]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 kfree(r10_bio);
137 }
138
139 /* amount of memory to reserve for resync requests */
140 #define RESYNC_WINDOW (1024*1024)
141 /* maximum number of concurrent requests, memory permitting */
142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
143
144 /*
145 * When performing a resync, we need to read and compare, so
146 * we need as many pages are there are copies.
147 * When performing a recovery, we need 2 bios, one for read,
148 * one for write (we recover only one drive per r10buf)
149 *
150 */
151 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
152 {
153 struct r10conf *conf = data;
154 struct r10bio *r10_bio;
155 struct bio *bio;
156 int j;
157 int nalloc, nalloc_rp;
158 struct resync_pages *rps;
159
160 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
161 if (!r10_bio)
162 return NULL;
163
164 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
165 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
166 nalloc = conf->copies; /* resync */
167 else
168 nalloc = 2; /* recovery */
169
170 /* allocate once for all bios */
171 if (!conf->have_replacement)
172 nalloc_rp = nalloc;
173 else
174 nalloc_rp = nalloc * 2;
175 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
176 if (!rps)
177 goto out_free_r10bio;
178
179 /*
180 * Allocate bios.
181 */
182 for (j = nalloc ; j-- ; ) {
183 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
184 if (!bio)
185 goto out_free_bio;
186 r10_bio->devs[j].bio = bio;
187 if (!conf->have_replacement)
188 continue;
189 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
190 if (!bio)
191 goto out_free_bio;
192 r10_bio->devs[j].repl_bio = bio;
193 }
194 /*
195 * Allocate RESYNC_PAGES data pages and attach them
196 * where needed.
197 */
198 for (j = 0; j < nalloc; j++) {
199 struct bio *rbio = r10_bio->devs[j].repl_bio;
200 struct resync_pages *rp, *rp_repl;
201
202 rp = &rps[j];
203 if (rbio)
204 rp_repl = &rps[nalloc + j];
205
206 bio = r10_bio->devs[j].bio;
207
208 if (!j || test_bit(MD_RECOVERY_SYNC,
209 &conf->mddev->recovery)) {
210 if (resync_alloc_pages(rp, gfp_flags))
211 goto out_free_pages;
212 } else {
213 memcpy(rp, &rps[0], sizeof(*rp));
214 resync_get_all_pages(rp);
215 }
216
217 rp->raid_bio = r10_bio;
218 bio->bi_private = rp;
219 if (rbio) {
220 memcpy(rp_repl, rp, sizeof(*rp));
221 rbio->bi_private = rp_repl;
222 }
223 }
224
225 return r10_bio;
226
227 out_free_pages:
228 while (--j >= 0)
229 resync_free_pages(&rps[j * 2]);
230
231 j = 0;
232 out_free_bio:
233 for ( ; j < nalloc; j++) {
234 if (r10_bio->devs[j].bio)
235 bio_put(r10_bio->devs[j].bio);
236 if (r10_bio->devs[j].repl_bio)
237 bio_put(r10_bio->devs[j].repl_bio);
238 }
239 kfree(rps);
240 out_free_r10bio:
241 r10bio_pool_free(r10_bio, conf);
242 return NULL;
243 }
244
245 static void r10buf_pool_free(void *__r10_bio, void *data)
246 {
247 struct r10conf *conf = data;
248 struct r10bio *r10bio = __r10_bio;
249 int j;
250 struct resync_pages *rp = NULL;
251
252 for (j = conf->copies; j--; ) {
253 struct bio *bio = r10bio->devs[j].bio;
254
255 rp = get_resync_pages(bio);
256 resync_free_pages(rp);
257 bio_put(bio);
258
259 bio = r10bio->devs[j].repl_bio;
260 if (bio)
261 bio_put(bio);
262 }
263
264 /* resync pages array stored in the 1st bio's .bi_private */
265 kfree(rp);
266
267 r10bio_pool_free(r10bio, conf);
268 }
269
270 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
271 {
272 int i;
273
274 for (i = 0; i < conf->copies; i++) {
275 struct bio **bio = & r10_bio->devs[i].bio;
276 if (!BIO_SPECIAL(*bio))
277 bio_put(*bio);
278 *bio = NULL;
279 bio = &r10_bio->devs[i].repl_bio;
280 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
281 bio_put(*bio);
282 *bio = NULL;
283 }
284 }
285
286 static void free_r10bio(struct r10bio *r10_bio)
287 {
288 struct r10conf *conf = r10_bio->mddev->private;
289
290 put_all_bios(conf, r10_bio);
291 mempool_free(r10_bio, conf->r10bio_pool);
292 }
293
294 static void put_buf(struct r10bio *r10_bio)
295 {
296 struct r10conf *conf = r10_bio->mddev->private;
297
298 mempool_free(r10_bio, conf->r10buf_pool);
299
300 lower_barrier(conf);
301 }
302
303 static void reschedule_retry(struct r10bio *r10_bio)
304 {
305 unsigned long flags;
306 struct mddev *mddev = r10_bio->mddev;
307 struct r10conf *conf = mddev->private;
308
309 spin_lock_irqsave(&conf->device_lock, flags);
310 list_add(&r10_bio->retry_list, &conf->retry_list);
311 conf->nr_queued ++;
312 spin_unlock_irqrestore(&conf->device_lock, flags);
313
314 /* wake up frozen array... */
315 wake_up(&conf->wait_barrier);
316
317 md_wakeup_thread(mddev->thread);
318 }
319
320 /*
321 * raid_end_bio_io() is called when we have finished servicing a mirrored
322 * operation and are ready to return a success/failure code to the buffer
323 * cache layer.
324 */
325 static void raid_end_bio_io(struct r10bio *r10_bio)
326 {
327 struct bio *bio = r10_bio->master_bio;
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
331 bio->bi_status = BLK_STS_IOERR;
332
333 bio_endio(bio);
334 /*
335 * Wake up any possible resync thread that waits for the device
336 * to go idle.
337 */
338 allow_barrier(conf);
339
340 free_r10bio(r10_bio);
341 }
342
343 /*
344 * Update disk head position estimator based on IRQ completion info.
345 */
346 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
347 {
348 struct r10conf *conf = r10_bio->mddev->private;
349
350 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
351 r10_bio->devs[slot].addr + (r10_bio->sectors);
352 }
353
354 /*
355 * Find the disk number which triggered given bio
356 */
357 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
358 struct bio *bio, int *slotp, int *replp)
359 {
360 int slot;
361 int repl = 0;
362
363 for (slot = 0; slot < conf->copies; slot++) {
364 if (r10_bio->devs[slot].bio == bio)
365 break;
366 if (r10_bio->devs[slot].repl_bio == bio) {
367 repl = 1;
368 break;
369 }
370 }
371
372 BUG_ON(slot == conf->copies);
373 update_head_pos(slot, r10_bio);
374
375 if (slotp)
376 *slotp = slot;
377 if (replp)
378 *replp = repl;
379 return r10_bio->devs[slot].devnum;
380 }
381
382 static void raid10_end_read_request(struct bio *bio)
383 {
384 int uptodate = !bio->bi_status;
385 struct r10bio *r10_bio = bio->bi_private;
386 int slot, dev;
387 struct md_rdev *rdev;
388 struct r10conf *conf = r10_bio->mddev->private;
389
390 slot = r10_bio->read_slot;
391 dev = r10_bio->devs[slot].devnum;
392 rdev = r10_bio->devs[slot].rdev;
393 /*
394 * this branch is our 'one mirror IO has finished' event handler:
395 */
396 update_head_pos(slot, r10_bio);
397
398 if (uptodate) {
399 /*
400 * Set R10BIO_Uptodate in our master bio, so that
401 * we will return a good error code to the higher
402 * levels even if IO on some other mirrored buffer fails.
403 *
404 * The 'master' represents the composite IO operation to
405 * user-side. So if something waits for IO, then it will
406 * wait for the 'master' bio.
407 */
408 set_bit(R10BIO_Uptodate, &r10_bio->state);
409 } else {
410 /* If all other devices that store this block have
411 * failed, we want to return the error upwards rather
412 * than fail the last device. Here we redefine
413 * "uptodate" to mean "Don't want to retry"
414 */
415 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
416 rdev->raid_disk))
417 uptodate = 1;
418 }
419 if (uptodate) {
420 raid_end_bio_io(r10_bio);
421 rdev_dec_pending(rdev, conf->mddev);
422 } else {
423 /*
424 * oops, read error - keep the refcount on the rdev
425 */
426 char b[BDEVNAME_SIZE];
427 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
428 mdname(conf->mddev),
429 bdevname(rdev->bdev, b),
430 (unsigned long long)r10_bio->sector);
431 set_bit(R10BIO_ReadError, &r10_bio->state);
432 reschedule_retry(r10_bio);
433 }
434 }
435
436 static void close_write(struct r10bio *r10_bio)
437 {
438 /* clear the bitmap if all writes complete successfully */
439 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
440 r10_bio->sectors,
441 !test_bit(R10BIO_Degraded, &r10_bio->state),
442 0);
443 md_write_end(r10_bio->mddev);
444 }
445
446 static void one_write_done(struct r10bio *r10_bio)
447 {
448 if (atomic_dec_and_test(&r10_bio->remaining)) {
449 if (test_bit(R10BIO_WriteError, &r10_bio->state))
450 reschedule_retry(r10_bio);
451 else {
452 close_write(r10_bio);
453 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
454 reschedule_retry(r10_bio);
455 else
456 raid_end_bio_io(r10_bio);
457 }
458 }
459 }
460
461 static void raid10_end_write_request(struct bio *bio)
462 {
463 struct r10bio *r10_bio = bio->bi_private;
464 int dev;
465 int dec_rdev = 1;
466 struct r10conf *conf = r10_bio->mddev->private;
467 int slot, repl;
468 struct md_rdev *rdev = NULL;
469 struct bio *to_put = NULL;
470 bool discard_error;
471
472 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
473
474 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
475
476 if (repl)
477 rdev = conf->mirrors[dev].replacement;
478 if (!rdev) {
479 smp_rmb();
480 repl = 0;
481 rdev = conf->mirrors[dev].rdev;
482 }
483 /*
484 * this branch is our 'one mirror IO has finished' event handler:
485 */
486 if (bio->bi_status && !discard_error) {
487 if (repl)
488 /* Never record new bad blocks to replacement,
489 * just fail it.
490 */
491 md_error(rdev->mddev, rdev);
492 else {
493 set_bit(WriteErrorSeen, &rdev->flags);
494 if (!test_and_set_bit(WantReplacement, &rdev->flags))
495 set_bit(MD_RECOVERY_NEEDED,
496 &rdev->mddev->recovery);
497
498 dec_rdev = 0;
499 if (test_bit(FailFast, &rdev->flags) &&
500 (bio->bi_opf & MD_FAILFAST)) {
501 md_error(rdev->mddev, rdev);
502 if (!test_bit(Faulty, &rdev->flags))
503 /* This is the only remaining device,
504 * We need to retry the write without
505 * FailFast
506 */
507 set_bit(R10BIO_WriteError, &r10_bio->state);
508 else {
509 r10_bio->devs[slot].bio = NULL;
510 to_put = bio;
511 dec_rdev = 1;
512 }
513 } else
514 set_bit(R10BIO_WriteError, &r10_bio->state);
515 }
516 } else {
517 /*
518 * Set R10BIO_Uptodate in our master bio, so that
519 * we will return a good error code for to the higher
520 * levels even if IO on some other mirrored buffer fails.
521 *
522 * The 'master' represents the composite IO operation to
523 * user-side. So if something waits for IO, then it will
524 * wait for the 'master' bio.
525 */
526 sector_t first_bad;
527 int bad_sectors;
528
529 /*
530 * Do not set R10BIO_Uptodate if the current device is
531 * rebuilding or Faulty. This is because we cannot use
532 * such device for properly reading the data back (we could
533 * potentially use it, if the current write would have felt
534 * before rdev->recovery_offset, but for simplicity we don't
535 * check this here.
536 */
537 if (test_bit(In_sync, &rdev->flags) &&
538 !test_bit(Faulty, &rdev->flags))
539 set_bit(R10BIO_Uptodate, &r10_bio->state);
540
541 /* Maybe we can clear some bad blocks. */
542 if (is_badblock(rdev,
543 r10_bio->devs[slot].addr,
544 r10_bio->sectors,
545 &first_bad, &bad_sectors) && !discard_error) {
546 bio_put(bio);
547 if (repl)
548 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
549 else
550 r10_bio->devs[slot].bio = IO_MADE_GOOD;
551 dec_rdev = 0;
552 set_bit(R10BIO_MadeGood, &r10_bio->state);
553 }
554 }
555
556 /*
557 *
558 * Let's see if all mirrored write operations have finished
559 * already.
560 */
561 one_write_done(r10_bio);
562 if (dec_rdev)
563 rdev_dec_pending(rdev, conf->mddev);
564 if (to_put)
565 bio_put(to_put);
566 }
567
568 /*
569 * RAID10 layout manager
570 * As well as the chunksize and raid_disks count, there are two
571 * parameters: near_copies and far_copies.
572 * near_copies * far_copies must be <= raid_disks.
573 * Normally one of these will be 1.
574 * If both are 1, we get raid0.
575 * If near_copies == raid_disks, we get raid1.
576 *
577 * Chunks are laid out in raid0 style with near_copies copies of the
578 * first chunk, followed by near_copies copies of the next chunk and
579 * so on.
580 * If far_copies > 1, then after 1/far_copies of the array has been assigned
581 * as described above, we start again with a device offset of near_copies.
582 * So we effectively have another copy of the whole array further down all
583 * the drives, but with blocks on different drives.
584 * With this layout, and block is never stored twice on the one device.
585 *
586 * raid10_find_phys finds the sector offset of a given virtual sector
587 * on each device that it is on.
588 *
589 * raid10_find_virt does the reverse mapping, from a device and a
590 * sector offset to a virtual address
591 */
592
593 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
594 {
595 int n,f;
596 sector_t sector;
597 sector_t chunk;
598 sector_t stripe;
599 int dev;
600 int slot = 0;
601 int last_far_set_start, last_far_set_size;
602
603 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
604 last_far_set_start *= geo->far_set_size;
605
606 last_far_set_size = geo->far_set_size;
607 last_far_set_size += (geo->raid_disks % geo->far_set_size);
608
609 /* now calculate first sector/dev */
610 chunk = r10bio->sector >> geo->chunk_shift;
611 sector = r10bio->sector & geo->chunk_mask;
612
613 chunk *= geo->near_copies;
614 stripe = chunk;
615 dev = sector_div(stripe, geo->raid_disks);
616 if (geo->far_offset)
617 stripe *= geo->far_copies;
618
619 sector += stripe << geo->chunk_shift;
620
621 /* and calculate all the others */
622 for (n = 0; n < geo->near_copies; n++) {
623 int d = dev;
624 int set;
625 sector_t s = sector;
626 r10bio->devs[slot].devnum = d;
627 r10bio->devs[slot].addr = s;
628 slot++;
629
630 for (f = 1; f < geo->far_copies; f++) {
631 set = d / geo->far_set_size;
632 d += geo->near_copies;
633
634 if ((geo->raid_disks % geo->far_set_size) &&
635 (d > last_far_set_start)) {
636 d -= last_far_set_start;
637 d %= last_far_set_size;
638 d += last_far_set_start;
639 } else {
640 d %= geo->far_set_size;
641 d += geo->far_set_size * set;
642 }
643 s += geo->stride;
644 r10bio->devs[slot].devnum = d;
645 r10bio->devs[slot].addr = s;
646 slot++;
647 }
648 dev++;
649 if (dev >= geo->raid_disks) {
650 dev = 0;
651 sector += (geo->chunk_mask + 1);
652 }
653 }
654 }
655
656 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
657 {
658 struct geom *geo = &conf->geo;
659
660 if (conf->reshape_progress != MaxSector &&
661 ((r10bio->sector >= conf->reshape_progress) !=
662 conf->mddev->reshape_backwards)) {
663 set_bit(R10BIO_Previous, &r10bio->state);
664 geo = &conf->prev;
665 } else
666 clear_bit(R10BIO_Previous, &r10bio->state);
667
668 __raid10_find_phys(geo, r10bio);
669 }
670
671 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
672 {
673 sector_t offset, chunk, vchunk;
674 /* Never use conf->prev as this is only called during resync
675 * or recovery, so reshape isn't happening
676 */
677 struct geom *geo = &conf->geo;
678 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
679 int far_set_size = geo->far_set_size;
680 int last_far_set_start;
681
682 if (geo->raid_disks % geo->far_set_size) {
683 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
684 last_far_set_start *= geo->far_set_size;
685
686 if (dev >= last_far_set_start) {
687 far_set_size = geo->far_set_size;
688 far_set_size += (geo->raid_disks % geo->far_set_size);
689 far_set_start = last_far_set_start;
690 }
691 }
692
693 offset = sector & geo->chunk_mask;
694 if (geo->far_offset) {
695 int fc;
696 chunk = sector >> geo->chunk_shift;
697 fc = sector_div(chunk, geo->far_copies);
698 dev -= fc * geo->near_copies;
699 if (dev < far_set_start)
700 dev += far_set_size;
701 } else {
702 while (sector >= geo->stride) {
703 sector -= geo->stride;
704 if (dev < (geo->near_copies + far_set_start))
705 dev += far_set_size - geo->near_copies;
706 else
707 dev -= geo->near_copies;
708 }
709 chunk = sector >> geo->chunk_shift;
710 }
711 vchunk = chunk * geo->raid_disks + dev;
712 sector_div(vchunk, geo->near_copies);
713 return (vchunk << geo->chunk_shift) + offset;
714 }
715
716 /*
717 * This routine returns the disk from which the requested read should
718 * be done. There is a per-array 'next expected sequential IO' sector
719 * number - if this matches on the next IO then we use the last disk.
720 * There is also a per-disk 'last know head position' sector that is
721 * maintained from IRQ contexts, both the normal and the resync IO
722 * completion handlers update this position correctly. If there is no
723 * perfect sequential match then we pick the disk whose head is closest.
724 *
725 * If there are 2 mirrors in the same 2 devices, performance degrades
726 * because position is mirror, not device based.
727 *
728 * The rdev for the device selected will have nr_pending incremented.
729 */
730
731 /*
732 * FIXME: possibly should rethink readbalancing and do it differently
733 * depending on near_copies / far_copies geometry.
