]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
Merge branches 'for-3.10/multitouch', 'for-3.10/roccat' and 'for-3.10/upstream' into...
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
402 raid_end_bio_io(r10_bio);
403 rdev_dec_pending(rdev, conf->mddev);
404 } else {
405 /*
406 * oops, read error - keep the refcount on the rdev
407 */
408 char b[BDEVNAME_SIZE];
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
412 bdevname(rdev->bdev, b),
413 (unsigned long long)r10_bio->sector);
414 set_bit(R10BIO_ReadError, &r10_bio->state);
415 reschedule_retry(r10_bio);
416 }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 struct r10bio *r10_bio = bio->bi_private;
448 int dev;
449 int dec_rdev = 1;
450 struct r10conf *conf = r10_bio->mddev->private;
451 int slot, repl;
452 struct md_rdev *rdev = NULL;
453
454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
461 rdev = conf->mirrors[dev].rdev;
462 }
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
466 if (!uptodate) {
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
480 } else {
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
490 sector_t first_bad;
491 int bad_sectors;
492
493 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495 /* Maybe we can clear some bad blocks. */
496 if (is_badblock(rdev,
497 r10_bio->devs[slot].addr,
498 r10_bio->sectors,
499 &first_bad, &bad_sectors)) {
500 bio_put(bio);
501 if (repl)
502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503 else
504 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505 dec_rdev = 0;
506 set_bit(R10BIO_MadeGood, &r10_bio->state);
507 }
508 }
509
510 /*
511 *
512 * Let's see if all mirrored write operations have finished
513 * already.
514 */
515 one_write_done(r10_bio);
516 if (dec_rdev)
517 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521 * RAID10 layout manager
522 * As well as the chunksize and raid_disks count, there are two
523 * parameters: near_copies and far_copies.
524 * near_copies * far_copies must be <= raid_disks.
525 * Normally one of these will be 1.
526 * If both are 1, we get raid0.
527 * If near_copies == raid_disks, we get raid1.
528 *
529 * Chunks are laid out in raid0 style with near_copies copies of the
530 * first chunk, followed by near_copies copies of the next chunk and
531 * so on.
532 * If far_copies > 1, then after 1/far_copies of the array has been assigned
533 * as described above, we start again with a device offset of near_copies.
534 * So we effectively have another copy of the whole array further down all
535 * the drives, but with blocks on different drives.
536 * With this layout, and block is never stored twice on the one device.
537 *
538 * raid10_find_phys finds the sector offset of a given virtual sector
539 * on each device that it is on.
540 *
541 * raid10_find_virt does the reverse mapping, from a device and a
542 * sector offset to a virtual address
543 */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547 int n,f;
548 sector_t sector;
549 sector_t chunk;
550 sector_t stripe;
551 int dev;
552 int slot = 0;
553 int last_far_set_start, last_far_set_size;
554
555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 last_far_set_start *= geo->far_set_size;
557
558 last_far_set_size = geo->far_set_size;
559 last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561 /* now calculate first sector/dev */
562 chunk = r10bio->sector >> geo->chunk_shift;
563 sector = r10bio->sector & geo->chunk_mask;
564
565 chunk *= geo->near_copies;
566 stripe = chunk;
567 dev = sector_div(stripe, geo->raid_disks);
568 if (geo->far_offset)
569 stripe *= geo->far_copies;
570
571 sector += stripe << geo->chunk_shift;
572
573 /* and calculate all the others */
574 for (n = 0; n < geo->near_copies; n++) {
575 int d = dev;
576 int set;
577 sector_t s = sector;
578 r10bio->devs[slot].devnum = d;
579 r10bio->devs[slot].addr = s;
580 slot++;
581
582 for (f = 1; f < geo->far_copies; f++) {
583 set = d / geo->far_set_size;
584 d += geo->near_copies;
585
586 if ((geo->raid_disks % geo->far_set_size) &&
587 (d > last_far_set_start)) {
588 d -= last_far_set_start;
589 d %= last_far_set_size;
590 d += last_far_set_start;
591 } else {
592 d %= geo->far_set_size;
593 d += geo->far_set_size * set;
594 }
595 s += geo->stride;
596 r10bio->devs[slot].devnum = d;
597 r10bio->devs[slot].addr = s;
598 slot++;
599 }
600 dev++;
601 if (dev >= geo->raid_disks) {
602 dev = 0;
603 sector += (geo->chunk_mask + 1);
604 }
605 }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610 struct geom *geo = &conf->geo;
611
612 if (conf->reshape_progress != MaxSector &&
613 ((r10bio->sector >= conf->reshape_progress) !=
614 conf->mddev->reshape_backwards)) {
615 set_bit(R10BIO_Previous, &r10bio->state);
616 geo = &conf->prev;
617 } else
618 clear_bit(R10BIO_Previous, &r10bio->state);
619
620 __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625 sector_t offset, chunk, vchunk;
626 /* Never use conf->prev as this is only called during resync
627 * or recovery, so reshape isn't happening
628 */
629 struct geom *geo = &conf->geo;
630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 int far_set_size = geo->far_set_size;
632 int last_far_set_start;
633
634 if (geo->raid_disks % geo->far_set_size) {
635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 last_far_set_start *= geo->far_set_size;
637
638 if (dev >= last_far_set_start) {
639 far_set_size = geo->far_set_size;
640 far_set_size += (geo->raid_disks % geo->far_set_size);
641 far_set_start = last_far_set_start;
642 }
643 }
644
645 offset = sector & geo->chunk_mask;
646 if (geo->far_offset) {
647 int fc;
648 chunk = sector >> geo->chunk_shift;
649 fc = sector_div(chunk, geo->far_copies);
650 dev -= fc * geo->near_copies;
651 if (dev < far_set_start)
652 dev += far_set_size;
653 } else {
654 while (sector >= geo->stride) {
655 sector -= geo->stride;
656 if (dev < (geo->near_copies + far_set_start))
657 dev += far_set_size - geo->near_copies;
658 else
659 dev -= geo->near_copies;
660 }
661 chunk = sector >> geo->chunk_shift;
662 }
663 vchunk = chunk * geo->raid_disks + dev;
664 sector_div(vchunk, geo->near_copies);
665 return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670 * @q: request queue
671 * @bvm: properties of new bio
672 * @biovec: the request that could be merged to it.
