]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
Merge remote-tracking branches 'regulator/topic/mode', 'regulator/topic/notifier...
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
396 uptodate = 1;
397 }
398 if (uptodate) {
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
401 } else {
402 /*
403 * oops, read error - keep the refcount on the rdev
404 */
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
413 }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439 }
440
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (!uptodate) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /**
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 * @mddev: the md device
678 * @bvm: properties of new bio
679 * @biovec: the request that could be merged to it.
680 *
681 * Return amount of bytes we can accept at this offset
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
684 */
685 static int raid10_mergeable_bvec(struct mddev *mddev,
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
688 {
689 struct r10conf *conf = mddev->private;
690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
691 int max;
692 unsigned int chunk_sectors;
693 unsigned int bio_sectors = bvm->bi_size >> 9;
694 struct geom *geo = &conf->geo;
695
696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
697 if (conf->reshape_progress != MaxSector &&
698 ((sector >= conf->reshape_progress) !=
699 conf->mddev->reshape_backwards))
700 geo = &conf->prev;
701
702 if (geo->near_copies < geo->raid_disks) {
703 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
704 + bio_sectors)) << 9;
705 if (max < 0)
706 /* bio_add cannot handle a negative return */
707 max = 0;
708 if (max <= biovec->bv_len && bio_sectors == 0)
709 return biovec->bv_len;
710 } else
711 max = biovec->bv_len;
712
713 if (mddev->merge_check_needed) {
714 struct {
715 struct r10bio r10_bio;
716 struct r10dev devs[conf->copies];
717 } on_stack;
718 struct r10bio *r10_bio = &on_stack.r10_bio;
719 int s;
720 if (conf->reshape_progress != MaxSector) {
721 /* Cannot give any guidance during reshape */
722 if (max <= biovec->bv_len && bio_sectors == 0)
723 return biovec->bv_len;
724 return 0;
725 }
726 r10_bio->sector = sector;
727 raid10_find_phys(conf, r10_bio);
728 rcu_read_lock();
729 for (s = 0; s < conf->copies; s++) {
730 int disk = r10_bio->devs[s].devnum;
731 struct md_rdev *rdev = rcu_dereference(
732 conf->mirrors[disk].rdev);
733 if (rdev && !test_bit(Faulty, &rdev->flags)) {
734 struct request_queue *q =
735 bdev_get_queue(rdev->bdev);
736 if (q->merge_bvec_fn) {
737 bvm->bi_sector = r10_bio->devs[s].addr
738 + rdev->data_offset;
739 bvm->bi_bdev = rdev->bdev;
740 max = min(max, q->merge_bvec_fn(
741 q, bvm, biovec));
742 }
743 }
744 rdev = rcu_dereference(conf->mirrors[disk].replacement);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q =
747 bdev_get_queue(rdev->bdev);
748 if (q->merge_bvec_fn) {
749 bvm->bi_sector = r10_bio->devs[s].addr
750 + rdev->data_offset;
751 bvm->bi_bdev = rdev->bdev;
752 max = min(max, q->merge_bvec_fn(
753 q, bvm, biovec));
754 }
755 }
756 }
757 rcu_read_unlock();
758 }
759 return max;
760 }
761
762 /*
763 * This routine returns the disk from which the requested read should
764 * be done. There is a per-array 'next expected sequential IO' sector
765 * number - if this matches on the next IO then we use the last disk.
766 * There is also a per-disk 'last know head position' sector that is
767 * maintained from IRQ contexts, both the normal and the resync IO
768 * completion handlers update this position correctly. If there is no
769 * perfect sequential match then we pick the disk whose head is closest.
770 *
771 * If there are 2 mirrors in the same 2 devices, performance degrades
772 * because position is mirror, not device based.
773 *
774 * The rdev for the device selected will have nr_pending incremented.
775 */
776
777 /*
778 * FIXME: possibly should rethink readbalancing and do it differently
779 * depending on near_copies / far_copies geometry.
780 */
781 static struct md_rdev *read_balance(struct r10conf *conf,
782 struct r10bio *r10_bio,
783 int *max_sectors)
784 {
785 const sector_t this_sector = r10_bio->sector;
786 int disk, slot;
787 int sectors = r10_bio->sectors;
788 int best_good_sectors;
789 sector_t new_distance, best_dist;
790 struct md_rdev *best_rdev, *rdev = NULL;
791 int do_balance;
792 int best_slot;
793 struct geom *geo = &conf->geo;
794
795 raid10_find_phys(conf, r10_bio);
796 rcu_read_lock();
797 retry:
798 sectors = r10_bio->sectors;
799 best_slot = -1;
800 best_rdev = NULL;
801 best_dist = MaxSector;
802 best_good_sectors = 0;
803 do_balance = 1;
804 /*
805 * Check if we can balance. We can balance on the whole
806 * device if no resync is going on (recovery is ok), or below
807 * the resync window. We take the first readable disk when
808 * above the resync window.
809 */
810 if (conf->mddev->recovery_cp < MaxSector
811 && (this_sector + sectors >= conf->next_resync))
812 do_balance = 0;
813
814 for (slot = 0; slot < conf->copies ; slot++) {
815 sector_t first_bad;
816 int bad_sectors;
817 sector_t dev_sector;
818
819 if (r10_bio->devs[slot].bio == IO_BLOCKED)
820 continue;
821 disk = r10_bio->devs[slot].devnum;
822 rdev = rcu_dereference(conf->mirrors[disk].replacement);
823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
824 test_bit(Unmerged, &rdev->flags) ||
825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
826 rdev = rcu_dereference(conf->mirrors[disk].rdev);
827 if (rdev == NULL ||
828 test_bit(Faulty, &rdev->flags) ||
829 test_bit(Unmerged, &rdev->flags))
830 continue;
831 if (!test_bit(In_sync, &rdev->flags) &&
832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
833 continue;
834
835 dev_sector = r10_bio->devs[slot].addr;
836 if (is_badblock(rdev, dev_sector, sectors,
837 &first_bad, &bad_sectors)) {
838 if (best_dist < MaxSector)
839 /* Already have a better slot */
840 continue;
841 if (first_bad <= dev_sector) {
842 /* Cannot read here. If this is the
843 * 'primary' device, then we must not read
844 * beyond 'bad_sectors' from another device.
845 */
846 bad_sectors -= (dev_sector - first_bad);
847 if (!do_balance && sectors > bad_sectors)
848 sectors = bad_sectors;
849 if (best_good_sectors > sectors)
850 best_good_sectors = sectors;
851 } else {
852 sector_t good_sectors =
853 first_bad - dev_sector;
854 if (good_sectors > best_good_sectors) {
855 best_good_sectors = good_sectors;
856 best_slot = slot;
857 best_rdev = rdev;
858 }
859 if (!do_balance)
860 /* Must read from here */
861 break;
862 }
863 continue;
864 } else
865 best_good_sectors = sectors;
866
867 if (!do_balance)
868 break;
869
870 /* This optimisation is debatable, and completely destroys
871 * sequential read speed for 'far copies' arrays. So only
872 * keep it for 'near' arrays, and review those later.
873 */
874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
875 break;
876
877 /* for far > 1 always use the lowest address */
878 if (geo->far_copies > 1)
879 new_distance = r10_bio->devs[slot].addr;
880 else
881 new_distance = abs(r10_bio->devs[slot].addr -
882 conf->mirrors[disk].head_position);
883 if (new_distance < best_dist) {
884 best_dist = new_distance;
885 best_slot = slot;
886 best_rdev = rdev;
887 }
888 }
889 if (slot >= conf->copies) {
890 slot = best_slot;
891 rdev = best_rdev;
892 }
893
894 if (slot >= 0) {
895 atomic_inc(&rdev->nr_pending);
896 if (test_bit(Faulty, &rdev->flags)) {
897 /* Cannot risk returning a device that failed
898 * before we inc'ed nr_pending
899 */
900 rdev_dec_pending(rdev, conf->mddev);
901 goto retry;
902 }
903 r10_bio->read_slot = slot;
904 } else
905 rdev = NULL;
906 rcu_read_unlock();
907 *max_sectors = best_good_sectors;
908
909 return rdev;
910 }
911
912 static int raid10_congested(struct mddev *mddev, int bits)
913 {
914 struct r10conf *conf = mddev->private;
915 int i, ret = 0;
916
917 if ((bits & (1 << BDI_async_congested)) &&
918 conf->pending_count >= max_queued_requests)
919 return 1;
920
921 rcu_read_lock();
922 for (i = 0;
923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
924 && ret == 0;
925 i++) {
926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
927 if (rdev && !test_bit(Faulty, &rdev->flags)) {
928 struct request_queue *q = bdev_get_queue(rdev->bdev);
929
930 ret |= bdi_congested(&q->backing_dev_info, bits);
931 }
932 }
933 rcu_read_unlock();
934 return ret;
935 }
936
937 static void flush_pending_writes(struct r10conf *conf)
938 {
939 /* Any writes that have been queued but are awaiting
940 * bitmap updates get flushed here.
941 */
942 spin_lock_irq(&conf->device_lock);
943
944 if (conf->pending_bio_list.head) {
945 struct bio *bio;
946 bio = bio_list_get(&conf->pending_bio_list);
947 conf->pending_count = 0;
948 spin_unlock_irq(&conf->device_lock);
949 /* flush any pending bitmap writes to disk
950 * before proceeding w/ I/O */
951 bitmap_unplug(conf->mddev->bitmap);
952 wake_up(&conf->wait_barrier);
953
954 while (bio) { /* submit pending writes */
955 struct bio *next = bio->bi_next;
956 bio->bi_next = NULL;
957 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
959 /* Just ignore it */
960 bio_endio(bio, 0);
961 else
962 generic_make_request(bio);
963 bio = next;
964 }
965 } else
966 spin_unlock_irq(&conf->device_lock);
967 }
968
969 /* Barriers....
970 * Sometimes we need to suspend IO while we do something else,
971 * either some resync/recovery, or reconfigure the array.
972 * To do this we raise a 'barrier'.
973 * The 'barrier' is a counter that can be raised multiple times
974 * to count how many activities are happening which preclude
975 * normal IO.
976 * We can only raise the barrier if there is no pending IO.
977 * i.e. if nr_pending == 0.
978 * We choose only to raise the barrier if no-one is waiting for the
979 * barrier to go down. This means that as soon as an IO request
980 * is ready, no other operations which require a barrier will start
981 * until the IO request has had a chance.
982 *
983 * So: regular IO calls 'wait_barrier'. When that returns there
984 * is no backgroup IO happening, It must arrange to call
985 * allow_barrier when it has finished its IO.
986 * backgroup IO calls must call raise_barrier. Once that returns
987 * there is no normal IO happeing. It must arrange to call
988 * lower_barrier when the particular background IO completes.
989 */
990
991 static void raise_barrier(struct r10conf *conf, int force)
992 {
993 BUG_ON(force && !conf->barrier);
994 spin_lock_irq(&conf->resync_lock);
995
996 /* Wait until no block IO is waiting (unless 'force') */
997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
998 conf->resync_lock);
999
1000 /* block any new IO from starting */
1001 conf->barrier++;
1002
1003 /* Now wait for all pending IO to complete */
1004 wait_event_lock_irq(conf->wait_barrier,
1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1006 conf->resync_lock);
1007
1008 spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void lower_barrier(struct r10conf *conf)
1012 {
1013 unsigned long flags;
1014 spin_lock_irqsave(&conf->resync_lock, flags);
1015 conf->barrier--;
1016 spin_unlock_irqrestore(&conf->resync_lock, flags);
1017 wake_up(&conf->wait_barrier);
1018 }
1019
1020 static void wait_barrier(struct r10conf *conf)
1021 {
1022 spin_lock_irq(&conf->resync_lock);
1023 if (conf->barrier) {
1024 conf->nr_waiting++;
1025 /* Wait for the barrier to drop.
1026 * However if there are already pending
1027 * requests (preventing the barrier from
1028 * rising completely), and the
1029 * pre-process bio queue isn't empty,
1030 * then don't wait, as we need to empty
1031 * that queue to get the nr_pending
1032 * count down.
1033 */
1034 wait_event_lock_irq(conf->wait_barrier,
1035 !conf->barrier ||
1036 (conf->nr_pending &&
1037 current->bio_list &&
1038 !bio_list_empty(current->bio_list)),
1039 conf->resync_lock);
1040 conf->nr_waiting--;
1041 }
1042 conf->nr_pending++;
1043 spin_unlock_irq(&conf->resync_lock);
1044 }
1045
1046 static void allow_barrier(struct r10conf *conf)
1047 {
1048 unsigned long flags;
1049 spin_lock_irqsave(&conf->resync_lock, flags);
1050 conf->nr_pending--;
1051 spin_unlock_irqrestore(&conf->resync_lock, flags);
1052 wake_up(&conf->wait_barrier);
1053 }
1054
1055 static void freeze_array(struct r10conf *conf, int extra)
1056 {
1057 /* stop syncio and normal IO and wait for everything to
1058 * go quiet.
1059 * We increment barrier and nr_waiting, and then
1060 * wait until nr_pending match nr_queued+extra
1061 * This is called in the context of one normal IO request
1062 * that has failed. Thus any sync request that might be pending
1063 * will be blocked by nr_pending, and we need to wait for
1064 * pending IO requests to complete or be queued for re-try.
1065 * Thus the number queued (nr_queued) plus this request (extra)
1066 * must match the number of pending IOs (nr_pending) before
1067 * we continue.
1068 */
1069 spin_lock_irq(&conf->resync_lock);
1070 conf->barrier++;
1071 conf->nr_waiting++;
1072 wait_event_lock_irq_cmd(conf->wait_barrier,
1073 conf->nr_pending == conf->nr_queued+extra,
1074 conf->resync_lock,
1075 flush_pending_writes(conf));
1076
1077 spin_unlock_irq(&conf->resync_lock);
1078 }
1079
1080 static void unfreeze_array(struct r10conf *conf)
1081 {
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf->resync_lock);
1084 conf->barrier--;
1085 conf->nr_waiting--;
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1088 }
1089
1090 static sector_t choose_data_offset(struct r10bio *r10_bio,
1091 struct md_rdev *rdev)
1092 {
1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1094 test_bit(R10BIO_Previous, &r10_bio->state))
1095 return rdev->data_offset;
1096 else
1097 return rdev->new_data_offset;
1098 }
1099
1100 struct raid10_plug_cb {
1101 struct blk_plug_cb cb;
1102 struct bio_list pending;
1103 int pending_cnt;
1104 };
1105
1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1107 {
1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1109 cb);
1110 struct mddev *mddev = plug->cb.data;
1111 struct r10conf *conf = mddev->private;
1112 struct bio *bio;
1113
1114 if (from_schedule || current->bio_list) {
1115 spin_lock_irq(&conf->device_lock);
1116 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1117 conf->pending_count += plug->pending_cnt;
1118 spin_unlock_irq(&conf->device_lock);
1119 wake_up(&conf->wait_barrier);
1120 md_wakeup_thread(mddev->thread);
1121 kfree(plug);
1122 return;
1123 }
1124
1125 /* we aren't scheduling, so we can do the write-out directly. */
1126 bio = bio_list_get(&plug->pending);
1127 bitmap_unplug(mddev->bitmap);
1128 wake_up(&conf->wait_barrier);
1129
1130 while (bio) { /* submit pending writes */
1131 struct bio *next = bio->bi_next;
1132 bio->bi_next = NULL;
1133 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1135 /* Just ignore it */
1136 bio_endio(bio, 0);
1137 else
1138 generic_make_request(bio);
1139 bio = next;
1140 }
1141 kfree(plug);
1142 }
1143
1144 static void __make_request(struct mddev *mddev, struct bio *bio)
1145 {
1146 struct r10conf *conf = mddev->private;
1147 struct r10bio *r10_bio;
1148 struct bio *read_bio;
1149 int i;
1150 const int rw = bio_data_dir(bio);
1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 const unsigned long do_discard = (bio->bi_rw
1154 & (REQ_DISCARD | REQ_SECURE));
1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 unsigned long flags;
1157 struct md_rdev *blocked_rdev;
1158 struct blk_plug_cb *cb;
1159 struct raid10_plug_cb *plug = NULL;
1160 int sectors_handled;
1161 int max_sectors;
1162 int sectors;
1163
1164 /*
1165 * Register the new request and wait if the reconstruction
1166 * thread has put up a bar for new requests.
1167 * Continue immediately if no resync is active currently.
