]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
Merge tag 'md-3.7' of git://neil.brown.name/md
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58 /*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61 #define NR_RAID10_BIOS 256
62
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73 #define IO_MADE_GOOD ((struct bio *)2)
74
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81 static int max_queued_requests = 1024;
82
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct r10conf *conf = data;
95 int size = offsetof(struct r10bio, devs[conf->copies]);
96
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
99 return kzalloc(size, gfp_flags);
100 }
101
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 kfree(r10_bio);
105 }
106
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115 /*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 struct r10conf *conf = data;
125 struct page *page;
126 struct r10bio *r10_bio;
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 if (!r10_bio)
133 return NULL;
134
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
161 struct bio *rbio = r10_bio->devs[j].repl_bio;
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
179 }
180 }
181
182 return r10_bio;
183
184 out_free_pages:
185 for ( ; i > 0 ; i--)
186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 j = 0;
191 out_free_bio:
192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200 }
201
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 int i;
205 struct r10conf *conf = data;
206 struct r10bio *r10bio = __r10_bio;
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
213 safe_put_page(bio->bi_io_vec[i].bv_page);
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
221 }
222 r10bio_pool_free(r10bio, conf);
223 }
224
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
231 if (!BIO_SPECIAL(*bio))
232 bio_put(*bio);
233 *bio = NULL;
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
238 }
239 }
240
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 struct r10conf *conf = r10_bio->mddev->private;
244
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247 }
248
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 struct r10conf *conf = r10_bio->mddev->private;
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
255 lower_barrier(conf);
256 }
257
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 unsigned long flags;
261 struct mddev *mddev = r10_bio->mddev;
262 struct r10conf *conf = mddev->private;
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
266 conf->nr_queued ++;
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
272 md_wakeup_thread(mddev->thread);
273 }
274
275 /*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 struct bio *bio = r10_bio->master_bio;
283 int done;
284 struct r10conf *conf = r10_bio->mddev->private;
285
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
304 free_r10bio(r10_bio);
305 }
306
307 /*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 struct r10conf *conf = r10_bio->mddev->private;
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317
318 /*
319 * Find the disk number which triggered given bio
320 */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 struct bio *bio, int *slotp, int *replp)
323 {
324 int slot;
325 int repl = 0;
326
327 for (slot = 0; slot < conf->copies; slot++) {
328 if (r10_bio->devs[slot].bio == bio)
329 break;
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
339 if (slotp)
340 *slotp = slot;
341 if (replp)
342 *replp = repl;
343 return r10_bio->devs[slot].devnum;
344 }
345
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 struct r10bio *r10_bio = bio->bi_private;
350 int slot, dev;
351 struct md_rdev *rdev;
352 struct r10conf *conf = r10_bio->mddev->private;
353
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
357 rdev = r10_bio->devs[slot].rdev;
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
397 bdevname(rdev->bdev, b),
398 (unsigned long long)r10_bio->sector);
399 set_bit(R10BIO_ReadError, &r10_bio->state);
400 reschedule_retry(r10_bio);
401 }
402 }
403
404 static void close_write(struct r10bio *r10_bio)
405 {
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412 }
413
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427 }
428
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 struct r10bio *r10_bio = bio->bi_private;
433 int dev;
434 int dec_rdev = 1;
435 struct r10conf *conf = r10_bio->mddev->private;
436 int slot, repl;
437 struct md_rdev *rdev = NULL;
438
439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
446 rdev = conf->mirrors[dev].rdev;
447 }
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
451 if (!uptodate) {
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
465 } else {
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
475 sector_t first_bad;
476 int bad_sectors;
477
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev,
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
500 one_write_done(r10_bio);
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504
505 /*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
537 int slot = 0;
538
539 /* now calculate first sector/dev */
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
542
543 chunk *= geo->near_copies;
544 stripe = chunk;
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
548
549 sector += stripe << geo->chunk_shift;
550
551 /* and calculate all the others */
552 for (n = 0; n < geo->near_copies; n++) {
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
569 if (dev >= geo->raid_disks) {
570 dev = 0;
571 sector += (geo->chunk_mask + 1);
572 }
573 }
574 }
575
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
589 }
590
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 sector_t offset, chunk, vchunk;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
597 struct geom *geo = &conf->geo;
598
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
601 int fc;
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
605 if (dev < 0)
606 dev += geo->raid_disks;
607 } else {
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
612 else
613 dev -= geo->near_copies;
614 }
615 chunk = sector >> geo->chunk_shift;
616 }
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
620 }
621
622 /**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
635 {
636 struct mddev *mddev = q->queuedata;
637 struct r10conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 int max;
640 unsigned int chunk_sectors;
641 unsigned int bio_sectors = bvm->bi_size >> 9;
642 struct geom *geo = &conf->geo;
643
644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
650 if (geo->near_copies < geo->raid_disks) {
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
662 struct {
663 struct r10bio r10_bio;
664 struct r10dev devs[conf->copies];
665 } on_stack;
666 struct r10bio *r10_bio = &on_stack.r10_bio;
667 int s;
668 if (conf->reshape_progress != MaxSector) {
669 /* Cannot give any guidance during reshape */
670 if (max <= biovec->bv_len && bio_sectors == 0)
671 return biovec->bv_len;
672 return 0;
673 }
674 r10_bio->sector = sector;
675 raid10_find_phys(conf, r10_bio);
676 rcu_read_lock();
677 for (s = 0; s < conf->copies; s++) {
678 int disk = r10_bio->devs[s].devnum;
679 struct md_rdev *rdev = rcu_dereference(
680 conf->mirrors[disk].rdev);
681 if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 struct request_queue *q =
683 bdev_get_queue(rdev->bdev);
684 if (q->merge_bvec_fn) {
685 bvm->bi_sector = r10_bio->devs[s].addr
686 + rdev->data_offset;
687 bvm->bi_bdev = rdev->bdev;
688 max = min(max, q->merge_bvec_fn(
689 q, bvm, biovec));
690 }
691 }
692 rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 struct request_queue *q =
695 bdev_get_queue(rdev->bdev);
696 if (q->merge_bvec_fn) {
697 bvm->bi_sector = r10_bio->devs[s].addr
698 + rdev->data_offset;
699 bvm->bi_bdev = rdev->bdev;
700 max = min(max, q->merge_bvec_fn(
701 q, bvm, biovec));
702 }
703 }
704 }
705 rcu_read_unlock();
706 }
707 return max;
708 }
709
710 /*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725 /*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
731 int *max_sectors)
732 {
733 const sector_t this_sector = r10_bio->sector;
734 int disk, slot;
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
737 sector_t new_distance, best_dist;
738 struct md_rdev *best_rdev, *rdev = NULL;
739 int do_balance;
740 int best_slot;
741 struct geom *geo = &conf->geo;
742
743 raid10_find_phys(conf, r10_bio);
744 rcu_read_lock();
745 retry:
746 sectors = r10_bio->sectors;
747 best_slot = -1;
748 best_rdev = NULL;
749 best_dist = MaxSector;
750 best_good_sectors = 0;
751 do_balance = 1;
752 /*
753 * Check if we can balance. We can balance on the whole
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
757 */
758 if (conf->mddev->recovery_cp < MaxSector
759 && (this_sector + sectors >= conf->next_resync))
760 do_balance = 0;
761
762 for (slot = 0; slot < conf->copies ; slot++) {
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766
767 if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 continue;
769 disk = r10_bio->devs[slot].devnum;
770 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 test_bit(Unmerged, &rdev->flags) ||
773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 rdev = rcu_dereference(conf->mirrors[disk].rdev);
775 if (rdev == NULL ||
776 test_bit(Faulty, &rdev->flags) ||
777 test_bit(Unmerged, &rdev->flags))
778 continue;
779 if (!test_bit(In_sync, &rdev->flags) &&
780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781 continue;
782
783 dev_sector = r10_bio->devs[slot].addr;
784 if (is_badblock(rdev, dev_sector, sectors,
785 &first_bad, &bad_sectors)) {
786 if (best_dist < MaxSector)
787 /* Already have a better slot */
788 continue;
789 if (first_bad <= dev_sector) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
793 */
794 bad_sectors -= (dev_sector - first_bad);
795 if (!do_balance && sectors > bad_sectors)
796 sectors = bad_sectors;
797 if (best_good_sectors > sectors)
798 best_good_sectors = sectors;
799 } else {
800 sector_t good_sectors =
801 first_bad - dev_sector;
802 if (good_sectors > best_good_sectors) {
803 best_good_sectors = good_sectors;
804 best_slot = slot;
805 best_rdev = rdev;
806 }
807 if (!do_balance)
808 /* Must read from here */
809 break;
810 }
811 continue;
812 } else
813 best_good_sectors = sectors;
814
815 if (!do_balance)
816 break;
817
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823 break;
824
825 /* for far > 1 always use the lowest address */
826 if (geo->far_copies > 1)
827 new_distance = r10_bio->devs[slot].addr;
828 else
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_slot = slot;
834 best_rdev = rdev;
835 }
836 }
837 if (slot >= conf->copies) {
838 slot = best_slot;
839 rdev = best_rdev;
840 }
841
842 if (slot >= 0) {
843 atomic_inc(&rdev->nr_pending);
844 if (test_bit(Faulty, &rdev->flags)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
847 */
848 rdev_dec_pending(rdev, conf->mddev);
849 goto retry;
850 }
851 r10_bio->read_slot = slot;
852 } else
853 rdev = NULL;
854 rcu_read_unlock();
855 *max_sectors = best_good_sectors;
856
857 return rdev;
858 }
859
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862 struct r10conf *conf = mddev->private;
863 int i, ret = 0;
864
865 if ((bits & (1 << BDI_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
869 rcu_read_lock();
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878 ret |= bdi_congested(&q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886 static int raid10_congested(void *data, int bits)
887 {
888 struct mddev *mddev = data;
889
890 return mddev_congested(mddev, bits) ||
891 md_raid10_congested(mddev, bits);
892 }
893
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
898 */
899 spin_lock_irq(&conf->device_lock);
900
901 if (conf->pending_bio_list.head) {
902 struct bio *bio;
903 bio = bio_list_get(&conf->pending_bio_list);
904 conf->pending_count = 0;
905 spin_unlock_irq(&conf->device_lock);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf->mddev->bitmap);
909 wake_up(&conf->wait_barrier);
910
911 while (bio) { /* submit pending writes */
912 struct bio *next = bio->bi_next;
913 bio->bi_next = NULL;
914 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916 /* Just ignore it */
917 bio_endio(bio, 0);
918 else
919 generic_make_request(bio);
920 bio = next;
921 }
922 } else
923 spin_unlock_irq(&conf->device_lock);
924 }
925
926 /* Barriers....
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
932 * normal IO.
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
939 *
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
946 */
947
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 BUG_ON(force && !conf->barrier);
951 spin_lock_irq(&conf->resync_lock);
952
953 /* Wait until no block IO is waiting (unless 'force') */
954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955 conf->resync_lock, );
956
957 /* block any new IO from starting */
958 conf->barrier++;
959
960 /* Now wait for all pending IO to complete */
961 wait_event_lock_irq(conf->wait_barrier,
962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963 conf->resync_lock, );
964
965 spin_unlock_irq(&conf->resync_lock);
966 }
967
968 static void lower_barrier(struct r10conf *conf)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&conf->resync_lock, flags);
972 conf->barrier--;
973 spin_unlock_irqrestore(&conf->resync_lock, flags);
974 wake_up(&conf->wait_barrier);
975 }
976
977 static void wait_barrier(struct r10conf *conf)
978 {
979 spin_lock_irq(&conf->resync_lock);
980 if (conf->barrier) {
981 conf->nr_waiting++;
982 /* Wait for the barrier to drop.
983 * However if there are already pending
984 * requests (preventing the barrier from
985 * rising completely), and the
986 * pre-process bio queue isn't empty,
987 * then don't wait, as we need to empty
988 * that queue to get the nr_pending
989 * count down.
990 */
991 wait_event_lock_irq(conf->wait_barrier,
992 !conf->barrier ||
993 (conf->nr_pending &&
994 current->bio_list &&
995 !bio_list_empty(current->bio_list)),
996 conf->resync_lock,
997 );
998 conf->nr_waiting--;
999 }
1000 conf->nr_pending++;
1001 spin_unlock_irq(&conf->resync_lock);
1002 }
1003
1004 static void allow_barrier(struct r10conf *conf)
1005 {
1006 unsigned long flags;
1007 spin_lock_irqsave(&conf->resync_lock, flags);
1008 conf->nr_pending--;
1009 spin_unlock_irqrestore(&conf->resync_lock, flags);
1010 wake_up(&conf->wait_barrier);
1011 }
1012
1013 static void freeze_array(struct r10conf *conf)
1014 {
1015 /* stop syncio and normal IO and wait for everything to
1016 * go quiet.
1017 * We increment barrier and nr_waiting, and then
1018 * wait until nr_pending match nr_queued+1
1019 * This is called in the context of one normal IO request
1020 * that has failed. Thus any sync request that might be pending
1021 * will be blocked by nr_pending, and we need to wait for
1022 * pending IO requests to complete or be queued for re-try.
1023 * Thus the number queued (nr_queued) plus this request (1)
1024 * must match the number of pending IOs (nr_pending) before
1025 * we continue.
1026 */
1027 spin_lock_irq(&conf->resync_lock);
1028 conf->barrier++;
1029 conf->nr_waiting++;
1030 wait_event_lock_irq(conf->wait_barrier,
1031 conf->nr_pending == conf->nr_queued+1,
1032 conf->resync_lock,
1033 flush_pending_writes(conf));
1034
1035 spin_unlock_irq(&conf->resync_lock);
1036 }
1037
1038 static void unfreeze_array(struct r10conf *conf)
1039 {
1040 /* reverse the effect of the freeze */
1041 spin_lock_irq(&conf->resync_lock);
1042 conf->barrier--;
1043 conf->nr_waiting--;
1044 wake_up(&conf->wait_barrier);
1045 spin_unlock_irq(&conf->resync_lock);
1046 }
1047
1048 static sector_t choose_data_offset(struct r10bio *r10_bio,
1049 struct md_rdev *rdev)
1050 {
1051 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052 test_bit(R10BIO_Previous, &r10_bio->state))
1053 return rdev->data_offset;
1054 else
1055 return rdev->new_data_offset;
1056 }
1057
1058 struct raid10_plug_cb {
1059 struct blk_plug_cb cb;
1060 struct bio_list pending;
1061 int pending_cnt;
1062 };
1063
1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 {
1066 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067 cb);
1068 struct mddev *mddev = plug->cb.data;
1069 struct r10conf *conf = mddev->private;
1070 struct bio *bio;
1071
1072 if (from_schedule) {
1073 spin_lock_irq(&conf->device_lock);
1074 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075 conf->pending_count += plug->pending_cnt;
1076 spin_unlock_irq(&conf->device_lock);
1077 md_wakeup_thread(mddev->thread);
1078 kfree(plug);
1079 return;
1080 }
1081
1082 /* we aren't scheduling, so we can do the write-out directly. */
1083 bio = bio_list_get(&plug->pending);
1084 bitmap_unplug(mddev->bitmap);
1085 wake_up(&conf->wait_barrier);
1086
1087 while (bio) { /* submit pending writes */
1088 struct bio *next = bio->bi_next;
1089 bio->bi_next = NULL;
1090 generic_make_request(bio);
1091 bio = next;
1092 }
1093 kfree(plug);
1094 }
1095
1096 static void make_request(struct mddev *mddev, struct bio * bio)
1097 {
1098 struct r10conf *conf = mddev->private;
1099 struct r10bio *r10_bio;
1100 struct bio *read_bio;
1101 int i;
1102 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1103 int chunk_sects = chunk_mask + 1;
1104 const int rw = bio_data_dir(bio);
1105 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1106 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1107 const unsigned long do_discard = (bio->bi_rw
1108 & (REQ_DISCARD | REQ_SECURE));
1109 unsigned long flags;
1110 struct md_rdev *blocked_rdev;
1111 struct blk_plug_cb *cb;
1112 struct raid10_plug_cb *plug = NULL;
1113 int sectors_handled;
1114 int max_sectors;
1115 int sectors;
1116
1117 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118 md_flush_request(mddev, bio);
1119 return;
1120 }
1121
1122 /* If this request crosses a chunk boundary, we need to
1123 * split it. This will only happen for 1 PAGE (or less) requests.
1124 */
1125 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126 > chunk_sects
1127 && (conf->geo.near_copies < conf->geo.raid_disks
1128 || conf->prev.near_copies < conf->prev.raid_disks))) {
1129 struct bio_pair *bp;
1130 /* Sanity check -- queue functions should prevent this happening */
1131 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1132 bio->bi_idx != 0)
1133 goto bad_map;
1134 /* This is a one page bio that upper layers
1135 * refuse to split for us, so we need to split it.
