]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
block: Abstract out bvec iterator
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct r10bio *r10_bio = bio->bi_private;
446 int dev;
447 int dec_rdev = 1;
448 struct r10conf *conf = r10_bio->mddev->private;
449 int slot, repl;
450 struct md_rdev *rdev = NULL;
451
452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
459 rdev = conf->mirrors[dev].rdev;
460 }
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
464 if (!uptodate) {
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
478 } else {
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
488 sector_t first_bad;
489 int bad_sectors;
490
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503 /* Maybe we can clear some bad blocks. */
504 if (is_badblock(rdev,
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
523 one_write_done(r10_bio);
524 if (dec_rdev)
525 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529 * RAID10 layout manager
530 * As well as the chunksize and raid_disks count, there are two
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
537 * Chunks are laid out in raid0 style with near_copies copies of the
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
547 * on each device that it is on.
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
560 int slot = 0;
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569 /* now calculate first sector/dev */
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
572
573 chunk *= geo->near_copies;
574 stripe = chunk;
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
578
579 sector += stripe << geo->chunk_shift;
580
581 /* and calculate all the others */
582 for (n = 0; n < geo->near_copies; n++) {
583 int d = dev;
584 int set;
585 sector_t s = sector;
586 r10bio->devs[slot].devnum = d;
587 r10bio->devs[slot].addr = s;
588 slot++;
589
590 for (f = 1; f < geo->far_copies; f++) {
591 set = d / geo->far_set_size;
592 d += geo->near_copies;
593
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
603 s += geo->stride;
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
609 if (dev >= geo->raid_disks) {
610 dev = 0;
611 sector += (geo->chunk_mask + 1);
612 }
613 }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 sector_t offset, chunk, vchunk;
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
637 struct geom *geo = &conf->geo;
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
652
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
655 int fc;
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
659 if (dev < far_set_start)
660 dev += far_set_size;
661 } else {
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
666 else
667 dev -= geo->near_copies;
668 }
669 chunk = sector >> geo->chunk_shift;
670 }
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
679 * @bvm: properties of new bio
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
685 */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
689 {
690 struct mddev *mddev = q->queuedata;
691 struct r10conf *conf = mddev->private;
692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 int max;
694 unsigned int chunk_sectors;
695 unsigned int bio_sectors = bvm->bi_size >> 9;
696 struct geom *geo = &conf->geo;
697
698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
704 if (geo->near_copies < geo->raid_disks) {
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
721 int s;
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
732 int disk = r10_bio->devs[s].devnum;
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
739 bvm->bi_sector = r10_bio->devs[s].addr
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
751 bvm->bi_sector = r10_bio->devs[s].addr
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
762 }
763
764 /*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779 /*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
786 {
787 const sector_t this_sector = r10_bio->sector;
788 int disk, slot;
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
791 sector_t new_distance, best_dist;
792 struct md_rdev *best_rdev, *rdev = NULL;
793 int do_balance;
794 int best_slot;
795 struct geom *geo = &conf->geo;
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
799 retry:
800 sectors = r10_bio->sectors;
801 best_slot = -1;
802 best_rdev = NULL;
803 best_dist = MaxSector;
804 best_good_sectors = 0;
805 do_balance = 1;
806 /*
807 * Check if we can balance. We can balance on the whole
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
811 */
812 if (conf->mddev->recovery_cp < MaxSector
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
815
816 for (slot = 0; slot < conf->copies ; slot++) {
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
823 disk = r10_bio->devs[slot].devnum;
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 test_bit(Unmerged, &rdev->flags) ||
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 continue;
836
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
859 best_rdev = rdev;
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
869 if (!do_balance)
870 break;
871
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 break;
878
879 /* for far > 1 always use the lowest address */
880 if (geo->far_copies > 1)
881 new_distance = r10_bio->devs[slot].addr;
882 else
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
888 best_rdev = rdev;
889 }
890 }
891 if (slot >= conf->copies) {
892 slot = best_slot;
893 rdev = best_rdev;
894 }
895
896 if (slot >= 0) {
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
907 rdev = NULL;
908 rcu_read_unlock();
909 *max_sectors = best_good_sectors;
910
911 return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 struct r10conf *conf = mddev->private;
917 int i, ret = 0;
918
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
923 rcu_read_lock();
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
952 */
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
958 conf->pending_count = 0;
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
963 wake_up(&conf->wait_barrier);
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
974 bio = next;
975 }
976 } else
977 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1000 */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 BUG_ON(force && !conf->barrier);
1005 spin_lock_irq(&conf->resync_lock);
1006
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 conf->resync_lock);
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
1014 /* Now wait for all pending IO to complete */
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 conf->resync_lock);
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
1050 conf->resync_lock);
1051 conf->nr_waiting--;
1052 }
1053 conf->nr_pending++;
1054 spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 /* stop syncio and normal IO and wait for everything to
1069 * go quiet.
1070 * We increment barrier and nr_waiting, and then
1071 * wait until nr_pending match nr_queued+extra
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
1076 * Thus the number queued (nr_queued) plus this request (extra)
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
1083 wait_event_lock_irq_cmd(conf->wait_barrier,
1084 conf->nr_pending == conf->nr_queued+extra,
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
1087
1088 spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103 {
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
1125 if (from_schedule || current->bio_list) {
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
1130 wake_up(&conf->wait_barrier);
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1151 }
1152 kfree(plug);
1153 }
1154
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157 struct r10conf *conf = mddev->private;
1158 struct r10bio *r10_bio;
1159 struct bio *read_bio;
1160 int i;
1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 int chunk_sects = chunk_mask + 1;
1163 const int rw = bio_data_dir(bio);
1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 const unsigned long do_discard = (bio->bi_rw
1167 & (REQ_DISCARD | REQ_SECURE));
1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 unsigned long flags;
1170 struct md_rdev *blocked_rdev;
1171 struct blk_plug_cb *cb;
1172 struct raid10_plug_cb *plug = NULL;
1173 int sectors_handled;
1174 int max_sectors;
1175 int sectors;
1176
1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 md_flush_request(mddev, bio);
1179 return;
1180 }
1181
1182 /* If this request crosses a chunk boundary, we need to
1183 * split it. This will only happen for 1 PAGE (or less) requests.
1184 */
1185 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + bio_sectors(bio)
1186 > chunk_sects
1187 && (conf->geo.near_copies < conf->geo.raid_disks
1188 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 struct bio_pair *bp;
1190 /* Sanity check -- queue functions should prevent this happening */
1191 if (bio_segments(bio) > 1)
1192 goto bad_map;
1193 /* This is a one page bio that upper layers
1194 * refuse to split for us, so we need to split it.
1195 */
1196 bp = bio_split(bio, chunk_sects -
1197 (bio->bi_iter.bi_sector & (chunk_sects - 1)));
1198
1199 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200 * If the first succeeds but the second blocks due to the resync
1201 * thread raising the barrier, we will deadlock because the
1202 * IO to the underlying device will be queued in generic_make_request
1203 * and will never complete, so will never reduce nr_pending.
1204 * So increment nr_waiting here so no new raise_barriers will
1205 * succeed, and so the second wait_barrier cannot block.
1206 */
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->nr_waiting++;
1209 spin_unlock_irq(&conf->resync_lock);
1210
1211 make_request(mddev, &bp->bio1);
1212 make_request(mddev, &bp->bio2);
1213
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->nr_waiting--;
1216 wake_up(&conf->wait_barrier);
1217 spin_unlock_irq(&conf->resync_lock);
1218
1219 bio_pair_release(bp);
1220 return;
1221 bad_map:
1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 (unsigned long long)bio->bi_iter.bi_sector,
1225 bio_sectors(bio) / 2);
1226
1227 bio_io_error(bio);
1228 return;
1229 }
1230
1231 md_write_start(mddev, bio);
1232
1233 /*
1234 * Register the new request and wait if the reconstruction
1235 * thread has put up a bar for new requests.
1236 * Continue immediately if no resync is active currently.
1237 */
1238 wait_barrier(conf);
1239
1240 sectors = bio_sectors(bio);
1241 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1242 bio->bi_iter.bi_sector < conf->reshape_progress &&
1243 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1244 /* IO spans the reshape position. Need to wait for
1245 * reshape to pass
1246 */
1247 allow_barrier(conf);
1248 wait_event(conf->wait_barrier,
1249 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1250 conf->reshape_progress >= bio->bi_iter.bi_sector +
1251 sectors);
1252 wait_barrier(conf);
1253 }
1254 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255 bio_data_dir(bio) == WRITE &&
1256 (mddev->reshape_backwards
1257 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1258 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1259 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1260 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1261 /* Need to update reshape_position in metadata */
1262 mddev->reshape_position = conf->reshape_progress;
1263 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265 md_wakeup_thread(mddev->thread);
1266 wait_event(mddev->sb_wait,
1267 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268
1269 conf->reshape_safe = mddev->reshape_position;
1270 }
1271
1272 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273
1274 r10_bio->master_bio = bio;
1275 r10_bio->sectors = sectors;
1276
1277 r10_bio->mddev = mddev;
1278 r10_bio->sector = bio->bi_iter.bi_sector;
1279 r10_bio->state = 0;
1280
1281 /* We might need to issue multiple reads to different
1282 * devices if there are bad blocks around, so we keep
1283 * track of the number of reads in bio->bi_phys_segments.
1284 * If this is 0, there is only one r10_bio and no locking
1285 * will be needed when the request completes. If it is
1286 * non-zero, then it is the number of not-completed requests.
1287 */
1288 bio->bi_phys_segments = 0;
1289 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290
1291 if (rw == READ) {
1292 /*
1293 * read balancing logic:
1294 */
1295 struct md_rdev *rdev;
1296 int slot;
1297
1298 read_again:
1299 rdev = read_balance(conf, r10_bio, &max_sectors);
1300 if (!rdev) {
1301 raid_end_bio_io(r10_bio);
1302 return;
1303 }
1304 slot = r10_bio->read_slot;
1305
1306 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1307 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1308 max_sectors);
1309
1310 r10_bio->devs[slot].bio = read_bio;
1311 r10_bio->devs[slot].rdev = rdev;
1312
1313 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1314 choose_data_offset(r10_bio, rdev);
1315 read_bio->bi_bdev = rdev->bdev;
1316 read_bio->bi_end_io = raid10_end_read_request;
1317 read_bio->bi_rw = READ | do_sync;
1318 read_bio->bi_private = r10_bio;
1319
1320 if (max_sectors < r10_bio->sectors) {
1321 /* Could not read all from this device, so we will
1322 * need another r10_bio.
1323 */
1324 sectors_handled = (r10_bio->sectors + max_sectors
1325 - bio->bi_iter.bi_sector);
1326 r10_bio->sectors = max_sectors;
1327 spin_lock_irq(&conf->device_lock);
1328 if (bio->bi_phys_segments == 0)
1329 bio->bi_phys_segments = 2;
1330 else
1331 bio->bi_phys_segments++;
1332 spin_unlock(&conf->device_lock);
1333 /* Cannot call generic_make_request directly
1334 * as that will be queued in __generic_make_request
1335 * and subsequent mempool_alloc might block
1336 * waiting for it. so hand bio over to raid10d.
1337 */
1338 reschedule_retry(r10_bio);
1339
1340 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341
1342 r10_bio->master_bio = bio;
1343 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1344 r10_bio->state = 0;
1345 r10_bio->mddev = mddev;
1346 r10_bio->sector = bio->bi_iter.bi_sector +
1347 sectors_handled;
1348 goto read_again;
1349 } else
1350 generic_make_request(read_bio);
1351 return;
1352 }
1353
1354 /*
1355 * WRITE:
1356 */
1357 if (conf->pending_count >= max_queued_requests) {
1358 md_wakeup_thread(mddev->thread);
1359 wait_event(conf->wait_barrier,
1360 conf->pending_count < max_queued_requests);
1361 }
1362 /* first select target devices under rcu_lock and
1363 * inc refcount on their rdev. Record them by setting
1364 * bios[x] to bio
1365 * If there are known/acknowledged bad blocks on any device
1366 * on which we have seen a write error, we want to avoid
1367 * writing to those blocks. This potentially requires several
1368 * writes to write around the bad blocks. Each set of writes
1369 * gets its own r10_bio with a set of bios attached. The number
1370 * of r10_bios is recored in bio->bi_phys_segments just as with
1371 * the read case.
1372 */
1373
1374 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1375 raid10_find_phys(conf, r10_bio);
1376 retry_write:
1377 blocked_rdev = NULL;
1378 rcu_read_lock();
1379 max_sectors = r10_bio->sectors;
1380
1381 for (i = 0; i < conf->copies; i++) {
1382 int d = r10_bio->devs[i].devnum;
1383 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1384 struct md_rdev *rrdev = rcu_dereference(
1385 conf->mirrors[d].replacement);
1386 if (rdev == rrdev)
1387 rrdev = NULL;
1388 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1389 atomic_inc(&rdev->nr_pending);
1390 blocked_rdev = rdev;
1391 break;
1392 }
1393 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1394 atomic_inc(&rrdev->nr_pending);
1395 blocked_rdev = rrdev;
1396 break;
1397 }
1398 if (rdev && (test_bit(Faulty, &rdev->flags)
1399 || test_bit(Unmerged, &rdev->flags)))
1400 rdev = NULL;
1401 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1402 || test_bit(Unmerged, &rrdev->flags)))
1403 rrdev = NULL;
1404
1405 r10_bio->devs[i].bio = NULL;
1406 r10_bio->devs[i].repl_bio = NULL;
1407
1408 if (!rdev && !rrdev) {
1409 set_bit(R10BIO_Degraded, &r10_bio->state);
1410 continue;
1411 }
1412 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1413 sector_t first_bad;
1414 sector_t dev_sector = r10_bio->devs[i].addr;
1415 int bad_sectors;
1416 int is_bad;
1417
1418 is_bad = is_badblock(rdev, dev_sector,
1419 max_sectors,
1420 &first_bad, &bad_sectors);
1421 if (is_bad < 0) {
1422 /* Mustn't write here until the bad block
1423 * is acknowledged
1424 */
1425 atomic_inc(&rdev->nr_pending);
1426 set_bit(BlockedBadBlocks, &rdev->flags);
1427 blocked_rdev = rdev;
1428 break;
1429 }
1430 if (is_bad && first_bad <= dev_sector) {
1431 /* Cannot write here at all */
1432 bad_sectors -= (dev_sector - first_bad);
1433 if (bad_sectors < max_sectors)
1434 /* Mustn't write more than bad_sectors
1435 * to other devices yet
1436 */
1437 max_sectors = bad_sectors;
1438 /* We don't set R10BIO_Degraded as that
1439 * only applies if the disk is missing,
1440 * so it might be re-added, and we want to
1441 * know to recover this chunk.
1442 * In this case the device is here, and the
1443 * fact that this chunk is not in-sync is
1444 * recorded in the bad block log.