1168 */
1169 wait_barrier(conf);
1170
1171 sectors = bio_sectors(bio);
1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1173 bio->bi_iter.bi_sector < conf->reshape_progress &&
1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1175 /* IO spans the reshape position. Need to wait for
1176 * reshape to pass
1177 */
1178 allow_barrier(conf);
1179 wait_event(conf->wait_barrier,
1180 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1181 conf->reshape_progress >= bio->bi_iter.bi_sector +
1182 sectors);
1183 wait_barrier(conf);
1184 }
1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1186 bio_data_dir(bio) == WRITE &&
1187 (mddev->reshape_backwards
1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1191 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1192 /* Need to update reshape_position in metadata */
1193 mddev->reshape_position = conf->reshape_progress;
1194 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1195 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1196 md_wakeup_thread(mddev->thread);
1197 wait_event(mddev->sb_wait,
1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1199
1200 conf->reshape_safe = mddev->reshape_position;
1201 }
1202
1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1204
1205 r10_bio->master_bio = bio;
1206 r10_bio->sectors = sectors;
1207
1208 r10_bio->mddev = mddev;
1209 r10_bio->sector = bio->bi_iter.bi_sector;
1210 r10_bio->state = 0;
1211
1212 /* We might need to issue multiple reads to different
1213 * devices if there are bad blocks around, so we keep
1214 * track of the number of reads in bio->bi_phys_segments.
1215 * If this is 0, there is only one r10_bio and no locking
1216 * will be needed when the request completes. If it is
1217 * non-zero, then it is the number of not-completed requests.
1218 */
1219 bio->bi_phys_segments = 0;
1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1221
1222 if (rw == READ) {
1223 /*
1224 * read balancing logic:
1225 */
1226 struct md_rdev *rdev;
1227 int slot;
1228
1229 read_again:
1230 rdev = read_balance(conf, r10_bio, &max_sectors);
1231 if (!rdev) {
1232 raid_end_bio_io(r10_bio);
1233 return;
1234 }
1235 slot = r10_bio->read_slot;
1236
1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1239 max_sectors);
1240
1241 r10_bio->devs[slot].bio = read_bio;
1242 r10_bio->devs[slot].rdev = rdev;
1243
1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 choose_data_offset(r10_bio, rdev);
1246 read_bio->bi_bdev = rdev->bdev;
1247 read_bio->bi_end_io = raid10_end_read_request;
1248 read_bio->bi_rw = READ | do_sync;
1249 read_bio->bi_private = r10_bio;
1250
1251 if (max_sectors < r10_bio->sectors) {
1252 /* Could not read all from this device, so we will
1253 * need another r10_bio.
1254 */
1255 sectors_handled = (r10_bio->sector + max_sectors
1256 - bio->bi_iter.bi_sector);
1257 r10_bio->sectors = max_sectors;
1258 spin_lock_irq(&conf->device_lock);
1259 if (bio->bi_phys_segments == 0)
1260 bio->bi_phys_segments = 2;
1261 else
1262 bio->bi_phys_segments++;
1263 spin_unlock_irq(&conf->device_lock);
1264 /* Cannot call generic_make_request directly
1265 * as that will be queued in __generic_make_request
1266 * and subsequent mempool_alloc might block
1267 * waiting for it. so hand bio over to raid10d.
1268 */
1269 reschedule_retry(r10_bio);
1270
1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272
1273 r10_bio->master_bio = bio;
1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1275 r10_bio->state = 0;
1276 r10_bio->mddev = mddev;
1277 r10_bio->sector = bio->bi_iter.bi_sector +
1278 sectors_handled;
1279 goto read_again;
1280 } else
1281 generic_make_request(read_bio);
1282 return;
1283 }
1284
1285 /*
1286 * WRITE:
1287 */
1288 if (conf->pending_count >= max_queued_requests) {
1289 md_wakeup_thread(mddev->thread);
1290 wait_event(conf->wait_barrier,
1291 conf->pending_count < max_queued_requests);
1292 }
1293 /* first select target devices under rcu_lock and
1294 * inc refcount on their rdev. Record them by setting
1295 * bios[x] to bio
1296 * If there are known/acknowledged bad blocks on any device
1297 * on which we have seen a write error, we want to avoid
1298 * writing to those blocks. This potentially requires several
1299 * writes to write around the bad blocks. Each set of writes
1300 * gets its own r10_bio with a set of bios attached. The number
1301 * of r10_bios is recored in bio->bi_phys_segments just as with
1302 * the read case.
1303 */
1304
1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1306 raid10_find_phys(conf, r10_bio);
1307 retry_write:
1308 blocked_rdev = NULL;
1309 rcu_read_lock();
1310 max_sectors = r10_bio->sectors;
1311
1312 for (i = 0; i < conf->copies; i++) {
1313 int d = r10_bio->devs[i].devnum;
1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1315 struct md_rdev *rrdev = rcu_dereference(
1316 conf->mirrors[d].replacement);
1317 if (rdev == rrdev)
1318 rrdev = NULL;
1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1320 atomic_inc(&rdev->nr_pending);
1321 blocked_rdev = rdev;
1322 break;
1323 }
1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1325 atomic_inc(&rrdev->nr_pending);
1326 blocked_rdev = rrdev;
1327 break;
1328 }
1329 if (rdev && (test_bit(Faulty, &rdev->flags)
1330 || test_bit(Unmerged, &rdev->flags)))
1331 rdev = NULL;
1332 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1333 || test_bit(Unmerged, &rrdev->flags)))
1334 rrdev = NULL;
1335
1336 r10_bio->devs[i].bio = NULL;
1337 r10_bio->devs[i].repl_bio = NULL;
1338
1339 if (!rdev && !rrdev) {
1340 set_bit(R10BIO_Degraded, &r10_bio->state);
1341 continue;
1342 }
1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1344 sector_t first_bad;
1345 sector_t dev_sector = r10_bio->devs[i].addr;
1346 int bad_sectors;
1347 int is_bad;
1348
1349 is_bad = is_badblock(rdev, dev_sector,
1350 max_sectors,
1351 &first_bad, &bad_sectors);
1352 if (is_bad < 0) {
1353 /* Mustn't write here until the bad block
1354 * is acknowledged
1355 */
1356 atomic_inc(&rdev->nr_pending);
1357 set_bit(BlockedBadBlocks, &rdev->flags);
1358 blocked_rdev = rdev;
1359 break;
1360 }
1361 if (is_bad && first_bad <= dev_sector) {
1362 /* Cannot write here at all */
1363 bad_sectors -= (dev_sector - first_bad);
1364 if (bad_sectors < max_sectors)
1365 /* Mustn't write more than bad_sectors
1366 * to other devices yet
1367 */
1368 max_sectors = bad_sectors;
1369 /* We don't set R10BIO_Degraded as that
1370 * only applies if the disk is missing,
1371 * so it might be re-added, and we want to
1372 * know to recover this chunk.
1373 * In this case the device is here, and the
1374 * fact that this chunk is not in-sync is
1375 * recorded in the bad block log.
1376 */
1377 continue;
1378 }
1379 if (is_bad) {
1380 int good_sectors = first_bad - dev_sector;
1381 if (good_sectors < max_sectors)
1382 max_sectors = good_sectors;
1383 }
1384 }
1385 if (rdev) {
1386 r10_bio->devs[i].bio = bio;
1387 atomic_inc(&rdev->nr_pending);
1388 }
1389 if (rrdev) {
1390 r10_bio->devs[i].repl_bio = bio;
1391 atomic_inc(&rrdev->nr_pending);
1392 }
1393 }
1394 rcu_read_unlock();
1395
1396 if (unlikely(blocked_rdev)) {
1397 /* Have to wait for this device to get unblocked, then retry */
1398 int j;
1399 int d;
1400
1401 for (j = 0; j < i; j++) {
1402 if (r10_bio->devs[j].bio) {
1403 d = r10_bio->devs[j].devnum;
1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1405 }
1406 if (r10_bio->devs[j].repl_bio) {
1407 struct md_rdev *rdev;
1408 d = r10_bio->devs[j].devnum;
1409 rdev = conf->mirrors[d].replacement;
1410 if (!rdev) {
1411 /* Race with remove_disk */
1412 smp_mb();
1413 rdev = conf->mirrors[d].rdev;
1414 }
1415 rdev_dec_pending(rdev, mddev);
1416 }
1417 }
1418 allow_barrier(conf);
1419 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1420 wait_barrier(conf);
1421 goto retry_write;
1422 }
1423
1424 if (max_sectors < r10_bio->sectors) {
1425 /* We are splitting this into multiple parts, so
1426 * we need to prepare for allocating another r10_bio.
1427 */
1428 r10_bio->sectors = max_sectors;
1429 spin_lock_irq(&conf->device_lock);
1430 if (bio->bi_phys_segments == 0)
1431 bio->bi_phys_segments = 2;
1432 else
1433 bio->bi_phys_segments++;
1434 spin_unlock_irq(&conf->device_lock);
1435 }
1436 sectors_handled = r10_bio->sector + max_sectors -
1437 bio->bi_iter.bi_sector;
1438
1439 atomic_set(&r10_bio->remaining, 1);
1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1441
1442 for (i = 0; i < conf->copies; i++) {
1443 struct bio *mbio;
1444 int d = r10_bio->devs[i].devnum;
1445 if (r10_bio->devs[i].bio) {
1446 struct md_rdev *rdev = conf->mirrors[d].rdev;
1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1449 max_sectors);
1450 r10_bio->devs[i].bio = mbio;
1451
1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1453 choose_data_offset(r10_bio,
1454 rdev));
1455 mbio->bi_bdev = rdev->bdev;
1456 mbio->bi_end_io = raid10_end_write_request;
1457 mbio->bi_rw =
1458 WRITE | do_sync | do_fua | do_discard | do_same;
1459 mbio->bi_private = r10_bio;
1460
1461 atomic_inc(&r10_bio->remaining);
1462
1463 cb = blk_check_plugged(raid10_unplug, mddev,
1464 sizeof(*plug));
1465 if (cb)
1466 plug = container_of(cb, struct raid10_plug_cb,
1467 cb);
1468 else
1469 plug = NULL;
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!plug)
1480 md_wakeup_thread(mddev->thread);
1481 }
1482
1483 if (r10_bio->devs[i].repl_bio) {
1484 struct md_rdev *rdev = conf->mirrors[d].replacement;
1485 if (rdev == NULL) {
1486 /* Replacement just got moved to main 'rdev' */
1487 smp_mb();
1488 rdev = conf->mirrors[d].rdev;
1489 }
1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1492 max_sectors);
1493 r10_bio->devs[i].repl_bio = mbio;
1494
1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1496 choose_data_offset(
1497 r10_bio, rdev));
1498 mbio->bi_bdev = rdev->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
1500 mbio->bi_rw =
1501 WRITE | do_sync | do_fua | do_discard | do_same;
1502 mbio->bi_private = r10_bio;
1503
1504 atomic_inc(&r10_bio->remaining);
1505 spin_lock_irqsave(&conf->device_lock, flags);
1506 bio_list_add(&conf->pending_bio_list, mbio);
1507 conf->pending_count++;
1508 spin_unlock_irqrestore(&conf->device_lock, flags);
1509 if (!mddev_check_plugged(mddev))
1510 md_wakeup_thread(mddev->thread);
1511 }
1512 }
1513
1514 /* Don't remove the bias on 'remaining' (one_write_done) until
1515 * after checking if we need to go around again.
1516 */
1517
1518 if (sectors_handled < bio_sectors(bio)) {
1519 one_write_done(r10_bio);
1520 /* We need another r10_bio. It has already been counted
1521 * in bio->bi_phys_segments.
1522 */
1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1524
1525 r10_bio->master_bio = bio;
1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1527
1528 r10_bio->mddev = mddev;
1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1530 r10_bio->state = 0;
1531 goto retry_write;
1532 }
1533 one_write_done(r10_bio);
1534 }
1535
1536 static void make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538 struct r10conf *conf = mddev->private;
1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 int chunk_sects = chunk_mask + 1;
1541
1542 struct bio *split;
1543
1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1545 md_flush_request(mddev, bio);
1546 return;
1547 }
1548
1549 md_write_start(mddev, bio);
1550
1551 do {
1552
1553 /*
1554 * If this request crosses a chunk boundary, we need to split
1555 * it.
1556 */
1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1558 bio_sectors(bio) > chunk_sects
1559 && (conf->geo.near_copies < conf->geo.raid_disks
1560 || conf->prev.near_copies <
1561 conf->prev.raid_disks))) {
1562 split = bio_split(bio, chunk_sects -
1563 (bio->bi_iter.bi_sector &
1564 (chunk_sects - 1)),
1565 GFP_NOIO, fs_bio_set);
1566 bio_chain(split, bio);
1567 } else {
1568 split = bio;
1569 }
1570
1571 __make_request(mddev, split);
1572 } while (split != bio);
1573
1574 /* In case raid10d snuck in to freeze_array */
1575 wake_up(&conf->wait_barrier);
1576 }
1577
1578 static void status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580 struct r10conf *conf = mddev->private;
1581 int i;
1582
1583 if (conf->geo.near_copies < conf->geo.raid_disks)
1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1585 if (conf->geo.near_copies > 1)
1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 if (conf->geo.far_copies > 1) {
1588 if (conf->geo.far_offset)
1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1590 else
1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1592 }
1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1594 conf->geo.raid_disks - mddev->degraded);
1595 for (i = 0; i < conf->geo.raid_disks; i++)
1596 seq_printf(seq, "%s",
1597 conf->mirrors[i].rdev &&
1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1599 seq_printf(seq, "]");
1600 }
1601
1602 /* check if there are enough drives for
1603 * every block to appear on atleast one.
1604 * Don't consider the device numbered 'ignore'
1605 * as we might be about to remove it.
1606 */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609 int first = 0;
1610 int has_enough = 0;
1611 int disks, ncopies;
1612 if (previous) {
1613 disks = conf->prev.raid_disks;
1614 ncopies = conf->prev.near_copies;
1615 } else {
1616 disks = conf->geo.raid_disks;
1617 ncopies = conf->geo.near_copies;
1618 }
1619
1620 rcu_read_lock();
1621 do {
1622 int n = conf->copies;
1623 int cnt = 0;
1624 int this = first;
1625 while (n--) {
1626 struct md_rdev *rdev;
1627 if (this != ignore &&
1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 test_bit(In_sync, &rdev->flags))
1630 cnt++;
1631 this = (this+1) % disks;
1632 }
1633 if (cnt == 0)
1634 goto out;
1635 first = (first + ncopies) % disks;
1636 } while (first != 0);
1637 has_enough = 1;
1638 out:
1639 rcu_read_unlock();
1640 return has_enough;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 /* when calling 'enough', both 'prev' and 'geo' must
1646 * be stable.
1647 * This is ensured if ->reconfig_mutex or ->device_lock
1648 * is held.
1649 */
1650 return _enough(conf, 0, ignore) &&
1651 _enough(conf, 1, ignore);
1652 }
1653
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 char b[BDEVNAME_SIZE];
1657 struct r10conf *conf = mddev->private;
1658 unsigned long flags;
1659
1660 /*
1661 * If it is not operational, then we have already marked it as dead
1662 * else if it is the last working disks, ignore the error, let the
1663 * next level up know.
1664 * else mark the drive as failed
1665 */
1666 spin_lock_irqsave(&conf->device_lock, flags);
1667 if (test_bit(In_sync, &rdev->flags)
1668 && !enough(conf, rdev->raid_disk)) {
1669 /*
1670 * Don't fail the drive, just return an IO error.
1671 */
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1673 return;
1674 }
1675 if (test_and_clear_bit(In_sync, &rdev->flags))
1676 mddev->degraded++;
1677 /*
1678 * If recovery is running, make sure it aborts.
1679 */
1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 set_bit(Blocked, &rdev->flags);
1682 set_bit(Faulty, &rdev->flags);
1683 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684 spin_unlock_irqrestore(&conf->device_lock, flags);
1685 printk(KERN_ALERT
1686 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 "md/raid10:%s: Operation continuing on %d devices.\n",
1688 mdname(mddev), bdevname(rdev->bdev, b),
1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691
1692 static void print_conf(struct r10conf *conf)
1693 {
1694 int i;
1695 struct raid10_info *tmp;
1696
1697 printk(KERN_DEBUG "RAID10 conf printout:\n");
1698 if (!conf) {
1699 printk(KERN_DEBUG "(!conf)\n");
1700 return;
1701 }
1702 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 conf->geo.raid_disks);
1704
1705 for (i = 0; i < conf->geo.raid_disks; i++) {
1706 char b[BDEVNAME_SIZE];
1707 tmp = conf->mirrors + i;
1708 if (tmp->rdev)
1709 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1710 i, !test_bit(In_sync, &tmp->rdev->flags),
1711 !test_bit(Faulty, &tmp->rdev->flags),
1712 bdevname(tmp->rdev->bdev,b));
1713 }
1714 }
1715
1716 static void close_sync(struct r10conf *conf)
1717 {
1718 wait_barrier(conf);
1719 allow_barrier(conf);
1720
1721 mempool_destroy(conf->r10buf_pool);
1722 conf->r10buf_pool = NULL;
1723 }
1724
1725 static int raid10_spare_active(struct mddev *mddev)
1726 {
1727 int i;
1728 struct r10conf *conf = mddev->private;
1729 struct raid10_info *tmp;
1730 int count = 0;
1731 unsigned long flags;
1732
1733 /*
1734 * Find all non-in_sync disks within the RAID10 configuration
1735 * and mark them in_sync
1736 */
1737 for (i = 0; i < conf->geo.raid_disks; i++) {
1738 tmp = conf->mirrors + i;
1739 if (tmp->replacement
1740 && tmp->replacement->recovery_offset == MaxSector
1741 && !test_bit(Faulty, &tmp->replacement->flags)
1742 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1743 /* Replacement has just become active */
1744 if (!tmp->rdev
1745 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1746 count++;
1747 if (tmp->rdev) {
1748 /* Replaced device not technically faulty,
1749 * but we need to be sure it gets removed
1750 * and never re-added.