1136 */
1137 bp = bio_split(bio,
1138 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139
1140 /* Each of these 'make_request' calls will call 'wait_barrier'.
1141 * If the first succeeds but the second blocks due to the resync
1142 * thread raising the barrier, we will deadlock because the
1143 * IO to the underlying device will be queued in generic_make_request
1144 * and will never complete, so will never reduce nr_pending.
1145 * So increment nr_waiting here so no new raise_barriers will
1146 * succeed, and so the second wait_barrier cannot block.
1147 */
1148 spin_lock_irq(&conf->resync_lock);
1149 conf->nr_waiting++;
1150 spin_unlock_irq(&conf->resync_lock);
1151
1152 make_request(mddev, &bp->bio1);
1153 make_request(mddev, &bp->bio2);
1154
1155 spin_lock_irq(&conf->resync_lock);
1156 conf->nr_waiting--;
1157 wake_up(&conf->wait_barrier);
1158 spin_unlock_irq(&conf->resync_lock);
1159
1160 bio_pair_release(bp);
1161 return;
1162 bad_map:
1163 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1165 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166
1167 bio_io_error(bio);
1168 return;
1169 }
1170
1171 md_write_start(mddev, bio);
1172
1173 /*
1174 * Register the new request and wait if the reconstruction
1175 * thread has put up a bar for new requests.
1176 * Continue immediately if no resync is active currently.
1177 */
1178 wait_barrier(conf);
1179
1180 sectors = bio->bi_size >> 9;
1181 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182 bio->bi_sector < conf->reshape_progress &&
1183 bio->bi_sector + sectors > conf->reshape_progress) {
1184 /* IO spans the reshape position. Need to wait for
1185 * reshape to pass
1186 */
1187 allow_barrier(conf);
1188 wait_event(conf->wait_barrier,
1189 conf->reshape_progress <= bio->bi_sector ||
1190 conf->reshape_progress >= bio->bi_sector + sectors);
1191 wait_barrier(conf);
1192 }
1193 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194 bio_data_dir(bio) == WRITE &&
1195 (mddev->reshape_backwards
1196 ? (bio->bi_sector < conf->reshape_safe &&
1197 bio->bi_sector + sectors > conf->reshape_progress)
1198 : (bio->bi_sector + sectors > conf->reshape_safe &&
1199 bio->bi_sector < conf->reshape_progress))) {
1200 /* Need to update reshape_position in metadata */
1201 mddev->reshape_position = conf->reshape_progress;
1202 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204 md_wakeup_thread(mddev->thread);
1205 wait_event(mddev->sb_wait,
1206 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207
1208 conf->reshape_safe = mddev->reshape_position;
1209 }
1210
1211 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = sectors;
1215
1216 r10_bio->mddev = mddev;
1217 r10_bio->sector = bio->bi_sector;
1218 r10_bio->state = 0;
1219
1220 /* We might need to issue multiple reads to different
1221 * devices if there are bad blocks around, so we keep
1222 * track of the number of reads in bio->bi_phys_segments.
1223 * If this is 0, there is only one r10_bio and no locking
1224 * will be needed when the request completes. If it is
1225 * non-zero, then it is the number of not-completed requests.
1226 */
1227 bio->bi_phys_segments = 0;
1228 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229
1230 if (rw == READ) {
1231 /*
1232 * read balancing logic:
1233 */
1234 struct md_rdev *rdev;
1235 int slot;
1236
1237 read_again:
1238 rdev = read_balance(conf, r10_bio, &max_sectors);
1239 if (!rdev) {
1240 raid_end_bio_io(r10_bio);
1241 return;
1242 }
1243 slot = r10_bio->read_slot;
1244
1245 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1246 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247 max_sectors);
1248
1249 r10_bio->devs[slot].bio = read_bio;
1250 r10_bio->devs[slot].rdev = rdev;
1251
1252 read_bio->bi_sector = r10_bio->devs[slot].addr +
1253 choose_data_offset(r10_bio, rdev);
1254 read_bio->bi_bdev = rdev->bdev;
1255 read_bio->bi_end_io = raid10_end_read_request;
1256 read_bio->bi_rw = READ | do_sync;
1257 read_bio->bi_private = r10_bio;
1258
1259 if (max_sectors < r10_bio->sectors) {
1260 /* Could not read all from this device, so we will
1261 * need another r10_bio.
1262 */
1263 sectors_handled = (r10_bio->sectors + max_sectors
1264 - bio->bi_sector);
1265 r10_bio->sectors = max_sectors;
1266 spin_lock_irq(&conf->device_lock);
1267 if (bio->bi_phys_segments == 0)
1268 bio->bi_phys_segments = 2;
1269 else
1270 bio->bi_phys_segments++;
1271 spin_unlock(&conf->device_lock);
1272 /* Cannot call generic_make_request directly
1273 * as that will be queued in __generic_make_request
1274 * and subsequent mempool_alloc might block
1275 * waiting for it. so hand bio over to raid10d.
1276 */
1277 reschedule_retry(r10_bio);
1278
1279 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280
1281 r10_bio->master_bio = bio;
1282 r10_bio->sectors = ((bio->bi_size >> 9)
1283 - sectors_handled);
1284 r10_bio->state = 0;
1285 r10_bio->mddev = mddev;
1286 r10_bio->sector = bio->bi_sector + sectors_handled;
1287 goto read_again;
1288 } else
1289 generic_make_request(read_bio);
1290 return;
1291 }
1292
1293 /*
1294 * WRITE:
1295 */
1296 if (conf->pending_count >= max_queued_requests) {
1297 md_wakeup_thread(mddev->thread);
1298 wait_event(conf->wait_barrier,
1299 conf->pending_count < max_queued_requests);
1300 }
1301 /* first select target devices under rcu_lock and
1302 * inc refcount on their rdev. Record them by setting
1303 * bios[x] to bio
1304 * If there are known/acknowledged bad blocks on any device
1305 * on which we have seen a write error, we want to avoid
1306 * writing to those blocks. This potentially requires several
1307 * writes to write around the bad blocks. Each set of writes
1308 * gets its own r10_bio with a set of bios attached. The number
1309 * of r10_bios is recored in bio->bi_phys_segments just as with
1310 * the read case.
1311 */
1312
1313 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1314 raid10_find_phys(conf, r10_bio);
1315 retry_write:
1316 blocked_rdev = NULL;
1317 rcu_read_lock();
1318 max_sectors = r10_bio->sectors;
1319
1320 for (i = 0; i < conf->copies; i++) {
1321 int d = r10_bio->devs[i].devnum;
1322 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1323 struct md_rdev *rrdev = rcu_dereference(
1324 conf->mirrors[d].replacement);
1325 if (rdev == rrdev)
1326 rrdev = NULL;
1327 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328 atomic_inc(&rdev->nr_pending);
1329 blocked_rdev = rdev;
1330 break;
1331 }
1332 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333 atomic_inc(&rrdev->nr_pending);
1334 blocked_rdev = rrdev;
1335 break;
1336 }
1337 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1338 || test_bit(Unmerged, &rrdev->flags)))
1339 rrdev = NULL;
1340
1341 r10_bio->devs[i].bio = NULL;
1342 r10_bio->devs[i].repl_bio = NULL;
1343 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1344 test_bit(Unmerged, &rdev->flags)) {
1345 set_bit(R10BIO_Degraded, &r10_bio->state);
1346 continue;
1347 }
1348 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1349 sector_t first_bad;
1350 sector_t dev_sector = r10_bio->devs[i].addr;
1351 int bad_sectors;
1352 int is_bad;
1353
1354 is_bad = is_badblock(rdev, dev_sector,
1355 max_sectors,
1356 &first_bad, &bad_sectors);
1357 if (is_bad < 0) {
1358 /* Mustn't write here until the bad block
1359 * is acknowledged
1360 */
1361 atomic_inc(&rdev->nr_pending);
1362 set_bit(BlockedBadBlocks, &rdev->flags);
1363 blocked_rdev = rdev;
1364 break;
1365 }
1366 if (is_bad && first_bad <= dev_sector) {
1367 /* Cannot write here at all */
1368 bad_sectors -= (dev_sector - first_bad);
1369 if (bad_sectors < max_sectors)
1370 /* Mustn't write more than bad_sectors
1371 * to other devices yet
1372 */
1373 max_sectors = bad_sectors;
1374 /* We don't set R10BIO_Degraded as that
1375 * only applies if the disk is missing,
1376 * so it might be re-added, and we want to
1377 * know to recover this chunk.
1378 * In this case the device is here, and the
1379 * fact that this chunk is not in-sync is
1380 * recorded in the bad block log.
1381 */
1382 continue;
1383 }
1384 if (is_bad) {
1385 int good_sectors = first_bad - dev_sector;
1386 if (good_sectors < max_sectors)
1387 max_sectors = good_sectors;
1388 }
1389 }
1390 r10_bio->devs[i].bio = bio;
1391 atomic_inc(&rdev->nr_pending);
1392 if (rrdev) {
1393 r10_bio->devs[i].repl_bio = bio;
1394 atomic_inc(&rrdev->nr_pending);
1395 }
1396 }
1397 rcu_read_unlock();
1398
1399 if (unlikely(blocked_rdev)) {
1400 /* Have to wait for this device to get unblocked, then retry */
1401 int j;
1402 int d;
1403
1404 for (j = 0; j < i; j++) {
1405 if (r10_bio->devs[j].bio) {
1406 d = r10_bio->devs[j].devnum;
1407 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1408 }
1409 if (r10_bio->devs[j].repl_bio) {
1410 struct md_rdev *rdev;
1411 d = r10_bio->devs[j].devnum;
1412 rdev = conf->mirrors[d].replacement;
1413 if (!rdev) {
1414 /* Race with remove_disk */
1415 smp_mb();
1416 rdev = conf->mirrors[d].rdev;
1417 }
1418 rdev_dec_pending(rdev, mddev);
1419 }
1420 }
1421 allow_barrier(conf);
1422 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1423 wait_barrier(conf);
1424 goto retry_write;
1425 }
1426
1427 if (max_sectors < r10_bio->sectors) {
1428 /* We are splitting this into multiple parts, so
1429 * we need to prepare for allocating another r10_bio.
1430 */
1431 r10_bio->sectors = max_sectors;
1432 spin_lock_irq(&conf->device_lock);
1433 if (bio->bi_phys_segments == 0)
1434 bio->bi_phys_segments = 2;
1435 else
1436 bio->bi_phys_segments++;
1437 spin_unlock_irq(&conf->device_lock);
1438 }
1439 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1440
1441 atomic_set(&r10_bio->remaining, 1);
1442 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1443
1444 for (i = 0; i < conf->copies; i++) {
1445 struct bio *mbio;
1446 int d = r10_bio->devs[i].devnum;
1447 if (!r10_bio->devs[i].bio)
1448 continue;
1449
1450 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1451 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1452 max_sectors);
1453 r10_bio->devs[i].bio = mbio;
1454
1455 mbio->bi_sector = (r10_bio->devs[i].addr+
1456 choose_data_offset(r10_bio,
1457 conf->mirrors[d].rdev));
1458 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1459 mbio->bi_end_io = raid10_end_write_request;
1460 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1461 mbio->bi_private = r10_bio;
1462
1463 atomic_inc(&r10_bio->remaining);
1464
1465 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1466 if (cb)
1467 plug = container_of(cb, struct raid10_plug_cb, cb);
1468 else
1469 plug = NULL;
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!plug)
1480 md_wakeup_thread(mddev->thread);
1481
1482 if (!r10_bio->devs[i].repl_bio)
1483 continue;
1484
1485 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1486 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1487 max_sectors);
1488 r10_bio->devs[i].repl_bio = mbio;
1489
1490 /* We are actively writing to the original device
1491 * so it cannot disappear, so the replacement cannot
1492 * become NULL here
1493 */
1494 mbio->bi_sector = (r10_bio->devs[i].addr +
1495 choose_data_offset(
1496 r10_bio,
1497 conf->mirrors[d].replacement));
1498 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
1500 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1501 mbio->bi_private = r10_bio;
1502
1503 atomic_inc(&r10_bio->remaining);
1504 spin_lock_irqsave(&conf->device_lock, flags);
1505 bio_list_add(&conf->pending_bio_list, mbio);
1506 conf->pending_count++;
1507 spin_unlock_irqrestore(&conf->device_lock, flags);
1508 if (!mddev_check_plugged(mddev))
1509 md_wakeup_thread(mddev->thread);
1510 }
1511
1512 /* Don't remove the bias on 'remaining' (one_write_done) until
1513 * after checking if we need to go around again.
1514 */
1515
1516 if (sectors_handled < (bio->bi_size >> 9)) {
1517 one_write_done(r10_bio);
1518 /* We need another r10_bio. It has already been counted
1519 * in bio->bi_phys_segments.
1520 */
1521 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1522
1523 r10_bio->master_bio = bio;
1524 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1525
1526 r10_bio->mddev = mddev;
1527 r10_bio->sector = bio->bi_sector + sectors_handled;
1528 r10_bio->state = 0;
1529 goto retry_write;
1530 }
1531 one_write_done(r10_bio);
1532
1533 /* In case raid10d snuck in to freeze_array */
1534 wake_up(&conf->wait_barrier);
1535 }
1536
1537 static void status(struct seq_file *seq, struct mddev *mddev)
1538 {
1539 struct r10conf *conf = mddev->private;
1540 int i;
1541
1542 if (conf->geo.near_copies < conf->geo.raid_disks)
1543 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544 if (conf->geo.near_copies > 1)
1545 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546 if (conf->geo.far_copies > 1) {
1547 if (conf->geo.far_offset)
1548 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549 else
1550 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551 }
1552 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1553 conf->geo.raid_disks - mddev->degraded);
1554 for (i = 0; i < conf->geo.raid_disks; i++)
1555 seq_printf(seq, "%s",
1556 conf->mirrors[i].rdev &&
1557 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1558 seq_printf(seq, "]");
1559 }
1560
1561 /* check if there are enough drives for
1562 * every block to appear on atleast one.
1563 * Don't consider the device numbered 'ignore'
1564 * as we might be about to remove it.
1565 */
1566 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1567 {
1568 int first = 0;
1569
1570 do {
1571 int n = conf->copies;
1572 int cnt = 0;
1573 int this = first;
1574 while (n--) {
1575 if (conf->mirrors[this].rdev &&
1576 this != ignore)
1577 cnt++;
1578 this = (this+1) % geo->raid_disks;
1579 }
1580 if (cnt == 0)
1581 return 0;
1582 first = (first + geo->near_copies) % geo->raid_disks;
1583 } while (first != 0);
1584 return 1;
1585 }
1586
1587 static int enough(struct r10conf *conf, int ignore)
1588 {
1589 return _enough(conf, &conf->geo, ignore) &&
1590 _enough(conf, &conf->prev, ignore);
1591 }
1592
1593 static void error(struct mddev *mddev, struct md_rdev *rdev)
1594 {
1595 char b[BDEVNAME_SIZE];
1596 struct r10conf *conf = mddev->private;
1597
1598 /*
1599 * If it is not operational, then we have already marked it as dead
1600 * else if it is the last working disks, ignore the error, let the
1601 * next level up know.
1602 * else mark the drive as failed
1603 */
1604 if (test_bit(In_sync, &rdev->flags)
1605 && !enough(conf, rdev->raid_disk))
1606 /*
1607 * Don't fail the drive, just return an IO error.
1608 */
1609 return;
1610 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1611 unsigned long flags;
1612 spin_lock_irqsave(&conf->device_lock, flags);
1613 mddev->degraded++;
1614 spin_unlock_irqrestore(&conf->device_lock, flags);
1615 /*
1616 * if recovery is running, make sure it aborts.