734 */
735 static struct md_rdev *read_balance(struct r10conf *conf,
736 struct r10bio *r10_bio,
737 int *max_sectors)
738 {
739 const sector_t this_sector = r10_bio->sector;
740 int disk, slot;
741 int sectors = r10_bio->sectors;
742 int best_good_sectors;
743 sector_t new_distance, best_dist;
744 struct md_rdev *best_rdev, *rdev = NULL;
745 int do_balance;
746 int best_slot;
747 struct geom *geo = &conf->geo;
748
749 raid10_find_phys(conf, r10_bio);
750 rcu_read_lock();
751 sectors = r10_bio->sectors;
752 best_slot = -1;
753 best_rdev = NULL;
754 best_dist = MaxSector;
755 best_good_sectors = 0;
756 do_balance = 1;
757 clear_bit(R10BIO_FailFast, &r10_bio->state);
758 /*
759 * Check if we can balance. We can balance on the whole
760 * device if no resync is going on (recovery is ok), or below
761 * the resync window. We take the first readable disk when
762 * above the resync window.
763 */
764 if (conf->mddev->recovery_cp < MaxSector
765 && (this_sector + sectors >= conf->next_resync))
766 do_balance = 0;
767
768 for (slot = 0; slot < conf->copies ; slot++) {
769 sector_t first_bad;
770 int bad_sectors;
771 sector_t dev_sector;
772
773 if (r10_bio->devs[slot].bio == IO_BLOCKED)
774 continue;
775 disk = r10_bio->devs[slot].devnum;
776 rdev = rcu_dereference(conf->mirrors[disk].replacement);
777 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
778 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
779 rdev = rcu_dereference(conf->mirrors[disk].rdev);
780 if (rdev == NULL ||
781 test_bit(Faulty, &rdev->flags))
782 continue;
783 if (!test_bit(In_sync, &rdev->flags) &&
784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 continue;
786
787 dev_sector = r10_bio->devs[slot].addr;
788 if (is_badblock(rdev, dev_sector, sectors,
789 &first_bad, &bad_sectors)) {
790 if (best_dist < MaxSector)
791 /* Already have a better slot */
792 continue;
793 if (first_bad <= dev_sector) {
794 /* Cannot read here. If this is the
795 * 'primary' device, then we must not read
796 * beyond 'bad_sectors' from another device.
797 */
798 bad_sectors -= (dev_sector - first_bad);
799 if (!do_balance && sectors > bad_sectors)
800 sectors = bad_sectors;
801 if (best_good_sectors > sectors)
802 best_good_sectors = sectors;
803 } else {
804 sector_t good_sectors =
805 first_bad - dev_sector;
806 if (good_sectors > best_good_sectors) {
807 best_good_sectors = good_sectors;
808 best_slot = slot;
809 best_rdev = rdev;
810 }
811 if (!do_balance)
812 /* Must read from here */
813 break;
814 }
815 continue;
816 } else
817 best_good_sectors = sectors;
818
819 if (!do_balance)
820 break;
821
822 if (best_slot >= 0)
823 /* At least 2 disks to choose from so failfast is OK */
824 set_bit(R10BIO_FailFast, &r10_bio->state);
825 /* This optimisation is debatable, and completely destroys
826 * sequential read speed for 'far copies' arrays. So only
827 * keep it for 'near' arrays, and review those later.
828 */
829 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
830 new_distance = 0;
831
832 /* for far > 1 always use the lowest address */
833 else if (geo->far_copies > 1)
834 new_distance = r10_bio->devs[slot].addr;
835 else
836 new_distance = abs(r10_bio->devs[slot].addr -
837 conf->mirrors[disk].head_position);
838 if (new_distance < best_dist) {
839 best_dist = new_distance;
840 best_slot = slot;
841 best_rdev = rdev;
842 }
843 }
844 if (slot >= conf->copies) {
845 slot = best_slot;
846 rdev = best_rdev;
847 }
848
849 if (slot >= 0) {
850 atomic_inc(&rdev->nr_pending);
851 r10_bio->read_slot = slot;
852 } else
853 rdev = NULL;
854 rcu_read_unlock();
855 *max_sectors = best_good_sectors;
856
857 return rdev;
858 }
859
860 static int raid10_congested(struct mddev *mddev, int bits)
861 {
862 struct r10conf *conf = mddev->private;
863 int i, ret = 0;
864
865 if ((bits & (1 << WB_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
869 rcu_read_lock();
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878 ret |= bdi_congested(q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883 }
884
885 static void flush_pending_writes(struct r10conf *conf)
886 {
887 /* Any writes that have been queued but are awaiting
888 * bitmap updates get flushed here.
889 */
890 spin_lock_irq(&conf->device_lock);
891
892 if (conf->pending_bio_list.head) {
893 struct bio *bio;
894 bio = bio_list_get(&conf->pending_bio_list);
895 conf->pending_count = 0;
896 spin_unlock_irq(&conf->device_lock);
897 /* flush any pending bitmap writes to disk
898 * before proceeding w/ I/O */
899 bitmap_unplug(conf->mddev->bitmap);
900 wake_up(&conf->wait_barrier);
901
902 while (bio) { /* submit pending writes */
903 struct bio *next = bio->bi_next;
904 struct md_rdev *rdev = (void*)bio->bi_bdev;
905 bio->bi_next = NULL;
906 bio->bi_bdev = rdev->bdev;
907 if (test_bit(Faulty, &rdev->flags)) {
908 bio_io_error(bio);
909 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
910 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
911 /* Just ignore it */
912 bio_endio(bio);
913 else
914 generic_make_request(bio);
915 bio = next;
916 }
917 } else
918 spin_unlock_irq(&conf->device_lock);
919 }
920
921 /* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down. This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'. When that returns there
936 * is no backgroup IO happening, It must arrange to call
937 * allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier. Once that returns
939 * there is no normal IO happeing. It must arrange to call
940 * lower_barrier when the particular background IO completes.
941 */
942
943 static void raise_barrier(struct r10conf *conf, int force)
944 {
945 BUG_ON(force && !conf->barrier);
946 spin_lock_irq(&conf->resync_lock);
947
948 /* Wait until no block IO is waiting (unless 'force') */
949 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950 conf->resync_lock);
951
952 /* block any new IO from starting */
953 conf->barrier++;
954
955 /* Now wait for all pending IO to complete */
956 wait_event_lock_irq(conf->wait_barrier,
957 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
958 conf->resync_lock);
959
960 spin_unlock_irq(&conf->resync_lock);
961 }
962
963 static void lower_barrier(struct r10conf *conf)
964 {
965 unsigned long flags;
966 spin_lock_irqsave(&conf->resync_lock, flags);
967 conf->barrier--;
968 spin_unlock_irqrestore(&conf->resync_lock, flags);
969 wake_up(&conf->wait_barrier);
970 }
971
972 static void wait_barrier(struct r10conf *conf)
973 {
974 spin_lock_irq(&conf->resync_lock);
975 if (conf->barrier) {
976 conf->nr_waiting++;
977 /* Wait for the barrier to drop.
978 * However if there are already pending
979 * requests (preventing the barrier from
980 * rising completely), and the
981 * pre-process bio queue isn't empty,
982 * then don't wait, as we need to empty
983 * that queue to get the nr_pending
984 * count down.
985 */
986 raid10_log(conf->mddev, "wait barrier");
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->barrier ||
989 (atomic_read(&conf->nr_pending) &&
990 current->bio_list &&
991 (!bio_list_empty(&current->bio_list[0]) ||
992 !bio_list_empty(&current->bio_list[1]))),
993 conf->resync_lock);
994 conf->nr_waiting--;
995 if (!conf->nr_waiting)
996 wake_up(&conf->wait_barrier);
997 }
998 atomic_inc(&conf->nr_pending);
999 spin_unlock_irq(&conf->resync_lock);
1000 }
1001
1002 static void allow_barrier(struct r10conf *conf)
1003 {
1004 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005 (conf->array_freeze_pending))
1006 wake_up(&conf->wait_barrier);
1007 }
1008
1009 static void freeze_array(struct r10conf *conf, int extra)
1010 {
1011 /* stop syncio and normal IO and wait for everything to
1012 * go quiet.
1013 * We increment barrier and nr_waiting, and then
1014 * wait until nr_pending match nr_queued+extra
1015 * This is called in the context of one normal IO request
1016 * that has failed. Thus any sync request that might be pending
1017 * will be blocked by nr_pending, and we need to wait for
1018 * pending IO requests to complete or be queued for re-try.
1019 * Thus the number queued (nr_queued) plus this request (extra)
1020 * must match the number of pending IOs (nr_pending) before
1021 * we continue.
1022 */
1023 spin_lock_irq(&conf->resync_lock);
1024 conf->array_freeze_pending++;
1025 conf->barrier++;
1026 conf->nr_waiting++;
1027 wait_event_lock_irq_cmd(conf->wait_barrier,
1028 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029 conf->resync_lock,
1030 flush_pending_writes(conf));
1031
1032 conf->array_freeze_pending--;
1033 spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static void unfreeze_array(struct r10conf *conf)
1037 {
1038 /* reverse the effect of the freeze */
1039 spin_lock_irq(&conf->resync_lock);
1040 conf->barrier--;
1041 conf->nr_waiting--;
1042 wake_up(&conf->wait_barrier);
1043 spin_unlock_irq(&conf->resync_lock);
1044 }
1045
1046 static sector_t choose_data_offset(struct r10bio *r10_bio,
1047 struct md_rdev *rdev)
1048 {
1049 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050 test_bit(R10BIO_Previous, &r10_bio->state))
1051 return rdev->data_offset;
1052 else
1053 return rdev->new_data_offset;
1054 }
1055
1056 struct raid10_plug_cb {
1057 struct blk_plug_cb cb;
1058 struct bio_list pending;
1059 int pending_cnt;
1060 };
1061
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1065 cb);
1066 struct mddev *mddev = plug->cb.data;
1067 struct r10conf *conf = mddev->private;
1068 struct bio *bio;
1069
1070 if (from_schedule || current->bio_list) {
1071 spin_lock_irq(&conf->device_lock);
1072 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073 conf->pending_count += plug->pending_cnt;
1074 spin_unlock_irq(&conf->device_lock);
1075 wake_up(&conf->wait_barrier);
1076 md_wakeup_thread(mddev->thread);
1077 kfree(plug);
1078 return;
1079 }
1080
1081 /* we aren't scheduling, so we can do the write-out directly. */
1082 bio = bio_list_get(&plug->pending);
1083 bitmap_unplug(mddev->bitmap);
1084 wake_up(&conf->wait_barrier);
1085
1086 while (bio) { /* submit pending writes */
1087 struct bio *next = bio->bi_next;
1088 struct md_rdev *rdev = (void*)bio->bi_bdev;
1089 bio->bi_next = NULL;
1090 bio->bi_bdev = rdev->bdev;
1091 if (test_bit(Faulty, &rdev->flags)) {
1092 bio_io_error(bio);
1093 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1094 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1095 /* Just ignore it */
1096 bio_endio(bio);
1097 else
1098 generic_make_request(bio);
1099 bio = next;
1100 }
1101 kfree(plug);
1102 }
1103
1104 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1105 struct r10bio *r10_bio)
1106 {
1107 struct r10conf *conf = mddev->private;
1108 struct bio *read_bio;
1109 const int op = bio_op(bio);
1110 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1111 int max_sectors;
1112 sector_t sectors;
1113 struct md_rdev *rdev;
1114 char b[BDEVNAME_SIZE];
1115 int slot = r10_bio->read_slot;
1116 struct md_rdev *err_rdev = NULL;
1117 gfp_t gfp = GFP_NOIO;
1118
1119 if (r10_bio->devs[slot].rdev) {
1120 /*
1121 * This is an error retry, but we cannot
1122 * safely dereference the rdev in the r10_bio,
1123 * we must use the one in conf.
1124 * If it has already been disconnected (unlikely)
1125 * we lose the device name in error messages.
1126 */
1127 int disk;
1128 /*
1129 * As we are blocking raid10, it is a little safer to
1130 * use __GFP_HIGH.
1131 */
1132 gfp = GFP_NOIO | __GFP_HIGH;
1133
1134 rcu_read_lock();
1135 disk = r10_bio->devs[slot].devnum;
1136 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1137 if (err_rdev)
1138 bdevname(err_rdev->bdev, b);
1139 else {
1140 strcpy(b, "???");
1141 /* This never gets dereferenced */
1142 err_rdev = r10_bio->devs[slot].rdev;
1143 }
1144 rcu_read_unlock();
1145 }
1146 /*
1147 * Register the new request and wait if the reconstruction
1148 * thread has put up a bar for new requests.
1149 * Continue immediately if no resync is active currently.
1150 */
1151 wait_barrier(conf);
1152
1153 sectors = r10_bio->sectors;
1154 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155 bio->bi_iter.bi_sector < conf->reshape_progress &&
1156 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157 /*
1158 * IO spans the reshape position. Need to wait for reshape to
1159 * pass
1160 */
1161 raid10_log(conf->mddev, "wait reshape");
1162 allow_barrier(conf);
1163 wait_event(conf->wait_barrier,
1164 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165 conf->reshape_progress >= bio->bi_iter.bi_sector +
1166 sectors);
1167 wait_barrier(conf);
1168 }
1169
1170 rdev = read_balance(conf, r10_bio, &max_sectors);
1171 if (!rdev) {
1172 if (err_rdev) {
1173 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174 mdname(mddev), b,
1175 (unsigned long long)r10_bio->sector);
1176 }
1177 raid_end_bio_io(r10_bio);
1178 return;
1179 }
1180 if (err_rdev)
1181 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182 mdname(mddev),
1183 bdevname(rdev->bdev, b),
1184 (unsigned long long)r10_bio->sector);
1185 if (max_sectors < bio_sectors(bio)) {
1186 struct bio *split = bio_split(bio, max_sectors,
1187 gfp, conf->bio_split);
1188 bio_chain(split, bio);
1189 generic_make_request(bio);
1190 bio = split;
1191 r10_bio->master_bio = bio;
1192 r10_bio->sectors = max_sectors;
1193 }
1194 slot = r10_bio->read_slot;
1195
1196 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1197
1198 r10_bio->devs[slot].bio = read_bio;
1199 r10_bio->devs[slot].rdev = rdev;
1200
1201 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1202 choose_data_offset(r10_bio, rdev);
1203 read_bio->bi_bdev = rdev->bdev;
1204 read_bio->bi_end_io = raid10_end_read_request;
1205 bio_set_op_attrs(read_bio, op, do_sync);
1206 if (test_bit(FailFast, &rdev->flags) &&
1207 test_bit(R10BIO_FailFast, &r10_bio->state))
1208 read_bio->bi_opf |= MD_FAILFAST;
1209 read_bio->bi_private = r10_bio;
1210
1211 if (mddev->gendisk)
1212 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1213 read_bio, disk_devt(mddev->gendisk),
1214 r10_bio->sector);
1215 generic_make_request(read_bio);
1216 return;
1217 }
1218
1219 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1220 struct bio *bio, bool replacement,
1221 int n_copy)
1222 {
1223 const int op = bio_op(bio);
1224 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1226 unsigned long flags;
1227 struct blk_plug_cb *cb;
1228 struct raid10_plug_cb *plug = NULL;
1229 struct r10conf *conf = mddev->private;
1230 struct md_rdev *rdev;
1231 int devnum = r10_bio->devs[n_copy].devnum;
1232 struct bio *mbio;
1233
1234 if (replacement) {
1235 rdev = conf->mirrors[devnum].replacement;
1236 if (rdev == NULL) {
1237 /* Replacement just got moved to main 'rdev' */
1238 smp_mb();
1239 rdev = conf->mirrors[devnum].rdev;
1240 }
1241 } else
1242 rdev = conf->mirrors[devnum].rdev;
1243
1244 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1245 if (replacement)
1246 r10_bio->devs[n_copy].repl_bio = mbio;
1247 else
1248 r10_bio->devs[n_copy].bio = mbio;
1249
1250 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1251 choose_data_offset(r10_bio, rdev));
1252 mbio->bi_bdev = rdev->bdev;
1253 mbio->bi_end_io = raid10_end_write_request;
1254 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1255 if (!replacement && test_bit(FailFast,
1256 &conf->mirrors[devnum].rdev->flags)
1257 && enough(conf, devnum))
1258 mbio->bi_opf |= MD_FAILFAST;
1259 mbio->bi_private = r10_bio;
1260
1261 if (conf->mddev->gendisk)
1262 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1263 mbio, disk_devt(conf->mddev->gendisk),
1264 r10_bio->sector);
1265 /* flush_pending_writes() needs access to the rdev so...*/
1266 mbio->bi_bdev = (void *)rdev;
1267
1268 atomic_inc(&r10_bio->remaining);
1269
1270 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1271 if (cb)
1272 plug = container_of(cb, struct raid10_plug_cb, cb);
1273 else
1274 plug = NULL;
1275 if (plug) {
1276 bio_list_add(&plug->pending, mbio);
1277 plug->pending_cnt++;
1278 } else {
1279 spin_lock_irqsave(&conf->device_lock, flags);
1280 bio_list_add(&conf->pending_bio_list, mbio);
1281 conf->pending_count++;
1282 spin_unlock_irqrestore(&conf->device_lock, flags);
1283 md_wakeup_thread(mddev->thread);
1284 }
1285 }
1286
1287 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1288 struct r10bio *r10_bio)
1289 {
1290 struct r10conf *conf = mddev->private;
1291 int i;
1292 struct md_rdev *blocked_rdev;
1293 sector_t sectors;
1294 int max_sectors;
1295
1296 /*
1297 * Register the new request and wait if the reconstruction
1298 * thread has put up a bar for new requests.
1299 * Continue immediately if no resync is active currently.
1300 */
1301 wait_barrier(conf);
1302
1303 sectors = r10_bio->sectors;
1304 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305 bio->bi_iter.bi_sector < conf->reshape_progress &&
1306 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1307 /*
1308 * IO spans the reshape position. Need to wait for reshape to
1309 * pass
1310 */
1311 raid10_log(conf->mddev, "wait reshape");
1312 allow_barrier(conf);
1313 wait_event(conf->wait_barrier,
1314 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1315 conf->reshape_progress >= bio->bi_iter.bi_sector +
1316 sectors);
1317 wait_barrier(conf);
1318 }
1319
1320 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1321 (mddev->reshape_backwards
1322 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1323 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1324 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1325 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1326 /* Need to update reshape_position in metadata */
1327 mddev->reshape_position = conf->reshape_progress;
1328 set_mask_bits(&mddev->sb_flags, 0,
1329 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1330 md_wakeup_thread(mddev->thread);
1331 raid10_log(conf->mddev, "wait reshape metadata");
1332 wait_event(mddev->sb_wait,
1333 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1334
1335 conf->reshape_safe = mddev->reshape_position;
1336 }
1337
1338 if (conf->pending_count >= max_queued_requests) {
1339 md_wakeup_thread(mddev->thread);
1340 raid10_log(mddev, "wait queued");
1341 wait_event(conf->wait_barrier,
1342 conf->pending_count < max_queued_requests);
1343 }
1344 /* first select target devices under rcu_lock and
1345 * inc refcount on their rdev. Record them by setting
1346 * bios[x] to bio
1347 * If there are known/acknowledged bad blocks on any device
1348 * on which we have seen a write error, we want to avoid
1349 * writing to those blocks. This potentially requires several
1350 * writes to write around the bad blocks. Each set of writes
1351 * gets its own r10_bio with a set of bios attached.