1751 */
1752 set_bit(Faulty, &tmp->rdev->flags);
1753 sysfs_notify_dirent_safe(
1754 tmp->rdev->sysfs_state);
1755 }
1756 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1757 } else if (tmp->rdev
1758 && tmp->rdev->recovery_offset == MaxSector
1759 && !test_bit(Faulty, &tmp->rdev->flags)
1760 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1761 count++;
1762 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1763 }
1764 }
1765 spin_lock_irqsave(&conf->device_lock, flags);
1766 mddev->degraded -= count;
1767 spin_unlock_irqrestore(&conf->device_lock, flags);
1768
1769 print_conf(conf);
1770 return count;
1771 }
1772
1773 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775 struct r10conf *conf = mddev->private;
1776 int err = -EEXIST;
1777 int mirror;
1778 int first = 0;
1779 int last = conf->geo.raid_disks - 1;
1780 struct request_queue *q = bdev_get_queue(rdev->bdev);
1781
1782 if (mddev->recovery_cp < MaxSector)
1783 /* only hot-add to in-sync arrays, as recovery is
1784 * very different from resync
1785 */
1786 return -EBUSY;
1787 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1788 return -EINVAL;
1789
1790 if (rdev->raid_disk >= 0)
1791 first = last = rdev->raid_disk;
1792
1793 if (q->merge_bvec_fn) {
1794 set_bit(Unmerged, &rdev->flags);
1795 mddev->merge_check_needed = 1;
1796 }
1797
1798 if (rdev->saved_raid_disk >= first &&
1799 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1800 mirror = rdev->saved_raid_disk;
1801 else
1802 mirror = first;
1803 for ( ; mirror <= last ; mirror++) {
1804 struct raid10_info *p = &conf->mirrors[mirror];
1805 if (p->recovery_disabled == mddev->recovery_disabled)
1806 continue;
1807 if (p->rdev) {
1808 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1809 p->replacement != NULL)
1810 continue;
1811 clear_bit(In_sync, &rdev->flags);
1812 set_bit(Replacement, &rdev->flags);
1813 rdev->raid_disk = mirror;
1814 err = 0;
1815 if (mddev->gendisk)
1816 disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 rdev->data_offset << 9);
1818 conf->fullsync = 1;
1819 rcu_assign_pointer(p->replacement, rdev);
1820 break;
1821 }
1822
1823 if (mddev->gendisk)
1824 disk_stack_limits(mddev->gendisk, rdev->bdev,
1825 rdev->data_offset << 9);
1826
1827 p->head_position = 0;
1828 p->recovery_disabled = mddev->recovery_disabled - 1;
1829 rdev->raid_disk = mirror;
1830 err = 0;
1831 if (rdev->saved_raid_disk != mirror)
1832 conf->fullsync = 1;
1833 rcu_assign_pointer(p->rdev, rdev);
1834 break;
1835 }
1836 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1837 /* Some requests might not have seen this new
1838 * merge_bvec_fn. We must wait for them to complete
1839 * before merging the device fully.
1840 * First we make sure any code which has tested
1841 * our function has submitted the request, then
1842 * we wait for all outstanding requests to complete.
1843 */
1844 synchronize_sched();
1845 freeze_array(conf, 0);
1846 unfreeze_array(conf);
1847 clear_bit(Unmerged, &rdev->flags);
1848 }
1849 md_integrity_add_rdev(rdev, mddev);
1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1851 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1852
1853 print_conf(conf);
1854 return err;
1855 }
1856
1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1858 {
1859 struct r10conf *conf = mddev->private;
1860 int err = 0;
1861 int number = rdev->raid_disk;
1862 struct md_rdev **rdevp;
1863 struct raid10_info *p = conf->mirrors + number;
1864
1865 print_conf(conf);
1866 if (rdev == p->rdev)
1867 rdevp = &p->rdev;
1868 else if (rdev == p->replacement)
1869 rdevp = &p->replacement;
1870 else
1871 return 0;
1872
1873 if (test_bit(In_sync, &rdev->flags) ||
1874 atomic_read(&rdev->nr_pending)) {
1875 err = -EBUSY;
1876 goto abort;
1877 }
1878 /* Only remove faulty devices if recovery
1879 * is not possible.
1880 */
1881 if (!test_bit(Faulty, &rdev->flags) &&
1882 mddev->recovery_disabled != p->recovery_disabled &&
1883 (!p->replacement || p->replacement == rdev) &&
1884 number < conf->geo.raid_disks &&
1885 enough(conf, -1)) {
1886 err = -EBUSY;
1887 goto abort;
1888 }
1889 *rdevp = NULL;
1890 synchronize_rcu();
1891 if (atomic_read(&rdev->nr_pending)) {
1892 /* lost the race, try later */
1893 err = -EBUSY;
1894 *rdevp = rdev;
1895 goto abort;
1896 } else if (p->replacement) {
1897 /* We must have just cleared 'rdev' */
1898 p->rdev = p->replacement;
1899 clear_bit(Replacement, &p->replacement->flags);
1900 smp_mb(); /* Make sure other CPUs may see both as identical
1901 * but will never see neither -- if they are careful.
1902 */
1903 p->replacement = NULL;
1904 clear_bit(WantReplacement, &rdev->flags);
1905 } else
1906 /* We might have just remove the Replacement as faulty
1907 * Clear the flag just in case
1908 */
1909 clear_bit(WantReplacement, &rdev->flags);
1910
1911 err = md_integrity_register(mddev);
1912
1913 abort:
1914
1915 print_conf(conf);
1916 return err;
1917 }
1918
1919 static void end_sync_read(struct bio *bio, int error)
1920 {
1921 struct r10bio *r10_bio = bio->bi_private;
1922 struct r10conf *conf = r10_bio->mddev->private;
1923 int d;
1924
1925 if (bio == r10_bio->master_bio) {
1926 /* this is a reshape read */
1927 d = r10_bio->read_slot; /* really the read dev */
1928 } else
1929 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1930
1931 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1932 set_bit(R10BIO_Uptodate, &r10_bio->state);
1933 else
1934 /* The write handler will notice the lack of
1935 * R10BIO_Uptodate and record any errors etc
1936 */
1937 atomic_add(r10_bio->sectors,
1938 &conf->mirrors[d].rdev->corrected_errors);
1939
1940 /* for reconstruct, we always reschedule after a read.
1941 * for resync, only after all reads
1942 */
1943 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1944 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1945 atomic_dec_and_test(&r10_bio->remaining)) {
1946 /* we have read all the blocks,
1947 * do the comparison in process context in raid10d
1948 */
1949 reschedule_retry(r10_bio);
1950 }
1951 }
1952
1953 static void end_sync_request(struct r10bio *r10_bio)
1954 {
1955 struct mddev *mddev = r10_bio->mddev;
1956
1957 while (atomic_dec_and_test(&r10_bio->remaining)) {
1958 if (r10_bio->master_bio == NULL) {
1959 /* the primary of several recovery bios */
1960 sector_t s = r10_bio->sectors;
1961 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1962 test_bit(R10BIO_WriteError, &r10_bio->state))
1963 reschedule_retry(r10_bio);
1964 else
1965 put_buf(r10_bio);
1966 md_done_sync(mddev, s, 1);
1967 break;
1968 } else {
1969 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1970 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1971 test_bit(R10BIO_WriteError, &r10_bio->state))
1972 reschedule_retry(r10_bio);
1973 else
1974 put_buf(r10_bio);
1975 r10_bio = r10_bio2;
1976 }
1977 }
1978 }
1979
1980 static void end_sync_write(struct bio *bio, int error)
1981 {
1982 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1983 struct r10bio *r10_bio = bio->bi_private;
1984 struct mddev *mddev = r10_bio->mddev;
1985 struct r10conf *conf = mddev->private;
1986 int d;
1987 sector_t first_bad;
1988 int bad_sectors;
1989 int slot;
1990 int repl;
1991 struct md_rdev *rdev = NULL;
1992
1993 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1994 if (repl)
1995 rdev = conf->mirrors[d].replacement;
1996 else
1997 rdev = conf->mirrors[d].rdev;
1998
1999 if (!uptodate) {
2000 if (repl)
2001 md_error(mddev, rdev);
2002 else {
2003 set_bit(WriteErrorSeen, &rdev->flags);
2004 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2005 set_bit(MD_RECOVERY_NEEDED,
2006 &rdev->mddev->recovery);
2007 set_bit(R10BIO_WriteError, &r10_bio->state);
2008 }
2009 } else if (is_badblock(rdev,
2010 r10_bio->devs[slot].addr,
2011 r10_bio->sectors,
2012 &first_bad, &bad_sectors))
2013 set_bit(R10BIO_MadeGood, &r10_bio->state);
2014
2015 rdev_dec_pending(rdev, mddev);
2016
2017 end_sync_request(r10_bio);
2018 }
2019
2020 /*
2021 * Note: sync and recover and handled very differently for raid10
2022 * This code is for resync.
2023 * For resync, we read through virtual addresses and read all blocks.
2024 * If there is any error, we schedule a write. The lowest numbered
2025 * drive is authoritative.
2026 * However requests come for physical address, so we need to map.
2027 * For every physical address there are raid_disks/copies virtual addresses,
2028 * which is always are least one, but is not necessarly an integer.
2029 * This means that a physical address can span multiple chunks, so we may
2030 * have to submit multiple io requests for a single sync request.
2031 */
2032 /*
2033 * We check if all blocks are in-sync and only write to blocks that
2034 * aren't in sync
2035 */
2036 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2037 {
2038 struct r10conf *conf = mddev->private;
2039 int i, first;
2040 struct bio *tbio, *fbio;
2041 int vcnt;
2042
2043 atomic_set(&r10_bio->remaining, 1);
2044
2045 /* find the first device with a block */
2046 for (i=0; i<conf->copies; i++)
2047 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2048 break;
2049
2050 if (i == conf->copies)
2051 goto done;
2052
2053 first = i;
2054 fbio = r10_bio->devs[i].bio;
2055
2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2057 /* now find blocks with errors */
2058 for (i=0 ; i < conf->copies ; i++) {
2059 int j, d;
2060
2061 tbio = r10_bio->devs[i].bio;
2062
2063 if (tbio->bi_end_io != end_sync_read)
2064 continue;
2065 if (i == first)
2066 continue;
2067 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2068 /* We know that the bi_io_vec layout is the same for
2069 * both 'first' and 'i', so we just compare them.
2070 * All vec entries are PAGE_SIZE;
2071 */
2072 int sectors = r10_bio->sectors;
2073 for (j = 0; j < vcnt; j++) {
2074 int len = PAGE_SIZE;
2075 if (sectors < (len / 512))
2076 len = sectors * 512;
2077 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2078 page_address(tbio->bi_io_vec[j].bv_page),
2079 len))
2080 break;
2081 sectors -= len/512;
2082 }
2083 if (j == vcnt)
2084 continue;
2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 /* Don't fix anything. */
2088 continue;
2089 }
2090 /* Ok, we need to write this bio, either to correct an
2091 * inconsistency or to correct an unreadable block.
2092 * First we need to fixup bv_offset, bv_len and
2093 * bi_vecs, as the read request might have corrupted these
2094 */
2095 bio_reset(tbio);
2096
2097 tbio->bi_vcnt = vcnt;
2098 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2099 tbio->bi_rw = WRITE;
2100 tbio->bi_private = r10_bio;
2101 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2102
2103 for (j=0; j < vcnt ; j++) {
2104 tbio->bi_io_vec[j].bv_offset = 0;
2105 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2106
2107 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2108 page_address(fbio->bi_io_vec[j].bv_page),
2109 PAGE_SIZE);
2110 }
2111 tbio->bi_end_io = end_sync_write;
2112
2113 d = r10_bio->devs[i].devnum;
2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 atomic_inc(&r10_bio->remaining);
2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117
2118 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2119 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2120 generic_make_request(tbio);
2121 }
2122
2123 /* Now write out to any replacement devices
2124 * that are active
2125 */
2126 for (i = 0; i < conf->copies; i++) {
2127 int j, d;
2128
2129 tbio = r10_bio->devs[i].repl_bio;
2130 if (!tbio || !tbio->bi_end_io)
2131 continue;
2132 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2133 && r10_bio->devs[i].bio != fbio)
2134 for (j = 0; j < vcnt; j++)
2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136 page_address(fbio->bi_io_vec[j].bv_page),
2137 PAGE_SIZE);
2138 d = r10_bio->devs[i].devnum;
2139 atomic_inc(&r10_bio->remaining);
2140 md_sync_acct(conf->mirrors[d].replacement->bdev,
2141 bio_sectors(tbio));
2142 generic_make_request(tbio);
2143 }
2144
2145 done:
2146 if (atomic_dec_and_test(&r10_bio->remaining)) {
2147 md_done_sync(mddev, r10_bio->sectors, 1);
2148 put_buf(r10_bio);
2149 }
2150 }
2151
2152 /*
2153 * Now for the recovery code.
2154 * Recovery happens across physical sectors.
2155 * We recover all non-is_sync drives by finding the virtual address of
2156 * each, and then choose a working drive that also has that virt address.
2157 * There is a separate r10_bio for each non-in_sync drive.
2158 * Only the first two slots are in use. The first for reading,
2159 * The second for writing.
2160 *
2161 */
2162 static void fix_recovery_read_error(struct r10bio *r10_bio)
2163 {
2164 /* We got a read error during recovery.
2165 * We repeat the read in smaller page-sized sections.
2166 * If a read succeeds, write it to the new device or record
2167 * a bad block if we cannot.
2168 * If a read fails, record a bad block on both old and
2169 * new devices.
2170 */
2171 struct mddev *mddev = r10_bio->mddev;
2172 struct r10conf *conf = mddev->private;
2173 struct bio *bio = r10_bio->devs[0].bio;
2174 sector_t sect = 0;
2175 int sectors = r10_bio->sectors;
2176 int idx = 0;
2177 int dr = r10_bio->devs[0].devnum;
2178 int dw = r10_bio->devs[1].devnum;
2179
2180 while (sectors) {
2181 int s = sectors;
2182 struct md_rdev *rdev;
2183 sector_t addr;
2184 int ok;
2185
2186 if (s > (PAGE_SIZE>>9))
2187 s = PAGE_SIZE >> 9;
2188
2189 rdev = conf->mirrors[dr].rdev;
2190 addr = r10_bio->devs[0].addr + sect,
2191 ok = sync_page_io(rdev,
2192 addr,
2193 s << 9,
2194 bio->bi_io_vec[idx].bv_page,
2195 READ, false);
2196 if (ok) {
2197 rdev = conf->mirrors[dw].rdev;
2198 addr = r10_bio->devs[1].addr + sect;
2199 ok = sync_page_io(rdev,
2200 addr,
2201 s << 9,
2202 bio->bi_io_vec[idx].bv_page,
2203 WRITE, false);
2204 if (!ok) {
2205 set_bit(WriteErrorSeen, &rdev->flags);
2206 if (!test_and_set_bit(WantReplacement,
2207 &rdev->flags))
2208 set_bit(MD_RECOVERY_NEEDED,
2209 &rdev->mddev->recovery);
2210 }
2211 }
2212 if (!ok) {
2213 /* We don't worry if we cannot set a bad block -
2214 * it really is bad so there is no loss in not
2215 * recording it yet
2216 */
2217 rdev_set_badblocks(rdev, addr, s, 0);
2218
2219 if (rdev != conf->mirrors[dw].rdev) {
2220 /* need bad block on destination too */
2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222 addr = r10_bio->devs[1].addr + sect;
2223 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224 if (!ok) {
2225 /* just abort the recovery */
2226 printk(KERN_NOTICE
2227 "md/raid10:%s: recovery aborted"
2228 " due to read error\n",
2229 mdname(mddev));
2230
2231 conf->mirrors[dw].recovery_disabled
2232 = mddev->recovery_disabled;
2233 set_bit(MD_RECOVERY_INTR,
2234 &mddev->recovery);
2235 break;
2236 }
2237 }
2238 }
2239
2240 sectors -= s;
2241 sect += s;
2242 idx++;
2243 }
2244 }
2245
2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2247 {
2248 struct r10conf *conf = mddev->private;
2249 int d;
2250 struct bio *wbio, *wbio2;
2251
2252 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2253 fix_recovery_read_error(r10_bio);
2254 end_sync_request(r10_bio);
2255 return;
2256 }
2257
2258 /*
2259 * share the pages with the first bio
2260 * and submit the write request
2261 */
2262 d = r10_bio->devs[1].devnum;
2263 wbio = r10_bio->devs[1].bio;
2264 wbio2 = r10_bio->devs[1].repl_bio;
2265 /* Need to test wbio2->bi_end_io before we call
2266 * generic_make_request as if the former is NULL,
2267 * the latter is free to free wbio2.