1617 */
1618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1619 }
1620 set_bit(Blocked, &rdev->flags);
1621 set_bit(Faulty, &rdev->flags);
1622 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1623 printk(KERN_ALERT
1624 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1625 "md/raid10:%s: Operation continuing on %d devices.\n",
1626 mdname(mddev), bdevname(rdev->bdev, b),
1627 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1628 }
1629
1630 static void print_conf(struct r10conf *conf)
1631 {
1632 int i;
1633 struct raid10_info *tmp;
1634
1635 printk(KERN_DEBUG "RAID10 conf printout:\n");
1636 if (!conf) {
1637 printk(KERN_DEBUG "(!conf)\n");
1638 return;
1639 }
1640 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1641 conf->geo.raid_disks);
1642
1643 for (i = 0; i < conf->geo.raid_disks; i++) {
1644 char b[BDEVNAME_SIZE];
1645 tmp = conf->mirrors + i;
1646 if (tmp->rdev)
1647 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1648 i, !test_bit(In_sync, &tmp->rdev->flags),
1649 !test_bit(Faulty, &tmp->rdev->flags),
1650 bdevname(tmp->rdev->bdev,b));
1651 }
1652 }
1653
1654 static void close_sync(struct r10conf *conf)
1655 {
1656 wait_barrier(conf);
1657 allow_barrier(conf);
1658
1659 mempool_destroy(conf->r10buf_pool);
1660 conf->r10buf_pool = NULL;
1661 }
1662
1663 static int raid10_spare_active(struct mddev *mddev)
1664 {
1665 int i;
1666 struct r10conf *conf = mddev->private;
1667 struct raid10_info *tmp;
1668 int count = 0;
1669 unsigned long flags;
1670
1671 /*
1672 * Find all non-in_sync disks within the RAID10 configuration
1673 * and mark them in_sync
1674 */
1675 for (i = 0; i < conf->geo.raid_disks; i++) {
1676 tmp = conf->mirrors + i;
1677 if (tmp->replacement
1678 && tmp->replacement->recovery_offset == MaxSector
1679 && !test_bit(Faulty, &tmp->replacement->flags)
1680 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1681 /* Replacement has just become active */
1682 if (!tmp->rdev
1683 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1684 count++;
1685 if (tmp->rdev) {
1686 /* Replaced device not technically faulty,
1687 * but we need to be sure it gets removed
1688 * and never re-added.
1689 */
1690 set_bit(Faulty, &tmp->rdev->flags);
1691 sysfs_notify_dirent_safe(
1692 tmp->rdev->sysfs_state);
1693 }
1694 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1695 } else if (tmp->rdev
1696 && !test_bit(Faulty, &tmp->rdev->flags)
1697 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1698 count++;
1699 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1700 }
1701 }
1702 spin_lock_irqsave(&conf->device_lock, flags);
1703 mddev->degraded -= count;
1704 spin_unlock_irqrestore(&conf->device_lock, flags);
1705
1706 print_conf(conf);
1707 return count;
1708 }
1709
1710
1711 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1712 {
1713 struct r10conf *conf = mddev->private;
1714 int err = -EEXIST;
1715 int mirror;
1716 int first = 0;
1717 int last = conf->geo.raid_disks - 1;
1718 struct request_queue *q = bdev_get_queue(rdev->bdev);
1719
1720 if (mddev->recovery_cp < MaxSector)
1721 /* only hot-add to in-sync arrays, as recovery is
1722 * very different from resync
1723 */
1724 return -EBUSY;
1725 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1726 return -EINVAL;
1727
1728 if (rdev->raid_disk >= 0)
1729 first = last = rdev->raid_disk;
1730
1731 if (q->merge_bvec_fn) {
1732 set_bit(Unmerged, &rdev->flags);
1733 mddev->merge_check_needed = 1;
1734 }
1735
1736 if (rdev->saved_raid_disk >= first &&
1737 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1738 mirror = rdev->saved_raid_disk;
1739 else
1740 mirror = first;
1741 for ( ; mirror <= last ; mirror++) {
1742 struct raid10_info *p = &conf->mirrors[mirror];
1743 if (p->recovery_disabled == mddev->recovery_disabled)
1744 continue;
1745 if (p->rdev) {
1746 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1747 p->replacement != NULL)
1748 continue;
1749 clear_bit(In_sync, &rdev->flags);
1750 set_bit(Replacement, &rdev->flags);
1751 rdev->raid_disk = mirror;
1752 err = 0;
1753 disk_stack_limits(mddev->gendisk, rdev->bdev,
1754 rdev->data_offset << 9);
1755 conf->fullsync = 1;
1756 rcu_assign_pointer(p->replacement, rdev);
1757 break;
1758 }
1759
1760 disk_stack_limits(mddev->gendisk, rdev->bdev,
1761 rdev->data_offset << 9);
1762
1763 p->head_position = 0;
1764 p->recovery_disabled = mddev->recovery_disabled - 1;
1765 rdev->raid_disk = mirror;
1766 err = 0;
1767 if (rdev->saved_raid_disk != mirror)
1768 conf->fullsync = 1;
1769 rcu_assign_pointer(p->rdev, rdev);
1770 break;
1771 }
1772 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1773 /* Some requests might not have seen this new
1774 * merge_bvec_fn. We must wait for them to complete
1775 * before merging the device fully.
1776 * First we make sure any code which has tested
1777 * our function has submitted the request, then
1778 * we wait for all outstanding requests to complete.
1779 */
1780 synchronize_sched();
1781 raise_barrier(conf, 0);
1782 lower_barrier(conf);
1783 clear_bit(Unmerged, &rdev->flags);
1784 }
1785 md_integrity_add_rdev(rdev, mddev);
1786 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1787 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1788
1789 print_conf(conf);
1790 return err;
1791 }
1792
1793 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1794 {
1795 struct r10conf *conf = mddev->private;
1796 int err = 0;
1797 int number = rdev->raid_disk;
1798 struct md_rdev **rdevp;
1799 struct raid10_info *p = conf->mirrors + number;
1800
1801 print_conf(conf);
1802 if (rdev == p->rdev)
1803 rdevp = &p->rdev;
1804 else if (rdev == p->replacement)
1805 rdevp = &p->replacement;
1806 else
1807 return 0;
1808
1809 if (test_bit(In_sync, &rdev->flags) ||
1810 atomic_read(&rdev->nr_pending)) {
1811 err = -EBUSY;
1812 goto abort;
1813 }
1814 /* Only remove faulty devices if recovery
1815 * is not possible.
1816 */
1817 if (!test_bit(Faulty, &rdev->flags) &&
1818 mddev->recovery_disabled != p->recovery_disabled &&
1819 (!p->replacement || p->replacement == rdev) &&
1820 number < conf->geo.raid_disks &&
1821 enough(conf, -1)) {
1822 err = -EBUSY;
1823 goto abort;
1824 }
1825 *rdevp = NULL;
1826 synchronize_rcu();
1827 if (atomic_read(&rdev->nr_pending)) {
1828 /* lost the race, try later */
1829 err = -EBUSY;
1830 *rdevp = rdev;
1831 goto abort;
1832 } else if (p->replacement) {
1833 /* We must have just cleared 'rdev' */
1834 p->rdev = p->replacement;
1835 clear_bit(Replacement, &p->replacement->flags);
1836 smp_mb(); /* Make sure other CPUs may see both as identical
1837 * but will never see neither -- if they are careful.
1838 */
1839 p->replacement = NULL;
1840 clear_bit(WantReplacement, &rdev->flags);
1841 } else
1842 /* We might have just remove the Replacement as faulty
1843 * Clear the flag just in case
1844 */
1845 clear_bit(WantReplacement, &rdev->flags);
1846
1847 err = md_integrity_register(mddev);
1848
1849 abort:
1850
1851 print_conf(conf);
1852 return err;
1853 }
1854
1855
1856 static void end_sync_read(struct bio *bio, int error)
1857 {
1858 struct r10bio *r10_bio = bio->bi_private;
1859 struct r10conf *conf = r10_bio->mddev->private;
1860 int d;
1861
1862 if (bio == r10_bio->master_bio) {
1863 /* this is a reshape read */
1864 d = r10_bio->read_slot; /* really the read dev */
1865 } else
1866 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1867
1868 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1869 set_bit(R10BIO_Uptodate, &r10_bio->state);
1870 else
1871 /* The write handler will notice the lack of
1872 * R10BIO_Uptodate and record any errors etc
1873 */
1874 atomic_add(r10_bio->sectors,
1875 &conf->mirrors[d].rdev->corrected_errors);
1876
1877 /* for reconstruct, we always reschedule after a read.
1878 * for resync, only after all reads
1879 */
1880 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1881 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1882 atomic_dec_and_test(&r10_bio->remaining)) {
1883 /* we have read all the blocks,
1884 * do the comparison in process context in raid10d
1885 */
1886 reschedule_retry(r10_bio);
1887 }
1888 }
1889
1890 static void end_sync_request(struct r10bio *r10_bio)
1891 {
1892 struct mddev *mddev = r10_bio->mddev;
1893
1894 while (atomic_dec_and_test(&r10_bio->remaining)) {
1895 if (r10_bio->master_bio == NULL) {
1896 /* the primary of several recovery bios */
1897 sector_t s = r10_bio->sectors;
1898 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1899 test_bit(R10BIO_WriteError, &r10_bio->state))
1900 reschedule_retry(r10_bio);
1901 else
1902 put_buf(r10_bio);
1903 md_done_sync(mddev, s, 1);
1904 break;
1905 } else {
1906 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1907 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1908 test_bit(R10BIO_WriteError, &r10_bio->state))
1909 reschedule_retry(r10_bio);
1910 else
1911 put_buf(r10_bio);
1912 r10_bio = r10_bio2;
1913 }
1914 }
1915 }
1916
1917 static void end_sync_write(struct bio *bio, int error)
1918 {
1919 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1920 struct r10bio *r10_bio = bio->bi_private;
1921 struct mddev *mddev = r10_bio->mddev;
1922 struct r10conf *conf = mddev->private;
1923 int d;
1924 sector_t first_bad;
1925 int bad_sectors;
1926 int slot;
1927 int repl;
1928 struct md_rdev *rdev = NULL;
1929
1930 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1931 if (repl)
1932 rdev = conf->mirrors[d].replacement;
1933 else
1934 rdev = conf->mirrors[d].rdev;
1935
1936 if (!uptodate) {
1937 if (repl)
1938 md_error(mddev, rdev);
1939 else {
1940 set_bit(WriteErrorSeen, &rdev->flags);
1941 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1942 set_bit(MD_RECOVERY_NEEDED,
1943 &rdev->mddev->recovery);
1944 set_bit(R10BIO_WriteError, &r10_bio->state);
1945 }
1946 } else if (is_badblock(rdev,
1947 r10_bio->devs[slot].addr,
1948 r10_bio->sectors,
1949 &first_bad, &bad_sectors))
1950 set_bit(R10BIO_MadeGood, &r10_bio->state);
1951
1952 rdev_dec_pending(rdev, mddev);
1953
1954 end_sync_request(r10_bio);
1955 }
1956
1957 /*
1958 * Note: sync and recover and handled very differently for raid10
1959 * This code is for resync.
1960 * For resync, we read through virtual addresses and read all blocks.
1961 * If there is any error, we schedule a write. The lowest numbered
1962 * drive is authoritative.
1963 * However requests come for physical address, so we need to map.
1964 * For every physical address there are raid_disks/copies virtual addresses,
1965 * which is always are least one, but is not necessarly an integer.
1966 * This means that a physical address can span multiple chunks, so we may
1967 * have to submit multiple io requests for a single sync request.
1968 */
1969 /*
1970 * We check if all blocks are in-sync and only write to blocks that
1971 * aren't in sync
1972 */
1973 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1974 {
1975 struct r10conf *conf = mddev->private;
1976 int i, first;
1977 struct bio *tbio, *fbio;
1978 int vcnt;
1979
1980 atomic_set(&r10_bio->remaining, 1);
1981
1982 /* find the first device with a block */
1983 for (i=0; i<conf->copies; i++)
1984 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1985 break;
1986
1987 if (i == conf->copies)
1988 goto done;
1989
1990 first = i;
1991 fbio = r10_bio->devs[i].bio;
1992
1993 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1994 /* now find blocks with errors */
1995 for (i=0 ; i < conf->copies ; i++) {
1996 int j, d;
1997
1998 tbio = r10_bio->devs[i].bio;
1999
2000 if (tbio->bi_end_io != end_sync_read)
2001 continue;
2002 if (i == first)
2003 continue;
2004 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2005 /* We know that the bi_io_vec layout is the same for
2006 * both 'first' and 'i', so we just compare them.
2007 * All vec entries are PAGE_SIZE;
2008 */
2009 for (j = 0; j < vcnt; j++)
2010 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2011 page_address(tbio->bi_io_vec[j].bv_page),
2012 fbio->bi_io_vec[j].bv_len))
2013 break;
2014 if (j == vcnt)
2015 continue;
2016 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2017 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2018 /* Don't fix anything. */
2019 continue;
2020 }
2021 /* Ok, we need to write this bio, either to correct an
2022 * inconsistency or to correct an unreadable block.
2023 * First we need to fixup bv_offset, bv_len and
2024 * bi_vecs, as the read request might have corrupted these
2025 */
2026 tbio->bi_vcnt = vcnt;
2027 tbio->bi_size = r10_bio->sectors << 9;
2028 tbio->bi_idx = 0;
2029 tbio->bi_phys_segments = 0;
2030 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2031 tbio->bi_flags |= 1 << BIO_UPTODATE;
2032 tbio->bi_next = NULL;
2033 tbio->bi_rw = WRITE;
2034 tbio->bi_private = r10_bio;
2035 tbio->bi_sector = r10_bio->devs[i].addr;
2036
2037 for (j=0; j < vcnt ; j++) {
2038 tbio->bi_io_vec[j].bv_offset = 0;
2039 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2040
2041 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2042 page_address(fbio->bi_io_vec[j].bv_page),
2043 PAGE_SIZE);
2044 }
2045 tbio->bi_end_io = end_sync_write;
2046
2047 d = r10_bio->devs[i].devnum;
2048 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2049 atomic_inc(&r10_bio->remaining);
2050 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2051
2052 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2053 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2054 generic_make_request(tbio);
2055 }
2056
2057 /* Now write out to any replacement devices
2058 * that are active
2059 */
2060 for (i = 0; i < conf->copies; i++) {
2061 int j, d;
2062
2063 tbio = r10_bio->devs[i].repl_bio;
2064 if (!tbio || !tbio->bi_end_io)
2065 continue;
2066 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2067 && r10_bio->devs[i].bio != fbio)
2068 for (j = 0; j < vcnt; j++)
2069 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2070 page_address(fbio->bi_io_vec[j].bv_page),
2071 PAGE_SIZE);
2072 d = r10_bio->devs[i].devnum;
2073 atomic_inc(&r10_bio->remaining);
2074 md_sync_acct(conf->mirrors[d].replacement->bdev,
2075 tbio->bi_size >> 9);
2076 generic_make_request(tbio);
2077 }
2078
2079 done:
2080 if (atomic_dec_and_test(&r10_bio->remaining)) {
2081 md_done_sync(mddev, r10_bio->sectors, 1);
2082 put_buf(r10_bio);
2083 }
2084 }
2085
2086 /*
2087 * Now for the recovery code.
2088 * Recovery happens across physical sectors.
2089 * We recover all non-is_sync drives by finding the virtual address of
2090 * each, and then choose a working drive that also has that virt address.
2091 * There is a separate r10_bio for each non-in_sync drive.
2092 * Only the first two slots are in use. The first for reading,
2093 * The second for writing.
2094 *
2095 */
2096 static void fix_recovery_read_error(struct r10bio *r10_bio)
2097 {
2098 /* We got a read error during recovery.
2099 * We repeat the read in smaller page-sized sections.
2100 * If a read succeeds, write it to the new device or record
2101 * a bad block if we cannot.
2102 * If a read fails, record a bad block on both old and
2103 * new devices.
2104 */
2105 struct mddev *mddev = r10_bio->mddev;
2106 struct r10conf *conf = mddev->private;
2107 struct bio *bio = r10_bio->devs[0].bio;
2108 sector_t sect = 0;
2109 int sectors = r10_bio->sectors;
2110 int idx = 0;
2111 int dr = r10_bio->devs[0].devnum;
2112 int dw = r10_bio->devs[1].devnum;
2113
2114 while (sectors) {
2115 int s = sectors;
2116 struct md_rdev *rdev;
2117 sector_t addr;
2118 int ok;
2119
2120 if (s > (PAGE_SIZE>>9))
2121 s = PAGE_SIZE >> 9;
2122
2123 rdev = conf->mirrors[dr].rdev;
2124 addr = r10_bio->devs[0].addr + sect,
2125 ok = sync_page_io(rdev,
2126 addr,
2127 s << 9,
2128 bio->bi_io_vec[idx].bv_page,
2129 READ, false);
2130 if (ok) {
2131 rdev = conf->mirrors[dw].rdev;
2132 addr = r10_bio->devs[1].addr + sect;
2133 ok = sync_page_io(rdev,
2134 addr,
2135 s << 9,
2136 bio->bi_io_vec[idx].bv_page,
2137 WRITE, false);
2138 if (!ok) {
2139 set_bit(WriteErrorSeen, &rdev->flags);
2140 if (!test_and_set_bit(WantReplacement,
2141 &rdev->flags))
2142 set_bit(MD_RECOVERY_NEEDED,
2143 &rdev->mddev->recovery);
2144 }
2145 }
2146 if (!ok) {
2147 /* We don't worry if we cannot set a bad block -
2148 * it really is bad so there is no loss in not
2149 * recording it yet
2150 */
2151 rdev_set_badblocks(rdev, addr, s, 0);
2152
2153 if (rdev != conf->mirrors[dw].rdev) {
2154 /* need bad block on destination too */
2155 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2156 addr = r10_bio->devs[1].addr + sect;
2157 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2158 if (!ok) {
2159 /* just abort the recovery */
2160 printk(KERN_NOTICE
2161 "md/raid10:%s: recovery aborted"
2162 " due to read error\n",
2163 mdname(mddev));
2164
2165 conf->mirrors[dw].recovery_disabled
2166 = mddev->recovery_disabled;
2167 set_bit(MD_RECOVERY_INTR,
2168 &mddev->recovery);
2169 break;
2170 }
2171 }
2172 }
2173
2174 sectors -= s;
2175 sect += s;
2176 idx++;
2177 }
2178 }
2179
2180 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2181 {
2182 struct r10conf *conf = mddev->private;
2183 int d;
2184 struct bio *wbio, *wbio2;
2185
2186 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2187 fix_recovery_read_error(r10_bio);
2188 end_sync_request(r10_bio);
2189 return;
2190 }
2191
2192 /*
2193 * share the pages with the first bio
2194 * and submit the write request
2195 */
2196 d = r10_bio->devs[1].devnum;
2197 wbio = r10_bio->devs[1].bio;
2198 wbio2 = r10_bio->devs[1].repl_bio;
2199 if (wbio->bi_end_io) {
2200 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2201 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2202 generic_make_request(wbio);
2203 }
2204 if (wbio2 && wbio2->bi_end_io) {
2205 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2206 md_sync_acct(conf->mirrors[d].replacement->bdev,
2207 wbio2->bi_size >> 9);
2208 generic_make_request(wbio2);
2209 }
2210 }
2211
2212
2213 /*
2214 * Used by fix_read_error() to decay the per rdev read_errors.