1445 */
1446 continue;
1447 }
1448 if (is_bad) {
1449 int good_sectors = first_bad - dev_sector;
1450 if (good_sectors < max_sectors)
1451 max_sectors = good_sectors;
1452 }
1453 }
1454 if (rdev) {
1455 r10_bio->devs[i].bio = bio;
1456 atomic_inc(&rdev->nr_pending);
1457 }
1458 if (rrdev) {
1459 r10_bio->devs[i].repl_bio = bio;
1460 atomic_inc(&rrdev->nr_pending);
1461 }
1462 }
1463 rcu_read_unlock();
1464
1465 if (unlikely(blocked_rdev)) {
1466 /* Have to wait for this device to get unblocked, then retry */
1467 int j;
1468 int d;
1469
1470 for (j = 0; j < i; j++) {
1471 if (r10_bio->devs[j].bio) {
1472 d = r10_bio->devs[j].devnum;
1473 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1474 }
1475 if (r10_bio->devs[j].repl_bio) {
1476 struct md_rdev *rdev;
1477 d = r10_bio->devs[j].devnum;
1478 rdev = conf->mirrors[d].replacement;
1479 if (!rdev) {
1480 /* Race with remove_disk */
1481 smp_mb();
1482 rdev = conf->mirrors[d].rdev;
1483 }
1484 rdev_dec_pending(rdev, mddev);
1485 }
1486 }
1487 allow_barrier(conf);
1488 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1489 wait_barrier(conf);
1490 goto retry_write;
1491 }
1492
1493 if (max_sectors < r10_bio->sectors) {
1494 /* We are splitting this into multiple parts, so
1495 * we need to prepare for allocating another r10_bio.
1496 */
1497 r10_bio->sectors = max_sectors;
1498 spin_lock_irq(&conf->device_lock);
1499 if (bio->bi_phys_segments == 0)
1500 bio->bi_phys_segments = 2;
1501 else
1502 bio->bi_phys_segments++;
1503 spin_unlock_irq(&conf->device_lock);
1504 }
1505 sectors_handled = r10_bio->sector + max_sectors -
1506 bio->bi_iter.bi_sector;
1507
1508 atomic_set(&r10_bio->remaining, 1);
1509 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1510
1511 for (i = 0; i < conf->copies; i++) {
1512 struct bio *mbio;
1513 int d = r10_bio->devs[i].devnum;
1514 if (r10_bio->devs[i].bio) {
1515 struct md_rdev *rdev = conf->mirrors[d].rdev;
1516 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1517 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1518 max_sectors);
1519 r10_bio->devs[i].bio = mbio;
1520
1521 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1522 choose_data_offset(r10_bio,
1523 rdev));
1524 mbio->bi_bdev = rdev->bdev;
1525 mbio->bi_end_io = raid10_end_write_request;
1526 mbio->bi_rw =
1527 WRITE | do_sync | do_fua | do_discard | do_same;
1528 mbio->bi_private = r10_bio;
1529
1530 atomic_inc(&r10_bio->remaining);
1531
1532 cb = blk_check_plugged(raid10_unplug, mddev,
1533 sizeof(*plug));
1534 if (cb)
1535 plug = container_of(cb, struct raid10_plug_cb,
1536 cb);
1537 else
1538 plug = NULL;
1539 spin_lock_irqsave(&conf->device_lock, flags);
1540 if (plug) {
1541 bio_list_add(&plug->pending, mbio);
1542 plug->pending_cnt++;
1543 } else {
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 }
1547 spin_unlock_irqrestore(&conf->device_lock, flags);
1548 if (!plug)
1549 md_wakeup_thread(mddev->thread);
1550 }
1551
1552 if (r10_bio->devs[i].repl_bio) {
1553 struct md_rdev *rdev = conf->mirrors[d].replacement;
1554 if (rdev == NULL) {
1555 /* Replacement just got moved to main 'rdev' */
1556 smp_mb();
1557 rdev = conf->mirrors[d].rdev;
1558 }
1559 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1560 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1561 max_sectors);
1562 r10_bio->devs[i].repl_bio = mbio;
1563
1564 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1565 choose_data_offset(
1566 r10_bio, rdev));
1567 mbio->bi_bdev = rdev->bdev;
1568 mbio->bi_end_io = raid10_end_write_request;
1569 mbio->bi_rw =
1570 WRITE | do_sync | do_fua | do_discard | do_same;
1571 mbio->bi_private = r10_bio;
1572
1573 atomic_inc(&r10_bio->remaining);
1574 spin_lock_irqsave(&conf->device_lock, flags);
1575 bio_list_add(&conf->pending_bio_list, mbio);
1576 conf->pending_count++;
1577 spin_unlock_irqrestore(&conf->device_lock, flags);
1578 if (!mddev_check_plugged(mddev))
1579 md_wakeup_thread(mddev->thread);
1580 }
1581 }
1582
1583 /* Don't remove the bias on 'remaining' (one_write_done) until
1584 * after checking if we need to go around again.
1585 */
1586
1587 if (sectors_handled < bio_sectors(bio)) {
1588 one_write_done(r10_bio);
1589 /* We need another r10_bio. It has already been counted
1590 * in bio->bi_phys_segments.
1591 */
1592 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1593
1594 r10_bio->master_bio = bio;
1595 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1596
1597 r10_bio->mddev = mddev;
1598 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1599 r10_bio->state = 0;
1600 goto retry_write;
1601 }
1602 one_write_done(r10_bio);
1603
1604 /* In case raid10d snuck in to freeze_array */
1605 wake_up(&conf->wait_barrier);
1606 }
1607
1608 static void status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610 struct r10conf *conf = mddev->private;
1611 int i;
1612
1613 if (conf->geo.near_copies < conf->geo.raid_disks)
1614 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1615 if (conf->geo.near_copies > 1)
1616 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1617 if (conf->geo.far_copies > 1) {
1618 if (conf->geo.far_offset)
1619 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1620 else
1621 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1622 }
1623 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1624 conf->geo.raid_disks - mddev->degraded);
1625 for (i = 0; i < conf->geo.raid_disks; i++)
1626 seq_printf(seq, "%s",
1627 conf->mirrors[i].rdev &&
1628 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1629 seq_printf(seq, "]");
1630 }
1631
1632 /* check if there are enough drives for
1633 * every block to appear on atleast one.
1634 * Don't consider the device numbered 'ignore'
1635 * as we might be about to remove it.
1636 */
1637 static int _enough(struct r10conf *conf, int previous, int ignore)
1638 {
1639 int first = 0;
1640 int has_enough = 0;
1641 int disks, ncopies;
1642 if (previous) {
1643 disks = conf->prev.raid_disks;
1644 ncopies = conf->prev.near_copies;
1645 } else {
1646 disks = conf->geo.raid_disks;
1647 ncopies = conf->geo.near_copies;
1648 }
1649
1650 rcu_read_lock();
1651 do {
1652 int n = conf->copies;
1653 int cnt = 0;
1654 int this = first;
1655 while (n--) {
1656 struct md_rdev *rdev;
1657 if (this != ignore &&
1658 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1659 test_bit(In_sync, &rdev->flags))
1660 cnt++;
1661 this = (this+1) % disks;
1662 }
1663 if (cnt == 0)
1664 goto out;
1665 first = (first + ncopies) % disks;
1666 } while (first != 0);
1667 has_enough = 1;
1668 out:
1669 rcu_read_unlock();
1670 return has_enough;
1671 }
1672
1673 static int enough(struct r10conf *conf, int ignore)
1674 {
1675 /* when calling 'enough', both 'prev' and 'geo' must
1676 * be stable.
1677 * This is ensured if ->reconfig_mutex or ->device_lock
1678 * is held.
1679 */
1680 return _enough(conf, 0, ignore) &&
1681 _enough(conf, 1, ignore);
1682 }
1683
1684 static void error(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686 char b[BDEVNAME_SIZE];
1687 struct r10conf *conf = mddev->private;
1688 unsigned long flags;
1689
1690 /*
1691 * If it is not operational, then we have already marked it as dead
1692 * else if it is the last working disks, ignore the error, let the
1693 * next level up know.
1694 * else mark the drive as failed
1695 */
1696 spin_lock_irqsave(&conf->device_lock, flags);
1697 if (test_bit(In_sync, &rdev->flags)
1698 && !enough(conf, rdev->raid_disk)) {
1699 /*
1700 * Don't fail the drive, just return an IO error.
1701 */
1702 spin_unlock_irqrestore(&conf->device_lock, flags);
1703 return;
1704 }
1705 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1706 mddev->degraded++;
1707 /*
1708 * if recovery is running, make sure it aborts.
1709 */
1710 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1711 }
1712 set_bit(Blocked, &rdev->flags);
1713 set_bit(Faulty, &rdev->flags);
1714 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715 spin_unlock_irqrestore(&conf->device_lock, flags);
1716 printk(KERN_ALERT
1717 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1718 "md/raid10:%s: Operation continuing on %d devices.\n",
1719 mdname(mddev), bdevname(rdev->bdev, b),
1720 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1721 }
1722
1723 static void print_conf(struct r10conf *conf)
1724 {
1725 int i;
1726 struct raid10_info *tmp;
1727
1728 printk(KERN_DEBUG "RAID10 conf printout:\n");
1729 if (!conf) {
1730 printk(KERN_DEBUG "(!conf)\n");
1731 return;
1732 }
1733 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1734 conf->geo.raid_disks);
1735
1736 for (i = 0; i < conf->geo.raid_disks; i++) {
1737 char b[BDEVNAME_SIZE];
1738 tmp = conf->mirrors + i;
1739 if (tmp->rdev)
1740 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1741 i, !test_bit(In_sync, &tmp->rdev->flags),
1742 !test_bit(Faulty, &tmp->rdev->flags),
1743 bdevname(tmp->rdev->bdev,b));
1744 }
1745 }
1746
1747 static void close_sync(struct r10conf *conf)
1748 {
1749 wait_barrier(conf);
1750 allow_barrier(conf);
1751
1752 mempool_destroy(conf->r10buf_pool);
1753 conf->r10buf_pool = NULL;
1754 }
1755
1756 static int raid10_spare_active(struct mddev *mddev)
1757 {
1758 int i;
1759 struct r10conf *conf = mddev->private;
1760 struct raid10_info *tmp;
1761 int count = 0;
1762 unsigned long flags;
1763
1764 /*
1765 * Find all non-in_sync disks within the RAID10 configuration
1766 * and mark them in_sync
1767 */
1768 for (i = 0; i < conf->geo.raid_disks; i++) {
1769 tmp = conf->mirrors + i;
1770 if (tmp->replacement
1771 && tmp->replacement->recovery_offset == MaxSector
1772 && !test_bit(Faulty, &tmp->replacement->flags)
1773 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1774 /* Replacement has just become active */
1775 if (!tmp->rdev
1776 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1777 count++;
1778 if (tmp->rdev) {
1779 /* Replaced device not technically faulty,
1780 * but we need to be sure it gets removed
1781 * and never re-added.
1782 */
1783 set_bit(Faulty, &tmp->rdev->flags);
1784 sysfs_notify_dirent_safe(
1785 tmp->rdev->sysfs_state);
1786 }
1787 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1788 } else if (tmp->rdev
1789 && tmp->rdev->recovery_offset == MaxSector
1790 && !test_bit(Faulty, &tmp->rdev->flags)
1791 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1792 count++;
1793 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1794 }
1795 }
1796 spin_lock_irqsave(&conf->device_lock, flags);
1797 mddev->degraded -= count;
1798 spin_unlock_irqrestore(&conf->device_lock, flags);
1799
1800 print_conf(conf);
1801 return count;
1802 }
1803
1804
1805 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807 struct r10conf *conf = mddev->private;
1808 int err = -EEXIST;
1809 int mirror;
1810 int first = 0;
1811 int last = conf->geo.raid_disks - 1;
1812 struct request_queue *q = bdev_get_queue(rdev->bdev);
1813
1814 if (mddev->recovery_cp < MaxSector)
1815 /* only hot-add to in-sync arrays, as recovery is
1816 * very different from resync
1817 */
1818 return -EBUSY;
1819 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1820 return -EINVAL;
1821
1822 if (rdev->raid_disk >= 0)
1823 first = last = rdev->raid_disk;
1824
1825 if (q->merge_bvec_fn) {
1826 set_bit(Unmerged, &rdev->flags);
1827 mddev->merge_check_needed = 1;
1828 }
1829
1830 if (rdev->saved_raid_disk >= first &&
1831 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1832 mirror = rdev->saved_raid_disk;
1833 else
1834 mirror = first;
1835 for ( ; mirror <= last ; mirror++) {
1836 struct raid10_info *p = &conf->mirrors[mirror];
1837 if (p->recovery_disabled == mddev->recovery_disabled)
1838 continue;
1839 if (p->rdev) {
1840 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1841 p->replacement != NULL)
1842 continue;
1843 clear_bit(In_sync, &rdev->flags);
1844 set_bit(Replacement, &rdev->flags);
1845 rdev->raid_disk = mirror;
1846 err = 0;
1847 if (mddev->gendisk)
1848 disk_stack_limits(mddev->gendisk, rdev->bdev,
1849 rdev->data_offset << 9);
1850 conf->fullsync = 1;
1851 rcu_assign_pointer(p->replacement, rdev);
1852 break;
1853 }
1854
1855 if (mddev->gendisk)
1856 disk_stack_limits(mddev->gendisk, rdev->bdev,
1857 rdev->data_offset << 9);
1858
1859 p->head_position = 0;
1860 p->recovery_disabled = mddev->recovery_disabled - 1;
1861 rdev->raid_disk = mirror;
1862 err = 0;
1863 if (rdev->saved_raid_disk != mirror)
1864 conf->fullsync = 1;
1865 rcu_assign_pointer(p->rdev, rdev);
1866 break;
1867 }
1868 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1869 /* Some requests might not have seen this new
1870 * merge_bvec_fn. We must wait for them to complete
1871 * before merging the device fully.
1872 * First we make sure any code which has tested
1873 * our function has submitted the request, then
1874 * we wait for all outstanding requests to complete.
1875 */
1876 synchronize_sched();
1877 freeze_array(conf, 0);
1878 unfreeze_array(conf);
1879 clear_bit(Unmerged, &rdev->flags);
1880 }
1881 md_integrity_add_rdev(rdev, mddev);
1882 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1883 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1884
1885 print_conf(conf);
1886 return err;
1887 }
1888
1889 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1890 {
1891 struct r10conf *conf = mddev->private;
1892 int err = 0;
1893 int number = rdev->raid_disk;
1894 struct md_rdev **rdevp;
1895 struct raid10_info *p = conf->mirrors + number;
1896
1897 print_conf(conf);
1898 if (rdev == p->rdev)
1899 rdevp = &p->rdev;
1900 else if (rdev == p->replacement)
1901 rdevp = &p->replacement;
1902 else
1903 return 0;
1904
1905 if (test_bit(In_sync, &rdev->flags) ||
1906 atomic_read(&rdev->nr_pending)) {
1907 err = -EBUSY;
1908 goto abort;
1909 }
1910 /* Only remove faulty devices if recovery
1911 * is not possible.
1912 */
1913 if (!test_bit(Faulty, &rdev->flags) &&
1914 mddev->recovery_disabled != p->recovery_disabled &&
1915 (!p->replacement || p->replacement == rdev) &&
1916 number < conf->geo.raid_disks &&
1917 enough(conf, -1)) {
1918 err = -EBUSY;
1919 goto abort;
1920 }
1921 *rdevp = NULL;
1922 synchronize_rcu();
1923 if (atomic_read(&rdev->nr_pending)) {
1924 /* lost the race, try later */
1925 err = -EBUSY;
1926 *rdevp = rdev;
1927 goto abort;
1928 } else if (p->replacement) {
1929 /* We must have just cleared 'rdev' */
1930 p->rdev = p->replacement;
1931 clear_bit(Replacement, &p->replacement->flags);
1932 smp_mb(); /* Make sure other CPUs may see both as identical
1933 * but will never see neither -- if they are careful.