673 *
674 * Return amount of bytes we can accept at this offset
675 * This requires checking for end-of-chunk if near_copies != raid_disks,
676 * and for subordinate merge_bvec_fns if merge_check_needed.
677 */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679 struct bvec_merge_data *bvm,
680 struct bio_vec *biovec)
681 {
682 struct mddev *mddev = q->queuedata;
683 struct r10conf *conf = mddev->private;
684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685 int max;
686 unsigned int chunk_sectors;
687 unsigned int bio_sectors = bvm->bi_size >> 9;
688 struct geom *geo = &conf->geo;
689
690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691 if (conf->reshape_progress != MaxSector &&
692 ((sector >= conf->reshape_progress) !=
693 conf->mddev->reshape_backwards))
694 geo = &conf->prev;
695
696 if (geo->near_copies < geo->raid_disks) {
697 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 + bio_sectors)) << 9;
699 if (max < 0)
700 /* bio_add cannot handle a negative return */
701 max = 0;
702 if (max <= biovec->bv_len && bio_sectors == 0)
703 return biovec->bv_len;
704 } else
705 max = biovec->bv_len;
706
707 if (mddev->merge_check_needed) {
708 struct {
709 struct r10bio r10_bio;
710 struct r10dev devs[conf->copies];
711 } on_stack;
712 struct r10bio *r10_bio = &on_stack.r10_bio;
713 int s;
714 if (conf->reshape_progress != MaxSector) {
715 /* Cannot give any guidance during reshape */
716 if (max <= biovec->bv_len && bio_sectors == 0)
717 return biovec->bv_len;
718 return 0;
719 }
720 r10_bio->sector = sector;
721 raid10_find_phys(conf, r10_bio);
722 rcu_read_lock();
723 for (s = 0; s < conf->copies; s++) {
724 int disk = r10_bio->devs[s].devnum;
725 struct md_rdev *rdev = rcu_dereference(
726 conf->mirrors[disk].rdev);
727 if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 struct request_queue *q =
729 bdev_get_queue(rdev->bdev);
730 if (q->merge_bvec_fn) {
731 bvm->bi_sector = r10_bio->devs[s].addr
732 + rdev->data_offset;
733 bvm->bi_bdev = rdev->bdev;
734 max = min(max, q->merge_bvec_fn(
735 q, bvm, biovec));
736 }
737 }
738 rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 struct request_queue *q =
741 bdev_get_queue(rdev->bdev);
742 if (q->merge_bvec_fn) {
743 bvm->bi_sector = r10_bio->devs[s].addr
744 + rdev->data_offset;
745 bvm->bi_bdev = rdev->bdev;
746 max = min(max, q->merge_bvec_fn(
747 q, bvm, biovec));
748 }
749 }
750 }
751 rcu_read_unlock();
752 }
753 return max;
754 }
755
756 /*
757 * This routine returns the disk from which the requested read should
758 * be done. There is a per-array 'next expected sequential IO' sector
759 * number - if this matches on the next IO then we use the last disk.
760 * There is also a per-disk 'last know head position' sector that is
761 * maintained from IRQ contexts, both the normal and the resync IO
762 * completion handlers update this position correctly. If there is no
763 * perfect sequential match then we pick the disk whose head is closest.
764 *
765 * If there are 2 mirrors in the same 2 devices, performance degrades
766 * because position is mirror, not device based.
767 *
768 * The rdev for the device selected will have nr_pending incremented.
769 */
770
771 /*
772 * FIXME: possibly should rethink readbalancing and do it differently
773 * depending on near_copies / far_copies geometry.
774 */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776 struct r10bio *r10_bio,
777 int *max_sectors)
778 {
779 const sector_t this_sector = r10_bio->sector;
780 int disk, slot;
781 int sectors = r10_bio->sectors;
782 int best_good_sectors;
783 sector_t new_distance, best_dist;
784 struct md_rdev *best_rdev, *rdev = NULL;
785 int do_balance;
786 int best_slot;
787 struct geom *geo = &conf->geo;
788
789 raid10_find_phys(conf, r10_bio);
790 rcu_read_lock();
791 retry:
792 sectors = r10_bio->sectors;
793 best_slot = -1;
794 best_rdev = NULL;
795 best_dist = MaxSector;
796 best_good_sectors = 0;
797 do_balance = 1;
798 /*
799 * Check if we can balance. We can balance on the whole
800 * device if no resync is going on (recovery is ok), or below
801 * the resync window. We take the first readable disk when
802 * above the resync window.
803 */
804 if (conf->mddev->recovery_cp < MaxSector
805 && (this_sector + sectors >= conf->next_resync))
806 do_balance = 0;
807
808 for (slot = 0; slot < conf->copies ; slot++) {
809 sector_t first_bad;
810 int bad_sectors;
811 sector_t dev_sector;
812
813 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814 continue;
815 disk = r10_bio->devs[slot].devnum;
816 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818 test_bit(Unmerged, &rdev->flags) ||
819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 rdev = rcu_dereference(conf->mirrors[disk].rdev);
821 if (rdev == NULL ||
822 test_bit(Faulty, &rdev->flags) ||
823 test_bit(Unmerged, &rdev->flags))
824 continue;
825 if (!test_bit(In_sync, &rdev->flags) &&
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 continue;
828
829 dev_sector = r10_bio->devs[slot].addr;
830 if (is_badblock(rdev, dev_sector, sectors,
831 &first_bad, &bad_sectors)) {
832 if (best_dist < MaxSector)
833 /* Already have a better slot */
834 continue;
835 if (first_bad <= dev_sector) {
836 /* Cannot read here. If this is the
837 * 'primary' device, then we must not read
838 * beyond 'bad_sectors' from another device.