2268 */
2269 if (wbio2 && !wbio2->bi_end_io)
2270 wbio2 = NULL;
2271 if (wbio->bi_end_io) {
2272 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2273 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2274 generic_make_request(wbio);
2275 }
2276 if (wbio2) {
2277 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2278 md_sync_acct(conf->mirrors[d].replacement->bdev,
2279 bio_sectors(wbio2));
2280 generic_make_request(wbio2);
2281 }
2282 }
2283
2284 /*
2285 * Used by fix_read_error() to decay the per rdev read_errors.
2286 * We halve the read error count for every hour that has elapsed
2287 * since the last recorded read error.
2288 *
2289 */
2290 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2291 {
2292 struct timespec cur_time_mon;
2293 unsigned long hours_since_last;
2294 unsigned int read_errors = atomic_read(&rdev->read_errors);
2295
2296 ktime_get_ts(&cur_time_mon);
2297
2298 if (rdev->last_read_error.tv_sec == 0 &&
2299 rdev->last_read_error.tv_nsec == 0) {
2300 /* first time we've seen a read error */
2301 rdev->last_read_error = cur_time_mon;
2302 return;
2303 }
2304
2305 hours_since_last = (cur_time_mon.tv_sec -
2306 rdev->last_read_error.tv_sec) / 3600;
2307
2308 rdev->last_read_error = cur_time_mon;
2309
2310 /*
2311 * if hours_since_last is > the number of bits in read_errors
2312 * just set read errors to 0. We do this to avoid
2313 * overflowing the shift of read_errors by hours_since_last.
2314 */
2315 if (hours_since_last >= 8 * sizeof(read_errors))
2316 atomic_set(&rdev->read_errors, 0);
2317 else
2318 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2319 }
2320
2321 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2322 int sectors, struct page *page, int rw)
2323 {
2324 sector_t first_bad;
2325 int bad_sectors;
2326
2327 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2328 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2329 return -1;
2330 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2331 /* success */
2332 return 1;
2333 if (rw == WRITE) {
2334 set_bit(WriteErrorSeen, &rdev->flags);
2335 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2336 set_bit(MD_RECOVERY_NEEDED,
2337 &rdev->mddev->recovery);
2338 }
2339 /* need to record an error - either for the block or the device */
2340 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2341 md_error(rdev->mddev, rdev);
2342 return 0;
2343 }
2344
2345 /*
2346 * This is a kernel thread which:
2347 *
2348 * 1. Retries failed read operations on working mirrors.
2349 * 2. Updates the raid superblock when problems encounter.
2350 * 3. Performs writes following reads for array synchronising.
2351 */
2352
2353 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2354 {
2355 int sect = 0; /* Offset from r10_bio->sector */
2356 int sectors = r10_bio->sectors;
2357 struct md_rdev*rdev;
2358 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2359 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2360
2361 /* still own a reference to this rdev, so it cannot
2362 * have been cleared recently.
2363 */
2364 rdev = conf->mirrors[d].rdev;
2365
2366 if (test_bit(Faulty, &rdev->flags))
2367 /* drive has already been failed, just ignore any
2368 more fix_read_error() attempts */
2369 return;
2370
2371 check_decay_read_errors(mddev, rdev);
2372 atomic_inc(&rdev->read_errors);
2373 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2374 char b[BDEVNAME_SIZE];
2375 bdevname(rdev->bdev, b);
2376
2377 printk(KERN_NOTICE
2378 "md/raid10:%s: %s: Raid device exceeded "
2379 "read_error threshold [cur %d:max %d]\n",
2380 mdname(mddev), b,
2381 atomic_read(&rdev->read_errors), max_read_errors);
2382 printk(KERN_NOTICE
2383 "md/raid10:%s: %s: Failing raid device\n",
2384 mdname(mddev), b);
2385 md_error(mddev, conf->mirrors[d].rdev);
2386 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2387 return;
2388 }
2389
2390 while(sectors) {
2391 int s = sectors;
2392 int sl = r10_bio->read_slot;
2393 int success = 0;
2394 int start;
2395
2396 if (s > (PAGE_SIZE>>9))
2397 s = PAGE_SIZE >> 9;
2398
2399 rcu_read_lock();
2400 do {
2401 sector_t first_bad;
2402 int bad_sectors;
2403
2404 d = r10_bio->devs[sl].devnum;
2405 rdev = rcu_dereference(conf->mirrors[d].rdev);
2406 if (rdev &&
2407 !test_bit(Unmerged, &rdev->flags) &&
2408 test_bit(In_sync, &rdev->flags) &&
2409 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2410 &first_bad, &bad_sectors) == 0) {
2411 atomic_inc(&rdev->nr_pending);
2412 rcu_read_unlock();
2413 success = sync_page_io(rdev,
2414 r10_bio->devs[sl].addr +
2415 sect,
2416 s<<9,
2417 conf->tmppage, READ, false);
2418 rdev_dec_pending(rdev, mddev);
2419 rcu_read_lock();
2420 if (success)
2421 break;
2422 }
2423 sl++;
2424 if (sl == conf->copies)
2425 sl = 0;
2426 } while (!success && sl != r10_bio->read_slot);
2427 rcu_read_unlock();
2428
2429 if (!success) {
2430 /* Cannot read from anywhere, just mark the block
2431 * as bad on the first device to discourage future
2432 * reads.
2433 */
2434 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2435 rdev = conf->mirrors[dn].rdev;
2436
2437 if (!rdev_set_badblocks(
2438 rdev,
2439 r10_bio->devs[r10_bio->read_slot].addr
2440 + sect,
2441 s, 0)) {
2442 md_error(mddev, rdev);
2443 r10_bio->devs[r10_bio->read_slot].bio
2444 = IO_BLOCKED;
2445 }
2446 break;
2447 }
2448
2449 start = sl;
2450 /* write it back and re-read */
2451 rcu_read_lock();
2452 while (sl != r10_bio->read_slot) {
2453 char b[BDEVNAME_SIZE];
2454
2455 if (sl==0)
2456 sl = conf->copies;
2457 sl--;
2458 d = r10_bio->devs[sl].devnum;
2459 rdev = rcu_dereference(conf->mirrors[d].rdev);
2460 if (!rdev ||
2461 test_bit(Unmerged, &rdev->flags) ||
2462 !test_bit(In_sync, &rdev->flags))
2463 continue;
2464
2465 atomic_inc(&rdev->nr_pending);
2466 rcu_read_unlock();
2467 if (r10_sync_page_io(rdev,
2468 r10_bio->devs[sl].addr +
2469 sect,
2470 s, conf->tmppage, WRITE)
2471 == 0) {
2472 /* Well, this device is dead */
2473 printk(KERN_NOTICE
2474 "md/raid10:%s: read correction "
2475 "write failed"
2476 " (%d sectors at %llu on %s)\n",
2477 mdname(mddev), s,
2478 (unsigned long long)(
2479 sect +
2480 choose_data_offset(r10_bio,
2481 rdev)),
2482 bdevname(rdev->bdev, b));
2483 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2484 "drive\n",
2485 mdname(mddev),
2486 bdevname(rdev->bdev, b));
2487 }
2488 rdev_dec_pending(rdev, mddev);
2489 rcu_read_lock();
2490 }
2491 sl = start;
2492 while (sl != r10_bio->read_slot) {
2493 char b[BDEVNAME_SIZE];
2494
2495 if (sl==0)
2496 sl = conf->copies;
2497 sl--;
2498 d = r10_bio->devs[sl].devnum;
2499 rdev = rcu_dereference(conf->mirrors[d].rdev);
2500 if (!rdev ||
2501 !test_bit(In_sync, &rdev->flags))
2502 continue;
2503
2504 atomic_inc(&rdev->nr_pending);
2505 rcu_read_unlock();
2506 switch (r10_sync_page_io(rdev,
2507 r10_bio->devs[sl].addr +
2508 sect,
2509 s, conf->tmppage,
2510 READ)) {
2511 case 0:
2512 /* Well, this device is dead */
2513 printk(KERN_NOTICE
2514 "md/raid10:%s: unable to read back "
2515 "corrected sectors"
2516 " (%d sectors at %llu on %s)\n",
2517 mdname(mddev), s,
2518 (unsigned long long)(
2519 sect +
2520 choose_data_offset(r10_bio, rdev)),
2521 bdevname(rdev->bdev, b));
2522 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2523 "drive\n",
2524 mdname(mddev),
2525 bdevname(rdev->bdev, b));
2526 break;
2527 case 1:
2528 printk(KERN_INFO
2529 "md/raid10:%s: read error corrected"
2530 " (%d sectors at %llu on %s)\n",
2531 mdname(mddev), s,
2532 (unsigned long long)(
2533 sect +
2534 choose_data_offset(r10_bio, rdev)),
2535 bdevname(rdev->bdev, b));
2536 atomic_add(s, &rdev->corrected_errors);
2537 }
2538
2539 rdev_dec_pending(rdev, mddev);
2540 rcu_read_lock();
2541 }
2542 rcu_read_unlock();
2543
2544 sectors -= s;
2545 sect += s;
2546 }
2547 }
2548
2549 static int narrow_write_error(struct r10bio *r10_bio, int i)
2550 {
2551 struct bio *bio = r10_bio->master_bio;
2552 struct mddev *mddev = r10_bio->mddev;
2553 struct r10conf *conf = mddev->private;
2554 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2555 /* bio has the data to be written to slot 'i' where
2556 * we just recently had a write error.
2557 * We repeatedly clone the bio and trim down to one block,
2558 * then try the write. Where the write fails we record
2559 * a bad block.
2560 * It is conceivable that the bio doesn't exactly align with
2561 * blocks. We must handle this.
2562 *
2563 * We currently own a reference to the rdev.
2564 */
2565
2566 int block_sectors;
2567 sector_t sector;
2568 int sectors;
2569 int sect_to_write = r10_bio->sectors;
2570 int ok = 1;
2571
2572 if (rdev->badblocks.shift < 0)
2573 return 0;
2574
2575 block_sectors = roundup(1 << rdev->badblocks.shift,
2576 bdev_logical_block_size(rdev->bdev) >> 9);
2577 sector = r10_bio->sector;
2578 sectors = ((r10_bio->sector + block_sectors)
2579 & ~(sector_t)(block_sectors - 1))
2580 - sector;
2581
2582 while (sect_to_write) {
2583 struct bio *wbio;
2584 if (sectors > sect_to_write)
2585 sectors = sect_to_write;
2586 /* Write at 'sector' for 'sectors' */
2587 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2588 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2589 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2590 choose_data_offset(r10_bio, rdev) +
2591 (sector - r10_bio->sector));
2592 wbio->bi_bdev = rdev->bdev;
2593 if (submit_bio_wait(WRITE, wbio) == 0)
2594 /* Failure! */
2595 ok = rdev_set_badblocks(rdev, sector,
2596 sectors, 0)
2597 && ok;
2598
2599 bio_put(wbio);
2600 sect_to_write -= sectors;
2601 sector += sectors;
2602 sectors = block_sectors;
2603 }
2604 return ok;
2605 }
2606
2607 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2608 {
2609 int slot = r10_bio->read_slot;
2610 struct bio *bio;
2611 struct r10conf *conf = mddev->private;
2612 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2613 char b[BDEVNAME_SIZE];
2614 unsigned long do_sync;
2615 int max_sectors;
2616
2617 /* we got a read error. Maybe the drive is bad. Maybe just
2618 * the block and we can fix it.
2619 * We freeze all other IO, and try reading the block from
2620 * other devices. When we find one, we re-write
2621 * and check it that fixes the read error.
2622 * This is all done synchronously while the array is
2623 * frozen.
2624 */
2625 bio = r10_bio->devs[slot].bio;
2626 bdevname(bio->bi_bdev, b);
2627 bio_put(bio);
2628 r10_bio->devs[slot].bio = NULL;
2629
2630 if (mddev->ro == 0) {
2631 freeze_array(conf, 1);
2632 fix_read_error(conf, mddev, r10_bio);
2633 unfreeze_array(conf);
2634 } else
2635 r10_bio->devs[slot].bio = IO_BLOCKED;
2636
2637 rdev_dec_pending(rdev, mddev);
2638
2639 read_more:
2640 rdev = read_balance(conf, r10_bio, &max_sectors);
2641 if (rdev == NULL) {
2642 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2643 " read error for block %llu\n",
2644 mdname(mddev), b,
2645 (unsigned long long)r10_bio->sector);
2646 raid_end_bio_io(r10_bio);
2647 return;
2648 }
2649
2650 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2651 slot = r10_bio->read_slot;
2652 printk_ratelimited(
2653 KERN_ERR
2654 "md/raid10:%s: %s: redirecting "
2655 "sector %llu to another mirror\n",
2656 mdname(mddev),
2657 bdevname(rdev->bdev, b),
2658 (unsigned long long)r10_bio->sector);
2659 bio = bio_clone_mddev(r10_bio->master_bio,
2660 GFP_NOIO, mddev);
2661 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2662 r10_bio->devs[slot].bio = bio;
2663 r10_bio->devs[slot].rdev = rdev;
2664 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2665 + choose_data_offset(r10_bio, rdev);
2666 bio->bi_bdev = rdev->bdev;
2667 bio->bi_rw = READ | do_sync;
2668 bio->bi_private = r10_bio;
2669 bio->bi_end_io = raid10_end_read_request;
2670 if (max_sectors < r10_bio->sectors) {
2671 /* Drat - have to split this up more */
2672 struct bio *mbio = r10_bio->master_bio;
2673 int sectors_handled =
2674 r10_bio->sector + max_sectors
2675 - mbio->bi_iter.bi_sector;
2676 r10_bio->sectors = max_sectors;
2677 spin_lock_irq(&conf->device_lock);
2678 if (mbio->bi_phys_segments == 0)
2679 mbio->bi_phys_segments = 2;
2680 else
2681 mbio->bi_phys_segments++;
2682 spin_unlock_irq(&conf->device_lock);
2683 generic_make_request(bio);
2684
2685 r10_bio = mempool_alloc(conf->r10bio_pool,
2686 GFP_NOIO);
2687 r10_bio->master_bio = mbio;
2688 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2689 r10_bio->state = 0;
2690 set_bit(R10BIO_ReadError,
2691 &r10_bio->state);
2692 r10_bio->mddev = mddev;
2693 r10_bio->sector = mbio->bi_iter.bi_sector
2694 + sectors_handled;
2695
2696 goto read_more;
2697 } else
2698 generic_make_request(bio);
2699 }
2700
2701 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2702 {
2703 /* Some sort of write request has finished and it
2704 * succeeded in writing where we thought there was a
2705 * bad block. So forget the bad block.
2706 * Or possibly if failed and we need to record
2707 * a bad block.