1352 */
1353
1354 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1355 raid10_find_phys(conf, r10_bio);
1356 retry_write:
1357 blocked_rdev = NULL;
1358 rcu_read_lock();
1359 max_sectors = r10_bio->sectors;
1360
1361 for (i = 0; i < conf->copies; i++) {
1362 int d = r10_bio->devs[i].devnum;
1363 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1364 struct md_rdev *rrdev = rcu_dereference(
1365 conf->mirrors[d].replacement);
1366 if (rdev == rrdev)
1367 rrdev = NULL;
1368 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1369 atomic_inc(&rdev->nr_pending);
1370 blocked_rdev = rdev;
1371 break;
1372 }
1373 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1374 atomic_inc(&rrdev->nr_pending);
1375 blocked_rdev = rrdev;
1376 break;
1377 }
1378 if (rdev && (test_bit(Faulty, &rdev->flags)))
1379 rdev = NULL;
1380 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1381 rrdev = NULL;
1382
1383 r10_bio->devs[i].bio = NULL;
1384 r10_bio->devs[i].repl_bio = NULL;
1385
1386 if (!rdev && !rrdev) {
1387 set_bit(R10BIO_Degraded, &r10_bio->state);
1388 continue;
1389 }
1390 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1391 sector_t first_bad;
1392 sector_t dev_sector = r10_bio->devs[i].addr;
1393 int bad_sectors;
1394 int is_bad;
1395
1396 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1397 &first_bad, &bad_sectors);
1398 if (is_bad < 0) {
1399 /* Mustn't write here until the bad block
1400 * is acknowledged
1401 */
1402 atomic_inc(&rdev->nr_pending);
1403 set_bit(BlockedBadBlocks, &rdev->flags);
1404 blocked_rdev = rdev;
1405 break;
1406 }
1407 if (is_bad && first_bad <= dev_sector) {
1408 /* Cannot write here at all */
1409 bad_sectors -= (dev_sector - first_bad);
1410 if (bad_sectors < max_sectors)
1411 /* Mustn't write more than bad_sectors
1412 * to other devices yet
1413 */
1414 max_sectors = bad_sectors;
1415 /* We don't set R10BIO_Degraded as that
1416 * only applies if the disk is missing,
1417 * so it might be re-added, and we want to
1418 * know to recover this chunk.
1419 * In this case the device is here, and the
1420 * fact that this chunk is not in-sync is
1421 * recorded in the bad block log.
1422 */
1423 continue;
1424 }
1425 if (is_bad) {
1426 int good_sectors = first_bad - dev_sector;
1427 if (good_sectors < max_sectors)
1428 max_sectors = good_sectors;
1429 }
1430 }
1431 if (rdev) {
1432 r10_bio->devs[i].bio = bio;
1433 atomic_inc(&rdev->nr_pending);
1434 }
1435 if (rrdev) {
1436 r10_bio->devs[i].repl_bio = bio;
1437 atomic_inc(&rrdev->nr_pending);
1438 }
1439 }
1440 rcu_read_unlock();
1441
1442 if (unlikely(blocked_rdev)) {
1443 /* Have to wait for this device to get unblocked, then retry */
1444 int j;
1445 int d;
1446
1447 for (j = 0; j < i; j++) {
1448 if (r10_bio->devs[j].bio) {
1449 d = r10_bio->devs[j].devnum;
1450 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1451 }
1452 if (r10_bio->devs[j].repl_bio) {
1453 struct md_rdev *rdev;
1454 d = r10_bio->devs[j].devnum;
1455 rdev = conf->mirrors[d].replacement;
1456 if (!rdev) {
1457 /* Race with remove_disk */
1458 smp_mb();
1459 rdev = conf->mirrors[d].rdev;
1460 }
1461 rdev_dec_pending(rdev, mddev);
1462 }
1463 }
1464 allow_barrier(conf);
1465 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1466 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1467 wait_barrier(conf);
1468 goto retry_write;
1469 }
1470
1471 if (max_sectors < r10_bio->sectors)
1472 r10_bio->sectors = max_sectors;
1473
1474 if (r10_bio->sectors < bio_sectors(bio)) {
1475 struct bio *split = bio_split(bio, r10_bio->sectors,
1476 GFP_NOIO, conf->bio_split);
1477 bio_chain(split, bio);
1478 generic_make_request(bio);
1479 bio = split;
1480 r10_bio->master_bio = bio;
1481 }
1482
1483 atomic_set(&r10_bio->remaining, 1);
1484 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1485
1486 for (i = 0; i < conf->copies; i++) {
1487 if (r10_bio->devs[i].bio)
1488 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1489 if (r10_bio->devs[i].repl_bio)
1490 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1491 }
1492 one_write_done(r10_bio);
1493 }
1494
1495 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1496 {
1497 struct r10conf *conf = mddev->private;
1498 struct r10bio *r10_bio;
1499
1500 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1501
1502 r10_bio->master_bio = bio;
1503 r10_bio->sectors = sectors;
1504
1505 r10_bio->mddev = mddev;
1506 r10_bio->sector = bio->bi_iter.bi_sector;
1507 r10_bio->state = 0;
1508 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1509
1510 if (bio_data_dir(bio) == READ)
1511 raid10_read_request(mddev, bio, r10_bio);
1512 else
1513 raid10_write_request(mddev, bio, r10_bio);
1514 }
1515
1516 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1517 {
1518 struct r10conf *conf = mddev->private;
1519 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1520 int chunk_sects = chunk_mask + 1;
1521 int sectors = bio_sectors(bio);
1522
1523 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1524 md_flush_request(mddev, bio);
1525 return true;
1526 }
1527
1528 if (!md_write_start(mddev, bio))
1529 return false;
1530
1531 /*
1532 * If this request crosses a chunk boundary, we need to split
1533 * it.
1534 */
1535 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1536 sectors > chunk_sects
1537 && (conf->geo.near_copies < conf->geo.raid_disks
1538 || conf->prev.near_copies <
1539 conf->prev.raid_disks)))
1540 sectors = chunk_sects -
1541 (bio->bi_iter.bi_sector &
1542 (chunk_sects - 1));
1543 __make_request(mddev, bio, sectors);
1544
1545 /* In case raid10d snuck in to freeze_array */
1546 wake_up(&conf->wait_barrier);
1547 return true;
1548 }
1549
1550 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1551 {
1552 struct r10conf *conf = mddev->private;
1553 int i;
1554
1555 if (conf->geo.near_copies < conf->geo.raid_disks)
1556 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1557 if (conf->geo.near_copies > 1)
1558 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1559 if (conf->geo.far_copies > 1) {
1560 if (conf->geo.far_offset)
1561 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1562 else
1563 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1564 if (conf->geo.far_set_size != conf->geo.raid_disks)
1565 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1566 }
1567 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1568 conf->geo.raid_disks - mddev->degraded);
1569 rcu_read_lock();
1570 for (i = 0; i < conf->geo.raid_disks; i++) {
1571 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1573 }
1574 rcu_read_unlock();
1575 seq_printf(seq, "]");
1576 }
1577
1578 /* check if there are enough drives for
1579 * every block to appear on atleast one.
1580 * Don't consider the device numbered 'ignore'
1581 * as we might be about to remove it.
1582 */
1583 static int _enough(struct r10conf *conf, int previous, int ignore)
1584 {
1585 int first = 0;
1586 int has_enough = 0;
1587 int disks, ncopies;
1588 if (previous) {
1589 disks = conf->prev.raid_disks;
1590 ncopies = conf->prev.near_copies;
1591 } else {
1592 disks = conf->geo.raid_disks;
1593 ncopies = conf->geo.near_copies;
1594 }
1595
1596 rcu_read_lock();
1597 do {
1598 int n = conf->copies;
1599 int cnt = 0;
1600 int this = first;
1601 while (n--) {
1602 struct md_rdev *rdev;
1603 if (this != ignore &&
1604 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1605 test_bit(In_sync, &rdev->flags))
1606 cnt++;
1607 this = (this+1) % disks;
1608 }
1609 if (cnt == 0)
1610 goto out;
1611 first = (first + ncopies) % disks;
1612 } while (first != 0);
1613 has_enough = 1;
1614 out:
1615 rcu_read_unlock();
1616 return has_enough;
1617 }
1618
1619 static int enough(struct r10conf *conf, int ignore)
1620 {
1621 /* when calling 'enough', both 'prev' and 'geo' must
1622 * be stable.
1623 * This is ensured if ->reconfig_mutex or ->device_lock
1624 * is held.
1625 */
1626 return _enough(conf, 0, ignore) &&
1627 _enough(conf, 1, ignore);
1628 }
1629
1630 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 char b[BDEVNAME_SIZE];
1633 struct r10conf *conf = mddev->private;
1634 unsigned long flags;
1635
1636 /*
1637 * If it is not operational, then we have already marked it as dead
1638 * else if it is the last working disks, ignore the error, let the
1639 * next level up know.
1640 * else mark the drive as failed
1641 */
1642 spin_lock_irqsave(&conf->device_lock, flags);
1643 if (test_bit(In_sync, &rdev->flags)
1644 && !enough(conf, rdev->raid_disk)) {
1645 /*
1646 * Don't fail the drive, just return an IO error.
1647 */
1648 spin_unlock_irqrestore(&conf->device_lock, flags);
1649 return;
1650 }
1651 if (test_and_clear_bit(In_sync, &rdev->flags))
1652 mddev->degraded++;
1653 /*
1654 * If recovery is running, make sure it aborts.
1655 */
1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 set_bit(Blocked, &rdev->flags);
1658 set_bit(Faulty, &rdev->flags);
1659 set_mask_bits(&mddev->sb_flags, 0,
1660 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661 spin_unlock_irqrestore(&conf->device_lock, flags);
1662 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1663 "md/raid10:%s: Operation continuing on %d devices.\n",
1664 mdname(mddev), bdevname(rdev->bdev, b),
1665 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1666 }
1667
1668 static void print_conf(struct r10conf *conf)
1669 {
1670 int i;
1671 struct md_rdev *rdev;
1672
1673 pr_debug("RAID10 conf printout:\n");
1674 if (!conf) {
1675 pr_debug("(!conf)\n");
1676 return;
1677 }
1678 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1679 conf->geo.raid_disks);
1680
1681 /* This is only called with ->reconfix_mutex held, so
1682 * rcu protection of rdev is not needed */
1683 for (i = 0; i < conf->geo.raid_disks; i++) {
1684 char b[BDEVNAME_SIZE];
1685 rdev = conf->mirrors[i].rdev;
1686 if (rdev)
1687 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1688 i, !test_bit(In_sync, &rdev->flags),
1689 !test_bit(Faulty, &rdev->flags),
1690 bdevname(rdev->bdev,b));
1691 }
1692 }
1693
1694 static void close_sync(struct r10conf *conf)
1695 {
1696 wait_barrier(conf);
1697 allow_barrier(conf);
1698
1699 mempool_destroy(conf->r10buf_pool);
1700 conf->r10buf_pool = NULL;
1701 }
1702
1703 static int raid10_spare_active(struct mddev *mddev)
1704 {
1705 int i;
1706 struct r10conf *conf = mddev->private;
1707 struct raid10_info *tmp;
1708 int count = 0;
1709 unsigned long flags;
1710
1711 /*
1712 * Find all non-in_sync disks within the RAID10 configuration
1713 * and mark them in_sync
1714 */
1715 for (i = 0; i < conf->geo.raid_disks; i++) {
1716 tmp = conf->mirrors + i;
1717 if (tmp->replacement
1718 && tmp->replacement->recovery_offset == MaxSector
1719 && !test_bit(Faulty, &tmp->replacement->flags)
1720 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1721 /* Replacement has just become active */
1722 if (!tmp->rdev
1723 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1724 count++;
1725 if (tmp->rdev) {
1726 /* Replaced device not technically faulty,
1727 * but we need to be sure it gets removed
1728 * and never re-added.
1729 */
1730 set_bit(Faulty, &tmp->rdev->flags);
1731 sysfs_notify_dirent_safe(
1732 tmp->rdev->sysfs_state);
1733 }
1734 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1735 } else if (tmp->rdev
1736 && tmp->rdev->recovery_offset == MaxSector
1737 && !test_bit(Faulty, &tmp->rdev->flags)
1738 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1739 count++;
1740 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1741 }
1742 }
1743 spin_lock_irqsave(&conf->device_lock, flags);
1744 mddev->degraded -= count;
1745 spin_unlock_irqrestore(&conf->device_lock, flags);
1746
1747 print_conf(conf);
1748 return count;
1749 }
1750
1751 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 struct r10conf *conf = mddev->private;
1754 int err = -EEXIST;
1755 int mirror;
1756 int first = 0;
1757 int last = conf->geo.raid_disks - 1;
1758
1759 if (mddev->recovery_cp < MaxSector)
1760 /* only hot-add to in-sync arrays, as recovery is
1761 * very different from resync
1762 */
1763 return -EBUSY;
1764 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1765 return -EINVAL;
1766
1767 if (md_integrity_add_rdev(rdev, mddev))
1768 return -ENXIO;
1769
1770 if (rdev->raid_disk >= 0)
1771 first = last = rdev->raid_disk;
1772
1773 if (rdev->saved_raid_disk >= first &&
1774 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1775 mirror = rdev->saved_raid_disk;
1776 else
1777 mirror = first;
1778 for ( ; mirror <= last ; mirror++) {
1779 struct raid10_info *p = &conf->mirrors[mirror];
1780 if (p->recovery_disabled == mddev->recovery_disabled)
1781 continue;
1782 if (p->rdev) {
1783 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1784 p->replacement != NULL)
1785 continue;
1786 clear_bit(In_sync, &rdev->flags);
1787 set_bit(Replacement, &rdev->flags);
1788 rdev->raid_disk = mirror;
1789 err = 0;
1790 if (mddev->gendisk)
1791 disk_stack_limits(mddev->gendisk, rdev->bdev,
1792 rdev->data_offset << 9);
1793 conf->fullsync = 1;
1794 rcu_assign_pointer(p->replacement, rdev);
1795 break;
1796 }
1797
1798 if (mddev->gendisk)
1799 disk_stack_limits(mddev->gendisk, rdev->bdev,
1800 rdev->data_offset << 9);
1801
1802 p->head_position = 0;
1803 p->recovery_disabled = mddev->recovery_disabled - 1;
1804 rdev->raid_disk = mirror;
1805 err = 0;
1806 if (rdev->saved_raid_disk != mirror)
1807 conf->fullsync = 1;
1808 rcu_assign_pointer(p->rdev, rdev);
1809 break;
1810 }
1811 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813
1814 print_conf(conf);
1815 return err;
1816 }
1817
1818 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820 struct r10conf *conf = mddev->private;
1821 int err = 0;
1822 int number = rdev->raid_disk;
1823 struct md_rdev **rdevp;
1824 struct raid10_info *p = conf->mirrors + number;
1825
1826 print_conf(conf);
1827 if (rdev == p->rdev)
1828 rdevp = &p->rdev;
1829 else if (rdev == p->replacement)
1830 rdevp = &p->replacement;
1831 else
1832 return 0;
1833
1834 if (test_bit(In_sync, &rdev->flags) ||
1835 atomic_read(&rdev->nr_pending)) {
1836 err = -EBUSY;
1837 goto abort;
1838 }
1839 /* Only remove non-faulty devices if recovery
1840 * is not possible.
1841 */
1842 if (!test_bit(Faulty, &rdev->flags) &&
1843 mddev->recovery_disabled != p->recovery_disabled &&
1844 (!p->replacement || p->replacement == rdev) &&
1845 number < conf->geo.raid_disks &&
1846 enough(conf, -1)) {
1847 err = -EBUSY;
1848 goto abort;
1849 }
1850 *rdevp = NULL;
1851 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1852 synchronize_rcu();
1853 if (atomic_read(&rdev->nr_pending)) {
1854 /* lost the race, try later */
1855 err = -EBUSY;
1856 *rdevp = rdev;
1857 goto abort;
1858 }
1859 }
1860 if (p->replacement) {
1861 /* We must have just cleared 'rdev' */
1862 p->rdev = p->replacement;
1863 clear_bit(Replacement, &p->replacement->flags);
1864 smp_mb(); /* Make sure other CPUs may see both as identical
1865 * but will never see neither -- if they are careful.
1866 */
1867 p->replacement = NULL;
1868 }
1869
1870 clear_bit(WantReplacement, &rdev->flags);
1871 err = md_integrity_register(mddev);
1872
1873 abort:
1874
1875 print_conf(conf);
1876 return err;
1877 }
1878
1879 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1880 {
1881 struct r10conf *conf = r10_bio->mddev->private;
1882
1883 if (!bio->bi_status)
1884 set_bit(R10BIO_Uptodate, &r10_bio->state);
1885 else
1886 /* The write handler will notice the lack of
1887 * R10BIO_Uptodate and record any errors etc
1888 */
1889 atomic_add(r10_bio->sectors,
1890 &conf->mirrors[d].rdev->corrected_errors);
1891
1892 /* for reconstruct, we always reschedule after a read.