839 */
840 bad_sectors -= (dev_sector - first_bad);
841 if (!do_balance && sectors > bad_sectors)
842 sectors = bad_sectors;
843 if (best_good_sectors > sectors)
844 best_good_sectors = sectors;
845 } else {
846 sector_t good_sectors =
847 first_bad - dev_sector;
848 if (good_sectors > best_good_sectors) {
849 best_good_sectors = good_sectors;
850 best_slot = slot;
851 best_rdev = rdev;
852 }
853 if (!do_balance)
854 /* Must read from here */
855 break;
856 }
857 continue;
858 } else
859 best_good_sectors = sectors;
860
861 if (!do_balance)
862 break;
863
864 /* This optimisation is debatable, and completely destroys
865 * sequential read speed for 'far copies' arrays. So only
866 * keep it for 'near' arrays, and review those later.
867 */
868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869 break;
870
871 /* for far > 1 always use the lowest address */
872 if (geo->far_copies > 1)
873 new_distance = r10_bio->devs[slot].addr;
874 else
875 new_distance = abs(r10_bio->devs[slot].addr -
876 conf->mirrors[disk].head_position);
877 if (new_distance < best_dist) {
878 best_dist = new_distance;
879 best_slot = slot;
880 best_rdev = rdev;
881 }
882 }
883 if (slot >= conf->copies) {
884 slot = best_slot;
885 rdev = best_rdev;
886 }
887
888 if (slot >= 0) {
889 atomic_inc(&rdev->nr_pending);
890 if (test_bit(Faulty, &rdev->flags)) {
891 /* Cannot risk returning a device that failed
892 * before we inc'ed nr_pending
893 */
894 rdev_dec_pending(rdev, conf->mddev);
895 goto retry;
896 }
897 r10_bio->read_slot = slot;
898 } else
899 rdev = NULL;
900 rcu_read_unlock();
901 *max_sectors = best_good_sectors;
902
903 return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908 struct r10conf *conf = mddev->private;
909 int i, ret = 0;
910
911 if ((bits & (1 << BDI_async_congested)) &&
912 conf->pending_count >= max_queued_requests)
913 return 1;
914
915 rcu_read_lock();
916 for (i = 0;
917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918 && ret == 0;
919 i++) {
920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922 struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924 ret |= bdi_congested(&q->backing_dev_info, bits);
925 }
926 }
927 rcu_read_unlock();
928 return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934 struct mddev *mddev = data;
935
936 return mddev_congested(mddev, bits) ||
937 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942 /* Any writes that have been queued but are awaiting
943 * bitmap updates get flushed here.
944 */
945 spin_lock_irq(&conf->device_lock);
946
947 if (conf->pending_bio_list.head) {
948 struct bio *bio;
949 bio = bio_list_get(&conf->pending_bio_list);
950 conf->pending_count = 0;
951 spin_unlock_irq(&conf->device_lock);
952 /* flush any pending bitmap writes to disk
953 * before proceeding w/ I/O */
954 bitmap_unplug(conf->mddev->bitmap);
955 wake_up(&conf->wait_barrier);
956
957 while (bio) { /* submit pending writes */
958 struct bio *next = bio->bi_next;
959 bio->bi_next = NULL;
960 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 /* Just ignore it */
963 bio_endio(bio, 0);
964 else
965 generic_make_request(bio);
966 bio = next;
967 }
968 } else
969 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973 * Sometimes we need to suspend IO while we do something else,
974 * either some resync/recovery, or reconfigure the array.
975 * To do this we raise a 'barrier'.
976 * The 'barrier' is a counter that can be raised multiple times
977 * to count how many activities are happening which preclude
978 * normal IO.
979 * We can only raise the barrier if there is no pending IO.
980 * i.e. if nr_pending == 0.
981 * We choose only to raise the barrier if no-one is waiting for the
982 * barrier to go down. This means that as soon as an IO request
983 * is ready, no other operations which require a barrier will start
984 * until the IO request has had a chance.
985 *
986 * So: regular IO calls 'wait_barrier'. When that returns there
987 * is no backgroup IO happening, It must arrange to call
988 * allow_barrier when it has finished its IO.
989 * backgroup IO calls must call raise_barrier. Once that returns
990 * there is no normal IO happeing. It must arrange to call
991 * lower_barrier when the particular background IO completes.
992 */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996 BUG_ON(force && !conf->barrier);
997 spin_lock_irq(&conf->resync_lock);
998
999 /* Wait until no block IO is waiting (unless 'force') */
1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001 conf->resync_lock);
1002
1003 /* block any new IO from starting */
1004 conf->barrier++;
1005
1006 /* Now wait for all pending IO to complete */
1007 wait_event_lock_irq(conf->wait_barrier,
1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009 conf->resync_lock);
1010
1011 spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016 unsigned long flags;
1017 spin_lock_irqsave(&conf->resync_lock, flags);
1018 conf->barrier--;
1019 spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025 spin_lock_irq(&conf->resync_lock);
1026 if (conf->barrier) {
1027 conf->nr_waiting++;
1028 /* Wait for the barrier to drop.
1029 * However if there are already pending
1030 * requests (preventing the barrier from
1031 * rising completely), and the
1032 * pre-process bio queue isn't empty,
1033 * then don't wait, as we need to empty
1034 * that queue to get the nr_pending
1035 * count down.
1036 */
1037 wait_event_lock_irq(conf->wait_barrier,
1038 !conf->barrier ||
1039 (conf->nr_pending &&
1040 current->bio_list &&
1041 !bio_list_empty(current->bio_list)),
1042 conf->resync_lock);
1043 conf->nr_waiting--;
1044 }
1045 conf->nr_pending++;
1046 spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051 unsigned long flags;
1052 spin_lock_irqsave(&conf->resync_lock, flags);
1053 conf->nr_pending--;
1054 spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060 /* stop syncio and normal IO and wait for everything to
1061 * go quiet.
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+1
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (1)
1069 * must match the number of pending IOs (nr_pending) before
1070 * we continue.