2215 * We halve the read error count for every hour that has elapsed
2216 * since the last recorded read error.
2217 *
2218 */
2219 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2220 {
2221 struct timespec cur_time_mon;
2222 unsigned long hours_since_last;
2223 unsigned int read_errors = atomic_read(&rdev->read_errors);
2224
2225 ktime_get_ts(&cur_time_mon);
2226
2227 if (rdev->last_read_error.tv_sec == 0 &&
2228 rdev->last_read_error.tv_nsec == 0) {
2229 /* first time we've seen a read error */
2230 rdev->last_read_error = cur_time_mon;
2231 return;
2232 }
2233
2234 hours_since_last = (cur_time_mon.tv_sec -
2235 rdev->last_read_error.tv_sec) / 3600;
2236
2237 rdev->last_read_error = cur_time_mon;
2238
2239 /*
2240 * if hours_since_last is > the number of bits in read_errors
2241 * just set read errors to 0. We do this to avoid
2242 * overflowing the shift of read_errors by hours_since_last.
2243 */
2244 if (hours_since_last >= 8 * sizeof(read_errors))
2245 atomic_set(&rdev->read_errors, 0);
2246 else
2247 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2248 }
2249
2250 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2251 int sectors, struct page *page, int rw)
2252 {
2253 sector_t first_bad;
2254 int bad_sectors;
2255
2256 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2257 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2258 return -1;
2259 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2260 /* success */
2261 return 1;
2262 if (rw == WRITE) {
2263 set_bit(WriteErrorSeen, &rdev->flags);
2264 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2265 set_bit(MD_RECOVERY_NEEDED,
2266 &rdev->mddev->recovery);
2267 }
2268 /* need to record an error - either for the block or the device */
2269 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2270 md_error(rdev->mddev, rdev);
2271 return 0;
2272 }
2273
2274 /*
2275 * This is a kernel thread which:
2276 *
2277 * 1. Retries failed read operations on working mirrors.
2278 * 2. Updates the raid superblock when problems encounter.
2279 * 3. Performs writes following reads for array synchronising.
2280 */
2281
2282 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2283 {
2284 int sect = 0; /* Offset from r10_bio->sector */
2285 int sectors = r10_bio->sectors;
2286 struct md_rdev*rdev;
2287 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2288 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2289
2290 /* still own a reference to this rdev, so it cannot
2291 * have been cleared recently.
2292 */
2293 rdev = conf->mirrors[d].rdev;
2294
2295 if (test_bit(Faulty, &rdev->flags))
2296 /* drive has already been failed, just ignore any
2297 more fix_read_error() attempts */
2298 return;
2299
2300 check_decay_read_errors(mddev, rdev);
2301 atomic_inc(&rdev->read_errors);
2302 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2303 char b[BDEVNAME_SIZE];
2304 bdevname(rdev->bdev, b);
2305
2306 printk(KERN_NOTICE
2307 "md/raid10:%s: %s: Raid device exceeded "
2308 "read_error threshold [cur %d:max %d]\n",
2309 mdname(mddev), b,
2310 atomic_read(&rdev->read_errors), max_read_errors);
2311 printk(KERN_NOTICE
2312 "md/raid10:%s: %s: Failing raid device\n",
2313 mdname(mddev), b);
2314 md_error(mddev, conf->mirrors[d].rdev);
2315 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2316 return;
2317 }
2318
2319 while(sectors) {
2320 int s = sectors;
2321 int sl = r10_bio->read_slot;
2322 int success = 0;
2323 int start;
2324
2325 if (s > (PAGE_SIZE>>9))
2326 s = PAGE_SIZE >> 9;
2327
2328 rcu_read_lock();
2329 do {
2330 sector_t first_bad;
2331 int bad_sectors;
2332
2333 d = r10_bio->devs[sl].devnum;
2334 rdev = rcu_dereference(conf->mirrors[d].rdev);
2335 if (rdev &&
2336 !test_bit(Unmerged, &rdev->flags) &&
2337 test_bit(In_sync, &rdev->flags) &&
2338 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2339 &first_bad, &bad_sectors) == 0) {
2340 atomic_inc(&rdev->nr_pending);
2341 rcu_read_unlock();
2342 success = sync_page_io(rdev,
2343 r10_bio->devs[sl].addr +
2344 sect,
2345 s<<9,
2346 conf->tmppage, READ, false);
2347 rdev_dec_pending(rdev, mddev);
2348 rcu_read_lock();
2349 if (success)
2350 break;
2351 }
2352 sl++;
2353 if (sl == conf->copies)
2354 sl = 0;
2355 } while (!success && sl != r10_bio->read_slot);
2356 rcu_read_unlock();
2357
2358 if (!success) {
2359 /* Cannot read from anywhere, just mark the block
2360 * as bad on the first device to discourage future
2361 * reads.
2362 */
2363 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2364 rdev = conf->mirrors[dn].rdev;
2365
2366 if (!rdev_set_badblocks(
2367 rdev,
2368 r10_bio->devs[r10_bio->read_slot].addr
2369 + sect,
2370 s, 0)) {
2371 md_error(mddev, rdev);
2372 r10_bio->devs[r10_bio->read_slot].bio
2373 = IO_BLOCKED;
2374 }
2375 break;
2376 }
2377
2378 start = sl;
2379 /* write it back and re-read */
2380 rcu_read_lock();
2381 while (sl != r10_bio->read_slot) {
2382 char b[BDEVNAME_SIZE];
2383
2384 if (sl==0)
2385 sl = conf->copies;
2386 sl--;
2387 d = r10_bio->devs[sl].devnum;
2388 rdev = rcu_dereference(conf->mirrors[d].rdev);
2389 if (!rdev ||
2390 test_bit(Unmerged, &rdev->flags) ||
2391 !test_bit(In_sync, &rdev->flags))
2392 continue;
2393
2394 atomic_inc(&rdev->nr_pending);
2395 rcu_read_unlock();
2396 if (r10_sync_page_io(rdev,
2397 r10_bio->devs[sl].addr +
2398 sect,
2399 s, conf->tmppage, WRITE)
2400 == 0) {
2401 /* Well, this device is dead */
2402 printk(KERN_NOTICE
2403 "md/raid10:%s: read correction "
2404 "write failed"
2405 " (%d sectors at %llu on %s)\n",
2406 mdname(mddev), s,
2407 (unsigned long long)(
2408 sect +
2409 choose_data_offset(r10_bio,
2410 rdev)),
2411 bdevname(rdev->bdev, b));
2412 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2413 "drive\n",
2414 mdname(mddev),
2415 bdevname(rdev->bdev, b));
2416 }
2417 rdev_dec_pending(rdev, mddev);
2418 rcu_read_lock();
2419 }
2420 sl = start;
2421 while (sl != r10_bio->read_slot) {
2422 char b[BDEVNAME_SIZE];
2423
2424 if (sl==0)
2425 sl = conf->copies;
2426 sl--;
2427 d = r10_bio->devs[sl].devnum;
2428 rdev = rcu_dereference(conf->mirrors[d].rdev);
2429 if (!rdev ||
2430 !test_bit(In_sync, &rdev->flags))
2431 continue;
2432
2433 atomic_inc(&rdev->nr_pending);
2434 rcu_read_unlock();
2435 switch (r10_sync_page_io(rdev,
2436 r10_bio->devs[sl].addr +
2437 sect,
2438 s, conf->tmppage,
2439 READ)) {
2440 case 0:
2441 /* Well, this device is dead */
2442 printk(KERN_NOTICE
2443 "md/raid10:%s: unable to read back "
2444 "corrected sectors"
2445 " (%d sectors at %llu on %s)\n",
2446 mdname(mddev), s,
2447 (unsigned long long)(
2448 sect +
2449 choose_data_offset(r10_bio, rdev)),
2450 bdevname(rdev->bdev, b));
2451 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2452 "drive\n",
2453 mdname(mddev),
2454 bdevname(rdev->bdev, b));
2455 break;
2456 case 1:
2457 printk(KERN_INFO
2458 "md/raid10:%s: read error corrected"
2459 " (%d sectors at %llu on %s)\n",
2460 mdname(mddev), s,
2461 (unsigned long long)(
2462 sect +
2463 choose_data_offset(r10_bio, rdev)),
2464 bdevname(rdev->bdev, b));
2465 atomic_add(s, &rdev->corrected_errors);
2466 }
2467
2468 rdev_dec_pending(rdev, mddev);
2469 rcu_read_lock();
2470 }
2471 rcu_read_unlock();
2472
2473 sectors -= s;
2474 sect += s;
2475 }
2476 }
2477
2478 static void bi_complete(struct bio *bio, int error)
2479 {
2480 complete((struct completion *)bio->bi_private);
2481 }
2482
2483 static int submit_bio_wait(int rw, struct bio *bio)
2484 {
2485 struct completion event;
2486 rw |= REQ_SYNC;
2487
2488 init_completion(&event);
2489 bio->bi_private = &event;
2490 bio->bi_end_io = bi_complete;
2491 submit_bio(rw, bio);
2492 wait_for_completion(&event);
2493
2494 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2495 }
2496
2497 static int narrow_write_error(struct r10bio *r10_bio, int i)
2498 {
2499 struct bio *bio = r10_bio->master_bio;
2500 struct mddev *mddev = r10_bio->mddev;
2501 struct r10conf *conf = mddev->private;
2502 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2503 /* bio has the data to be written to slot 'i' where
2504 * we just recently had a write error.
2505 * We repeatedly clone the bio and trim down to one block,
2506 * then try the write. Where the write fails we record
2507 * a bad block.
2508 * It is conceivable that the bio doesn't exactly align with
2509 * blocks. We must handle this.
2510 *
2511 * We currently own a reference to the rdev.
2512 */
2513
2514 int block_sectors;
2515 sector_t sector;
2516 int sectors;
2517 int sect_to_write = r10_bio->sectors;
2518 int ok = 1;
2519
2520 if (rdev->badblocks.shift < 0)
2521 return 0;
2522
2523 block_sectors = 1 << rdev->badblocks.shift;
2524 sector = r10_bio->sector;
2525 sectors = ((r10_bio->sector + block_sectors)
2526 & ~(sector_t)(block_sectors - 1))
2527 - sector;
2528
2529 while (sect_to_write) {
2530 struct bio *wbio;
2531 if (sectors > sect_to_write)
2532 sectors = sect_to_write;
2533 /* Write at 'sector' for 'sectors' */
2534 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2535 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2536 wbio->bi_sector = (r10_bio->devs[i].addr+
2537 choose_data_offset(r10_bio, rdev) +
2538 (sector - r10_bio->sector));
2539 wbio->bi_bdev = rdev->bdev;
2540 if (submit_bio_wait(WRITE, wbio) == 0)
2541 /* Failure! */
2542 ok = rdev_set_badblocks(rdev, sector,
2543 sectors, 0)
2544 && ok;
2545
2546 bio_put(wbio);
2547 sect_to_write -= sectors;
2548 sector += sectors;
2549 sectors = block_sectors;
2550 }
2551 return ok;
2552 }
2553
2554 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2555 {
2556 int slot = r10_bio->read_slot;
2557 struct bio *bio;
2558 struct r10conf *conf = mddev->private;
2559 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2560 char b[BDEVNAME_SIZE];
2561 unsigned long do_sync;
2562 int max_sectors;
2563
2564 /* we got a read error. Maybe the drive is bad. Maybe just
2565 * the block and we can fix it.
2566 * We freeze all other IO, and try reading the block from
2567 * other devices. When we find one, we re-write
2568 * and check it that fixes the read error.
2569 * This is all done synchronously while the array is
2570 * frozen.
2571 */
2572 bio = r10_bio->devs[slot].bio;
2573 bdevname(bio->bi_bdev, b);
2574 bio_put(bio);
2575 r10_bio->devs[slot].bio = NULL;
2576
2577 if (mddev->ro == 0) {
2578 freeze_array(conf);
2579 fix_read_error(conf, mddev, r10_bio);
2580 unfreeze_array(conf);
2581 } else
2582 r10_bio->devs[slot].bio = IO_BLOCKED;
2583
2584 rdev_dec_pending(rdev, mddev);
2585
2586 read_more:
2587 rdev = read_balance(conf, r10_bio, &max_sectors);
2588 if (rdev == NULL) {
2589 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2590 " read error for block %llu\n",
2591 mdname(mddev), b,
2592 (unsigned long long)r10_bio->sector);
2593 raid_end_bio_io(r10_bio);
2594 return;
2595 }
2596
2597 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2598 slot = r10_bio->read_slot;
2599 printk_ratelimited(
2600 KERN_ERR
2601 "md/raid10:%s: %s: redirecting "
2602 "sector %llu to another mirror\n",
2603 mdname(mddev),
2604 bdevname(rdev->bdev, b),
2605 (unsigned long long)r10_bio->sector);
2606 bio = bio_clone_mddev(r10_bio->master_bio,
2607 GFP_NOIO, mddev);
2608 md_trim_bio(bio,
2609 r10_bio->sector - bio->bi_sector,
2610 max_sectors);
2611 r10_bio->devs[slot].bio = bio;
2612 r10_bio->devs[slot].rdev = rdev;
2613 bio->bi_sector = r10_bio->devs[slot].addr
2614 + choose_data_offset(r10_bio, rdev);
2615 bio->bi_bdev = rdev->bdev;
2616 bio->bi_rw = READ | do_sync;
2617 bio->bi_private = r10_bio;
2618 bio->bi_end_io = raid10_end_read_request;
2619 if (max_sectors < r10_bio->sectors) {
2620 /* Drat - have to split this up more */
2621 struct bio *mbio = r10_bio->master_bio;
2622 int sectors_handled =
2623 r10_bio->sector + max_sectors
2624 - mbio->bi_sector;
2625 r10_bio->sectors = max_sectors;
2626 spin_lock_irq(&conf->device_lock);
2627 if (mbio->bi_phys_segments == 0)
2628 mbio->bi_phys_segments = 2;
2629 else
2630 mbio->bi_phys_segments++;
2631 spin_unlock_irq(&conf->device_lock);
2632 generic_make_request(bio);
2633
2634 r10_bio = mempool_alloc(conf->r10bio_pool,
2635 GFP_NOIO);
2636 r10_bio->master_bio = mbio;
2637 r10_bio->sectors = (mbio->bi_size >> 9)
2638 - sectors_handled;
2639 r10_bio->state = 0;
2640 set_bit(R10BIO_ReadError,
2641 &r10_bio->state);
2642 r10_bio->mddev = mddev;
2643 r10_bio->sector = mbio->bi_sector
2644 + sectors_handled;
2645
2646 goto read_more;
2647 } else
2648 generic_make_request(bio);
2649 }
2650
2651 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2652 {
2653 /* Some sort of write request has finished and it
2654 * succeeded in writing where we thought there was a
2655 * bad block. So forget the bad block.
2656 * Or possibly if failed and we need to record
2657 * a bad block.