2708 */
2709 int m;
2710 struct md_rdev *rdev;
2711
2712 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2713 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2714 for (m = 0; m < conf->copies; m++) {
2715 int dev = r10_bio->devs[m].devnum;
2716 rdev = conf->mirrors[dev].rdev;
2717 if (r10_bio->devs[m].bio == NULL)
2718 continue;
2719 if (test_bit(BIO_UPTODATE,
2720 &r10_bio->devs[m].bio->bi_flags)) {
2721 rdev_clear_badblocks(
2722 rdev,
2723 r10_bio->devs[m].addr,
2724 r10_bio->sectors, 0);
2725 } else {
2726 if (!rdev_set_badblocks(
2727 rdev,
2728 r10_bio->devs[m].addr,
2729 r10_bio->sectors, 0))
2730 md_error(conf->mddev, rdev);
2731 }
2732 rdev = conf->mirrors[dev].replacement;
2733 if (r10_bio->devs[m].repl_bio == NULL)
2734 continue;
2735 if (test_bit(BIO_UPTODATE,
2736 &r10_bio->devs[m].repl_bio->bi_flags)) {
2737 rdev_clear_badblocks(
2738 rdev,
2739 r10_bio->devs[m].addr,
2740 r10_bio->sectors, 0);
2741 } else {
2742 if (!rdev_set_badblocks(
2743 rdev,
2744 r10_bio->devs[m].addr,
2745 r10_bio->sectors, 0))
2746 md_error(conf->mddev, rdev);
2747 }
2748 }
2749 put_buf(r10_bio);
2750 } else {
2751 for (m = 0; m < conf->copies; m++) {
2752 int dev = r10_bio->devs[m].devnum;
2753 struct bio *bio = r10_bio->devs[m].bio;
2754 rdev = conf->mirrors[dev].rdev;
2755 if (bio == IO_MADE_GOOD) {
2756 rdev_clear_badblocks(
2757 rdev,
2758 r10_bio->devs[m].addr,
2759 r10_bio->sectors, 0);
2760 rdev_dec_pending(rdev, conf->mddev);
2761 } else if (bio != NULL &&
2762 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2763 if (!narrow_write_error(r10_bio, m)) {
2764 md_error(conf->mddev, rdev);
2765 set_bit(R10BIO_Degraded,
2766 &r10_bio->state);
2767 }
2768 rdev_dec_pending(rdev, conf->mddev);
2769 }
2770 bio = r10_bio->devs[m].repl_bio;
2771 rdev = conf->mirrors[dev].replacement;
2772 if (rdev && bio == IO_MADE_GOOD) {
2773 rdev_clear_badblocks(
2774 rdev,
2775 r10_bio->devs[m].addr,
2776 r10_bio->sectors, 0);
2777 rdev_dec_pending(rdev, conf->mddev);
2778 }
2779 }
2780 if (test_bit(R10BIO_WriteError,
2781 &r10_bio->state))
2782 close_write(r10_bio);
2783 raid_end_bio_io(r10_bio);
2784 }
2785 }
2786
2787 static void raid10d(struct md_thread *thread)
2788 {
2789 struct mddev *mddev = thread->mddev;
2790 struct r10bio *r10_bio;
2791 unsigned long flags;
2792 struct r10conf *conf = mddev->private;
2793 struct list_head *head = &conf->retry_list;
2794 struct blk_plug plug;
2795
2796 md_check_recovery(mddev);
2797
2798 blk_start_plug(&plug);
2799 for (;;) {
2800
2801 flush_pending_writes(conf);
2802
2803 spin_lock_irqsave(&conf->device_lock, flags);
2804 if (list_empty(head)) {
2805 spin_unlock_irqrestore(&conf->device_lock, flags);
2806 break;
2807 }
2808 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2809 list_del(head->prev);
2810 conf->nr_queued--;
2811 spin_unlock_irqrestore(&conf->device_lock, flags);
2812
2813 mddev = r10_bio->mddev;
2814 conf = mddev->private;
2815 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2816 test_bit(R10BIO_WriteError, &r10_bio->state))
2817 handle_write_completed(conf, r10_bio);
2818 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2819 reshape_request_write(mddev, r10_bio);
2820 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2821 sync_request_write(mddev, r10_bio);
2822 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2823 recovery_request_write(mddev, r10_bio);
2824 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2825 handle_read_error(mddev, r10_bio);
2826 else {
2827 /* just a partial read to be scheduled from a
2828 * separate context
2829 */
2830 int slot = r10_bio->read_slot;
2831 generic_make_request(r10_bio->devs[slot].bio);
2832 }
2833
2834 cond_resched();
2835 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2836 md_check_recovery(mddev);
2837 }
2838 blk_finish_plug(&plug);
2839 }
2840
2841 static int init_resync(struct r10conf *conf)
2842 {
2843 int buffs;
2844 int i;
2845
2846 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2847 BUG_ON(conf->r10buf_pool);
2848 conf->have_replacement = 0;
2849 for (i = 0; i < conf->geo.raid_disks; i++)
2850 if (conf->mirrors[i].replacement)
2851 conf->have_replacement = 1;
2852 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2853 if (!conf->r10buf_pool)
2854 return -ENOMEM;
2855 conf->next_resync = 0;
2856 return 0;
2857 }
2858
2859 /*
2860 * perform a "sync" on one "block"
2861 *
2862 * We need to make sure that no normal I/O request - particularly write
2863 * requests - conflict with active sync requests.
2864 *
2865 * This is achieved by tracking pending requests and a 'barrier' concept
2866 * that can be installed to exclude normal IO requests.
2867 *
2868 * Resync and recovery are handled very differently.
2869 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2870 *
2871 * For resync, we iterate over virtual addresses, read all copies,
2872 * and update if there are differences. If only one copy is live,
2873 * skip it.
2874 * For recovery, we iterate over physical addresses, read a good
2875 * value for each non-in_sync drive, and over-write.
2876 *
2877 * So, for recovery we may have several outstanding complex requests for a
2878 * given address, one for each out-of-sync device. We model this by allocating
2879 * a number of r10_bio structures, one for each out-of-sync device.
2880 * As we setup these structures, we collect all bio's together into a list
2881 * which we then process collectively to add pages, and then process again
2882 * to pass to generic_make_request.
2883 *
2884 * The r10_bio structures are linked using a borrowed master_bio pointer.
2885 * This link is counted in ->remaining. When the r10_bio that points to NULL
2886 * has its remaining count decremented to 0, the whole complex operation
2887 * is complete.
2888 *
2889 */
2890
2891 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2892 int *skipped, int go_faster)
2893 {
2894 struct r10conf *conf = mddev->private;
2895 struct r10bio *r10_bio;
2896 struct bio *biolist = NULL, *bio;
2897 sector_t max_sector, nr_sectors;
2898 int i;
2899 int max_sync;
2900 sector_t sync_blocks;
2901 sector_t sectors_skipped = 0;
2902 int chunks_skipped = 0;
2903 sector_t chunk_mask = conf->geo.chunk_mask;
2904
2905 if (!conf->r10buf_pool)
2906 if (init_resync(conf))
2907 return 0;
2908
2909 /*
2910 * Allow skipping a full rebuild for incremental assembly
2911 * of a clean array, like RAID1 does.
2912 */
2913 if (mddev->bitmap == NULL &&
2914 mddev->recovery_cp == MaxSector &&
2915 mddev->reshape_position == MaxSector &&
2916 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2917 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2918 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2919 conf->fullsync == 0) {
2920 *skipped = 1;
2921 return mddev->dev_sectors - sector_nr;
2922 }
2923
2924 skipped:
2925 max_sector = mddev->dev_sectors;
2926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2927 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2928 max_sector = mddev->resync_max_sectors;
2929 if (sector_nr >= max_sector) {
2930 /* If we aborted, we need to abort the
2931 * sync on the 'current' bitmap chucks (there can
2932 * be several when recovering multiple devices).
2933 * as we may have started syncing it but not finished.
2934 * We can find the current address in
2935 * mddev->curr_resync, but for recovery,
2936 * we need to convert that to several
2937 * virtual addresses.
2938 */
2939 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2940 end_reshape(conf);
2941 close_sync(conf);
2942 return 0;
2943 }
2944
2945 if (mddev->curr_resync < max_sector) { /* aborted */
2946 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2947 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2948 &sync_blocks, 1);
2949 else for (i = 0; i < conf->geo.raid_disks; i++) {
2950 sector_t sect =
2951 raid10_find_virt(conf, mddev->curr_resync, i);
2952 bitmap_end_sync(mddev->bitmap, sect,
2953 &sync_blocks, 1);
2954 }
2955 } else {
2956 /* completed sync */
2957 if ((!mddev->bitmap || conf->fullsync)
2958 && conf->have_replacement
2959 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2960 /* Completed a full sync so the replacements
2961 * are now fully recovered.
2962 */
2963 for (i = 0; i < conf->geo.raid_disks; i++)
2964 if (conf->mirrors[i].replacement)
2965 conf->mirrors[i].replacement
2966 ->recovery_offset
2967 = MaxSector;
2968 }
2969 conf->fullsync = 0;
2970 }
2971 bitmap_close_sync(mddev->bitmap);
2972 close_sync(conf);
2973 *skipped = 1;
2974 return sectors_skipped;
2975 }
2976
2977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978 return reshape_request(mddev, sector_nr, skipped);
2979
2980 if (chunks_skipped >= conf->geo.raid_disks) {
2981 /* if there has been nothing to do on any drive,
2982 * then there is nothing to do at all..
2983 */
2984 *skipped = 1;
2985 return (max_sector - sector_nr) + sectors_skipped;
2986 }
2987
2988 if (max_sector > mddev->resync_max)
2989 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991 /* make sure whole request will fit in a chunk - if chunks
2992 * are meaningful
2993 */
2994 if (conf->geo.near_copies < conf->geo.raid_disks &&
2995 max_sector > (sector_nr | chunk_mask))
2996 max_sector = (sector_nr | chunk_mask) + 1;
2997 /*
2998 * If there is non-resync activity waiting for us then
2999 * put in a delay to throttle resync.
3000 */
3001 if (!go_faster && conf->nr_waiting)
3002 msleep_interruptible(1000);
3003
3004 /* Again, very different code for resync and recovery.
3005 * Both must result in an r10bio with a list of bios that
3006 * have bi_end_io, bi_sector, bi_bdev set,
3007 * and bi_private set to the r10bio.
3008 * For recovery, we may actually create several r10bios
3009 * with 2 bios in each, that correspond to the bios in the main one.
3010 * In this case, the subordinate r10bios link back through a
3011 * borrowed master_bio pointer, and the counter in the master
3012 * includes a ref from each subordinate.
3013 */
3014 /* First, we decide what to do and set ->bi_end_io
3015 * To end_sync_read if we want to read, and
3016 * end_sync_write if we will want to write.
3017 */
3018
3019 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3020 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3021 /* recovery... the complicated one */
3022 int j;
3023 r10_bio = NULL;
3024
3025 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3026 int still_degraded;
3027 struct r10bio *rb2;
3028 sector_t sect;
3029 int must_sync;
3030 int any_working;
3031 struct raid10_info *mirror = &conf->mirrors[i];
3032
3033 if ((mirror->rdev == NULL ||
3034 test_bit(In_sync, &mirror->rdev->flags))
3035 &&
3036 (mirror->replacement == NULL ||
3037 test_bit(Faulty,
3038 &mirror->replacement->flags)))
3039 continue;
3040
3041 still_degraded = 0;
3042 /* want to reconstruct this device */
3043 rb2 = r10_bio;
3044 sect = raid10_find_virt(conf, sector_nr, i);
3045 if (sect >= mddev->resync_max_sectors) {
3046 /* last stripe is not complete - don't
3047 * try to recover this sector.
3048 */
3049 continue;
3050 }
3051 /* Unless we are doing a full sync, or a replacement
3052 * we only need to recover the block if it is set in
3053 * the bitmap
3054 */
3055 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3056 &sync_blocks, 1);
3057 if (sync_blocks < max_sync)
3058 max_sync = sync_blocks;
3059 if (!must_sync &&
3060 mirror->replacement == NULL &&
3061 !conf->fullsync) {
3062 /* yep, skip the sync_blocks here, but don't assume
3063 * that there will never be anything to do here
3064 */
3065 chunks_skipped = -1;
3066 continue;
3067 }
3068
3069 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3070 r10_bio->state = 0;
3071 raise_barrier(conf, rb2 != NULL);
3072 atomic_set(&r10_bio->remaining, 0);
3073
3074 r10_bio->master_bio = (struct bio*)rb2;
3075 if (rb2)
3076 atomic_inc(&rb2->remaining);
3077 r10_bio->mddev = mddev;
3078 set_bit(R10BIO_IsRecover, &r10_bio->state);
3079 r10_bio->sector = sect;
3080
3081 raid10_find_phys(conf, r10_bio);
3082
3083 /* Need to check if the array will still be
3084 * degraded
3085 */
3086 for (j = 0; j < conf->geo.raid_disks; j++)
3087 if (conf->mirrors[j].rdev == NULL ||
3088 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3089 still_degraded = 1;
3090 break;
3091 }
3092
3093 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3094 &sync_blocks, still_degraded);
3095
3096 any_working = 0;
3097 for (j=0; j<conf->copies;j++) {
3098 int k;
3099 int d = r10_bio->devs[j].devnum;
3100 sector_t from_addr, to_addr;
3101 struct md_rdev *rdev;
3102 sector_t sector, first_bad;
3103 int bad_sectors;
3104 if (!conf->mirrors[d].rdev ||
3105 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3106 continue;
3107 /* This is where we read from */
3108 any_working = 1;
3109 rdev = conf->mirrors[d].rdev;
3110 sector = r10_bio->devs[j].addr;
3111
3112 if (is_badblock(rdev, sector, max_sync,
3113 &first_bad, &bad_sectors)) {
3114 if (first_bad > sector)
3115 max_sync = first_bad - sector;
3116 else {
3117 bad_sectors -= (sector
3118 - first_bad);
3119 if (max_sync > bad_sectors)
3120 max_sync = bad_sectors;
3121 continue;
3122 }
3123 }
3124 bio = r10_bio->devs[0].bio;
3125 bio_reset(bio);
3126 bio->bi_next = biolist;
3127 biolist = bio;
3128 bio->bi_private = r10_bio;
3129 bio->bi_end_io = end_sync_read;
3130 bio->bi_rw = READ;
3131 from_addr = r10_bio->devs[j].addr;
3132 bio->bi_iter.bi_sector = from_addr +
3133 rdev->data_offset;
3134 bio->bi_bdev = rdev->bdev;
3135 atomic_inc(&rdev->nr_pending);
3136 /* and we write to 'i' (if not in_sync) */
3137
3138 for (k=0; k<conf->copies; k++)
3139 if (r10_bio->devs[k].devnum == i)
3140 break;
3141 BUG_ON(k == conf->copies);
3142 to_addr = r10_bio->devs[k].addr;
3143 r10_bio->devs[0].devnum = d;
3144 r10_bio->devs[0].addr = from_addr;
3145 r10_bio->devs[1].devnum = i;
3146 r10_bio->devs[1].addr = to_addr;
3147
3148 rdev = mirror->rdev;
3149 if (!test_bit(In_sync, &rdev->flags)) {
3150 bio = r10_bio->devs[1].bio;
3151 bio_reset(bio);
3152 bio->bi_next = biolist;
3153 biolist = bio;
3154 bio->bi_private = r10_bio;
3155 bio->bi_end_io = end_sync_write;
3156 bio->bi_rw = WRITE;
3157 bio->bi_iter.bi_sector = to_addr
3158 + rdev->data_offset;
3159 bio->bi_bdev = rdev->bdev;
3160 atomic_inc(&r10_bio->remaining);
3161 } else
3162 r10_bio->devs[1].bio->bi_end_io = NULL;
3163
3164 /* and maybe write to replacement */
3165 bio = r10_bio->devs[1].repl_bio;
3166 if (bio)
3167 bio->bi_end_io = NULL;
3168 rdev = mirror->replacement;
3169 /* Note: if rdev != NULL, then bio
3170 * cannot be NULL as r10buf_pool_alloc will
3171 * have allocated it.
3172 * So the second test here is pointless.
3173 * But it keeps semantic-checkers happy, and
3174 * this comment keeps human reviewers
3175 * happy.
