]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/md/raid10.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 struct r10conf *conf = data;
157 struct r10bio *r10_bio;
158 struct bio *bio;
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 if (!r10_bio)
165 return NULL;
166
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
181
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
201 for (j = 0; j < nalloc; j++) {
202 struct bio *rbio = r10_bio->devs[j].repl_bio;
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
209 bio = r10_bio->devs[j].bio;
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
214 goto out_free_pages;
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
219
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
225 }
226 }
227
228 return r10_bio;
229
230 out_free_pages:
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
233
234 j = 0;
235 out_free_bio:
236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
242 kfree(rps);
243 out_free_r10bio:
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 struct r10conf *conf = data;
251 struct r10bio *r10bio = __r10_bio;
252 int j;
253 struct resync_pages *rp = NULL;
254
255 for (j = conf->copies; j--; ) {
256 struct bio *bio = r10bio->devs[j].bio;
257
258 if (bio) {
259 rp = get_resync_pages(bio);
260 resync_free_pages(rp);
261 bio_put(bio);
262 }
263
264 bio = r10bio->devs[j].repl_bio;
265 if (bio)
266 bio_put(bio);
267 }
268
269 /* resync pages array stored in the 1st bio's .bi_private */
270 kfree(rp);
271
272 r10bio_pool_free(r10bio, conf);
273 }
274
275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277 int i;
278
279 for (i = 0; i < conf->copies; i++) {
280 struct bio **bio = & r10_bio->devs[i].bio;
281 if (!BIO_SPECIAL(*bio))
282 bio_put(*bio);
283 *bio = NULL;
284 bio = &r10_bio->devs[i].repl_bio;
285 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286 bio_put(*bio);
287 *bio = NULL;
288 }
289 }
290
291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293 struct r10conf *conf = r10_bio->mddev->private;
294
295 put_all_bios(conf, r10_bio);
296 mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298
299 static void put_buf(struct r10bio *r10_bio)
300 {
301 struct r10conf *conf = r10_bio->mddev->private;
302
303 mempool_free(r10_bio, &conf->r10buf_pool);
304
305 lower_barrier(conf);
306 }
307
308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310 unsigned long flags;
311 struct mddev *mddev = r10_bio->mddev;
312 struct r10conf *conf = mddev->private;
313
314 spin_lock_irqsave(&conf->device_lock, flags);
315 list_add(&r10_bio->retry_list, &conf->retry_list);
316 conf->nr_queued ++;
317 spin_unlock_irqrestore(&conf->device_lock, flags);
318
319 /* wake up frozen array... */
320 wake_up(&conf->wait_barrier);
321
322 md_wakeup_thread(mddev->thread);
323 }
324
325 /*
326 * raid_end_bio_io() is called when we have finished servicing a mirrored
327 * operation and are ready to return a success/failure code to the buffer
328 * cache layer.
329 */
330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332 struct bio *bio = r10_bio->master_bio;
333 struct r10conf *conf = r10_bio->mddev->private;
334
335 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336 bio->bi_status = BLK_STS_IOERR;
337
338 bio_endio(bio);
339 /*
340 * Wake up any possible resync thread that waits for the device
341 * to go idle.
342 */
343 allow_barrier(conf);
344
345 free_r10bio(r10_bio);
346 }
347
348 /*
349 * Update disk head position estimator based on IRQ completion info.
350 */
351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353 struct r10conf *conf = r10_bio->mddev->private;
354
355 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356 r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358
359 /*
360 * Find the disk number which triggered given bio
361 */
362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363 struct bio *bio, int *slotp, int *replp)
364 {
365 int slot;
366 int repl = 0;
367
368 for (slot = 0; slot < conf->copies; slot++) {
369 if (r10_bio->devs[slot].bio == bio)
370 break;
371 if (r10_bio->devs[slot].repl_bio == bio) {
372 repl = 1;
373 break;
374 }
375 }
376
377 BUG_ON(slot == conf->copies);
378 update_head_pos(slot, r10_bio);
379
380 if (slotp)
381 *slotp = slot;
382 if (replp)
383 *replp = repl;
384 return r10_bio->devs[slot].devnum;
385 }
386
387 static void raid10_end_read_request(struct bio *bio)
388 {
389 int uptodate = !bio->bi_status;
390 struct r10bio *r10_bio = bio->bi_private;
391 int slot;
392 struct md_rdev *rdev;
393 struct r10conf *conf = r10_bio->mddev->private;
394
395 slot = r10_bio->read_slot;
396 rdev = r10_bio->devs[slot].rdev;
397 /*
398 * this branch is our 'one mirror IO has finished' event handler:
399 */
400 update_head_pos(slot, r10_bio);
401
402 if (uptodate) {
403 /*
404 * Set R10BIO_Uptodate in our master bio, so that
405 * we will return a good error code to the higher
406 * levels even if IO on some other mirrored buffer fails.
407 *
408 * The 'master' represents the composite IO operation to
409 * user-side. So if something waits for IO, then it will
410 * wait for the 'master' bio.
411 */
412 set_bit(R10BIO_Uptodate, &r10_bio->state);
413 } else {
414 /* If all other devices that store this block have
415 * failed, we want to return the error upwards rather
416 * than fail the last device. Here we redefine
417 * "uptodate" to mean "Don't want to retry"
418 */
419 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420 rdev->raid_disk))
421 uptodate = 1;
422 }
423 if (uptodate) {
424 raid_end_bio_io(r10_bio);
425 rdev_dec_pending(rdev, conf->mddev);
426 } else {
427 /*
428 * oops, read error - keep the refcount on the rdev
429 */
430 char b[BDEVNAME_SIZE];
431 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432 mdname(conf->mddev),
433 bdevname(rdev->bdev, b),
434 (unsigned long long)r10_bio->sector);
435 set_bit(R10BIO_ReadError, &r10_bio->state);
436 reschedule_retry(r10_bio);
437 }
438 }
439
440 static void close_write(struct r10bio *r10_bio)
441 {
442 /* clear the bitmap if all writes complete successfully */
443 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444 r10_bio->sectors,
445 !test_bit(R10BIO_Degraded, &r10_bio->state),
446 0);
447 md_write_end(r10_bio->mddev);
448 }
449
450 static void one_write_done(struct r10bio *r10_bio)
451 {
452 if (atomic_dec_and_test(&r10_bio->remaining)) {
453 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454 reschedule_retry(r10_bio);
455 else {
456 close_write(r10_bio);
457 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else
460 raid_end_bio_io(r10_bio);
461 }
462 }
463 }
464
465 static void raid10_end_write_request(struct bio *bio)
466 {
467 struct r10bio *r10_bio = bio->bi_private;
468 int dev;
469 int dec_rdev = 1;
470 struct r10conf *conf = r10_bio->mddev->private;
471 int slot, repl;
472 struct md_rdev *rdev = NULL;
473 struct bio *to_put = NULL;
474 bool discard_error;
475
476 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477
478 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479
480 if (repl)
481 rdev = conf->mirrors[dev].replacement;
482 if (!rdev) {
483 smp_rmb();
484 repl = 0;
485 rdev = conf->mirrors[dev].rdev;
486 }
487 /*
488 * this branch is our 'one mirror IO has finished' event handler:
489 */
490 if (bio->bi_status && !discard_error) {
491 if (repl)
492 /* Never record new bad blocks to replacement,
493 * just fail it.
494 */
495 md_error(rdev->mddev, rdev);
496 else {
497 set_bit(WriteErrorSeen, &rdev->flags);
498 if (!test_and_set_bit(WantReplacement, &rdev->flags))
499 set_bit(MD_RECOVERY_NEEDED,
500 &rdev->mddev->recovery);
501
502 dec_rdev = 0;
503 if (test_bit(FailFast, &rdev->flags) &&
504 (bio->bi_opf & MD_FAILFAST)) {
505 md_error(rdev->mddev, rdev);
506 if (!test_bit(Faulty, &rdev->flags))
507 /* This is the only remaining device,
508 * We need to retry the write without
509 * FailFast
510 */
511 set_bit(R10BIO_WriteError, &r10_bio->state);
512 else {
513 r10_bio->devs[slot].bio = NULL;
514 to_put = bio;
515 dec_rdev = 1;
516 }
517 } else
518 set_bit(R10BIO_WriteError, &r10_bio->state);
519 }
520 } else {
521 /*
522 * Set R10BIO_Uptodate in our master bio, so that
523 * we will return a good error code for to the higher
524 * levels even if IO on some other mirrored buffer fails.
525 *
526 * The 'master' represents the composite IO operation to
527 * user-side. So if something waits for IO, then it will
528 * wait for the 'master' bio.
529 */
530 sector_t first_bad;
531 int bad_sectors;
532
533 /*
534 * Do not set R10BIO_Uptodate if the current device is
535 * rebuilding or Faulty. This is because we cannot use
536 * such device for properly reading the data back (we could
537 * potentially use it, if the current write would have felt
538 * before rdev->recovery_offset, but for simplicity we don't
539 * check this here.
540 */
541 if (test_bit(In_sync, &rdev->flags) &&
542 !test_bit(Faulty, &rdev->flags))
543 set_bit(R10BIO_Uptodate, &r10_bio->state);
544
545 /* Maybe we can clear some bad blocks. */
546 if (is_badblock(rdev,
547 r10_bio->devs[slot].addr,
548 r10_bio->sectors,
549 &first_bad, &bad_sectors) && !discard_error) {
550 bio_put(bio);
551 if (repl)
552 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553 else
554 r10_bio->devs[slot].bio = IO_MADE_GOOD;
555 dec_rdev = 0;
556 set_bit(R10BIO_MadeGood, &r10_bio->state);
557 }
558 }
559
560 /*
561 *
562 * Let's see if all mirrored write operations have finished
563 * already.
564 */
565 one_write_done(r10_bio);
566 if (dec_rdev)
567 rdev_dec_pending(rdev, conf->mddev);
568 if (to_put)
569 bio_put(to_put);
570 }
571
572 /*
573 * RAID10 layout manager
574 * As well as the chunksize and raid_disks count, there are two
575 * parameters: near_copies and far_copies.
576 * near_copies * far_copies must be <= raid_disks.
577 * Normally one of these will be 1.
578 * If both are 1, we get raid0.
579 * If near_copies == raid_disks, we get raid1.
580 *
581 * Chunks are laid out in raid0 style with near_copies copies of the
582 * first chunk, followed by near_copies copies of the next chunk and
583 * so on.
584 * If far_copies > 1, then after 1/far_copies of the array has been assigned
585 * as described above, we start again with a device offset of near_copies.
586 * So we effectively have another copy of the whole array further down all
587 * the drives, but with blocks on different drives.
588 * With this layout, and block is never stored twice on the one device.
589 *
590 * raid10_find_phys finds the sector offset of a given virtual sector
591 * on each device that it is on.
592 *
593 * raid10_find_virt does the reverse mapping, from a device and a
594 * sector offset to a virtual address
595 */
596
597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599 int n,f;
600 sector_t sector;
601 sector_t chunk;
602 sector_t stripe;
603 int dev;
604 int slot = 0;
605 int last_far_set_start, last_far_set_size;
606
607 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608 last_far_set_start *= geo->far_set_size;
609
610 last_far_set_size = geo->far_set_size;
611 last_far_set_size += (geo->raid_disks % geo->far_set_size);
612
613 /* now calculate first sector/dev */
614 chunk = r10bio->sector >> geo->chunk_shift;
615 sector = r10bio->sector & geo->chunk_mask;
616
617 chunk *= geo->near_copies;
618 stripe = chunk;
619 dev = sector_div(stripe, geo->raid_disks);
620 if (geo->far_offset)
621 stripe *= geo->far_copies;
622
623 sector += stripe << geo->chunk_shift;
624
625 /* and calculate all the others */
626 for (n = 0; n < geo->near_copies; n++) {
627 int d = dev;
628 int set;
629 sector_t s = sector;
630 r10bio->devs[slot].devnum = d;
631 r10bio->devs[slot].addr = s;
632 slot++;
633
634 for (f = 1; f < geo->far_copies; f++) {
635 set = d / geo->far_set_size;
636 d += geo->near_copies;
637
638 if ((geo->raid_disks % geo->far_set_size) &&
639 (d > last_far_set_start)) {
640 d -= last_far_set_start;
641 d %= last_far_set_size;
642 d += last_far_set_start;
643 } else {
644 d %= geo->far_set_size;
645 d += geo->far_set_size * set;
646 }
647 s += geo->stride;
648 r10bio->devs[slot].devnum = d;
649 r10bio->devs[slot].addr = s;
650 slot++;
651 }
652 dev++;
653 if (dev >= geo->raid_disks) {
654 dev = 0;
655 sector += (geo->chunk_mask + 1);
656 }
657 }
658 }
659
660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662 struct geom *geo = &conf->geo;
663
664 if (conf->reshape_progress != MaxSector &&
665 ((r10bio->sector >= conf->reshape_progress) !=
666 conf->mddev->reshape_backwards)) {
667 set_bit(R10BIO_Previous, &r10bio->state);
668 geo = &conf->prev;
669 } else
670 clear_bit(R10BIO_Previous, &r10bio->state);
671
672 __raid10_find_phys(geo, r10bio);
673 }
674
675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677 sector_t offset, chunk, vchunk;
678 /* Never use conf->prev as this is only called during resync
679 * or recovery, so reshape isn't happening
680 */
681 struct geom *geo = &conf->geo;
682 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683 int far_set_size = geo->far_set_size;
684 int last_far_set_start;
685
686 if (geo->raid_disks % geo->far_set_size) {
687 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688 last_far_set_start *= geo->far_set_size;
689
690 if (dev >= last_far_set_start) {
691 far_set_size = geo->far_set_size;
692 far_set_size += (geo->raid_disks % geo->far_set_size);
693 far_set_start = last_far_set_start;
694 }
695 }
696
697 offset = sector & geo->chunk_mask;
698 if (geo->far_offset) {
699 int fc;
700 chunk = sector >> geo->chunk_shift;
701 fc = sector_div(chunk, geo->far_copies);
702 dev -= fc * geo->near_copies;
703 if (dev < far_set_start)
704 dev += far_set_size;
705 } else {
706 while (sector >= geo->stride) {
707 sector -= geo->stride;
708 if (dev < (geo->near_copies + far_set_start))
709 dev += far_set_size - geo->near_copies;
710 else
711 dev -= geo->near_copies;
712 }
713 chunk = sector >> geo->chunk_shift;
714 }
715 vchunk = chunk * geo->raid_disks + dev;
716 sector_div(vchunk, geo->near_copies);
717 return (vchunk << geo->chunk_shift) + offset;
718 }
719
720 /*
721 * This routine returns the disk from which the requested read should
722 * be done. There is a per-array 'next expected sequential IO' sector
723 * number - if this matches on the next IO then we use the last disk.
724 * There is also a per-disk 'last know head position' sector that is
725 * maintained from IRQ contexts, both the normal and the resync IO
726 * completion handlers update this position correctly. If there is no
727 * perfect sequential match then we pick the disk whose head is closest.
728 *
729 * If there are 2 mirrors in the same 2 devices, performance degrades
730 * because position is mirror, not device based.
731 *
732 * The rdev for the device selected will have nr_pending incremented.
733 */
734
735 /*
736 * FIXME: possibly should rethink readbalancing and do it differently
737 * depending on near_copies / far_copies geometry.
738 */
739 static struct md_rdev *read_balance(struct r10conf *conf,
740 struct r10bio *r10_bio,
741 int *max_sectors)
742 {
743 const sector_t this_sector = r10_bio->sector;
744 int disk, slot;
745 int sectors = r10_bio->sectors;
746 int best_good_sectors;
747 sector_t new_distance, best_dist;
748 struct md_rdev *best_rdev, *rdev = NULL;
749 int do_balance;
750 int best_slot;
751 struct geom *geo = &conf->geo;
752
753 raid10_find_phys(conf, r10_bio);
754 rcu_read_lock();
755 best_slot = -1;
756 best_rdev = NULL;
757 best_dist = MaxSector;
758 best_good_sectors = 0;
759 do_balance = 1;
760 clear_bit(R10BIO_FailFast, &r10_bio->state);
761 /*
762 * Check if we can balance. We can balance on the whole
763 * device if no resync is going on (recovery is ok), or below
764 * the resync window. We take the first readable disk when
765 * above the resync window.
766 */
767 if ((conf->mddev->recovery_cp < MaxSector
768 && (this_sector + sectors >= conf->next_resync)) ||
769 (mddev_is_clustered(conf->mddev) &&
770 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771 this_sector + sectors)))
772 do_balance = 0;
773
774 for (slot = 0; slot < conf->copies ; slot++) {
775 sector_t first_bad;
776 int bad_sectors;
777 sector_t dev_sector;
778
779 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780 continue;
781 disk = r10_bio->devs[slot].devnum;
782 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 rdev = rcu_dereference(conf->mirrors[disk].rdev);
786 if (rdev == NULL ||
787 test_bit(Faulty, &rdev->flags))
788 continue;
789 if (!test_bit(In_sync, &rdev->flags) &&
790 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791 continue;
792
793 dev_sector = r10_bio->devs[slot].addr;
794 if (is_badblock(rdev, dev_sector, sectors,
795 &first_bad, &bad_sectors)) {
796 if (best_dist < MaxSector)
797 /* Already have a better slot */
798 continue;
799 if (first_bad <= dev_sector) {
800 /* Cannot read here. If this is the
801 * 'primary' device, then we must not read
802 * beyond 'bad_sectors' from another device.
803 */
804 bad_sectors -= (dev_sector - first_bad);
805 if (!do_balance && sectors > bad_sectors)
806 sectors = bad_sectors;
807 if (best_good_sectors > sectors)
808 best_good_sectors = sectors;
809 } else {
810 sector_t good_sectors =
811 first_bad - dev_sector;
812 if (good_sectors > best_good_sectors) {
813 best_good_sectors = good_sectors;
814 best_slot = slot;
815 best_rdev = rdev;
816 }
817 if (!do_balance)
818 /* Must read from here */
819 break;
820 }
821 continue;
822 } else
823 best_good_sectors = sectors;
824
825 if (!do_balance)
826 break;
827
828 if (best_slot >= 0)
829 /* At least 2 disks to choose from so failfast is OK */
830 set_bit(R10BIO_FailFast, &r10_bio->state);
831 /* This optimisation is debatable, and completely destroys
832 * sequential read speed for 'far copies' arrays. So only
833 * keep it for 'near' arrays, and review those later.
