4381 allow_barrier(conf);
4382 return sectors_done;
4383 }
4384 conf->reshape_safe = mddev->reshape_position;
4385 allow_barrier(conf);
4386 }
4387
4388 read_more:
4389 /* Now schedule reads for blocks from sector_nr to last */
4390 r10_bio = raid10_alloc_init_r10buf(conf);
4391 r10_bio->state = 0;
4392 raise_barrier(conf, sectors_done != 0);
4393 atomic_set(&r10_bio->remaining, 0);
4394 r10_bio->mddev = mddev;
4395 r10_bio->sector = sector_nr;
4396 set_bit(R10BIO_IsReshape, &r10_bio->state);
4397 r10_bio->sectors = last - sector_nr + 1;
4398 rdev = read_balance(conf, r10_bio, &max_sectors);
4399 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4400
4401 if (!rdev) {
4402 /* Cannot read from here, so need to record bad blocks
4403 * on all the target devices.
4404 */
4405 // FIXME
4406 mempool_free(r10_bio, conf->r10buf_pool);
4407 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4408 return sectors_done;
4409 }
4410
4411 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4412
4413 bio_set_dev(read_bio, rdev->bdev);
4414 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4415 + rdev->data_offset);
4416 read_bio->bi_private = r10_bio;
4417 read_bio->bi_end_io = end_reshape_read;
4418 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4419 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4420 read_bio->bi_status = 0;
4421 read_bio->bi_vcnt = 0;
4422 read_bio->bi_iter.bi_size = 0;
4423 r10_bio->master_bio = read_bio;
4424 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4425
4426 /* Now find the locations in the new layout */
4427 __raid10_find_phys(&conf->geo, r10_bio);
4428
4429 blist = read_bio;
4430 read_bio->bi_next = NULL;
4431
4432 rcu_read_lock();
4433 for (s = 0; s < conf->copies*2; s++) {
4434 struct bio *b;
4435 int d = r10_bio->devs[s/2].devnum;
4436 struct md_rdev *rdev2;
4437 if (s&1) {
4438 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4439 b = r10_bio->devs[s/2].repl_bio;
4440 } else {
4441 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4442 b = r10_bio->devs[s/2].bio;
4443 }
4444 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4445 continue;
4446
4447 bio_set_dev(b, rdev2->bdev);
4448 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4449 rdev2->new_data_offset;
4450 b->bi_end_io = end_reshape_write;
4451 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4452 b->bi_next = blist;
4453 blist = b;
4454 }
4455
4456 /* Now add as many pages as possible to all of these bios. */
4457
4458 nr_sectors = 0;
4459 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4460 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4461 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4462 int len = (max_sectors - s) << 9;
4463 if (len > PAGE_SIZE)
4464 len = PAGE_SIZE;
4465 for (bio = blist; bio ; bio = bio->bi_next) {
4466 /*
4467 * won't fail because the vec table is big enough
4468 * to hold all these pages
4469 */
4470 bio_add_page(bio, page, len, 0);
4471 }
4472 sector_nr += len >> 9;
4473 nr_sectors += len >> 9;
4474 }
4475 rcu_read_unlock();
4476 r10_bio->sectors = nr_sectors;
4477
4478 /* Now submit the read */
4479 md_sync_acct_bio(read_bio, r10_bio->sectors);
4480 atomic_inc(&r10_bio->remaining);
4481 read_bio->bi_next = NULL;
4482 generic_make_request(read_bio);
4483 sector_nr += nr_sectors;
4484 sectors_done += nr_sectors;
4485 if (sector_nr <= last)
4486 goto read_more;
4487
4488 /* Now that we have done the whole section we can
4489 * update reshape_progress
4490 */
4491 if (mddev->reshape_backwards)
4492 conf->reshape_progress -= sectors_done;
4493 else
4494 conf->reshape_progress += sectors_done;
4495
4496 return sectors_done;
4497 }
4498
4499 static void end_reshape_request(struct r10bio *r10_bio);
4500 static int handle_reshape_read_error(struct mddev *mddev,
4501 struct r10bio *r10_bio);
4502 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4503 {
4504 /* Reshape read completed. Hopefully we have a block
4505 * to write out.