3176 */
3177 if (rdev == NULL || bio == NULL ||
3178 test_bit(Faulty, &rdev->flags))
3179 break;
3180 bio_reset(bio);
3181 bio->bi_next = biolist;
3182 biolist = bio;
3183 bio->bi_private = r10_bio;
3184 bio->bi_end_io = end_sync_write;
3185 bio->bi_rw = WRITE;
3186 bio->bi_iter.bi_sector = to_addr +
3187 rdev->data_offset;
3188 bio->bi_bdev = rdev->bdev;
3189 atomic_inc(&r10_bio->remaining);
3190 break;
3191 }
3192 if (j == conf->copies) {
3193 /* Cannot recover, so abort the recovery or
3194 * record a bad block */
3195 if (any_working) {
3196 /* problem is that there are bad blocks
3197 * on other device(s)
3198 */
3199 int k;
3200 for (k = 0; k < conf->copies; k++)
3201 if (r10_bio->devs[k].devnum == i)
3202 break;
3203 if (!test_bit(In_sync,
3204 &mirror->rdev->flags)
3205 && !rdev_set_badblocks(
3206 mirror->rdev,
3207 r10_bio->devs[k].addr,
3208 max_sync, 0))
3209 any_working = 0;
3210 if (mirror->replacement &&
3211 !rdev_set_badblocks(
3212 mirror->replacement,
3213 r10_bio->devs[k].addr,
3214 max_sync, 0))
3215 any_working = 0;
3216 }
3217 if (!any_working) {
3218 if (!test_and_set_bit(MD_RECOVERY_INTR,
3219 &mddev->recovery))
3220 printk(KERN_INFO "md/raid10:%s: insufficient "
3221 "working devices for recovery.\n",
3222 mdname(mddev));
3223 mirror->recovery_disabled
3224 = mddev->recovery_disabled;
3225 }
3226 put_buf(r10_bio);
3227 if (rb2)
3228 atomic_dec(&rb2->remaining);
3229 r10_bio = rb2;
3230 break;
3231 }
3232 }
3233 if (biolist == NULL) {
3234 while (r10_bio) {
3235 struct r10bio *rb2 = r10_bio;
3236 r10_bio = (struct r10bio*) rb2->master_bio;
3237 rb2->master_bio = NULL;
3238 put_buf(rb2);
3239 }
3240 goto giveup;
3241 }
3242 } else {
3243 /* resync. Schedule a read for every block at this virt offset */
3244 int count = 0;
3245
3246 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3247
3248 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3249 &sync_blocks, mddev->degraded) &&
3250 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3251 &mddev->recovery)) {
3252 /* We can skip this block */
3253 *skipped = 1;
3254 return sync_blocks + sectors_skipped;
3255 }
3256 if (sync_blocks < max_sync)
3257 max_sync = sync_blocks;
3258 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3259 r10_bio->state = 0;
3260
3261 r10_bio->mddev = mddev;
3262 atomic_set(&r10_bio->remaining, 0);
3263 raise_barrier(conf, 0);
3264 conf->next_resync = sector_nr;
3265
3266 r10_bio->master_bio = NULL;
3267 r10_bio->sector = sector_nr;
3268 set_bit(R10BIO_IsSync, &r10_bio->state);
3269 raid10_find_phys(conf, r10_bio);
3270 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3271
3272 for (i = 0; i < conf->copies; i++) {
3273 int d = r10_bio->devs[i].devnum;
3274 sector_t first_bad, sector;
3275 int bad_sectors;
3276
3277 if (r10_bio->devs[i].repl_bio)
3278 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3279
3280 bio = r10_bio->devs[i].bio;
3281 bio_reset(bio);
3282 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3283 if (conf->mirrors[d].rdev == NULL ||
3284 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3285 continue;
3286 sector = r10_bio->devs[i].addr;
3287 if (is_badblock(conf->mirrors[d].rdev,
3288 sector, max_sync,
3289 &first_bad, &bad_sectors)) {
3290 if (first_bad > sector)
3291 max_sync = first_bad - sector;
3292 else {
3293 bad_sectors -= (sector - first_bad);
3294 if (max_sync > bad_sectors)
3295 max_sync = bad_sectors;
3296 continue;
3297 }
3298 }
3299 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3300 atomic_inc(&r10_bio->remaining);
3301 bio->bi_next = biolist;
3302 biolist = bio;
3303 bio->bi_private = r10_bio;
3304 bio->bi_end_io = end_sync_read;
3305 bio->bi_rw = READ;
3306 bio->bi_iter.bi_sector = sector +
3307 conf->mirrors[d].rdev->data_offset;
3308 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3309 count++;
3310
3311 if (conf->mirrors[d].replacement == NULL ||
3312 test_bit(Faulty,
3313 &conf->mirrors[d].replacement->flags))
3314 continue;
3315
3316 /* Need to set up for writing to the replacement */
3317 bio = r10_bio->devs[i].repl_bio;
3318 bio_reset(bio);
3319 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3320
3321 sector = r10_bio->devs[i].addr;
3322 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3323 bio->bi_next = biolist;
3324 biolist = bio;
3325 bio->bi_private = r10_bio;
3326 bio->bi_end_io = end_sync_write;
3327 bio->bi_rw = WRITE;
3328 bio->bi_iter.bi_sector = sector +
3329 conf->mirrors[d].replacement->data_offset;
3330 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3331 count++;
3332 }
3333
3334 if (count < 2) {
3335 for (i=0; i<conf->copies; i++) {
3336 int d = r10_bio->devs[i].devnum;
3337 if (r10_bio->devs[i].bio->bi_end_io)
3338 rdev_dec_pending(conf->mirrors[d].rdev,
3339 mddev);
3340 if (r10_bio->devs[i].repl_bio &&
3341 r10_bio->devs[i].repl_bio->bi_end_io)
3342 rdev_dec_pending(
3343 conf->mirrors[d].replacement,
3344 mddev);
3345 }
3346 put_buf(r10_bio);
3347 biolist = NULL;
3348 goto giveup;
3349 }
3350 }
3351
3352 nr_sectors = 0;
3353 if (sector_nr + max_sync < max_sector)
3354 max_sector = sector_nr + max_sync;
3355 do {
3356 struct page *page;
3357 int len = PAGE_SIZE;
3358 if (sector_nr + (len>>9) > max_sector)
3359 len = (max_sector - sector_nr) << 9;
3360 if (len == 0)
3361 break;
3362 for (bio= biolist ; bio ; bio=bio->bi_next) {
3363 struct bio *bio2;
3364 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3365 if (bio_add_page(bio, page, len, 0))
3366 continue;
3367
3368 /* stop here */
3369 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3370 for (bio2 = biolist;
3371 bio2 && bio2 != bio;
3372 bio2 = bio2->bi_next) {
3373 /* remove last page from this bio */
3374 bio2->bi_vcnt--;
3375 bio2->bi_iter.bi_size -= len;
3376 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3377 }
3378 goto bio_full;
3379 }
3380 nr_sectors += len>>9;
3381 sector_nr += len>>9;
3382 } while (biolist->bi_vcnt < RESYNC_PAGES);
3383 bio_full:
3384 r10_bio->sectors = nr_sectors;
3385
3386 while (biolist) {
3387 bio = biolist;
3388 biolist = biolist->bi_next;
3389
3390 bio->bi_next = NULL;
3391 r10_bio = bio->bi_private;
3392 r10_bio->sectors = nr_sectors;
3393
3394 if (bio->bi_end_io == end_sync_read) {
3395 md_sync_acct(bio->bi_bdev, nr_sectors);
3396 set_bit(BIO_UPTODATE, &bio->bi_flags);
3397 generic_make_request(bio);
3398 }
3399 }
3400
3401 if (sectors_skipped)
3402 /* pretend they weren't skipped, it makes
3403 * no important difference in this case
3404 */
3405 md_done_sync(mddev, sectors_skipped, 1);
3406
3407 return sectors_skipped + nr_sectors;
3408 giveup:
3409 /* There is nowhere to write, so all non-sync
3410 * drives must be failed or in resync, all drives
3411 * have a bad block, so try the next chunk...
3412 */
3413 if (sector_nr + max_sync < max_sector)
3414 max_sector = sector_nr + max_sync;
3415
3416 sectors_skipped += (max_sector - sector_nr);
3417 chunks_skipped ++;
3418 sector_nr = max_sector;
3419 goto skipped;
3420 }
3421
3422 static sector_t
3423 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3424 {
3425 sector_t size;
3426 struct r10conf *conf = mddev->private;
3427
3428 if (!raid_disks)
3429 raid_disks = min(conf->geo.raid_disks,
3430 conf->prev.raid_disks);
3431 if (!sectors)
3432 sectors = conf->dev_sectors;
3433
3434 size = sectors >> conf->geo.chunk_shift;
3435 sector_div(size, conf->geo.far_copies);
3436 size = size * raid_disks;
3437 sector_div(size, conf->geo.near_copies);
3438
3439 return size << conf->geo.chunk_shift;
3440 }
3441
3442 static void calc_sectors(struct r10conf *conf, sector_t size)
3443 {
3444 /* Calculate the number of sectors-per-device that will
3445 * actually be used, and set conf->dev_sectors and
3446 * conf->stride
3447 */
3448
3449 size = size >> conf->geo.chunk_shift;
3450 sector_div(size, conf->geo.far_copies);
3451 size = size * conf->geo.raid_disks;
3452 sector_div(size, conf->geo.near_copies);
3453 /* 'size' is now the number of chunks in the array */
3454 /* calculate "used chunks per device" */
3455 size = size * conf->copies;
3456
3457 /* We need to round up when dividing by raid_disks to
3458 * get the stride size.
3459 */
3460 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3461
3462 conf->dev_sectors = size << conf->geo.chunk_shift;
3463
3464 if (conf->geo.far_offset)
3465 conf->geo.stride = 1 << conf->geo.chunk_shift;
3466 else {
3467 sector_div(size, conf->geo.far_copies);
3468 conf->geo.stride = size << conf->geo.chunk_shift;
3469 }
3470 }
3471
3472 enum geo_type {geo_new, geo_old, geo_start};
3473 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3474 {
3475 int nc, fc, fo;
3476 int layout, chunk, disks;
3477 switch (new) {
3478 case geo_old:
3479 layout = mddev->layout;
3480 chunk = mddev->chunk_sectors;
3481 disks = mddev->raid_disks - mddev->delta_disks;
3482 break;
3483 case geo_new:
3484 layout = mddev->new_layout;
3485 chunk = mddev->new_chunk_sectors;
3486 disks = mddev->raid_disks;
3487 break;
3488 default: /* avoid 'may be unused' warnings */
3489 case geo_start: /* new when starting reshape - raid_disks not
3490 * updated yet. */
3491 layout = mddev->new_layout;
3492 chunk = mddev->new_chunk_sectors;
3493 disks = mddev->raid_disks + mddev->delta_disks;
3494 break;
3495 }
3496 if (layout >> 18)
3497 return -1;
3498 if (chunk < (PAGE_SIZE >> 9) ||
3499 !is_power_of_2(chunk))
3500 return -2;
3501 nc = layout & 255;
3502 fc = (layout >> 8) & 255;
3503 fo = layout & (1<<16);
3504 geo->raid_disks = disks;
3505 geo->near_copies = nc;
3506 geo->far_copies = fc;
3507 geo->far_offset = fo;
3508 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3509 geo->chunk_mask = chunk - 1;
3510 geo->chunk_shift = ffz(~chunk);
3511 return nc*fc;
3512 }
3513
3514 static struct r10conf *setup_conf(struct mddev *mddev)
3515 {
3516 struct r10conf *conf = NULL;
3517 int err = -EINVAL;
3518 struct geom geo;
3519 int copies;
3520
3521 copies = setup_geo(&geo, mddev, geo_new);
3522
3523 if (copies == -2) {
3524 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3525 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3526 mdname(mddev), PAGE_SIZE);
3527 goto out;
3528 }
3529
3530 if (copies < 2 || copies > mddev->raid_disks) {
3531 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3532 mdname(mddev), mddev->new_layout);
3533 goto out;
3534 }
3535
3536 err = -ENOMEM;
3537 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3538 if (!conf)
3539 goto out;
3540
3541 /* FIXME calc properly */
3542 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3543 max(0,-mddev->delta_disks)),
3544 GFP_KERNEL);
3545 if (!conf->mirrors)
3546 goto out;
3547
3548 conf->tmppage = alloc_page(GFP_KERNEL);
3549 if (!conf->tmppage)
3550 goto out;
3551
3552 conf->geo = geo;
3553 conf->copies = copies;
3554 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3555 r10bio_pool_free, conf);
3556 if (!conf->r10bio_pool)
3557 goto out;
3558
3559 calc_sectors(conf, mddev->dev_sectors);
3560 if (mddev->reshape_position == MaxSector) {
3561 conf->prev = conf->geo;
3562 conf->reshape_progress = MaxSector;
3563 } else {
3564 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3565 err = -EINVAL;
3566 goto out;
3567 }
3568 conf->reshape_progress = mddev->reshape_position;
3569 if (conf->prev.far_offset)
3570 conf->prev.stride = 1 << conf->prev.chunk_shift;
3571 else
3572 /* far_copies must be 1 */
3573 conf->prev.stride = conf->dev_sectors;
3574 }
3575 spin_lock_init(&conf->device_lock);
3576 INIT_LIST_HEAD(&conf->retry_list);
3577
3578 spin_lock_init(&conf->resync_lock);
3579 init_waitqueue_head(&conf->wait_barrier);
3580
3581 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3582 if (!conf->thread)
3583 goto out;
3584
3585 conf->mddev = mddev;
3586 return conf;
3587
3588 out:
3589 if (err == -ENOMEM)
3590 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3591 mdname(mddev));
3592 if (conf) {
3593 if (conf->r10bio_pool)
3594 mempool_destroy(conf->r10bio_pool);
3595 kfree(conf->mirrors);
3596 safe_put_page(conf->tmppage);
3597 kfree(conf);
3598 }
3599 return ERR_PTR(err);
3600 }
3601
3602 static int run(struct mddev *mddev)
3603 {
3604 struct r10conf *conf;
3605 int i, disk_idx, chunk_size;
3606 struct raid10_info *disk;
3607 struct md_rdev *rdev;
3608 sector_t size;
3609 sector_t min_offset_diff = 0;
3610 int first = 1;
3611 bool discard_supported = false;
3612
3613 if (mddev->private == NULL) {
3614 conf = setup_conf(mddev);
3615 if (IS_ERR(conf))
3616 return PTR_ERR(conf);
3617 mddev->private = conf;
3618 }
3619 conf = mddev->private;
3620 if (!conf)
3621 goto out;
3622
3623 mddev->thread = conf->thread;
3624 conf->thread = NULL;
3625
3626 chunk_size = mddev->chunk_sectors << 9;
3627 if (mddev->queue) {
3628 blk_queue_max_discard_sectors(mddev->queue,
3629 mddev->chunk_sectors);
3630 blk_queue_max_write_same_sectors(mddev->queue, 0);
3631 blk_queue_io_min(mddev->queue, chunk_size);
3632 if (conf->geo.raid_disks % conf->geo.near_copies)
3633 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3634 else
3635 blk_queue_io_opt(mddev->queue, chunk_size *
3636 (conf->geo.raid_disks / conf->geo.near_copies));
3637 }
3638
3639 rdev_for_each(rdev, mddev) {
3640 long long diff;
3641 struct request_queue *q;
3642
3643 disk_idx = rdev->raid_disk;
3644 if (disk_idx < 0)
3645 continue;
3646 if (disk_idx >= conf->geo.raid_disks &&
3647 disk_idx >= conf->prev.raid_disks)
3648 continue;
3649 disk = conf->mirrors + disk_idx;
3650
3651 if (test_bit(Replacement, &rdev->flags)) {
3652 if (disk->replacement)
3653 goto out_free_conf;
3654 disk->replacement = rdev;
3655 } else {
3656 if (disk->rdev)
3657 goto out_free_conf;
3658 disk->rdev = rdev;
3659 }
3660 q = bdev_get_queue(rdev->bdev);
3661 if (q->merge_bvec_fn)
3662 mddev->merge_check_needed = 1;
3663 diff = (rdev->new_data_offset - rdev->data_offset);
3664 if (!mddev->reshape_backwards)
3665 diff = -diff;
3666 if (diff < 0)
3667 diff = 0;
3668 if (first || diff < min_offset_diff)
3669 min_offset_diff = diff;
3670
3671 if (mddev->gendisk)
3672 disk_stack_limits(mddev->gendisk, rdev->bdev,
3673 rdev->data_offset << 9);
3674
3675 disk->head_position = 0;
3676
3677 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3678 discard_supported = true;
3679 }
3680
3681 if (mddev->queue) {
3682 if (discard_supported)
3683 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3684 mddev->queue);
3685 else
3686 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3687 mddev->queue);
3688 }
3689 /* need to check that every block has at least one working mirror */
3690 if (!enough(conf, -1)) {
3691 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3692 mdname(mddev));
3693 goto out_free_conf;
3694 }
3695
3696 if (conf->reshape_progress != MaxSector) {
3697 /* must ensure that shape change is supported */
3698 if (conf->geo.far_copies != 1 &&
3699 conf->geo.far_offset == 0)
3700 goto out_free_conf;
3701 if (conf->prev.far_copies != 1 &&
3702 conf->prev.far_offset == 0)
3703 goto out_free_conf;
3704 }
3705
3706 mddev->degraded = 0;
3707 for (i = 0;
3708 i < conf->geo.raid_disks
3709 || i < conf->prev.raid_disks;
3710 i++) {
3711
3712 disk = conf->mirrors + i;
3713
3714 if (!disk->rdev && disk->replacement) {
3715 /* The replacement is all we have - use it */
3716 disk->rdev = disk->replacement;
3717 disk->replacement = NULL;
3718 clear_bit(Replacement, &disk->rdev->flags);
3719 }
3720
3721 if (!disk->rdev ||
3722 !test_bit(In_sync, &disk->rdev->flags)) {
3723 disk->head_position = 0;
3724 mddev->degraded++;
3725 if (disk->rdev &&
3726 disk->rdev->saved_raid_disk < 0)
3727 conf->fullsync = 1;
3728 }
3729 disk->recovery_disabled = mddev->recovery_disabled - 1;
3730 }
3731
3732 if (mddev->recovery_cp != MaxSector)
3733 printk(KERN_NOTICE "md/raid10:%s: not clean"
3734 " -- starting background reconstruction\n",
3735 mdname(mddev));
3736 printk(KERN_INFO
3737 "md/raid10:%s: active with %d out of %d devices\n",
3738 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3739 conf->geo.raid_disks);
3740 /*
3741 * Ok, everything is just fine now
3742 */
3743 mddev->dev_sectors = conf->dev_sectors;
3744 size = raid10_size(mddev, 0, 0);
3745 md_set_array_sectors(mddev, size);
3746 mddev->resync_max_sectors = size;
3747
3748 if (mddev->queue) {
3749 int stripe = conf->geo.raid_disks *
3750 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3751
3752 /* Calculate max read-ahead size.