834 */
835 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836 new_distance = 0;
837
838 /* for far > 1 always use the lowest address */
839 else if (geo->far_copies > 1)
840 new_distance = r10_bio->devs[slot].addr;
841 else
842 new_distance = abs(r10_bio->devs[slot].addr -
843 conf->mirrors[disk].head_position);
844 if (new_distance < best_dist) {
845 best_dist = new_distance;
846 best_slot = slot;
847 best_rdev = rdev;
848 }
849 }
850 if (slot >= conf->copies) {
851 slot = best_slot;
852 rdev = best_rdev;
853 }
854
855 if (slot >= 0) {
856 atomic_inc(&rdev->nr_pending);
857 r10_bio->read_slot = slot;
858 } else
859 rdev = NULL;
860 rcu_read_unlock();
861 *max_sectors = best_good_sectors;
862
863 return rdev;
864 }
865
866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868 struct r10conf *conf = mddev->private;
869 int i, ret = 0;
870
871 if ((bits & (1 << WB_async_congested)) &&
872 conf->pending_count >= max_queued_requests)
873 return 1;
874
875 rcu_read_lock();
876 for (i = 0;
877 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878 && ret == 0;
879 i++) {
880 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 struct request_queue *q = bdev_get_queue(rdev->bdev);
883
884 ret |= bdi_congested(q->backing_dev_info, bits);
885 }
886 }
887 rcu_read_unlock();
888 return ret;
889 }
890
891 static void flush_pending_writes(struct r10conf *conf)
892 {
893 /* Any writes that have been queued but are awaiting
894 * bitmap updates get flushed here.
895 */
896 spin_lock_irq(&conf->device_lock);
897
898 if (conf->pending_bio_list.head) {
899 struct blk_plug plug;
900 struct bio *bio;
901
902 bio = bio_list_get(&conf->pending_bio_list);
903 conf->pending_count = 0;
904 spin_unlock_irq(&conf->device_lock);
905
906 /*
907 * As this is called in a wait_event() loop (see freeze_array),
908 * current->state might be TASK_UNINTERRUPTIBLE which will
909 * cause a warning when we prepare to wait again. As it is
910 * rare that this path is taken, it is perfectly safe to force
911 * us to go around the wait_event() loop again, so the warning
912 * is a false-positive. Silence the warning by resetting
913 * thread state
914 */
915 __set_current_state(TASK_RUNNING);
916
917 blk_start_plug(&plug);
918 /* flush any pending bitmap writes to disk
919 * before proceeding w/ I/O */
920 bitmap_unplug(conf->mddev->bitmap);
921 wake_up(&conf->wait_barrier);
922
923 while (bio) { /* submit pending writes */
924 struct bio *next = bio->bi_next;
925 struct md_rdev *rdev = (void*)bio->bi_disk;
926 bio->bi_next = NULL;
927 bio_set_dev(bio, rdev->bdev);
928 if (test_bit(Faulty, &rdev->flags)) {
929 bio_io_error(bio);
930 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
931 !blk_queue_discard(bio->bi_disk->queue)))
932 /* Just ignore it */
933 bio_endio(bio);
934 else
935 generic_make_request(bio);
936 bio = next;
937 }
938 blk_finish_plug(&plug);
939 } else
940 spin_unlock_irq(&conf->device_lock);
941 }
942
943 /* Barriers....
944 * Sometimes we need to suspend IO while we do something else,
945 * either some resync/recovery, or reconfigure the array.
946 * To do this we raise a 'barrier'.
947 * The 'barrier' is a counter that can be raised multiple times
948 * to count how many activities are happening which preclude
949 * normal IO.
950 * We can only raise the barrier if there is no pending IO.
951 * i.e. if nr_pending == 0.
952 * We choose only to raise the barrier if no-one is waiting for the
953 * barrier to go down. This means that as soon as an IO request
954 * is ready, no other operations which require a barrier will start
955 * until the IO request has had a chance.
956 *
957 * So: regular IO calls 'wait_barrier'. When that returns there
958 * is no backgroup IO happening, It must arrange to call
959 * allow_barrier when it has finished its IO.
960 * backgroup IO calls must call raise_barrier. Once that returns
961 * there is no normal IO happeing. It must arrange to call
962 * lower_barrier when the particular background IO completes.
963 */
964
965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967 BUG_ON(force && !conf->barrier);
968 spin_lock_irq(&conf->resync_lock);
969
970 /* Wait until no block IO is waiting (unless 'force') */
971 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972 conf->resync_lock);
973
974 /* block any new IO from starting */
975 conf->barrier++;
976
977 /* Now wait for all pending IO to complete */
978 wait_event_lock_irq(conf->wait_barrier,
979 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980 conf->resync_lock);
981
982 spin_unlock_irq(&conf->resync_lock);
983 }
984
985 static void lower_barrier(struct r10conf *conf)
986 {
987 unsigned long flags;
988 spin_lock_irqsave(&conf->resync_lock, flags);
989 conf->barrier--;
990 spin_unlock_irqrestore(&conf->resync_lock, flags);
991 wake_up(&conf->wait_barrier);
992 }
993
994 static void wait_barrier(struct r10conf *conf)
995 {
996 spin_lock_irq(&conf->resync_lock);
997 if (conf->barrier) {
998 conf->nr_waiting++;
999 /* Wait for the barrier to drop.
1000 * However if there are already pending
1001 * requests (preventing the barrier from
1002 * rising completely), and the
1003 * pre-process bio queue isn't empty,
1004 * then don't wait, as we need to empty
1005 * that queue to get the nr_pending
1006 * count down.
1007 */
1008 raid10_log(conf->mddev, "wait barrier");
1009 wait_event_lock_irq(conf->wait_barrier,
1010 !conf->barrier ||
1011 (atomic_read(&conf->nr_pending) &&
1012 current->bio_list &&
1013 (!bio_list_empty(&current->bio_list[0]) ||
1014 !bio_list_empty(&current->bio_list[1]))),
1015 conf->resync_lock);
1016 conf->nr_waiting--;
1017 if (!conf->nr_waiting)
1018 wake_up(&conf->wait_barrier);
1019 }
1020 atomic_inc(&conf->nr_pending);
1021 spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027 (conf->array_freeze_pending))
1028 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033 /* stop syncio and normal IO and wait for everything to
1034 * go quiet.
1035 * We increment barrier and nr_waiting, and then
1036 * wait until nr_pending match nr_queued+extra
1037 * This is called in the context of one normal IO request
1038 * that has failed. Thus any sync request that might be pending
1039 * will be blocked by nr_pending, and we need to wait for
1040 * pending IO requests to complete or be queued for re-try.
1041 * Thus the number queued (nr_queued) plus this request (extra)
1042 * must match the number of pending IOs (nr_pending) before
1043 * we continue.
1044 */
1045 spin_lock_irq(&conf->resync_lock);
1046 conf->array_freeze_pending++;
1047 conf->barrier++;
1048 conf->nr_waiting++;
1049 wait_event_lock_irq_cmd(conf->wait_barrier,
1050 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051 conf->resync_lock,
1052 flush_pending_writes(conf));
1053
1054 conf->array_freeze_pending--;
1055 spin_unlock_irq(&conf->resync_lock);
1056 }
1057
1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf->resync_lock);
1062 conf->barrier--;
1063 conf->nr_waiting--;
1064 wake_up(&conf->wait_barrier);
1065 spin_unlock_irq(&conf->resync_lock);
1066 }
1067
1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069 struct md_rdev *rdev)
1070 {
1071 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072 test_bit(R10BIO_Previous, &r10_bio->state))
1073 return rdev->data_offset;
1074 else
1075 return rdev->new_data_offset;
1076 }
1077
1078 struct raid10_plug_cb {
1079 struct blk_plug_cb cb;
1080 struct bio_list pending;
1081 int pending_cnt;
1082 };
1083
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087 cb);
1088 struct mddev *mddev = plug->cb.data;
1089 struct r10conf *conf = mddev->private;
1090 struct bio *bio;
1091
1092 if (from_schedule || current->bio_list) {
1093 spin_lock_irq(&conf->device_lock);
1094 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 conf->pending_count += plug->pending_cnt;
1096 spin_unlock_irq(&conf->device_lock);
1097 wake_up(&conf->wait_barrier);
1098 md_wakeup_thread(mddev->thread);
1099 kfree(plug);
1100 return;
1101 }
1102
1103 /* we aren't scheduling, so we can do the write-out directly. */
1104 bio = bio_list_get(&plug->pending);
1105 bitmap_unplug(mddev->bitmap);
1106 wake_up(&conf->wait_barrier);
1107
1108 while (bio) { /* submit pending writes */
1109 struct bio *next = bio->bi_next;
1110 struct md_rdev *rdev = (void*)bio->bi_disk;
1111 bio->bi_next = NULL;
1112 bio_set_dev(bio, rdev->bdev);
1113 if (test_bit(Faulty, &rdev->flags)) {
1114 bio_io_error(bio);
1115 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1116 !blk_queue_discard(bio->bi_disk->queue)))
1117 /* Just ignore it */
1118 bio_endio(bio);
1119 else
1120 generic_make_request(bio);
1121 bio = next;
1122 }
1123 kfree(plug);
1124 }
1125
1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127 struct r10bio *r10_bio)
1128 {
1129 struct r10conf *conf = mddev->private;
1130 struct bio *read_bio;
1131 const int op = bio_op(bio);
1132 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133 int max_sectors;
1134 sector_t sectors;
1135 struct md_rdev *rdev;
1136 char b[BDEVNAME_SIZE];
1137 int slot = r10_bio->read_slot;
1138 struct md_rdev *err_rdev = NULL;
1139 gfp_t gfp = GFP_NOIO;
1140
1141 if (r10_bio->devs[slot].rdev) {
1142 /*
1143 * This is an error retry, but we cannot
1144 * safely dereference the rdev in the r10_bio,
1145 * we must use the one in conf.
1146 * If it has already been disconnected (unlikely)
1147 * we lose the device name in error messages.
1148 */
1149 int disk;
1150 /*
1151 * As we are blocking raid10, it is a little safer to
1152 * use __GFP_HIGH.
1153 */
1154 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156 rcu_read_lock();
1157 disk = r10_bio->devs[slot].devnum;
1158 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159 if (err_rdev)
1160 bdevname(err_rdev->bdev, b);
1161 else {
1162 strcpy(b, "???");
1163 /* This never gets dereferenced */
1164 err_rdev = r10_bio->devs[slot].rdev;
1165 }
1166 rcu_read_unlock();
1167 }
1168 /*
1169 * Register the new request and wait if the reconstruction
1170 * thread has put up a bar for new requests.
1171 * Continue immediately if no resync is active currently.
1172 */
1173 wait_barrier(conf);
1174
1175 sectors = r10_bio->sectors;
1176 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 /*
1180 * IO spans the reshape position. Need to wait for reshape to
1181 * pass
1182 */
1183 raid10_log(conf->mddev, "wait reshape");
1184 allow_barrier(conf);
1185 wait_event(conf->wait_barrier,
1186 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187 conf->reshape_progress >= bio->bi_iter.bi_sector +
1188 sectors);
1189 wait_barrier(conf);
1190 }
1191
1192 rdev = read_balance(conf, r10_bio, &max_sectors);
1193 if (!rdev) {
1194 if (err_rdev) {
1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 mdname(mddev), b,
1197 (unsigned long long)r10_bio->sector);
1198 }
1199 raid_end_bio_io(r10_bio);
1200 return;
1201 }
1202 if (err_rdev)
1203 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204 mdname(mddev),
1205 bdevname(rdev->bdev, b),
1206 (unsigned long long)r10_bio->sector);
1207 if (max_sectors < bio_sectors(bio)) {
1208 struct bio *split = bio_split(bio, max_sectors,
1209 gfp, &conf->bio_split);
1210 bio_chain(split, bio);
1211 generic_make_request(bio);
1212 bio = split;
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1215 }
1216 slot = r10_bio->read_slot;
1217
1218 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1219
1220 r10_bio->devs[slot].bio = read_bio;
1221 r10_bio->devs[slot].rdev = rdev;
1222
1223 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1224 choose_data_offset(r10_bio, rdev);
1225 bio_set_dev(read_bio, rdev->bdev);
1226 read_bio->bi_end_io = raid10_end_read_request;
1227 bio_set_op_attrs(read_bio, op, do_sync);
1228 if (test_bit(FailFast, &rdev->flags) &&
1229 test_bit(R10BIO_FailFast, &r10_bio->state))
1230 read_bio->bi_opf |= MD_FAILFAST;
1231 read_bio->bi_private = r10_bio;
1232
1233 if (mddev->gendisk)
1234 trace_block_bio_remap(read_bio->bi_disk->queue,
1235 read_bio, disk_devt(mddev->gendisk),
1236 r10_bio->sector);
1237 generic_make_request(read_bio);
1238 return;
1239 }
1240
1241 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242 struct bio *bio, bool replacement,
1243 int n_copy)
1244 {
1245 const int op = bio_op(bio);
1246 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1247 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1248 unsigned long flags;
1249 struct blk_plug_cb *cb;
1250 struct raid10_plug_cb *plug = NULL;
1251 struct r10conf *conf = mddev->private;
1252 struct md_rdev *rdev;
1253 int devnum = r10_bio->devs[n_copy].devnum;
1254 struct bio *mbio;
1255
1256 if (replacement) {
1257 rdev = conf->mirrors[devnum].replacement;
1258 if (rdev == NULL) {
1259 /* Replacement just got moved to main 'rdev' */
1260 smp_mb();
1261 rdev = conf->mirrors[devnum].rdev;
1262 }
1263 } else
1264 rdev = conf->mirrors[devnum].rdev;
1265
1266 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1267 if (replacement)
1268 r10_bio->devs[n_copy].repl_bio = mbio;
1269 else
1270 r10_bio->devs[n_copy].bio = mbio;
1271
1272 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1273 choose_data_offset(r10_bio, rdev));
1274 bio_set_dev(mbio, rdev->bdev);
1275 mbio->bi_end_io = raid10_end_write_request;
1276 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1277 if (!replacement && test_bit(FailFast,
1278 &conf->mirrors[devnum].rdev->flags)
1279 && enough(conf, devnum))
1280 mbio->bi_opf |= MD_FAILFAST;
1281 mbio->bi_private = r10_bio;
1282
1283 if (conf->mddev->gendisk)
1284 trace_block_bio_remap(mbio->bi_disk->queue,
1285 mbio, disk_devt(conf->mddev->gendisk),
1286 r10_bio->sector);
1287 /* flush_pending_writes() needs access to the rdev so...*/
1288 mbio->bi_disk = (void *)rdev;
1289
1290 atomic_inc(&r10_bio->remaining);
1291
1292 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1293 if (cb)
1294 plug = container_of(cb, struct raid10_plug_cb, cb);
1295 else
1296 plug = NULL;
1297 if (plug) {
1298 bio_list_add(&plug->pending, mbio);
1299 plug->pending_cnt++;
1300 } else {
1301 spin_lock_irqsave(&conf->device_lock, flags);
1302 bio_list_add(&conf->pending_bio_list, mbio);
1303 conf->pending_count++;
1304 spin_unlock_irqrestore(&conf->device_lock, flags);
1305 md_wakeup_thread(mddev->thread);
1306 }
1307 }
1308
1309 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1310 struct r10bio *r10_bio)
1311 {
1312 struct r10conf *conf = mddev->private;
1313 int i;
1314 struct md_rdev *blocked_rdev;
1315 sector_t sectors;
1316 int max_sectors;
1317
1318 if ((mddev_is_clustered(mddev) &&
1319 md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio)))) {
1322 DEFINE_WAIT(w);
1323 for (;;) {
1324 prepare_to_wait(&conf->wait_barrier,
1325 &w, TASK_IDLE);
1326 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1328 break;
1329 schedule();
1330 }
1331 finish_wait(&conf->wait_barrier, &w);
1332 }
1333
1334 /*
1335 * Register the new request and wait if the reconstruction
1336 * thread has put up a bar for new requests.
1337 * Continue immediately if no resync is active currently.
1338 */
1339 wait_barrier(conf);
1340
1341 sectors = r10_bio->sectors;
1342 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1343 bio->bi_iter.bi_sector < conf->reshape_progress &&
1344 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1345 /*
1346 * IO spans the reshape position. Need to wait for reshape to
1347 * pass
1348 */
1349 raid10_log(conf->mddev, "wait reshape");
1350 allow_barrier(conf);
1351 wait_event(conf->wait_barrier,
1352 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1353 conf->reshape_progress >= bio->bi_iter.bi_sector +
1354 sectors);
1355 wait_barrier(conf);
1356 }
1357
1358 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1359 (mddev->reshape_backwards
1360 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1361 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1362 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1363 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1364 /* Need to update reshape_position in metadata */
1365 mddev->reshape_position = conf->reshape_progress;
1366 set_mask_bits(&mddev->sb_flags, 0,
1367 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1368 md_wakeup_thread(mddev->thread);
1369 raid10_log(conf->mddev, "wait reshape metadata");
1370 wait_event(mddev->sb_wait,
1371 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1372
1373 conf->reshape_safe = mddev->reshape_position;
1374 }
1375
1376 if (conf->pending_count >= max_queued_requests) {
1377 md_wakeup_thread(mddev->thread);
1378 raid10_log(mddev, "wait queued");
1379 wait_event(conf->wait_barrier,
1380 conf->pending_count < max_queued_requests);
1381 }
1382 /* first select target devices under rcu_lock and
1383 * inc refcount on their rdev. Record them by setting
1384 * bios[x] to bio
1385 * If there are known/acknowledged bad blocks on any device
1386 * on which we have seen a write error, we want to avoid
1387 * writing to those blocks. This potentially requires several
1388 * writes to write around the bad blocks. Each set of writes
1389 * gets its own r10_bio with a set of bios attached.
1390 */
1391
1392 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1393 raid10_find_phys(conf, r10_bio);
1394 retry_write:
1395 blocked_rdev = NULL;
1396 rcu_read_lock();
1397 max_sectors = r10_bio->sectors;
1398
1399 for (i = 0; i < conf->copies; i++) {
1400 int d = r10_bio->devs[i].devnum;
1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1402 struct md_rdev *rrdev = rcu_dereference(
1403 conf->mirrors[d].replacement);
1404 if (rdev == rrdev)
1405 rrdev = NULL;
1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 atomic_inc(&rdev->nr_pending);
1408 blocked_rdev = rdev;
1409 break;
1410 }
1411 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1412 atomic_inc(&rrdev->nr_pending);
1413 blocked_rdev = rrdev;
1414 break;
1415 }
1416 if (rdev && (test_bit(Faulty, &rdev->flags)))
1417 rdev = NULL;
1418 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1419 rrdev = NULL;
1420
1421 r10_bio->devs[i].bio = NULL;
1422 r10_bio->devs[i].repl_bio = NULL;
1423
1424 if (!rdev && !rrdev) {
1425 set_bit(R10BIO_Degraded, &r10_bio->state);
1426 continue;
1427 }
1428 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1429 sector_t first_bad;
1430 sector_t dev_sector = r10_bio->devs[i].addr;
1431 int bad_sectors;
1432 int is_bad;
1433
1434 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1435 &first_bad, &bad_sectors);
1436 if (is_bad < 0) {
1437 /* Mustn't write here until the bad block
1438 * is acknowledged
1439 */
1440 atomic_inc(&rdev->nr_pending);
1441 set_bit(BlockedBadBlocks, &rdev->flags);
1442 blocked_rdev = rdev;
1443 break;
1444 }
1445 if (is_bad && first_bad <= dev_sector) {
1446 /* Cannot write here at all */
1447 bad_sectors -= (dev_sector - first_bad);
1448 if (bad_sectors < max_sectors)
1449 /* Mustn't write more than bad_sectors
1450 * to other devices yet
1451 */
1452 max_sectors = bad_sectors;
1453 /* We don't set R10BIO_Degraded as that
1454 * only applies if the disk is missing,
1455 * so it might be re-added, and we want to
1456 * know to recover this chunk.