1893 * for resync, only after all reads
1894 */
1895 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1896 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1897 atomic_dec_and_test(&r10_bio->remaining)) {
1898 /* we have read all the blocks,
1899 * do the comparison in process context in raid10d
1900 */
1901 reschedule_retry(r10_bio);
1902 }
1903 }
1904
1905 static void end_sync_read(struct bio *bio)
1906 {
1907 struct r10bio *r10_bio = get_resync_r10bio(bio);
1908 struct r10conf *conf = r10_bio->mddev->private;
1909 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1910
1911 __end_sync_read(r10_bio, bio, d);
1912 }
1913
1914 static void end_reshape_read(struct bio *bio)
1915 {
1916 /* reshape read bio isn't allocated from r10buf_pool */
1917 struct r10bio *r10_bio = bio->bi_private;
1918
1919 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1920 }
1921
1922 static void end_sync_request(struct r10bio *r10_bio)
1923 {
1924 struct mddev *mddev = r10_bio->mddev;
1925
1926 while (atomic_dec_and_test(&r10_bio->remaining)) {
1927 if (r10_bio->master_bio == NULL) {
1928 /* the primary of several recovery bios */
1929 sector_t s = r10_bio->sectors;
1930 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931 test_bit(R10BIO_WriteError, &r10_bio->state))
1932 reschedule_retry(r10_bio);
1933 else
1934 put_buf(r10_bio);
1935 md_done_sync(mddev, s, 1);
1936 break;
1937 } else {
1938 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1939 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940 test_bit(R10BIO_WriteError, &r10_bio->state))
1941 reschedule_retry(r10_bio);
1942 else
1943 put_buf(r10_bio);
1944 r10_bio = r10_bio2;
1945 }
1946 }
1947 }
1948
1949 static void end_sync_write(struct bio *bio)
1950 {
1951 struct r10bio *r10_bio = get_resync_r10bio(bio);
1952 struct mddev *mddev = r10_bio->mddev;
1953 struct r10conf *conf = mddev->private;
1954 int d;
1955 sector_t first_bad;
1956 int bad_sectors;
1957 int slot;
1958 int repl;
1959 struct md_rdev *rdev = NULL;
1960
1961 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1962 if (repl)
1963 rdev = conf->mirrors[d].replacement;
1964 else
1965 rdev = conf->mirrors[d].rdev;
1966
1967 if (bio->bi_status) {
1968 if (repl)
1969 md_error(mddev, rdev);
1970 else {
1971 set_bit(WriteErrorSeen, &rdev->flags);
1972 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1973 set_bit(MD_RECOVERY_NEEDED,
1974 &rdev->mddev->recovery);
1975 set_bit(R10BIO_WriteError, &r10_bio->state);
1976 }
1977 } else if (is_badblock(rdev,
1978 r10_bio->devs[slot].addr,
1979 r10_bio->sectors,
1980 &first_bad, &bad_sectors))
1981 set_bit(R10BIO_MadeGood, &r10_bio->state);
1982
1983 rdev_dec_pending(rdev, mddev);
1984
1985 end_sync_request(r10_bio);
1986 }
1987
1988 /*
1989 * Note: sync and recover and handled very differently for raid10
1990 * This code is for resync.
1991 * For resync, we read through virtual addresses and read all blocks.
1992 * If there is any error, we schedule a write. The lowest numbered
1993 * drive is authoritative.
1994 * However requests come for physical address, so we need to map.
1995 * For every physical address there are raid_disks/copies virtual addresses,
1996 * which is always are least one, but is not necessarly an integer.
1997 * This means that a physical address can span multiple chunks, so we may
1998 * have to submit multiple io requests for a single sync request.
1999 */
2000 /*
2001 * We check if all blocks are in-sync and only write to blocks that
2002 * aren't in sync
2003 */
2004 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2005 {
2006 struct r10conf *conf = mddev->private;
2007 int i, first;
2008 struct bio *tbio, *fbio;
2009 int vcnt;
2010 struct page **tpages, **fpages;
2011
2012 atomic_set(&r10_bio->remaining, 1);
2013
2014 /* find the first device with a block */
2015 for (i=0; i<conf->copies; i++)
2016 if (!r10_bio->devs[i].bio->bi_status)
2017 break;
2018
2019 if (i == conf->copies)
2020 goto done;
2021
2022 first = i;
2023 fbio = r10_bio->devs[i].bio;
2024 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2025 fbio->bi_iter.bi_idx = 0;
2026 fpages = get_resync_pages(fbio)->pages;
2027
2028 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2029 /* now find blocks with errors */
2030 for (i=0 ; i < conf->copies ; i++) {
2031 int j, d;
2032 struct md_rdev *rdev;
2033 struct resync_pages *rp;
2034
2035 tbio = r10_bio->devs[i].bio;
2036
2037 if (tbio->bi_end_io != end_sync_read)
2038 continue;
2039 if (i == first)
2040 continue;
2041
2042 tpages = get_resync_pages(tbio)->pages;
2043 d = r10_bio->devs[i].devnum;
2044 rdev = conf->mirrors[d].rdev;
2045 if (!r10_bio->devs[i].bio->bi_status) {
2046 /* We know that the bi_io_vec layout is the same for
2047 * both 'first' and 'i', so we just compare them.
2048 * All vec entries are PAGE_SIZE;
2049 */
2050 int sectors = r10_bio->sectors;
2051 for (j = 0; j < vcnt; j++) {
2052 int len = PAGE_SIZE;
2053 if (sectors < (len / 512))
2054 len = sectors * 512;
2055 if (memcmp(page_address(fpages[j]),
2056 page_address(tpages[j]),
2057 len))
2058 break;
2059 sectors -= len/512;
2060 }
2061 if (j == vcnt)
2062 continue;
2063 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2064 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2065 /* Don't fix anything. */
2066 continue;
2067 } else if (test_bit(FailFast, &rdev->flags)) {
2068 /* Just give up on this device */
2069 md_error(rdev->mddev, rdev);
2070 continue;
2071 }
2072 /* Ok, we need to write this bio, either to correct an
2073 * inconsistency or to correct an unreadable block.
2074 * First we need to fixup bv_offset, bv_len and
2075 * bi_vecs, as the read request might have corrupted these
2076 */
2077 rp = get_resync_pages(tbio);
2078 bio_reset(tbio);
2079
2080 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2081
2082 rp->raid_bio = r10_bio;
2083 tbio->bi_private = rp;
2084 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2085 tbio->bi_end_io = end_sync_write;
2086 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2087
2088 bio_copy_data(tbio, fbio);
2089
2090 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2091 atomic_inc(&r10_bio->remaining);
2092 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2093
2094 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2095 tbio->bi_opf |= MD_FAILFAST;
2096 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2097 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2098 generic_make_request(tbio);
2099 }
2100
2101 /* Now write out to any replacement devices
2102 * that are active
2103 */
2104 for (i = 0; i < conf->copies; i++) {
2105 int d;
2106
2107 tbio = r10_bio->devs[i].repl_bio;
2108 if (!tbio || !tbio->bi_end_io)
2109 continue;
2110 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2111 && r10_bio->devs[i].bio != fbio)
2112 bio_copy_data(tbio, fbio);
2113 d = r10_bio->devs[i].devnum;
2114 atomic_inc(&r10_bio->remaining);
2115 md_sync_acct(conf->mirrors[d].replacement->bdev,
2116 bio_sectors(tbio));
2117 generic_make_request(tbio);
2118 }
2119
2120 done:
2121 if (atomic_dec_and_test(&r10_bio->remaining)) {
2122 md_done_sync(mddev, r10_bio->sectors, 1);
2123 put_buf(r10_bio);
2124 }
2125 }
2126
2127 /*
2128 * Now for the recovery code.
2129 * Recovery happens across physical sectors.
2130 * We recover all non-is_sync drives by finding the virtual address of
2131 * each, and then choose a working drive that also has that virt address.
2132 * There is a separate r10_bio for each non-in_sync drive.
2133 * Only the first two slots are in use. The first for reading,
2134 * The second for writing.
2135 *
2136 */
2137 static void fix_recovery_read_error(struct r10bio *r10_bio)
2138 {
2139 /* We got a read error during recovery.
2140 * We repeat the read in smaller page-sized sections.
2141 * If a read succeeds, write it to the new device or record
2142 * a bad block if we cannot.
2143 * If a read fails, record a bad block on both old and
2144 * new devices.
2145 */
2146 struct mddev *mddev = r10_bio->mddev;
2147 struct r10conf *conf = mddev->private;
2148 struct bio *bio = r10_bio->devs[0].bio;
2149 sector_t sect = 0;
2150 int sectors = r10_bio->sectors;
2151 int idx = 0;
2152 int dr = r10_bio->devs[0].devnum;
2153 int dw = r10_bio->devs[1].devnum;
2154 struct page **pages = get_resync_pages(bio)->pages;
2155
2156 while (sectors) {
2157 int s = sectors;
2158 struct md_rdev *rdev;
2159 sector_t addr;
2160 int ok;
2161
2162 if (s > (PAGE_SIZE>>9))
2163 s = PAGE_SIZE >> 9;
2164
2165 rdev = conf->mirrors[dr].rdev;
2166 addr = r10_bio->devs[0].addr + sect,
2167 ok = sync_page_io(rdev,
2168 addr,
2169 s << 9,
2170 pages[idx],
2171 REQ_OP_READ, 0, false);
2172 if (ok) {
2173 rdev = conf->mirrors[dw].rdev;
2174 addr = r10_bio->devs[1].addr + sect;
2175 ok = sync_page_io(rdev,
2176 addr,
2177 s << 9,
2178 pages[idx],
2179 REQ_OP_WRITE, 0, false);
2180 if (!ok) {
2181 set_bit(WriteErrorSeen, &rdev->flags);
2182 if (!test_and_set_bit(WantReplacement,
2183 &rdev->flags))
2184 set_bit(MD_RECOVERY_NEEDED,
2185 &rdev->mddev->recovery);
2186 }
2187 }
2188 if (!ok) {
2189 /* We don't worry if we cannot set a bad block -
2190 * it really is bad so there is no loss in not
2191 * recording it yet
2192 */
2193 rdev_set_badblocks(rdev, addr, s, 0);
2194
2195 if (rdev != conf->mirrors[dw].rdev) {
2196 /* need bad block on destination too */
2197 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2198 addr = r10_bio->devs[1].addr + sect;
2199 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2200 if (!ok) {
2201 /* just abort the recovery */
2202 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2203 mdname(mddev));
2204
2205 conf->mirrors[dw].recovery_disabled
2206 = mddev->recovery_disabled;
2207 set_bit(MD_RECOVERY_INTR,
2208 &mddev->recovery);
2209 break;
2210 }
2211 }
2212 }
2213
2214 sectors -= s;
2215 sect += s;
2216 idx++;
2217 }
2218 }
2219
2220 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2221 {
2222 struct r10conf *conf = mddev->private;
2223 int d;
2224 struct bio *wbio, *wbio2;
2225
2226 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2227 fix_recovery_read_error(r10_bio);
2228 end_sync_request(r10_bio);
2229 return;
2230 }
2231
2232 /*
2233 * share the pages with the first bio
2234 * and submit the write request
2235 */
2236 d = r10_bio->devs[1].devnum;
2237 wbio = r10_bio->devs[1].bio;
2238 wbio2 = r10_bio->devs[1].repl_bio;
2239 /* Need to test wbio2->bi_end_io before we call
2240 * generic_make_request as if the former is NULL,
2241 * the latter is free to free wbio2.
2242 */
2243 if (wbio2 && !wbio2->bi_end_io)
2244 wbio2 = NULL;
2245 if (wbio->bi_end_io) {
2246 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2247 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2248 generic_make_request(wbio);
2249 }
2250 if (wbio2) {
2251 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2252 md_sync_acct(conf->mirrors[d].replacement->bdev,
2253 bio_sectors(wbio2));
2254 generic_make_request(wbio2);
2255 }
2256 }
2257
2258 /*
2259 * Used by fix_read_error() to decay the per rdev read_errors.
2260 * We halve the read error count for every hour that has elapsed
2261 * since the last recorded read error.
2262 *
2263 */
2264 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2265 {
2266 long cur_time_mon;
2267 unsigned long hours_since_last;
2268 unsigned int read_errors = atomic_read(&rdev->read_errors);
2269
2270 cur_time_mon = ktime_get_seconds();
2271
2272 if (rdev->last_read_error == 0) {
2273 /* first time we've seen a read error */
2274 rdev->last_read_error = cur_time_mon;
2275 return;
2276 }
2277
2278 hours_since_last = (long)(cur_time_mon -
2279 rdev->last_read_error) / 3600;
2280
2281 rdev->last_read_error = cur_time_mon;
2282
2283 /*
2284 * if hours_since_last is > the number of bits in read_errors
2285 * just set read errors to 0. We do this to avoid
2286 * overflowing the shift of read_errors by hours_since_last.
2287 */
2288 if (hours_since_last >= 8 * sizeof(read_errors))
2289 atomic_set(&rdev->read_errors, 0);
2290 else
2291 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2292 }
2293
2294 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2295 int sectors, struct page *page, int rw)
2296 {
2297 sector_t first_bad;
2298 int bad_sectors;
2299
2300 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2301 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2302 return -1;
2303 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2304 /* success */
2305 return 1;
2306 if (rw == WRITE) {
2307 set_bit(WriteErrorSeen, &rdev->flags);
2308 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309 set_bit(MD_RECOVERY_NEEDED,
2310 &rdev->mddev->recovery);
2311 }
2312 /* need to record an error - either for the block or the device */
2313 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2314 md_error(rdev->mddev, rdev);
2315 return 0;
2316 }
2317
2318 /*
2319 * This is a kernel thread which:
2320 *
2321 * 1. Retries failed read operations on working mirrors.
2322 * 2. Updates the raid superblock when problems encounter.
2323 * 3. Performs writes following reads for array synchronising.
2324 */
2325
2326 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2327 {
2328 int sect = 0; /* Offset from r10_bio->sector */
2329 int sectors = r10_bio->sectors;
2330 struct md_rdev*rdev;
2331 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2332 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2333
2334 /* still own a reference to this rdev, so it cannot
2335 * have been cleared recently.
2336 */
2337 rdev = conf->mirrors[d].rdev;
2338
2339 if (test_bit(Faulty, &rdev->flags))
2340 /* drive has already been failed, just ignore any
2341 more fix_read_error() attempts */
2342 return;
2343
2344 check_decay_read_errors(mddev, rdev);
2345 atomic_inc(&rdev->read_errors);
2346 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2347 char b[BDEVNAME_SIZE];
2348 bdevname(rdev->bdev, b);
2349
2350 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2351 mdname(mddev), b,
2352 atomic_read(&rdev->read_errors), max_read_errors);
2353 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2354 mdname(mddev), b);
2355 md_error(mddev, rdev);
2356 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2357 return;
2358 }
2359
2360 while(sectors) {
2361 int s = sectors;
2362 int sl = r10_bio->read_slot;
2363 int success = 0;
2364 int start;
2365
2366 if (s > (PAGE_SIZE>>9))
2367 s = PAGE_SIZE >> 9;
2368
2369 rcu_read_lock();
2370 do {
2371 sector_t first_bad;
2372 int bad_sectors;
2373
2374 d = r10_bio->devs[sl].devnum;
2375 rdev = rcu_dereference(conf->mirrors[d].rdev);
2376 if (rdev &&
2377 test_bit(In_sync, &rdev->flags) &&
2378 !test_bit(Faulty, &rdev->flags) &&
2379 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2380 &first_bad, &bad_sectors) == 0) {
2381 atomic_inc(&rdev->nr_pending);
2382 rcu_read_unlock();
2383 success = sync_page_io(rdev,
2384 r10_bio->devs[sl].addr +
2385 sect,
2386 s<<9,
2387 conf->tmppage,
2388 REQ_OP_READ, 0, false);
2389 rdev_dec_pending(rdev, mddev);
2390 rcu_read_lock();
2391 if (success)
2392 break;
2393 }
2394 sl++;
2395 if (sl == conf->copies)
2396 sl = 0;
2397 } while (!success && sl != r10_bio->read_slot);
2398 rcu_read_unlock();
2399
2400 if (!success) {
2401 /* Cannot read from anywhere, just mark the block
2402 * as bad on the first device to discourage future
2403 * reads.
2404 */
2405 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2406 rdev = conf->mirrors[dn].rdev;
2407
2408 if (!rdev_set_badblocks(
2409 rdev,
2410 r10_bio->devs[r10_bio->read_slot].addr
2411 + sect,
2412 s, 0)) {
2413 md_error(mddev, rdev);
2414 r10_bio->devs[r10_bio->read_slot].bio
2415 = IO_BLOCKED;
2416 }
2417 break;
2418 }
2419
2420 start = sl;
2421 /* write it back and re-read */
2422 rcu_read_lock();
2423 while (sl != r10_bio->read_slot) {
2424 char b[BDEVNAME_SIZE];
2425
2426 if (sl==0)
2427 sl = conf->copies;
2428 sl--;
2429 d = r10_bio->devs[sl].devnum;
2430 rdev = rcu_dereference(conf->mirrors[d].rdev);
2431 if (!rdev ||
2432 test_bit(Faulty, &rdev->flags) ||
2433 !test_bit(In_sync, &rdev->flags))
2434 continue;
2435
2436 atomic_inc(&rdev->nr_pending);
2437 rcu_read_unlock();
2438 if (r10_sync_page_io(rdev,
2439 r10_bio->devs[sl].addr +
2440 sect,
2441 s, conf->tmppage, WRITE)
2442 == 0) {
2443 /* Well, this device is dead */
2444 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2445 mdname(mddev), s,
2446 (unsigned long long)(
2447 sect +
2448 choose_data_offset(r10_bio,
2449 rdev)),
2450 bdevname(rdev->bdev, b));
2451 pr_notice("md/raid10:%s: %s: failing drive\n",
2452 mdname(mddev),
2453 bdevname(rdev->bdev, b));
2454 }
2455 rdev_dec_pending(rdev, mddev);
2456 rcu_read_lock();
2457 }
2458 sl = start;
2459 while (sl != r10_bio->read_slot) {
2460 char b[BDEVNAME_SIZE];
2461
2462 if (sl==0)
2463 sl = conf->copies;
2464 sl--;
2465 d = r10_bio->devs[sl].devnum;
2466 rdev = rcu_dereference(conf->mirrors[d].rdev);
2467 if (!rdev ||
2468 test_bit(Faulty, &rdev->flags) ||
2469 !test_bit(In_sync, &rdev->flags))
2470 continue;
2471
2472 atomic_inc(&rdev->nr_pending);
2473 rcu_read_unlock();
2474 switch (r10_sync_page_io(rdev,
2475 r10_bio->devs[sl].addr +
2476 sect,
2477 s, conf->tmppage,
2478 READ)) {
2479 case 0:
2480 /* Well, this device is dead */
2481 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2482 mdname(mddev), s,
2483 (unsigned long long)(
2484 sect +
2485 choose_data_offset(r10_bio, rdev)),
2486 bdevname(rdev->bdev, b));
2487 pr_notice("md/raid10:%s: %s: failing drive\n",
2488 mdname(mddev),
2489 bdevname(rdev->bdev, b));
2490 break;
2491 case 1:
2492 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2493 mdname(mddev), s,
2494 (unsigned long long)(
2495 sect +
2496 choose_data_offset(r10_bio, rdev)),
2497 bdevname(rdev->bdev, b));
2498 atomic_add(s, &rdev->corrected_errors);
2499 }
2500
2501 rdev_dec_pending(rdev, mddev);
2502 rcu_read_lock();
2503 }
2504 rcu_read_unlock();
2505
2506 sectors -= s;
2507 sect += s;
2508 }
2509 }
2510
2511 static int narrow_write_error(struct r10bio *r10_bio, int i)
2512 {
2513 struct bio *bio = r10_bio->master_bio;
2514 struct mddev *mddev = r10_bio->mddev;
2515 struct r10conf *conf = mddev->private;
2516 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2517 /* bio has the data to be written to slot 'i' where
2518 * we just recently had a write error.
2519 * We repeatedly clone the bio and trim down to one block,
2520 * then try the write. Where the write fails we record
2521 * a bad block.