1934 */
1935 p->replacement = NULL;
1936 clear_bit(WantReplacement, &rdev->flags);
1937 } else
1938 /* We might have just remove the Replacement as faulty
1939 * Clear the flag just in case
1940 */
1941 clear_bit(WantReplacement, &rdev->flags);
1942
1943 err = md_integrity_register(mddev);
1944
1945 abort:
1946
1947 print_conf(conf);
1948 return err;
1949 }
1950
1951
1952 static void end_sync_read(struct bio *bio, int error)
1953 {
1954 struct r10bio *r10_bio = bio->bi_private;
1955 struct r10conf *conf = r10_bio->mddev->private;
1956 int d;
1957
1958 if (bio == r10_bio->master_bio) {
1959 /* this is a reshape read */
1960 d = r10_bio->read_slot; /* really the read dev */
1961 } else
1962 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1963
1964 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1965 set_bit(R10BIO_Uptodate, &r10_bio->state);
1966 else
1967 /* The write handler will notice the lack of
1968 * R10BIO_Uptodate and record any errors etc
1969 */
1970 atomic_add(r10_bio->sectors,
1971 &conf->mirrors[d].rdev->corrected_errors);
1972
1973 /* for reconstruct, we always reschedule after a read.
1974 * for resync, only after all reads
1975 */
1976 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1977 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1978 atomic_dec_and_test(&r10_bio->remaining)) {
1979 /* we have read all the blocks,
1980 * do the comparison in process context in raid10d
1981 */
1982 reschedule_retry(r10_bio);
1983 }
1984 }
1985
1986 static void end_sync_request(struct r10bio *r10_bio)
1987 {
1988 struct mddev *mddev = r10_bio->mddev;
1989
1990 while (atomic_dec_and_test(&r10_bio->remaining)) {
1991 if (r10_bio->master_bio == NULL) {
1992 /* the primary of several recovery bios */
1993 sector_t s = r10_bio->sectors;
1994 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1995 test_bit(R10BIO_WriteError, &r10_bio->state))
1996 reschedule_retry(r10_bio);
1997 else
1998 put_buf(r10_bio);
1999 md_done_sync(mddev, s, 1);
2000 break;
2001 } else {
2002 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2003 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2004 test_bit(R10BIO_WriteError, &r10_bio->state))
2005 reschedule_retry(r10_bio);
2006 else
2007 put_buf(r10_bio);
2008 r10_bio = r10_bio2;
2009 }
2010 }
2011 }
2012
2013 static void end_sync_write(struct bio *bio, int error)
2014 {
2015 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2016 struct r10bio *r10_bio = bio->bi_private;
2017 struct mddev *mddev = r10_bio->mddev;
2018 struct r10conf *conf = mddev->private;
2019 int d;
2020 sector_t first_bad;
2021 int bad_sectors;
2022 int slot;
2023 int repl;
2024 struct md_rdev *rdev = NULL;
2025
2026 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2027 if (repl)
2028 rdev = conf->mirrors[d].replacement;
2029 else
2030 rdev = conf->mirrors[d].rdev;
2031
2032 if (!uptodate) {
2033 if (repl)
2034 md_error(mddev, rdev);
2035 else {
2036 set_bit(WriteErrorSeen, &rdev->flags);
2037 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2038 set_bit(MD_RECOVERY_NEEDED,
2039 &rdev->mddev->recovery);
2040 set_bit(R10BIO_WriteError, &r10_bio->state);
2041 }
2042 } else if (is_badblock(rdev,
2043 r10_bio->devs[slot].addr,
2044 r10_bio->sectors,
2045 &first_bad, &bad_sectors))
2046 set_bit(R10BIO_MadeGood, &r10_bio->state);
2047
2048 rdev_dec_pending(rdev, mddev);
2049
2050 end_sync_request(r10_bio);
2051 }
2052
2053 /*
2054 * Note: sync and recover and handled very differently for raid10
2055 * This code is for resync.
2056 * For resync, we read through virtual addresses and read all blocks.
2057 * If there is any error, we schedule a write. The lowest numbered
2058 * drive is authoritative.
2059 * However requests come for physical address, so we need to map.
2060 * For every physical address there are raid_disks/copies virtual addresses,
2061 * which is always are least one, but is not necessarly an integer.
2062 * This means that a physical address can span multiple chunks, so we may
2063 * have to submit multiple io requests for a single sync request.
2064 */
2065 /*
2066 * We check if all blocks are in-sync and only write to blocks that
2067 * aren't in sync
2068 */
2069 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2070 {
2071 struct r10conf *conf = mddev->private;
2072 int i, first;
2073 struct bio *tbio, *fbio;
2074 int vcnt;
2075
2076 atomic_set(&r10_bio->remaining, 1);
2077
2078 /* find the first device with a block */
2079 for (i=0; i<conf->copies; i++)
2080 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2081 break;
2082
2083 if (i == conf->copies)
2084 goto done;
2085
2086 first = i;
2087 fbio = r10_bio->devs[i].bio;
2088
2089 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2090 /* now find blocks with errors */
2091 for (i=0 ; i < conf->copies ; i++) {
2092 int j, d;
2093
2094 tbio = r10_bio->devs[i].bio;
2095
2096 if (tbio->bi_end_io != end_sync_read)
2097 continue;
2098 if (i == first)
2099 continue;
2100 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2101 /* We know that the bi_io_vec layout is the same for
2102 * both 'first' and 'i', so we just compare them.
2103 * All vec entries are PAGE_SIZE;
2104 */
2105 int sectors = r10_bio->sectors;
2106 for (j = 0; j < vcnt; j++) {
2107 int len = PAGE_SIZE;
2108 if (sectors < (len / 512))
2109 len = sectors * 512;
2110 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2111 page_address(tbio->bi_io_vec[j].bv_page),
2112 len))
2113 break;
2114 sectors -= len/512;
2115 }
2116 if (j == vcnt)
2117 continue;
2118 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2119 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2120 /* Don't fix anything. */
2121 continue;
2122 }
2123 /* Ok, we need to write this bio, either to correct an
2124 * inconsistency or to correct an unreadable block.
2125 * First we need to fixup bv_offset, bv_len and
2126 * bi_vecs, as the read request might have corrupted these
2127 */
2128 bio_reset(tbio);
2129
2130 tbio->bi_vcnt = vcnt;
2131 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2132 tbio->bi_rw = WRITE;
2133 tbio->bi_private = r10_bio;
2134 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2135
2136 for (j=0; j < vcnt ; j++) {
2137 tbio->bi_io_vec[j].bv_offset = 0;
2138 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2139
2140 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2141 page_address(fbio->bi_io_vec[j].bv_page),
2142 PAGE_SIZE);
2143 }
2144 tbio->bi_end_io = end_sync_write;
2145
2146 d = r10_bio->devs[i].devnum;
2147 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2148 atomic_inc(&r10_bio->remaining);
2149 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2150
2151 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2152 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2153 generic_make_request(tbio);
2154 }
2155
2156 /* Now write out to any replacement devices
2157 * that are active
2158 */
2159 for (i = 0; i < conf->copies; i++) {
2160 int j, d;
2161
2162 tbio = r10_bio->devs[i].repl_bio;
2163 if (!tbio || !tbio->bi_end_io)
2164 continue;
2165 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2166 && r10_bio->devs[i].bio != fbio)
2167 for (j = 0; j < vcnt; j++)
2168 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2169 page_address(fbio->bi_io_vec[j].bv_page),
2170 PAGE_SIZE);
2171 d = r10_bio->devs[i].devnum;
2172 atomic_inc(&r10_bio->remaining);
2173 md_sync_acct(conf->mirrors[d].replacement->bdev,
2174 bio_sectors(tbio));
2175 generic_make_request(tbio);
2176 }
2177
2178 done:
2179 if (atomic_dec_and_test(&r10_bio->remaining)) {
2180 md_done_sync(mddev, r10_bio->sectors, 1);
2181 put_buf(r10_bio);
2182 }
2183 }
2184
2185 /*
2186 * Now for the recovery code.
2187 * Recovery happens across physical sectors.
2188 * We recover all non-is_sync drives by finding the virtual address of
2189 * each, and then choose a working drive that also has that virt address.
2190 * There is a separate r10_bio for each non-in_sync drive.
2191 * Only the first two slots are in use. The first for reading,
2192 * The second for writing.
2193 *
2194 */
2195 static void fix_recovery_read_error(struct r10bio *r10_bio)
2196 {
2197 /* We got a read error during recovery.
2198 * We repeat the read in smaller page-sized sections.
2199 * If a read succeeds, write it to the new device or record
2200 * a bad block if we cannot.
2201 * If a read fails, record a bad block on both old and
2202 * new devices.
2203 */
2204 struct mddev *mddev = r10_bio->mddev;
2205 struct r10conf *conf = mddev->private;
2206 struct bio *bio = r10_bio->devs[0].bio;
2207 sector_t sect = 0;
2208 int sectors = r10_bio->sectors;
2209 int idx = 0;
2210 int dr = r10_bio->devs[0].devnum;
2211 int dw = r10_bio->devs[1].devnum;
2212
2213 while (sectors) {
2214 int s = sectors;
2215 struct md_rdev *rdev;
2216 sector_t addr;
2217 int ok;
2218
2219 if (s > (PAGE_SIZE>>9))
2220 s = PAGE_SIZE >> 9;
2221
2222 rdev = conf->mirrors[dr].rdev;
2223 addr = r10_bio->devs[0].addr + sect,
2224 ok = sync_page_io(rdev,
2225 addr,
2226 s << 9,
2227 bio->bi_io_vec[idx].bv_page,
2228 READ, false);
2229 if (ok) {
2230 rdev = conf->mirrors[dw].rdev;
2231 addr = r10_bio->devs[1].addr + sect;
2232 ok = sync_page_io(rdev,
2233 addr,
2234 s << 9,
2235 bio->bi_io_vec[idx].bv_page,
2236 WRITE, false);
2237 if (!ok) {
2238 set_bit(WriteErrorSeen, &rdev->flags);
2239 if (!test_and_set_bit(WantReplacement,
2240 &rdev->flags))
2241 set_bit(MD_RECOVERY_NEEDED,
2242 &rdev->mddev->recovery);
2243 }
2244 }
2245 if (!ok) {
2246 /* We don't worry if we cannot set a bad block -
2247 * it really is bad so there is no loss in not
2248 * recording it yet
2249 */
2250 rdev_set_badblocks(rdev, addr, s, 0);
2251
2252 if (rdev != conf->mirrors[dw].rdev) {
2253 /* need bad block on destination too */
2254 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2255 addr = r10_bio->devs[1].addr + sect;
2256 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2257 if (!ok) {
2258 /* just abort the recovery */
2259 printk(KERN_NOTICE
2260 "md/raid10:%s: recovery aborted"
2261 " due to read error\n",
2262 mdname(mddev));
2263
2264 conf->mirrors[dw].recovery_disabled
2265 = mddev->recovery_disabled;
2266 set_bit(MD_RECOVERY_INTR,
2267 &mddev->recovery);
2268 break;
2269 }
2270 }
2271 }
2272
2273 sectors -= s;
2274 sect += s;
2275 idx++;
2276 }
2277 }
2278
2279 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2280 {
2281 struct r10conf *conf = mddev->private;
2282 int d;
2283 struct bio *wbio, *wbio2;
2284
2285 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2286 fix_recovery_read_error(r10_bio);
2287 end_sync_request(r10_bio);
2288 return;
2289 }
2290
2291 /*
2292 * share the pages with the first bio
2293 * and submit the write request
2294 */
2295 d = r10_bio->devs[1].devnum;
2296 wbio = r10_bio->devs[1].bio;
2297 wbio2 = r10_bio->devs[1].repl_bio;
2298 /* Need to test wbio2->bi_end_io before we call
2299 * generic_make_request as if the former is NULL,
2300 * the latter is free to free wbio2.
2301 */
2302 if (wbio2 && !wbio2->bi_end_io)
2303 wbio2 = NULL;
2304 if (wbio->bi_end_io) {
2305 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2306 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2307 generic_make_request(wbio);
2308 }
2309 if (wbio2) {
2310 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2311 md_sync_acct(conf->mirrors[d].replacement->bdev,
2312 bio_sectors(wbio2));
2313 generic_make_request(wbio2);
2314 }
2315 }
2316
2317
2318 /*
2319 * Used by fix_read_error() to decay the per rdev read_errors.
2320 * We halve the read error count for every hour that has elapsed
2321 * since the last recorded read error.
2322 *
2323 */
2324 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2325 {
2326 struct timespec cur_time_mon;
2327 unsigned long hours_since_last;
2328 unsigned int read_errors = atomic_read(&rdev->read_errors);
2329
2330 ktime_get_ts(&cur_time_mon);
2331
2332 if (rdev->last_read_error.tv_sec == 0 &&
2333 rdev->last_read_error.tv_nsec == 0) {
2334 /* first time we've seen a read error */
2335 rdev->last_read_error = cur_time_mon;
2336 return;
2337 }
2338
2339 hours_since_last = (cur_time_mon.tv_sec -
2340 rdev->last_read_error.tv_sec) / 3600;
2341
2342 rdev->last_read_error = cur_time_mon;
2343
2344 /*
2345 * if hours_since_last is > the number of bits in read_errors
2346 * just set read errors to 0. We do this to avoid
2347 * overflowing the shift of read_errors by hours_since_last.
2348 */
2349 if (hours_since_last >= 8 * sizeof(read_errors))
2350 atomic_set(&rdev->read_errors, 0);
2351 else
2352 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2353 }
2354
2355 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2356 int sectors, struct page *page, int rw)
2357 {
2358 sector_t first_bad;
2359 int bad_sectors;
2360
2361 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2362 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2363 return -1;
2364 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2365 /* success */
2366 return 1;
2367 if (rw == WRITE) {
2368 set_bit(WriteErrorSeen, &rdev->flags);
2369 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2370 set_bit(MD_RECOVERY_NEEDED,
2371 &rdev->mddev->recovery);
2372 }
2373 /* need to record an error - either for the block or the device */
2374 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2375 md_error(rdev->mddev, rdev);
2376 return 0;
2377 }
2378
2379 /*
2380 * This is a kernel thread which:
2381 *
2382 * 1. Retries failed read operations on working mirrors.
2383 * 2. Updates the raid superblock when problems encounter.
2384 * 3. Performs writes following reads for array synchronising.
2385 */
2386
2387 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2388 {
2389 int sect = 0; /* Offset from r10_bio->sector */
2390 int sectors = r10_bio->sectors;
2391 struct md_rdev*rdev;
2392 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2393 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2394
2395 /* still own a reference to this rdev, so it cannot
2396 * have been cleared recently.
2397 */
2398 rdev = conf->mirrors[d].rdev;
2399
2400 if (test_bit(Faulty, &rdev->flags))
2401 /* drive has already been failed, just ignore any
2402 more fix_read_error() attempts */
2403 return;
2404
2405 check_decay_read_errors(mddev, rdev);
2406 atomic_inc(&rdev->read_errors);
2407 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2408 char b[BDEVNAME_SIZE];
2409 bdevname(rdev->bdev, b);
2410
2411 printk(KERN_NOTICE
2412 "md/raid10:%s: %s: Raid device exceeded "
2413 "read_error threshold [cur %d:max %d]\n",
2414 mdname(mddev), b,
2415 atomic_read(&rdev->read_errors), max_read_errors);
2416 printk(KERN_NOTICE
2417 "md/raid10:%s: %s: Failing raid device\n",
2418 mdname(mddev), b);
2419 md_error(mddev, conf->mirrors[d].rdev);
2420 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2421 return;
2422 }
2423
2424 while(sectors) {
2425 int s = sectors;
2426 int sl = r10_bio->read_slot;
2427 int success = 0;
2428 int start;
2429
2430 if (s > (PAGE_SIZE>>9))
2431 s = PAGE_SIZE >> 9;
2432
2433 rcu_read_lock();
2434 do {
2435 sector_t first_bad;
2436 int bad_sectors;
2437
2438 d = r10_bio->devs[sl].devnum;
2439 rdev = rcu_dereference(conf->mirrors[d].rdev);
2440 if (rdev &&
2441 !test_bit(Unmerged, &rdev->flags) &&
2442 test_bit(In_sync, &rdev->flags) &&
2443 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2444 &first_bad, &bad_sectors) == 0) {
2445 atomic_inc(&rdev->nr_pending);
2446 rcu_read_unlock();
2447 success = sync_page_io(rdev,
2448 r10_bio->devs[sl].addr +
2449 sect,
2450 s<<9,
2451 conf->tmppage, READ, false);
2452 rdev_dec_pending(rdev, mddev);
2453 rcu_read_lock();
2454 if (success)
2455 break;
2456 }
2457 sl++;
2458 if (sl == conf->copies)
2459 sl = 0;
2460 } while (!success && sl != r10_bio->read_slot);
2461 rcu_read_unlock();
2462
2463 if (!success) {
2464 /* Cannot read from anywhere, just mark the block
2465 * as bad on the first device to discourage future
2466 * reads.