1457 * In this case the device is here, and the
1458 * fact that this chunk is not in-sync is
1459 * recorded in the bad block log.
1460 */
1461 continue;
1462 }
1463 if (is_bad) {
1464 int good_sectors = first_bad - dev_sector;
1465 if (good_sectors < max_sectors)
1466 max_sectors = good_sectors;
1467 }
1468 }
1469 if (rdev) {
1470 r10_bio->devs[i].bio = bio;
1471 atomic_inc(&rdev->nr_pending);
1472 }
1473 if (rrdev) {
1474 r10_bio->devs[i].repl_bio = bio;
1475 atomic_inc(&rrdev->nr_pending);
1476 }
1477 }
1478 rcu_read_unlock();
1479
1480 if (unlikely(blocked_rdev)) {
1481 /* Have to wait for this device to get unblocked, then retry */
1482 int j;
1483 int d;
1484
1485 for (j = 0; j < i; j++) {
1486 if (r10_bio->devs[j].bio) {
1487 d = r10_bio->devs[j].devnum;
1488 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1489 }
1490 if (r10_bio->devs[j].repl_bio) {
1491 struct md_rdev *rdev;
1492 d = r10_bio->devs[j].devnum;
1493 rdev = conf->mirrors[d].replacement;
1494 if (!rdev) {
1495 /* Race with remove_disk */
1496 smp_mb();
1497 rdev = conf->mirrors[d].rdev;
1498 }
1499 rdev_dec_pending(rdev, mddev);
1500 }
1501 }
1502 allow_barrier(conf);
1503 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1504 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1505 wait_barrier(conf);
1506 goto retry_write;
1507 }
1508
1509 if (max_sectors < r10_bio->sectors)
1510 r10_bio->sectors = max_sectors;
1511
1512 if (r10_bio->sectors < bio_sectors(bio)) {
1513 struct bio *split = bio_split(bio, r10_bio->sectors,
1514 GFP_NOIO, &conf->bio_split);
1515 bio_chain(split, bio);
1516 generic_make_request(bio);
1517 bio = split;
1518 r10_bio->master_bio = bio;
1519 }
1520
1521 atomic_set(&r10_bio->remaining, 1);
1522 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1523
1524 for (i = 0; i < conf->copies; i++) {
1525 if (r10_bio->devs[i].bio)
1526 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1527 if (r10_bio->devs[i].repl_bio)
1528 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1529 }
1530 one_write_done(r10_bio);
1531 }
1532
1533 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1534 {
1535 struct r10conf *conf = mddev->private;
1536 struct r10bio *r10_bio;
1537
1538 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1539
1540 r10_bio->master_bio = bio;
1541 r10_bio->sectors = sectors;
1542
1543 r10_bio->mddev = mddev;
1544 r10_bio->sector = bio->bi_iter.bi_sector;
1545 r10_bio->state = 0;
1546 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1547
1548 if (bio_data_dir(bio) == READ)
1549 raid10_read_request(mddev, bio, r10_bio);
1550 else
1551 raid10_write_request(mddev, bio, r10_bio);
1552 }
1553
1554 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1555 {
1556 struct r10conf *conf = mddev->private;
1557 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1558 int chunk_sects = chunk_mask + 1;
1559 int sectors = bio_sectors(bio);
1560
1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1562 md_flush_request(mddev, bio);
1563 return true;
1564 }
1565
1566 if (!md_write_start(mddev, bio))
1567 return false;
1568
1569 /*
1570 * If this request crosses a chunk boundary, we need to split
1571 * it.
1572 */
1573 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1574 sectors > chunk_sects
1575 && (conf->geo.near_copies < conf->geo.raid_disks
1576 || conf->prev.near_copies <
1577 conf->prev.raid_disks)))
1578 sectors = chunk_sects -
1579 (bio->bi_iter.bi_sector &
1580 (chunk_sects - 1));
1581 __make_request(mddev, bio, sectors);
1582
1583 /* In case raid10d snuck in to freeze_array */
1584 wake_up(&conf->wait_barrier);
1585 return true;
1586 }
1587
1588 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1589 {
1590 struct r10conf *conf = mddev->private;
1591 int i;
1592
1593 if (conf->geo.near_copies < conf->geo.raid_disks)
1594 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595 if (conf->geo.near_copies > 1)
1596 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 if (conf->geo.far_copies > 1) {
1598 if (conf->geo.far_offset)
1599 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600 else
1601 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602 if (conf->geo.far_set_size != conf->geo.raid_disks)
1603 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1604 }
1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 conf->geo.raid_disks - mddev->degraded);
1607 rcu_read_lock();
1608 for (i = 0; i < conf->geo.raid_disks; i++) {
1609 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1610 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1611 }
1612 rcu_read_unlock();
1613 seq_printf(seq, "]");
1614 }
1615
1616 /* check if there are enough drives for
1617 * every block to appear on atleast one.
1618 * Don't consider the device numbered 'ignore'
1619 * as we might be about to remove it.
1620 */
1621 static int _enough(struct r10conf *conf, int previous, int ignore)
1622 {
1623 int first = 0;
1624 int has_enough = 0;
1625 int disks, ncopies;
1626 if (previous) {
1627 disks = conf->prev.raid_disks;
1628 ncopies = conf->prev.near_copies;
1629 } else {
1630 disks = conf->geo.raid_disks;
1631 ncopies = conf->geo.near_copies;
1632 }
1633
1634 rcu_read_lock();
1635 do {
1636 int n = conf->copies;
1637 int cnt = 0;
1638 int this = first;
1639 while (n--) {
1640 struct md_rdev *rdev;
1641 if (this != ignore &&
1642 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1643 test_bit(In_sync, &rdev->flags))
1644 cnt++;
1645 this = (this+1) % disks;
1646 }
1647 if (cnt == 0)
1648 goto out;
1649 first = (first + ncopies) % disks;
1650 } while (first != 0);
1651 has_enough = 1;
1652 out:
1653 rcu_read_unlock();
1654 return has_enough;
1655 }
1656
1657 static int enough(struct r10conf *conf, int ignore)
1658 {
1659 /* when calling 'enough', both 'prev' and 'geo' must
1660 * be stable.
1661 * This is ensured if ->reconfig_mutex or ->device_lock
1662 * is held.
1663 */
1664 return _enough(conf, 0, ignore) &&
1665 _enough(conf, 1, ignore);
1666 }
1667
1668 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 char b[BDEVNAME_SIZE];
1671 struct r10conf *conf = mddev->private;
1672 unsigned long flags;
1673
1674 /*
1675 * If it is not operational, then we have already marked it as dead
1676 * else if it is the last working disks, ignore the error, let the
1677 * next level up know.
1678 * else mark the drive as failed
1679 */
1680 spin_lock_irqsave(&conf->device_lock, flags);
1681 if (test_bit(In_sync, &rdev->flags)
1682 && !enough(conf, rdev->raid_disk)) {
1683 /*
1684 * Don't fail the drive, just return an IO error.
1685 */
1686 spin_unlock_irqrestore(&conf->device_lock, flags);
1687 return;
1688 }
1689 if (test_and_clear_bit(In_sync, &rdev->flags))
1690 mddev->degraded++;
1691 /*
1692 * If recovery is running, make sure it aborts.
1693 */
1694 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1695 set_bit(Blocked, &rdev->flags);
1696 set_bit(Faulty, &rdev->flags);
1697 set_mask_bits(&mddev->sb_flags, 0,
1698 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1699 spin_unlock_irqrestore(&conf->device_lock, flags);
1700 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1701 "md/raid10:%s: Operation continuing on %d devices.\n",
1702 mdname(mddev), bdevname(rdev->bdev, b),
1703 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1704 }
1705
1706 static void print_conf(struct r10conf *conf)
1707 {
1708 int i;
1709 struct md_rdev *rdev;
1710
1711 pr_debug("RAID10 conf printout:\n");
1712 if (!conf) {
1713 pr_debug("(!conf)\n");
1714 return;
1715 }
1716 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1717 conf->geo.raid_disks);
1718
1719 /* This is only called with ->reconfix_mutex held, so
1720 * rcu protection of rdev is not needed */
1721 for (i = 0; i < conf->geo.raid_disks; i++) {
1722 char b[BDEVNAME_SIZE];
1723 rdev = conf->mirrors[i].rdev;
1724 if (rdev)
1725 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1726 i, !test_bit(In_sync, &rdev->flags),
1727 !test_bit(Faulty, &rdev->flags),
1728 bdevname(rdev->bdev,b));
1729 }
1730 }
1731
1732 static void close_sync(struct r10conf *conf)
1733 {
1734 wait_barrier(conf);
1735 allow_barrier(conf);
1736
1737 mempool_exit(&conf->r10buf_pool);
1738 }
1739
1740 static int raid10_spare_active(struct mddev *mddev)
1741 {
1742 int i;
1743 struct r10conf *conf = mddev->private;
1744 struct raid10_info *tmp;
1745 int count = 0;
1746 unsigned long flags;
1747
1748 /*
1749 * Find all non-in_sync disks within the RAID10 configuration
1750 * and mark them in_sync
1751 */
1752 for (i = 0; i < conf->geo.raid_disks; i++) {
1753 tmp = conf->mirrors + i;
1754 if (tmp->replacement
1755 && tmp->replacement->recovery_offset == MaxSector
1756 && !test_bit(Faulty, &tmp->replacement->flags)
1757 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1758 /* Replacement has just become active */
1759 if (!tmp->rdev
1760 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1761 count++;
1762 if (tmp->rdev) {
1763 /* Replaced device not technically faulty,
1764 * but we need to be sure it gets removed
1765 * and never re-added.
1766 */
1767 set_bit(Faulty, &tmp->rdev->flags);
1768 sysfs_notify_dirent_safe(
1769 tmp->rdev->sysfs_state);
1770 }
1771 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1772 } else if (tmp->rdev
1773 && tmp->rdev->recovery_offset == MaxSector
1774 && !test_bit(Faulty, &tmp->rdev->flags)
1775 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1776 count++;
1777 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1778 }
1779 }
1780 spin_lock_irqsave(&conf->device_lock, flags);
1781 mddev->degraded -= count;
1782 spin_unlock_irqrestore(&conf->device_lock, flags);
1783
1784 print_conf(conf);
1785 return count;
1786 }
1787
1788 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1789 {
1790 struct r10conf *conf = mddev->private;
1791 int err = -EEXIST;
1792 int mirror;
1793 int first = 0;
1794 int last = conf->geo.raid_disks - 1;
1795
1796 if (mddev->recovery_cp < MaxSector)
1797 /* only hot-add to in-sync arrays, as recovery is
1798 * very different from resync
1799 */
1800 return -EBUSY;
1801 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802 return -EINVAL;
1803
1804 if (md_integrity_add_rdev(rdev, mddev))
1805 return -ENXIO;
1806
1807 if (rdev->raid_disk >= 0)
1808 first = last = rdev->raid_disk;
1809
1810 if (rdev->saved_raid_disk >= first &&
1811 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1812 mirror = rdev->saved_raid_disk;
1813 else
1814 mirror = first;
1815 for ( ; mirror <= last ; mirror++) {
1816 struct raid10_info *p = &conf->mirrors[mirror];
1817 if (p->recovery_disabled == mddev->recovery_disabled)
1818 continue;
1819 if (p->rdev) {
1820 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1821 p->replacement != NULL)
1822 continue;
1823 clear_bit(In_sync, &rdev->flags);
1824 set_bit(Replacement, &rdev->flags);
1825 rdev->raid_disk = mirror;
1826 err = 0;
1827 if (mddev->gendisk)
1828 disk_stack_limits(mddev->gendisk, rdev->bdev,
1829 rdev->data_offset << 9);
1830 conf->fullsync = 1;
1831 rcu_assign_pointer(p->replacement, rdev);
1832 break;
1833 }
1834
1835 if (mddev->gendisk)
1836 disk_stack_limits(mddev->gendisk, rdev->bdev,
1837 rdev->data_offset << 9);
1838
1839 p->head_position = 0;
1840 p->recovery_disabled = mddev->recovery_disabled - 1;
1841 rdev->raid_disk = mirror;
1842 err = 0;
1843 if (rdev->saved_raid_disk != mirror)
1844 conf->fullsync = 1;
1845 rcu_assign_pointer(p->rdev, rdev);
1846 break;
1847 }
1848 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1849 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1850
1851 print_conf(conf);
1852 return err;
1853 }
1854
1855 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1856 {
1857 struct r10conf *conf = mddev->private;
1858 int err = 0;
1859 int number = rdev->raid_disk;
1860 struct md_rdev **rdevp;
1861 struct raid10_info *p = conf->mirrors + number;
1862
1863 print_conf(conf);
1864 if (rdev == p->rdev)
1865 rdevp = &p->rdev;
1866 else if (rdev == p->replacement)
1867 rdevp = &p->replacement;
1868 else
1869 return 0;
1870
1871 if (test_bit(In_sync, &rdev->flags) ||
1872 atomic_read(&rdev->nr_pending)) {
1873 err = -EBUSY;
1874 goto abort;
1875 }
1876 /* Only remove non-faulty devices if recovery
1877 * is not possible.
1878 */
1879 if (!test_bit(Faulty, &rdev->flags) &&
1880 mddev->recovery_disabled != p->recovery_disabled &&
1881 (!p->replacement || p->replacement == rdev) &&
1882 number < conf->geo.raid_disks &&
1883 enough(conf, -1)) {
1884 err = -EBUSY;
1885 goto abort;
1886 }
1887 *rdevp = NULL;
1888 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1889 synchronize_rcu();
1890 if (atomic_read(&rdev->nr_pending)) {
1891 /* lost the race, try later */
1892 err = -EBUSY;
1893 *rdevp = rdev;
1894 goto abort;
1895 }
1896 }
1897 if (p->replacement) {
1898 /* We must have just cleared 'rdev' */
1899 p->rdev = p->replacement;
1900 clear_bit(Replacement, &p->replacement->flags);
1901 smp_mb(); /* Make sure other CPUs may see both as identical
1902 * but will never see neither -- if they are careful.
1903 */
1904 p->replacement = NULL;
1905 }
1906
1907 clear_bit(WantReplacement, &rdev->flags);
1908 err = md_integrity_register(mddev);
1909
1910 abort:
1911
1912 print_conf(conf);
1913 return err;
1914 }
1915
1916 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1917 {
1918 struct r10conf *conf = r10_bio->mddev->private;
1919
1920 if (!bio->bi_status)
1921 set_bit(R10BIO_Uptodate, &r10_bio->state);
1922 else
1923 /* The write handler will notice the lack of
1924 * R10BIO_Uptodate and record any errors etc
1925 */
1926 atomic_add(r10_bio->sectors,
1927 &conf->mirrors[d].rdev->corrected_errors);
1928
1929 /* for reconstruct, we always reschedule after a read.
1930 * for resync, only after all reads
1931 */
1932 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1933 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1934 atomic_dec_and_test(&r10_bio->remaining)) {
1935 /* we have read all the blocks,
1936 * do the comparison in process context in raid10d
1937 */
1938 reschedule_retry(r10_bio);
1939 }
1940 }
1941
1942 static void end_sync_read(struct bio *bio)
1943 {
1944 struct r10bio *r10_bio = get_resync_r10bio(bio);
1945 struct r10conf *conf = r10_bio->mddev->private;
1946 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1947
1948 __end_sync_read(r10_bio, bio, d);
1949 }
1950
1951 static void end_reshape_read(struct bio *bio)
1952 {
1953 /* reshape read bio isn't allocated from r10buf_pool */
1954 struct r10bio *r10_bio = bio->bi_private;
1955
1956 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1957 }
1958
1959 static void end_sync_request(struct r10bio *r10_bio)
1960 {
1961 struct mddev *mddev = r10_bio->mddev;
1962
1963 while (atomic_dec_and_test(&r10_bio->remaining)) {
1964 if (r10_bio->master_bio == NULL) {
1965 /* the primary of several recovery bios */
1966 sector_t s = r10_bio->sectors;
1967 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 test_bit(R10BIO_WriteError, &r10_bio->state))
1969 reschedule_retry(r10_bio);
1970 else
1971 put_buf(r10_bio);
1972 md_done_sync(mddev, s, 1);
1973 break;
1974 } else {
1975 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 test_bit(R10BIO_WriteError, &r10_bio->state))
1978 reschedule_retry(r10_bio);
1979 else
1980 put_buf(r10_bio);
1981 r10_bio = r10_bio2;
1982 }
1983 }
1984 }
1985
1986 static void end_sync_write(struct bio *bio)
1987 {
1988 struct r10bio *r10_bio = get_resync_r10bio(bio);
1989 struct mddev *mddev = r10_bio->mddev;
1990 struct r10conf *conf = mddev->private;
1991 int d;
1992 sector_t first_bad;
1993 int bad_sectors;
1994 int slot;
1995 int repl;
1996 struct md_rdev *rdev = NULL;
1997
1998 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1999 if (repl)
2000 rdev = conf->mirrors[d].replacement;
2001 else
2002 rdev = conf->mirrors[d].rdev;
2003
2004 if (bio->bi_status) {
2005 if (repl)
2006 md_error(mddev, rdev);
2007 else {
2008 set_bit(WriteErrorSeen, &rdev->flags);
2009 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2010 set_bit(MD_RECOVERY_NEEDED,
2011 &rdev->mddev->recovery);
2012 set_bit(R10BIO_WriteError, &r10_bio->state);
2013 }
2014 } else if (is_badblock(rdev,
2015 r10_bio->devs[slot].addr,
2016 r10_bio->sectors,
2017 &first_bad, &bad_sectors))
2018 set_bit(R10BIO_MadeGood, &r10_bio->state);
2019
2020 rdev_dec_pending(rdev, mddev);
2021
2022 end_sync_request(r10_bio);
2023 }
2024
2025 /*
2026 * Note: sync and recover and handled very differently for raid10
2027 * This code is for resync.
2028 * For resync, we read through virtual addresses and read all blocks.
2029 * If there is any error, we schedule a write. The lowest numbered
2030 * drive is authoritative.
2031 * However requests come for physical address, so we need to map.
2032 * For every physical address there are raid_disks/copies virtual addresses,
2033 * which is always are least one, but is not necessarly an integer.
2034 * This means that a physical address can span multiple chunks, so we may
2035 * have to submit multiple io requests for a single sync request.