2522 * It is conceivable that the bio doesn't exactly align with
2523 * blocks. We must handle this.
2524 *
2525 * We currently own a reference to the rdev.
2526 */
2527
2528 int block_sectors;
2529 sector_t sector;
2530 int sectors;
2531 int sect_to_write = r10_bio->sectors;
2532 int ok = 1;
2533
2534 if (rdev->badblocks.shift < 0)
2535 return 0;
2536
2537 block_sectors = roundup(1 << rdev->badblocks.shift,
2538 bdev_logical_block_size(rdev->bdev) >> 9);
2539 sector = r10_bio->sector;
2540 sectors = ((r10_bio->sector + block_sectors)
2541 & ~(sector_t)(block_sectors - 1))
2542 - sector;
2543
2544 while (sect_to_write) {
2545 struct bio *wbio;
2546 sector_t wsector;
2547 if (sectors > sect_to_write)
2548 sectors = sect_to_write;
2549 /* Write at 'sector' for 'sectors' */
2550 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2551 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2552 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2553 wbio->bi_iter.bi_sector = wsector +
2554 choose_data_offset(r10_bio, rdev);
2555 wbio->bi_bdev = rdev->bdev;
2556 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2557
2558 if (submit_bio_wait(wbio) < 0)
2559 /* Failure! */
2560 ok = rdev_set_badblocks(rdev, wsector,
2561 sectors, 0)
2562 && ok;
2563
2564 bio_put(wbio);
2565 sect_to_write -= sectors;
2566 sector += sectors;
2567 sectors = block_sectors;
2568 }
2569 return ok;
2570 }
2571
2572 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2573 {
2574 int slot = r10_bio->read_slot;
2575 struct bio *bio;
2576 struct r10conf *conf = mddev->private;
2577 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2578 dev_t bio_dev;
2579 sector_t bio_last_sector;
2580
2581 /* we got a read error. Maybe the drive is bad. Maybe just
2582 * the block and we can fix it.
2583 * We freeze all other IO, and try reading the block from
2584 * other devices. When we find one, we re-write
2585 * and check it that fixes the read error.
2586 * This is all done synchronously while the array is
2587 * frozen.
2588 */
2589 bio = r10_bio->devs[slot].bio;
2590 bio_dev = bio->bi_bdev->bd_dev;
2591 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2592 bio_put(bio);
2593 r10_bio->devs[slot].bio = NULL;
2594
2595 if (mddev->ro)
2596 r10_bio->devs[slot].bio = IO_BLOCKED;
2597 else if (!test_bit(FailFast, &rdev->flags)) {
2598 freeze_array(conf, 1);
2599 fix_read_error(conf, mddev, r10_bio);
2600 unfreeze_array(conf);
2601 } else
2602 md_error(mddev, rdev);
2603
2604 rdev_dec_pending(rdev, mddev);
2605 allow_barrier(conf);
2606 r10_bio->state = 0;
2607 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2608 }
2609
2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2611 {
2612 /* Some sort of write request has finished and it
2613 * succeeded in writing where we thought there was a
2614 * bad block. So forget the bad block.
2615 * Or possibly if failed and we need to record
2616 * a bad block.
2617 */
2618 int m;
2619 struct md_rdev *rdev;
2620
2621 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2622 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2623 for (m = 0; m < conf->copies; m++) {
2624 int dev = r10_bio->devs[m].devnum;
2625 rdev = conf->mirrors[dev].rdev;
2626 if (r10_bio->devs[m].bio == NULL)
2627 continue;
2628 if (!r10_bio->devs[m].bio->bi_status) {
2629 rdev_clear_badblocks(
2630 rdev,
2631 r10_bio->devs[m].addr,
2632 r10_bio->sectors, 0);
2633 } else {
2634 if (!rdev_set_badblocks(
2635 rdev,
2636 r10_bio->devs[m].addr,
2637 r10_bio->sectors, 0))
2638 md_error(conf->mddev, rdev);
2639 }
2640 rdev = conf->mirrors[dev].replacement;
2641 if (r10_bio->devs[m].repl_bio == NULL)
2642 continue;
2643
2644 if (!r10_bio->devs[m].repl_bio->bi_status) {
2645 rdev_clear_badblocks(
2646 rdev,
2647 r10_bio->devs[m].addr,
2648 r10_bio->sectors, 0);
2649 } else {
2650 if (!rdev_set_badblocks(
2651 rdev,
2652 r10_bio->devs[m].addr,
2653 r10_bio->sectors, 0))
2654 md_error(conf->mddev, rdev);
2655 }
2656 }
2657 put_buf(r10_bio);
2658 } else {
2659 bool fail = false;
2660 for (m = 0; m < conf->copies; m++) {
2661 int dev = r10_bio->devs[m].devnum;
2662 struct bio *bio = r10_bio->devs[m].bio;
2663 rdev = conf->mirrors[dev].rdev;
2664 if (bio == IO_MADE_GOOD) {
2665 rdev_clear_badblocks(
2666 rdev,
2667 r10_bio->devs[m].addr,
2668 r10_bio->sectors, 0);
2669 rdev_dec_pending(rdev, conf->mddev);
2670 } else if (bio != NULL && bio->bi_status) {
2671 fail = true;
2672 if (!narrow_write_error(r10_bio, m)) {
2673 md_error(conf->mddev, rdev);
2674 set_bit(R10BIO_Degraded,
2675 &r10_bio->state);
2676 }
2677 rdev_dec_pending(rdev, conf->mddev);
2678 }
2679 bio = r10_bio->devs[m].repl_bio;
2680 rdev = conf->mirrors[dev].replacement;
2681 if (rdev && bio == IO_MADE_GOOD) {
2682 rdev_clear_badblocks(
2683 rdev,
2684 r10_bio->devs[m].addr,
2685 r10_bio->sectors, 0);
2686 rdev_dec_pending(rdev, conf->mddev);
2687 }
2688 }
2689 if (fail) {
2690 spin_lock_irq(&conf->device_lock);
2691 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2692 conf->nr_queued++;
2693 spin_unlock_irq(&conf->device_lock);
2694 /*
2695 * In case freeze_array() is waiting for condition
2696 * nr_pending == nr_queued + extra to be true.
2697 */
2698 wake_up(&conf->wait_barrier);
2699 md_wakeup_thread(conf->mddev->thread);
2700 } else {
2701 if (test_bit(R10BIO_WriteError,
2702 &r10_bio->state))
2703 close_write(r10_bio);
2704 raid_end_bio_io(r10_bio);
2705 }
2706 }
2707 }
2708
2709 static void raid10d(struct md_thread *thread)
2710 {
2711 struct mddev *mddev = thread->mddev;
2712 struct r10bio *r10_bio;
2713 unsigned long flags;
2714 struct r10conf *conf = mddev->private;
2715 struct list_head *head = &conf->retry_list;
2716 struct blk_plug plug;
2717
2718 md_check_recovery(mddev);
2719
2720 if (!list_empty_careful(&conf->bio_end_io_list) &&
2721 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2722 LIST_HEAD(tmp);
2723 spin_lock_irqsave(&conf->device_lock, flags);
2724 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725 while (!list_empty(&conf->bio_end_io_list)) {
2726 list_move(conf->bio_end_io_list.prev, &tmp);
2727 conf->nr_queued--;
2728 }
2729 }
2730 spin_unlock_irqrestore(&conf->device_lock, flags);
2731 while (!list_empty(&tmp)) {
2732 r10_bio = list_first_entry(&tmp, struct r10bio,
2733 retry_list);
2734 list_del(&r10_bio->retry_list);
2735 if (mddev->degraded)
2736 set_bit(R10BIO_Degraded, &r10_bio->state);
2737
2738 if (test_bit(R10BIO_WriteError,
2739 &r10_bio->state))
2740 close_write(r10_bio);
2741 raid_end_bio_io(r10_bio);
2742 }
2743 }
2744
2745 blk_start_plug(&plug);
2746 for (;;) {
2747
2748 flush_pending_writes(conf);
2749
2750 spin_lock_irqsave(&conf->device_lock, flags);
2751 if (list_empty(head)) {
2752 spin_unlock_irqrestore(&conf->device_lock, flags);
2753 break;
2754 }
2755 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2756 list_del(head->prev);
2757 conf->nr_queued--;
2758 spin_unlock_irqrestore(&conf->device_lock, flags);
2759
2760 mddev = r10_bio->mddev;
2761 conf = mddev->private;
2762 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2763 test_bit(R10BIO_WriteError, &r10_bio->state))
2764 handle_write_completed(conf, r10_bio);
2765 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2766 reshape_request_write(mddev, r10_bio);
2767 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2768 sync_request_write(mddev, r10_bio);
2769 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2770 recovery_request_write(mddev, r10_bio);
2771 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2772 handle_read_error(mddev, r10_bio);
2773 else
2774 WARN_ON_ONCE(1);
2775
2776 cond_resched();
2777 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2778 md_check_recovery(mddev);
2779 }
2780 blk_finish_plug(&plug);
2781 }
2782
2783 static int init_resync(struct r10conf *conf)
2784 {
2785 int buffs;
2786 int i;
2787
2788 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789 BUG_ON(conf->r10buf_pool);
2790 conf->have_replacement = 0;
2791 for (i = 0; i < conf->geo.raid_disks; i++)
2792 if (conf->mirrors[i].replacement)
2793 conf->have_replacement = 1;
2794 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2795 if (!conf->r10buf_pool)
2796 return -ENOMEM;
2797 conf->next_resync = 0;
2798 return 0;
2799 }
2800
2801 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2802 {
2803 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2804 struct rsync_pages *rp;
2805 struct bio *bio;
2806 int nalloc;
2807 int i;
2808
2809 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2810 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2811 nalloc = conf->copies; /* resync */
2812 else
2813 nalloc = 2; /* recovery */
2814
2815 for (i = 0; i < nalloc; i++) {
2816 bio = r10bio->devs[i].bio;
2817 rp = bio->bi_private;
2818 bio_reset(bio);
2819 bio->bi_private = rp;
2820 bio = r10bio->devs[i].repl_bio;
2821 if (bio) {
2822 rp = bio->bi_private;
2823 bio_reset(bio);
2824 bio->bi_private = rp;
2825 }
2826 }
2827 return r10bio;
2828 }
2829
2830 /*
2831 * perform a "sync" on one "block"
2832 *
2833 * We need to make sure that no normal I/O request - particularly write
2834 * requests - conflict with active sync requests.
2835 *
2836 * This is achieved by tracking pending requests and a 'barrier' concept
2837 * that can be installed to exclude normal IO requests.
2838 *
2839 * Resync and recovery are handled very differently.
2840 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2841 *
2842 * For resync, we iterate over virtual addresses, read all copies,
2843 * and update if there are differences. If only one copy is live,
2844 * skip it.
2845 * For recovery, we iterate over physical addresses, read a good
2846 * value for each non-in_sync drive, and over-write.
2847 *
2848 * So, for recovery we may have several outstanding complex requests for a
2849 * given address, one for each out-of-sync device. We model this by allocating
2850 * a number of r10_bio structures, one for each out-of-sync device.
2851 * As we setup these structures, we collect all bio's together into a list
2852 * which we then process collectively to add pages, and then process again
2853 * to pass to generic_make_request.
2854 *
2855 * The r10_bio structures are linked using a borrowed master_bio pointer.
2856 * This link is counted in ->remaining. When the r10_bio that points to NULL
2857 * has its remaining count decremented to 0, the whole complex operation
2858 * is complete.
2859 *
2860 */
2861
2862 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2863 int *skipped)
2864 {
2865 struct r10conf *conf = mddev->private;
2866 struct r10bio *r10_bio;
2867 struct bio *biolist = NULL, *bio;
2868 sector_t max_sector, nr_sectors;
2869 int i;
2870 int max_sync;
2871 sector_t sync_blocks;
2872 sector_t sectors_skipped = 0;
2873 int chunks_skipped = 0;
2874 sector_t chunk_mask = conf->geo.chunk_mask;
2875 int page_idx = 0;
2876
2877 if (!conf->r10buf_pool)
2878 if (init_resync(conf))
2879 return 0;
2880
2881 /*
2882 * Allow skipping a full rebuild for incremental assembly
2883 * of a clean array, like RAID1 does.
2884 */
2885 if (mddev->bitmap == NULL &&
2886 mddev->recovery_cp == MaxSector &&
2887 mddev->reshape_position == MaxSector &&
2888 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2889 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2890 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2891 conf->fullsync == 0) {
2892 *skipped = 1;
2893 return mddev->dev_sectors - sector_nr;
2894 }
2895
2896 skipped:
2897 max_sector = mddev->dev_sectors;
2898 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2899 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2900 max_sector = mddev->resync_max_sectors;
2901 if (sector_nr >= max_sector) {
2902 /* If we aborted, we need to abort the
2903 * sync on the 'current' bitmap chucks (there can
2904 * be several when recovering multiple devices).
2905 * as we may have started syncing it but not finished.
2906 * We can find the current address in
2907 * mddev->curr_resync, but for recovery,
2908 * we need to convert that to several
2909 * virtual addresses.
2910 */
2911 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2912 end_reshape(conf);
2913 close_sync(conf);
2914 return 0;
2915 }
2916
2917 if (mddev->curr_resync < max_sector) { /* aborted */
2918 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2919 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2920 &sync_blocks, 1);
2921 else for (i = 0; i < conf->geo.raid_disks; i++) {
2922 sector_t sect =
2923 raid10_find_virt(conf, mddev->curr_resync, i);
2924 bitmap_end_sync(mddev->bitmap, sect,
2925 &sync_blocks, 1);
2926 }
2927 } else {
2928 /* completed sync */
2929 if ((!mddev->bitmap || conf->fullsync)
2930 && conf->have_replacement
2931 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2932 /* Completed a full sync so the replacements
2933 * are now fully recovered.
2934 */
2935 rcu_read_lock();
2936 for (i = 0; i < conf->geo.raid_disks; i++) {
2937 struct md_rdev *rdev =
2938 rcu_dereference(conf->mirrors[i].replacement);
2939 if (rdev)
2940 rdev->recovery_offset = MaxSector;
2941 }
2942 rcu_read_unlock();
2943 }
2944 conf->fullsync = 0;
2945 }
2946 bitmap_close_sync(mddev->bitmap);
2947 close_sync(conf);
2948 *skipped = 1;
2949 return sectors_skipped;
2950 }
2951
2952 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2953 return reshape_request(mddev, sector_nr, skipped);
2954
2955 if (chunks_skipped >= conf->geo.raid_disks) {
2956 /* if there has been nothing to do on any drive,
2957 * then there is nothing to do at all..
2958 */
2959 *skipped = 1;
2960 return (max_sector - sector_nr) + sectors_skipped;
2961 }
2962
2963 if (max_sector > mddev->resync_max)
2964 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2965
2966 /* make sure whole request will fit in a chunk - if chunks
2967 * are meaningful
2968 */
2969 if (conf->geo.near_copies < conf->geo.raid_disks &&
2970 max_sector > (sector_nr | chunk_mask))
2971 max_sector = (sector_nr | chunk_mask) + 1;
2972
2973 /*
2974 * If there is non-resync activity waiting for a turn, then let it
2975 * though before starting on this new sync request.
2976 */
2977 if (conf->nr_waiting)
2978 schedule_timeout_uninterruptible(1);
2979
2980 /* Again, very different code for resync and recovery.
2981 * Both must result in an r10bio with a list of bios that
2982 * have bi_end_io, bi_sector, bi_bdev set,
2983 * and bi_private set to the r10bio.
2984 * For recovery, we may actually create several r10bios
2985 * with 2 bios in each, that correspond to the bios in the main one.
2986 * In this case, the subordinate r10bios link back through a
2987 * borrowed master_bio pointer, and the counter in the master
2988 * includes a ref from each subordinate.
2989 */
2990 /* First, we decide what to do and set ->bi_end_io
2991 * To end_sync_read if we want to read, and
2992 * end_sync_write if we will want to write.
2993 */
2994
2995 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2996 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2997 /* recovery... the complicated one */
2998 int j;
2999 r10_bio = NULL;
3000
3001 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3002 int still_degraded;
3003 struct r10bio *rb2;
3004 sector_t sect;
3005 int must_sync;
3006 int any_working;
3007 struct raid10_info *mirror = &conf->mirrors[i];
3008 struct md_rdev *mrdev, *mreplace;
3009
3010 rcu_read_lock();
3011 mrdev = rcu_dereference(mirror->rdev);
3012 mreplace = rcu_dereference(mirror->replacement);
3013
3014 if ((mrdev == NULL ||
3015 test_bit(Faulty, &mrdev->flags) ||
3016 test_bit(In_sync, &mrdev->flags)) &&
3017 (mreplace == NULL ||
3018 test_bit(Faulty, &mreplace->flags))) {
3019 rcu_read_unlock();
3020 continue;
3021 }
3022
3023 still_degraded = 0;
3024 /* want to reconstruct this device */
3025 rb2 = r10_bio;
3026 sect = raid10_find_virt(conf, sector_nr, i);
3027 if (sect >= mddev->resync_max_sectors) {
3028 /* last stripe is not complete - don't
3029 * try to recover this sector.