2658 */
2659 int m;
2660 struct md_rdev *rdev;
2661
2662 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2663 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2664 for (m = 0; m < conf->copies; m++) {
2665 int dev = r10_bio->devs[m].devnum;
2666 rdev = conf->mirrors[dev].rdev;
2667 if (r10_bio->devs[m].bio == NULL)
2668 continue;
2669 if (test_bit(BIO_UPTODATE,
2670 &r10_bio->devs[m].bio->bi_flags)) {
2671 rdev_clear_badblocks(
2672 rdev,
2673 r10_bio->devs[m].addr,
2674 r10_bio->sectors, 0);
2675 } else {
2676 if (!rdev_set_badblocks(
2677 rdev,
2678 r10_bio->devs[m].addr,
2679 r10_bio->sectors, 0))
2680 md_error(conf->mddev, rdev);
2681 }
2682 rdev = conf->mirrors[dev].replacement;
2683 if (r10_bio->devs[m].repl_bio == NULL)
2684 continue;
2685 if (test_bit(BIO_UPTODATE,
2686 &r10_bio->devs[m].repl_bio->bi_flags)) {
2687 rdev_clear_badblocks(
2688 rdev,
2689 r10_bio->devs[m].addr,
2690 r10_bio->sectors, 0);
2691 } else {
2692 if (!rdev_set_badblocks(
2693 rdev,
2694 r10_bio->devs[m].addr,
2695 r10_bio->sectors, 0))
2696 md_error(conf->mddev, rdev);
2697 }
2698 }
2699 put_buf(r10_bio);
2700 } else {
2701 for (m = 0; m < conf->copies; m++) {
2702 int dev = r10_bio->devs[m].devnum;
2703 struct bio *bio = r10_bio->devs[m].bio;
2704 rdev = conf->mirrors[dev].rdev;
2705 if (bio == IO_MADE_GOOD) {
2706 rdev_clear_badblocks(
2707 rdev,
2708 r10_bio->devs[m].addr,
2709 r10_bio->sectors, 0);
2710 rdev_dec_pending(rdev, conf->mddev);
2711 } else if (bio != NULL &&
2712 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2713 if (!narrow_write_error(r10_bio, m)) {
2714 md_error(conf->mddev, rdev);
2715 set_bit(R10BIO_Degraded,
2716 &r10_bio->state);
2717 }
2718 rdev_dec_pending(rdev, conf->mddev);
2719 }
2720 bio = r10_bio->devs[m].repl_bio;
2721 rdev = conf->mirrors[dev].replacement;
2722 if (rdev && bio == IO_MADE_GOOD) {
2723 rdev_clear_badblocks(
2724 rdev,
2725 r10_bio->devs[m].addr,
2726 r10_bio->sectors, 0);
2727 rdev_dec_pending(rdev, conf->mddev);
2728 }
2729 }
2730 if (test_bit(R10BIO_WriteError,
2731 &r10_bio->state))
2732 close_write(r10_bio);
2733 raid_end_bio_io(r10_bio);
2734 }
2735 }
2736
2737 static void raid10d(struct md_thread *thread)
2738 {
2739 struct mddev *mddev = thread->mddev;
2740 struct r10bio *r10_bio;
2741 unsigned long flags;
2742 struct r10conf *conf = mddev->private;
2743 struct list_head *head = &conf->retry_list;
2744 struct blk_plug plug;
2745
2746 md_check_recovery(mddev);
2747
2748 blk_start_plug(&plug);
2749 for (;;) {
2750
2751 flush_pending_writes(conf);
2752
2753 spin_lock_irqsave(&conf->device_lock, flags);
2754 if (list_empty(head)) {
2755 spin_unlock_irqrestore(&conf->device_lock, flags);
2756 break;
2757 }
2758 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759 list_del(head->prev);
2760 conf->nr_queued--;
2761 spin_unlock_irqrestore(&conf->device_lock, flags);
2762
2763 mddev = r10_bio->mddev;
2764 conf = mddev->private;
2765 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766 test_bit(R10BIO_WriteError, &r10_bio->state))
2767 handle_write_completed(conf, r10_bio);
2768 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769 reshape_request_write(mddev, r10_bio);
2770 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771 sync_request_write(mddev, r10_bio);
2772 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773 recovery_request_write(mddev, r10_bio);
2774 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775 handle_read_error(mddev, r10_bio);
2776 else {
2777 /* just a partial read to be scheduled from a
2778 * separate context
2779 */
2780 int slot = r10_bio->read_slot;
2781 generic_make_request(r10_bio->devs[slot].bio);
2782 }
2783
2784 cond_resched();
2785 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2786 md_check_recovery(mddev);
2787 }
2788 blk_finish_plug(&plug);
2789 }
2790
2791
2792 static int init_resync(struct r10conf *conf)
2793 {
2794 int buffs;
2795 int i;
2796
2797 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2798 BUG_ON(conf->r10buf_pool);
2799 conf->have_replacement = 0;
2800 for (i = 0; i < conf->geo.raid_disks; i++)
2801 if (conf->mirrors[i].replacement)
2802 conf->have_replacement = 1;
2803 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2804 if (!conf->r10buf_pool)
2805 return -ENOMEM;
2806 conf->next_resync = 0;
2807 return 0;
2808 }
2809
2810 /*
2811 * perform a "sync" on one "block"
2812 *
2813 * We need to make sure that no normal I/O request - particularly write
2814 * requests - conflict with active sync requests.
2815 *
2816 * This is achieved by tracking pending requests and a 'barrier' concept
2817 * that can be installed to exclude normal IO requests.
2818 *
2819 * Resync and recovery are handled very differently.
2820 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2821 *
2822 * For resync, we iterate over virtual addresses, read all copies,
2823 * and update if there are differences. If only one copy is live,
2824 * skip it.
2825 * For recovery, we iterate over physical addresses, read a good
2826 * value for each non-in_sync drive, and over-write.
2827 *
2828 * So, for recovery we may have several outstanding complex requests for a
2829 * given address, one for each out-of-sync device. We model this by allocating
2830 * a number of r10_bio structures, one for each out-of-sync device.
2831 * As we setup these structures, we collect all bio's together into a list
2832 * which we then process collectively to add pages, and then process again
2833 * to pass to generic_make_request.
2834 *
2835 * The r10_bio structures are linked using a borrowed master_bio pointer.
2836 * This link is counted in ->remaining. When the r10_bio that points to NULL
2837 * has its remaining count decremented to 0, the whole complex operation
2838 * is complete.
2839 *
2840 */
2841
2842 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2843 int *skipped, int go_faster)
2844 {
2845 struct r10conf *conf = mddev->private;
2846 struct r10bio *r10_bio;
2847 struct bio *biolist = NULL, *bio;
2848 sector_t max_sector, nr_sectors;
2849 int i;
2850 int max_sync;
2851 sector_t sync_blocks;
2852 sector_t sectors_skipped = 0;
2853 int chunks_skipped = 0;
2854 sector_t chunk_mask = conf->geo.chunk_mask;
2855
2856 if (!conf->r10buf_pool)
2857 if (init_resync(conf))
2858 return 0;
2859
2860 skipped:
2861 max_sector = mddev->dev_sectors;
2862 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2863 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2864 max_sector = mddev->resync_max_sectors;
2865 if (sector_nr >= max_sector) {
2866 /* If we aborted, we need to abort the
2867 * sync on the 'current' bitmap chucks (there can
2868 * be several when recovering multiple devices).
2869 * as we may have started syncing it but not finished.
2870 * We can find the current address in
2871 * mddev->curr_resync, but for recovery,
2872 * we need to convert that to several
2873 * virtual addresses.
2874 */
2875 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2876 end_reshape(conf);
2877 return 0;
2878 }
2879
2880 if (mddev->curr_resync < max_sector) { /* aborted */
2881 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2882 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2883 &sync_blocks, 1);
2884 else for (i = 0; i < conf->geo.raid_disks; i++) {
2885 sector_t sect =
2886 raid10_find_virt(conf, mddev->curr_resync, i);
2887 bitmap_end_sync(mddev->bitmap, sect,
2888 &sync_blocks, 1);
2889 }
2890 } else {
2891 /* completed sync */
2892 if ((!mddev->bitmap || conf->fullsync)
2893 && conf->have_replacement
2894 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2895 /* Completed a full sync so the replacements
2896 * are now fully recovered.
2897 */
2898 for (i = 0; i < conf->geo.raid_disks; i++)
2899 if (conf->mirrors[i].replacement)
2900 conf->mirrors[i].replacement
2901 ->recovery_offset
2902 = MaxSector;
2903 }
2904 conf->fullsync = 0;
2905 }
2906 bitmap_close_sync(mddev->bitmap);
2907 close_sync(conf);
2908 *skipped = 1;
2909 return sectors_skipped;
2910 }
2911
2912 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2913 return reshape_request(mddev, sector_nr, skipped);
2914
2915 if (chunks_skipped >= conf->geo.raid_disks) {
2916 /* if there has been nothing to do on any drive,
2917 * then there is nothing to do at all..
2918 */
2919 *skipped = 1;
2920 return (max_sector - sector_nr) + sectors_skipped;
2921 }
2922
2923 if (max_sector > mddev->resync_max)
2924 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2925
2926 /* make sure whole request will fit in a chunk - if chunks
2927 * are meaningful
2928 */
2929 if (conf->geo.near_copies < conf->geo.raid_disks &&
2930 max_sector > (sector_nr | chunk_mask))
2931 max_sector = (sector_nr | chunk_mask) + 1;
2932 /*
2933 * If there is non-resync activity waiting for us then
2934 * put in a delay to throttle resync.
2935 */
2936 if (!go_faster && conf->nr_waiting)
2937 msleep_interruptible(1000);
2938
2939 /* Again, very different code for resync and recovery.
2940 * Both must result in an r10bio with a list of bios that
2941 * have bi_end_io, bi_sector, bi_bdev set,
2942 * and bi_private set to the r10bio.
2943 * For recovery, we may actually create several r10bios
2944 * with 2 bios in each, that correspond to the bios in the main one.
2945 * In this case, the subordinate r10bios link back through a
2946 * borrowed master_bio pointer, and the counter in the master
2947 * includes a ref from each subordinate.
2948 */
2949 /* First, we decide what to do and set ->bi_end_io
2950 * To end_sync_read if we want to read, and
2951 * end_sync_write if we will want to write.
2952 */
2953
2954 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2955 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2956 /* recovery... the complicated one */
2957 int j;
2958 r10_bio = NULL;
2959
2960 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2961 int still_degraded;
2962 struct r10bio *rb2;
2963 sector_t sect;
2964 int must_sync;
2965 int any_working;
2966 struct raid10_info *mirror = &conf->mirrors[i];
2967
2968 if ((mirror->rdev == NULL ||
2969 test_bit(In_sync, &mirror->rdev->flags))
2970 &&
2971 (mirror->replacement == NULL ||
2972 test_bit(Faulty,
2973 &mirror->replacement->flags)))
2974 continue;
2975
2976 still_degraded = 0;
2977 /* want to reconstruct this device */
2978 rb2 = r10_bio;
2979 sect = raid10_find_virt(conf, sector_nr, i);
2980 if (sect >= mddev->resync_max_sectors) {
2981 /* last stripe is not complete - don't
2982 * try to recover this sector.
2983 */
2984 continue;
2985 }
2986 /* Unless we are doing a full sync, or a replacement
2987 * we only need to recover the block if it is set in
2988 * the bitmap
2989 */
2990 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2991 &sync_blocks, 1);
2992 if (sync_blocks < max_sync)
2993 max_sync = sync_blocks;
2994 if (!must_sync &&
2995 mirror->replacement == NULL &&
2996 !conf->fullsync) {
2997 /* yep, skip the sync_blocks here, but don't assume
2998 * that there will never be anything to do here
2999 */
3000 chunks_skipped = -1;
3001 continue;
3002 }
3003
3004 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3005 raise_barrier(conf, rb2 != NULL);
3006 atomic_set(&r10_bio->remaining, 0);
3007
3008 r10_bio->master_bio = (struct bio*)rb2;
3009 if (rb2)
3010 atomic_inc(&rb2->remaining);
3011 r10_bio->mddev = mddev;
3012 set_bit(R10BIO_IsRecover, &r10_bio->state);
3013 r10_bio->sector = sect;
3014
3015 raid10_find_phys(conf, r10_bio);
3016
3017 /* Need to check if the array will still be
3018 * degraded
3019 */
3020 for (j = 0; j < conf->geo.raid_disks; j++)
3021 if (conf->mirrors[j].rdev == NULL ||
3022 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3023 still_degraded = 1;
3024 break;
3025 }
3026
3027 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3028 &sync_blocks, still_degraded);
3029
3030 any_working = 0;
3031 for (j=0; j<conf->copies;j++) {
3032 int k;
3033 int d = r10_bio->devs[j].devnum;
3034 sector_t from_addr, to_addr;
3035 struct md_rdev *rdev;
3036 sector_t sector, first_bad;
3037 int bad_sectors;
3038 if (!conf->mirrors[d].rdev ||
3039 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3040 continue;
3041 /* This is where we read from */
3042 any_working = 1;
3043 rdev = conf->mirrors[d].rdev;
3044 sector = r10_bio->devs[j].addr;
3045
3046 if (is_badblock(rdev, sector, max_sync,
3047 &first_bad, &bad_sectors)) {
3048 if (first_bad > sector)
3049 max_sync = first_bad - sector;
3050 else {
3051 bad_sectors -= (sector
3052 - first_bad);
3053 if (max_sync > bad_sectors)
3054 max_sync = bad_sectors;
3055 continue;
3056 }
3057 }
3058 bio = r10_bio->devs[0].bio;
3059 bio->bi_next = biolist;
3060 biolist = bio;
3061 bio->bi_private = r10_bio;
3062 bio->bi_end_io = end_sync_read;
3063 bio->bi_rw = READ;
3064 from_addr = r10_bio->devs[j].addr;
3065 bio->bi_sector = from_addr + rdev->data_offset;
3066 bio->bi_bdev = rdev->bdev;
3067 atomic_inc(&rdev->nr_pending);
3068 /* and we write to 'i' (if not in_sync) */
3069
3070 for (k=0; k<conf->copies; k++)
3071 if (r10_bio->devs[k].devnum == i)
3072 break;
3073 BUG_ON(k == conf->copies);
3074 to_addr = r10_bio->devs[k].addr;
3075 r10_bio->devs[0].devnum = d;
3076 r10_bio->devs[0].addr = from_addr;
3077 r10_bio->devs[1].devnum = i;
3078 r10_bio->devs[1].addr = to_addr;
3079
3080 rdev = mirror->rdev;
3081 if (!test_bit(In_sync, &rdev->flags)) {
3082 bio = r10_bio->devs[1].bio;
3083 bio->bi_next = biolist;
3084 biolist = bio;
3085 bio->bi_private = r10_bio;
3086 bio->bi_end_io = end_sync_write;
3087 bio->bi_rw = WRITE;
3088 bio->bi_sector = to_addr
3089 + rdev->data_offset;
3090 bio->bi_bdev = rdev->bdev;
3091 atomic_inc(&r10_bio->remaining);
3092 } else
3093 r10_bio->devs[1].bio->bi_end_io = NULL;
3094
3095 /* and maybe write to replacement */
3096 bio = r10_bio->devs[1].repl_bio;
3097 if (bio)
3098 bio->bi_end_io = NULL;
3099 rdev = mirror->replacement;
3100 /* Note: if rdev != NULL, then bio
3101 * cannot be NULL as r10buf_pool_alloc will
3102 * have allocated it.
3103 * So the second test here is pointless.
3104 * But it keeps semantic-checkers happy, and
3105 * this comment keeps human reviewers
3106 * happy.