2036 */
2037 /*
2038 * We check if all blocks are in-sync and only write to blocks that
2039 * aren't in sync
2040 */
2041 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2042 {
2043 struct r10conf *conf = mddev->private;
2044 int i, first;
2045 struct bio *tbio, *fbio;
2046 int vcnt;
2047 struct page **tpages, **fpages;
2048
2049 atomic_set(&r10_bio->remaining, 1);
2050
2051 /* find the first device with a block */
2052 for (i=0; i<conf->copies; i++)
2053 if (!r10_bio->devs[i].bio->bi_status)
2054 break;
2055
2056 if (i == conf->copies)
2057 goto done;
2058
2059 first = i;
2060 fbio = r10_bio->devs[i].bio;
2061 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2062 fbio->bi_iter.bi_idx = 0;
2063 fpages = get_resync_pages(fbio)->pages;
2064
2065 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2066 /* now find blocks with errors */
2067 for (i=0 ; i < conf->copies ; i++) {
2068 int j, d;
2069 struct md_rdev *rdev;
2070 struct resync_pages *rp;
2071
2072 tbio = r10_bio->devs[i].bio;
2073
2074 if (tbio->bi_end_io != end_sync_read)
2075 continue;
2076 if (i == first)
2077 continue;
2078
2079 tpages = get_resync_pages(tbio)->pages;
2080 d = r10_bio->devs[i].devnum;
2081 rdev = conf->mirrors[d].rdev;
2082 if (!r10_bio->devs[i].bio->bi_status) {
2083 /* We know that the bi_io_vec layout is the same for
2084 * both 'first' and 'i', so we just compare them.
2085 * All vec entries are PAGE_SIZE;
2086 */
2087 int sectors = r10_bio->sectors;
2088 for (j = 0; j < vcnt; j++) {
2089 int len = PAGE_SIZE;
2090 if (sectors < (len / 512))
2091 len = sectors * 512;
2092 if (memcmp(page_address(fpages[j]),
2093 page_address(tpages[j]),
2094 len))
2095 break;
2096 sectors -= len/512;
2097 }
2098 if (j == vcnt)
2099 continue;
2100 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102 /* Don't fix anything. */
2103 continue;
2104 } else if (test_bit(FailFast, &rdev->flags)) {
2105 /* Just give up on this device */
2106 md_error(rdev->mddev, rdev);
2107 continue;
2108 }
2109 /* Ok, we need to write this bio, either to correct an
2110 * inconsistency or to correct an unreadable block.
2111 * First we need to fixup bv_offset, bv_len and
2112 * bi_vecs, as the read request might have corrupted these
2113 */
2114 rp = get_resync_pages(tbio);
2115 bio_reset(tbio);
2116
2117 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2118
2119 rp->raid_bio = r10_bio;
2120 tbio->bi_private = rp;
2121 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2122 tbio->bi_end_io = end_sync_write;
2123 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2124
2125 bio_copy_data(tbio, fbio);
2126
2127 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2128 atomic_inc(&r10_bio->remaining);
2129 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2130
2131 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2132 tbio->bi_opf |= MD_FAILFAST;
2133 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2135 generic_make_request(tbio);
2136 }
2137
2138 /* Now write out to any replacement devices
2139 * that are active
2140 */
2141 for (i = 0; i < conf->copies; i++) {
2142 int d;
2143
2144 tbio = r10_bio->devs[i].repl_bio;
2145 if (!tbio || !tbio->bi_end_io)
2146 continue;
2147 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148 && r10_bio->devs[i].bio != fbio)
2149 bio_copy_data(tbio, fbio);
2150 d = r10_bio->devs[i].devnum;
2151 atomic_inc(&r10_bio->remaining);
2152 md_sync_acct(conf->mirrors[d].replacement->bdev,
2153 bio_sectors(tbio));
2154 generic_make_request(tbio);
2155 }
2156
2157 done:
2158 if (atomic_dec_and_test(&r10_bio->remaining)) {
2159 md_done_sync(mddev, r10_bio->sectors, 1);
2160 put_buf(r10_bio);
2161 }
2162 }
2163
2164 /*
2165 * Now for the recovery code.
2166 * Recovery happens across physical sectors.
2167 * We recover all non-is_sync drives by finding the virtual address of
2168 * each, and then choose a working drive that also has that virt address.
2169 * There is a separate r10_bio for each non-in_sync drive.
2170 * Only the first two slots are in use. The first for reading,
2171 * The second for writing.
2172 *
2173 */
2174 static void fix_recovery_read_error(struct r10bio *r10_bio)
2175 {
2176 /* We got a read error during recovery.
2177 * We repeat the read in smaller page-sized sections.
2178 * If a read succeeds, write it to the new device or record
2179 * a bad block if we cannot.
2180 * If a read fails, record a bad block on both old and
2181 * new devices.
2182 */
2183 struct mddev *mddev = r10_bio->mddev;
2184 struct r10conf *conf = mddev->private;
2185 struct bio *bio = r10_bio->devs[0].bio;
2186 sector_t sect = 0;
2187 int sectors = r10_bio->sectors;
2188 int idx = 0;
2189 int dr = r10_bio->devs[0].devnum;
2190 int dw = r10_bio->devs[1].devnum;
2191 struct page **pages = get_resync_pages(bio)->pages;
2192
2193 while (sectors) {
2194 int s = sectors;
2195 struct md_rdev *rdev;
2196 sector_t addr;
2197 int ok;
2198
2199 if (s > (PAGE_SIZE>>9))
2200 s = PAGE_SIZE >> 9;
2201
2202 rdev = conf->mirrors[dr].rdev;
2203 addr = r10_bio->devs[0].addr + sect,
2204 ok = sync_page_io(rdev,
2205 addr,
2206 s << 9,
2207 pages[idx],
2208 REQ_OP_READ, 0, false);
2209 if (ok) {
2210 rdev = conf->mirrors[dw].rdev;
2211 addr = r10_bio->devs[1].addr + sect;
2212 ok = sync_page_io(rdev,
2213 addr,
2214 s << 9,
2215 pages[idx],
2216 REQ_OP_WRITE, 0, false);
2217 if (!ok) {
2218 set_bit(WriteErrorSeen, &rdev->flags);
2219 if (!test_and_set_bit(WantReplacement,
2220 &rdev->flags))
2221 set_bit(MD_RECOVERY_NEEDED,
2222 &rdev->mddev->recovery);
2223 }
2224 }
2225 if (!ok) {
2226 /* We don't worry if we cannot set a bad block -
2227 * it really is bad so there is no loss in not
2228 * recording it yet
2229 */
2230 rdev_set_badblocks(rdev, addr, s, 0);
2231
2232 if (rdev != conf->mirrors[dw].rdev) {
2233 /* need bad block on destination too */
2234 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2235 addr = r10_bio->devs[1].addr + sect;
2236 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2237 if (!ok) {
2238 /* just abort the recovery */
2239 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2240 mdname(mddev));
2241
2242 conf->mirrors[dw].recovery_disabled
2243 = mddev->recovery_disabled;
2244 set_bit(MD_RECOVERY_INTR,
2245 &mddev->recovery);
2246 break;
2247 }
2248 }
2249 }
2250
2251 sectors -= s;
2252 sect += s;
2253 idx++;
2254 }
2255 }
2256
2257 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2258 {
2259 struct r10conf *conf = mddev->private;
2260 int d;
2261 struct bio *wbio, *wbio2;
2262
2263 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2264 fix_recovery_read_error(r10_bio);
2265 end_sync_request(r10_bio);
2266 return;
2267 }
2268
2269 /*
2270 * share the pages with the first bio
2271 * and submit the write request
2272 */
2273 d = r10_bio->devs[1].devnum;
2274 wbio = r10_bio->devs[1].bio;
2275 wbio2 = r10_bio->devs[1].repl_bio;
2276 /* Need to test wbio2->bi_end_io before we call
2277 * generic_make_request as if the former is NULL,
2278 * the latter is free to free wbio2.
2279 */
2280 if (wbio2 && !wbio2->bi_end_io)
2281 wbio2 = NULL;
2282 if (wbio->bi_end_io) {
2283 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2284 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2285 generic_make_request(wbio);
2286 }
2287 if (wbio2) {
2288 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2289 md_sync_acct(conf->mirrors[d].replacement->bdev,
2290 bio_sectors(wbio2));
2291 generic_make_request(wbio2);
2292 }
2293 }
2294
2295 /*
2296 * Used by fix_read_error() to decay the per rdev read_errors.
2297 * We halve the read error count for every hour that has elapsed
2298 * since the last recorded read error.
2299 *
2300 */
2301 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2302 {
2303 long cur_time_mon;
2304 unsigned long hours_since_last;
2305 unsigned int read_errors = atomic_read(&rdev->read_errors);
2306
2307 cur_time_mon = ktime_get_seconds();
2308
2309 if (rdev->last_read_error == 0) {
2310 /* first time we've seen a read error */
2311 rdev->last_read_error = cur_time_mon;
2312 return;
2313 }
2314
2315 hours_since_last = (long)(cur_time_mon -
2316 rdev->last_read_error) / 3600;
2317
2318 rdev->last_read_error = cur_time_mon;
2319
2320 /*
2321 * if hours_since_last is > the number of bits in read_errors
2322 * just set read errors to 0. We do this to avoid
2323 * overflowing the shift of read_errors by hours_since_last.
2324 */
2325 if (hours_since_last >= 8 * sizeof(read_errors))
2326 atomic_set(&rdev->read_errors, 0);
2327 else
2328 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329 }
2330
2331 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332 int sectors, struct page *page, int rw)
2333 {
2334 sector_t first_bad;
2335 int bad_sectors;
2336
2337 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339 return -1;
2340 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2341 /* success */
2342 return 1;
2343 if (rw == WRITE) {
2344 set_bit(WriteErrorSeen, &rdev->flags);
2345 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346 set_bit(MD_RECOVERY_NEEDED,
2347 &rdev->mddev->recovery);
2348 }
2349 /* need to record an error - either for the block or the device */
2350 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351 md_error(rdev->mddev, rdev);
2352 return 0;
2353 }
2354
2355 /*
2356 * This is a kernel thread which:
2357 *
2358 * 1. Retries failed read operations on working mirrors.
2359 * 2. Updates the raid superblock when problems encounter.
2360 * 3. Performs writes following reads for array synchronising.
2361 */
2362
2363 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365 int sect = 0; /* Offset from r10_bio->sector */
2366 int sectors = r10_bio->sectors;
2367 struct md_rdev *rdev;
2368 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370
2371 /* still own a reference to this rdev, so it cannot
2372 * have been cleared recently.
2373 */
2374 rdev = conf->mirrors[d].rdev;
2375
2376 if (test_bit(Faulty, &rdev->flags))
2377 /* drive has already been failed, just ignore any
2378 more fix_read_error() attempts */
2379 return;
2380
2381 check_decay_read_errors(mddev, rdev);
2382 atomic_inc(&rdev->read_errors);
2383 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384 char b[BDEVNAME_SIZE];
2385 bdevname(rdev->bdev, b);
2386
2387 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2388 mdname(mddev), b,
2389 atomic_read(&rdev->read_errors), max_read_errors);
2390 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2391 mdname(mddev), b);
2392 md_error(mddev, rdev);
2393 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2394 return;
2395 }
2396
2397 while(sectors) {
2398 int s = sectors;
2399 int sl = r10_bio->read_slot;
2400 int success = 0;
2401 int start;
2402
2403 if (s > (PAGE_SIZE>>9))
2404 s = PAGE_SIZE >> 9;
2405
2406 rcu_read_lock();
2407 do {
2408 sector_t first_bad;
2409 int bad_sectors;
2410
2411 d = r10_bio->devs[sl].devnum;
2412 rdev = rcu_dereference(conf->mirrors[d].rdev);
2413 if (rdev &&
2414 test_bit(In_sync, &rdev->flags) &&
2415 !test_bit(Faulty, &rdev->flags) &&
2416 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2417 &first_bad, &bad_sectors) == 0) {
2418 atomic_inc(&rdev->nr_pending);
2419 rcu_read_unlock();
2420 success = sync_page_io(rdev,
2421 r10_bio->devs[sl].addr +
2422 sect,
2423 s<<9,
2424 conf->tmppage,
2425 REQ_OP_READ, 0, false);
2426 rdev_dec_pending(rdev, mddev);
2427 rcu_read_lock();
2428 if (success)
2429 break;
2430 }
2431 sl++;
2432 if (sl == conf->copies)
2433 sl = 0;
2434 } while (!success && sl != r10_bio->read_slot);
2435 rcu_read_unlock();
2436
2437 if (!success) {
2438 /* Cannot read from anywhere, just mark the block
2439 * as bad on the first device to discourage future
2440 * reads.
2441 */
2442 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2443 rdev = conf->mirrors[dn].rdev;
2444
2445 if (!rdev_set_badblocks(
2446 rdev,
2447 r10_bio->devs[r10_bio->read_slot].addr
2448 + sect,
2449 s, 0)) {
2450 md_error(mddev, rdev);
2451 r10_bio->devs[r10_bio->read_slot].bio
2452 = IO_BLOCKED;
2453 }
2454 break;
2455 }
2456
2457 start = sl;
2458 /* write it back and re-read */
2459 rcu_read_lock();
2460 while (sl != r10_bio->read_slot) {
2461 char b[BDEVNAME_SIZE];
2462
2463 if (sl==0)
2464 sl = conf->copies;
2465 sl--;
2466 d = r10_bio->devs[sl].devnum;
2467 rdev = rcu_dereference(conf->mirrors[d].rdev);
2468 if (!rdev ||
2469 test_bit(Faulty, &rdev->flags) ||
2470 !test_bit(In_sync, &rdev->flags))
2471 continue;
2472
2473 atomic_inc(&rdev->nr_pending);
2474 rcu_read_unlock();
2475 if (r10_sync_page_io(rdev,
2476 r10_bio->devs[sl].addr +
2477 sect,
2478 s, conf->tmppage, WRITE)
2479 == 0) {
2480 /* Well, this device is dead */
2481 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2482 mdname(mddev), s,
2483 (unsigned long long)(
2484 sect +
2485 choose_data_offset(r10_bio,
2486 rdev)),
2487 bdevname(rdev->bdev, b));
2488 pr_notice("md/raid10:%s: %s: failing drive\n",
2489 mdname(mddev),
2490 bdevname(rdev->bdev, b));
2491 }
2492 rdev_dec_pending(rdev, mddev);
2493 rcu_read_lock();
2494 }
2495 sl = start;
2496 while (sl != r10_bio->read_slot) {
2497 char b[BDEVNAME_SIZE];
2498
2499 if (sl==0)
2500 sl = conf->copies;
2501 sl--;
2502 d = r10_bio->devs[sl].devnum;
2503 rdev = rcu_dereference(conf->mirrors[d].rdev);
2504 if (!rdev ||
2505 test_bit(Faulty, &rdev->flags) ||
2506 !test_bit(In_sync, &rdev->flags))
2507 continue;
2508
2509 atomic_inc(&rdev->nr_pending);
2510 rcu_read_unlock();
2511 switch (r10_sync_page_io(rdev,
2512 r10_bio->devs[sl].addr +
2513 sect,
2514 s, conf->tmppage,
2515 READ)) {
2516 case 0:
2517 /* Well, this device is dead */
2518 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2519 mdname(mddev), s,
2520 (unsigned long long)(
2521 sect +
2522 choose_data_offset(r10_bio, rdev)),
2523 bdevname(rdev->bdev, b));
2524 pr_notice("md/raid10:%s: %s: failing drive\n",
2525 mdname(mddev),
2526 bdevname(rdev->bdev, b));
2527 break;
2528 case 1:
2529 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2530 mdname(mddev), s,
2531 (unsigned long long)(
2532 sect +
2533 choose_data_offset(r10_bio, rdev)),
2534 bdevname(rdev->bdev, b));
2535 atomic_add(s, &rdev->corrected_errors);
2536 }
2537
2538 rdev_dec_pending(rdev, mddev);
2539 rcu_read_lock();
2540 }
2541 rcu_read_unlock();
2542
2543 sectors -= s;
2544 sect += s;
2545 }
2546 }
2547
2548 static int narrow_write_error(struct r10bio *r10_bio, int i)
2549 {
2550 struct bio *bio = r10_bio->master_bio;
2551 struct mddev *mddev = r10_bio->mddev;
2552 struct r10conf *conf = mddev->private;
2553 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2554 /* bio has the data to be written to slot 'i' where
2555 * we just recently had a write error.
2556 * We repeatedly clone the bio and trim down to one block,
2557 * then try the write. Where the write fails we record
2558 * a bad block.
2559 * It is conceivable that the bio doesn't exactly align with
2560 * blocks. We must handle this.
2561 *
2562 * We currently own a reference to the rdev.
2563 */
2564
2565 int block_sectors;
2566 sector_t sector;
2567 int sectors;
2568 int sect_to_write = r10_bio->sectors;
2569 int ok = 1;
2570
2571 if (rdev->badblocks.shift < 0)
2572 return 0;
2573
2574 block_sectors = roundup(1 << rdev->badblocks.shift,
2575 bdev_logical_block_size(rdev->bdev) >> 9);
2576 sector = r10_bio->sector;
2577 sectors = ((r10_bio->sector + block_sectors)
2578 & ~(sector_t)(block_sectors - 1))
2579 - sector;
2580
2581 while (sect_to_write) {
2582 struct bio *wbio;
2583 sector_t wsector;
2584 if (sectors > sect_to_write)
2585 sectors = sect_to_write;
2586 /* Write at 'sector' for 'sectors' */
2587 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2588 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2589 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2590 wbio->bi_iter.bi_sector = wsector +
2591 choose_data_offset(r10_bio, rdev);
2592 bio_set_dev(wbio, rdev->bdev);
2593 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2594
2595 if (submit_bio_wait(wbio) < 0)
2596 /* Failure! */
2597 ok = rdev_set_badblocks(rdev, wsector,
2598 sectors, 0)
2599 && ok;
2600
2601 bio_put(wbio);
2602 sect_to_write -= sectors;
2603 sector += sectors;
2604 sectors = block_sectors;
2605 }
2606 return ok;
2607 }
2608
2609 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2610 {
2611 int slot = r10_bio->read_slot;
2612 struct bio *bio;
2613 struct r10conf *conf = mddev->private;
2614 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2615
2616 /* we got a read error. Maybe the drive is bad. Maybe just
2617 * the block and we can fix it.
2618 * We freeze all other IO, and try reading the block from
2619 * other devices. When we find one, we re-write
2620 * and check it that fixes the read error.
2621 * This is all done synchronously while the array is
2622 * frozen.