3030 */
3031 rcu_read_unlock();
3032 continue;
3033 }
3034 if (mreplace && test_bit(Faulty, &mreplace->flags))
3035 mreplace = NULL;
3036 /* Unless we are doing a full sync, or a replacement
3037 * we only need to recover the block if it is set in
3038 * the bitmap
3039 */
3040 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3041 &sync_blocks, 1);
3042 if (sync_blocks < max_sync)
3043 max_sync = sync_blocks;
3044 if (!must_sync &&
3045 mreplace == NULL &&
3046 !conf->fullsync) {
3047 /* yep, skip the sync_blocks here, but don't assume
3048 * that there will never be anything to do here
3049 */
3050 chunks_skipped = -1;
3051 rcu_read_unlock();
3052 continue;
3053 }
3054 atomic_inc(&mrdev->nr_pending);
3055 if (mreplace)
3056 atomic_inc(&mreplace->nr_pending);
3057 rcu_read_unlock();
3058
3059 r10_bio = raid10_alloc_init_r10buf(conf);
3060 r10_bio->state = 0;
3061 raise_barrier(conf, rb2 != NULL);
3062 atomic_set(&r10_bio->remaining, 0);
3063
3064 r10_bio->master_bio = (struct bio*)rb2;
3065 if (rb2)
3066 atomic_inc(&rb2->remaining);
3067 r10_bio->mddev = mddev;
3068 set_bit(R10BIO_IsRecover, &r10_bio->state);
3069 r10_bio->sector = sect;
3070
3071 raid10_find_phys(conf, r10_bio);
3072
3073 /* Need to check if the array will still be
3074 * degraded
3075 */
3076 rcu_read_lock();
3077 for (j = 0; j < conf->geo.raid_disks; j++) {
3078 struct md_rdev *rdev = rcu_dereference(
3079 conf->mirrors[j].rdev);
3080 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3081 still_degraded = 1;
3082 break;
3083 }
3084 }
3085
3086 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3087 &sync_blocks, still_degraded);
3088
3089 any_working = 0;
3090 for (j=0; j<conf->copies;j++) {
3091 int k;
3092 int d = r10_bio->devs[j].devnum;
3093 sector_t from_addr, to_addr;
3094 struct md_rdev *rdev =
3095 rcu_dereference(conf->mirrors[d].rdev);
3096 sector_t sector, first_bad;
3097 int bad_sectors;
3098 if (!rdev ||
3099 !test_bit(In_sync, &rdev->flags))
3100 continue;
3101 /* This is where we read from */
3102 any_working = 1;
3103 sector = r10_bio->devs[j].addr;
3104
3105 if (is_badblock(rdev, sector, max_sync,
3106 &first_bad, &bad_sectors)) {
3107 if (first_bad > sector)
3108 max_sync = first_bad - sector;
3109 else {
3110 bad_sectors -= (sector
3111 - first_bad);
3112 if (max_sync > bad_sectors)
3113 max_sync = bad_sectors;
3114 continue;
3115 }
3116 }
3117 bio = r10_bio->devs[0].bio;
3118 bio->bi_next = biolist;
3119 biolist = bio;
3120 bio->bi_end_io = end_sync_read;
3121 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3122 if (test_bit(FailFast, &rdev->flags))
3123 bio->bi_opf |= MD_FAILFAST;
3124 from_addr = r10_bio->devs[j].addr;
3125 bio->bi_iter.bi_sector = from_addr +
3126 rdev->data_offset;
3127 bio->bi_bdev = rdev->bdev;
3128 atomic_inc(&rdev->nr_pending);
3129 /* and we write to 'i' (if not in_sync) */
3130
3131 for (k=0; k<conf->copies; k++)
3132 if (r10_bio->devs[k].devnum == i)
3133 break;
3134 BUG_ON(k == conf->copies);
3135 to_addr = r10_bio->devs[k].addr;
3136 r10_bio->devs[0].devnum = d;
3137 r10_bio->devs[0].addr = from_addr;
3138 r10_bio->devs[1].devnum = i;
3139 r10_bio->devs[1].addr = to_addr;
3140
3141 if (!test_bit(In_sync, &mrdev->flags)) {
3142 bio = r10_bio->devs[1].bio;
3143 bio->bi_next = biolist;
3144 biolist = bio;
3145 bio->bi_end_io = end_sync_write;
3146 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3147 bio->bi_iter.bi_sector = to_addr
3148 + mrdev->data_offset;
3149 bio->bi_bdev = mrdev->bdev;
3150 atomic_inc(&r10_bio->remaining);
3151 } else
3152 r10_bio->devs[1].bio->bi_end_io = NULL;
3153
3154 /* and maybe write to replacement */
3155 bio = r10_bio->devs[1].repl_bio;
3156 if (bio)
3157 bio->bi_end_io = NULL;
3158 /* Note: if mreplace != NULL, then bio
3159 * cannot be NULL as r10buf_pool_alloc will
3160 * have allocated it.
3161 * So the second test here is pointless.
3162 * But it keeps semantic-checkers happy, and
3163 * this comment keeps human reviewers
3164 * happy.
3165 */
3166 if (mreplace == NULL || bio == NULL ||
3167 test_bit(Faulty, &mreplace->flags))
3168 break;
3169 bio->bi_next = biolist;
3170 biolist = bio;
3171 bio->bi_end_io = end_sync_write;
3172 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3173 bio->bi_iter.bi_sector = to_addr +
3174 mreplace->data_offset;
3175 bio->bi_bdev = mreplace->bdev;
3176 atomic_inc(&r10_bio->remaining);
3177 break;
3178 }
3179 rcu_read_unlock();
3180 if (j == conf->copies) {
3181 /* Cannot recover, so abort the recovery or
3182 * record a bad block */
3183 if (any_working) {
3184 /* problem is that there are bad blocks
3185 * on other device(s)
3186 */
3187 int k;
3188 for (k = 0; k < conf->copies; k++)
3189 if (r10_bio->devs[k].devnum == i)
3190 break;
3191 if (!test_bit(In_sync,
3192 &mrdev->flags)
3193 && !rdev_set_badblocks(
3194 mrdev,
3195 r10_bio->devs[k].addr,
3196 max_sync, 0))
3197 any_working = 0;
3198 if (mreplace &&
3199 !rdev_set_badblocks(
3200 mreplace,
3201 r10_bio->devs[k].addr,
3202 max_sync, 0))
3203 any_working = 0;
3204 }
3205 if (!any_working) {
3206 if (!test_and_set_bit(MD_RECOVERY_INTR,
3207 &mddev->recovery))
3208 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3209 mdname(mddev));
3210 mirror->recovery_disabled
3211 = mddev->recovery_disabled;
3212 }
3213 put_buf(r10_bio);
3214 if (rb2)
3215 atomic_dec(&rb2->remaining);
3216 r10_bio = rb2;
3217 rdev_dec_pending(mrdev, mddev);
3218 if (mreplace)
3219 rdev_dec_pending(mreplace, mddev);
3220 break;
3221 }
3222 rdev_dec_pending(mrdev, mddev);
3223 if (mreplace)
3224 rdev_dec_pending(mreplace, mddev);
3225 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3226 /* Only want this if there is elsewhere to
3227 * read from. 'j' is currently the first
3228 * readable copy.
3229 */
3230 int targets = 1;
3231 for (; j < conf->copies; j++) {
3232 int d = r10_bio->devs[j].devnum;
3233 if (conf->mirrors[d].rdev &&
3234 test_bit(In_sync,
3235 &conf->mirrors[d].rdev->flags))
3236 targets++;
3237 }
3238 if (targets == 1)
3239 r10_bio->devs[0].bio->bi_opf
3240 &= ~MD_FAILFAST;
3241 }
3242 }
3243 if (biolist == NULL) {
3244 while (r10_bio) {
3245 struct r10bio *rb2 = r10_bio;
3246 r10_bio = (struct r10bio*) rb2->master_bio;
3247 rb2->master_bio = NULL;
3248 put_buf(rb2);
3249 }
3250 goto giveup;
3251 }
3252 } else {
3253 /* resync. Schedule a read for every block at this virt offset */
3254 int count = 0;
3255
3256 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3257
3258 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3259 &sync_blocks, mddev->degraded) &&
3260 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3261 &mddev->recovery)) {
3262 /* We can skip this block */
3263 *skipped = 1;
3264 return sync_blocks + sectors_skipped;
3265 }
3266 if (sync_blocks < max_sync)
3267 max_sync = sync_blocks;
3268 r10_bio = raid10_alloc_init_r10buf(conf);
3269 r10_bio->state = 0;
3270
3271 r10_bio->mddev = mddev;
3272 atomic_set(&r10_bio->remaining, 0);
3273 raise_barrier(conf, 0);
3274 conf->next_resync = sector_nr;
3275
3276 r10_bio->master_bio = NULL;
3277 r10_bio->sector = sector_nr;
3278 set_bit(R10BIO_IsSync, &r10_bio->state);
3279 raid10_find_phys(conf, r10_bio);
3280 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3281
3282 for (i = 0; i < conf->copies; i++) {
3283 int d = r10_bio->devs[i].devnum;
3284 sector_t first_bad, sector;
3285 int bad_sectors;
3286 struct md_rdev *rdev;
3287
3288 if (r10_bio->devs[i].repl_bio)
3289 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3290
3291 bio = r10_bio->devs[i].bio;
3292 bio->bi_status = BLK_STS_IOERR;
3293 rcu_read_lock();
3294 rdev = rcu_dereference(conf->mirrors[d].rdev);
3295 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3296 rcu_read_unlock();
3297 continue;
3298 }
3299 sector = r10_bio->devs[i].addr;
3300 if (is_badblock(rdev, sector, max_sync,
3301 &first_bad, &bad_sectors)) {
3302 if (first_bad > sector)
3303 max_sync = first_bad - sector;
3304 else {
3305 bad_sectors -= (sector - first_bad);
3306 if (max_sync > bad_sectors)
3307 max_sync = bad_sectors;
3308 rcu_read_unlock();
3309 continue;
3310 }
3311 }
3312 atomic_inc(&rdev->nr_pending);
3313 atomic_inc(&r10_bio->remaining);
3314 bio->bi_next = biolist;
3315 biolist = bio;
3316 bio->bi_end_io = end_sync_read;
3317 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3318 if (test_bit(FailFast, &rdev->flags))
3319 bio->bi_opf |= MD_FAILFAST;
3320 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3321 bio->bi_bdev = rdev->bdev;
3322 count++;
3323
3324 rdev = rcu_dereference(conf->mirrors[d].replacement);
3325 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3326 rcu_read_unlock();
3327 continue;
3328 }
3329 atomic_inc(&rdev->nr_pending);
3330
3331 /* Need to set up for writing to the replacement */
3332 bio = r10_bio->devs[i].repl_bio;
3333 bio->bi_status = BLK_STS_IOERR;
3334
3335 sector = r10_bio->devs[i].addr;
3336 bio->bi_next = biolist;
3337 biolist = bio;
3338 bio->bi_end_io = end_sync_write;
3339 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3340 if (test_bit(FailFast, &rdev->flags))
3341 bio->bi_opf |= MD_FAILFAST;
3342 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3343 bio->bi_bdev = rdev->bdev;
3344 count++;
3345 rcu_read_unlock();
3346 }
3347
3348 if (count < 2) {
3349 for (i=0; i<conf->copies; i++) {
3350 int d = r10_bio->devs[i].devnum;
3351 if (r10_bio->devs[i].bio->bi_end_io)
3352 rdev_dec_pending(conf->mirrors[d].rdev,
3353 mddev);
3354 if (r10_bio->devs[i].repl_bio &&
3355 r10_bio->devs[i].repl_bio->bi_end_io)
3356 rdev_dec_pending(
3357 conf->mirrors[d].replacement,
3358 mddev);
3359 }
3360 put_buf(r10_bio);
3361 biolist = NULL;
3362 goto giveup;
3363 }
3364 }
3365
3366 nr_sectors = 0;
3367 if (sector_nr + max_sync < max_sector)
3368 max_sector = sector_nr + max_sync;
3369 do {
3370 struct page *page;
3371 int len = PAGE_SIZE;
3372 if (sector_nr + (len>>9) > max_sector)
3373 len = (max_sector - sector_nr) << 9;
3374 if (len == 0)
3375 break;
3376 for (bio= biolist ; bio ; bio=bio->bi_next) {
3377 struct resync_pages *rp = get_resync_pages(bio);
3378 page = resync_fetch_page(rp, page_idx);
3379 /*
3380 * won't fail because the vec table is big enough
3381 * to hold all these pages
3382 */
3383 bio_add_page(bio, page, len, 0);
3384 }
3385 nr_sectors += len>>9;
3386 sector_nr += len>>9;
3387 } while (++page_idx < RESYNC_PAGES);
3388 r10_bio->sectors = nr_sectors;
3389
3390 while (biolist) {
3391 bio = biolist;
3392 biolist = biolist->bi_next;
3393
3394 bio->bi_next = NULL;
3395 r10_bio = get_resync_r10bio(bio);
3396 r10_bio->sectors = nr_sectors;
3397
3398 if (bio->bi_end_io == end_sync_read) {
3399 md_sync_acct(bio->bi_bdev, nr_sectors);
3400 bio->bi_status = 0;
3401 generic_make_request(bio);
3402 }
3403 }
3404
3405 if (sectors_skipped)
3406 /* pretend they weren't skipped, it makes
3407 * no important difference in this case
3408 */
3409 md_done_sync(mddev, sectors_skipped, 1);
3410
3411 return sectors_skipped + nr_sectors;
3412 giveup:
3413 /* There is nowhere to write, so all non-sync
3414 * drives must be failed or in resync, all drives
3415 * have a bad block, so try the next chunk...
3416 */
3417 if (sector_nr + max_sync < max_sector)
3418 max_sector = sector_nr + max_sync;
3419
3420 sectors_skipped += (max_sector - sector_nr);
3421 chunks_skipped ++;
3422 sector_nr = max_sector;
3423 goto skipped;
3424 }
3425
3426 static sector_t
3427 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3428 {
3429 sector_t size;
3430 struct r10conf *conf = mddev->private;
3431
3432 if (!raid_disks)
3433 raid_disks = min(conf->geo.raid_disks,
3434 conf->prev.raid_disks);
3435 if (!sectors)
3436 sectors = conf->dev_sectors;
3437
3438 size = sectors >> conf->geo.chunk_shift;
3439 sector_div(size, conf->geo.far_copies);
3440 size = size * raid_disks;
3441 sector_div(size, conf->geo.near_copies);
3442
3443 return size << conf->geo.chunk_shift;
3444 }
3445
3446 static void calc_sectors(struct r10conf *conf, sector_t size)
3447 {
3448 /* Calculate the number of sectors-per-device that will
3449 * actually be used, and set conf->dev_sectors and
3450 * conf->stride
3451 */
3452
3453 size = size >> conf->geo.chunk_shift;
3454 sector_div(size, conf->geo.far_copies);
3455 size = size * conf->geo.raid_disks;
3456 sector_div(size, conf->geo.near_copies);
3457 /* 'size' is now the number of chunks in the array */
3458 /* calculate "used chunks per device" */
3459 size = size * conf->copies;
3460
3461 /* We need to round up when dividing by raid_disks to
3462 * get the stride size.
3463 */
3464 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3465
3466 conf->dev_sectors = size << conf->geo.chunk_shift;
3467
3468 if (conf->geo.far_offset)
3469 conf->geo.stride = 1 << conf->geo.chunk_shift;
3470 else {
3471 sector_div(size, conf->geo.far_copies);
3472 conf->geo.stride = size << conf->geo.chunk_shift;
3473 }
3474 }
3475
3476 enum geo_type {geo_new, geo_old, geo_start};
3477 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3478 {
3479 int nc, fc, fo;
3480 int layout, chunk, disks;
3481 switch (new) {
3482 case geo_old:
3483 layout = mddev->layout;
3484 chunk = mddev->chunk_sectors;
3485 disks = mddev->raid_disks - mddev->delta_disks;
3486 break;
3487 case geo_new:
3488 layout = mddev->new_layout;
3489 chunk = mddev->new_chunk_sectors;
3490 disks = mddev->raid_disks;
3491 break;
3492 default: /* avoid 'may be unused' warnings */
3493 case geo_start: /* new when starting reshape - raid_disks not
3494 * updated yet. */
3495 layout = mddev->new_layout;
3496 chunk = mddev->new_chunk_sectors;
3497 disks = mddev->raid_disks + mddev->delta_disks;
3498 break;
3499 }
3500 if (layout >> 19)
3501 return -1;
3502 if (chunk < (PAGE_SIZE >> 9) ||
3503 !is_power_of_2(chunk))
3504 return -2;
3505 nc = layout & 255;
3506 fc = (layout >> 8) & 255;
3507 fo = layout & (1<<16);
3508 geo->raid_disks = disks;
3509 geo->near_copies = nc;
3510 geo->far_copies = fc;
3511 geo->far_offset = fo;
3512 switch (layout >> 17) {
3513 case 0: /* original layout. simple but not always optimal */
3514 geo->far_set_size = disks;
3515 break;
3516 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3517 * actually using this, but leave code here just in case.*/
3518 geo->far_set_size = disks/fc;
3519 WARN(geo->far_set_size < fc,
3520 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3521 break;
3522 case 2: /* "improved" layout fixed to match documentation */
3523 geo->far_set_size = fc * nc;
3524 break;
3525 default: /* Not a valid layout */
3526 return -1;
3527 }
3528 geo->chunk_mask = chunk - 1;
3529 geo->chunk_shift = ffz(~chunk);
3530 return nc*fc;
3531 }
3532
3533 static struct r10conf *setup_conf(struct mddev *mddev)
3534 {
3535 struct r10conf *conf = NULL;
3536 int err = -EINVAL;
3537 struct geom geo;
3538 int copies;
3539
3540 copies = setup_geo(&geo, mddev, geo_new);
3541
3542 if (copies == -2) {
3543 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3544 mdname(mddev), PAGE_SIZE);
3545 goto out;
3546 }
3547
3548 if (copies < 2 || copies > mddev->raid_disks) {
3549 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3550 mdname(mddev), mddev->new_layout);
3551 goto out;
3552 }
3553
3554 err = -ENOMEM;
3555 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3556 if (!conf)
3557 goto out;
3558
3559 /* FIXME calc properly */
3560 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3561 max(0,-mddev->delta_disks)),
3562 GFP_KERNEL);
3563 if (!conf->mirrors)
3564 goto out;
3565
3566 conf->tmppage = alloc_page(GFP_KERNEL);
3567 if (!conf->tmppage)
3568 goto out;
3569
3570 conf->geo = geo;
3571 conf->copies = copies;
3572 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3573 r10bio_pool_free, conf);
3574 if (!conf->r10bio_pool)
3575 goto out;
3576
3577 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3578 if (!conf->bio_split)
3579 goto out;
3580
3581 calc_sectors(conf, mddev->dev_sectors);
3582 if (mddev->reshape_position == MaxSector) {
3583 conf->prev = conf->geo;
3584 conf->reshape_progress = MaxSector;
3585 } else {
3586 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3587 err = -EINVAL;
3588 goto out;
3589 }
3590 conf->reshape_progress = mddev->reshape_position;
3591 if (conf->prev.far_offset)
3592 conf->prev.stride = 1 << conf->prev.chunk_shift;
3593 else
3594 /* far_copies must be 1 */
3595 conf->prev.stride = conf->dev_sectors;
3596 }
3597 conf->reshape_safe = conf->reshape_progress;
3598 spin_lock_init(&conf->device_lock);
3599 INIT_LIST_HEAD(&conf->retry_list);
3600 INIT_LIST_HEAD(&conf->bio_end_io_list);
3601
3602 spin_lock_init(&conf->resync_lock);
3603 init_waitqueue_head(&conf->wait_barrier);
3604 atomic_set(&conf->nr_pending, 0);
3605
3606 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3607 if (!conf->thread)
3608 goto out;
3609
3610 conf->mddev = mddev;
3611 return conf;
3612
3613 out:
3614 if (conf) {
3615 mempool_destroy(conf->r10bio_pool);
3616 kfree(conf->mirrors);
3617 safe_put_page(conf->tmppage);
3618 if (conf->bio_split)
3619 bioset_free(conf->bio_split);
3620 kfree(conf);
3621 }
3622 return ERR_PTR(err);
3623 }
3624
3625 static int raid10_run(struct mddev *mddev)
3626 {
3627 struct r10conf *conf;
3628 int i, disk_idx, chunk_size;
3629 struct raid10_info *disk;
3630 struct md_rdev *rdev;
3631 sector_t size;
3632 sector_t min_offset_diff = 0;
3633 int first = 1;
3634 bool discard_supported = false;
3635
3636 if (mddev_init_writes_pending(mddev) < 0)
3637 return -ENOMEM;
3638
3639 if (mddev->private == NULL) {
3640 conf = setup_conf(mddev);
3641 if (IS_ERR(conf))
3642 return PTR_ERR(conf);
3643 mddev->private = conf;
3644 }
3645 conf = mddev->private;
3646 if (!conf)
3647 goto out;
3648
3649 mddev->thread = conf->thread;
3650 conf->thread = NULL;
3651
3652 chunk_size = mddev->chunk_sectors << 9;
3653 if (mddev->queue) {
3654 blk_queue_max_discard_sectors(mddev->queue,
3655 mddev->chunk_sectors);
3656 blk_queue_max_write_same_sectors(mddev->queue, 0);
3657 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3658 blk_queue_io_min(mddev->queue, chunk_size);
3659 if (conf->geo.raid_disks % conf->geo.near_copies)
3660 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3661 else
3662 blk_queue_io_opt(mddev->queue, chunk_size *
3663 (conf->geo.raid_disks / conf->geo.near_copies));
3664 }
3665
3666 rdev_for_each(rdev, mddev) {
3667 long long diff;
3668
3669 disk_idx = rdev->raid_disk;
3670 if (disk_idx < 0)
3671 continue;
3672 if (disk_idx >= conf->geo.raid_disks &&
3673 disk_idx >= conf->prev.raid_disks)
3674 continue;
3675 disk = conf->mirrors + disk_idx;
3676
3677 if (test_bit(Replacement, &rdev->flags)) {
3678 if (disk->replacement)
3679 goto out_free_conf;
3680 disk->replacement = rdev;
3681 } else {
3682 if (disk->rdev)
3683 goto out_free_conf;
3684 disk->rdev = rdev;
3685 }
3686 diff = (rdev->new_data_offset - rdev->data_offset);
3687 if (!mddev->reshape_backwards)
3688 diff = -diff;
3689 if (diff < 0)
3690 diff = 0;
3691 if (first || diff < min_offset_diff)
3692 min_offset_diff = diff;
3693
3694 if (mddev->gendisk)
3695 disk_stack_limits(mddev->gendisk, rdev->bdev,
3696 rdev->data_offset << 9);
3697
3698 disk->head_position = 0;
3699
3700 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3701 discard_supported = true;
3702 first = 0;
3703 }
3704
3705 if (mddev->queue) {
3706 if (discard_supported)
3707 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3708 mddev->queue);
3709 else
3710 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3711 mddev->queue);
3712 }
3713 /* need to check that every block has at least one working mirror */
3714 if (!enough(conf, -1)) {
3715 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3716 mdname(mddev));
3717 goto out_free_conf;
3718 }
3719
3720 if (conf->reshape_progress != MaxSector) {
3721 /* must ensure that shape change is supported */
3722 if (conf->geo.far_copies != 1 &&
3723 conf->geo.far_offset == 0)
3724 goto out_free_conf;
3725 if (conf->prev.far_copies != 1 &&
3726 conf->prev.far_offset == 0)
3727 goto out_free_conf;
3728 }
3729
3730 mddev->degraded = 0;
3731 for (i = 0;
3732 i < conf->geo.raid_disks
3733 || i < conf->prev.raid_disks;
3734 i++) {
3735
3736 disk = conf->mirrors + i;
3737
3738 if (!disk->rdev && disk->replacement) {
3739 /* The replacement is all we have - use it */
3740 disk->rdev = disk->replacement;
3741 disk->replacement = NULL;
3742 clear_bit(Replacement, &disk->rdev->flags);
3743 }
3744
3745 if (!disk->rdev ||
3746 !test_bit(In_sync, &disk->rdev->flags)) {
3747 disk->head_position = 0;
3748 mddev->degraded++;
3749 if (disk->rdev &&
3750 disk->rdev->saved_raid_disk < 0)
3751 conf->fullsync = 1;
3752 }
3753 disk->recovery_disabled = mddev->recovery_disabled - 1;
3754 }
3755
3756 if (mddev->recovery_cp != MaxSector)
3757 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3758 mdname(mddev));
3759 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3760 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3761 conf->geo.raid_disks);
3762 /*
3763 * Ok, everything is just fine now
3764 */
3765 mddev->dev_sectors = conf->dev_sectors;
3766 size = raid10_size(mddev, 0, 0);
3767 md_set_array_sectors(mddev, size);
3768 mddev->resync_max_sectors = size;
3769 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3770
3771 if (mddev->queue) {
3772 int stripe = conf->geo.raid_disks *
3773 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3774
3775 /* Calculate max read-ahead size.