1071 */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->barrier++;
1074 conf->nr_waiting++;
1075 wait_event_lock_irq_cmd(conf->wait_barrier,
1076 conf->nr_pending == conf->nr_queued+1,
1077 conf->resync_lock,
1078 flush_pending_writes(conf));
1079
1080 spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1087 conf->barrier--;
1088 conf->nr_waiting--;
1089 wake_up(&conf->wait_barrier);
1090 spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 struct md_rdev *rdev)
1095 {
1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 test_bit(R10BIO_Previous, &r10_bio->state))
1098 return rdev->data_offset;
1099 else
1100 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104 struct blk_plug_cb cb;
1105 struct bio_list pending;
1106 int pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112 cb);
1113 struct mddev *mddev = plug->cb.data;
1114 struct r10conf *conf = mddev->private;
1115 struct bio *bio;
1116
1117 if (from_schedule || current->bio_list) {
1118 spin_lock_irq(&conf->device_lock);
1119 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 conf->pending_count += plug->pending_cnt;
1121 spin_unlock_irq(&conf->device_lock);
1122 wake_up(&conf->wait_barrier);
1123 md_wakeup_thread(mddev->thread);
1124 kfree(plug);
1125 return;
1126 }
1127
1128 /* we aren't scheduling, so we can do the write-out directly. */
1129 bio = bio_list_get(&plug->pending);
1130 bitmap_unplug(mddev->bitmap);
1131 wake_up(&conf->wait_barrier);
1132
1133 while (bio) { /* submit pending writes */
1134 struct bio *next = bio->bi_next;
1135 bio->bi_next = NULL;
1136 generic_make_request(bio);
1137 bio = next;
1138 }
1139 kfree(plug);
1140 }
1141
1142 static void make_request(struct mddev *mddev, struct bio * bio)
1143 {
1144 struct r10conf *conf = mddev->private;
1145 struct r10bio *r10_bio;
1146 struct bio *read_bio;
1147 int i;
1148 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1149 int chunk_sects = chunk_mask + 1;
1150 const int rw = bio_data_dir(bio);
1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 const unsigned long do_discard = (bio->bi_rw
1154 & (REQ_DISCARD | REQ_SECURE));
1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 unsigned long flags;
1157 struct md_rdev *blocked_rdev;
1158 struct blk_plug_cb *cb;
1159 struct raid10_plug_cb *plug = NULL;
1160 int sectors_handled;
1161 int max_sectors;
1162 int sectors;
1163
1164 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1165 md_flush_request(mddev, bio);
1166 return;
1167 }
1168
1169 /* If this request crosses a chunk boundary, we need to
1170 * split it. This will only happen for 1 PAGE (or less) requests.
1171 */
1172 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1173 > chunk_sects
1174 && (conf->geo.near_copies < conf->geo.raid_disks
1175 || conf->prev.near_copies < conf->prev.raid_disks))) {
1176 struct bio_pair *bp;
1177 /* Sanity check -- queue functions should prevent this happening */
1178 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1179 bio->bi_idx != 0)
1180 goto bad_map;
1181 /* This is a one page bio that upper layers
1182 * refuse to split for us, so we need to split it.
1183 */
1184 bp = bio_split(bio,
1185 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1186
1187 /* Each of these 'make_request' calls will call 'wait_barrier'.
1188 * If the first succeeds but the second blocks due to the resync
1189 * thread raising the barrier, we will deadlock because the
1190 * IO to the underlying device will be queued in generic_make_request
1191 * and will never complete, so will never reduce nr_pending.
1192 * So increment nr_waiting here so no new raise_barriers will
1193 * succeed, and so the second wait_barrier cannot block.
1194 */
1195 spin_lock_irq(&conf->resync_lock);
1196 conf->nr_waiting++;
1197 spin_unlock_irq(&conf->resync_lock);
1198
1199 make_request(mddev, &bp->bio1);
1200 make_request(mddev, &bp->bio2);
1201
1202 spin_lock_irq(&conf->resync_lock);
1203 conf->nr_waiting--;
1204 wake_up(&conf->wait_barrier);
1205 spin_unlock_irq(&conf->resync_lock);
1206
1207 bio_pair_release(bp);
1208 return;
1209 bad_map:
1210 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1211 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1212 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1213
1214 bio_io_error(bio);
1215 return;
1216 }
1217
1218 md_write_start(mddev, bio);
1219
1220 /*
1221 * Register the new request and wait if the reconstruction
1222 * thread has put up a bar for new requests.
1223 * Continue immediately if no resync is active currently.
1224 */
1225 wait_barrier(conf);
1226
1227 sectors = bio->bi_size >> 9;
1228 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1229 bio->bi_sector < conf->reshape_progress &&
1230 bio->bi_sector + sectors > conf->reshape_progress) {
1231 /* IO spans the reshape position. Need to wait for
1232 * reshape to pass
1233 */
1234 allow_barrier(conf);
1235 wait_event(conf->wait_barrier,
1236 conf->reshape_progress <= bio->bi_sector ||
1237 conf->reshape_progress >= bio->bi_sector + sectors);
1238 wait_barrier(conf);
1239 }
1240 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 bio_data_dir(bio) == WRITE &&
1242 (mddev->reshape_backwards
1243 ? (bio->bi_sector < conf->reshape_safe &&
1244 bio->bi_sector + sectors > conf->reshape_progress)
1245 : (bio->bi_sector + sectors > conf->reshape_safe &&
1246 bio->bi_sector < conf->reshape_progress))) {
1247 /* Need to update reshape_position in metadata */
1248 mddev->reshape_position = conf->reshape_progress;
1249 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1250 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1251 md_wakeup_thread(mddev->thread);
1252 wait_event(mddev->sb_wait,
1253 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1254
1255 conf->reshape_safe = mddev->reshape_position;
1256 }
1257
1258 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1259
1260 r10_bio->master_bio = bio;
1261 r10_bio->sectors = sectors;
1262
1263 r10_bio->mddev = mddev;
1264 r10_bio->sector = bio->bi_sector;
1265 r10_bio->state = 0;
1266
1267 /* We might need to issue multiple reads to different
1268 * devices if there are bad blocks around, so we keep
1269 * track of the number of reads in bio->bi_phys_segments.
1270 * If this is 0, there is only one r10_bio and no locking
1271 * will be needed when the request completes. If it is
1272 * non-zero, then it is the number of not-completed requests.