3753 * We need to readahead at least twice a whole stripe....
3754 * maybe...
3755 */
3756 stripe /= conf->geo.near_copies;
3757 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3758 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3759 }
3760
3761 if (md_integrity_register(mddev))
3762 goto out_free_conf;
3763
3764 if (conf->reshape_progress != MaxSector) {
3765 unsigned long before_length, after_length;
3766
3767 before_length = ((1 << conf->prev.chunk_shift) *
3768 conf->prev.far_copies);
3769 after_length = ((1 << conf->geo.chunk_shift) *
3770 conf->geo.far_copies);
3771
3772 if (max(before_length, after_length) > min_offset_diff) {
3773 /* This cannot work */
3774 printk("md/raid10: offset difference not enough to continue reshape\n");
3775 goto out_free_conf;
3776 }
3777 conf->offset_diff = min_offset_diff;
3778
3779 conf->reshape_safe = conf->reshape_progress;
3780 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3781 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3782 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3783 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3784 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3785 "reshape");
3786 }
3787
3788 return 0;
3789
3790 out_free_conf:
3791 md_unregister_thread(&mddev->thread);
3792 if (conf->r10bio_pool)
3793 mempool_destroy(conf->r10bio_pool);
3794 safe_put_page(conf->tmppage);
3795 kfree(conf->mirrors);
3796 kfree(conf);
3797 mddev->private = NULL;
3798 out:
3799 return -EIO;
3800 }
3801
3802 static void raid10_free(struct mddev *mddev, void *priv)
3803 {
3804 struct r10conf *conf = priv;
3805
3806 if (conf->r10bio_pool)
3807 mempool_destroy(conf->r10bio_pool);
3808 safe_put_page(conf->tmppage);
3809 kfree(conf->mirrors);
3810 kfree(conf->mirrors_old);
3811 kfree(conf->mirrors_new);
3812 kfree(conf);
3813 }
3814
3815 static void raid10_quiesce(struct mddev *mddev, int state)
3816 {
3817 struct r10conf *conf = mddev->private;
3818
3819 switch(state) {
3820 case 1:
3821 raise_barrier(conf, 0);
3822 break;
3823 case 0:
3824 lower_barrier(conf);
3825 break;
3826 }
3827 }
3828
3829 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3830 {
3831 /* Resize of 'far' arrays is not supported.
3832 * For 'near' and 'offset' arrays we can set the
3833 * number of sectors used to be an appropriate multiple
3834 * of the chunk size.
3835 * For 'offset', this is far_copies*chunksize.
3836 * For 'near' the multiplier is the LCM of
3837 * near_copies and raid_disks.
3838 * So if far_copies > 1 && !far_offset, fail.
3839 * Else find LCM(raid_disks, near_copy)*far_copies and
3840 * multiply by chunk_size. Then round to this number.
3841 * This is mostly done by raid10_size()
3842 */
3843 struct r10conf *conf = mddev->private;
3844 sector_t oldsize, size;
3845
3846 if (mddev->reshape_position != MaxSector)
3847 return -EBUSY;
3848
3849 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3850 return -EINVAL;
3851
3852 oldsize = raid10_size(mddev, 0, 0);
3853 size = raid10_size(mddev, sectors, 0);
3854 if (mddev->external_size &&
3855 mddev->array_sectors > size)
3856 return -EINVAL;
3857 if (mddev->bitmap) {
3858 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3859 if (ret)
3860 return ret;
3861 }
3862 md_set_array_sectors(mddev, size);
3863 set_capacity(mddev->gendisk, mddev->array_sectors);
3864 revalidate_disk(mddev->gendisk);
3865 if (sectors > mddev->dev_sectors &&
3866 mddev->recovery_cp > oldsize) {
3867 mddev->recovery_cp = oldsize;
3868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3869 }
3870 calc_sectors(conf, sectors);
3871 mddev->dev_sectors = conf->dev_sectors;
3872 mddev->resync_max_sectors = size;
3873 return 0;
3874 }
3875
3876 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3877 {
3878 struct md_rdev *rdev;
3879 struct r10conf *conf;
3880
3881 if (mddev->degraded > 0) {
3882 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3883 mdname(mddev));
3884 return ERR_PTR(-EINVAL);
3885 }
3886 sector_div(size, devs);
3887
3888 /* Set new parameters */
3889 mddev->new_level = 10;
3890 /* new layout: far_copies = 1, near_copies = 2 */
3891 mddev->new_layout = (1<<8) + 2;
3892 mddev->new_chunk_sectors = mddev->chunk_sectors;
3893 mddev->delta_disks = mddev->raid_disks;
3894 mddev->raid_disks *= 2;
3895 /* make sure it will be not marked as dirty */
3896 mddev->recovery_cp = MaxSector;
3897 mddev->dev_sectors = size;
3898
3899 conf = setup_conf(mddev);
3900 if (!IS_ERR(conf)) {
3901 rdev_for_each(rdev, mddev)
3902 if (rdev->raid_disk >= 0) {
3903 rdev->new_raid_disk = rdev->raid_disk * 2;
3904 rdev->sectors = size;
3905 }
3906 conf->barrier = 1;
3907 }
3908
3909 return conf;
3910 }
3911
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914 struct r0conf *raid0_conf;
3915
3916 /* raid10 can take over:
3917 * raid0 - providing it has only two drives
3918 */
3919 if (mddev->level == 0) {
3920 /* for raid0 takeover only one zone is supported */
3921 raid0_conf = mddev->private;
3922 if (raid0_conf->nr_strip_zones > 1) {
3923 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3924 " with more than one zone.\n",
3925 mdname(mddev));
3926 return ERR_PTR(-EINVAL);
3927 }
3928 return raid10_takeover_raid0(mddev,
3929 raid0_conf->strip_zone->zone_end,
3930 raid0_conf->strip_zone->nb_dev);
3931 }
3932 return ERR_PTR(-EINVAL);
3933 }
3934
3935 static int raid10_check_reshape(struct mddev *mddev)
3936 {
3937 /* Called when there is a request to change
3938 * - layout (to ->new_layout)
3939 * - chunk size (to ->new_chunk_sectors)
3940 * - raid_disks (by delta_disks)
3941 * or when trying to restart a reshape that was ongoing.
3942 *
3943 * We need to validate the request and possibly allocate
3944 * space if that might be an issue later.
3945 *
3946 * Currently we reject any reshape of a 'far' mode array,
3947 * allow chunk size to change if new is generally acceptable,
3948 * allow raid_disks to increase, and allow
3949 * a switch between 'near' mode and 'offset' mode.
3950 */
3951 struct r10conf *conf = mddev->private;
3952 struct geom geo;
3953
3954 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3955 return -EINVAL;
3956
3957 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3958 /* mustn't change number of copies */
3959 return -EINVAL;
3960 if (geo.far_copies > 1 && !geo.far_offset)
3961 /* Cannot switch to 'far' mode */
3962 return -EINVAL;
3963
3964 if (mddev->array_sectors & geo.chunk_mask)
3965 /* not factor of array size */
3966 return -EINVAL;
3967
3968 if (!enough(conf, -1))
3969 return -EINVAL;
3970
3971 kfree(conf->mirrors_new);
3972 conf->mirrors_new = NULL;
3973 if (mddev->delta_disks > 0) {
3974 /* allocate new 'mirrors' list */
3975 conf->mirrors_new = kzalloc(
3976 sizeof(struct raid10_info)
3977 *(mddev->raid_disks +
3978 mddev->delta_disks),
3979 GFP_KERNEL);
3980 if (!conf->mirrors_new)
3981 return -ENOMEM;
3982 }
3983 return 0;
3984 }
3985
3986 /*
3987 * Need to check if array has failed when deciding whether to:
3988 * - start an array
3989 * - remove non-faulty devices
3990 * - add a spare
3991 * - allow a reshape
3992 * This determination is simple when no reshape is happening.
3993 * However if there is a reshape, we need to carefully check
3994 * both the before and after sections.
3995 * This is because some failed devices may only affect one
3996 * of the two sections, and some non-in_sync devices may
3997 * be insync in the section most affected by failed devices.
3998 */
3999 static int calc_degraded(struct r10conf *conf)
4000 {
4001 int degraded, degraded2;
4002 int i;
4003
4004 rcu_read_lock();
4005 degraded = 0;
4006 /* 'prev' section first */
4007 for (i = 0; i < conf->prev.raid_disks; i++) {
4008 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4009 if (!rdev || test_bit(Faulty, &rdev->flags))
4010 degraded++;
4011 else if (!test_bit(In_sync, &rdev->flags))
4012 /* When we can reduce the number of devices in
4013 * an array, this might not contribute to
4014 * 'degraded'. It does now.
4015 */
4016 degraded++;
4017 }
4018 rcu_read_unlock();
4019 if (conf->geo.raid_disks == conf->prev.raid_disks)
4020 return degraded;
4021 rcu_read_lock();
4022 degraded2 = 0;
4023 for (i = 0; i < conf->geo.raid_disks; i++) {
4024 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4025 if (!rdev || test_bit(Faulty, &rdev->flags))
4026 degraded2++;
4027 else if (!test_bit(In_sync, &rdev->flags)) {
4028 /* If reshape is increasing the number of devices,
4029 * this section has already been recovered, so
4030 * it doesn't contribute to degraded.
4031 * else it does.
4032 */
4033 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4034 degraded2++;
4035 }
4036 }
4037 rcu_read_unlock();
4038 if (degraded2 > degraded)
4039 return degraded2;
4040 return degraded;
4041 }
4042
4043 static int raid10_start_reshape(struct mddev *mddev)
4044 {
4045 /* A 'reshape' has been requested. This commits
4046 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4047 * This also checks if there are enough spares and adds them
4048 * to the array.
4049 * We currently require enough spares to make the final
4050 * array non-degraded. We also require that the difference
4051 * between old and new data_offset - on each device - is
4052 * enough that we never risk over-writing.
4053 */
4054
4055 unsigned long before_length, after_length;
4056 sector_t min_offset_diff = 0;
4057 int first = 1;
4058 struct geom new;
4059 struct r10conf *conf = mddev->private;
4060 struct md_rdev *rdev;
4061 int spares = 0;
4062 int ret;
4063
4064 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4065 return -EBUSY;
4066
4067 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4068 return -EINVAL;
4069
4070 before_length = ((1 << conf->prev.chunk_shift) *
4071 conf->prev.far_copies);
4072 after_length = ((1 << conf->geo.chunk_shift) *
4073 conf->geo.far_copies);
4074
4075 rdev_for_each(rdev, mddev) {
4076 if (!test_bit(In_sync, &rdev->flags)
4077 && !test_bit(Faulty, &rdev->flags))
4078 spares++;
4079 if (rdev->raid_disk >= 0) {
4080 long long diff = (rdev->new_data_offset
4081 - rdev->data_offset);
4082 if (!mddev->reshape_backwards)
4083 diff = -diff;
4084 if (diff < 0)
4085 diff = 0;
4086 if (first || diff < min_offset_diff)
4087 min_offset_diff = diff;
4088 }
4089 }
4090
4091 if (max(before_length, after_length) > min_offset_diff)
4092 return -EINVAL;
4093
4094 if (spares < mddev->delta_disks)
4095 return -EINVAL;
4096
4097 conf->offset_diff = min_offset_diff;
4098 spin_lock_irq(&conf->device_lock);
4099 if (conf->mirrors_new) {
4100 memcpy(conf->mirrors_new, conf->mirrors,
4101 sizeof(struct raid10_info)*conf->prev.raid_disks);
4102 smp_mb();
4103 kfree(conf->mirrors_old);
4104 conf->mirrors_old = conf->mirrors;
4105 conf->mirrors = conf->mirrors_new;
4106 conf->mirrors_new = NULL;
4107 }
4108 setup_geo(&conf->geo, mddev, geo_start);
4109 smp_mb();
4110 if (mddev->reshape_backwards) {
4111 sector_t size = raid10_size(mddev, 0, 0);
4112 if (size < mddev->array_sectors) {
4113 spin_unlock_irq(&conf->device_lock);
4114 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4115 mdname(mddev));
4116 return -EINVAL;
4117 }
4118 mddev->resync_max_sectors = size;
4119 conf->reshape_progress = size;
4120 } else
4121 conf->reshape_progress = 0;
4122 spin_unlock_irq(&conf->device_lock);
4123
4124 if (mddev->delta_disks && mddev->bitmap) {
4125 ret = bitmap_resize(mddev->bitmap,
4126 raid10_size(mddev, 0,
4127 conf->geo.raid_disks),
4128 0, 0);
4129 if (ret)
4130 goto abort;
4131 }
4132 if (mddev->delta_disks > 0) {
4133 rdev_for_each(rdev, mddev)
4134 if (rdev->raid_disk < 0 &&
4135 !test_bit(Faulty, &rdev->flags)) {
4136 if (raid10_add_disk(mddev, rdev) == 0) {
4137 if (rdev->raid_disk >=
4138 conf->prev.raid_disks)
4139 set_bit(In_sync, &rdev->flags);
4140 else
4141 rdev->recovery_offset = 0;
4142
4143 if (sysfs_link_rdev(mddev, rdev))
4144 /* Failure here is OK */;
4145 }
4146 } else if (rdev->raid_disk >= conf->prev.raid_disks
4147 && !test_bit(Faulty, &rdev->flags)) {
4148 /* This is a spare that was manually added */
4149 set_bit(In_sync, &rdev->flags);
4150 }
4151 }
4152 /* When a reshape changes the number of devices,
4153 * ->degraded is measured against the larger of the
4154 * pre and post numbers.
4155 */
4156 spin_lock_irq(&conf->device_lock);
4157 mddev->degraded = calc_degraded(conf);
4158 spin_unlock_irq(&conf->device_lock);
4159 mddev->raid_disks = conf->geo.raid_disks;
4160 mddev->reshape_position = conf->reshape_progress;
4161 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4162
4163 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4164 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4165 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4166 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4167
4168 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4169 "reshape");
4170 if (!mddev->sync_thread) {
4171 ret = -EAGAIN;
4172 goto abort;
4173 }
4174 conf->reshape_checkpoint = jiffies;
4175 md_wakeup_thread(mddev->sync_thread);
4176 md_new_event(mddev);
4177 return 0;
4178
4179 abort:
4180 mddev->recovery = 0;
4181 spin_lock_irq(&conf->device_lock);
4182 conf->geo = conf->prev;
4183 mddev->raid_disks = conf->geo.raid_disks;
4184 rdev_for_each(rdev, mddev)
4185 rdev->new_data_offset = rdev->data_offset;
4186 smp_wmb();
4187 conf->reshape_progress = MaxSector;
4188 mddev->reshape_position = MaxSector;
4189 spin_unlock_irq(&conf->device_lock);
4190 return ret;
4191 }
4192
4193 /* Calculate the last device-address that could contain
4194 * any block from the chunk that includes the array-address 's'
4195 * and report the next address.
4196 * i.e. the address returned will be chunk-aligned and after
4197 * any data that is in the chunk containing 's'.
4198 */
4199 static sector_t last_dev_address(sector_t s, struct geom *geo)
4200 {
4201 s = (s | geo->chunk_mask) + 1;
4202 s >>= geo->chunk_shift;
4203 s *= geo->near_copies;
4204 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4205 s *= geo->far_copies;
4206 s <<= geo->chunk_shift;
4207 return s;
4208 }
4209
4210 /* Calculate the first device-address that could contain
4211 * any block from the chunk that includes the array-address 's'.
4212 * This too will be the start of a chunk
4213 */
4214 static sector_t first_dev_address(sector_t s, struct geom *geo)
4215 {
4216 s >>= geo->chunk_shift;
4217 s *= geo->near_copies;
4218 sector_div(s, geo->raid_disks);
4219 s *= geo->far_copies;
4220 s <<= geo->chunk_shift;
4221 return s;
4222 }
4223
4224 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4225 int *skipped)
4226 {
4227 /* We simply copy at most one chunk (smallest of old and new)
4228 * at a time, possibly less if that exceeds RESYNC_PAGES,
4229 * or we hit a bad block or something.