2623 */
2624 bio = r10_bio->devs[slot].bio;
2625 bio_put(bio);
2626 r10_bio->devs[slot].bio = NULL;
2627
2628 if (mddev->ro)
2629 r10_bio->devs[slot].bio = IO_BLOCKED;
2630 else if (!test_bit(FailFast, &rdev->flags)) {
2631 freeze_array(conf, 1);
2632 fix_read_error(conf, mddev, r10_bio);
2633 unfreeze_array(conf);
2634 } else
2635 md_error(mddev, rdev);
2636
2637 rdev_dec_pending(rdev, mddev);
2638 allow_barrier(conf);
2639 r10_bio->state = 0;
2640 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2641 }
2642
2643 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2644 {
2645 /* Some sort of write request has finished and it
2646 * succeeded in writing where we thought there was a
2647 * bad block. So forget the bad block.
2648 * Or possibly if failed and we need to record
2649 * a bad block.
2650 */
2651 int m;
2652 struct md_rdev *rdev;
2653
2654 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2655 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2656 for (m = 0; m < conf->copies; m++) {
2657 int dev = r10_bio->devs[m].devnum;
2658 rdev = conf->mirrors[dev].rdev;
2659 if (r10_bio->devs[m].bio == NULL ||
2660 r10_bio->devs[m].bio->bi_end_io == NULL)
2661 continue;
2662 if (!r10_bio->devs[m].bio->bi_status) {
2663 rdev_clear_badblocks(
2664 rdev,
2665 r10_bio->devs[m].addr,
2666 r10_bio->sectors, 0);
2667 } else {
2668 if (!rdev_set_badblocks(
2669 rdev,
2670 r10_bio->devs[m].addr,
2671 r10_bio->sectors, 0))
2672 md_error(conf->mddev, rdev);
2673 }
2674 rdev = conf->mirrors[dev].replacement;
2675 if (r10_bio->devs[m].repl_bio == NULL ||
2676 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2677 continue;
2678
2679 if (!r10_bio->devs[m].repl_bio->bi_status) {
2680 rdev_clear_badblocks(
2681 rdev,
2682 r10_bio->devs[m].addr,
2683 r10_bio->sectors, 0);
2684 } else {
2685 if (!rdev_set_badblocks(
2686 rdev,
2687 r10_bio->devs[m].addr,
2688 r10_bio->sectors, 0))
2689 md_error(conf->mddev, rdev);
2690 }
2691 }
2692 put_buf(r10_bio);
2693 } else {
2694 bool fail = false;
2695 for (m = 0; m < conf->copies; m++) {
2696 int dev = r10_bio->devs[m].devnum;
2697 struct bio *bio = r10_bio->devs[m].bio;
2698 rdev = conf->mirrors[dev].rdev;
2699 if (bio == IO_MADE_GOOD) {
2700 rdev_clear_badblocks(
2701 rdev,
2702 r10_bio->devs[m].addr,
2703 r10_bio->sectors, 0);
2704 rdev_dec_pending(rdev, conf->mddev);
2705 } else if (bio != NULL && bio->bi_status) {
2706 fail = true;
2707 if (!narrow_write_error(r10_bio, m)) {
2708 md_error(conf->mddev, rdev);
2709 set_bit(R10BIO_Degraded,
2710 &r10_bio->state);
2711 }
2712 rdev_dec_pending(rdev, conf->mddev);
2713 }
2714 bio = r10_bio->devs[m].repl_bio;
2715 rdev = conf->mirrors[dev].replacement;
2716 if (rdev && bio == IO_MADE_GOOD) {
2717 rdev_clear_badblocks(
2718 rdev,
2719 r10_bio->devs[m].addr,
2720 r10_bio->sectors, 0);
2721 rdev_dec_pending(rdev, conf->mddev);
2722 }
2723 }
2724 if (fail) {
2725 spin_lock_irq(&conf->device_lock);
2726 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2727 conf->nr_queued++;
2728 spin_unlock_irq(&conf->device_lock);
2729 /*
2730 * In case freeze_array() is waiting for condition
2731 * nr_pending == nr_queued + extra to be true.
2732 */
2733 wake_up(&conf->wait_barrier);
2734 md_wakeup_thread(conf->mddev->thread);
2735 } else {
2736 if (test_bit(R10BIO_WriteError,
2737 &r10_bio->state))
2738 close_write(r10_bio);
2739 raid_end_bio_io(r10_bio);
2740 }
2741 }
2742 }
2743
2744 static void raid10d(struct md_thread *thread)
2745 {
2746 struct mddev *mddev = thread->mddev;
2747 struct r10bio *r10_bio;
2748 unsigned long flags;
2749 struct r10conf *conf = mddev->private;
2750 struct list_head *head = &conf->retry_list;
2751 struct blk_plug plug;
2752
2753 md_check_recovery(mddev);
2754
2755 if (!list_empty_careful(&conf->bio_end_io_list) &&
2756 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2757 LIST_HEAD(tmp);
2758 spin_lock_irqsave(&conf->device_lock, flags);
2759 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2760 while (!list_empty(&conf->bio_end_io_list)) {
2761 list_move(conf->bio_end_io_list.prev, &tmp);
2762 conf->nr_queued--;
2763 }
2764 }
2765 spin_unlock_irqrestore(&conf->device_lock, flags);
2766 while (!list_empty(&tmp)) {
2767 r10_bio = list_first_entry(&tmp, struct r10bio,
2768 retry_list);
2769 list_del(&r10_bio->retry_list);
2770 if (mddev->degraded)
2771 set_bit(R10BIO_Degraded, &r10_bio->state);
2772
2773 if (test_bit(R10BIO_WriteError,
2774 &r10_bio->state))
2775 close_write(r10_bio);
2776 raid_end_bio_io(r10_bio);
2777 }
2778 }
2779
2780 blk_start_plug(&plug);
2781 for (;;) {
2782
2783 flush_pending_writes(conf);
2784
2785 spin_lock_irqsave(&conf->device_lock, flags);
2786 if (list_empty(head)) {
2787 spin_unlock_irqrestore(&conf->device_lock, flags);
2788 break;
2789 }
2790 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2791 list_del(head->prev);
2792 conf->nr_queued--;
2793 spin_unlock_irqrestore(&conf->device_lock, flags);
2794
2795 mddev = r10_bio->mddev;
2796 conf = mddev->private;
2797 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2798 test_bit(R10BIO_WriteError, &r10_bio->state))
2799 handle_write_completed(conf, r10_bio);
2800 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2801 reshape_request_write(mddev, r10_bio);
2802 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2803 sync_request_write(mddev, r10_bio);
2804 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2805 recovery_request_write(mddev, r10_bio);
2806 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2807 handle_read_error(mddev, r10_bio);
2808 else
2809 WARN_ON_ONCE(1);
2810
2811 cond_resched();
2812 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2813 md_check_recovery(mddev);
2814 }
2815 blk_finish_plug(&plug);
2816 }
2817
2818 static int init_resync(struct r10conf *conf)
2819 {
2820 int ret, buffs, i;
2821
2822 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2823 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2824 conf->have_replacement = 0;
2825 for (i = 0; i < conf->geo.raid_disks; i++)
2826 if (conf->mirrors[i].replacement)
2827 conf->have_replacement = 1;
2828 ret = mempool_init(&conf->r10buf_pool, buffs,
2829 r10buf_pool_alloc, r10buf_pool_free, conf);
2830 if (ret)
2831 return ret;
2832 conf->next_resync = 0;
2833 return 0;
2834 }
2835
2836 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2837 {
2838 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2839 struct rsync_pages *rp;
2840 struct bio *bio;
2841 int nalloc;
2842 int i;
2843
2844 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2845 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2846 nalloc = conf->copies; /* resync */
2847 else
2848 nalloc = 2; /* recovery */
2849
2850 for (i = 0; i < nalloc; i++) {
2851 bio = r10bio->devs[i].bio;
2852 rp = bio->bi_private;
2853 bio_reset(bio);
2854 bio->bi_private = rp;
2855 bio = r10bio->devs[i].repl_bio;
2856 if (bio) {
2857 rp = bio->bi_private;
2858 bio_reset(bio);
2859 bio->bi_private = rp;
2860 }
2861 }
2862 return r10bio;
2863 }
2864
2865 /*
2866 * Set cluster_sync_high since we need other nodes to add the
2867 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2868 */
2869 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2870 {
2871 sector_t window_size;
2872 int extra_chunk, chunks;
2873
2874 /*
2875 * First, here we define "stripe" as a unit which across
2876 * all member devices one time, so we get chunks by use
2877 * raid_disks / near_copies. Otherwise, if near_copies is
2878 * close to raid_disks, then resync window could increases
2879 * linearly with the increase of raid_disks, which means
2880 * we will suspend a really large IO window while it is not
2881 * necessary. If raid_disks is not divisible by near_copies,
2882 * an extra chunk is needed to ensure the whole "stripe" is
2883 * covered.
2884 */
2885
2886 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2887 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2888 extra_chunk = 0;
2889 else
2890 extra_chunk = 1;
2891 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2892
2893 /*
2894 * At least use a 32M window to align with raid1's resync window
2895 */
2896 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2897 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2898
2899 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2900 }
2901
2902 /*
2903 * perform a "sync" on one "block"
2904 *
2905 * We need to make sure that no normal I/O request - particularly write
2906 * requests - conflict with active sync requests.
2907 *
2908 * This is achieved by tracking pending requests and a 'barrier' concept
2909 * that can be installed to exclude normal IO requests.
2910 *
2911 * Resync and recovery are handled very differently.
2912 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2913 *
2914 * For resync, we iterate over virtual addresses, read all copies,
2915 * and update if there are differences. If only one copy is live,
2916 * skip it.
2917 * For recovery, we iterate over physical addresses, read a good
2918 * value for each non-in_sync drive, and over-write.
2919 *
2920 * So, for recovery we may have several outstanding complex requests for a
2921 * given address, one for each out-of-sync device. We model this by allocating
2922 * a number of r10_bio structures, one for each out-of-sync device.
2923 * As we setup these structures, we collect all bio's together into a list
2924 * which we then process collectively to add pages, and then process again
2925 * to pass to generic_make_request.
2926 *
2927 * The r10_bio structures are linked using a borrowed master_bio pointer.
2928 * This link is counted in ->remaining. When the r10_bio that points to NULL
2929 * has its remaining count decremented to 0, the whole complex operation
2930 * is complete.
2931 *
2932 */
2933
2934 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2935 int *skipped)
2936 {
2937 struct r10conf *conf = mddev->private;
2938 struct r10bio *r10_bio;
2939 struct bio *biolist = NULL, *bio;
2940 sector_t max_sector, nr_sectors;
2941 int i;
2942 int max_sync;
2943 sector_t sync_blocks;
2944 sector_t sectors_skipped = 0;
2945 int chunks_skipped = 0;
2946 sector_t chunk_mask = conf->geo.chunk_mask;
2947 int page_idx = 0;
2948
2949 if (!mempool_initialized(&conf->r10buf_pool))
2950 if (init_resync(conf))
2951 return 0;
2952
2953 /*
2954 * Allow skipping a full rebuild for incremental assembly
2955 * of a clean array, like RAID1 does.
2956 */
2957 if (mddev->bitmap == NULL &&
2958 mddev->recovery_cp == MaxSector &&
2959 mddev->reshape_position == MaxSector &&
2960 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2961 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2962 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2963 conf->fullsync == 0) {
2964 *skipped = 1;
2965 return mddev->dev_sectors - sector_nr;
2966 }
2967
2968 skipped:
2969 max_sector = mddev->dev_sectors;
2970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2971 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2972 max_sector = mddev->resync_max_sectors;
2973 if (sector_nr >= max_sector) {
2974 conf->cluster_sync_low = 0;
2975 conf->cluster_sync_high = 0;
2976
2977 /* If we aborted, we need to abort the
2978 * sync on the 'current' bitmap chucks (there can
2979 * be several when recovering multiple devices).
2980 * as we may have started syncing it but not finished.
2981 * We can find the current address in
2982 * mddev->curr_resync, but for recovery,
2983 * we need to convert that to several
2984 * virtual addresses.
2985 */
2986 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2987 end_reshape(conf);
2988 close_sync(conf);
2989 return 0;
2990 }
2991
2992 if (mddev->curr_resync < max_sector) { /* aborted */
2993 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2994 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2995 &sync_blocks, 1);
2996 else for (i = 0; i < conf->geo.raid_disks; i++) {
2997 sector_t sect =
2998 raid10_find_virt(conf, mddev->curr_resync, i);
2999 bitmap_end_sync(mddev->bitmap, sect,
3000 &sync_blocks, 1);
3001 }
3002 } else {
3003 /* completed sync */
3004 if ((!mddev->bitmap || conf->fullsync)
3005 && conf->have_replacement
3006 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3007 /* Completed a full sync so the replacements
3008 * are now fully recovered.
3009 */
3010 rcu_read_lock();
3011 for (i = 0; i < conf->geo.raid_disks; i++) {
3012 struct md_rdev *rdev =
3013 rcu_dereference(conf->mirrors[i].replacement);
3014 if (rdev)
3015 rdev->recovery_offset = MaxSector;
3016 }
3017 rcu_read_unlock();
3018 }
3019 conf->fullsync = 0;
3020 }
3021 bitmap_close_sync(mddev->bitmap);
3022 close_sync(conf);
3023 *skipped = 1;
3024 return sectors_skipped;
3025 }
3026
3027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3028 return reshape_request(mddev, sector_nr, skipped);
3029
3030 if (chunks_skipped >= conf->geo.raid_disks) {
3031 /* if there has been nothing to do on any drive,
3032 * then there is nothing to do at all..
3033 */
3034 *skipped = 1;
3035 return (max_sector - sector_nr) + sectors_skipped;
3036 }
3037
3038 if (max_sector > mddev->resync_max)
3039 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3040
3041 /* make sure whole request will fit in a chunk - if chunks
3042 * are meaningful
3043 */
3044 if (conf->geo.near_copies < conf->geo.raid_disks &&
3045 max_sector > (sector_nr | chunk_mask))
3046 max_sector = (sector_nr | chunk_mask) + 1;
3047
3048 /*
3049 * If there is non-resync activity waiting for a turn, then let it
3050 * though before starting on this new sync request.
3051 */
3052 if (conf->nr_waiting)
3053 schedule_timeout_uninterruptible(1);
3054
3055 /* Again, very different code for resync and recovery.
3056 * Both must result in an r10bio with a list of bios that
3057 * have bi_end_io, bi_sector, bi_disk set,
3058 * and bi_private set to the r10bio.
3059 * For recovery, we may actually create several r10bios
3060 * with 2 bios in each, that correspond to the bios in the main one.
3061 * In this case, the subordinate r10bios link back through a
3062 * borrowed master_bio pointer, and the counter in the master
3063 * includes a ref from each subordinate.
3064 */
3065 /* First, we decide what to do and set ->bi_end_io
3066 * To end_sync_read if we want to read, and
3067 * end_sync_write if we will want to write.
3068 */
3069
3070 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3071 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3072 /* recovery... the complicated one */
3073 int j;
3074 r10_bio = NULL;
3075
3076 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3077 int still_degraded;
3078 struct r10bio *rb2;
3079 sector_t sect;
3080 int must_sync;
3081 int any_working;
3082 struct raid10_info *mirror = &conf->mirrors[i];
3083 struct md_rdev *mrdev, *mreplace;
3084
3085 rcu_read_lock();
3086 mrdev = rcu_dereference(mirror->rdev);
3087 mreplace = rcu_dereference(mirror->replacement);
3088
3089 if ((mrdev == NULL ||
3090 test_bit(Faulty, &mrdev->flags) ||
3091 test_bit(In_sync, &mrdev->flags)) &&
3092 (mreplace == NULL ||
3093 test_bit(Faulty, &mreplace->flags))) {
3094 rcu_read_unlock();
3095 continue;
3096 }
3097
3098 still_degraded = 0;
3099 /* want to reconstruct this device */
3100 rb2 = r10_bio;
3101 sect = raid10_find_virt(conf, sector_nr, i);
3102 if (sect >= mddev->resync_max_sectors) {
3103 /* last stripe is not complete - don't
3104 * try to recover this sector.
3105 */
3106 rcu_read_unlock();
3107 continue;
3108 }
3109 if (mreplace && test_bit(Faulty, &mreplace->flags))
3110 mreplace = NULL;
3111 /* Unless we are doing a full sync, or a replacement
3112 * we only need to recover the block if it is set in
3113 * the bitmap
3114 */
3115 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3116 &sync_blocks, 1);
3117 if (sync_blocks < max_sync)
3118 max_sync = sync_blocks;
3119 if (!must_sync &&
3120 mreplace == NULL &&
3121 !conf->fullsync) {
3122 /* yep, skip the sync_blocks here, but don't assume
3123 * that there will never be anything to do here
3124 */
3125 chunks_skipped = -1;
3126 rcu_read_unlock();
3127 continue;
3128 }
3129 atomic_inc(&mrdev->nr_pending);
3130 if (mreplace)
3131 atomic_inc(&mreplace->nr_pending);
3132 rcu_read_unlock();
3133
3134 r10_bio = raid10_alloc_init_r10buf(conf);
3135 r10_bio->state = 0;
3136 raise_barrier(conf, rb2 != NULL);
3137 atomic_set(&r10_bio->remaining, 0);
3138
3139 r10_bio->master_bio = (struct bio*)rb2;
3140 if (rb2)
3141 atomic_inc(&rb2->remaining);
3142 r10_bio->mddev = mddev;
3143 set_bit(R10BIO_IsRecover, &r10_bio->state);
3144 r10_bio->sector = sect;
3145
3146 raid10_find_phys(conf, r10_bio);
3147
3148 /* Need to check if the array will still be
3149 * degraded
3150 */
3151 rcu_read_lock();
3152 for (j = 0; j < conf->geo.raid_disks; j++) {
3153 struct md_rdev *rdev = rcu_dereference(
3154 conf->mirrors[j].rdev);
3155 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3156 still_degraded = 1;
3157 break;
3158 }
3159 }
3160
3161 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3162 &sync_blocks, still_degraded);
3163
3164 any_working = 0;
3165 for (j=0; j<conf->copies;j++) {
3166 int k;
3167 int d = r10_bio->devs[j].devnum;
3168 sector_t from_addr, to_addr;
3169 struct md_rdev *rdev =
3170 rcu_dereference(conf->mirrors[d].rdev);
3171 sector_t sector, first_bad;
3172 int bad_sectors;
3173 if (!rdev ||
3174 !test_bit(In_sync, &rdev->flags))
3175 continue;
3176 /* This is where we read from */
3177 any_working = 1;
3178 sector = r10_bio->devs[j].addr;
3179
3180 if (is_badblock(rdev, sector, max_sync,
3181 &first_bad, &bad_sectors)) {
3182 if (first_bad > sector)
3183 max_sync = first_bad - sector;
3184 else {
3185 bad_sectors -= (sector
3186 - first_bad);
3187 if (max_sync > bad_sectors)
3188 max_sync = bad_sectors;
3189 continue;
3190 }
3191 }
3192 bio = r10_bio->devs[0].bio;
3193 bio->bi_next = biolist;
3194 biolist = bio;
3195 bio->bi_end_io = end_sync_read;
3196 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3197 if (test_bit(FailFast, &rdev->flags))
3198 bio->bi_opf |= MD_FAILFAST;
3199 from_addr = r10_bio->devs[j].addr;
3200 bio->bi_iter.bi_sector = from_addr +
3201 rdev->data_offset;
3202 bio_set_dev(bio, rdev->bdev);
3203 atomic_inc(&rdev->nr_pending);
3204 /* and we write to 'i' (if not in_sync) */
3205
3206 for (k=0; k<conf->copies; k++)
3207 if (r10_bio->devs[k].devnum == i)
3208 break;
3209 BUG_ON(k == conf->copies);
3210 to_addr = r10_bio->devs[k].addr;
3211 r10_bio->devs[0].devnum = d;
3212 r10_bio->devs[0].addr = from_addr;
3213 r10_bio->devs[1].devnum = i;
3214 r10_bio->devs[1].addr = to_addr;
3215
3216 if (!test_bit(In_sync, &mrdev->flags)) {
3217 bio = r10_bio->devs[1].bio;
3218 bio->bi_next = biolist;
3219 biolist = bio;
3220 bio->bi_end_io = end_sync_write;
3221 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3222 bio->bi_iter.bi_sector = to_addr
3223 + mrdev->data_offset;
3224 bio_set_dev(bio, mrdev->bdev);
3225 atomic_inc(&r10_bio->remaining);
3226 } else
3227 r10_bio->devs[1].bio->bi_end_io = NULL;
3228
3229 /* and maybe write to replacement */
3230 bio = r10_bio->devs[1].repl_bio;
3231 if (bio)
3232 bio->bi_end_io = NULL;
3233 /* Note: if mreplace != NULL, then bio
3234 * cannot be NULL as r10buf_pool_alloc will
3235 * have allocated it.