1273 */
1274 bio->bi_phys_segments = 0;
1275 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1276
1277 if (rw == READ) {
1278 /*
1279 * read balancing logic:
1280 */
1281 struct md_rdev *rdev;
1282 int slot;
1283
1284 read_again:
1285 rdev = read_balance(conf, r10_bio, &max_sectors);
1286 if (!rdev) {
1287 raid_end_bio_io(r10_bio);
1288 return;
1289 }
1290 slot = r10_bio->read_slot;
1291
1292 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1293 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1294 max_sectors);
1295
1296 r10_bio->devs[slot].bio = read_bio;
1297 r10_bio->devs[slot].rdev = rdev;
1298
1299 read_bio->bi_sector = r10_bio->devs[slot].addr +
1300 choose_data_offset(r10_bio, rdev);
1301 read_bio->bi_bdev = rdev->bdev;
1302 read_bio->bi_end_io = raid10_end_read_request;
1303 read_bio->bi_rw = READ | do_sync;
1304 read_bio->bi_private = r10_bio;
1305
1306 if (max_sectors < r10_bio->sectors) {
1307 /* Could not read all from this device, so we will
1308 * need another r10_bio.
1309 */
1310 sectors_handled = (r10_bio->sectors + max_sectors
1311 - bio->bi_sector);
1312 r10_bio->sectors = max_sectors;
1313 spin_lock_irq(&conf->device_lock);
1314 if (bio->bi_phys_segments == 0)
1315 bio->bi_phys_segments = 2;
1316 else
1317 bio->bi_phys_segments++;
1318 spin_unlock(&conf->device_lock);
1319 /* Cannot call generic_make_request directly
1320 * as that will be queued in __generic_make_request
1321 * and subsequent mempool_alloc might block
1322 * waiting for it. so hand bio over to raid10d.
1323 */
1324 reschedule_retry(r10_bio);
1325
1326 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1327
1328 r10_bio->master_bio = bio;
1329 r10_bio->sectors = ((bio->bi_size >> 9)
1330 - sectors_handled);
1331 r10_bio->state = 0;
1332 r10_bio->mddev = mddev;
1333 r10_bio->sector = bio->bi_sector + sectors_handled;
1334 goto read_again;
1335 } else
1336 generic_make_request(read_bio);
1337 return;
1338 }
1339
1340 /*
1341 * WRITE:
1342 */
1343 if (conf->pending_count >= max_queued_requests) {
1344 md_wakeup_thread(mddev->thread);
1345 wait_event(conf->wait_barrier,
1346 conf->pending_count < max_queued_requests);
1347 }
1348 /* first select target devices under rcu_lock and
1349 * inc refcount on their rdev. Record them by setting
1350 * bios[x] to bio
1351 * If there are known/acknowledged bad blocks on any device
1352 * on which we have seen a write error, we want to avoid
1353 * writing to those blocks. This potentially requires several
1354 * writes to write around the bad blocks. Each set of writes
1355 * gets its own r10_bio with a set of bios attached. The number
1356 * of r10_bios is recored in bio->bi_phys_segments just as with
1357 * the read case.
1358 */
1359
1360 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1361 raid10_find_phys(conf, r10_bio);
1362 retry_write:
1363 blocked_rdev = NULL;
1364 rcu_read_lock();
1365 max_sectors = r10_bio->sectors;
1366
1367 for (i = 0; i < conf->copies; i++) {
1368 int d = r10_bio->devs[i].devnum;
1369 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1370 struct md_rdev *rrdev = rcu_dereference(
1371 conf->mirrors[d].replacement);
1372 if (rdev == rrdev)
1373 rrdev = NULL;
1374 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1375 atomic_inc(&rdev->nr_pending);
1376 blocked_rdev = rdev;
1377 break;
1378 }
1379 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1380 atomic_inc(&rrdev->nr_pending);
1381 blocked_rdev = rrdev;
1382 break;
1383 }
1384 if (rdev && (test_bit(Faulty, &rdev->flags)
1385 || test_bit(Unmerged, &rdev->flags)))
1386 rdev = NULL;
1387 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1388 || test_bit(Unmerged, &rrdev->flags)))
1389 rrdev = NULL;
1390
1391 r10_bio->devs[i].bio = NULL;
1392 r10_bio->devs[i].repl_bio = NULL;
1393
1394 if (!rdev && !rrdev) {
1395 set_bit(R10BIO_Degraded, &r10_bio->state);
1396 continue;
1397 }
1398 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1399 sector_t first_bad;
1400 sector_t dev_sector = r10_bio->devs[i].addr;
1401 int bad_sectors;
1402 int is_bad;
1403
1404 is_bad = is_badblock(rdev, dev_sector,
1405 max_sectors,
1406 &first_bad, &bad_sectors);
1407 if (is_bad < 0) {
1408 /* Mustn't write here until the bad block
1409 * is acknowledged
1410 */
1411 atomic_inc(&rdev->nr_pending);
1412 set_bit(BlockedBadBlocks, &rdev->flags);
1413 blocked_rdev = rdev;
1414 break;
1415 }
1416 if (is_bad && first_bad <= dev_sector) {
1417 /* Cannot write here at all */
1418 bad_sectors -= (dev_sector - first_bad);
1419 if (bad_sectors < max_sectors)
1420 /* Mustn't write more than bad_sectors
1421 * to other devices yet
1422 */
1423 max_sectors = bad_sectors;
1424 /* We don't set R10BIO_Degraded as that
1425 * only applies if the disk is missing,
1426 * so it might be re-added, and we want to
1427 * know to recover this chunk.
1428 * In this case the device is here, and the
1429 * fact that this chunk is not in-sync is
1430 * recorded in the bad block log.