3107 */
3108 if (rdev == NULL || bio == NULL ||
3109 test_bit(Faulty, &rdev->flags))
3110 break;
3111 bio->bi_next = biolist;
3112 biolist = bio;
3113 bio->bi_private = r10_bio;
3114 bio->bi_end_io = end_sync_write;
3115 bio->bi_rw = WRITE;
3116 bio->bi_sector = to_addr + rdev->data_offset;
3117 bio->bi_bdev = rdev->bdev;
3118 atomic_inc(&r10_bio->remaining);
3119 break;
3120 }
3121 if (j == conf->copies) {
3122 /* Cannot recover, so abort the recovery or
3123 * record a bad block */
3124 put_buf(r10_bio);
3125 if (rb2)
3126 atomic_dec(&rb2->remaining);
3127 r10_bio = rb2;
3128 if (any_working) {
3129 /* problem is that there are bad blocks
3130 * on other device(s)
3131 */
3132 int k;
3133 for (k = 0; k < conf->copies; k++)
3134 if (r10_bio->devs[k].devnum == i)
3135 break;
3136 if (!test_bit(In_sync,
3137 &mirror->rdev->flags)
3138 && !rdev_set_badblocks(
3139 mirror->rdev,
3140 r10_bio->devs[k].addr,
3141 max_sync, 0))
3142 any_working = 0;
3143 if (mirror->replacement &&
3144 !rdev_set_badblocks(
3145 mirror->replacement,
3146 r10_bio->devs[k].addr,
3147 max_sync, 0))
3148 any_working = 0;
3149 }
3150 if (!any_working) {
3151 if (!test_and_set_bit(MD_RECOVERY_INTR,
3152 &mddev->recovery))
3153 printk(KERN_INFO "md/raid10:%s: insufficient "
3154 "working devices for recovery.\n",
3155 mdname(mddev));
3156 mirror->recovery_disabled
3157 = mddev->recovery_disabled;
3158 }
3159 break;
3160 }
3161 }
3162 if (biolist == NULL) {
3163 while (r10_bio) {
3164 struct r10bio *rb2 = r10_bio;
3165 r10_bio = (struct r10bio*) rb2->master_bio;
3166 rb2->master_bio = NULL;
3167 put_buf(rb2);
3168 }
3169 goto giveup;
3170 }
3171 } else {
3172 /* resync. Schedule a read for every block at this virt offset */
3173 int count = 0;
3174
3175 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3176
3177 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3178 &sync_blocks, mddev->degraded) &&
3179 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3180 &mddev->recovery)) {
3181 /* We can skip this block */
3182 *skipped = 1;
3183 return sync_blocks + sectors_skipped;
3184 }
3185 if (sync_blocks < max_sync)
3186 max_sync = sync_blocks;
3187 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3188
3189 r10_bio->mddev = mddev;
3190 atomic_set(&r10_bio->remaining, 0);
3191 raise_barrier(conf, 0);
3192 conf->next_resync = sector_nr;
3193
3194 r10_bio->master_bio = NULL;
3195 r10_bio->sector = sector_nr;
3196 set_bit(R10BIO_IsSync, &r10_bio->state);
3197 raid10_find_phys(conf, r10_bio);
3198 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3199
3200 for (i = 0; i < conf->copies; i++) {
3201 int d = r10_bio->devs[i].devnum;
3202 sector_t first_bad, sector;
3203 int bad_sectors;
3204
3205 if (r10_bio->devs[i].repl_bio)
3206 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3207
3208 bio = r10_bio->devs[i].bio;
3209 bio->bi_end_io = NULL;
3210 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3211 if (conf->mirrors[d].rdev == NULL ||
3212 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3213 continue;
3214 sector = r10_bio->devs[i].addr;
3215 if (is_badblock(conf->mirrors[d].rdev,
3216 sector, max_sync,
3217 &first_bad, &bad_sectors)) {
3218 if (first_bad > sector)
3219 max_sync = first_bad - sector;
3220 else {
3221 bad_sectors -= (sector - first_bad);
3222 if (max_sync > bad_sectors)
3223 max_sync = bad_sectors;
3224 continue;
3225 }
3226 }
3227 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3228 atomic_inc(&r10_bio->remaining);
3229 bio->bi_next = biolist;
3230 biolist = bio;
3231 bio->bi_private = r10_bio;
3232 bio->bi_end_io = end_sync_read;
3233 bio->bi_rw = READ;
3234 bio->bi_sector = sector +
3235 conf->mirrors[d].rdev->data_offset;
3236 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3237 count++;
3238
3239 if (conf->mirrors[d].replacement == NULL ||
3240 test_bit(Faulty,
3241 &conf->mirrors[d].replacement->flags))
3242 continue;
3243
3244 /* Need to set up for writing to the replacement */
3245 bio = r10_bio->devs[i].repl_bio;
3246 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3247
3248 sector = r10_bio->devs[i].addr;
3249 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3250 bio->bi_next = biolist;
3251 biolist = bio;
3252 bio->bi_private = r10_bio;
3253 bio->bi_end_io = end_sync_write;
3254 bio->bi_rw = WRITE;
3255 bio->bi_sector = sector +
3256 conf->mirrors[d].replacement->data_offset;
3257 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3258 count++;
3259 }
3260
3261 if (count < 2) {
3262 for (i=0; i<conf->copies; i++) {
3263 int d = r10_bio->devs[i].devnum;
3264 if (r10_bio->devs[i].bio->bi_end_io)
3265 rdev_dec_pending(conf->mirrors[d].rdev,
3266 mddev);
3267 if (r10_bio->devs[i].repl_bio &&
3268 r10_bio->devs[i].repl_bio->bi_end_io)
3269 rdev_dec_pending(
3270 conf->mirrors[d].replacement,
3271 mddev);
3272 }
3273 put_buf(r10_bio);
3274 biolist = NULL;
3275 goto giveup;
3276 }
3277 }
3278
3279 for (bio = biolist; bio ; bio=bio->bi_next) {
3280
3281 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3282 if (bio->bi_end_io)
3283 bio->bi_flags |= 1 << BIO_UPTODATE;
3284 bio->bi_vcnt = 0;
3285 bio->bi_idx = 0;
3286 bio->bi_phys_segments = 0;
3287 bio->bi_size = 0;
3288 }
3289
3290 nr_sectors = 0;
3291 if (sector_nr + max_sync < max_sector)
3292 max_sector = sector_nr + max_sync;
3293 do {
3294 struct page *page;
3295 int len = PAGE_SIZE;
3296 if (sector_nr + (len>>9) > max_sector)
3297 len = (max_sector - sector_nr) << 9;
3298 if (len == 0)
3299 break;
3300 for (bio= biolist ; bio ; bio=bio->bi_next) {
3301 struct bio *bio2;
3302 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3303 if (bio_add_page(bio, page, len, 0))
3304 continue;
3305
3306 /* stop here */
3307 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3308 for (bio2 = biolist;
3309 bio2 && bio2 != bio;
3310 bio2 = bio2->bi_next) {
3311 /* remove last page from this bio */
3312 bio2->bi_vcnt--;
3313 bio2->bi_size -= len;
3314 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3315 }
3316 goto bio_full;
3317 }
3318 nr_sectors += len>>9;
3319 sector_nr += len>>9;
3320 } while (biolist->bi_vcnt < RESYNC_PAGES);
3321 bio_full:
3322 r10_bio->sectors = nr_sectors;
3323
3324 while (biolist) {
3325 bio = biolist;
3326 biolist = biolist->bi_next;
3327
3328 bio->bi_next = NULL;
3329 r10_bio = bio->bi_private;
3330 r10_bio->sectors = nr_sectors;
3331
3332 if (bio->bi_end_io == end_sync_read) {
3333 md_sync_acct(bio->bi_bdev, nr_sectors);
3334 generic_make_request(bio);
3335 }
3336 }
3337
3338 if (sectors_skipped)
3339 /* pretend they weren't skipped, it makes
3340 * no important difference in this case
3341 */
3342 md_done_sync(mddev, sectors_skipped, 1);
3343
3344 return sectors_skipped + nr_sectors;
3345 giveup:
3346 /* There is nowhere to write, so all non-sync
3347 * drives must be failed or in resync, all drives
3348 * have a bad block, so try the next chunk...
3349 */
3350 if (sector_nr + max_sync < max_sector)
3351 max_sector = sector_nr + max_sync;
3352
3353 sectors_skipped += (max_sector - sector_nr);
3354 chunks_skipped ++;
3355 sector_nr = max_sector;
3356 goto skipped;
3357 }
3358
3359 static sector_t
3360 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3361 {
3362 sector_t size;
3363 struct r10conf *conf = mddev->private;
3364
3365 if (!raid_disks)
3366 raid_disks = min(conf->geo.raid_disks,
3367 conf->prev.raid_disks);
3368 if (!sectors)
3369 sectors = conf->dev_sectors;
3370
3371 size = sectors >> conf->geo.chunk_shift;
3372 sector_div(size, conf->geo.far_copies);
3373 size = size * raid_disks;
3374 sector_div(size, conf->geo.near_copies);
3375
3376 return size << conf->geo.chunk_shift;
3377 }
3378
3379 static void calc_sectors(struct r10conf *conf, sector_t size)
3380 {
3381 /* Calculate the number of sectors-per-device that will
3382 * actually be used, and set conf->dev_sectors and
3383 * conf->stride
3384 */
3385
3386 size = size >> conf->geo.chunk_shift;
3387 sector_div(size, conf->geo.far_copies);
3388 size = size * conf->geo.raid_disks;
3389 sector_div(size, conf->geo.near_copies);
3390 /* 'size' is now the number of chunks in the array */
3391 /* calculate "used chunks per device" */
3392 size = size * conf->copies;
3393
3394 /* We need to round up when dividing by raid_disks to
3395 * get the stride size.
3396 */
3397 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3398
3399 conf->dev_sectors = size << conf->geo.chunk_shift;
3400
3401 if (conf->geo.far_offset)
3402 conf->geo.stride = 1 << conf->geo.chunk_shift;
3403 else {
3404 sector_div(size, conf->geo.far_copies);
3405 conf->geo.stride = size << conf->geo.chunk_shift;
3406 }
3407 }
3408
3409 enum geo_type {geo_new, geo_old, geo_start};
3410 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3411 {
3412 int nc, fc, fo;
3413 int layout, chunk, disks;
3414 switch (new) {
3415 case geo_old:
3416 layout = mddev->layout;
3417 chunk = mddev->chunk_sectors;
3418 disks = mddev->raid_disks - mddev->delta_disks;
3419 break;
3420 case geo_new:
3421 layout = mddev->new_layout;
3422 chunk = mddev->new_chunk_sectors;
3423 disks = mddev->raid_disks;
3424 break;
3425 default: /* avoid 'may be unused' warnings */
3426 case geo_start: /* new when starting reshape - raid_disks not
3427 * updated yet. */
3428 layout = mddev->new_layout;
3429 chunk = mddev->new_chunk_sectors;
3430 disks = mddev->raid_disks + mddev->delta_disks;
3431 break;
3432 }
3433 if (layout >> 17)
3434 return -1;
3435 if (chunk < (PAGE_SIZE >> 9) ||
3436 !is_power_of_2(chunk))
3437 return -2;
3438 nc = layout & 255;
3439 fc = (layout >> 8) & 255;
3440 fo = layout & (1<<16);
3441 geo->raid_disks = disks;
3442 geo->near_copies = nc;
3443 geo->far_copies = fc;
3444 geo->far_offset = fo;
3445 geo->chunk_mask = chunk - 1;
3446 geo->chunk_shift = ffz(~chunk);
3447 return nc*fc;
3448 }
3449
3450 static struct r10conf *setup_conf(struct mddev *mddev)
3451 {
3452 struct r10conf *conf = NULL;
3453 int err = -EINVAL;
3454 struct geom geo;
3455 int copies;
3456
3457 copies = setup_geo(&geo, mddev, geo_new);
3458
3459 if (copies == -2) {
3460 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3461 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3462 mdname(mddev), PAGE_SIZE);
3463 goto out;
3464 }
3465
3466 if (copies < 2 || copies > mddev->raid_disks) {
3467 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3468 mdname(mddev), mddev->new_layout);
3469 goto out;
3470 }
3471
3472 err = -ENOMEM;
3473 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3474 if (!conf)
3475 goto out;
3476
3477 /* FIXME calc properly */
3478 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3479 max(0,mddev->delta_disks)),
3480 GFP_KERNEL);
3481 if (!conf->mirrors)
3482 goto out;
3483
3484 conf->tmppage = alloc_page(GFP_KERNEL);
3485 if (!conf->tmppage)
3486 goto out;
3487
3488 conf->geo = geo;
3489 conf->copies = copies;
3490 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3491 r10bio_pool_free, conf);
3492 if (!conf->r10bio_pool)
3493 goto out;
3494
3495 calc_sectors(conf, mddev->dev_sectors);
3496 if (mddev->reshape_position == MaxSector) {
3497 conf->prev = conf->geo;
3498 conf->reshape_progress = MaxSector;
3499 } else {
3500 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3501 err = -EINVAL;
3502 goto out;
3503 }
3504 conf->reshape_progress = mddev->reshape_position;
3505 if (conf->prev.far_offset)
3506 conf->prev.stride = 1 << conf->prev.chunk_shift;
3507 else
3508 /* far_copies must be 1 */
3509 conf->prev.stride = conf->dev_sectors;
3510 }
3511 spin_lock_init(&conf->device_lock);
3512 INIT_LIST_HEAD(&conf->retry_list);
3513
3514 spin_lock_init(&conf->resync_lock);
3515 init_waitqueue_head(&conf->wait_barrier);
3516
3517 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3518 if (!conf->thread)
3519 goto out;
3520
3521 conf->mddev = mddev;
3522 return conf;
3523
3524 out:
3525 if (err == -ENOMEM)
3526 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3527 mdname(mddev));
3528 if (conf) {
3529 if (conf->r10bio_pool)
3530 mempool_destroy(conf->r10bio_pool);
3531 kfree(conf->mirrors);
3532 safe_put_page(conf->tmppage);
3533 kfree(conf);
3534 }
3535 return ERR_PTR(err);
3536 }
3537
3538 static int run(struct mddev *mddev)
3539 {
3540 struct r10conf *conf;
3541 int i, disk_idx, chunk_size;
3542 struct raid10_info *disk;
3543 struct md_rdev *rdev;
3544 sector_t size;
3545 sector_t min_offset_diff = 0;
3546 int first = 1;
3547 bool discard_supported = false;
3548
3549 if (mddev->private == NULL) {
3550 conf = setup_conf(mddev);
3551 if (IS_ERR(conf))
3552 return PTR_ERR(conf);
3553 mddev->private = conf;
3554 }
3555 conf = mddev->private;
3556 if (!conf)
3557 goto out;
3558
3559 mddev->thread = conf->thread;
3560 conf->thread = NULL;
3561
3562 chunk_size = mddev->chunk_sectors << 9;
3563 if (mddev->queue) {
3564 blk_queue_max_discard_sectors(mddev->queue,
3565 mddev->chunk_sectors);
3566 blk_queue_io_min(mddev->queue, chunk_size);
3567 if (conf->geo.raid_disks % conf->geo.near_copies)
3568 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3569 else
3570 blk_queue_io_opt(mddev->queue, chunk_size *
3571 (conf->geo.raid_disks / conf->geo.near_copies));
3572 }
3573
3574 rdev_for_each(rdev, mddev) {
3575 long long diff;
3576 struct request_queue *q;
3577
3578 disk_idx = rdev->raid_disk;
3579 if (disk_idx < 0)
3580 continue;
3581 if (disk_idx >= conf->geo.raid_disks &&
3582 disk_idx >= conf->prev.raid_disks)
3583 continue;
3584 disk = conf->mirrors + disk_idx;
3585
3586 if (test_bit(Replacement, &rdev->flags)) {
3587 if (disk->replacement)
3588 goto out_free_conf;
3589 disk->replacement = rdev;
3590 } else {
3591 if (disk->rdev)
3592 goto out_free_conf;
3593 disk->rdev = rdev;
3594 }
3595 q = bdev_get_queue(rdev->bdev);
3596 if (q->merge_bvec_fn)
3597 mddev->merge_check_needed = 1;
3598 diff = (rdev->new_data_offset - rdev->data_offset);
3599 if (!mddev->reshape_backwards)
3600 diff = -diff;
3601 if (diff < 0)
3602 diff = 0;
3603 if (first || diff < min_offset_diff)
3604 min_offset_diff = diff;
3605
3606 if (mddev->gendisk)
3607 disk_stack_limits(mddev->gendisk, rdev->bdev,
3608 rdev->data_offset << 9);
3609
3610 disk->head_position = 0;
3611
3612 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3613 discard_supported = true;
3614 }
3615
3616 if (discard_supported)
3617 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3618 else
3619 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3620
3621 /* need to check that every block has at least one working mirror */
3622 if (!enough(conf, -1)) {
3623 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3624 mdname(mddev));
3625 goto out_free_conf;
3626 }
3627
3628 if (conf->reshape_progress != MaxSector) {
3629 /* must ensure that shape change is supported */
3630 if (conf->geo.far_copies != 1 &&
3631 conf->geo.far_offset == 0)
3632 goto out_free_conf;
3633 if (conf->prev.far_copies != 1 &&
3634 conf->geo.far_offset == 0)
3635 goto out_free_conf;
3636 }
3637
3638 mddev->degraded = 0;
3639 for (i = 0;
3640 i < conf->geo.raid_disks
3641 || i < conf->prev.raid_disks;
3642 i++) {
3643
3644 disk = conf->mirrors + i;
3645
3646 if (!disk->rdev && disk->replacement) {
3647 /* The replacement is all we have - use it */
3648 disk->rdev = disk->replacement;
3649 disk->replacement = NULL;
3650 clear_bit(Replacement, &disk->rdev->flags);
3651 }
3652
3653 if (!disk->rdev ||
3654 !test_bit(In_sync, &disk->rdev->flags)) {
3655 disk->head_position = 0;
3656 mddev->degraded++;
3657 if (disk->rdev)
3658 conf->fullsync = 1;
3659 }
3660 disk->recovery_disabled = mddev->recovery_disabled - 1;
3661 }
3662
3663 if (mddev->recovery_cp != MaxSector)
3664 printk(KERN_NOTICE "md/raid10:%s: not clean"
3665 " -- starting background reconstruction\n",
3666 mdname(mddev));
3667 printk(KERN_INFO
3668 "md/raid10:%s: active with %d out of %d devices\n",
3669 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3670 conf->geo.raid_disks);
3671 /*
3672 * Ok, everything is just fine now
3673 */
3674 mddev->dev_sectors = conf->dev_sectors;
3675 size = raid10_size(mddev, 0, 0);
3676 md_set_array_sectors(mddev, size);
3677 mddev->resync_max_sectors = size;
3678
3679 if (mddev->queue) {
3680 int stripe = conf->geo.raid_disks *
3681 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3682 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3683 mddev->queue->backing_dev_info.congested_data = mddev;
3684
3685 /* Calculate max read-ahead size.