2467 */
2468 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2469 rdev = conf->mirrors[dn].rdev;
2470
2471 if (!rdev_set_badblocks(
2472 rdev,
2473 r10_bio->devs[r10_bio->read_slot].addr
2474 + sect,
2475 s, 0)) {
2476 md_error(mddev, rdev);
2477 r10_bio->devs[r10_bio->read_slot].bio
2478 = IO_BLOCKED;
2479 }
2480 break;
2481 }
2482
2483 start = sl;
2484 /* write it back and re-read */
2485 rcu_read_lock();
2486 while (sl != r10_bio->read_slot) {
2487 char b[BDEVNAME_SIZE];
2488
2489 if (sl==0)
2490 sl = conf->copies;
2491 sl--;
2492 d = r10_bio->devs[sl].devnum;
2493 rdev = rcu_dereference(conf->mirrors[d].rdev);
2494 if (!rdev ||
2495 test_bit(Unmerged, &rdev->flags) ||
2496 !test_bit(In_sync, &rdev->flags))
2497 continue;
2498
2499 atomic_inc(&rdev->nr_pending);
2500 rcu_read_unlock();
2501 if (r10_sync_page_io(rdev,
2502 r10_bio->devs[sl].addr +
2503 sect,
2504 s, conf->tmppage, WRITE)
2505 == 0) {
2506 /* Well, this device is dead */
2507 printk(KERN_NOTICE
2508 "md/raid10:%s: read correction "
2509 "write failed"
2510 " (%d sectors at %llu on %s)\n",
2511 mdname(mddev), s,
2512 (unsigned long long)(
2513 sect +
2514 choose_data_offset(r10_bio,
2515 rdev)),
2516 bdevname(rdev->bdev, b));
2517 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2518 "drive\n",
2519 mdname(mddev),
2520 bdevname(rdev->bdev, b));
2521 }
2522 rdev_dec_pending(rdev, mddev);
2523 rcu_read_lock();
2524 }
2525 sl = start;
2526 while (sl != r10_bio->read_slot) {
2527 char b[BDEVNAME_SIZE];
2528
2529 if (sl==0)
2530 sl = conf->copies;
2531 sl--;
2532 d = r10_bio->devs[sl].devnum;
2533 rdev = rcu_dereference(conf->mirrors[d].rdev);
2534 if (!rdev ||
2535 !test_bit(In_sync, &rdev->flags))
2536 continue;
2537
2538 atomic_inc(&rdev->nr_pending);
2539 rcu_read_unlock();
2540 switch (r10_sync_page_io(rdev,
2541 r10_bio->devs[sl].addr +
2542 sect,
2543 s, conf->tmppage,
2544 READ)) {
2545 case 0:
2546 /* Well, this device is dead */
2547 printk(KERN_NOTICE
2548 "md/raid10:%s: unable to read back "
2549 "corrected sectors"
2550 " (%d sectors at %llu on %s)\n",
2551 mdname(mddev), s,
2552 (unsigned long long)(
2553 sect +
2554 choose_data_offset(r10_bio, rdev)),
2555 bdevname(rdev->bdev, b));
2556 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2557 "drive\n",
2558 mdname(mddev),
2559 bdevname(rdev->bdev, b));
2560 break;
2561 case 1:
2562 printk(KERN_INFO
2563 "md/raid10:%s: read error corrected"
2564 " (%d sectors at %llu on %s)\n",
2565 mdname(mddev), s,
2566 (unsigned long long)(
2567 sect +
2568 choose_data_offset(r10_bio, rdev)),
2569 bdevname(rdev->bdev, b));
2570 atomic_add(s, &rdev->corrected_errors);
2571 }
2572
2573 rdev_dec_pending(rdev, mddev);
2574 rcu_read_lock();
2575 }
2576 rcu_read_unlock();
2577
2578 sectors -= s;
2579 sect += s;
2580 }
2581 }
2582
2583 static int narrow_write_error(struct r10bio *r10_bio, int i)
2584 {
2585 struct bio *bio = r10_bio->master_bio;
2586 struct mddev *mddev = r10_bio->mddev;
2587 struct r10conf *conf = mddev->private;
2588 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2589 /* bio has the data to be written to slot 'i' where
2590 * we just recently had a write error.
2591 * We repeatedly clone the bio and trim down to one block,
2592 * then try the write. Where the write fails we record
2593 * a bad block.
2594 * It is conceivable that the bio doesn't exactly align with
2595 * blocks. We must handle this.
2596 *
2597 * We currently own a reference to the rdev.
2598 */
2599
2600 int block_sectors;
2601 sector_t sector;
2602 int sectors;
2603 int sect_to_write = r10_bio->sectors;
2604 int ok = 1;
2605
2606 if (rdev->badblocks.shift < 0)
2607 return 0;
2608
2609 block_sectors = 1 << rdev->badblocks.shift;
2610 sector = r10_bio->sector;
2611 sectors = ((r10_bio->sector + block_sectors)
2612 & ~(sector_t)(block_sectors - 1))
2613 - sector;
2614
2615 while (sect_to_write) {
2616 struct bio *wbio;
2617 if (sectors > sect_to_write)
2618 sectors = sect_to_write;
2619 /* Write at 'sector' for 'sectors' */
2620 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2621 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2622 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2623 choose_data_offset(r10_bio, rdev) +
2624 (sector - r10_bio->sector));
2625 wbio->bi_bdev = rdev->bdev;
2626 if (submit_bio_wait(WRITE, wbio) == 0)
2627 /* Failure! */
2628 ok = rdev_set_badblocks(rdev, sector,
2629 sectors, 0)
2630 && ok;
2631
2632 bio_put(wbio);
2633 sect_to_write -= sectors;
2634 sector += sectors;
2635 sectors = block_sectors;
2636 }
2637 return ok;
2638 }
2639
2640 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2641 {
2642 int slot = r10_bio->read_slot;
2643 struct bio *bio;
2644 struct r10conf *conf = mddev->private;
2645 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2646 char b[BDEVNAME_SIZE];
2647 unsigned long do_sync;
2648 int max_sectors;
2649
2650 /* we got a read error. Maybe the drive is bad. Maybe just
2651 * the block and we can fix it.
2652 * We freeze all other IO, and try reading the block from
2653 * other devices. When we find one, we re-write
2654 * and check it that fixes the read error.
2655 * This is all done synchronously while the array is
2656 * frozen.
2657 */
2658 bio = r10_bio->devs[slot].bio;
2659 bdevname(bio->bi_bdev, b);
2660 bio_put(bio);
2661 r10_bio->devs[slot].bio = NULL;
2662
2663 if (mddev->ro == 0) {
2664 freeze_array(conf, 1);
2665 fix_read_error(conf, mddev, r10_bio);
2666 unfreeze_array(conf);
2667 } else
2668 r10_bio->devs[slot].bio = IO_BLOCKED;
2669
2670 rdev_dec_pending(rdev, mddev);
2671
2672 read_more:
2673 rdev = read_balance(conf, r10_bio, &max_sectors);
2674 if (rdev == NULL) {
2675 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2676 " read error for block %llu\n",
2677 mdname(mddev), b,
2678 (unsigned long long)r10_bio->sector);
2679 raid_end_bio_io(r10_bio);
2680 return;
2681 }
2682
2683 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2684 slot = r10_bio->read_slot;
2685 printk_ratelimited(
2686 KERN_ERR
2687 "md/raid10:%s: %s: redirecting "
2688 "sector %llu to another mirror\n",
2689 mdname(mddev),
2690 bdevname(rdev->bdev, b),
2691 (unsigned long long)r10_bio->sector);
2692 bio = bio_clone_mddev(r10_bio->master_bio,
2693 GFP_NOIO, mddev);
2694 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2695 r10_bio->devs[slot].bio = bio;
2696 r10_bio->devs[slot].rdev = rdev;
2697 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2698 + choose_data_offset(r10_bio, rdev);
2699 bio->bi_bdev = rdev->bdev;
2700 bio->bi_rw = READ | do_sync;
2701 bio->bi_private = r10_bio;
2702 bio->bi_end_io = raid10_end_read_request;
2703 if (max_sectors < r10_bio->sectors) {
2704 /* Drat - have to split this up more */
2705 struct bio *mbio = r10_bio->master_bio;
2706 int sectors_handled =
2707 r10_bio->sector + max_sectors
2708 - mbio->bi_iter.bi_sector;
2709 r10_bio->sectors = max_sectors;
2710 spin_lock_irq(&conf->device_lock);
2711 if (mbio->bi_phys_segments == 0)
2712 mbio->bi_phys_segments = 2;
2713 else
2714 mbio->bi_phys_segments++;
2715 spin_unlock_irq(&conf->device_lock);
2716 generic_make_request(bio);
2717
2718 r10_bio = mempool_alloc(conf->r10bio_pool,
2719 GFP_NOIO);
2720 r10_bio->master_bio = mbio;
2721 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2722 r10_bio->state = 0;
2723 set_bit(R10BIO_ReadError,
2724 &r10_bio->state);
2725 r10_bio->mddev = mddev;
2726 r10_bio->sector = mbio->bi_iter.bi_sector
2727 + sectors_handled;
2728
2729 goto read_more;
2730 } else
2731 generic_make_request(bio);
2732 }
2733
2734 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2735 {
2736 /* Some sort of write request has finished and it
2737 * succeeded in writing where we thought there was a
2738 * bad block. So forget the bad block.
2739 * Or possibly if failed and we need to record
2740 * a bad block.
2741 */
2742 int m;
2743 struct md_rdev *rdev;
2744
2745 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2746 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2747 for (m = 0; m < conf->copies; m++) {
2748 int dev = r10_bio->devs[m].devnum;
2749 rdev = conf->mirrors[dev].rdev;
2750 if (r10_bio->devs[m].bio == NULL)
2751 continue;
2752 if (test_bit(BIO_UPTODATE,
2753 &r10_bio->devs[m].bio->bi_flags)) {
2754 rdev_clear_badblocks(
2755 rdev,
2756 r10_bio->devs[m].addr,
2757 r10_bio->sectors, 0);
2758 } else {
2759 if (!rdev_set_badblocks(
2760 rdev,
2761 r10_bio->devs[m].addr,
2762 r10_bio->sectors, 0))
2763 md_error(conf->mddev, rdev);
2764 }
2765 rdev = conf->mirrors[dev].replacement;
2766 if (r10_bio->devs[m].repl_bio == NULL)
2767 continue;
2768 if (test_bit(BIO_UPTODATE,
2769 &r10_bio->devs[m].repl_bio->bi_flags)) {
2770 rdev_clear_badblocks(
2771 rdev,
2772 r10_bio->devs[m].addr,
2773 r10_bio->sectors, 0);
2774 } else {
2775 if (!rdev_set_badblocks(
2776 rdev,
2777 r10_bio->devs[m].addr,
2778 r10_bio->sectors, 0))
2779 md_error(conf->mddev, rdev);
2780 }
2781 }
2782 put_buf(r10_bio);
2783 } else {
2784 for (m = 0; m < conf->copies; m++) {
2785 int dev = r10_bio->devs[m].devnum;
2786 struct bio *bio = r10_bio->devs[m].bio;
2787 rdev = conf->mirrors[dev].rdev;
2788 if (bio == IO_MADE_GOOD) {
2789 rdev_clear_badblocks(
2790 rdev,
2791 r10_bio->devs[m].addr,
2792 r10_bio->sectors, 0);
2793 rdev_dec_pending(rdev, conf->mddev);
2794 } else if (bio != NULL &&
2795 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2796 if (!narrow_write_error(r10_bio, m)) {
2797 md_error(conf->mddev, rdev);
2798 set_bit(R10BIO_Degraded,
2799 &r10_bio->state);
2800 }
2801 rdev_dec_pending(rdev, conf->mddev);
2802 }
2803 bio = r10_bio->devs[m].repl_bio;
2804 rdev = conf->mirrors[dev].replacement;
2805 if (rdev && bio == IO_MADE_GOOD) {
2806 rdev_clear_badblocks(
2807 rdev,
2808 r10_bio->devs[m].addr,
2809 r10_bio->sectors, 0);
2810 rdev_dec_pending(rdev, conf->mddev);
2811 }
2812 }
2813 if (test_bit(R10BIO_WriteError,
2814 &r10_bio->state))
2815 close_write(r10_bio);
2816 raid_end_bio_io(r10_bio);
2817 }
2818 }
2819
2820 static void raid10d(struct md_thread *thread)
2821 {
2822 struct mddev *mddev = thread->mddev;
2823 struct r10bio *r10_bio;
2824 unsigned long flags;
2825 struct r10conf *conf = mddev->private;
2826 struct list_head *head = &conf->retry_list;
2827 struct blk_plug plug;
2828
2829 md_check_recovery(mddev);
2830
2831 blk_start_plug(&plug);
2832 for (;;) {
2833
2834 flush_pending_writes(conf);
2835
2836 spin_lock_irqsave(&conf->device_lock, flags);
2837 if (list_empty(head)) {
2838 spin_unlock_irqrestore(&conf->device_lock, flags);
2839 break;
2840 }
2841 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2842 list_del(head->prev);
2843 conf->nr_queued--;
2844 spin_unlock_irqrestore(&conf->device_lock, flags);
2845
2846 mddev = r10_bio->mddev;
2847 conf = mddev->private;
2848 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2849 test_bit(R10BIO_WriteError, &r10_bio->state))
2850 handle_write_completed(conf, r10_bio);
2851 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2852 reshape_request_write(mddev, r10_bio);
2853 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2854 sync_request_write(mddev, r10_bio);
2855 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2856 recovery_request_write(mddev, r10_bio);
2857 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2858 handle_read_error(mddev, r10_bio);
2859 else {
2860 /* just a partial read to be scheduled from a
2861 * separate context
2862 */
2863 int slot = r10_bio->read_slot;
2864 generic_make_request(r10_bio->devs[slot].bio);
2865 }
2866
2867 cond_resched();
2868 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2869 md_check_recovery(mddev);
2870 }
2871 blk_finish_plug(&plug);
2872 }
2873
2874
2875 static int init_resync(struct r10conf *conf)
2876 {
2877 int buffs;
2878 int i;
2879
2880 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2881 BUG_ON(conf->r10buf_pool);
2882 conf->have_replacement = 0;
2883 for (i = 0; i < conf->geo.raid_disks; i++)
2884 if (conf->mirrors[i].replacement)
2885 conf->have_replacement = 1;
2886 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2887 if (!conf->r10buf_pool)
2888 return -ENOMEM;
2889 conf->next_resync = 0;
2890 return 0;
2891 }
2892
2893 /*
2894 * perform a "sync" on one "block"
2895 *
2896 * We need to make sure that no normal I/O request - particularly write
2897 * requests - conflict with active sync requests.