3776 * We need to readahead at least twice a whole stripe....
3777 * maybe...
3778 */
3779 stripe /= conf->geo.near_copies;
3780 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3781 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3782 }
3783
3784 if (md_integrity_register(mddev))
3785 goto out_free_conf;
3786
3787 if (conf->reshape_progress != MaxSector) {
3788 unsigned long before_length, after_length;
3789
3790 before_length = ((1 << conf->prev.chunk_shift) *
3791 conf->prev.far_copies);
3792 after_length = ((1 << conf->geo.chunk_shift) *
3793 conf->geo.far_copies);
3794
3795 if (max(before_length, after_length) > min_offset_diff) {
3796 /* This cannot work */
3797 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3798 goto out_free_conf;
3799 }
3800 conf->offset_diff = min_offset_diff;
3801
3802 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3803 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3804 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3805 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3806 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3807 "reshape");
3808 }
3809
3810 return 0;
3811
3812 out_free_conf:
3813 md_unregister_thread(&mddev->thread);
3814 mempool_destroy(conf->r10bio_pool);
3815 safe_put_page(conf->tmppage);
3816 kfree(conf->mirrors);
3817 kfree(conf);
3818 mddev->private = NULL;
3819 out:
3820 return -EIO;
3821 }
3822
3823 static void raid10_free(struct mddev *mddev, void *priv)
3824 {
3825 struct r10conf *conf = priv;
3826
3827 mempool_destroy(conf->r10bio_pool);
3828 safe_put_page(conf->tmppage);
3829 kfree(conf->mirrors);
3830 kfree(conf->mirrors_old);
3831 kfree(conf->mirrors_new);
3832 if (conf->bio_split)
3833 bioset_free(conf->bio_split);
3834 kfree(conf);
3835 }
3836
3837 static void raid10_quiesce(struct mddev *mddev, int state)
3838 {
3839 struct r10conf *conf = mddev->private;
3840
3841 switch(state) {
3842 case 1:
3843 raise_barrier(conf, 0);
3844 break;
3845 case 0:
3846 lower_barrier(conf);
3847 break;
3848 }
3849 }
3850
3851 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3852 {
3853 /* Resize of 'far' arrays is not supported.
3854 * For 'near' and 'offset' arrays we can set the
3855 * number of sectors used to be an appropriate multiple
3856 * of the chunk size.
3857 * For 'offset', this is far_copies*chunksize.
3858 * For 'near' the multiplier is the LCM of
3859 * near_copies and raid_disks.
3860 * So if far_copies > 1 && !far_offset, fail.
3861 * Else find LCM(raid_disks, near_copy)*far_copies and
3862 * multiply by chunk_size. Then round to this number.
3863 * This is mostly done by raid10_size()
3864 */
3865 struct r10conf *conf = mddev->private;
3866 sector_t oldsize, size;
3867
3868 if (mddev->reshape_position != MaxSector)
3869 return -EBUSY;
3870
3871 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3872 return -EINVAL;
3873
3874 oldsize = raid10_size(mddev, 0, 0);
3875 size = raid10_size(mddev, sectors, 0);
3876 if (mddev->external_size &&
3877 mddev->array_sectors > size)
3878 return -EINVAL;
3879 if (mddev->bitmap) {
3880 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3881 if (ret)
3882 return ret;
3883 }
3884 md_set_array_sectors(mddev, size);
3885 if (sectors > mddev->dev_sectors &&
3886 mddev->recovery_cp > oldsize) {
3887 mddev->recovery_cp = oldsize;
3888 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3889 }
3890 calc_sectors(conf, sectors);
3891 mddev->dev_sectors = conf->dev_sectors;
3892 mddev->resync_max_sectors = size;
3893 return 0;
3894 }
3895
3896 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3897 {
3898 struct md_rdev *rdev;
3899 struct r10conf *conf;
3900
3901 if (mddev->degraded > 0) {
3902 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3903 mdname(mddev));
3904 return ERR_PTR(-EINVAL);
3905 }
3906 sector_div(size, devs);
3907
3908 /* Set new parameters */
3909 mddev->new_level = 10;
3910 /* new layout: far_copies = 1, near_copies = 2 */
3911 mddev->new_layout = (1<<8) + 2;
3912 mddev->new_chunk_sectors = mddev->chunk_sectors;
3913 mddev->delta_disks = mddev->raid_disks;
3914 mddev->raid_disks *= 2;
3915 /* make sure it will be not marked as dirty */
3916 mddev->recovery_cp = MaxSector;
3917 mddev->dev_sectors = size;
3918
3919 conf = setup_conf(mddev);
3920 if (!IS_ERR(conf)) {
3921 rdev_for_each(rdev, mddev)
3922 if (rdev->raid_disk >= 0) {
3923 rdev->new_raid_disk = rdev->raid_disk * 2;
3924 rdev->sectors = size;
3925 }
3926 conf->barrier = 1;
3927 }
3928
3929 return conf;
3930 }
3931
3932 static void *raid10_takeover(struct mddev *mddev)
3933 {
3934 struct r0conf *raid0_conf;
3935
3936 /* raid10 can take over:
3937 * raid0 - providing it has only two drives
3938 */
3939 if (mddev->level == 0) {
3940 /* for raid0 takeover only one zone is supported */
3941 raid0_conf = mddev->private;
3942 if (raid0_conf->nr_strip_zones > 1) {
3943 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3944 mdname(mddev));
3945 return ERR_PTR(-EINVAL);
3946 }
3947 return raid10_takeover_raid0(mddev,
3948 raid0_conf->strip_zone->zone_end,
3949 raid0_conf->strip_zone->nb_dev);
3950 }
3951 return ERR_PTR(-EINVAL);
3952 }
3953
3954 static int raid10_check_reshape(struct mddev *mddev)
3955 {
3956 /* Called when there is a request to change
3957 * - layout (to ->new_layout)
3958 * - chunk size (to ->new_chunk_sectors)
3959 * - raid_disks (by delta_disks)
3960 * or when trying to restart a reshape that was ongoing.
3961 *
3962 * We need to validate the request and possibly allocate
3963 * space if that might be an issue later.
3964 *
3965 * Currently we reject any reshape of a 'far' mode array,
3966 * allow chunk size to change if new is generally acceptable,
3967 * allow raid_disks to increase, and allow
3968 * a switch between 'near' mode and 'offset' mode.
3969 */
3970 struct r10conf *conf = mddev->private;
3971 struct geom geo;
3972
3973 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974 return -EINVAL;
3975
3976 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977 /* mustn't change number of copies */
3978 return -EINVAL;
3979 if (geo.far_copies > 1 && !geo.far_offset)
3980 /* Cannot switch to 'far' mode */
3981 return -EINVAL;
3982
3983 if (mddev->array_sectors & geo.chunk_mask)
3984 /* not factor of array size */
3985 return -EINVAL;
3986
3987 if (!enough(conf, -1))
3988 return -EINVAL;
3989
3990 kfree(conf->mirrors_new);
3991 conf->mirrors_new = NULL;
3992 if (mddev->delta_disks > 0) {
3993 /* allocate new 'mirrors' list */
3994 conf->mirrors_new = kzalloc(
3995 sizeof(struct raid10_info)
3996 *(mddev->raid_disks +
3997 mddev->delta_disks),
3998 GFP_KERNEL);
3999 if (!conf->mirrors_new)
4000 return -ENOMEM;
4001 }
4002 return 0;
4003 }
4004
4005 /*
4006 * Need to check if array has failed when deciding whether to:
4007 * - start an array
4008 * - remove non-faulty devices
4009 * - add a spare
4010 * - allow a reshape
4011 * This determination is simple when no reshape is happening.
4012 * However if there is a reshape, we need to carefully check
4013 * both the before and after sections.
4014 * This is because some failed devices may only affect one
4015 * of the two sections, and some non-in_sync devices may
4016 * be insync in the section most affected by failed devices.
4017 */
4018 static int calc_degraded(struct r10conf *conf)
4019 {
4020 int degraded, degraded2;
4021 int i;
4022
4023 rcu_read_lock();
4024 degraded = 0;
4025 /* 'prev' section first */
4026 for (i = 0; i < conf->prev.raid_disks; i++) {
4027 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028 if (!rdev || test_bit(Faulty, &rdev->flags))
4029 degraded++;
4030 else if (!test_bit(In_sync, &rdev->flags))
4031 /* When we can reduce the number of devices in
4032 * an array, this might not contribute to
4033 * 'degraded'. It does now.
4034 */
4035 degraded++;
4036 }
4037 rcu_read_unlock();
4038 if (conf->geo.raid_disks == conf->prev.raid_disks)
4039 return degraded;
4040 rcu_read_lock();
4041 degraded2 = 0;
4042 for (i = 0; i < conf->geo.raid_disks; i++) {
4043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044 if (!rdev || test_bit(Faulty, &rdev->flags))
4045 degraded2++;
4046 else if (!test_bit(In_sync, &rdev->flags)) {
4047 /* If reshape is increasing the number of devices,
4048 * this section has already been recovered, so
4049 * it doesn't contribute to degraded.
4050 * else it does.
4051 */
4052 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053 degraded2++;
4054 }
4055 }
4056 rcu_read_unlock();
4057 if (degraded2 > degraded)
4058 return degraded2;
4059 return degraded;
4060 }
4061
4062 static int raid10_start_reshape(struct mddev *mddev)
4063 {
4064 /* A 'reshape' has been requested. This commits
4065 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066 * This also checks if there are enough spares and adds them
4067 * to the array.
4068 * We currently require enough spares to make the final
4069 * array non-degraded. We also require that the difference
4070 * between old and new data_offset - on each device - is
4071 * enough that we never risk over-writing.
4072 */
4073
4074 unsigned long before_length, after_length;
4075 sector_t min_offset_diff = 0;
4076 int first = 1;
4077 struct geom new;
4078 struct r10conf *conf = mddev->private;
4079 struct md_rdev *rdev;
4080 int spares = 0;
4081 int ret;
4082
4083 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084 return -EBUSY;
4085
4086 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087 return -EINVAL;
4088
4089 before_length = ((1 << conf->prev.chunk_shift) *
4090 conf->prev.far_copies);
4091 after_length = ((1 << conf->geo.chunk_shift) *
4092 conf->geo.far_copies);
4093
4094 rdev_for_each(rdev, mddev) {
4095 if (!test_bit(In_sync, &rdev->flags)
4096 && !test_bit(Faulty, &rdev->flags))
4097 spares++;
4098 if (rdev->raid_disk >= 0) {
4099 long long diff = (rdev->new_data_offset
4100 - rdev->data_offset);
4101 if (!mddev->reshape_backwards)
4102 diff = -diff;
4103 if (diff < 0)
4104 diff = 0;
4105 if (first || diff < min_offset_diff)
4106 min_offset_diff = diff;
4107 first = 0;
4108 }
4109 }
4110
4111 if (max(before_length, after_length) > min_offset_diff)
4112 return -EINVAL;
4113
4114 if (spares < mddev->delta_disks)
4115 return -EINVAL;
4116
4117 conf->offset_diff = min_offset_diff;
4118 spin_lock_irq(&conf->device_lock);
4119 if (conf->mirrors_new) {
4120 memcpy(conf->mirrors_new, conf->mirrors,
4121 sizeof(struct raid10_info)*conf->prev.raid_disks);
4122 smp_mb();
4123 kfree(conf->mirrors_old);
4124 conf->mirrors_old = conf->mirrors;
4125 conf->mirrors = conf->mirrors_new;
4126 conf->mirrors_new = NULL;
4127 }
4128 setup_geo(&conf->geo, mddev, geo_start);
4129 smp_mb();
4130 if (mddev->reshape_backwards) {
4131 sector_t size = raid10_size(mddev, 0, 0);
4132 if (size < mddev->array_sectors) {
4133 spin_unlock_irq(&conf->device_lock);
4134 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4135 mdname(mddev));
4136 return -EINVAL;
4137 }
4138 mddev->resync_max_sectors = size;
4139 conf->reshape_progress = size;
4140 } else
4141 conf->reshape_progress = 0;
4142 conf->reshape_safe = conf->reshape_progress;
4143 spin_unlock_irq(&conf->device_lock);
4144
4145 if (mddev->delta_disks && mddev->bitmap) {
4146 ret = bitmap_resize(mddev->bitmap,
4147 raid10_size(mddev, 0,
4148 conf->geo.raid_disks),
4149 0, 0);
4150 if (ret)
4151 goto abort;
4152 }
4153 if (mddev->delta_disks > 0) {
4154 rdev_for_each(rdev, mddev)
4155 if (rdev->raid_disk < 0 &&
4156 !test_bit(Faulty, &rdev->flags)) {
4157 if (raid10_add_disk(mddev, rdev) == 0) {
4158 if (rdev->raid_disk >=
4159 conf->prev.raid_disks)
4160 set_bit(In_sync, &rdev->flags);
4161 else
4162 rdev->recovery_offset = 0;
4163
4164 if (sysfs_link_rdev(mddev, rdev))
4165 /* Failure here is OK */;
4166 }
4167 } else if (rdev->raid_disk >= conf->prev.raid_disks
4168 && !test_bit(Faulty, &rdev->flags)) {
4169 /* This is a spare that was manually added */
4170 set_bit(In_sync, &rdev->flags);
4171 }
4172 }
4173 /* When a reshape changes the number of devices,
4174 * ->degraded is measured against the larger of the
4175 * pre and post numbers.