3686 * We need to readahead at least twice a whole stripe....
3687 * maybe...
3688 */
3689 stripe /= conf->geo.near_copies;
3690 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3691 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3692 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3693 }
3694
3695
3696 if (md_integrity_register(mddev))
3697 goto out_free_conf;
3698
3699 if (conf->reshape_progress != MaxSector) {
3700 unsigned long before_length, after_length;
3701
3702 before_length = ((1 << conf->prev.chunk_shift) *
3703 conf->prev.far_copies);
3704 after_length = ((1 << conf->geo.chunk_shift) *
3705 conf->geo.far_copies);
3706
3707 if (max(before_length, after_length) > min_offset_diff) {
3708 /* This cannot work */
3709 printk("md/raid10: offset difference not enough to continue reshape\n");
3710 goto out_free_conf;
3711 }
3712 conf->offset_diff = min_offset_diff;
3713
3714 conf->reshape_safe = conf->reshape_progress;
3715 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3716 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3717 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3718 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3719 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3720 "reshape");
3721 }
3722
3723 return 0;
3724
3725 out_free_conf:
3726 md_unregister_thread(&mddev->thread);
3727 if (conf->r10bio_pool)
3728 mempool_destroy(conf->r10bio_pool);
3729 safe_put_page(conf->tmppage);
3730 kfree(conf->mirrors);
3731 kfree(conf);
3732 mddev->private = NULL;
3733 out:
3734 return -EIO;
3735 }
3736
3737 static int stop(struct mddev *mddev)
3738 {
3739 struct r10conf *conf = mddev->private;
3740
3741 raise_barrier(conf, 0);
3742 lower_barrier(conf);
3743
3744 md_unregister_thread(&mddev->thread);
3745 if (mddev->queue)
3746 /* the unplug fn references 'conf'*/
3747 blk_sync_queue(mddev->queue);
3748
3749 if (conf->r10bio_pool)
3750 mempool_destroy(conf->r10bio_pool);
3751 kfree(conf->mirrors);
3752 kfree(conf);
3753 mddev->private = NULL;
3754 return 0;
3755 }
3756
3757 static void raid10_quiesce(struct mddev *mddev, int state)
3758 {
3759 struct r10conf *conf = mddev->private;
3760
3761 switch(state) {
3762 case 1:
3763 raise_barrier(conf, 0);
3764 break;
3765 case 0:
3766 lower_barrier(conf);
3767 break;
3768 }
3769 }
3770
3771 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3772 {
3773 /* Resize of 'far' arrays is not supported.
3774 * For 'near' and 'offset' arrays we can set the
3775 * number of sectors used to be an appropriate multiple
3776 * of the chunk size.
3777 * For 'offset', this is far_copies*chunksize.
3778 * For 'near' the multiplier is the LCM of
3779 * near_copies and raid_disks.
3780 * So if far_copies > 1 && !far_offset, fail.
3781 * Else find LCM(raid_disks, near_copy)*far_copies and
3782 * multiply by chunk_size. Then round to this number.
3783 * This is mostly done by raid10_size()
3784 */
3785 struct r10conf *conf = mddev->private;
3786 sector_t oldsize, size;
3787
3788 if (mddev->reshape_position != MaxSector)
3789 return -EBUSY;
3790
3791 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3792 return -EINVAL;
3793
3794 oldsize = raid10_size(mddev, 0, 0);
3795 size = raid10_size(mddev, sectors, 0);
3796 if (mddev->external_size &&
3797 mddev->array_sectors > size)
3798 return -EINVAL;
3799 if (mddev->bitmap) {
3800 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3801 if (ret)
3802 return ret;
3803 }
3804 md_set_array_sectors(mddev, size);
3805 set_capacity(mddev->gendisk, mddev->array_sectors);
3806 revalidate_disk(mddev->gendisk);
3807 if (sectors > mddev->dev_sectors &&
3808 mddev->recovery_cp > oldsize) {
3809 mddev->recovery_cp = oldsize;
3810 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3811 }
3812 calc_sectors(conf, sectors);
3813 mddev->dev_sectors = conf->dev_sectors;
3814 mddev->resync_max_sectors = size;
3815 return 0;
3816 }
3817
3818 static void *raid10_takeover_raid0(struct mddev *mddev)
3819 {
3820 struct md_rdev *rdev;
3821 struct r10conf *conf;
3822
3823 if (mddev->degraded > 0) {
3824 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3825 mdname(mddev));
3826 return ERR_PTR(-EINVAL);
3827 }
3828
3829 /* Set new parameters */
3830 mddev->new_level = 10;
3831 /* new layout: far_copies = 1, near_copies = 2 */
3832 mddev->new_layout = (1<<8) + 2;
3833 mddev->new_chunk_sectors = mddev->chunk_sectors;
3834 mddev->delta_disks = mddev->raid_disks;
3835 mddev->raid_disks *= 2;
3836 /* make sure it will be not marked as dirty */
3837 mddev->recovery_cp = MaxSector;
3838
3839 conf = setup_conf(mddev);
3840 if (!IS_ERR(conf)) {
3841 rdev_for_each(rdev, mddev)
3842 if (rdev->raid_disk >= 0)
3843 rdev->new_raid_disk = rdev->raid_disk * 2;
3844 conf->barrier = 1;
3845 }
3846
3847 return conf;
3848 }
3849
3850 static void *raid10_takeover(struct mddev *mddev)
3851 {
3852 struct r0conf *raid0_conf;
3853
3854 /* raid10 can take over:
3855 * raid0 - providing it has only two drives
3856 */
3857 if (mddev->level == 0) {
3858 /* for raid0 takeover only one zone is supported */
3859 raid0_conf = mddev->private;
3860 if (raid0_conf->nr_strip_zones > 1) {
3861 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3862 " with more than one zone.\n",
3863 mdname(mddev));
3864 return ERR_PTR(-EINVAL);
3865 }
3866 return raid10_takeover_raid0(mddev);
3867 }
3868 return ERR_PTR(-EINVAL);
3869 }
3870
3871 static int raid10_check_reshape(struct mddev *mddev)
3872 {
3873 /* Called when there is a request to change
3874 * - layout (to ->new_layout)
3875 * - chunk size (to ->new_chunk_sectors)
3876 * - raid_disks (by delta_disks)
3877 * or when trying to restart a reshape that was ongoing.
3878 *
3879 * We need to validate the request and possibly allocate
3880 * space if that might be an issue later.
3881 *
3882 * Currently we reject any reshape of a 'far' mode array,
3883 * allow chunk size to change if new is generally acceptable,
3884 * allow raid_disks to increase, and allow
3885 * a switch between 'near' mode and 'offset' mode.
3886 */
3887 struct r10conf *conf = mddev->private;
3888 struct geom geo;
3889
3890 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3891 return -EINVAL;
3892
3893 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3894 /* mustn't change number of copies */
3895 return -EINVAL;
3896 if (geo.far_copies > 1 && !geo.far_offset)
3897 /* Cannot switch to 'far' mode */
3898 return -EINVAL;
3899
3900 if (mddev->array_sectors & geo.chunk_mask)
3901 /* not factor of array size */
3902 return -EINVAL;
3903
3904 if (!enough(conf, -1))
3905 return -EINVAL;
3906
3907 kfree(conf->mirrors_new);
3908 conf->mirrors_new = NULL;
3909 if (mddev->delta_disks > 0) {
3910 /* allocate new 'mirrors' list */
3911 conf->mirrors_new = kzalloc(
3912 sizeof(struct raid10_info)
3913 *(mddev->raid_disks +
3914 mddev->delta_disks),
3915 GFP_KERNEL);
3916 if (!conf->mirrors_new)
3917 return -ENOMEM;
3918 }
3919 return 0;
3920 }
3921
3922 /*
3923 * Need to check if array has failed when deciding whether to:
3924 * - start an array
3925 * - remove non-faulty devices
3926 * - add a spare
3927 * - allow a reshape
3928 * This determination is simple when no reshape is happening.
3929 * However if there is a reshape, we need to carefully check
3930 * both the before and after sections.
3931 * This is because some failed devices may only affect one
3932 * of the two sections, and some non-in_sync devices may
3933 * be insync in the section most affected by failed devices.
3934 */
3935 static int calc_degraded(struct r10conf *conf)
3936 {
3937 int degraded, degraded2;
3938 int i;
3939
3940 rcu_read_lock();
3941 degraded = 0;
3942 /* 'prev' section first */
3943 for (i = 0; i < conf->prev.raid_disks; i++) {
3944 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3945 if (!rdev || test_bit(Faulty, &rdev->flags))
3946 degraded++;
3947 else if (!test_bit(In_sync, &rdev->flags))
3948 /* When we can reduce the number of devices in
3949 * an array, this might not contribute to
3950 * 'degraded'. It does now.
3951 */
3952 degraded++;
3953 }
3954 rcu_read_unlock();
3955 if (conf->geo.raid_disks == conf->prev.raid_disks)
3956 return degraded;
3957 rcu_read_lock();
3958 degraded2 = 0;
3959 for (i = 0; i < conf->geo.raid_disks; i++) {
3960 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3961 if (!rdev || test_bit(Faulty, &rdev->flags))
3962 degraded2++;
3963 else if (!test_bit(In_sync, &rdev->flags)) {
3964 /* If reshape is increasing the number of devices,
3965 * this section has already been recovered, so
3966 * it doesn't contribute to degraded.
3967 * else it does.
3968 */
3969 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3970 degraded2++;
3971 }
3972 }
3973 rcu_read_unlock();
3974 if (degraded2 > degraded)
3975 return degraded2;
3976 return degraded;
3977 }
3978
3979 static int raid10_start_reshape(struct mddev *mddev)
3980 {
3981 /* A 'reshape' has been requested. This commits
3982 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3983 * This also checks if there are enough spares and adds them
3984 * to the array.
3985 * We currently require enough spares to make the final
3986 * array non-degraded. We also require that the difference
3987 * between old and new data_offset - on each device - is
3988 * enough that we never risk over-writing.
3989 */
3990
3991 unsigned long before_length, after_length;
3992 sector_t min_offset_diff = 0;
3993 int first = 1;
3994 struct geom new;
3995 struct r10conf *conf = mddev->private;
3996 struct md_rdev *rdev;
3997 int spares = 0;
3998 int ret;
3999
4000 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4001 return -EBUSY;
4002
4003 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4004 return -EINVAL;
4005
4006 before_length = ((1 << conf->prev.chunk_shift) *
4007 conf->prev.far_copies);
4008 after_length = ((1 << conf->geo.chunk_shift) *
4009 conf->geo.far_copies);
4010
4011 rdev_for_each(rdev, mddev) {
4012 if (!test_bit(In_sync, &rdev->flags)
4013 && !test_bit(Faulty, &rdev->flags))
4014 spares++;
4015 if (rdev->raid_disk >= 0) {
4016 long long diff = (rdev->new_data_offset
4017 - rdev->data_offset);
4018 if (!mddev->reshape_backwards)
4019 diff = -diff;
4020 if (diff < 0)
4021 diff = 0;
4022 if (first || diff < min_offset_diff)
4023 min_offset_diff = diff;
4024 }
4025 }
4026
4027 if (max(before_length, after_length) > min_offset_diff)
4028 return -EINVAL;
4029
4030 if (spares < mddev->delta_disks)
4031 return -EINVAL;
4032
4033 conf->offset_diff = min_offset_diff;
4034 spin_lock_irq(&conf->device_lock);
4035 if (conf->mirrors_new) {
4036 memcpy(conf->mirrors_new, conf->mirrors,
4037 sizeof(struct raid10_info)*conf->prev.raid_disks);
4038 smp_mb();
4039 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4040 conf->mirrors_old = conf->mirrors;
4041 conf->mirrors = conf->mirrors_new;
4042 conf->mirrors_new = NULL;
4043 }
4044 setup_geo(&conf->geo, mddev, geo_start);
4045 smp_mb();
4046 if (mddev->reshape_backwards) {
4047 sector_t size = raid10_size(mddev, 0, 0);
4048 if (size < mddev->array_sectors) {
4049 spin_unlock_irq(&conf->device_lock);
4050 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4051 mdname(mddev));
4052 return -EINVAL;
4053 }
4054 mddev->resync_max_sectors = size;
4055 conf->reshape_progress = size;
4056 } else
4057 conf->reshape_progress = 0;
4058 spin_unlock_irq(&conf->device_lock);
4059
4060 if (mddev->delta_disks && mddev->bitmap) {
4061 ret = bitmap_resize(mddev->bitmap,
4062 raid10_size(mddev, 0,
4063 conf->geo.raid_disks),
4064 0, 0);
4065 if (ret)
4066 goto abort;
4067 }
4068 if (mddev->delta_disks > 0) {
4069 rdev_for_each(rdev, mddev)
4070 if (rdev->raid_disk < 0 &&
4071 !test_bit(Faulty, &rdev->flags)) {
4072 if (raid10_add_disk(mddev, rdev) == 0) {
4073 if (rdev->raid_disk >=
4074 conf->prev.raid_disks)
4075 set_bit(In_sync, &rdev->flags);
4076 else
4077 rdev->recovery_offset = 0;
4078
4079 if (sysfs_link_rdev(mddev, rdev))
4080 /* Failure here is OK */;
4081 }
4082 } else if (rdev->raid_disk >= conf->prev.raid_disks
4083 && !test_bit(Faulty, &rdev->flags)) {
4084 /* This is a spare that was manually added */
4085 set_bit(In_sync, &rdev->flags);
4086 }
4087 }
4088 /* When a reshape changes the number of devices,
4089 * ->degraded is measured against the larger of the
4090 * pre and post numbers.
4091 */
4092 spin_lock_irq(&conf->device_lock);
4093 mddev->degraded = calc_degraded(conf);
4094 spin_unlock_irq(&conf->device_lock);
4095 mddev->raid_disks = conf->geo.raid_disks;
4096 mddev->reshape_position = conf->reshape_progress;
4097 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4098
4099 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4100 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4101 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4102 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4103
4104 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4105 "reshape");
4106 if (!mddev->sync_thread) {
4107 ret = -EAGAIN;
4108 goto abort;
4109 }
4110 conf->reshape_checkpoint = jiffies;
4111 md_wakeup_thread(mddev->sync_thread);
4112 md_new_event(mddev);
4113 return 0;
4114
4115 abort:
4116 mddev->recovery = 0;
4117 spin_lock_irq(&conf->device_lock);
4118 conf->geo = conf->prev;
4119 mddev->raid_disks = conf->geo.raid_disks;
4120 rdev_for_each(rdev, mddev)
4121 rdev->new_data_offset = rdev->data_offset;
4122 smp_wmb();
4123 conf->reshape_progress = MaxSector;
4124 mddev->reshape_position = MaxSector;
4125 spin_unlock_irq(&conf->device_lock);
4126 return ret;
4127 }
4128
4129 /* Calculate the last device-address that could contain
4130 * any block from the chunk that includes the array-address 's'
4131 * and report the next address.
4132 * i.e. the address returned will be chunk-aligned and after
4133 * any data that is in the chunk containing 's'.
4134 */
4135 static sector_t last_dev_address(sector_t s, struct geom *geo)
4136 {
4137 s = (s | geo->chunk_mask) + 1;
4138 s >>= geo->chunk_shift;
4139 s *= geo->near_copies;
4140 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4141 s *= geo->far_copies;
4142 s <<= geo->chunk_shift;
4143 return s;
4144 }
4145
4146 /* Calculate the first device-address that could contain
4147 * any block from the chunk that includes the array-address 's'.
4148 * This too will be the start of a chunk
4149 */
4150 static sector_t first_dev_address(sector_t s, struct geom *geo)
4151 {
4152 s >>= geo->chunk_shift;
4153 s *= geo->near_copies;
4154 sector_div(s, geo->raid_disks);
4155 s *= geo->far_copies;
4156 s <<= geo->chunk_shift;
4157 return s;
4158 }
4159
4160 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4161 int *skipped)
4162 {
4163 /* We simply copy at most one chunk (smallest of old and new)
4164 * at a time, possibly less if that exceeds RESYNC_PAGES,
4165 * or we hit a bad block or something.