2898 *
2899 * This is achieved by tracking pending requests and a 'barrier' concept
2900 * that can be installed to exclude normal IO requests.
2901 *
2902 * Resync and recovery are handled very differently.
2903 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2904 *
2905 * For resync, we iterate over virtual addresses, read all copies,
2906 * and update if there are differences. If only one copy is live,
2907 * skip it.
2908 * For recovery, we iterate over physical addresses, read a good
2909 * value for each non-in_sync drive, and over-write.
2910 *
2911 * So, for recovery we may have several outstanding complex requests for a
2912 * given address, one for each out-of-sync device. We model this by allocating
2913 * a number of r10_bio structures, one for each out-of-sync device.
2914 * As we setup these structures, we collect all bio's together into a list
2915 * which we then process collectively to add pages, and then process again
2916 * to pass to generic_make_request.
2917 *
2918 * The r10_bio structures are linked using a borrowed master_bio pointer.
2919 * This link is counted in ->remaining. When the r10_bio that points to NULL
2920 * has its remaining count decremented to 0, the whole complex operation
2921 * is complete.
2922 *
2923 */
2924
2925 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2926 int *skipped, int go_faster)
2927 {
2928 struct r10conf *conf = mddev->private;
2929 struct r10bio *r10_bio;
2930 struct bio *biolist = NULL, *bio;
2931 sector_t max_sector, nr_sectors;
2932 int i;
2933 int max_sync;
2934 sector_t sync_blocks;
2935 sector_t sectors_skipped = 0;
2936 int chunks_skipped = 0;
2937 sector_t chunk_mask = conf->geo.chunk_mask;
2938
2939 if (!conf->r10buf_pool)
2940 if (init_resync(conf))
2941 return 0;
2942
2943 /*
2944 * Allow skipping a full rebuild for incremental assembly
2945 * of a clean array, like RAID1 does.
2946 */
2947 if (mddev->bitmap == NULL &&
2948 mddev->recovery_cp == MaxSector &&
2949 mddev->reshape_position == MaxSector &&
2950 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2951 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2952 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2953 conf->fullsync == 0) {
2954 *skipped = 1;
2955 return mddev->dev_sectors - sector_nr;
2956 }
2957
2958 skipped:
2959 max_sector = mddev->dev_sectors;
2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2961 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2962 max_sector = mddev->resync_max_sectors;
2963 if (sector_nr >= max_sector) {
2964 /* If we aborted, we need to abort the
2965 * sync on the 'current' bitmap chucks (there can
2966 * be several when recovering multiple devices).
2967 * as we may have started syncing it but not finished.
2968 * We can find the current address in
2969 * mddev->curr_resync, but for recovery,
2970 * we need to convert that to several
2971 * virtual addresses.
2972 */
2973 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2974 end_reshape(conf);
2975 return 0;
2976 }
2977
2978 if (mddev->curr_resync < max_sector) { /* aborted */
2979 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2980 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2981 &sync_blocks, 1);
2982 else for (i = 0; i < conf->geo.raid_disks; i++) {
2983 sector_t sect =
2984 raid10_find_virt(conf, mddev->curr_resync, i);
2985 bitmap_end_sync(mddev->bitmap, sect,
2986 &sync_blocks, 1);
2987 }
2988 } else {
2989 /* completed sync */
2990 if ((!mddev->bitmap || conf->fullsync)
2991 && conf->have_replacement
2992 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2993 /* Completed a full sync so the replacements
2994 * are now fully recovered.
2995 */
2996 for (i = 0; i < conf->geo.raid_disks; i++)
2997 if (conf->mirrors[i].replacement)
2998 conf->mirrors[i].replacement
2999 ->recovery_offset
3000 = MaxSector;
3001 }
3002 conf->fullsync = 0;
3003 }
3004 bitmap_close_sync(mddev->bitmap);
3005 close_sync(conf);
3006 *skipped = 1;
3007 return sectors_skipped;
3008 }
3009
3010 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3011 return reshape_request(mddev, sector_nr, skipped);
3012
3013 if (chunks_skipped >= conf->geo.raid_disks) {
3014 /* if there has been nothing to do on any drive,
3015 * then there is nothing to do at all..
3016 */
3017 *skipped = 1;
3018 return (max_sector - sector_nr) + sectors_skipped;
3019 }
3020
3021 if (max_sector > mddev->resync_max)
3022 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3023
3024 /* make sure whole request will fit in a chunk - if chunks
3025 * are meaningful
3026 */
3027 if (conf->geo.near_copies < conf->geo.raid_disks &&
3028 max_sector > (sector_nr | chunk_mask))
3029 max_sector = (sector_nr | chunk_mask) + 1;
3030 /*
3031 * If there is non-resync activity waiting for us then
3032 * put in a delay to throttle resync.
3033 */
3034 if (!go_faster && conf->nr_waiting)
3035 msleep_interruptible(1000);
3036
3037 /* Again, very different code for resync and recovery.
3038 * Both must result in an r10bio with a list of bios that
3039 * have bi_end_io, bi_sector, bi_bdev set,
3040 * and bi_private set to the r10bio.
3041 * For recovery, we may actually create several r10bios
3042 * with 2 bios in each, that correspond to the bios in the main one.
3043 * In this case, the subordinate r10bios link back through a
3044 * borrowed master_bio pointer, and the counter in the master
3045 * includes a ref from each subordinate.
3046 */
3047 /* First, we decide what to do and set ->bi_end_io
3048 * To end_sync_read if we want to read, and
3049 * end_sync_write if we will want to write.
3050 */
3051
3052 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3053 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3054 /* recovery... the complicated one */
3055 int j;
3056 r10_bio = NULL;
3057
3058 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3059 int still_degraded;
3060 struct r10bio *rb2;
3061 sector_t sect;
3062 int must_sync;
3063 int any_working;
3064 struct raid10_info *mirror = &conf->mirrors[i];
3065
3066 if ((mirror->rdev == NULL ||
3067 test_bit(In_sync, &mirror->rdev->flags))
3068 &&
3069 (mirror->replacement == NULL ||
3070 test_bit(Faulty,
3071 &mirror->replacement->flags)))
3072 continue;
3073
3074 still_degraded = 0;
3075 /* want to reconstruct this device */
3076 rb2 = r10_bio;
3077 sect = raid10_find_virt(conf, sector_nr, i);
3078 if (sect >= mddev->resync_max_sectors) {
3079 /* last stripe is not complete - don't
3080 * try to recover this sector.
3081 */
3082 continue;
3083 }
3084 /* Unless we are doing a full sync, or a replacement
3085 * we only need to recover the block if it is set in
3086 * the bitmap
3087 */
3088 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3089 &sync_blocks, 1);
3090 if (sync_blocks < max_sync)
3091 max_sync = sync_blocks;
3092 if (!must_sync &&
3093 mirror->replacement == NULL &&
3094 !conf->fullsync) {
3095 /* yep, skip the sync_blocks here, but don't assume
3096 * that there will never be anything to do here
3097 */
3098 chunks_skipped = -1;
3099 continue;
3100 }
3101
3102 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3103 raise_barrier(conf, rb2 != NULL);
3104 atomic_set(&r10_bio->remaining, 0);
3105
3106 r10_bio->master_bio = (struct bio*)rb2;
3107 if (rb2)
3108 atomic_inc(&rb2->remaining);
3109 r10_bio->mddev = mddev;
3110 set_bit(R10BIO_IsRecover, &r10_bio->state);
3111 r10_bio->sector = sect;
3112
3113 raid10_find_phys(conf, r10_bio);
3114
3115 /* Need to check if the array will still be
3116 * degraded
3117 */
3118 for (j = 0; j < conf->geo.raid_disks; j++)
3119 if (conf->mirrors[j].rdev == NULL ||
3120 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3121 still_degraded = 1;
3122 break;
3123 }
3124
3125 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3126 &sync_blocks, still_degraded);
3127
3128 any_working = 0;
3129 for (j=0; j<conf->copies;j++) {
3130 int k;
3131 int d = r10_bio->devs[j].devnum;
3132 sector_t from_addr, to_addr;
3133 struct md_rdev *rdev;
3134 sector_t sector, first_bad;
3135 int bad_sectors;
3136 if (!conf->mirrors[d].rdev ||
3137 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3138 continue;
3139 /* This is where we read from */
3140 any_working = 1;
3141 rdev = conf->mirrors[d].rdev;
3142 sector = r10_bio->devs[j].addr;
3143
3144 if (is_badblock(rdev, sector, max_sync,
3145 &first_bad, &bad_sectors)) {
3146 if (first_bad > sector)
3147 max_sync = first_bad - sector;
3148 else {
3149 bad_sectors -= (sector
3150 - first_bad);
3151 if (max_sync > bad_sectors)
3152 max_sync = bad_sectors;
3153 continue;
3154 }
3155 }
3156 bio = r10_bio->devs[0].bio;
3157 bio_reset(bio);
3158 bio->bi_next = biolist;
3159 biolist = bio;
3160 bio->bi_private = r10_bio;
3161 bio->bi_end_io = end_sync_read;
3162 bio->bi_rw = READ;
3163 from_addr = r10_bio->devs[j].addr;
3164 bio->bi_iter.bi_sector = from_addr +
3165 rdev->data_offset;
3166 bio->bi_bdev = rdev->bdev;
3167 atomic_inc(&rdev->nr_pending);
3168 /* and we write to 'i' (if not in_sync) */
3169
3170 for (k=0; k<conf->copies; k++)
3171 if (r10_bio->devs[k].devnum == i)
3172 break;
3173 BUG_ON(k == conf->copies);
3174 to_addr = r10_bio->devs[k].addr;
3175 r10_bio->devs[0].devnum = d;
3176 r10_bio->devs[0].addr = from_addr;
3177 r10_bio->devs[1].devnum = i;
3178 r10_bio->devs[1].addr = to_addr;
3179
3180 rdev = mirror->rdev;
3181 if (!test_bit(In_sync, &rdev->flags)) {
3182 bio = r10_bio->devs[1].bio;
3183 bio_reset(bio);
3184 bio->bi_next = biolist;
3185 biolist = bio;
3186 bio->bi_private = r10_bio;
3187 bio->bi_end_io = end_sync_write;
3188 bio->bi_rw = WRITE;
3189 bio->bi_iter.bi_sector = to_addr
3190 + rdev->data_offset;
3191 bio->bi_bdev = rdev->bdev;
3192 atomic_inc(&r10_bio->remaining);
3193 } else
3194 r10_bio->devs[1].bio->bi_end_io = NULL;
3195
3196 /* and maybe write to replacement */
3197 bio = r10_bio->devs[1].repl_bio;
3198 if (bio)
3199 bio->bi_end_io = NULL;
3200 rdev = mirror->replacement;
3201 /* Note: if rdev != NULL, then bio
3202 * cannot be NULL as r10buf_pool_alloc will
3203 * have allocated it.
3204 * So the second test here is pointless.
3205 * But it keeps semantic-checkers happy, and
3206 * this comment keeps human reviewers
3207 * happy.
3208 */
3209 if (rdev == NULL || bio == NULL ||
3210 test_bit(Faulty, &rdev->flags))
3211 break;
3212 bio_reset(bio);
3213 bio->bi_next = biolist;
3214 biolist = bio;
3215 bio->bi_private = r10_bio;
3216 bio->bi_end_io = end_sync_write;
3217 bio->bi_rw = WRITE;
3218 bio->bi_iter.bi_sector = to_addr +
3219 rdev->data_offset;
3220 bio->bi_bdev = rdev->bdev;
3221 atomic_inc(&r10_bio->remaining);
3222 break;
3223 }
3224 if (j == conf->copies) {
3225 /* Cannot recover, so abort the recovery or
3226 * record a bad block */
3227 put_buf(r10_bio);
3228 if (rb2)
3229 atomic_dec(&rb2->remaining);
3230 r10_bio = rb2;
3231 if (any_working) {
3232 /* problem is that there are bad blocks
3233 * on other device(s)
3234 */
3235 int k;
3236 for (k = 0; k < conf->copies; k++)
3237 if (r10_bio->devs[k].devnum == i)
3238 break;
3239 if (!test_bit(In_sync,
3240 &mirror->rdev->flags)
3241 && !rdev_set_badblocks(
3242 mirror->rdev,
3243 r10_bio->devs[k].addr,
3244 max_sync, 0))
3245 any_working = 0;
3246 if (mirror->replacement &&
3247 !rdev_set_badblocks(
3248 mirror->replacement,
3249 r10_bio->devs[k].addr,
3250 max_sync, 0))
3251 any_working = 0;
3252 }
3253 if (!any_working) {
3254 if (!test_and_set_bit(MD_RECOVERY_INTR,
3255 &mddev->recovery))
3256 printk(KERN_INFO "md/raid10:%s: insufficient "
3257 "working devices for recovery.\n",
3258 mdname(mddev));
3259 mirror->recovery_disabled
3260 = mddev->recovery_disabled;
3261 }
3262 break;
3263 }
3264 }
3265 if (biolist == NULL) {
3266 while (r10_bio) {
3267 struct r10bio *rb2 = r10_bio;
3268 r10_bio = (struct r10bio*) rb2->master_bio;
3269 rb2->master_bio = NULL;
3270 put_buf(rb2);
3271 }
3272 goto giveup;
3273 }
3274 } else {
3275 /* resync. Schedule a read for every block at this virt offset */
3276 int count = 0;
3277
3278 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3279
3280 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3281 &sync_blocks, mddev->degraded) &&
3282 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3283 &mddev->recovery)) {
3284 /* We can skip this block */
3285 *skipped = 1;
3286 return sync_blocks + sectors_skipped;
3287 }
3288 if (sync_blocks < max_sync)
3289 max_sync = sync_blocks;
3290 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3291
3292 r10_bio->mddev = mddev;
3293 atomic_set(&r10_bio->remaining, 0);
3294 raise_barrier(conf, 0);
3295 conf->next_resync = sector_nr;
3296
3297 r10_bio->master_bio = NULL;
3298 r10_bio->sector = sector_nr;
3299 set_bit(R10BIO_IsSync, &r10_bio->state);
3300 raid10_find_phys(conf, r10_bio);
3301 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3302
3303 for (i = 0; i < conf->copies; i++) {
3304 int d = r10_bio->devs[i].devnum;
3305 sector_t first_bad, sector;
3306 int bad_sectors;
3307
3308 if (r10_bio->devs[i].repl_bio)
3309 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3310
3311 bio = r10_bio->devs[i].bio;
3312 bio_reset(bio);
3313 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3314 if (conf->mirrors[d].rdev == NULL ||
3315 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3316 continue;
3317 sector = r10_bio->devs[i].addr;
3318 if (is_badblock(conf->mirrors[d].rdev,
3319 sector, max_sync,
3320 &first_bad, &bad_sectors)) {
3321 if (first_bad > sector)
3322 max_sync = first_bad - sector;
3323 else {
3324 bad_sectors -= (sector - first_bad);
3325 if (max_sync > bad_sectors)
3326 max_sync = bad_sectors;
3327 continue;
3328 }
3329 }
3330 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3331 atomic_inc(&r10_bio->remaining);
3332 bio->bi_next = biolist;
3333 biolist = bio;
3334 bio->bi_private = r10_bio;
3335 bio->bi_end_io = end_sync_read;
3336 bio->bi_rw = READ;
3337 bio->bi_iter.bi_sector = sector +
3338 conf->mirrors[d].rdev->data_offset;
3339 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3340 count++;
3341
3342 if (conf->mirrors[d].replacement == NULL ||
3343 test_bit(Faulty,
3344 &conf->mirrors[d].replacement->flags))
3345 continue;
3346
3347 /* Need to set up for writing to the replacement */
3348 bio = r10_bio->devs[i].repl_bio;
3349 bio_reset(bio);
3350 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3351
3352 sector = r10_bio->devs[i].addr;
3353 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3354 bio->bi_next = biolist;
3355 biolist = bio;
3356 bio->bi_private = r10_bio;
3357 bio->bi_end_io = end_sync_write;
3358 bio->bi_rw = WRITE;
3359 bio->bi_iter.bi_sector = sector +
3360 conf->mirrors[d].replacement->data_offset;
3361 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3362 count++;
3363 }
3364
3365 if (count < 2) {
3366 for (i=0; i<conf->copies; i++) {
3367 int d = r10_bio->devs[i].devnum;
3368 if (r10_bio->devs[i].bio->bi_end_io)
3369 rdev_dec_pending(conf->mirrors[d].rdev,
3370 mddev);
3371 if (r10_bio->devs[i].repl_bio &&
3372 r10_bio->devs[i].repl_bio->bi_end_io)
3373 rdev_dec_pending(
3374 conf->mirrors[d].replacement,
3375 mddev);
3376 }
3377 put_buf(r10_bio);
3378 biolist = NULL;
3379 goto giveup;
3380 }
3381 }
3382
3383 nr_sectors = 0;
3384 if (sector_nr + max_sync < max_sector)
3385 max_sector = sector_nr + max_sync;
3386 do {
3387 struct page *page;
3388 int len = PAGE_SIZE;
3389 if (sector_nr + (len>>9) > max_sector)
3390 len = (max_sector - sector_nr) << 9;
3391 if (len == 0)
3392 break;
3393 for (bio= biolist ; bio ; bio=bio->bi_next) {
3394 struct bio *bio2;
3395 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3396 if (bio_add_page(bio, page, len, 0))
3397 continue;
3398
3399 /* stop here */
3400 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3401 for (bio2 = biolist;
3402 bio2 && bio2 != bio;
3403 bio2 = bio2->bi_next) {
3404 /* remove last page from this bio */
3405 bio2->bi_vcnt--;
3406 bio2->bi_iter.bi_size -= len;
3407 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3408 }
3409 goto bio_full;
3410 }
3411 nr_sectors += len>>9;
3412 sector_nr += len>>9;
3413 } while (biolist->bi_vcnt < RESYNC_PAGES);
3414 bio_full:
3415 r10_bio->sectors = nr_sectors;
3416
3417 while (biolist) {
3418 bio = biolist;
3419 biolist = biolist->bi_next;
3420
3421 bio->bi_next = NULL;
3422 r10_bio = bio->bi_private;
3423 r10_bio->sectors = nr_sectors;
3424
3425 if (bio->bi_end_io == end_sync_read) {
3426 md_sync_acct(bio->bi_bdev, nr_sectors);
3427 set_bit(BIO_UPTODATE, &bio->bi_flags);
3428 generic_make_request(bio);
3429 }
3430 }
3431
3432 if (sectors_skipped)
3433 /* pretend they weren't skipped, it makes
3434 * no important difference in this case
3435 */
3436 md_done_sync(mddev, sectors_skipped, 1);
3437
3438 return sectors_skipped + nr_sectors;
3439 giveup:
3440 /* There is nowhere to write, so all non-sync
3441 * drives must be failed or in resync, all drives
3442 * have a bad block, so try the next chunk...