4176 */
4177 spin_lock_irq(&conf->device_lock);
4178 mddev->degraded = calc_degraded(conf);
4179 spin_unlock_irq(&conf->device_lock);
4180 mddev->raid_disks = conf->geo.raid_disks;
4181 mddev->reshape_position = conf->reshape_progress;
4182 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4183
4184 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4185 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4186 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4187 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4188 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4189
4190 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4191 "reshape");
4192 if (!mddev->sync_thread) {
4193 ret = -EAGAIN;
4194 goto abort;
4195 }
4196 conf->reshape_checkpoint = jiffies;
4197 md_wakeup_thread(mddev->sync_thread);
4198 md_new_event(mddev);
4199 return 0;
4200
4201 abort:
4202 mddev->recovery = 0;
4203 spin_lock_irq(&conf->device_lock);
4204 conf->geo = conf->prev;
4205 mddev->raid_disks = conf->geo.raid_disks;
4206 rdev_for_each(rdev, mddev)
4207 rdev->new_data_offset = rdev->data_offset;
4208 smp_wmb();
4209 conf->reshape_progress = MaxSector;
4210 conf->reshape_safe = MaxSector;
4211 mddev->reshape_position = MaxSector;
4212 spin_unlock_irq(&conf->device_lock);
4213 return ret;
4214 }
4215
4216 /* Calculate the last device-address that could contain
4217 * any block from the chunk that includes the array-address 's'
4218 * and report the next address.
4219 * i.e. the address returned will be chunk-aligned and after
4220 * any data that is in the chunk containing 's'.
4221 */
4222 static sector_t last_dev_address(sector_t s, struct geom *geo)
4223 {
4224 s = (s | geo->chunk_mask) + 1;
4225 s >>= geo->chunk_shift;
4226 s *= geo->near_copies;
4227 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4228 s *= geo->far_copies;
4229 s <<= geo->chunk_shift;
4230 return s;
4231 }
4232
4233 /* Calculate the first device-address that could contain
4234 * any block from the chunk that includes the array-address 's'.
4235 * This too will be the start of a chunk
4236 */
4237 static sector_t first_dev_address(sector_t s, struct geom *geo)
4238 {
4239 s >>= geo->chunk_shift;
4240 s *= geo->near_copies;
4241 sector_div(s, geo->raid_disks);
4242 s *= geo->far_copies;
4243 s <<= geo->chunk_shift;
4244 return s;
4245 }
4246
4247 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4248 int *skipped)
4249 {
4250 /* We simply copy at most one chunk (smallest of old and new)
4251 * at a time, possibly less if that exceeds RESYNC_PAGES,
4252 * or we hit a bad block or something.
4253 * This might mean we pause for normal IO in the middle of
4254 * a chunk, but that is not a problem as mddev->reshape_position
4255 * can record any location.
4256 *
4257 * If we will want to write to a location that isn't
4258 * yet recorded as 'safe' (i.e. in metadata on disk) then
4259 * we need to flush all reshape requests and update the metadata.
4260 *
4261 * When reshaping forwards (e.g. to more devices), we interpret
4262 * 'safe' as the earliest block which might not have been copied
4263 * down yet. We divide this by previous stripe size and multiply
4264 * by previous stripe length to get lowest device offset that we
4265 * cannot write to yet.
4266 * We interpret 'sector_nr' as an address that we want to write to.
4267 * From this we use last_device_address() to find where we might
4268 * write to, and first_device_address on the 'safe' position.
4269 * If this 'next' write position is after the 'safe' position,
4270 * we must update the metadata to increase the 'safe' position.
4271 *
4272 * When reshaping backwards, we round in the opposite direction
4273 * and perform the reverse test: next write position must not be
4274 * less than current safe position.
4275 *
4276 * In all this the minimum difference in data offsets
4277 * (conf->offset_diff - always positive) allows a bit of slack,
4278 * so next can be after 'safe', but not by more than offset_diff
4279 *
4280 * We need to prepare all the bios here before we start any IO
4281 * to ensure the size we choose is acceptable to all devices.
4282 * The means one for each copy for write-out and an extra one for
4283 * read-in.
4284 * We store the read-in bio in ->master_bio and the others in
4285 * ->devs[x].bio and ->devs[x].repl_bio.
4286 */
4287 struct r10conf *conf = mddev->private;
4288 struct r10bio *r10_bio;
4289 sector_t next, safe, last;
4290 int max_sectors;
4291 int nr_sectors;
4292 int s;
4293 struct md_rdev *rdev;
4294 int need_flush = 0;
4295 struct bio *blist;
4296 struct bio *bio, *read_bio;
4297 int sectors_done = 0;
4298 struct page **pages;
4299
4300 if (sector_nr == 0) {
4301 /* If restarting in the middle, skip the initial sectors */
4302 if (mddev->reshape_backwards &&
4303 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4304 sector_nr = (raid10_size(mddev, 0, 0)
4305 - conf->reshape_progress);
4306 } else if (!mddev->reshape_backwards &&
4307 conf->reshape_progress > 0)
4308 sector_nr = conf->reshape_progress;
4309 if (sector_nr) {
4310 mddev->curr_resync_completed = sector_nr;
4311 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4312 *skipped = 1;
4313 return sector_nr;
4314 }
4315 }
4316
4317 /* We don't use sector_nr to track where we are up to
4318 * as that doesn't work well for ->reshape_backwards.
4319 * So just use ->reshape_progress.
4320 */
4321 if (mddev->reshape_backwards) {
4322 /* 'next' is the earliest device address that we might
4323 * write to for this chunk in the new layout
4324 */
4325 next = first_dev_address(conf->reshape_progress - 1,
4326 &conf->geo);
4327
4328 /* 'safe' is the last device address that we might read from
4329 * in the old layout after a restart
4330 */
4331 safe = last_dev_address(conf->reshape_safe - 1,
4332 &conf->prev);
4333
4334 if (next + conf->offset_diff < safe)
4335 need_flush = 1;
4336
4337 last = conf->reshape_progress - 1;
4338 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4339 & conf->prev.chunk_mask);
4340 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4341 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4342 } else {
4343 /* 'next' is after the last device address that we
4344 * might write to for this chunk in the new layout
4345 */
4346 next = last_dev_address(conf->reshape_progress, &conf->geo);
4347
4348 /* 'safe' is the earliest device address that we might
4349 * read from in the old layout after a restart
4350 */
4351 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4352
4353 /* Need to update metadata if 'next' might be beyond 'safe'
4354 * as that would possibly corrupt data
4355 */
4356 if (next > safe + conf->offset_diff)
4357 need_flush = 1;
4358
4359 sector_nr = conf->reshape_progress;
4360 last = sector_nr | (conf->geo.chunk_mask
4361 & conf->prev.chunk_mask);
4362
4363 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4364 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4365 }
4366
4367 if (need_flush ||
4368 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4369 /* Need to update reshape_position in metadata */
4370 wait_barrier(conf);
4371 mddev->reshape_position = conf->reshape_progress;
4372 if (mddev->reshape_backwards)
4373 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4374 - conf->reshape_progress;
4375 else
4376 mddev->curr_resync_completed = conf->reshape_progress;
4377 conf->reshape_checkpoint = jiffies;
4378 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4379 md_wakeup_thread(mddev->thread);
4380 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4381 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4382 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4383 allow_barrier(conf);
4384 return sectors_done;
4385 }
4386 conf->reshape_safe = mddev->reshape_position;
4387 allow_barrier(conf);
4388 }
4389
4390 read_more:
4391 /* Now schedule reads for blocks from sector_nr to last */
4392 r10_bio = raid10_alloc_init_r10buf(conf);
4393 r10_bio->state = 0;
4394 raise_barrier(conf, sectors_done != 0);
4395 atomic_set(&r10_bio->remaining, 0);
4396 r10_bio->mddev = mddev;
4397 r10_bio->sector = sector_nr;
4398 set_bit(R10BIO_IsReshape, &r10_bio->state);
4399 r10_bio->sectors = last - sector_nr + 1;
4400 rdev = read_balance(conf, r10_bio, &max_sectors);
4401 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4402
4403 if (!rdev) {
4404 /* Cannot read from here, so need to record bad blocks
4405 * on all the target devices.
4406 */
4407 // FIXME
4408 mempool_free(r10_bio, conf->r10buf_pool);
4409 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4410 return sectors_done;
4411 }
4412
4413 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4414
4415 read_bio->bi_bdev = rdev->bdev;
4416 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4417 + rdev->data_offset);
4418 read_bio->bi_private = r10_bio;
4419 read_bio->bi_end_io = end_reshape_read;
4420 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4421 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4422 read_bio->bi_status = 0;
4423 read_bio->bi_vcnt = 0;
4424 read_bio->bi_iter.bi_size = 0;
4425 r10_bio->master_bio = read_bio;
4426 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4427
4428 /* Now find the locations in the new layout */
4429 __raid10_find_phys(&conf->geo, r10_bio);
4430
4431 blist = read_bio;
4432 read_bio->bi_next = NULL;
4433
4434 rcu_read_lock();
4435 for (s = 0; s < conf->copies*2; s++) {
4436 struct bio *b;
4437 int d = r10_bio->devs[s/2].devnum;
4438 struct md_rdev *rdev2;
4439 if (s&1) {
4440 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4441 b = r10_bio->devs[s/2].repl_bio;
4442 } else {
4443 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4444 b = r10_bio->devs[s/2].bio;
4445 }
4446 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4447 continue;
4448
4449 b->bi_bdev = rdev2->bdev;
4450 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4451 rdev2->new_data_offset;
4452 b->bi_end_io = end_reshape_write;
4453 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4454 b->bi_next = blist;
4455 blist = b;
4456 }
4457
4458 /* Now add as many pages as possible to all of these bios. */
4459
4460 nr_sectors = 0;
4461 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4462 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4463 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4464 int len = (max_sectors - s) << 9;
4465 if (len > PAGE_SIZE)
4466 len = PAGE_SIZE;
4467 for (bio = blist; bio ; bio = bio->bi_next) {
4468 /*
4469 * won't fail because the vec table is big enough
4470 * to hold all these pages
4471 */
4472 bio_add_page(bio, page, len, 0);
4473 }
4474 sector_nr += len >> 9;
4475 nr_sectors += len >> 9;
4476 }
4477 rcu_read_unlock();
4478 r10_bio->sectors = nr_sectors;
4479
4480 /* Now submit the read */
4481 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4482 atomic_inc(&r10_bio->remaining);
4483 read_bio->bi_next = NULL;
4484 generic_make_request(read_bio);
4485 sector_nr += nr_sectors;
4486 sectors_done += nr_sectors;
4487 if (sector_nr <= last)
4488 goto read_more;
4489
4490 /* Now that we have done the whole section we can
4491 * update reshape_progress
4492 */
4493 if (mddev->reshape_backwards)
4494 conf->reshape_progress -= sectors_done;
4495 else
4496 conf->reshape_progress += sectors_done;
4497
4498 return sectors_done;
4499 }
4500
4501 static void end_reshape_request(struct r10bio *r10_bio);
4502 static int handle_reshape_read_error(struct mddev *mddev,
4503 struct r10bio *r10_bio);
4504 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4505 {
4506 /* Reshape read completed. Hopefully we have a block
4507 * to write out.
4508 * If we got a read error then we do sync 1-page reads from
4509 * elsewhere until we find the data - or give up.
4510 */
4511 struct r10conf *conf = mddev->private;
4512 int s;
4513
4514 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4515 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4516 /* Reshape has been aborted */
4517 md_done_sync(mddev, r10_bio->sectors, 0);
4518 return;
4519 }
4520
4521 /* We definitely have the data in the pages, schedule the
4522 * writes.
4523 */
4524 atomic_set(&r10_bio->remaining, 1);
4525 for (s = 0; s < conf->copies*2; s++) {
4526 struct bio *b;
4527 int d = r10_bio->devs[s/2].devnum;
4528 struct md_rdev *rdev;
4529 rcu_read_lock();
4530 if (s&1) {
4531 rdev = rcu_dereference(conf->mirrors[d].replacement);
4532 b = r10_bio->devs[s/2].repl_bio;
4533 } else {
4534 rdev = rcu_dereference(conf->mirrors[d].rdev);
4535 b = r10_bio->devs[s/2].bio;
4536 }
4537 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4538 rcu_read_unlock();
4539 continue;
4540 }
4541 atomic_inc(&rdev->nr_pending);
4542 rcu_read_unlock();
4543 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4544 atomic_inc(&r10_bio->remaining);
4545 b->bi_next = NULL;
4546 generic_make_request(b);
4547 }
4548 end_reshape_request(r10_bio);
4549 }
4550
4551 static void end_reshape(struct r10conf *conf)
4552 {
4553 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4554 return;
4555
4556 spin_lock_irq(&conf->device_lock);
4557 conf->prev = conf->geo;
4558 md_finish_reshape(conf->mddev);
4559 smp_wmb();
4560 conf->reshape_progress = MaxSector;
4561 conf->reshape_safe = MaxSector;
4562 spin_unlock_irq(&conf->device_lock);
4563
4564 /* read-ahead size must cover two whole stripes, which is
4565 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4566 */
4567 if (conf->mddev->queue) {
4568 int stripe = conf->geo.raid_disks *
4569 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4570 stripe /= conf->geo.near_copies;
4571 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4572 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4573 }
4574 conf->fullsync = 0;
4575 }
4576
4577 static int handle_reshape_read_error(struct mddev *mddev,
4578 struct r10bio *r10_bio)
4579 {
4580 /* Use sync reads to get the blocks from somewhere else */
4581 int sectors = r10_bio->sectors;
4582 struct r10conf *conf = mddev->private;
4583 struct {
4584 struct r10bio r10_bio;
4585 struct r10dev devs[conf->copies];
4586 } on_stack;
4587 struct r10bio *r10b = &on_stack.r10_bio;
4588 int slot = 0;
4589 int idx = 0;
4590 struct page **pages;
4591
4592 /* reshape IOs share pages from .devs[0].bio */
4593 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4594
4595 r10b->sector = r10_bio->sector;
4596 __raid10_find_phys(&conf->prev, r10b);
4597
4598 while (sectors) {
4599 int s = sectors;
4600 int success = 0;
4601 int first_slot = slot;
4602
4603 if (s > (PAGE_SIZE >> 9))
4604 s = PAGE_SIZE >> 9;
4605
4606 rcu_read_lock();
4607 while (!success) {
4608 int d = r10b->devs[slot].devnum;
4609 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4610 sector_t addr;
4611 if (rdev == NULL ||
4612 test_bit(Faulty, &rdev->flags) ||
4613 !test_bit(In_sync, &rdev->flags))
4614 goto failed;
4615
4616 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4617 atomic_inc(&rdev->nr_pending);
4618 rcu_read_unlock();
4619 success = sync_page_io(rdev,
4620 addr,
4621 s << 9,
4622 pages[idx],
4623 REQ_OP_READ, 0, false);
4624 rdev_dec_pending(rdev, mddev);
4625 rcu_read_lock();
4626 if (success)
4627 break;
4628 failed:
4629 slot++;
4630 if (slot >= conf->copies)
4631 slot = 0;
4632 if (slot == first_slot)
4633 break;
4634 }
4635 rcu_read_unlock();
4636 if (!success) {
4637 /* couldn't read this block, must give up */
4638 set_bit(MD_RECOVERY_INTR,
4639 &mddev->recovery);
4640 return -EIO;
4641 }
4642 sectors -= s;
4643 idx++;
4644 }
4645 return 0;
4646 }
4647
4648 static void end_reshape_write(struct bio *bio)
4649 {
4650 struct r10bio *r10_bio = get_resync_r10bio(bio);
4651 struct mddev *mddev = r10_bio->mddev;
4652 struct r10conf *conf = mddev->private;
4653 int d;
4654 int slot;
4655 int repl;
4656 struct md_rdev *rdev = NULL;
4657
4658 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4659 if (repl)
4660 rdev = conf->mirrors[d].replacement;
4661 if (!rdev) {
4662 smp_mb();
4663 rdev = conf->mirrors[d].rdev;
4664 }
4665
4666 if (bio->bi_status) {
4667 /* FIXME should record badblock */
4668 md_error(mddev, rdev);
4669 }
4670
4671 rdev_dec_pending(rdev, mddev);
4672 end_reshape_request(r10_bio);
4673 }
4674
4675 static void end_reshape_request(struct r10bio *r10_bio)
4676 {
4677 if (!atomic_dec_and_test(&r10_bio->remaining))
4678 return;
4679 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4680 bio_put(r10_bio->master_bio);
4681 put_buf(r10_bio);
4682 }
4683
4684 static void raid10_finish_reshape(struct mddev *mddev)
4685 {
4686 struct r10conf *conf = mddev->private;
4687
4688 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4689 return;
4690
4691 if (mddev->delta_disks > 0) {
4692 sector_t size = raid10_size(mddev, 0, 0);
4693 md_set_array_sectors(mddev, size);
4694 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4695 mddev->recovery_cp = mddev->resync_max_sectors;
4696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4697 }
4698 mddev->resync_max_sectors = size;
4699 if (mddev->queue) {
4700 set_capacity(mddev->gendisk, mddev->array_sectors);
4701 revalidate_disk(mddev->gendisk);
4702 }
4703 } else {
4704 int d;
4705 rcu_read_lock();
4706 for (d = conf->geo.raid_disks ;
4707 d < conf->geo.raid_disks - mddev->delta_disks;
4708 d++) {
4709 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4710 if (rdev)
4711 clear_bit(In_sync, &rdev->flags);
4712 rdev = rcu_dereference(conf->mirrors[d].replacement);
4713 if (rdev)
4714 clear_bit(In_sync, &rdev->flags);
4715 }
4716 rcu_read_unlock();
4717 }
4718 mddev->layout = mddev->new_layout;
4719 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4720 mddev->reshape_position = MaxSector;
4721 mddev->delta_disks = 0;
4722 mddev->reshape_backwards = 0;
4723 }
4724
4725 static struct md_personality raid10_personality =
4726 {
4727 .name = "raid10",
4728 .level = 10,
4729 .owner = THIS_MODULE,
4730 .make_request = raid10_make_request,
4731 .run = raid10_run,
4732 .free = raid10_free,
4733 .status = raid10_status,
4734 .error_handler = raid10_error,
4735 .hot_add_disk = raid10_add_disk,
4736 .hot_remove_disk= raid10_remove_disk,
4737 .spare_active = raid10_spare_active,
4738 .sync_request = raid10_sync_request,
4739 .quiesce = raid10_quiesce,
4740 .size = raid10_size,
4741 .resize = raid10_resize,
4742 .takeover = raid10_takeover,
4743 .check_reshape = raid10_check_reshape,
4744 .start_reshape = raid10_start_reshape,
4745 .finish_reshape = raid10_finish_reshape,
4746 .congested = raid10_congested,
4747 };
4748
4749 static int __init raid_init(void)
4750 {
4751 return register_md_personality(&raid10_personality);
4752 }
4753
4754 static void raid_exit(void)
4755 {
4756 unregister_md_personality(&raid10_personality);
4757 }
4758
4759 module_init(raid_init);
4760 module_exit(raid_exit);
4761 MODULE_LICENSE("GPL");
4762 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4763 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4764 MODULE_ALIAS("md-raid10");
4765 MODULE_ALIAS("md-level-10");
4766
4767 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);