1431 */
1432 continue;
1433 }
1434 if (is_bad) {
1435 int good_sectors = first_bad - dev_sector;
1436 if (good_sectors < max_sectors)
1437 max_sectors = good_sectors;
1438 }
1439 }
1440 if (rdev) {
1441 r10_bio->devs[i].bio = bio;
1442 atomic_inc(&rdev->nr_pending);
1443 }
1444 if (rrdev) {
1445 r10_bio->devs[i].repl_bio = bio;
1446 atomic_inc(&rrdev->nr_pending);
1447 }
1448 }
1449 rcu_read_unlock();
1450
1451 if (unlikely(blocked_rdev)) {
1452 /* Have to wait for this device to get unblocked, then retry */
1453 int j;
1454 int d;
1455
1456 for (j = 0; j < i; j++) {
1457 if (r10_bio->devs[j].bio) {
1458 d = r10_bio->devs[j].devnum;
1459 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1460 }
1461 if (r10_bio->devs[j].repl_bio) {
1462 struct md_rdev *rdev;
1463 d = r10_bio->devs[j].devnum;
1464 rdev = conf->mirrors[d].replacement;
1465 if (!rdev) {
1466 /* Race with remove_disk */
1467 smp_mb();
1468 rdev = conf->mirrors[d].rdev;
1469 }
1470 rdev_dec_pending(rdev, mddev);
1471 }
1472 }
1473 allow_barrier(conf);
1474 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1475 wait_barrier(conf);
1476 goto retry_write;
1477 }
1478
1479 if (max_sectors < r10_bio->sectors) {
1480 /* We are splitting this into multiple parts, so
1481 * we need to prepare for allocating another r10_bio.
1482 */
1483 r10_bio->sectors = max_sectors;
1484 spin_lock_irq(&conf->device_lock);
1485 if (bio->bi_phys_segments == 0)
1486 bio->bi_phys_segments = 2;
1487 else
1488 bio->bi_phys_segments++;
1489 spin_unlock_irq(&conf->device_lock);
1490 }
1491 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1492
1493 atomic_set(&r10_bio->remaining, 1);
1494 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495
1496 for (i = 0; i < conf->copies; i++) {
1497 struct bio *mbio;
1498 int d = r10_bio->devs[i].devnum;
1499 if (r10_bio->devs[i].bio) {
1500 struct md_rdev *rdev = conf->mirrors[d].rdev;
1501 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1503 max_sectors);
1504 r10_bio->devs[i].bio = mbio;
1505
1506 mbio->bi_sector = (r10_bio->devs[i].addr+
1507 choose_data_offset(r10_bio,
1508 rdev));
1509 mbio->bi_bdev = rdev->bdev;
1510 mbio->bi_end_io = raid10_end_write_request;
1511 mbio->bi_rw =
1512 WRITE | do_sync | do_fua | do_discard | do_same;
1513 mbio->bi_private = r10_bio;
1514
1515 atomic_inc(&r10_bio->remaining);
1516
1517 cb = blk_check_plugged(raid10_unplug, mddev,
1518 sizeof(*plug));
1519 if (cb)
1520 plug = container_of(cb, struct raid10_plug_cb,
1521 cb);
1522 else
1523 plug = NULL;
1524 spin_lock_irqsave(&conf->device_lock, flags);
1525 if (plug) {
1526 bio_list_add(&plug->pending, mbio);
1527 plug->pending_cnt++;
1528 } else {
1529 bio_list_add(&conf->pending_bio_list, mbio);
1530 conf->pending_count++;
1531 }
1532 spin_unlock_irqrestore(&conf->device_lock, flags);
1533 if (!plug)
1534 md_wakeup_thread(mddev->thread);
1535 }
1536
1537 if (r10_bio->devs[i].repl_bio) {
1538 struct md_rdev *rdev = conf->mirrors[d].replacement;
1539 if (rdev == NULL) {
1540 /* Replacement just got moved to main 'rdev' */
1541 smp_mb();
1542 rdev = conf->mirrors[d].rdev;
1543 }
1544 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1545 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1546 max_sectors);
1547 r10_bio->devs[i].repl_bio = mbio;
1548
1549 mbio->bi_sector = (r10_bio->devs[i].addr +
1550 choose_data_offset(
1551 r10_bio, rdev));
1552 mbio->bi_bdev = rdev->bdev;
1553 mbio->bi_end_io = raid10_end_write_request;
1554 mbio->bi_rw =
1555 WRITE | do_sync | do_fua | do_discard | do_same;
1556 mbio->bi_private = r10_bio;
1557
1558 atomic_inc(&r10_bio->remaining);
1559 spin_lock_irqsave(&conf->device_lock, flags);
1560 bio_list_add(&conf->pending_bio_list, mbio);
1561 conf->pending_count++;
1562 spin_unlock_irqrestore(&conf->device_lock, flags);
1563 if (!mddev_check_plugged(mddev))
1564 md_wakeup_thread(mddev->thread);
1565 }
1566 }
1567
1568 /* Don't remove the bias on 'remaining' (one_write_done) until
1569 * after checking if we need to go around again.
1570 */
1571
1572 if (sectors_handled < (bio->bi_size >> 9)) {
1573 one_write_done(r10_bio);
1574 /* We need another r10_bio. It has already been counted
1575 * in bio->bi_phys_segments.
1576 */
1577 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1578
1579 r10_bio->master_bio = bio;
1580 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1581
1582 r10_bio->mddev = mddev;
1583 r10_bio->sector = bio->bi_sector + sectors_handled;
1584 r10_bio->state = 0;
1585 goto retry_write;
1586 }
1587 one_write_done(r10_bio);
1588
1589 /* In case raid10d snuck in to freeze_array */
1590 wake_up(&conf->wait_barrier);
1591 }
1592
1593 static void status(struct seq_file *seq, struct mddev *mddev)
1594 {
1595 struct r10conf *conf = mddev->private;
1596 int i;
1597
1598 if (conf->geo.near_copies < conf->geo.raid_disks)
1599 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1600 if (conf->geo.near_copies > 1)
1601 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1602 if (conf->geo.far_copies > 1) {
1603 if (conf->geo.far_offset)
1604 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1605 else
1606 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1607 }
1608 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1609 conf->geo.raid_disks - mddev->degraded);
1610 for (i = 0; i < conf->geo.raid_disks; i++)
1611 seq_printf(seq, "%s",
1612 conf->mirrors[i].rdev &&
1613 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1614 seq_printf(seq, "]");
1615 }
1616
1617 /* check if there are enough drives for
1618 * every block to appear on atleast one.
1619 * Don't consider the device numbered 'ignore'
1620 * as we might be about to remove it.