4506 * If we got a read error then we do sync 1-page reads from
4507 * elsewhere until we find the data - or give up.
4508 */
4509 struct r10conf *conf = mddev->private;
4510 int s;
4511
4512 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4513 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4514 /* Reshape has been aborted */
4515 md_done_sync(mddev, r10_bio->sectors, 0);
4516 return;
4517 }
4518
4519 /* We definitely have the data in the pages, schedule the
4520 * writes.
4521 */
4522 atomic_set(&r10_bio->remaining, 1);
4523 for (s = 0; s < conf->copies*2; s++) {
4524 struct bio *b;
4525 int d = r10_bio->devs[s/2].devnum;
4526 struct md_rdev *rdev;
4527 rcu_read_lock();
4528 if (s&1) {
4529 rdev = rcu_dereference(conf->mirrors[d].replacement);
4530 b = r10_bio->devs[s/2].repl_bio;
4531 } else {
4532 rdev = rcu_dereference(conf->mirrors[d].rdev);
4533 b = r10_bio->devs[s/2].bio;
4534 }
4535 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4536 rcu_read_unlock();
4537 continue;
4538 }
4539 atomic_inc(&rdev->nr_pending);
4540 rcu_read_unlock();
4541 md_sync_acct_bio(b, r10_bio->sectors);
4542 atomic_inc(&r10_bio->remaining);
4543 b->bi_next = NULL;
4544 generic_make_request(b);
4545 }
4546 end_reshape_request(r10_bio);
4547 }
4548
4549 static void end_reshape(struct r10conf *conf)
4550 {
4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552 return;
4553
4554 spin_lock_irq(&conf->device_lock);
4555 conf->prev = conf->geo;
4556 md_finish_reshape(conf->mddev);
4557 smp_wmb();
4558 conf->reshape_progress = MaxSector;
4559 conf->reshape_safe = MaxSector;
4560 spin_unlock_irq(&conf->device_lock);
4561
4562 /* read-ahead size must cover two whole stripes, which is
4563 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4564 */
4565 if (conf->mddev->queue) {
4566 int stripe = conf->geo.raid_disks *
4567 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4568 stripe /= conf->geo.near_copies;
4569 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4570 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4571 }
4572 conf->fullsync = 0;
4573 }
4574
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576 struct r10bio *r10_bio)
4577 {
4578 /* Use sync reads to get the blocks from somewhere else */
4579 int sectors = r10_bio->sectors;
4580 struct r10conf *conf = mddev->private;
4581 struct r10bio *r10b;
4582 int slot = 0;
4583 int idx = 0;
4584 struct page **pages;
4585
4586 r10b = kmalloc(sizeof(*r10b) +
4587 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4588 if (!r10b) {
4589 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4590 return -ENOMEM;
4591 }
4592
4593 /* reshape IOs share pages from .devs[0].bio */
4594 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4595
4596 r10b->sector = r10_bio->sector;
4597 __raid10_find_phys(&conf->prev, r10b);
4598
4599 while (sectors) {
4600 int s = sectors;
4601 int success = 0;
4602 int first_slot = slot;
4603
4604 if (s > (PAGE_SIZE >> 9))
4605 s = PAGE_SIZE >> 9;
4606
4607 rcu_read_lock();
4608 while (!success) {
4609 int d = r10b->devs[slot].devnum;
4610 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4611 sector_t addr;
4612 if (rdev == NULL ||
4613 test_bit(Faulty, &rdev->flags) ||
4614 !test_bit(In_sync, &rdev->flags))
4615 goto failed;
4616
4617 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4618 atomic_inc(&rdev->nr_pending);
4619 rcu_read_unlock();
4620 success = sync_page_io(rdev,
4621 addr,
4622 s << 9,
4623 pages[idx],
4624 REQ_OP_READ, 0, false);
4625 rdev_dec_pending(rdev, mddev);
4626 rcu_read_lock();
4627 if (success)
4628 break;
4629 failed:
4630 slot++;
4631 if (slot >= conf->copies)
4632 slot = 0;
4633 if (slot == first_slot)
4634 break;
4635 }
4636 rcu_read_unlock();
4637 if (!success) {