3236 * So the second test here is pointless.
3237 * But it keeps semantic-checkers happy, and
3238 * this comment keeps human reviewers
3239 * happy.
3240 */
3241 if (mreplace == NULL || bio == NULL ||
3242 test_bit(Faulty, &mreplace->flags))
3243 break;
3244 bio->bi_next = biolist;
3245 biolist = bio;
3246 bio->bi_end_io = end_sync_write;
3247 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3248 bio->bi_iter.bi_sector = to_addr +
3249 mreplace->data_offset;
3250 bio_set_dev(bio, mreplace->bdev);
3251 atomic_inc(&r10_bio->remaining);
3252 break;
3253 }
3254 rcu_read_unlock();
3255 if (j == conf->copies) {
3256 /* Cannot recover, so abort the recovery or
3257 * record a bad block */
3258 if (any_working) {
3259 /* problem is that there are bad blocks
3260 * on other device(s)
3261 */
3262 int k;
3263 for (k = 0; k < conf->copies; k++)
3264 if (r10_bio->devs[k].devnum == i)
3265 break;
3266 if (!test_bit(In_sync,
3267 &mrdev->flags)
3268 && !rdev_set_badblocks(
3269 mrdev,
3270 r10_bio->devs[k].addr,
3271 max_sync, 0))
3272 any_working = 0;
3273 if (mreplace &&
3274 !rdev_set_badblocks(
3275 mreplace,
3276 r10_bio->devs[k].addr,
3277 max_sync, 0))
3278 any_working = 0;
3279 }
3280 if (!any_working) {
3281 if (!test_and_set_bit(MD_RECOVERY_INTR,
3282 &mddev->recovery))
3283 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3284 mdname(mddev));
3285 mirror->recovery_disabled
3286 = mddev->recovery_disabled;
3287 }
3288 put_buf(r10_bio);
3289 if (rb2)
3290 atomic_dec(&rb2->remaining);
3291 r10_bio = rb2;
3292 rdev_dec_pending(mrdev, mddev);
3293 if (mreplace)
3294 rdev_dec_pending(mreplace, mddev);
3295 break;
3296 }
3297 rdev_dec_pending(mrdev, mddev);
3298 if (mreplace)
3299 rdev_dec_pending(mreplace, mddev);
3300 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3301 /* Only want this if there is elsewhere to
3302 * read from. 'j' is currently the first
3303 * readable copy.
3304 */
3305 int targets = 1;
3306 for (; j < conf->copies; j++) {
3307 int d = r10_bio->devs[j].devnum;
3308 if (conf->mirrors[d].rdev &&
3309 test_bit(In_sync,
3310 &conf->mirrors[d].rdev->flags))
3311 targets++;
3312 }
3313 if (targets == 1)
3314 r10_bio->devs[0].bio->bi_opf
3315 &= ~MD_FAILFAST;
3316 }
3317 }
3318 if (biolist == NULL) {
3319 while (r10_bio) {
3320 struct r10bio *rb2 = r10_bio;
3321 r10_bio = (struct r10bio*) rb2->master_bio;
3322 rb2->master_bio = NULL;
3323 put_buf(rb2);
3324 }
3325 goto giveup;
3326 }
3327 } else {
3328 /* resync. Schedule a read for every block at this virt offset */
3329 int count = 0;
3330
3331 /*
3332 * Since curr_resync_completed could probably not update in
3333 * time, and we will set cluster_sync_low based on it.
3334 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3335 * safety reason, which ensures curr_resync_completed is
3336 * updated in bitmap_cond_end_sync.
3337 */
3338 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3339 mddev_is_clustered(mddev) &&
3340 (sector_nr + 2 * RESYNC_SECTORS >
3341 conf->cluster_sync_high));
3342
3343 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3344 &sync_blocks, mddev->degraded) &&
3345 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3346 &mddev->recovery)) {
3347 /* We can skip this block */
3348 *skipped = 1;
3349 return sync_blocks + sectors_skipped;
3350 }
3351 if (sync_blocks < max_sync)
3352 max_sync = sync_blocks;
3353 r10_bio = raid10_alloc_init_r10buf(conf);
3354 r10_bio->state = 0;
3355
3356 r10_bio->mddev = mddev;
3357 atomic_set(&r10_bio->remaining, 0);
3358 raise_barrier(conf, 0);
3359 conf->next_resync = sector_nr;
3360
3361 r10_bio->master_bio = NULL;
3362 r10_bio->sector = sector_nr;
3363 set_bit(R10BIO_IsSync, &r10_bio->state);
3364 raid10_find_phys(conf, r10_bio);
3365 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3366
3367 for (i = 0; i < conf->copies; i++) {
3368 int d = r10_bio->devs[i].devnum;
3369 sector_t first_bad, sector;
3370 int bad_sectors;
3371 struct md_rdev *rdev;
3372
3373 if (r10_bio->devs[i].repl_bio)
3374 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3375
3376 bio = r10_bio->devs[i].bio;
3377 bio->bi_status = BLK_STS_IOERR;
3378 rcu_read_lock();
3379 rdev = rcu_dereference(conf->mirrors[d].rdev);
3380 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3381 rcu_read_unlock();
3382 continue;
3383 }
3384 sector = r10_bio->devs[i].addr;
3385 if (is_badblock(rdev, sector, max_sync,
3386 &first_bad, &bad_sectors)) {
3387 if (first_bad > sector)
3388 max_sync = first_bad - sector;
3389 else {
3390 bad_sectors -= (sector - first_bad);
3391 if (max_sync > bad_sectors)
3392 max_sync = bad_sectors;
3393 rcu_read_unlock();
3394 continue;
3395 }
3396 }
3397 atomic_inc(&rdev->nr_pending);
3398 atomic_inc(&r10_bio->remaining);
3399 bio->bi_next = biolist;
3400 biolist = bio;
3401 bio->bi_end_io = end_sync_read;
3402 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3403 if (test_bit(FailFast, &rdev->flags))
3404 bio->bi_opf |= MD_FAILFAST;
3405 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3406 bio_set_dev(bio, rdev->bdev);
3407 count++;
3408
3409 rdev = rcu_dereference(conf->mirrors[d].replacement);
3410 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3411 rcu_read_unlock();
3412 continue;
3413 }
3414 atomic_inc(&rdev->nr_pending);
3415
3416 /* Need to set up for writing to the replacement */
3417 bio = r10_bio->devs[i].repl_bio;
3418 bio->bi_status = BLK_STS_IOERR;
3419
3420 sector = r10_bio->devs[i].addr;
3421 bio->bi_next = biolist;
3422 biolist = bio;
3423 bio->bi_end_io = end_sync_write;
3424 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3425 if (test_bit(FailFast, &rdev->flags))
3426 bio->bi_opf |= MD_FAILFAST;
3427 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3428 bio_set_dev(bio, rdev->bdev);
3429 count++;
3430 rcu_read_unlock();
3431 }
3432
3433 if (count < 2) {
3434 for (i=0; i<conf->copies; i++) {
3435 int d = r10_bio->devs[i].devnum;
3436 if (r10_bio->devs[i].bio->bi_end_io)
3437 rdev_dec_pending(conf->mirrors[d].rdev,
3438 mddev);
3439 if (r10_bio->devs[i].repl_bio &&
3440 r10_bio->devs[i].repl_bio->bi_end_io)
3441 rdev_dec_pending(
3442 conf->mirrors[d].replacement,
3443 mddev);
3444 }
3445 put_buf(r10_bio);
3446 biolist = NULL;
3447 goto giveup;
3448 }
3449 }
3450
3451 nr_sectors = 0;
3452 if (sector_nr + max_sync < max_sector)
3453 max_sector = sector_nr + max_sync;
3454 do {
3455 struct page *page;
3456 int len = PAGE_SIZE;
3457 if (sector_nr + (len>>9) > max_sector)
3458 len = (max_sector - sector_nr) << 9;
3459 if (len == 0)
3460 break;
3461 for (bio= biolist ; bio ; bio=bio->bi_next) {
3462 struct resync_pages *rp = get_resync_pages(bio);
3463 page = resync_fetch_page(rp, page_idx);
3464 /*
3465 * won't fail because the vec table is big enough
3466 * to hold all these pages
3467 */
3468 bio_add_page(bio, page, len, 0);
3469 }
3470 nr_sectors += len>>9;
3471 sector_nr += len>>9;
3472 } while (++page_idx < RESYNC_PAGES);
3473 r10_bio->sectors = nr_sectors;
3474
3475 if (mddev_is_clustered(mddev) &&
3476 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3477 /* It is resync not recovery */
3478 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3479 conf->cluster_sync_low = mddev->curr_resync_completed;
3480 raid10_set_cluster_sync_high(conf);
3481 /* Send resync message */
3482 md_cluster_ops->resync_info_update(mddev,
3483 conf->cluster_sync_low,
3484 conf->cluster_sync_high);
3485 }
3486 } else if (mddev_is_clustered(mddev)) {
3487 /* This is recovery not resync */
3488 sector_t sect_va1, sect_va2;
3489 bool broadcast_msg = false;
3490
3491 for (i = 0; i < conf->geo.raid_disks; i++) {
3492 /*
3493 * sector_nr is a device address for recovery, so we
3494 * need translate it to array address before compare
3495 * with cluster_sync_high.
3496 */
3497 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3498
3499 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3500 broadcast_msg = true;
3501 /*
3502 * curr_resync_completed is similar as
3503 * sector_nr, so make the translation too.
3504 */
3505 sect_va2 = raid10_find_virt(conf,
3506 mddev->curr_resync_completed, i);
3507
3508 if (conf->cluster_sync_low == 0 ||
3509 conf->cluster_sync_low > sect_va2)
3510 conf->cluster_sync_low = sect_va2;
3511 }
3512 }
3513 if (broadcast_msg) {
3514 raid10_set_cluster_sync_high(conf);
3515 md_cluster_ops->resync_info_update(mddev,
3516 conf->cluster_sync_low,
3517 conf->cluster_sync_high);
3518 }
3519 }
3520
3521 while (biolist) {
3522 bio = biolist;
3523 biolist = biolist->bi_next;
3524
3525 bio->bi_next = NULL;
3526 r10_bio = get_resync_r10bio(bio);
3527 r10_bio->sectors = nr_sectors;
3528
3529 if (bio->bi_end_io == end_sync_read) {
3530 md_sync_acct_bio(bio, nr_sectors);
3531 bio->bi_status = 0;
3532 generic_make_request(bio);
3533 }
3534 }
3535
3536 if (sectors_skipped)
3537 /* pretend they weren't skipped, it makes
3538 * no important difference in this case
3539 */
3540 md_done_sync(mddev, sectors_skipped, 1);
3541
3542 return sectors_skipped + nr_sectors;
3543 giveup:
3544 /* There is nowhere to write, so all non-sync
3545 * drives must be failed or in resync, all drives
3546 * have a bad block, so try the next chunk...
3547 */
3548 if (sector_nr + max_sync < max_sector)
3549 max_sector = sector_nr + max_sync;
3550
3551 sectors_skipped += (max_sector - sector_nr);
3552 chunks_skipped ++;
3553 sector_nr = max_sector;
3554 goto skipped;
3555 }
3556
3557 static sector_t
3558 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3559 {
3560 sector_t size;
3561 struct r10conf *conf = mddev->private;
3562
3563 if (!raid_disks)
3564 raid_disks = min(conf->geo.raid_disks,
3565 conf->prev.raid_disks);
3566 if (!sectors)
3567 sectors = conf->dev_sectors;
3568
3569 size = sectors >> conf->geo.chunk_shift;
3570 sector_div(size, conf->geo.far_copies);
3571 size = size * raid_disks;
3572 sector_div(size, conf->geo.near_copies);
3573
3574 return size << conf->geo.chunk_shift;
3575 }
3576
3577 static void calc_sectors(struct r10conf *conf, sector_t size)
3578 {
3579 /* Calculate the number of sectors-per-device that will
3580 * actually be used, and set conf->dev_sectors and
3581 * conf->stride
3582 */
3583
3584 size = size >> conf->geo.chunk_shift;
3585 sector_div(size, conf->geo.far_copies);
3586 size = size * conf->geo.raid_disks;
3587 sector_div(size, conf->geo.near_copies);
3588 /* 'size' is now the number of chunks in the array */
3589 /* calculate "used chunks per device" */
3590 size = size * conf->copies;
3591
3592 /* We need to round up when dividing by raid_disks to
3593 * get the stride size.