4166 * This might mean we pause for normal IO in the middle of
4167 * a chunk, but that is not a problem was mddev->reshape_position
4168 * can record any location.
4169 *
4170 * If we will want to write to a location that isn't
4171 * yet recorded as 'safe' (i.e. in metadata on disk) then
4172 * we need to flush all reshape requests and update the metadata.
4173 *
4174 * When reshaping forwards (e.g. to more devices), we interpret
4175 * 'safe' as the earliest block which might not have been copied
4176 * down yet. We divide this by previous stripe size and multiply
4177 * by previous stripe length to get lowest device offset that we
4178 * cannot write to yet.
4179 * We interpret 'sector_nr' as an address that we want to write to.
4180 * From this we use last_device_address() to find where we might
4181 * write to, and first_device_address on the 'safe' position.
4182 * If this 'next' write position is after the 'safe' position,
4183 * we must update the metadata to increase the 'safe' position.
4184 *
4185 * When reshaping backwards, we round in the opposite direction
4186 * and perform the reverse test: next write position must not be
4187 * less than current safe position.
4188 *
4189 * In all this the minimum difference in data offsets
4190 * (conf->offset_diff - always positive) allows a bit of slack,
4191 * so next can be after 'safe', but not by more than offset_disk
4192 *
4193 * We need to prepare all the bios here before we start any IO
4194 * to ensure the size we choose is acceptable to all devices.
4195 * The means one for each copy for write-out and an extra one for
4196 * read-in.
4197 * We store the read-in bio in ->master_bio and the others in
4198 * ->devs[x].bio and ->devs[x].repl_bio.
4199 */
4200 struct r10conf *conf = mddev->private;
4201 struct r10bio *r10_bio;
4202 sector_t next, safe, last;
4203 int max_sectors;
4204 int nr_sectors;
4205 int s;
4206 struct md_rdev *rdev;
4207 int need_flush = 0;
4208 struct bio *blist;
4209 struct bio *bio, *read_bio;
4210 int sectors_done = 0;
4211
4212 if (sector_nr == 0) {
4213 /* If restarting in the middle, skip the initial sectors */
4214 if (mddev->reshape_backwards &&
4215 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4216 sector_nr = (raid10_size(mddev, 0, 0)
4217 - conf->reshape_progress);
4218 } else if (!mddev->reshape_backwards &&
4219 conf->reshape_progress > 0)
4220 sector_nr = conf->reshape_progress;
4221 if (sector_nr) {
4222 mddev->curr_resync_completed = sector_nr;
4223 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4224 *skipped = 1;
4225 return sector_nr;
4226 }
4227 }
4228
4229 /* We don't use sector_nr to track where we are up to
4230 * as that doesn't work well for ->reshape_backwards.
4231 * So just use ->reshape_progress.
4232 */
4233 if (mddev->reshape_backwards) {
4234 /* 'next' is the earliest device address that we might
4235 * write to for this chunk in the new layout
4236 */
4237 next = first_dev_address(conf->reshape_progress - 1,
4238 &conf->geo);
4239
4240 /* 'safe' is the last device address that we might read from
4241 * in the old layout after a restart
4242 */
4243 safe = last_dev_address(conf->reshape_safe - 1,
4244 &conf->prev);
4245
4246 if (next + conf->offset_diff < safe)
4247 need_flush = 1;
4248
4249 last = conf->reshape_progress - 1;
4250 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4251 & conf->prev.chunk_mask);
4252 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4253 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4254 } else {
4255 /* 'next' is after the last device address that we
4256 * might write to for this chunk in the new layout
4257 */
4258 next = last_dev_address(conf->reshape_progress, &conf->geo);
4259
4260 /* 'safe' is the earliest device address that we might
4261 * read from in the old layout after a restart
4262 */
4263 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4264
4265 /* Need to update metadata if 'next' might be beyond 'safe'
4266 * as that would possibly corrupt data
4267 */
4268 if (next > safe + conf->offset_diff)
4269 need_flush = 1;
4270
4271 sector_nr = conf->reshape_progress;
4272 last = sector_nr | (conf->geo.chunk_mask
4273 & conf->prev.chunk_mask);
4274
4275 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4276 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4277 }
4278
4279 if (need_flush ||
4280 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4281 /* Need to update reshape_position in metadata */
4282 wait_barrier(conf);
4283 mddev->reshape_position = conf->reshape_progress;
4284 if (mddev->reshape_backwards)
4285 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4286 - conf->reshape_progress;
4287 else
4288 mddev->curr_resync_completed = conf->reshape_progress;
4289 conf->reshape_checkpoint = jiffies;
4290 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4291 md_wakeup_thread(mddev->thread);
4292 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4293 kthread_should_stop());
4294 conf->reshape_safe = mddev->reshape_position;
4295 allow_barrier(conf);
4296 }
4297
4298 read_more:
4299 /* Now schedule reads for blocks from sector_nr to last */
4300 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4301 raise_barrier(conf, sectors_done != 0);
4302 atomic_set(&r10_bio->remaining, 0);
4303 r10_bio->mddev = mddev;
4304 r10_bio->sector = sector_nr;
4305 set_bit(R10BIO_IsReshape, &r10_bio->state);
4306 r10_bio->sectors = last - sector_nr + 1;
4307 rdev = read_balance(conf, r10_bio, &max_sectors);
4308 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4309
4310 if (!rdev) {
4311 /* Cannot read from here, so need to record bad blocks
4312 * on all the target devices.
4313 */
4314 // FIXME
4315 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4316 return sectors_done;
4317 }
4318
4319 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4320
4321 read_bio->bi_bdev = rdev->bdev;
4322 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4323 + rdev->data_offset);
4324 read_bio->bi_private = r10_bio;
4325 read_bio->bi_end_io = end_sync_read;
4326 read_bio->bi_rw = READ;
4327 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4328 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4329 read_bio->bi_vcnt = 0;
4330 read_bio->bi_idx = 0;
4331 read_bio->bi_size = 0;
4332 r10_bio->master_bio = read_bio;
4333 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4334
4335 /* Now find the locations in the new layout */
4336 __raid10_find_phys(&conf->geo, r10_bio);
4337
4338 blist = read_bio;
4339 read_bio->bi_next = NULL;
4340
4341 for (s = 0; s < conf->copies*2; s++) {
4342 struct bio *b;
4343 int d = r10_bio->devs[s/2].devnum;
4344 struct md_rdev *rdev2;
4345 if (s&1) {
4346 rdev2 = conf->mirrors[d].replacement;
4347 b = r10_bio->devs[s/2].repl_bio;
4348 } else {
4349 rdev2 = conf->mirrors[d].rdev;
4350 b = r10_bio->devs[s/2].bio;
4351 }
4352 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4353 continue;
4354 b->bi_bdev = rdev2->bdev;
4355 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4356 b->bi_private = r10_bio;
4357 b->bi_end_io = end_reshape_write;
4358 b->bi_rw = WRITE;
4359 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4360 b->bi_flags |= 1 << BIO_UPTODATE;
4361 b->bi_next = blist;
4362 b->bi_vcnt = 0;
4363 b->bi_idx = 0;
4364 b->bi_size = 0;
4365 blist = b;
4366 }
4367
4368 /* Now add as many pages as possible to all of these bios. */
4369
4370 nr_sectors = 0;
4371 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4372 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4373 int len = (max_sectors - s) << 9;
4374 if (len > PAGE_SIZE)
4375 len = PAGE_SIZE;
4376 for (bio = blist; bio ; bio = bio->bi_next) {
4377 struct bio *bio2;
4378 if (bio_add_page(bio, page, len, 0))
4379 continue;
4380
4381 /* Didn't fit, must stop */
4382 for (bio2 = blist;
4383 bio2 && bio2 != bio;
4384 bio2 = bio2->bi_next) {
4385 /* Remove last page from this bio */
4386 bio2->bi_vcnt--;
4387 bio2->bi_size -= len;
4388 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4389 }
4390 goto bio_full;
4391 }
4392 sector_nr += len >> 9;
4393 nr_sectors += len >> 9;
4394 }
4395 bio_full:
4396 r10_bio->sectors = nr_sectors;
4397
4398 /* Now submit the read */
4399 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4400 atomic_inc(&r10_bio->remaining);
4401 read_bio->bi_next = NULL;
4402 generic_make_request(read_bio);
4403 sector_nr += nr_sectors;
4404 sectors_done += nr_sectors;
4405 if (sector_nr <= last)
4406 goto read_more;
4407
4408 /* Now that we have done the whole section we can
4409 * update reshape_progress
4410 */
4411 if (mddev->reshape_backwards)
4412 conf->reshape_progress -= sectors_done;
4413 else
4414 conf->reshape_progress += sectors_done;
4415
4416 return sectors_done;
4417 }
4418
4419 static void end_reshape_request(struct r10bio *r10_bio);
4420 static int handle_reshape_read_error(struct mddev *mddev,
4421 struct r10bio *r10_bio);
4422 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4423 {
4424 /* Reshape read completed. Hopefully we have a block
4425 * to write out.
4426 * If we got a read error then we do sync 1-page reads from
4427 * elsewhere until we find the data - or give up.
4428 */
4429 struct r10conf *conf = mddev->private;
4430 int s;
4431
4432 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4433 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4434 /* Reshape has been aborted */
4435 md_done_sync(mddev, r10_bio->sectors, 0);
4436 return;
4437 }
4438
4439 /* We definitely have the data in the pages, schedule the
4440 * writes.
4441 */
4442 atomic_set(&r10_bio->remaining, 1);
4443 for (s = 0; s < conf->copies*2; s++) {
4444 struct bio *b;
4445 int d = r10_bio->devs[s/2].devnum;
4446 struct md_rdev *rdev;
4447 if (s&1) {
4448 rdev = conf->mirrors[d].replacement;
4449 b = r10_bio->devs[s/2].repl_bio;
4450 } else {
4451 rdev = conf->mirrors[d].rdev;
4452 b = r10_bio->devs[s/2].bio;
4453 }
4454 if (!rdev || test_bit(Faulty, &rdev->flags))
4455 continue;
4456 atomic_inc(&rdev->nr_pending);
4457 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4458 atomic_inc(&r10_bio->remaining);
4459 b->bi_next = NULL;
4460 generic_make_request(b);
4461 }
4462 end_reshape_request(r10_bio);
4463 }
4464
4465 static void end_reshape(struct r10conf *conf)
4466 {
4467 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4468 return;
4469
4470 spin_lock_irq(&conf->device_lock);
4471 conf->prev = conf->geo;
4472 md_finish_reshape(conf->mddev);
4473 smp_wmb();
4474 conf->reshape_progress = MaxSector;
4475 spin_unlock_irq(&conf->device_lock);
4476
4477 /* read-ahead size must cover two whole stripes, which is
4478 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4479 */
4480 if (conf->mddev->queue) {
4481 int stripe = conf->geo.raid_disks *
4482 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4483 stripe /= conf->geo.near_copies;
4484 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4485 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4486 }
4487 conf->fullsync = 0;
4488 }
4489
4490
4491 static int handle_reshape_read_error(struct mddev *mddev,
4492 struct r10bio *r10_bio)
4493 {
4494 /* Use sync reads to get the blocks from somewhere else */
4495 int sectors = r10_bio->sectors;
4496 struct r10conf *conf = mddev->private;
4497 struct {
4498 struct r10bio r10_bio;
4499 struct r10dev devs[conf->copies];
4500 } on_stack;
4501 struct r10bio *r10b = &on_stack.r10_bio;
4502 int slot = 0;
4503 int idx = 0;
4504 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4505
4506 r10b->sector = r10_bio->sector;
4507 __raid10_find_phys(&conf->prev, r10b);
4508
4509 while (sectors) {
4510 int s = sectors;
4511 int success = 0;
4512 int first_slot = slot;
4513
4514 if (s > (PAGE_SIZE >> 9))
4515 s = PAGE_SIZE >> 9;
4516
4517 while (!success) {
4518 int d = r10b->devs[slot].devnum;
4519 struct md_rdev *rdev = conf->mirrors[d].rdev;
4520 sector_t addr;
4521 if (rdev == NULL ||
4522 test_bit(Faulty, &rdev->flags) ||
4523 !test_bit(In_sync, &rdev->flags))
4524 goto failed;
4525
4526 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4527 success = sync_page_io(rdev,
4528 addr,
4529 s << 9,
4530 bvec[idx].bv_page,
4531 READ, false);
4532 if (success)
4533 break;
4534 failed:
4535 slot++;
4536 if (slot >= conf->copies)
4537 slot = 0;
4538 if (slot == first_slot)
4539 break;
4540 }
4541 if (!success) {
4542 /* couldn't read this block, must give up */
4543 set_bit(MD_RECOVERY_INTR,
4544 &mddev->recovery);
4545 return -EIO;
4546 }
4547 sectors -= s;
4548 idx++;
4549 }
4550 return 0;
4551 }
4552
4553 static void end_reshape_write(struct bio *bio, int error)
4554 {
4555 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4556 struct r10bio *r10_bio = bio->bi_private;
4557 struct mddev *mddev = r10_bio->mddev;
4558 struct r10conf *conf = mddev->private;
4559 int d;
4560 int slot;
4561 int repl;
4562 struct md_rdev *rdev = NULL;
4563
4564 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4565 if (repl)
4566 rdev = conf->mirrors[d].replacement;
4567 if (!rdev) {
4568 smp_mb();
4569 rdev = conf->mirrors[d].rdev;
4570 }
4571
4572 if (!uptodate) {
4573 /* FIXME should record badblock */
4574 md_error(mddev, rdev);
4575 }
4576
4577 rdev_dec_pending(rdev, mddev);
4578 end_reshape_request(r10_bio);
4579 }
4580
4581 static void end_reshape_request(struct r10bio *r10_bio)
4582 {
4583 if (!atomic_dec_and_test(&r10_bio->remaining))
4584 return;
4585 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4586 bio_put(r10_bio->master_bio);
4587 put_buf(r10_bio);
4588 }
4589
4590 static void raid10_finish_reshape(struct mddev *mddev)
4591 {
4592 struct r10conf *conf = mddev->private;
4593
4594 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4595 return;
4596
4597 if (mddev->delta_disks > 0) {
4598 sector_t size = raid10_size(mddev, 0, 0);
4599 md_set_array_sectors(mddev, size);
4600 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4601 mddev->recovery_cp = mddev->resync_max_sectors;
4602 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4603 }
4604 mddev->resync_max_sectors = size;
4605 set_capacity(mddev->gendisk, mddev->array_sectors);
4606 revalidate_disk(mddev->gendisk);
4607 } else {
4608 int d;
4609 for (d = conf->geo.raid_disks ;
4610 d < conf->geo.raid_disks - mddev->delta_disks;
4611 d++) {
4612 struct md_rdev *rdev = conf->mirrors[d].rdev;
4613 if (rdev)
4614 clear_bit(In_sync, &rdev->flags);
4615 rdev = conf->mirrors[d].replacement;
4616 if (rdev)
4617 clear_bit(In_sync, &rdev->flags);
4618 }
4619 }
4620 mddev->layout = mddev->new_layout;
4621 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4622 mddev->reshape_position = MaxSector;
4623 mddev->delta_disks = 0;
4624 mddev->reshape_backwards = 0;
4625 }
4626
4627 static struct md_personality raid10_personality =
4628 {
4629 .name = "raid10",
4630 .level = 10,
4631 .owner = THIS_MODULE,
4632 .make_request = make_request,
4633 .run = run,
4634 .stop = stop,
4635 .status = status,
4636 .error_handler = error,
4637 .hot_add_disk = raid10_add_disk,
4638 .hot_remove_disk= raid10_remove_disk,
4639 .spare_active = raid10_spare_active,
4640 .sync_request = sync_request,
4641 .quiesce = raid10_quiesce,
4642 .size = raid10_size,
4643 .resize = raid10_resize,
4644 .takeover = raid10_takeover,
4645 .check_reshape = raid10_check_reshape,
4646 .start_reshape = raid10_start_reshape,
4647 .finish_reshape = raid10_finish_reshape,
4648 };
4649
4650 static int __init raid_init(void)
4651 {
4652 return register_md_personality(&raid10_personality);
4653 }
4654
4655 static void raid_exit(void)
4656 {
4657 unregister_md_personality(&raid10_personality);
4658 }
4659
4660 module_init(raid_init);
4661 module_exit(raid_exit);
4662 MODULE_LICENSE("GPL");
4663 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4664 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4665 MODULE_ALIAS("md-raid10");
4666 MODULE_ALIAS("md-level-10");
4667
4668 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);