4638 /* couldn't read this block, must give up */
4639 set_bit(MD_RECOVERY_INTR,
4640 &mddev->recovery);
4641 kfree(r10b);
4642 return -EIO;
4643 }
4644 sectors -= s;
4645 idx++;
4646 }
4647 kfree(r10b);
4648 return 0;
4649 }
4650
4651 static void end_reshape_write(struct bio *bio)
4652 {
4653 struct r10bio *r10_bio = get_resync_r10bio(bio);
4654 struct mddev *mddev = r10_bio->mddev;
4655 struct r10conf *conf = mddev->private;
4656 int d;
4657 int slot;
4658 int repl;
4659 struct md_rdev *rdev = NULL;
4660
4661 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4662 if (repl)
4663 rdev = conf->mirrors[d].replacement;
4664 if (!rdev) {
4665 smp_mb();
4666 rdev = conf->mirrors[d].rdev;
4667 }
4668
4669 if (bio->bi_status) {
4670 /* FIXME should record badblock */
4671 md_error(mddev, rdev);
4672 }
4673
4674 rdev_dec_pending(rdev, mddev);
4675 end_reshape_request(r10_bio);
4676 }
4677
4678 static void end_reshape_request(struct r10bio *r10_bio)
4679 {
4680 if (!atomic_dec_and_test(&r10_bio->remaining))
4681 return;
4682 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4683 bio_put(r10_bio->master_bio);
4684 put_buf(r10_bio);
4685 }
4686
4687 static void raid10_finish_reshape(struct mddev *mddev)
4688 {
4689 struct r10conf *conf = mddev->private;
4690
4691 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4692 return;
4693
4694 if (mddev->delta_disks > 0) {
4695 sector_t size = raid10_size(mddev, 0, 0);
4696 md_set_array_sectors(mddev, size);
4697 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4698 mddev->recovery_cp = mddev->resync_max_sectors;
4699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4700 }
4701 mddev->resync_max_sectors = size;
4702 if (mddev->queue) {
4703 set_capacity(mddev->gendisk, mddev->array_sectors);
4704 revalidate_disk(mddev->gendisk);
4705 }
4706 } else {
4707 int d;
4708 rcu_read_lock();
4709 for (d = conf->geo.raid_disks ;
4710 d < conf->geo.raid_disks - mddev->delta_disks;
4711 d++) {
4712 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4713 if (rdev)
4714 clear_bit(In_sync, &rdev->flags);
4715 rdev = rcu_dereference(conf->mirrors[d].replacement);
4716 if (rdev)
4717 clear_bit(In_sync, &rdev->flags);
4718 }
4719 rcu_read_unlock();
4720 }
4721 mddev->layout = mddev->new_layout;
4722 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4723 mddev->reshape_position = MaxSector;
4724 mddev->delta_disks = 0;
4725 mddev->reshape_backwards = 0;
4726 }
4727
4728 static struct md_personality raid10_personality =
4729 {
4730 .name = "raid10",
4731 .level = 10,
4732 .owner = THIS_MODULE,
4733 .make_request = raid10_make_request,
4734 .run = raid10_run,
4735 .free = raid10_free,
4736 .status = raid10_status,
4737 .error_handler = raid10_error,
4738 .hot_add_disk = raid10_add_disk,
4739 .hot_remove_disk= raid10_remove_disk,
4740 .spare_active = raid10_spare_active,
4741 .sync_request = raid10_sync_request,
4742 .quiesce = raid10_quiesce,
4743 .size = raid10_size,
4744 .resize = raid10_resize,
4745 .takeover = raid10_takeover,
4746 .check_reshape = raid10_check_reshape,
4747 .start_reshape = raid10_start_reshape,
4748 .finish_reshape = raid10_finish_reshape,
4749 .congested = raid10_congested,
4750 };
4751
4752 static int __init raid_init(void)
4753 {
4754 return register_md_personality(&raid10_personality);
4755 }
4756
4757 static void raid_exit(void)
4758 {
4759 unregister_md_personality(&raid10_personality);
4760 }
4761
4762 module_init(raid_init);
4763 module_exit(raid_exit);
4764 MODULE_LICENSE("GPL");
4765 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4766 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4767 MODULE_ALIAS("md-raid10");
4768 MODULE_ALIAS("md-level-10");
4769
4770 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);