4230 * This might mean we pause for normal IO in the middle of
4231 * a chunk, but that is not a problem was mddev->reshape_position
4232 * can record any location.
4233 *
4234 * If we will want to write to a location that isn't
4235 * yet recorded as 'safe' (i.e. in metadata on disk) then
4236 * we need to flush all reshape requests and update the metadata.
4237 *
4238 * When reshaping forwards (e.g. to more devices), we interpret
4239 * 'safe' as the earliest block which might not have been copied
4240 * down yet. We divide this by previous stripe size and multiply
4241 * by previous stripe length to get lowest device offset that we
4242 * cannot write to yet.
4243 * We interpret 'sector_nr' as an address that we want to write to.
4244 * From this we use last_device_address() to find where we might
4245 * write to, and first_device_address on the 'safe' position.
4246 * If this 'next' write position is after the 'safe' position,
4247 * we must update the metadata to increase the 'safe' position.
4248 *
4249 * When reshaping backwards, we round in the opposite direction
4250 * and perform the reverse test: next write position must not be
4251 * less than current safe position.
4252 *
4253 * In all this the minimum difference in data offsets
4254 * (conf->offset_diff - always positive) allows a bit of slack,
4255 * so next can be after 'safe', but not by more than offset_disk
4256 *
4257 * We need to prepare all the bios here before we start any IO
4258 * to ensure the size we choose is acceptable to all devices.
4259 * The means one for each copy for write-out and an extra one for
4260 * read-in.
4261 * We store the read-in bio in ->master_bio and the others in
4262 * ->devs[x].bio and ->devs[x].repl_bio.
4263 */
4264 struct r10conf *conf = mddev->private;
4265 struct r10bio *r10_bio;
4266 sector_t next, safe, last;
4267 int max_sectors;
4268 int nr_sectors;
4269 int s;
4270 struct md_rdev *rdev;
4271 int need_flush = 0;
4272 struct bio *blist;
4273 struct bio *bio, *read_bio;
4274 int sectors_done = 0;
4275
4276 if (sector_nr == 0) {
4277 /* If restarting in the middle, skip the initial sectors */
4278 if (mddev->reshape_backwards &&
4279 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4280 sector_nr = (raid10_size(mddev, 0, 0)
4281 - conf->reshape_progress);
4282 } else if (!mddev->reshape_backwards &&
4283 conf->reshape_progress > 0)
4284 sector_nr = conf->reshape_progress;
4285 if (sector_nr) {
4286 mddev->curr_resync_completed = sector_nr;
4287 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4288 *skipped = 1;
4289 return sector_nr;
4290 }
4291 }
4292
4293 /* We don't use sector_nr to track where we are up to
4294 * as that doesn't work well for ->reshape_backwards.
4295 * So just use ->reshape_progress.
4296 */
4297 if (mddev->reshape_backwards) {
4298 /* 'next' is the earliest device address that we might
4299 * write to for this chunk in the new layout
4300 */
4301 next = first_dev_address(conf->reshape_progress - 1,
4302 &conf->geo);
4303
4304 /* 'safe' is the last device address that we might read from
4305 * in the old layout after a restart
4306 */
4307 safe = last_dev_address(conf->reshape_safe - 1,
4308 &conf->prev);
4309
4310 if (next + conf->offset_diff < safe)
4311 need_flush = 1;
4312
4313 last = conf->reshape_progress - 1;
4314 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4315 & conf->prev.chunk_mask);
4316 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4317 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4318 } else {
4319 /* 'next' is after the last device address that we
4320 * might write to for this chunk in the new layout
4321 */
4322 next = last_dev_address(conf->reshape_progress, &conf->geo);
4323
4324 /* 'safe' is the earliest device address that we might
4325 * read from in the old layout after a restart
4326 */
4327 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4328
4329 /* Need to update metadata if 'next' might be beyond 'safe'
4330 * as that would possibly corrupt data
4331 */
4332 if (next > safe + conf->offset_diff)
4333 need_flush = 1;
4334
4335 sector_nr = conf->reshape_progress;
4336 last = sector_nr | (conf->geo.chunk_mask
4337 & conf->prev.chunk_mask);
4338
4339 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4340 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4341 }
4342
4343 if (need_flush ||
4344 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4345 /* Need to update reshape_position in metadata */
4346 wait_barrier(conf);
4347 mddev->reshape_position = conf->reshape_progress;
4348 if (mddev->reshape_backwards)
4349 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4350 - conf->reshape_progress;
4351 else
4352 mddev->curr_resync_completed = conf->reshape_progress;
4353 conf->reshape_checkpoint = jiffies;
4354 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4355 md_wakeup_thread(mddev->thread);
4356 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4357 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4358 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4359 allow_barrier(conf);
4360 return sectors_done;
4361 }
4362 conf->reshape_safe = mddev->reshape_position;
4363 allow_barrier(conf);
4364 }
4365
4366 read_more:
4367 /* Now schedule reads for blocks from sector_nr to last */
4368 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4369 r10_bio->state = 0;
4370 raise_barrier(conf, sectors_done != 0);
4371 atomic_set(&r10_bio->remaining, 0);
4372 r10_bio->mddev = mddev;
4373 r10_bio->sector = sector_nr;
4374 set_bit(R10BIO_IsReshape, &r10_bio->state);
4375 r10_bio->sectors = last - sector_nr + 1;
4376 rdev = read_balance(conf, r10_bio, &max_sectors);
4377 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4378
4379 if (!rdev) {
4380 /* Cannot read from here, so need to record bad blocks
4381 * on all the target devices.
4382 */
4383 // FIXME
4384 mempool_free(r10_bio, conf->r10buf_pool);
4385 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4386 return sectors_done;
4387 }
4388
4389 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4390
4391 read_bio->bi_bdev = rdev->bdev;
4392 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4393 + rdev->data_offset);
4394 read_bio->bi_private = r10_bio;
4395 read_bio->bi_end_io = end_sync_read;
4396 read_bio->bi_rw = READ;
4397 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4398 __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4399 read_bio->bi_vcnt = 0;
4400 read_bio->bi_iter.bi_size = 0;
4401 r10_bio->master_bio = read_bio;
4402 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4403
4404 /* Now find the locations in the new layout */
4405 __raid10_find_phys(&conf->geo, r10_bio);
4406
4407 blist = read_bio;
4408 read_bio->bi_next = NULL;
4409
4410 for (s = 0; s < conf->copies*2; s++) {
4411 struct bio *b;
4412 int d = r10_bio->devs[s/2].devnum;
4413 struct md_rdev *rdev2;
4414 if (s&1) {
4415 rdev2 = conf->mirrors[d].replacement;
4416 b = r10_bio->devs[s/2].repl_bio;
4417 } else {
4418 rdev2 = conf->mirrors[d].rdev;
4419 b = r10_bio->devs[s/2].bio;
4420 }
4421 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4422 continue;
4423
4424 bio_reset(b);
4425 b->bi_bdev = rdev2->bdev;
4426 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4427 rdev2->new_data_offset;
4428 b->bi_private = r10_bio;
4429 b->bi_end_io = end_reshape_write;
4430 b->bi_rw = WRITE;
4431 b->bi_next = blist;
4432 blist = b;
4433 }
4434
4435 /* Now add as many pages as possible to all of these bios. */
4436
4437 nr_sectors = 0;
4438 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4439 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4440 int len = (max_sectors - s) << 9;
4441 if (len > PAGE_SIZE)
4442 len = PAGE_SIZE;
4443 for (bio = blist; bio ; bio = bio->bi_next) {
4444 struct bio *bio2;
4445 if (bio_add_page(bio, page, len, 0))
4446 continue;
4447
4448 /* Didn't fit, must stop */
4449 for (bio2 = blist;
4450 bio2 && bio2 != bio;
4451 bio2 = bio2->bi_next) {
4452 /* Remove last page from this bio */
4453 bio2->bi_vcnt--;
4454 bio2->bi_iter.bi_size -= len;
4455 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4456 }
4457 goto bio_full;
4458 }
4459 sector_nr += len >> 9;
4460 nr_sectors += len >> 9;
4461 }
4462 bio_full:
4463 r10_bio->sectors = nr_sectors;
4464
4465 /* Now submit the read */
4466 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4467 atomic_inc(&r10_bio->remaining);
4468 read_bio->bi_next = NULL;
4469 generic_make_request(read_bio);
4470 sector_nr += nr_sectors;
4471 sectors_done += nr_sectors;
4472 if (sector_nr <= last)
4473 goto read_more;
4474
4475 /* Now that we have done the whole section we can
4476 * update reshape_progress
4477 */
4478 if (mddev->reshape_backwards)
4479 conf->reshape_progress -= sectors_done;
4480 else
4481 conf->reshape_progress += sectors_done;
4482
4483 return sectors_done;
4484 }
4485
4486 static void end_reshape_request(struct r10bio *r10_bio);
4487 static int handle_reshape_read_error(struct mddev *mddev,
4488 struct r10bio *r10_bio);
4489 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4490 {
4491 /* Reshape read completed. Hopefully we have a block
4492 * to write out.
4493 * If we got a read error then we do sync 1-page reads from
4494 * elsewhere until we find the data - or give up.
4495 */
4496 struct r10conf *conf = mddev->private;
4497 int s;
4498
4499 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4500 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4501 /* Reshape has been aborted */
4502 md_done_sync(mddev, r10_bio->sectors, 0);
4503 return;
4504 }
4505
4506 /* We definitely have the data in the pages, schedule the
4507 * writes.
4508 */
4509 atomic_set(&r10_bio->remaining, 1);
4510 for (s = 0; s < conf->copies*2; s++) {
4511 struct bio *b;
4512 int d = r10_bio->devs[s/2].devnum;
4513 struct md_rdev *rdev;
4514 if (s&1) {
4515 rdev = conf->mirrors[d].replacement;
4516 b = r10_bio->devs[s/2].repl_bio;
4517 } else {
4518 rdev = conf->mirrors[d].rdev;
4519 b = r10_bio->devs[s/2].bio;
4520 }
4521 if (!rdev || test_bit(Faulty, &rdev->flags))
4522 continue;
4523 atomic_inc(&rdev->nr_pending);
4524 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4525 atomic_inc(&r10_bio->remaining);
4526 b->bi_next = NULL;
4527 generic_make_request(b);
4528 }
4529 end_reshape_request(r10_bio);
4530 }
4531
4532 static void end_reshape(struct r10conf *conf)
4533 {
4534 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4535 return;
4536
4537 spin_lock_irq(&conf->device_lock);
4538 conf->prev = conf->geo;
4539 md_finish_reshape(conf->mddev);
4540 smp_wmb();
4541 conf->reshape_progress = MaxSector;
4542 spin_unlock_irq(&conf->device_lock);
4543
4544 /* read-ahead size must cover two whole stripes, which is
4545 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4546 */
4547 if (conf->mddev->queue) {
4548 int stripe = conf->geo.raid_disks *
4549 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4550 stripe /= conf->geo.near_copies;
4551 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4552 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4553 }
4554 conf->fullsync = 0;
4555 }
4556
4557 static int handle_reshape_read_error(struct mddev *mddev,
4558 struct r10bio *r10_bio)
4559 {
4560 /* Use sync reads to get the blocks from somewhere else */
4561 int sectors = r10_bio->sectors;
4562 struct r10conf *conf = mddev->private;
4563 struct {
4564 struct r10bio r10_bio;
4565 struct r10dev devs[conf->copies];
4566 } on_stack;
4567 struct r10bio *r10b = &on_stack.r10_bio;
4568 int slot = 0;
4569 int idx = 0;
4570 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4571
4572 r10b->sector = r10_bio->sector;
4573 __raid10_find_phys(&conf->prev, r10b);
4574
4575 while (sectors) {
4576 int s = sectors;
4577 int success = 0;
4578 int first_slot = slot;
4579
4580 if (s > (PAGE_SIZE >> 9))
4581 s = PAGE_SIZE >> 9;
4582
4583 while (!success) {
4584 int d = r10b->devs[slot].devnum;
4585 struct md_rdev *rdev = conf->mirrors[d].rdev;
4586 sector_t addr;
4587 if (rdev == NULL ||
4588 test_bit(Faulty, &rdev->flags) ||
4589 !test_bit(In_sync, &rdev->flags))
4590 goto failed;
4591
4592 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4593 success = sync_page_io(rdev,
4594 addr,
4595 s << 9,
4596 bvec[idx].bv_page,
4597 READ, false);
4598 if (success)
4599 break;
4600 failed:
4601 slot++;
4602 if (slot >= conf->copies)
4603 slot = 0;
4604 if (slot == first_slot)
4605 break;
4606 }
4607 if (!success) {
4608 /* couldn't read this block, must give up */
4609 set_bit(MD_RECOVERY_INTR,
4610 &mddev->recovery);
4611 return -EIO;
4612 }
4613 sectors -= s;
4614 idx++;
4615 }
4616 return 0;
4617 }
4618
4619 static void end_reshape_write(struct bio *bio, int error)
4620 {
4621 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4622 struct r10bio *r10_bio = bio->bi_private;
4623 struct mddev *mddev = r10_bio->mddev;
4624 struct r10conf *conf = mddev->private;
4625 int d;
4626 int slot;
4627 int repl;
4628 struct md_rdev *rdev = NULL;
4629
4630 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4631 if (repl)
4632 rdev = conf->mirrors[d].replacement;
4633 if (!rdev) {
4634 smp_mb();
4635 rdev = conf->mirrors[d].rdev;
4636 }
4637
4638 if (!uptodate) {
4639 /* FIXME should record badblock */
4640 md_error(mddev, rdev);
4641 }
4642
4643 rdev_dec_pending(rdev, mddev);
4644 end_reshape_request(r10_bio);
4645 }
4646
4647 static void end_reshape_request(struct r10bio *r10_bio)
4648 {
4649 if (!atomic_dec_and_test(&r10_bio->remaining))
4650 return;
4651 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4652 bio_put(r10_bio->master_bio);
4653 put_buf(r10_bio);
4654 }
4655
4656 static void raid10_finish_reshape(struct mddev *mddev)
4657 {
4658 struct r10conf *conf = mddev->private;
4659
4660 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4661 return;
4662
4663 if (mddev->delta_disks > 0) {
4664 sector_t size = raid10_size(mddev, 0, 0);
4665 md_set_array_sectors(mddev, size);
4666 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4667 mddev->recovery_cp = mddev->resync_max_sectors;
4668 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4669 }
4670 mddev->resync_max_sectors = size;
4671 set_capacity(mddev->gendisk, mddev->array_sectors);
4672 revalidate_disk(mddev->gendisk);
4673 } else {
4674 int d;
4675 for (d = conf->geo.raid_disks ;
4676 d < conf->geo.raid_disks - mddev->delta_disks;
4677 d++) {
4678 struct md_rdev *rdev = conf->mirrors[d].rdev;
4679 if (rdev)
4680 clear_bit(In_sync, &rdev->flags);
4681 rdev = conf->mirrors[d].replacement;
4682 if (rdev)
4683 clear_bit(In_sync, &rdev->flags);
4684 }
4685 }
4686 mddev->layout = mddev->new_layout;
4687 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4688 mddev->reshape_position = MaxSector;
4689 mddev->delta_disks = 0;
4690 mddev->reshape_backwards = 0;
4691 }
4692
4693 static struct md_personality raid10_personality =
4694 {
4695 .name = "raid10",
4696 .level = 10,
4697 .owner = THIS_MODULE,
4698 .make_request = make_request,
4699 .run = run,
4700 .free = raid10_free,
4701 .status = status,
4702 .error_handler = error,
4703 .hot_add_disk = raid10_add_disk,
4704 .hot_remove_disk= raid10_remove_disk,
4705 .spare_active = raid10_spare_active,
4706 .sync_request = sync_request,
4707 .quiesce = raid10_quiesce,
4708 .size = raid10_size,
4709 .resize = raid10_resize,
4710 .takeover = raid10_takeover,
4711 .check_reshape = raid10_check_reshape,
4712 .start_reshape = raid10_start_reshape,
4713 .finish_reshape = raid10_finish_reshape,
4714 .congested = raid10_congested,
4715 .mergeable_bvec = raid10_mergeable_bvec,
4716 };
4717
4718 static int __init raid_init(void)
4719 {
4720 return register_md_personality(&raid10_personality);
4721 }
4722
4723 static void raid_exit(void)
4724 {
4725 unregister_md_personality(&raid10_personality);
4726 }
4727
4728 module_init(raid_init);
4729 module_exit(raid_exit);
4730 MODULE_LICENSE("GPL");
4731 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4732 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4733 MODULE_ALIAS("md-raid10");
4734 MODULE_ALIAS("md-level-10");
4735
4736 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);