1621 */
1622 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1623 {
1624 int first = 0;
1625
1626 do {
1627 int n = conf->copies;
1628 int cnt = 0;
1629 int this = first;
1630 while (n--) {
1631 if (conf->mirrors[this].rdev &&
1632 this != ignore)
1633 cnt++;
1634 this = (this+1) % geo->raid_disks;
1635 }
1636 if (cnt == 0)
1637 return 0;
1638 first = (first + geo->near_copies) % geo->raid_disks;
1639 } while (first != 0);
1640 return 1;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 return _enough(conf, &conf->geo, ignore) &&
1646 _enough(conf, &conf->prev, ignore);
1647 }
1648
1649 static void error(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651 char b[BDEVNAME_SIZE];
1652 struct r10conf *conf = mddev->private;
1653
1654 /*
1655 * If it is not operational, then we have already marked it as dead
1656 * else if it is the last working disks, ignore the error, let the
1657 * next level up know.
1658 * else mark the drive as failed
1659 */
1660 if (test_bit(In_sync, &rdev->flags)
1661 && !enough(conf, rdev->raid_disk))
1662 /*
1663 * Don't fail the drive, just return an IO error.
1664 */
1665 return;
1666 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1667 unsigned long flags;
1668 spin_lock_irqsave(&conf->device_lock, flags);
1669 mddev->degraded++;
1670 spin_unlock_irqrestore(&conf->device_lock, flags);
1671 /*
1672 * if recovery is running, make sure it aborts.
1673 */
1674 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1675 }
1676 set_bit(Blocked, &rdev->flags);
1677 set_bit(Faulty, &rdev->flags);
1678 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1679 printk(KERN_ALERT
1680 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1681 "md/raid10:%s: Operation continuing on %d devices.\n",
1682 mdname(mddev), bdevname(rdev->bdev, b),
1683 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1684 }
1685
1686 static void print_conf(struct r10conf *conf)
1687 {
1688 int i;
1689 struct raid10_info *tmp;
1690
1691 printk(KERN_DEBUG "RAID10 conf printout:\n");
1692 if (!conf) {
1693 printk(KERN_DEBUG "(!conf)\n");
1694 return;
1695 }
1696 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1697 conf->geo.raid_disks);
1698
1699 for (i = 0; i < conf->geo.raid_disks; i++) {
1700 char b[BDEVNAME_SIZE];
1701 tmp = conf->mirrors + i;
1702 if (tmp->rdev)
1703 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1704 i, !test_bit(In_sync, &tmp->rdev->flags),
1705 !test_bit(Faulty, &tmp->rdev->flags),
1706 bdevname(tmp->rdev->bdev,b));
1707 }
1708 }
1709
1710 static void close_sync(struct r10conf *conf)
1711 {
1712 wait_barrier(conf);
1713 allow_barrier(conf);
1714
1715 mempool_destroy(conf->r10buf_pool);
1716 conf->r10buf_pool = NULL;
1717 }
1718
1719 static int raid10_spare_active(struct mddev *mddev)
1720 {
1721 int i;
1722 struct r10conf *conf = mddev->private;
1723 struct raid10_info *tmp;
1724 int count = 0;
1725 unsigned long flags;
1726
1727 /*
1728 * Find all non-in_sync disks within the RAID10 configuration
1729 * and mark them in_sync
1730 */
1731 for (i = 0; i < conf->geo.raid_disks; i++) {
1732 tmp = conf->mirrors + i;
1733 if (tmp->replacement
1734 && tmp->replacement->recovery_offset == MaxSector
1735 && !test_bit(Faulty, &tmp->replacement->flags)
1736 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1737 /* Replacement has just become active */
1738 if (!tmp->rdev
1739 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1740 count++;
1741 if (tmp->rdev) {
1742 /* Replaced device not technically faulty,
1743 * but we need to be sure it gets removed
1744 * and never re-added.
1745 */
1746 set_bit(Faulty, &tmp->rdev->flags);
1747 sysfs_notify_dirent_safe(
1748 tmp->rdev->sysfs_state);
1749 }
1750 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1751 } else if (tmp->rdev
1752 && !test_bit(Faulty, &tmp->rdev->flags)
1753 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1754 count++;
1755 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1756 }
1757 }
1758 spin_lock_irqsave(&conf->device_lock, flags);
1759 mddev->degraded -= count;
1760 spin_unlock_irqrestore(&conf->device_lock, flags);
1761
1762 print_conf(conf);
1763 return count;
1764 }
1765
1766
1767 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1768 {
1769 struct r10conf *conf = mddev->private;
1770 int err = -EEXIST;
1771 int mirror;
1772 int first = 0;
1773 int last = conf->geo.raid_disks - 1;
1774 struct request_queue *q = bdev_get_queue(rdev->bdev);
1775
1776 if (mddev->recovery_cp < MaxSector)
1777 /* only hot-add to in-sync arrays, as recovery is
1778 * very different from resync
1779 */
1780 return -EBUSY;
1781 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1782 return -EINVAL;
1783
1784 if (rdev->raid_disk >= 0)
1785 first = last = rdev->raid_disk;
1786
1787 if (q->merge_bvec_fn) {
1788 set_bit(Unmerged, &rdev->flags);
1789 mddev->merge_check_needed = 1;
1790 }
1791
1792 if (rdev->saved_raid_disk >= first &&
1793 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1794 mirror = rdev->saved_raid_disk;
1795 else
1796 mirror = first;
1797 for ( ; mirror <= last ; mirror++) {
1798 struct raid10_info *p = &conf->mirrors[mirror];
1799 if (p->recovery_disabled == mddev->recovery_disabled)
1800 continue;
1801 if (p->rdev) {
1802 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1803 p->replacement != NULL)
1804 continue;
1805 clear_bit(In_sync, &rdev->flags);
1806 set_bit(Replacement, &rdev->flags);
1807 rdev->raid_disk = mirror;
1808 err = 0;
1809 disk_stack_limits(mddev->gendisk, rdev->bdev,
1810 rdev->data_offset << 9);
1811 conf->fullsync = 1;
1812 rcu_assign_pointer(p->replacement, rdev);
1813 break;
1814 }
1815
1816 disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 rdev->data_offset << 9);
1818
1819 p->head_position = 0;
1820 p->recovery_disabled = mddev->recovery_disabled - 1;
1821 rdev->raid_disk = mirror;
1822 err = 0;
1823 if (rdev->saved_raid_disk != mirror)
1824 conf->fullsync = 1;
1825 rcu_assign_pointer(p->rdev, rdev);
1826 break;
1827 }
1828 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1829 /* Some requests might not have seen this new
1830 * merge_bvec_fn. We must wait for them to complete
1831 * before merging the device fully.