3443 */
3444 if (sector_nr + max_sync < max_sector)
3445 max_sector = sector_nr + max_sync;
3446
3447 sectors_skipped += (max_sector - sector_nr);
3448 chunks_skipped ++;
3449 sector_nr = max_sector;
3450 goto skipped;
3451 }
3452
3453 static sector_t
3454 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3455 {
3456 sector_t size;
3457 struct r10conf *conf = mddev->private;
3458
3459 if (!raid_disks)
3460 raid_disks = min(conf->geo.raid_disks,
3461 conf->prev.raid_disks);
3462 if (!sectors)
3463 sectors = conf->dev_sectors;
3464
3465 size = sectors >> conf->geo.chunk_shift;
3466 sector_div(size, conf->geo.far_copies);
3467 size = size * raid_disks;
3468 sector_div(size, conf->geo.near_copies);
3469
3470 return size << conf->geo.chunk_shift;
3471 }
3472
3473 static void calc_sectors(struct r10conf *conf, sector_t size)
3474 {
3475 /* Calculate the number of sectors-per-device that will
3476 * actually be used, and set conf->dev_sectors and
3477 * conf->stride
3478 */
3479
3480 size = size >> conf->geo.chunk_shift;
3481 sector_div(size, conf->geo.far_copies);
3482 size = size * conf->geo.raid_disks;
3483 sector_div(size, conf->geo.near_copies);
3484 /* 'size' is now the number of chunks in the array */
3485 /* calculate "used chunks per device" */
3486 size = size * conf->copies;
3487
3488 /* We need to round up when dividing by raid_disks to
3489 * get the stride size.
3490 */
3491 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3492
3493 conf->dev_sectors = size << conf->geo.chunk_shift;
3494
3495 if (conf->geo.far_offset)
3496 conf->geo.stride = 1 << conf->geo.chunk_shift;
3497 else {
3498 sector_div(size, conf->geo.far_copies);
3499 conf->geo.stride = size << conf->geo.chunk_shift;
3500 }
3501 }
3502
3503 enum geo_type {geo_new, geo_old, geo_start};
3504 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3505 {
3506 int nc, fc, fo;
3507 int layout, chunk, disks;
3508 switch (new) {
3509 case geo_old:
3510 layout = mddev->layout;
3511 chunk = mddev->chunk_sectors;
3512 disks = mddev->raid_disks - mddev->delta_disks;
3513 break;
3514 case geo_new:
3515 layout = mddev->new_layout;
3516 chunk = mddev->new_chunk_sectors;
3517 disks = mddev->raid_disks;
3518 break;
3519 default: /* avoid 'may be unused' warnings */
3520 case geo_start: /* new when starting reshape - raid_disks not
3521 * updated yet. */
3522 layout = mddev->new_layout;
3523 chunk = mddev->new_chunk_sectors;
3524 disks = mddev->raid_disks + mddev->delta_disks;
3525 break;
3526 }
3527 if (layout >> 18)
3528 return -1;
3529 if (chunk < (PAGE_SIZE >> 9) ||
3530 !is_power_of_2(chunk))
3531 return -2;
3532 nc = layout & 255;
3533 fc = (layout >> 8) & 255;
3534 fo = layout & (1<<16);
3535 geo->raid_disks = disks;
3536 geo->near_copies = nc;
3537 geo->far_copies = fc;
3538 geo->far_offset = fo;
3539 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3540 geo->chunk_mask = chunk - 1;
3541 geo->chunk_shift = ffz(~chunk);
3542 return nc*fc;
3543 }
3544
3545 static struct r10conf *setup_conf(struct mddev *mddev)
3546 {
3547 struct r10conf *conf = NULL;
3548 int err = -EINVAL;
3549 struct geom geo;
3550 int copies;
3551
3552 copies = setup_geo(&geo, mddev, geo_new);
3553
3554 if (copies == -2) {
3555 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3556 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3557 mdname(mddev), PAGE_SIZE);
3558 goto out;
3559 }
3560
3561 if (copies < 2 || copies > mddev->raid_disks) {
3562 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3563 mdname(mddev), mddev->new_layout);
3564 goto out;
3565 }
3566
3567 err = -ENOMEM;
3568 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3569 if (!conf)
3570 goto out;
3571
3572 /* FIXME calc properly */
3573 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3574 max(0,-mddev->delta_disks)),
3575 GFP_KERNEL);
3576 if (!conf->mirrors)
3577 goto out;
3578
3579 conf->tmppage = alloc_page(GFP_KERNEL);
3580 if (!conf->tmppage)
3581 goto out;
3582
3583 conf->geo = geo;
3584 conf->copies = copies;
3585 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3586 r10bio_pool_free, conf);
3587 if (!conf->r10bio_pool)
3588 goto out;
3589
3590 calc_sectors(conf, mddev->dev_sectors);
3591 if (mddev->reshape_position == MaxSector) {
3592 conf->prev = conf->geo;
3593 conf->reshape_progress = MaxSector;
3594 } else {
3595 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3596 err = -EINVAL;
3597 goto out;
3598 }
3599 conf->reshape_progress = mddev->reshape_position;
3600 if (conf->prev.far_offset)
3601 conf->prev.stride = 1 << conf->prev.chunk_shift;
3602 else
3603 /* far_copies must be 1 */
3604 conf->prev.stride = conf->dev_sectors;
3605 }
3606 spin_lock_init(&conf->device_lock);
3607 INIT_LIST_HEAD(&conf->retry_list);
3608
3609 spin_lock_init(&conf->resync_lock);
3610 init_waitqueue_head(&conf->wait_barrier);
3611
3612 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3613 if (!conf->thread)
3614 goto out;
3615
3616 conf->mddev = mddev;
3617 return conf;
3618
3619 out:
3620 if (err == -ENOMEM)
3621 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3622 mdname(mddev));
3623 if (conf) {
3624 if (conf->r10bio_pool)
3625 mempool_destroy(conf->r10bio_pool);
3626 kfree(conf->mirrors);
3627 safe_put_page(conf->tmppage);
3628 kfree(conf);
3629 }
3630 return ERR_PTR(err);
3631 }
3632
3633 static int run(struct mddev *mddev)
3634 {
3635 struct r10conf *conf;
3636 int i, disk_idx, chunk_size;
3637 struct raid10_info *disk;
3638 struct md_rdev *rdev;
3639 sector_t size;
3640 sector_t min_offset_diff = 0;
3641 int first = 1;
3642 bool discard_supported = false;
3643
3644 if (mddev->private == NULL) {
3645 conf = setup_conf(mddev);
3646 if (IS_ERR(conf))
3647 return PTR_ERR(conf);
3648 mddev->private = conf;
3649 }
3650 conf = mddev->private;
3651 if (!conf)
3652 goto out;
3653
3654 mddev->thread = conf->thread;
3655 conf->thread = NULL;
3656
3657 chunk_size = mddev->chunk_sectors << 9;
3658 if (mddev->queue) {
3659 blk_queue_max_discard_sectors(mddev->queue,
3660 mddev->chunk_sectors);
3661 blk_queue_max_write_same_sectors(mddev->queue, 0);
3662 blk_queue_io_min(mddev->queue, chunk_size);
3663 if (conf->geo.raid_disks % conf->geo.near_copies)
3664 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3665 else
3666 blk_queue_io_opt(mddev->queue, chunk_size *
3667 (conf->geo.raid_disks / conf->geo.near_copies));
3668 }
3669
3670 rdev_for_each(rdev, mddev) {
3671 long long diff;
3672 struct request_queue *q;
3673
3674 disk_idx = rdev->raid_disk;
3675 if (disk_idx < 0)
3676 continue;
3677 if (disk_idx >= conf->geo.raid_disks &&
3678 disk_idx >= conf->prev.raid_disks)
3679 continue;
3680 disk = conf->mirrors + disk_idx;
3681
3682 if (test_bit(Replacement, &rdev->flags)) {
3683 if (disk->replacement)
3684 goto out_free_conf;
3685 disk->replacement = rdev;
3686 } else {
3687 if (disk->rdev)
3688 goto out_free_conf;
3689 disk->rdev = rdev;
3690 }
3691 q = bdev_get_queue(rdev->bdev);
3692 if (q->merge_bvec_fn)
3693 mddev->merge_check_needed = 1;
3694 diff = (rdev->new_data_offset - rdev->data_offset);
3695 if (!mddev->reshape_backwards)
3696 diff = -diff;
3697 if (diff < 0)
3698 diff = 0;
3699 if (first || diff < min_offset_diff)
3700 min_offset_diff = diff;
3701
3702 if (mddev->gendisk)
3703 disk_stack_limits(mddev->gendisk, rdev->bdev,
3704 rdev->data_offset << 9);
3705
3706 disk->head_position = 0;
3707
3708 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3709 discard_supported = true;
3710 }
3711
3712 if (mddev->queue) {
3713 if (discard_supported)
3714 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3715 mddev->queue);
3716 else
3717 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3718 mddev->queue);
3719 }
3720 /* need to check that every block has at least one working mirror */
3721 if (!enough(conf, -1)) {
3722 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3723 mdname(mddev));
3724 goto out_free_conf;
3725 }
3726
3727 if (conf->reshape_progress != MaxSector) {
3728 /* must ensure that shape change is supported */
3729 if (conf->geo.far_copies != 1 &&
3730 conf->geo.far_offset == 0)
3731 goto out_free_conf;
3732 if (conf->prev.far_copies != 1 &&
3733 conf->prev.far_offset == 0)
3734 goto out_free_conf;
3735 }
3736
3737 mddev->degraded = 0;
3738 for (i = 0;
3739 i < conf->geo.raid_disks
3740 || i < conf->prev.raid_disks;
3741 i++) {
3742
3743 disk = conf->mirrors + i;
3744
3745 if (!disk->rdev && disk->replacement) {
3746 /* The replacement is all we have - use it */
3747 disk->rdev = disk->replacement;
3748 disk->replacement = NULL;
3749 clear_bit(Replacement, &disk->rdev->flags);
3750 }
3751
3752 if (!disk->rdev ||
3753 !test_bit(In_sync, &disk->rdev->flags)) {
3754 disk->head_position = 0;
3755 mddev->degraded++;
3756 if (disk->rdev)
3757 conf->fullsync = 1;
3758 }
3759 disk->recovery_disabled = mddev->recovery_disabled - 1;
3760 }
3761
3762 if (mddev->recovery_cp != MaxSector)
3763 printk(KERN_NOTICE "md/raid10:%s: not clean"
3764 " -- starting background reconstruction\n",
3765 mdname(mddev));
3766 printk(KERN_INFO
3767 "md/raid10:%s: active with %d out of %d devices\n",
3768 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3769 conf->geo.raid_disks);
3770 /*
3771 * Ok, everything is just fine now
3772 */
3773 mddev->dev_sectors = conf->dev_sectors;
3774 size = raid10_size(mddev, 0, 0);
3775 md_set_array_sectors(mddev, size);
3776 mddev->resync_max_sectors = size;
3777
3778 if (mddev->queue) {
3779 int stripe = conf->geo.raid_disks *
3780 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3781 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3782 mddev->queue->backing_dev_info.congested_data = mddev;
3783
3784 /* Calculate max read-ahead size.
3785 * We need to readahead at least twice a whole stripe....
3786 * maybe...
3787 */
3788 stripe /= conf->geo.near_copies;
3789 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3790 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3791 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3792 }
3793
3794
3795 if (md_integrity_register(mddev))
3796 goto out_free_conf;
3797
3798 if (conf->reshape_progress != MaxSector) {
3799 unsigned long before_length, after_length;
3800
3801 before_length = ((1 << conf->prev.chunk_shift) *
3802 conf->prev.far_copies);
3803 after_length = ((1 << conf->geo.chunk_shift) *
3804 conf->geo.far_copies);
3805
3806 if (max(before_length, after_length) > min_offset_diff) {
3807 /* This cannot work */
3808 printk("md/raid10: offset difference not enough to continue reshape\n");
3809 goto out_free_conf;
3810 }
3811 conf->offset_diff = min_offset_diff;
3812
3813 conf->reshape_safe = conf->reshape_progress;
3814 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3815 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3816 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3817 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3818 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3819 "reshape");
3820 }
3821
3822 return 0;
3823
3824 out_free_conf:
3825 md_unregister_thread(&mddev->thread);
3826 if (conf->r10bio_pool)
3827 mempool_destroy(conf->r10bio_pool);
3828 safe_put_page(conf->tmppage);
3829 kfree(conf->mirrors);
3830 kfree(conf);
3831 mddev->private = NULL;
3832 out:
3833 return -EIO;
3834 }
3835
3836 static int stop(struct mddev *mddev)
3837 {
3838 struct r10conf *conf = mddev->private;
3839
3840 raise_barrier(conf, 0);
3841 lower_barrier(conf);
3842
3843 md_unregister_thread(&mddev->thread);
3844 if (mddev->queue)
3845 /* the unplug fn references 'conf'*/
3846 blk_sync_queue(mddev->queue);
3847
3848 if (conf->r10bio_pool)
3849 mempool_destroy(conf->r10bio_pool);
3850 safe_put_page(conf->tmppage);
3851 kfree(conf->mirrors);
3852 kfree(conf);
3853 mddev->private = NULL;
3854 return 0;
3855 }
3856
3857 static void raid10_quiesce(struct mddev *mddev, int state)
3858 {
3859 struct r10conf *conf = mddev->private;
3860
3861 switch(state) {
3862 case 1:
3863 raise_barrier(conf, 0);
3864 break;
3865 case 0:
3866 lower_barrier(conf);
3867 break;
3868 }
3869 }
3870
3871 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3872 {
3873 /* Resize of 'far' arrays is not supported.