3594 */
3595 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3596
3597 conf->dev_sectors = size << conf->geo.chunk_shift;
3598
3599 if (conf->geo.far_offset)
3600 conf->geo.stride = 1 << conf->geo.chunk_shift;
3601 else {
3602 sector_div(size, conf->geo.far_copies);
3603 conf->geo.stride = size << conf->geo.chunk_shift;
3604 }
3605 }
3606
3607 enum geo_type {geo_new, geo_old, geo_start};
3608 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3609 {
3610 int nc, fc, fo;
3611 int layout, chunk, disks;
3612 switch (new) {
3613 case geo_old:
3614 layout = mddev->layout;
3615 chunk = mddev->chunk_sectors;
3616 disks = mddev->raid_disks - mddev->delta_disks;
3617 break;
3618 case geo_new:
3619 layout = mddev->new_layout;
3620 chunk = mddev->new_chunk_sectors;
3621 disks = mddev->raid_disks;
3622 break;
3623 default: /* avoid 'may be unused' warnings */
3624 case geo_start: /* new when starting reshape - raid_disks not
3625 * updated yet. */
3626 layout = mddev->new_layout;
3627 chunk = mddev->new_chunk_sectors;
3628 disks = mddev->raid_disks + mddev->delta_disks;
3629 break;
3630 }
3631 if (layout >> 19)
3632 return -1;
3633 if (chunk < (PAGE_SIZE >> 9) ||
3634 !is_power_of_2(chunk))
3635 return -2;
3636 nc = layout & 255;
3637 fc = (layout >> 8) & 255;
3638 fo = layout & (1<<16);
3639 geo->raid_disks = disks;
3640 geo->near_copies = nc;
3641 geo->far_copies = fc;
3642 geo->far_offset = fo;
3643 switch (layout >> 17) {
3644 case 0: /* original layout. simple but not always optimal */
3645 geo->far_set_size = disks;
3646 break;
3647 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3648 * actually using this, but leave code here just in case.*/
3649 geo->far_set_size = disks/fc;
3650 WARN(geo->far_set_size < fc,
3651 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3652 break;
3653 case 2: /* "improved" layout fixed to match documentation */
3654 geo->far_set_size = fc * nc;
3655 break;
3656 default: /* Not a valid layout */
3657 return -1;
3658 }
3659 geo->chunk_mask = chunk - 1;
3660 geo->chunk_shift = ffz(~chunk);
3661 return nc*fc;
3662 }
3663
3664 static struct r10conf *setup_conf(struct mddev *mddev)
3665 {
3666 struct r10conf *conf = NULL;
3667 int err = -EINVAL;
3668 struct geom geo;
3669 int copies;
3670
3671 copies = setup_geo(&geo, mddev, geo_new);
3672
3673 if (copies == -2) {
3674 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3675 mdname(mddev), PAGE_SIZE);
3676 goto out;
3677 }
3678
3679 if (copies < 2 || copies > mddev->raid_disks) {
3680 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3681 mdname(mddev), mddev->new_layout);
3682 goto out;
3683 }
3684
3685 err = -ENOMEM;
3686 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3687 if (!conf)
3688 goto out;
3689
3690 /* FIXME calc properly */
3691 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3692 max(0,-mddev->delta_disks)),
3693 GFP_KERNEL);
3694 if (!conf->mirrors)
3695 goto out;
3696
3697 conf->tmppage = alloc_page(GFP_KERNEL);
3698 if (!conf->tmppage)
3699 goto out;
3700
3701 conf->geo = geo;
3702 conf->copies = copies;
3703 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3704 r10bio_pool_free, conf);
3705 if (err)
3706 goto out;
3707
3708 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3709 if (err)
3710 goto out;
3711
3712 calc_sectors(conf, mddev->dev_sectors);
3713 if (mddev->reshape_position == MaxSector) {
3714 conf->prev = conf->geo;
3715 conf->reshape_progress = MaxSector;
3716 } else {
3717 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3718 err = -EINVAL;
3719 goto out;
3720 }
3721 conf->reshape_progress = mddev->reshape_position;
3722 if (conf->prev.far_offset)
3723 conf->prev.stride = 1 << conf->prev.chunk_shift;
3724 else
3725 /* far_copies must be 1 */
3726 conf->prev.stride = conf->dev_sectors;
3727 }
3728 conf->reshape_safe = conf->reshape_progress;
3729 spin_lock_init(&conf->device_lock);
3730 INIT_LIST_HEAD(&conf->retry_list);
3731 INIT_LIST_HEAD(&conf->bio_end_io_list);
3732
3733 spin_lock_init(&conf->resync_lock);
3734 init_waitqueue_head(&conf->wait_barrier);
3735 atomic_set(&conf->nr_pending, 0);
3736
3737 err = -ENOMEM;
3738 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3739 if (!conf->thread)
3740 goto out;
3741
3742 conf->mddev = mddev;
3743 return conf;
3744
3745 out:
3746 if (conf) {
3747 mempool_exit(&conf->r10bio_pool);
3748 kfree(conf->mirrors);
3749 safe_put_page(conf->tmppage);
3750 bioset_exit(&conf->bio_split);
3751 kfree(conf);
3752 }
3753 return ERR_PTR(err);
3754 }
3755
3756 static int raid10_run(struct mddev *mddev)
3757 {
3758 struct r10conf *conf;
3759 int i, disk_idx, chunk_size;
3760 struct raid10_info *disk;
3761 struct md_rdev *rdev;
3762 sector_t size;
3763 sector_t min_offset_diff = 0;
3764 int first = 1;
3765 bool discard_supported = false;
3766
3767 if (mddev_init_writes_pending(mddev) < 0)
3768 return -ENOMEM;
3769
3770 if (mddev->private == NULL) {
3771 conf = setup_conf(mddev);
3772 if (IS_ERR(conf))
3773 return PTR_ERR(conf);
3774 mddev->private = conf;
3775 }
3776 conf = mddev->private;
3777 if (!conf)
3778 goto out;
3779
3780 if (mddev_is_clustered(conf->mddev)) {
3781 int fc, fo;
3782
3783 fc = (mddev->layout >> 8) & 255;
3784 fo = mddev->layout & (1<<16);
3785 if (fc > 1 || fo > 0) {
3786 pr_err("only near layout is supported by clustered"
3787 " raid10\n");
3788 goto out_free_conf;
3789 }
3790 }
3791
3792 mddev->thread = conf->thread;
3793 conf->thread = NULL;
3794
3795 chunk_size = mddev->chunk_sectors << 9;
3796 if (mddev->queue) {
3797 blk_queue_max_discard_sectors(mddev->queue,
3798 mddev->chunk_sectors);
3799 blk_queue_max_write_same_sectors(mddev->queue, 0);
3800 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3801 blk_queue_io_min(mddev->queue, chunk_size);
3802 if (conf->geo.raid_disks % conf->geo.near_copies)
3803 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3804 else
3805 blk_queue_io_opt(mddev->queue, chunk_size *
3806 (conf->geo.raid_disks / conf->geo.near_copies));
3807 }
3808
3809 rdev_for_each(rdev, mddev) {
3810 long long diff;
3811
3812 disk_idx = rdev->raid_disk;
3813 if (disk_idx < 0)
3814 continue;
3815 if (disk_idx >= conf->geo.raid_disks &&
3816 disk_idx >= conf->prev.raid_disks)
3817 continue;
3818 disk = conf->mirrors + disk_idx;
3819
3820 if (test_bit(Replacement, &rdev->flags)) {
3821 if (disk->replacement)
3822 goto out_free_conf;
3823 disk->replacement = rdev;
3824 } else {
3825 if (disk->rdev)
3826 goto out_free_conf;
3827 disk->rdev = rdev;
3828 }
3829 diff = (rdev->new_data_offset - rdev->data_offset);
3830 if (!mddev->reshape_backwards)
3831 diff = -diff;
3832 if (diff < 0)
3833 diff = 0;
3834 if (first || diff < min_offset_diff)
3835 min_offset_diff = diff;
3836
3837 if (mddev->gendisk)
3838 disk_stack_limits(mddev->gendisk, rdev->bdev,
3839 rdev->data_offset << 9);
3840
3841 disk->head_position = 0;
3842
3843 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3844 discard_supported = true;
3845 first = 0;
3846 }
3847
3848 if (mddev->queue) {
3849 if (discard_supported)
3850 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3851 mddev->queue);
3852 else
3853 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3854 mddev->queue);
3855 }
3856 /* need to check that every block has at least one working mirror */
3857 if (!enough(conf, -1)) {
3858 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3859 mdname(mddev));
3860 goto out_free_conf;
3861 }
3862
3863 if (conf->reshape_progress != MaxSector) {
3864 /* must ensure that shape change is supported */
3865 if (conf->geo.far_copies != 1 &&
3866 conf->geo.far_offset == 0)
3867 goto out_free_conf;
3868 if (conf->prev.far_copies != 1 &&
3869 conf->prev.far_offset == 0)
3870 goto out_free_conf;
3871 }
3872
3873 mddev->degraded = 0;
3874 for (i = 0;
3875 i < conf->geo.raid_disks
3876 || i < conf->prev.raid_disks;
3877 i++) {
3878
3879 disk = conf->mirrors + i;
3880
3881 if (!disk->rdev && disk->replacement) {
3882 /* The replacement is all we have - use it */
3883 disk->rdev = disk->replacement;
3884 disk->replacement = NULL;
3885 clear_bit(Replacement, &disk->rdev->flags);
3886 }
3887
3888 if (!disk->rdev ||
3889 !test_bit(In_sync, &disk->rdev->flags)) {
3890 disk->head_position = 0;
3891 mddev->degraded++;
3892 if (disk->rdev &&
3893 disk->rdev->saved_raid_disk < 0)
3894 conf->fullsync = 1;
3895 }
3896 disk->recovery_disabled = mddev->recovery_disabled - 1;
3897 }
3898
3899 if (mddev->recovery_cp != MaxSector)
3900 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3901 mdname(mddev));
3902 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3903 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3904 conf->geo.raid_disks);
3905 /*
3906 * Ok, everything is just fine now
3907 */
3908 mddev->dev_sectors = conf->dev_sectors;
3909 size = raid10_size(mddev, 0, 0);
3910 md_set_array_sectors(mddev, size);
3911 mddev->resync_max_sectors = size;
3912 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3913
3914 if (mddev->queue) {
3915 int stripe = conf->geo.raid_disks *
3916 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3917
3918 /* Calculate max read-ahead size.
3919 * We need to readahead at least twice a whole stripe....
3920 * maybe...
3921 */
3922 stripe /= conf->geo.near_copies;
3923 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3924 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3925 }
3926
3927 if (md_integrity_register(mddev))
3928 goto out_free_conf;
3929
3930 if (conf->reshape_progress != MaxSector) {
3931 unsigned long before_length, after_length;
3932
3933 before_length = ((1 << conf->prev.chunk_shift) *
3934 conf->prev.far_copies);
3935 after_length = ((1 << conf->geo.chunk_shift) *
3936 conf->geo.far_copies);
3937
3938 if (max(before_length, after_length) > min_offset_diff) {
3939 /* This cannot work */
3940 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3941 goto out_free_conf;
3942 }
3943 conf->offset_diff = min_offset_diff;
3944
3945 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3946 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3947 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3948 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3949 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3950 "reshape");
3951 }
3952
3953 return 0;
3954
3955 out_free_conf:
3956 md_unregister_thread(&mddev->thread);
3957 mempool_exit(&conf->r10bio_pool);
3958 safe_put_page(conf->tmppage);
3959 kfree(conf->mirrors);
3960 kfree(conf);
3961 mddev->private = NULL;
3962 out:
3963 return -EIO;
3964 }
3965
3966 static void raid10_free(struct mddev *mddev, void *priv)
3967 {
3968 struct r10conf *conf = priv;
3969
3970 mempool_exit(&conf->r10bio_pool);
3971 safe_put_page(conf->tmppage);
3972 kfree(conf->mirrors);
3973 kfree(conf->mirrors_old);
3974 kfree(conf->mirrors_new);
3975 bioset_exit(&conf->bio_split);
3976 kfree(conf);
3977 }
3978
3979 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3980 {
3981 struct r10conf *conf = mddev->private;
3982
3983 if (quiesce)
3984 raise_barrier(conf, 0);
3985 else
3986 lower_barrier(conf);
3987 }
3988
3989 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3990 {
3991 /* Resize of 'far' arrays is not supported.
3992 * For 'near' and 'offset' arrays we can set the
3993 * number of sectors used to be an appropriate multiple
3994 * of the chunk size.
3995 * For 'offset', this is far_copies*chunksize.
3996 * For 'near' the multiplier is the LCM of
3997 * near_copies and raid_disks.
3998 * So if far_copies > 1 && !far_offset, fail.
3999 * Else find LCM(raid_disks, near_copy)*far_copies and
4000 * multiply by chunk_size. Then round to this number.
4001 * This is mostly done by raid10_size()
4002 */
4003 struct r10conf *conf = mddev->private;
4004 sector_t oldsize, size;
4005
4006 if (mddev->reshape_position != MaxSector)
4007 return -EBUSY;
4008
4009 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4010 return -EINVAL;
4011
4012 oldsize = raid10_size(mddev, 0, 0);
4013 size = raid10_size(mddev, sectors, 0);
4014 if (mddev->external_size &&
4015 mddev->array_sectors > size)
4016 return -EINVAL;
4017 if (mddev->bitmap) {
4018 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4019 if (ret)
4020 return ret;
4021 }
4022 md_set_array_sectors(mddev, size);
4023 if (sectors > mddev->dev_sectors &&
4024 mddev->recovery_cp > oldsize) {
4025 mddev->recovery_cp = oldsize;
4026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4027 }
4028 calc_sectors(conf, sectors);
4029 mddev->dev_sectors = conf->dev_sectors;
4030 mddev->resync_max_sectors = size;
4031 return 0;
4032 }
4033
4034 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4035 {
4036 struct md_rdev *rdev;
4037 struct r10conf *conf;
4038
4039 if (mddev->degraded > 0) {
4040 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4041 mdname(mddev));
4042 return ERR_PTR(-EINVAL);
4043 }
4044 sector_div(size, devs);
4045
4046 /* Set new parameters */
4047 mddev->new_level = 10;
4048 /* new layout: far_copies = 1, near_copies = 2 */
4049 mddev->new_layout = (1<<8) + 2;
4050 mddev->new_chunk_sectors = mddev->chunk_sectors;
4051 mddev->delta_disks = mddev->raid_disks;
4052 mddev->raid_disks *= 2;
4053 /* make sure it will be not marked as dirty */
4054 mddev->recovery_cp = MaxSector;
4055 mddev->dev_sectors = size;
4056
4057 conf = setup_conf(mddev);
4058 if (!IS_ERR(conf)) {
4059 rdev_for_each(rdev, mddev)
4060 if (rdev->raid_disk >= 0) {
4061 rdev->new_raid_disk = rdev->raid_disk * 2;
4062 rdev->sectors = size;
4063 }
4064 conf->barrier = 1;
4065 }
4066
4067 return conf;
4068 }
4069
4070 static void *raid10_takeover(struct mddev *mddev)
4071 {
4072 struct r0conf *raid0_conf;
4073
4074 /* raid10 can take over:
4075 * raid0 - providing it has only two drives
4076 */
4077 if (mddev->level == 0) {
4078 /* for raid0 takeover only one zone is supported */
4079 raid0_conf = mddev->private;
4080 if (raid0_conf->nr_strip_zones > 1) {
4081 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4082 mdname(mddev));
4083 return ERR_PTR(-EINVAL);
4084 }
4085 return raid10_takeover_raid0(mddev,
4086 raid0_conf->strip_zone->zone_end,
4087 raid0_conf->strip_zone->nb_dev);
4088 }
4089 return ERR_PTR(-EINVAL);
4090 }
4091
4092 static int raid10_check_reshape(struct mddev *mddev)
4093 {
4094 /* Called when there is a request to change
4095 * - layout (to ->new_layout)
4096 * - chunk size (to ->new_chunk_sectors)
4097 * - raid_disks (by delta_disks)
4098 * or when trying to restart a reshape that was ongoing.
4099 *
4100 * We need to validate the request and possibly allocate
4101 * space if that might be an issue later.
4102 *
4103 * Currently we reject any reshape of a 'far' mode array,
4104 * allow chunk size to change if new is generally acceptable,
4105 * allow raid_disks to increase, and allow
4106 * a switch between 'near' mode and 'offset' mode.
4107 */
4108 struct r10conf *conf = mddev->private;
4109 struct geom geo;
4110
4111 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4112 return -EINVAL;
4113
4114 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4115 /* mustn't change number of copies */
4116 return -EINVAL;
4117 if (geo.far_copies > 1 && !geo.far_offset)
4118 /* Cannot switch to 'far' mode */
4119 return -EINVAL;
4120
4121 if (mddev->array_sectors & geo.chunk_mask)
4122 /* not factor of array size */
4123 return -EINVAL;
4124
4125 if (!enough(conf, -1))
4126 return -EINVAL;
4127
4128 kfree(conf->mirrors_new);
4129 conf->mirrors_new = NULL;
4130 if (mddev->delta_disks > 0) {
4131 /* allocate new 'mirrors' list */
4132 conf->mirrors_new = kzalloc(
4133 sizeof(struct raid10_info)
4134 *(mddev->raid_disks +
4135 mddev->delta_disks),
4136 GFP_KERNEL);
4137 if (!conf->mirrors_new)
4138 return -ENOMEM;
4139 }
4140 return 0;
4141 }
4142
4143 /*
4144 * Need to check if array has failed when deciding whether to:
4145 * - start an array
4146 * - remove non-faulty devices
4147 * - add a spare
4148 * - allow a reshape
4149 * This determination is simple when no reshape is happening.
4150 * However if there is a reshape, we need to carefully check
4151 * both the before and after sections.
4152 * This is because some failed devices may only affect one
4153 * of the two sections, and some non-in_sync devices may
4154 * be insync in the section most affected by failed devices.
4155 */
4156 static int calc_degraded(struct r10conf *conf)
4157 {
4158 int degraded, degraded2;
4159 int i;
4160
4161 rcu_read_lock();
4162 degraded = 0;
4163 /* 'prev' section first */
4164 for (i = 0; i < conf->prev.raid_disks; i++) {
4165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4166 if (!rdev || test_bit(Faulty, &rdev->flags))
4167 degraded++;
4168 else if (!test_bit(In_sync, &rdev->flags))
4169 /* When we can reduce the number of devices in
4170 * an array, this might not contribute to
4171 * 'degraded'. It does now.
4172 */
4173 degraded++;
4174 }
4175 rcu_read_unlock();
4176 if (conf->geo.raid_disks == conf->prev.raid_disks)
4177 return degraded;
4178 rcu_read_lock();
4179 degraded2 = 0;
4180 for (i = 0; i < conf->geo.raid_disks; i++) {
4181 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4182 if (!rdev || test_bit(Faulty, &rdev->flags))
4183 degraded2++;
4184 else if (!test_bit(In_sync, &rdev->flags)) {
4185 /* If reshape is increasing the number of devices,
4186 * this section has already been recovered, so
4187 * it doesn't contribute to degraded.
4188 * else it does.
4189 */
4190 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4191 degraded2++;
4192 }
4193 }
4194 rcu_read_unlock();
4195 if (degraded2 > degraded)
4196 return degraded2;
4197 return degraded;
4198 }
4199
4200 static int raid10_start_reshape(struct mddev *mddev)
4201 {
4202 /* A 'reshape' has been requested. This commits
4203 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4204 * This also checks if there are enough spares and adds them
4205 * to the array.
4206 * We currently require enough spares to make the final
4207 * array non-degraded. We also require that the difference
4208 * between old and new data_offset - on each device - is
4209 * enough that we never risk over-writing.
4210 */
4211
4212 unsigned long before_length, after_length;
4213 sector_t min_offset_diff = 0;
4214 int first = 1;
4215 struct geom new;
4216 struct r10conf *conf = mddev->private;
4217 struct md_rdev *rdev;
4218 int spares = 0;
4219 int ret;
4220
4221 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222 return -EBUSY;
4223
4224 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4225 return -EINVAL;
4226
4227 before_length = ((1 << conf->prev.chunk_shift) *
4228 conf->prev.far_copies);
4229 after_length = ((1 << conf->geo.chunk_shift) *
4230 conf->geo.far_copies);
4231
4232 rdev_for_each(rdev, mddev) {
4233 if (!test_bit(In_sync, &rdev->flags)
4234 && !test_bit(Faulty, &rdev->flags))
4235 spares++;
4236 if (rdev->raid_disk >= 0) {
4237 long long diff = (rdev->new_data_offset
4238 - rdev->data_offset);
4239 if (!mddev->reshape_backwards)
4240 diff = -diff;
4241 if (diff < 0)
4242 diff = 0;
4243 if (first || diff < min_offset_diff)
4244 min_offset_diff = diff;
4245 first = 0;
4246 }
4247 }
4248
4249 if (max(before_length, after_length) > min_offset_diff)
4250 return -EINVAL;
4251
4252 if (spares < mddev->delta_disks)
4253 return -EINVAL;
4254
4255 conf->offset_diff = min_offset_diff;
4256 spin_lock_irq(&conf->device_lock);
4257 if (conf->mirrors_new) {
4258 memcpy(conf->mirrors_new, conf->mirrors,
4259 sizeof(struct raid10_info)*conf->prev.raid_disks);
4260 smp_mb();
4261 kfree(conf->mirrors_old);
4262 conf->mirrors_old = conf->mirrors;
4263 conf->mirrors = conf->mirrors_new;
4264 conf->mirrors_new = NULL;
4265 }
4266 setup_geo(&conf->geo, mddev, geo_start);
4267 smp_mb();
4268 if (mddev->reshape_backwards) {
4269 sector_t size = raid10_size(mddev, 0, 0);
4270 if (size < mddev->array_sectors) {
4271 spin_unlock_irq(&conf->device_lock);
4272 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4273 mdname(mddev));
4274 return -EINVAL;
4275 }
4276 mddev->resync_max_sectors = size;
4277 conf->reshape_progress = size;
4278 } else
4279 conf->reshape_progress = 0;
4280 conf->reshape_safe = conf->reshape_progress;
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 if (mddev->delta_disks && mddev->bitmap) {
4284 ret = bitmap_resize(mddev->bitmap,
4285 raid10_size(mddev, 0,
4286 conf->geo.raid_disks),
4287 0, 0);
4288 if (ret)
4289 goto abort;
4290 }
4291 if (mddev->delta_disks > 0) {
4292 rdev_for_each(rdev, mddev)
4293 if (rdev->raid_disk < 0 &&
4294 !test_bit(Faulty, &rdev->flags)) {
4295 if (raid10_add_disk(mddev, rdev) == 0) {
4296 if (rdev->raid_disk >=
4297 conf->prev.raid_disks)
4298 set_bit(In_sync, &rdev->flags);
4299 else
4300 rdev->recovery_offset = 0;
4301
4302 if (sysfs_link_rdev(mddev, rdev))
4303 /* Failure here is OK */;
4304 }
4305 } else if (rdev->raid_disk >= conf->prev.raid_disks
4306 && !test_bit(Faulty, &rdev->flags)) {
4307 /* This is a spare that was manually added */
4308 set_bit(In_sync, &rdev->flags);
4309 }
4310 }
4311 /* When a reshape changes the number of devices,
4312 * ->degraded is measured against the larger of the
4313 * pre and post numbers.
4314 */
4315 spin_lock_irq(&conf->device_lock);
4316 mddev->degraded = calc_degraded(conf);
4317 spin_unlock_irq(&conf->device_lock);
4318 mddev->raid_disks = conf->geo.raid_disks;
4319 mddev->reshape_position = conf->reshape_progress;
4320 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4321
4322 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4324 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4325 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4326 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4327
4328 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4329 "reshape");
4330 if (!mddev->sync_thread) {
4331 ret = -EAGAIN;
4332 goto abort;
4333 }
4334 conf->reshape_checkpoint = jiffies;
4335 md_wakeup_thread(mddev->sync_thread);
4336 md_new_event(mddev);
4337 return 0;
4338
4339 abort:
4340 mddev->recovery = 0;
4341 spin_lock_irq(&conf->device_lock);
4342 conf->geo = conf->prev;
4343 mddev->raid_disks = conf->geo.raid_disks;
4344 rdev_for_each(rdev, mddev)
4345 rdev->new_data_offset = rdev->data_offset;
4346 smp_wmb();
4347 conf->reshape_progress = MaxSector;
4348 conf->reshape_safe = MaxSector;
4349 mddev->reshape_position = MaxSector;
4350 spin_unlock_irq(&conf->device_lock);
4351 return ret;
4352 }
4353
4354 /* Calculate the last device-address that could contain
4355 * any block from the chunk that includes the array-address 's'
4356 * and report the next address.
4357 * i.e. the address returned will be chunk-aligned and after
4358 * any data that is in the chunk containing 's'.
4359 */
4360 static sector_t last_dev_address(sector_t s, struct geom *geo)
4361 {
4362 s = (s | geo->chunk_mask) + 1;
4363 s >>= geo->chunk_shift;
4364 s *= geo->near_copies;
4365 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4366 s *= geo->far_copies;
4367 s <<= geo->chunk_shift;
4368 return s;
4369 }
4370
4371 /* Calculate the first device-address that could contain
4372 * any block from the chunk that includes the array-address 's'.
4373 * This too will be the start of a chunk
4374 */
4375 static sector_t first_dev_address(sector_t s, struct geom *geo)
4376 {
4377 s >>= geo->chunk_shift;
4378 s *= geo->near_copies;
4379 sector_div(s, geo->raid_disks);
4380 s *= geo->far_copies;
4381 s <<= geo->chunk_shift;
4382 return s;
4383 }
4384
4385 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4386 int *skipped)
4387 {
4388 /* We simply copy at most one chunk (smallest of old and new)
4389 * at a time, possibly less if that exceeds RESYNC_PAGES,
4390 * or we hit a bad block or something.
4391 * This might mean we pause for normal IO in the middle of
4392 * a chunk, but that is not a problem as mddev->reshape_position
4393 * can record any location.
4394 *
4395 * If we will want to write to a location that isn't
4396 * yet recorded as 'safe' (i.e. in metadata on disk) then
4397 * we need to flush all reshape requests and update the metadata.
4398 *
4399 * When reshaping forwards (e.g. to more devices), we interpret
4400 * 'safe' as the earliest block which might not have been copied
4401 * down yet. We divide this by previous stripe size and multiply
4402 * by previous stripe length to get lowest device offset that we
4403 * cannot write to yet.
4404 * We interpret 'sector_nr' as an address that we want to write to.
4405 * From this we use last_device_address() to find where we might
4406 * write to, and first_device_address on the 'safe' position.
4407 * If this 'next' write position is after the 'safe' position,
4408 * we must update the metadata to increase the 'safe' position.
4409 *
4410 * When reshaping backwards, we round in the opposite direction
4411 * and perform the reverse test: next write position must not be
4412 * less than current safe position.
4413 *
4414 * In all this the minimum difference in data offsets
4415 * (conf->offset_diff - always positive) allows a bit of slack,
4416 * so next can be after 'safe', but not by more than offset_diff
4417 *
4418 * We need to prepare all the bios here before we start any IO
4419 * to ensure the size we choose is acceptable to all devices.
4420 * The means one for each copy for write-out and an extra one for
4421 * read-in.
4422 * We store the read-in bio in ->master_bio and the others in
4423 * ->devs[x].bio and ->devs[x].repl_bio.
4424 */
4425 struct r10conf *conf = mddev->private;
4426 struct r10bio *r10_bio;
4427 sector_t next, safe, last;
4428 int max_sectors;
4429 int nr_sectors;
4430 int s;
4431 struct md_rdev *rdev;
4432 int need_flush = 0;
4433 struct bio *blist;
4434 struct bio *bio, *read_bio;
4435 int sectors_done = 0;
4436 struct page **pages;
4437
4438 if (sector_nr == 0) {
4439 /* If restarting in the middle, skip the initial sectors */
4440 if (mddev->reshape_backwards &&
4441 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4442 sector_nr = (raid10_size(mddev, 0, 0)
4443 - conf->reshape_progress);
4444 } else if (!mddev->reshape_backwards &&
4445 conf->reshape_progress > 0)
4446 sector_nr = conf->reshape_progress;
4447 if (sector_nr) {
4448 mddev->curr_resync_completed = sector_nr;
4449 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4450 *skipped = 1;
4451 return sector_nr;
4452 }
4453 }
4454
4455 /* We don't use sector_nr to track where we are up to
4456 * as that doesn't work well for ->reshape_backwards.
4457 * So just use ->reshape_progress.
4458 */
4459 if (mddev->reshape_backwards) {
4460 /* 'next' is the earliest device address that we might
4461 * write to for this chunk in the new layout
4462 */
4463 next = first_dev_address(conf->reshape_progress - 1,
4464 &conf->geo);
4465
4466 /* 'safe' is the last device address that we might read from
4467 * in the old layout after a restart
4468 */
4469 safe = last_dev_address(conf->reshape_safe - 1,
4470 &conf->prev);
4471
4472 if (next + conf->offset_diff < safe)
4473 need_flush = 1;
4474
4475 last = conf->reshape_progress - 1;
4476 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4477 & conf->prev.chunk_mask);
4478 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4479 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4480 } else {
4481 /* 'next' is after the last device address that we
4482 * might write to for this chunk in the new layout
4483 */
4484 next = last_dev_address(conf->reshape_progress, &conf->geo);
4485
4486 /* 'safe' is the earliest device address that we might
4487 * read from in the old layout after a restart
4488 */
4489 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4490
4491 /* Need to update metadata if 'next' might be beyond 'safe'
4492 * as that would possibly corrupt data
4493 */
4494 if (next > safe + conf->offset_diff)
4495 need_flush = 1;
4496
4497 sector_nr = conf->reshape_progress;
4498 last = sector_nr | (conf->geo.chunk_mask
4499 & conf->prev.chunk_mask);
4500
4501 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4502 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503 }
4504
4505 if (need_flush ||
4506 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4507 /* Need to update reshape_position in metadata */
4508 wait_barrier(conf);
4509 mddev->reshape_position = conf->reshape_progress;
4510 if (mddev->reshape_backwards)
4511 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4512 - conf->reshape_progress;
4513 else
4514 mddev->curr_resync_completed = conf->reshape_progress;
4515 conf->reshape_checkpoint = jiffies;
4516 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4517 md_wakeup_thread(mddev->thread);
4518 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4519 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4520 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4521 allow_barrier(conf);
4522 return sectors_done;
4523 }
4524 conf->reshape_safe = mddev->reshape_position;
4525 allow_barrier(conf);
4526 }
4527
4528 read_more:
4529 /* Now schedule reads for blocks from sector_nr to last */
4530 r10_bio = raid10_alloc_init_r10buf(conf);
4531 r10_bio->state = 0;
4532 raise_barrier(conf, sectors_done != 0);
4533 atomic_set(&r10_bio->remaining, 0);
4534 r10_bio->mddev = mddev;
4535 r10_bio->sector = sector_nr;
4536 set_bit(R10BIO_IsReshape, &r10_bio->state);
4537 r10_bio->sectors = last - sector_nr + 1;
4538 rdev = read_balance(conf, r10_bio, &max_sectors);
4539 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541 if (!rdev) {
4542 /* Cannot read from here, so need to record bad blocks
4543 * on all the target devices.
4544 */
4545 // FIXME
4546 mempool_free(r10_bio, &conf->r10buf_pool);
4547 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548 return sectors_done;
4549 }
4550
4551 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553 bio_set_dev(read_bio, rdev->bdev);
4554 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555 + rdev->data_offset);
4556 read_bio->bi_private = r10_bio;
4557 read_bio->bi_end_io = end_reshape_read;
4558 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560 read_bio->bi_status = 0;
4561 read_bio->bi_vcnt = 0;
4562 read_bio->bi_iter.bi_size = 0;
4563 r10_bio->master_bio = read_bio;
4564 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
4566 /* Now find the locations in the new layout */
4567 __raid10_find_phys(&conf->geo, r10_bio);
4568
4569 blist = read_bio;
4570 read_bio->bi_next = NULL;
4571
4572 rcu_read_lock();
4573 for (s = 0; s < conf->copies*2; s++) {
4574 struct bio *b;
4575 int d = r10_bio->devs[s/2].devnum;
4576 struct md_rdev *rdev2;
4577 if (s&1) {
4578 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4579 b = r10_bio->devs[s/2].repl_bio;
4580 } else {
4581 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4582 b = r10_bio->devs[s/2].bio;
4583 }
4584 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4585 continue;
4586
4587 bio_set_dev(b, rdev2->bdev);
4588 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4589 rdev2->new_data_offset;
4590 b->bi_end_io = end_reshape_write;
4591 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4592 b->bi_next = blist;
4593 blist = b;
4594 }
4595
4596 /* Now add as many pages as possible to all of these bios. */
4597
4598 nr_sectors = 0;
4599 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4600 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4601 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4602 int len = (max_sectors - s) << 9;
4603 if (len > PAGE_SIZE)
4604 len = PAGE_SIZE;
4605 for (bio = blist; bio ; bio = bio->bi_next) {
4606 /*
4607 * won't fail because the vec table is big enough
4608 * to hold all these pages
4609 */
4610 bio_add_page(bio, page, len, 0);
4611 }
4612 sector_nr += len >> 9;
4613 nr_sectors += len >> 9;
4614 }
4615 rcu_read_unlock();
4616 r10_bio->sectors = nr_sectors;
4617
4618 /* Now submit the read */
4619 md_sync_acct_bio(read_bio, r10_bio->sectors);
4620 atomic_inc(&r10_bio->remaining);
4621 read_bio->bi_next = NULL;
4622 generic_make_request(read_bio);
4623 sector_nr += nr_sectors;
4624 sectors_done += nr_sectors;
4625 if (sector_nr <= last)
4626 goto read_more;
4627
4628 /* Now that we have done the whole section we can
4629 * update reshape_progress
4630 */
4631 if (mddev->reshape_backwards)
4632 conf->reshape_progress -= sectors_done;
4633 else
4634 conf->reshape_progress += sectors_done;
4635
4636 return sectors_done;
4637 }
4638
4639 static void end_reshape_request(struct r10bio *r10_bio);
4640 static int handle_reshape_read_error(struct mddev *mddev,
4641 struct r10bio *r10_bio);
4642 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4643 {
4644 /* Reshape read completed. Hopefully we have a block
4645 * to write out.
4646 * If we got a read error then we do sync 1-page reads from
4647 * elsewhere until we find the data - or give up.
4648 */
4649 struct r10conf *conf = mddev->private;
4650 int s;
4651
4652 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4653 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4654 /* Reshape has been aborted */
4655 md_done_sync(mddev, r10_bio->sectors, 0);
4656 return;
4657 }
4658
4659 /* We definitely have the data in the pages, schedule the
4660 * writes.
4661 */
4662 atomic_set(&r10_bio->remaining, 1);
4663 for (s = 0; s < conf->copies*2; s++) {
4664 struct bio *b;
4665 int d = r10_bio->devs[s/2].devnum;
4666 struct md_rdev *rdev;
4667 rcu_read_lock();
4668 if (s&1) {
4669 rdev = rcu_dereference(conf->mirrors[d].replacement);
4670 b = r10_bio->devs[s/2].repl_bio;
4671 } else {
4672 rdev = rcu_dereference(conf->mirrors[d].rdev);
4673 b = r10_bio->devs[s/2].bio;
4674 }
4675 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4676 rcu_read_unlock();
4677 continue;
4678 }
4679 atomic_inc(&rdev->nr_pending);
4680 rcu_read_unlock();
4681 md_sync_acct_bio(b, r10_bio->sectors);
4682 atomic_inc(&r10_bio->remaining);
4683 b->bi_next = NULL;
4684 generic_make_request(b);
4685 }
4686 end_reshape_request(r10_bio);
4687 }
4688
4689 static void end_reshape(struct r10conf *conf)
4690 {
4691 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4692 return;
4693
4694 spin_lock_irq(&conf->device_lock);
4695 conf->prev = conf->geo;
4696 md_finish_reshape(conf->mddev);
4697 smp_wmb();
4698 conf->reshape_progress = MaxSector;
4699 conf->reshape_safe = MaxSector;
4700 spin_unlock_irq(&conf->device_lock);
4701
4702 /* read-ahead size must cover two whole stripes, which is
4703 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4704 */
4705 if (conf->mddev->queue) {
4706 int stripe = conf->geo.raid_disks *
4707 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4708 stripe /= conf->geo.near_copies;
4709 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4710 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4711 }
4712 conf->fullsync = 0;
4713 }
4714
4715 static int handle_reshape_read_error(struct mddev *mddev,
4716 struct r10bio *r10_bio)
4717 {
4718 /* Use sync reads to get the blocks from somewhere else */
4719 int sectors = r10_bio->sectors;
4720 struct r10conf *conf = mddev->private;
4721 struct r10bio *r10b;
4722 int slot = 0;
4723 int idx = 0;
4724 struct page **pages;
4725
4726 r10b = kmalloc(sizeof(*r10b) +
4727 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4728 if (!r10b) {
4729 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730 return -ENOMEM;
4731 }
4732
4733 /* reshape IOs share pages from .devs[0].bio */
4734 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4735
4736 r10b->sector = r10_bio->sector;
4737 __raid10_find_phys(&conf->prev, r10b);
4738
4739 while (sectors) {
4740 int s = sectors;
4741 int success = 0;
4742 int first_slot = slot;
4743
4744 if (s > (PAGE_SIZE >> 9))
4745 s = PAGE_SIZE >> 9;
4746
4747 rcu_read_lock();
4748 while (!success) {
4749 int d = r10b->devs[slot].devnum;
4750 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4751 sector_t addr;
4752 if (rdev == NULL ||
4753 test_bit(Faulty, &rdev->flags) ||
4754 !test_bit(In_sync, &rdev->flags))
4755 goto failed;
4756
4757 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4758 atomic_inc(&rdev->nr_pending);
4759 rcu_read_unlock();
4760 success = sync_page_io(rdev,
4761 addr,
4762 s << 9,
4763 pages[idx],
4764 REQ_OP_READ, 0, false);
4765 rdev_dec_pending(rdev, mddev);
4766 rcu_read_lock();
4767 if (success)
4768 break;
4769 failed:
4770 slot++;
4771 if (slot >= conf->copies)
4772 slot = 0;
4773 if (slot == first_slot)
4774 break;
4775 }
4776 rcu_read_unlock();
4777 if (!success) {
4778 /* couldn't read this block, must give up */
4779 set_bit(MD_RECOVERY_INTR,
4780 &mddev->recovery);
4781 kfree(r10b);
4782 return -EIO;
4783 }
4784 sectors -= s;
4785 idx++;
4786 }
4787 kfree(r10b);
4788 return 0;
4789 }
4790
4791 static void end_reshape_write(struct bio *bio)
4792 {
4793 struct r10bio *r10_bio = get_resync_r10bio(bio);
4794 struct mddev *mddev = r10_bio->mddev;
4795 struct r10conf *conf = mddev->private;
4796 int d;
4797 int slot;
4798 int repl;
4799 struct md_rdev *rdev = NULL;
4800
4801 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4802 if (repl)
4803 rdev = conf->mirrors[d].replacement;
4804 if (!rdev) {
4805 smp_mb();
4806 rdev = conf->mirrors[d].rdev;
4807 }
4808
4809 if (bio->bi_status) {
4810 /* FIXME should record badblock */
4811 md_error(mddev, rdev);
4812 }
4813
4814 rdev_dec_pending(rdev, mddev);
4815 end_reshape_request(r10_bio);
4816 }
4817
4818 static void end_reshape_request(struct r10bio *r10_bio)
4819 {
4820 if (!atomic_dec_and_test(&r10_bio->remaining))
4821 return;
4822 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4823 bio_put(r10_bio->master_bio);
4824 put_buf(r10_bio);
4825 }
4826
4827 static void raid10_finish_reshape(struct mddev *mddev)
4828 {
4829 struct r10conf *conf = mddev->private;
4830
4831 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4832 return;
4833
4834 if (mddev->delta_disks > 0) {
4835 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836 mddev->recovery_cp = mddev->resync_max_sectors;
4837 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838 }
4839 mddev->resync_max_sectors = mddev->array_sectors;
4840 } else {
4841 int d;
4842 rcu_read_lock();
4843 for (d = conf->geo.raid_disks ;
4844 d < conf->geo.raid_disks - mddev->delta_disks;
4845 d++) {
4846 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4847 if (rdev)
4848 clear_bit(In_sync, &rdev->flags);
4849 rdev = rcu_dereference(conf->mirrors[d].replacement);
4850 if (rdev)
4851 clear_bit(In_sync, &rdev->flags);
4852 }
4853 rcu_read_unlock();
4854 }
4855 mddev->layout = mddev->new_layout;
4856 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857 mddev->reshape_position = MaxSector;
4858 mddev->delta_disks = 0;
4859 mddev->reshape_backwards = 0;
4860 }
4861
4862 static struct md_personality raid10_personality =
4863 {
4864 .name = "raid10",
4865 .level = 10,
4866 .owner = THIS_MODULE,
4867 .make_request = raid10_make_request,
4868 .run = raid10_run,
4869 .free = raid10_free,
4870 .status = raid10_status,
4871 .error_handler = raid10_error,
4872 .hot_add_disk = raid10_add_disk,
4873 .hot_remove_disk= raid10_remove_disk,
4874 .spare_active = raid10_spare_active,
4875 .sync_request = raid10_sync_request,
4876 .quiesce = raid10_quiesce,
4877 .size = raid10_size,
4878 .resize = raid10_resize,
4879 .takeover = raid10_takeover,
4880 .check_reshape = raid10_check_reshape,
4881 .start_reshape = raid10_start_reshape,
4882 .finish_reshape = raid10_finish_reshape,
4883 .congested = raid10_congested,
4884 };
4885
4886 static int __init raid_init(void)
4887 {
4888 return register_md_personality(&raid10_personality);
4889 }
4890
4891 static void raid_exit(void)
4892 {
4893 unregister_md_personality(&raid10_personality);
4894 }
4895
4896 module_init(raid_init);
4897 module_exit(raid_exit);
4898 MODULE_LICENSE("GPL");
4899 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4900 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4901 MODULE_ALIAS("md-raid10");
4902 MODULE_ALIAS("md-level-10");
4903
4904 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);