3874 * For 'near' and 'offset' arrays we can set the
3875 * number of sectors used to be an appropriate multiple
3876 * of the chunk size.
3877 * For 'offset', this is far_copies*chunksize.
3878 * For 'near' the multiplier is the LCM of
3879 * near_copies and raid_disks.
3880 * So if far_copies > 1 && !far_offset, fail.
3881 * Else find LCM(raid_disks, near_copy)*far_copies and
3882 * multiply by chunk_size. Then round to this number.
3883 * This is mostly done by raid10_size()
3884 */
3885 struct r10conf *conf = mddev->private;
3886 sector_t oldsize, size;
3887
3888 if (mddev->reshape_position != MaxSector)
3889 return -EBUSY;
3890
3891 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3892 return -EINVAL;
3893
3894 oldsize = raid10_size(mddev, 0, 0);
3895 size = raid10_size(mddev, sectors, 0);
3896 if (mddev->external_size &&
3897 mddev->array_sectors > size)
3898 return -EINVAL;
3899 if (mddev->bitmap) {
3900 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3901 if (ret)
3902 return ret;
3903 }
3904 md_set_array_sectors(mddev, size);
3905 set_capacity(mddev->gendisk, mddev->array_sectors);
3906 revalidate_disk(mddev->gendisk);
3907 if (sectors > mddev->dev_sectors &&
3908 mddev->recovery_cp > oldsize) {
3909 mddev->recovery_cp = oldsize;
3910 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3911 }
3912 calc_sectors(conf, sectors);
3913 mddev->dev_sectors = conf->dev_sectors;
3914 mddev->resync_max_sectors = size;
3915 return 0;
3916 }
3917
3918 static void *raid10_takeover_raid0(struct mddev *mddev)
3919 {
3920 struct md_rdev *rdev;
3921 struct r10conf *conf;
3922
3923 if (mddev->degraded > 0) {
3924 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3925 mdname(mddev));
3926 return ERR_PTR(-EINVAL);
3927 }
3928
3929 /* Set new parameters */
3930 mddev->new_level = 10;
3931 /* new layout: far_copies = 1, near_copies = 2 */
3932 mddev->new_layout = (1<<8) + 2;
3933 mddev->new_chunk_sectors = mddev->chunk_sectors;
3934 mddev->delta_disks = mddev->raid_disks;
3935 mddev->raid_disks *= 2;
3936 /* make sure it will be not marked as dirty */
3937 mddev->recovery_cp = MaxSector;
3938
3939 conf = setup_conf(mddev);
3940 if (!IS_ERR(conf)) {
3941 rdev_for_each(rdev, mddev)
3942 if (rdev->raid_disk >= 0)
3943 rdev->new_raid_disk = rdev->raid_disk * 2;
3944 conf->barrier = 1;
3945 }
3946
3947 return conf;
3948 }
3949
3950 static void *raid10_takeover(struct mddev *mddev)
3951 {
3952 struct r0conf *raid0_conf;
3953
3954 /* raid10 can take over:
3955 * raid0 - providing it has only two drives
3956 */
3957 if (mddev->level == 0) {
3958 /* for raid0 takeover only one zone is supported */
3959 raid0_conf = mddev->private;
3960 if (raid0_conf->nr_strip_zones > 1) {
3961 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3962 " with more than one zone.\n",
3963 mdname(mddev));
3964 return ERR_PTR(-EINVAL);
3965 }
3966 return raid10_takeover_raid0(mddev);
3967 }
3968 return ERR_PTR(-EINVAL);
3969 }
3970
3971 static int raid10_check_reshape(struct mddev *mddev)
3972 {
3973 /* Called when there is a request to change
3974 * - layout (to ->new_layout)
3975 * - chunk size (to ->new_chunk_sectors)
3976 * - raid_disks (by delta_disks)
3977 * or when trying to restart a reshape that was ongoing.
3978 *
3979 * We need to validate the request and possibly allocate
3980 * space if that might be an issue later.
3981 *
3982 * Currently we reject any reshape of a 'far' mode array,
3983 * allow chunk size to change if new is generally acceptable,
3984 * allow raid_disks to increase, and allow
3985 * a switch between 'near' mode and 'offset' mode.
3986 */
3987 struct r10conf *conf = mddev->private;
3988 struct geom geo;
3989
3990 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3991 return -EINVAL;
3992
3993 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3994 /* mustn't change number of copies */
3995 return -EINVAL;
3996 if (geo.far_copies > 1 && !geo.far_offset)
3997 /* Cannot switch to 'far' mode */
3998 return -EINVAL;
3999
4000 if (mddev->array_sectors & geo.chunk_mask)
4001 /* not factor of array size */
4002 return -EINVAL;
4003
4004 if (!enough(conf, -1))
4005 return -EINVAL;
4006
4007 kfree(conf->mirrors_new);
4008 conf->mirrors_new = NULL;
4009 if (mddev->delta_disks > 0) {
4010 /* allocate new 'mirrors' list */
4011 conf->mirrors_new = kzalloc(
4012 sizeof(struct raid10_info)
4013 *(mddev->raid_disks +
4014 mddev->delta_disks),
4015 GFP_KERNEL);
4016 if (!conf->mirrors_new)
4017 return -ENOMEM;
4018 }
4019 return 0;
4020 }
4021
4022 /*
4023 * Need to check if array has failed when deciding whether to:
4024 * - start an array
4025 * - remove non-faulty devices
4026 * - add a spare
4027 * - allow a reshape
4028 * This determination is simple when no reshape is happening.
4029 * However if there is a reshape, we need to carefully check
4030 * both the before and after sections.
4031 * This is because some failed devices may only affect one
4032 * of the two sections, and some non-in_sync devices may
4033 * be insync in the section most affected by failed devices.
4034 */
4035 static int calc_degraded(struct r10conf *conf)
4036 {
4037 int degraded, degraded2;
4038 int i;
4039
4040 rcu_read_lock();
4041 degraded = 0;
4042 /* 'prev' section first */
4043 for (i = 0; i < conf->prev.raid_disks; i++) {
4044 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045 if (!rdev || test_bit(Faulty, &rdev->flags))
4046 degraded++;
4047 else if (!test_bit(In_sync, &rdev->flags))
4048 /* When we can reduce the number of devices in
4049 * an array, this might not contribute to
4050 * 'degraded'. It does now.
4051 */
4052 degraded++;
4053 }
4054 rcu_read_unlock();
4055 if (conf->geo.raid_disks == conf->prev.raid_disks)
4056 return degraded;
4057 rcu_read_lock();
4058 degraded2 = 0;
4059 for (i = 0; i < conf->geo.raid_disks; i++) {
4060 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4061 if (!rdev || test_bit(Faulty, &rdev->flags))
4062 degraded2++;
4063 else if (!test_bit(In_sync, &rdev->flags)) {
4064 /* If reshape is increasing the number of devices,
4065 * this section has already been recovered, so
4066 * it doesn't contribute to degraded.
4067 * else it does.
4068 */
4069 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4070 degraded2++;
4071 }
4072 }
4073 rcu_read_unlock();
4074 if (degraded2 > degraded)
4075 return degraded2;
4076 return degraded;
4077 }
4078
4079 static int raid10_start_reshape(struct mddev *mddev)
4080 {
4081 /* A 'reshape' has been requested. This commits
4082 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4083 * This also checks if there are enough spares and adds them
4084 * to the array.
4085 * We currently require enough spares to make the final
4086 * array non-degraded. We also require that the difference
4087 * between old and new data_offset - on each device - is
4088 * enough that we never risk over-writing.
4089 */
4090
4091 unsigned long before_length, after_length;
4092 sector_t min_offset_diff = 0;
4093 int first = 1;
4094 struct geom new;
4095 struct r10conf *conf = mddev->private;
4096 struct md_rdev *rdev;
4097 int spares = 0;
4098 int ret;
4099
4100 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4101 return -EBUSY;
4102
4103 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4104 return -EINVAL;
4105
4106 before_length = ((1 << conf->prev.chunk_shift) *
4107 conf->prev.far_copies);
4108 after_length = ((1 << conf->geo.chunk_shift) *
4109 conf->geo.far_copies);
4110
4111 rdev_for_each(rdev, mddev) {
4112 if (!test_bit(In_sync, &rdev->flags)
4113 && !test_bit(Faulty, &rdev->flags))
4114 spares++;
4115 if (rdev->raid_disk >= 0) {
4116 long long diff = (rdev->new_data_offset
4117 - rdev->data_offset);
4118 if (!mddev->reshape_backwards)
4119 diff = -diff;
4120 if (diff < 0)
4121 diff = 0;
4122 if (first || diff < min_offset_diff)
4123 min_offset_diff = diff;
4124 }
4125 }
4126
4127 if (max(before_length, after_length) > min_offset_diff)
4128 return -EINVAL;
4129
4130 if (spares < mddev->delta_disks)
4131 return -EINVAL;
4132
4133 conf->offset_diff = min_offset_diff;
4134 spin_lock_irq(&conf->device_lock);
4135 if (conf->mirrors_new) {
4136 memcpy(conf->mirrors_new, conf->mirrors,
4137 sizeof(struct raid10_info)*conf->prev.raid_disks);
4138 smp_mb();
4139 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4140 conf->mirrors_old = conf->mirrors;
4141 conf->mirrors = conf->mirrors_new;
4142 conf->mirrors_new = NULL;
4143 }
4144 setup_geo(&conf->geo, mddev, geo_start);
4145 smp_mb();
4146 if (mddev->reshape_backwards) {
4147 sector_t size = raid10_size(mddev, 0, 0);
4148 if (size < mddev->array_sectors) {
4149 spin_unlock_irq(&conf->device_lock);
4150 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4151 mdname(mddev));
4152 return -EINVAL;
4153 }
4154 mddev->resync_max_sectors = size;
4155 conf->reshape_progress = size;
4156 } else
4157 conf->reshape_progress = 0;
4158 spin_unlock_irq(&conf->device_lock);
4159
4160 if (mddev->delta_disks && mddev->bitmap) {
4161 ret = bitmap_resize(mddev->bitmap,
4162 raid10_size(mddev, 0,
4163 conf->geo.raid_disks),
4164 0, 0);
4165 if (ret)
4166 goto abort;
4167 }
4168 if (mddev->delta_disks > 0) {
4169 rdev_for_each(rdev, mddev)
4170 if (rdev->raid_disk < 0 &&
4171 !test_bit(Faulty, &rdev->flags)) {
4172 if (raid10_add_disk(mddev, rdev) == 0) {
4173 if (rdev->raid_disk >=
4174 conf->prev.raid_disks)
4175 set_bit(In_sync, &rdev->flags);
4176 else
4177 rdev->recovery_offset = 0;
4178
4179 if (sysfs_link_rdev(mddev, rdev))
4180 /* Failure here is OK */;
4181 }
4182 } else if (rdev->raid_disk >= conf->prev.raid_disks
4183 && !test_bit(Faulty, &rdev->flags)) {
4184 /* This is a spare that was manually added */
4185 set_bit(In_sync, &rdev->flags);
4186 }
4187 }
4188 /* When a reshape changes the number of devices,
4189 * ->degraded is measured against the larger of the
4190 * pre and post numbers.
4191 */
4192 spin_lock_irq(&conf->device_lock);
4193 mddev->degraded = calc_degraded(conf);
4194 spin_unlock_irq(&conf->device_lock);
4195 mddev->raid_disks = conf->geo.raid_disks;
4196 mddev->reshape_position = conf->reshape_progress;
4197 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4198
4199 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4200 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4201 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4202 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4203
4204 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4205 "reshape");
4206 if (!mddev->sync_thread) {
4207 ret = -EAGAIN;
4208 goto abort;
4209 }
4210 conf->reshape_checkpoint = jiffies;
4211 md_wakeup_thread(mddev->sync_thread);
4212 md_new_event(mddev);
4213 return 0;
4214
4215 abort:
4216 mddev->recovery = 0;
4217 spin_lock_irq(&conf->device_lock);
4218 conf->geo = conf->prev;
4219 mddev->raid_disks = conf->geo.raid_disks;
4220 rdev_for_each(rdev, mddev)
4221 rdev->new_data_offset = rdev->data_offset;
4222 smp_wmb();
4223 conf->reshape_progress = MaxSector;
4224 mddev->reshape_position = MaxSector;
4225 spin_unlock_irq(&conf->device_lock);
4226 return ret;
4227 }
4228
4229 /* Calculate the last device-address that could contain
4230 * any block from the chunk that includes the array-address 's'
4231 * and report the next address.
4232 * i.e. the address returned will be chunk-aligned and after
4233 * any data that is in the chunk containing 's'.
4234 */
4235 static sector_t last_dev_address(sector_t s, struct geom *geo)
4236 {
4237 s = (s | geo->chunk_mask) + 1;
4238 s >>= geo->chunk_shift;
4239 s *= geo->near_copies;
4240 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4241 s *= geo->far_copies;
4242 s <<= geo->chunk_shift;
4243 return s;
4244 }
4245
4246 /* Calculate the first device-address that could contain
4247 * any block from the chunk that includes the array-address 's'.
4248 * This too will be the start of a chunk
4249 */
4250 static sector_t first_dev_address(sector_t s, struct geom *geo)
4251 {
4252 s >>= geo->chunk_shift;
4253 s *= geo->near_copies;
4254 sector_div(s, geo->raid_disks);
4255 s *= geo->far_copies;
4256 s <<= geo->chunk_shift;
4257 return s;
4258 }
4259
4260 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4261 int *skipped)
4262 {
4263 /* We simply copy at most one chunk (smallest of old and new)
4264 * at a time, possibly less if that exceeds RESYNC_PAGES,
4265 * or we hit a bad block or something.
4266 * This might mean we pause for normal IO in the middle of
4267 * a chunk, but that is not a problem was mddev->reshape_position
4268 * can record any location.
4269 *
4270 * If we will want to write to a location that isn't
4271 * yet recorded as 'safe' (i.e. in metadata on disk) then
4272 * we need to flush all reshape requests and update the metadata.
4273 *
4274 * When reshaping forwards (e.g. to more devices), we interpret
4275 * 'safe' as the earliest block which might not have been copied
4276 * down yet. We divide this by previous stripe size and multiply
4277 * by previous stripe length to get lowest device offset that we
4278 * cannot write to yet.
4279 * We interpret 'sector_nr' as an address that we want to write to.
4280 * From this we use last_device_address() to find where we might
4281 * write to, and first_device_address on the 'safe' position.
4282 * If this 'next' write position is after the 'safe' position,
4283 * we must update the metadata to increase the 'safe' position.
4284 *
4285 * When reshaping backwards, we round in the opposite direction
4286 * and perform the reverse test: next write position must not be
4287 * less than current safe position.
4288 *
4289 * In all this the minimum difference in data offsets
4290 * (conf->offset_diff - always positive) allows a bit of slack,
4291 * so next can be after 'safe', but not by more than offset_disk
4292 *
4293 * We need to prepare all the bios here before we start any IO
4294 * to ensure the size we choose is acceptable to all devices.
4295 * The means one for each copy for write-out and an extra one for
4296 * read-in.
4297 * We store the read-in bio in ->master_bio and the others in
4298 * ->devs[x].bio and ->devs[x].repl_bio.
4299 */
4300 struct r10conf *conf = mddev->private;
4301 struct r10bio *r10_bio;
4302 sector_t next, safe, last;
4303 int max_sectors;
4304 int nr_sectors;
4305 int s;
4306 struct md_rdev *rdev;
4307 int need_flush = 0;
4308 struct bio *blist;
4309 struct bio *bio, *read_bio;
4310 int sectors_done = 0;
4311
4312 if (sector_nr == 0) {
4313 /* If restarting in the middle, skip the initial sectors */
4314 if (mddev->reshape_backwards &&
4315 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4316 sector_nr = (raid10_size(mddev, 0, 0)
4317 - conf->reshape_progress);
4318 } else if (!mddev->reshape_backwards &&
4319 conf->reshape_progress > 0)
4320 sector_nr = conf->reshape_progress;
4321 if (sector_nr) {
4322 mddev->curr_resync_completed = sector_nr;
4323 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4324 *skipped = 1;
4325 return sector_nr;
4326 }
4327 }
4328
4329 /* We don't use sector_nr to track where we are up to
4330 * as that doesn't work well for ->reshape_backwards.
4331 * So just use ->reshape_progress.
4332 */
4333 if (mddev->reshape_backwards) {
4334 /* 'next' is the earliest device address that we might
4335 * write to for this chunk in the new layout
4336 */
4337 next = first_dev_address(conf->reshape_progress - 1,
4338 &conf->geo);
4339
4340 /* 'safe' is the last device address that we might read from
4341 * in the old layout after a restart
4342 */
4343 safe = last_dev_address(conf->reshape_safe - 1,
4344 &conf->prev);
4345
4346 if (next + conf->offset_diff < safe)
4347 need_flush = 1;
4348
4349 last = conf->reshape_progress - 1;
4350 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4351 & conf->prev.chunk_mask);
4352 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4353 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4354 } else {
4355 /* 'next' is after the last device address that we
4356 * might write to for this chunk in the new layout
4357 */
4358 next = last_dev_address(conf->reshape_progress, &conf->geo);
4359
4360 /* 'safe' is the earliest device address that we might
4361 * read from in the old layout after a restart
4362 */
4363 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4364
4365 /* Need to update metadata if 'next' might be beyond 'safe'
4366 * as that would possibly corrupt data
4367 */
4368 if (next > safe + conf->offset_diff)
4369 need_flush = 1;
4370
4371 sector_nr = conf->reshape_progress;
4372 last = sector_nr | (conf->geo.chunk_mask
4373 & conf->prev.chunk_mask);
4374
4375 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4376 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4377 }
4378
4379 if (need_flush ||
4380 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4381 /* Need to update reshape_position in metadata */
4382 wait_barrier(conf);
4383 mddev->reshape_position = conf->reshape_progress;
4384 if (mddev->reshape_backwards)
4385 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4386 - conf->reshape_progress;
4387 else
4388 mddev->curr_resync_completed = conf->reshape_progress;
4389 conf->reshape_checkpoint = jiffies;
4390 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4391 md_wakeup_thread(mddev->thread);
4392 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4393 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4394 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4395 allow_barrier(conf);
4396 return sectors_done;
4397 }
4398 conf->reshape_safe = mddev->reshape_position;
4399 allow_barrier(conf);
4400 }
4401
4402 read_more:
4403 /* Now schedule reads for blocks from sector_nr to last */
4404 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4405 raise_barrier(conf, sectors_done != 0);
4406 atomic_set(&r10_bio->remaining, 0);
4407 r10_bio->mddev = mddev;
4408 r10_bio->sector = sector_nr;
4409 set_bit(R10BIO_IsReshape, &r10_bio->state);
4410 r10_bio->sectors = last - sector_nr + 1;
4411 rdev = read_balance(conf, r10_bio, &max_sectors);
4412 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4413
4414 if (!rdev) {
4415 /* Cannot read from here, so need to record bad blocks
4416 * on all the target devices.
4417 */
4418 // FIXME
4419 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4420 return sectors_done;
4421 }
4422
4423 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4424
4425 read_bio->bi_bdev = rdev->bdev;
4426 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4427 + rdev->data_offset);
4428 read_bio->bi_private = r10_bio;
4429 read_bio->bi_end_io = end_sync_read;
4430 read_bio->bi_rw = READ;
4431 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4432 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4433 read_bio->bi_vcnt = 0;
4434 read_bio->bi_iter.bi_size = 0;
4435 r10_bio->master_bio = read_bio;
4436 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4437
4438 /* Now find the locations in the new layout */
4439 __raid10_find_phys(&conf->geo, r10_bio);
4440
4441 blist = read_bio;
4442 read_bio->bi_next = NULL;
4443
4444 for (s = 0; s < conf->copies*2; s++) {
4445 struct bio *b;
4446 int d = r10_bio->devs[s/2].devnum;
4447 struct md_rdev *rdev2;
4448 if (s&1) {
4449 rdev2 = conf->mirrors[d].replacement;
4450 b = r10_bio->devs[s/2].repl_bio;
4451 } else {
4452 rdev2 = conf->mirrors[d].rdev;
4453 b = r10_bio->devs[s/2].bio;
4454 }
4455 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4456 continue;
4457
4458 bio_reset(b);
4459 b->bi_bdev = rdev2->bdev;
4460 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4461 rdev2->new_data_offset;
4462 b->bi_private = r10_bio;
4463 b->bi_end_io = end_reshape_write;
4464 b->bi_rw = WRITE;
4465 b->bi_next = blist;
4466 blist = b;
4467 }
4468
4469 /* Now add as many pages as possible to all of these bios. */
4470
4471 nr_sectors = 0;
4472 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4473 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4474 int len = (max_sectors - s) << 9;
4475 if (len > PAGE_SIZE)
4476 len = PAGE_SIZE;
4477 for (bio = blist; bio ; bio = bio->bi_next) {
4478 struct bio *bio2;
4479 if (bio_add_page(bio, page, len, 0))
4480 continue;
4481
4482 /* Didn't fit, must stop */
4483 for (bio2 = blist;
4484 bio2 && bio2 != bio;
4485 bio2 = bio2->bi_next) {
4486 /* Remove last page from this bio */
4487 bio2->bi_vcnt--;
4488 bio2->bi_iter.bi_size -= len;
4489 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4490 }
4491 goto bio_full;
4492 }
4493 sector_nr += len >> 9;
4494 nr_sectors += len >> 9;
4495 }
4496 bio_full:
4497 r10_bio->sectors = nr_sectors;
4498
4499 /* Now submit the read */
4500 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4501 atomic_inc(&r10_bio->remaining);
4502 read_bio->bi_next = NULL;
4503 generic_make_request(read_bio);
4504 sector_nr += nr_sectors;
4505 sectors_done += nr_sectors;
4506 if (sector_nr <= last)
4507 goto read_more;
4508
4509 /* Now that we have done the whole section we can
4510 * update reshape_progress
4511 */
4512 if (mddev->reshape_backwards)
4513 conf->reshape_progress -= sectors_done;
4514 else
4515 conf->reshape_progress += sectors_done;
4516
4517 return sectors_done;
4518 }
4519
4520 static void end_reshape_request(struct r10bio *r10_bio);
4521 static int handle_reshape_read_error(struct mddev *mddev,
4522 struct r10bio *r10_bio);
4523 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4524 {
4525 /* Reshape read completed. Hopefully we have a block
4526 * to write out.
4527 * If we got a read error then we do sync 1-page reads from
4528 * elsewhere until we find the data - or give up.
4529 */
4530 struct r10conf *conf = mddev->private;
4531 int s;
4532
4533 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4534 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4535 /* Reshape has been aborted */
4536 md_done_sync(mddev, r10_bio->sectors, 0);
4537 return;
4538 }
4539
4540 /* We definitely have the data in the pages, schedule the
4541 * writes.
4542 */
4543 atomic_set(&r10_bio->remaining, 1);
4544 for (s = 0; s < conf->copies*2; s++) {
4545 struct bio *b;
4546 int d = r10_bio->devs[s/2].devnum;
4547 struct md_rdev *rdev;
4548 if (s&1) {
4549 rdev = conf->mirrors[d].replacement;
4550 b = r10_bio->devs[s/2].repl_bio;
4551 } else {
4552 rdev = conf->mirrors[d].rdev;
4553 b = r10_bio->devs[s/2].bio;
4554 }
4555 if (!rdev || test_bit(Faulty, &rdev->flags))
4556 continue;
4557 atomic_inc(&rdev->nr_pending);
4558 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4559 atomic_inc(&r10_bio->remaining);
4560 b->bi_next = NULL;
4561 generic_make_request(b);
4562 }
4563 end_reshape_request(r10_bio);
4564 }
4565
4566 static void end_reshape(struct r10conf *conf)
4567 {
4568 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4569 return;
4570
4571 spin_lock_irq(&conf->device_lock);
4572 conf->prev = conf->geo;
4573 md_finish_reshape(conf->mddev);
4574 smp_wmb();
4575 conf->reshape_progress = MaxSector;
4576 spin_unlock_irq(&conf->device_lock);
4577
4578 /* read-ahead size must cover two whole stripes, which is
4579 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4580 */
4581 if (conf->mddev->queue) {
4582 int stripe = conf->geo.raid_disks *
4583 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4584 stripe /= conf->geo.near_copies;
4585 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4586 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4587 }
4588 conf->fullsync = 0;
4589 }
4590
4591
4592 static int handle_reshape_read_error(struct mddev *mddev,
4593 struct r10bio *r10_bio)
4594 {
4595 /* Use sync reads to get the blocks from somewhere else */
4596 int sectors = r10_bio->sectors;
4597 struct r10conf *conf = mddev->private;
4598 struct {
4599 struct r10bio r10_bio;
4600 struct r10dev devs[conf->copies];
4601 } on_stack;
4602 struct r10bio *r10b = &on_stack.r10_bio;
4603 int slot = 0;
4604 int idx = 0;
4605 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4606
4607 r10b->sector = r10_bio->sector;
4608 __raid10_find_phys(&conf->prev, r10b);
4609
4610 while (sectors) {
4611 int s = sectors;
4612 int success = 0;
4613 int first_slot = slot;
4614
4615 if (s > (PAGE_SIZE >> 9))
4616 s = PAGE_SIZE >> 9;
4617
4618 while (!success) {
4619 int d = r10b->devs[slot].devnum;
4620 struct md_rdev *rdev = conf->mirrors[d].rdev;
4621 sector_t addr;
4622 if (rdev == NULL ||
4623 test_bit(Faulty, &rdev->flags) ||
4624 !test_bit(In_sync, &rdev->flags))
4625 goto failed;
4626
4627 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4628 success = sync_page_io(rdev,
4629 addr,
4630 s << 9,
4631 bvec[idx].bv_page,
4632 READ, false);
4633 if (success)
4634 break;
4635 failed:
4636 slot++;
4637 if (slot >= conf->copies)
4638 slot = 0;
4639 if (slot == first_slot)
4640 break;
4641 }
4642 if (!success) {
4643 /* couldn't read this block, must give up */
4644 set_bit(MD_RECOVERY_INTR,
4645 &mddev->recovery);
4646 return -EIO;
4647 }
4648 sectors -= s;
4649 idx++;
4650 }
4651 return 0;
4652 }
4653
4654 static void end_reshape_write(struct bio *bio, int error)
4655 {
4656 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4657 struct r10bio *r10_bio = bio->bi_private;
4658 struct mddev *mddev = r10_bio->mddev;
4659 struct r10conf *conf = mddev->private;
4660 int d;
4661 int slot;
4662 int repl;
4663 struct md_rdev *rdev = NULL;
4664
4665 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4666 if (repl)
4667 rdev = conf->mirrors[d].replacement;
4668 if (!rdev) {
4669 smp_mb();
4670 rdev = conf->mirrors[d].rdev;
4671 }
4672
4673 if (!uptodate) {
4674 /* FIXME should record badblock */
4675 md_error(mddev, rdev);
4676 }
4677
4678 rdev_dec_pending(rdev, mddev);
4679 end_reshape_request(r10_bio);
4680 }
4681
4682 static void end_reshape_request(struct r10bio *r10_bio)
4683 {
4684 if (!atomic_dec_and_test(&r10_bio->remaining))
4685 return;
4686 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4687 bio_put(r10_bio->master_bio);
4688 put_buf(r10_bio);
4689 }
4690
4691 static void raid10_finish_reshape(struct mddev *mddev)
4692 {
4693 struct r10conf *conf = mddev->private;
4694
4695 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4696 return;
4697
4698 if (mddev->delta_disks > 0) {
4699 sector_t size = raid10_size(mddev, 0, 0);
4700 md_set_array_sectors(mddev, size);
4701 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4702 mddev->recovery_cp = mddev->resync_max_sectors;
4703 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4704 }
4705 mddev->resync_max_sectors = size;
4706 set_capacity(mddev->gendisk, mddev->array_sectors);
4707 revalidate_disk(mddev->gendisk);
4708 } else {
4709 int d;
4710 for (d = conf->geo.raid_disks ;
4711 d < conf->geo.raid_disks - mddev->delta_disks;
4712 d++) {
4713 struct md_rdev *rdev = conf->mirrors[d].rdev;
4714 if (rdev)
4715 clear_bit(In_sync, &rdev->flags);
4716 rdev = conf->mirrors[d].replacement;
4717 if (rdev)
4718 clear_bit(In_sync, &rdev->flags);
4719 }
4720 }
4721 mddev->layout = mddev->new_layout;
4722 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4723 mddev->reshape_position = MaxSector;
4724 mddev->delta_disks = 0;
4725 mddev->reshape_backwards = 0;
4726 }
4727
4728 static struct md_personality raid10_personality =
4729 {
4730 .name = "raid10",
4731 .level = 10,
4732 .owner = THIS_MODULE,
4733 .make_request = make_request,
4734 .run = run,
4735 .stop = stop,
4736 .status = status,
4737 .error_handler = error,
4738 .hot_add_disk = raid10_add_disk,
4739 .hot_remove_disk= raid10_remove_disk,
4740 .spare_active = raid10_spare_active,
4741 .sync_request = sync_request,
4742 .quiesce = raid10_quiesce,
4743 .size = raid10_size,
4744 .resize = raid10_resize,
4745 .takeover = raid10_takeover,
4746 .check_reshape = raid10_check_reshape,
4747 .start_reshape = raid10_start_reshape,
4748 .finish_reshape = raid10_finish_reshape,
4749 };
4750
4751 static int __init raid_init(void)
4752 {
4753 return register_md_personality(&raid10_personality);
4754 }
4755
4756 static void raid_exit(void)
4757 {
4758 unregister_md_personality(&raid10_personality);
4759 }
4760
4761 module_init(raid_init);
4762 module_exit(raid_exit);
4763 MODULE_LICENSE("GPL");
4764 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4765 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4766 MODULE_ALIAS("md-raid10");
4767 MODULE_ALIAS("md-level-10");
4768
4769 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);