1832 * First we make sure any code which has tested
1833 * our function has submitted the request, then
1834 * we wait for all outstanding requests to complete.
1835 */
1836 synchronize_sched();
1837 raise_barrier(conf, 0);
1838 lower_barrier(conf);
1839 clear_bit(Unmerged, &rdev->flags);
1840 }
1841 md_integrity_add_rdev(rdev, mddev);
1842 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1843 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1844
1845 print_conf(conf);
1846 return err;
1847 }
1848
1849 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1850 {
1851 struct r10conf *conf = mddev->private;
1852 int err = 0;
1853 int number = rdev->raid_disk;
1854 struct md_rdev **rdevp;
1855 struct raid10_info *p = conf->mirrors + number;
1856
1857 print_conf(conf);
1858 if (rdev == p->rdev)
1859 rdevp = &p->rdev;
1860 else if (rdev == p->replacement)
1861 rdevp = &p->replacement;
1862 else
1863 return 0;
1864
1865 if (test_bit(In_sync, &rdev->flags) ||
1866 atomic_read(&rdev->nr_pending)) {
1867 err = -EBUSY;
1868 goto abort;
1869 }
1870 /* Only remove faulty devices if recovery
1871 * is not possible.
1872 */
1873 if (!test_bit(Faulty, &rdev->flags) &&
1874 mddev->recovery_disabled != p->recovery_disabled &&
1875 (!p->replacement || p->replacement == rdev) &&
1876 number < conf->geo.raid_disks &&
1877 enough(conf, -1)) {
1878 err = -EBUSY;
1879 goto abort;
1880 }
1881 *rdevp = NULL;
1882 synchronize_rcu();
1883 if (atomic_read(&rdev->nr_pending)) {
1884 /* lost the race, try later */
1885 err = -EBUSY;
1886 *rdevp = rdev;
1887 goto abort;
1888 } else if (p->replacement) {
1889 /* We must have just cleared 'rdev' */
1890 p->rdev = p->replacement;
1891 clear_bit(Replacement, &p->replacement->flags);
1892 smp_mb(); /* Make sure other CPUs may see both as identical
1893 * but will never see neither -- if they are careful.
1894 */
1895 p->replacement = NULL;
1896 clear_bit(WantReplacement, &rdev->flags);
1897 } else
1898 /* We might have just remove the Replacement as faulty
1899 * Clear the flag just in case
1900 */
1901 clear_bit(WantReplacement, &rdev->flags);
1902
1903 err = md_integrity_register(mddev);
1904
1905 abort:
1906
1907 print_conf(conf);
1908 return err;
1909 }
1910
1911
1912 static void end_sync_read(struct bio *bio, int error)
1913 {
1914 struct r10bio *r10_bio = bio->bi_private;
1915 struct r10conf *conf = r10_bio->mddev->private;
1916 int d;
1917
1918 if (bio == r10_bio->master_bio) {
1919 /* this is a reshape read */
1920 d = r10_bio->read_slot; /* really the read dev */
1921 } else
1922 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1923
1924 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1925 set_bit(R10BIO_Uptodate, &r10_bio->state);
1926 else
1927 /* The write handler will notice the lack of
1928 * R10BIO_Uptodate and record any errors etc
1929 */
1930 atomic_add(r10_bio->sectors,
1931 &conf->mirrors[d].rdev->corrected_errors);
1932
1933 /* for reconstruct, we always reschedule after a read.
1934 * for resync, only after all reads
1935 */
1936 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1937 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1938 atomic_dec_and_test(&r10_bio->remaining)) {
1939 /* we have read all the blocks,
1940 * do the comparison in process context in raid10d
1941 */
1942 reschedule_retry(r10_bio);
1943 }
1944 }
1945
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948 struct mddev *mddev = r10_bio->mddev;
1949
1950 while (atomic_dec_and_test(&r10_bio->remaining)) {
1951 if (r10_bio->master_bio == NULL) {
1952 /* the primary of several recovery bios */
1953 sector_t s = r10_bio->sectors;
1954 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955 test_bit(R10BIO_WriteError, &r10_bio->state))
1956 reschedule_retry(r10_bio);
1957 else
1958 put_buf(r10_bio);
1959 md_done_sync(mddev, s, 1);
1960 break;
1961 } else {
1962 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964 test_bit(R10BIO_WriteError, &r10_bio->state))
1965 reschedule_retry(r10_bio);
1966 else
1967 put_buf(r10_bio);
1968 r10_bio = r10_bio2;
1969 }
1970 }
1971 }
1972
1973 static void end_sync_write(struct bio *bio, int error)
1974 {
1975 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1976 struct r10bio *r10_bio = bio->bi_private;
1977 struct mddev *mddev = r10_bio->mddev;
1978 struct r10conf *conf = mddev->private;
1979 int d;
1980 sector_t first_bad;
1981 int bad_sectors;
1982 int slot;
1983 int repl;
1984 struct md_rdev *rdev = NULL;
1985
1986 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1987 if (repl)
1988 rdev = conf->mirrors[d].replacement;
1989 else
1990 rdev = conf->mirrors[d].rdev;
1991
1992 if (!uptodate) {
1993 if (repl)
1994 md_error(mddev, rdev);
1995 else {
1996 set_bit(WriteErrorSeen, &rdev->flags);
1997 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1998 set_bit(MD_RECOVERY_NEEDED,
1999 &rdev->mddev->recovery);
2000 set_bit(R10BIO_WriteError, &r10_bio->state);
2001 }
2002 } else if (is_badblock(rdev,
2003 r10_bio->devs[slot].addr,
2004 r10_bio->sectors,
2005 &first_bad, &bad_sectors))
2006 set_bit(R10BIO_MadeGood, &r10_bio->state);
2007
2008 rdev_dec_pending(rdev, mddev);
2009
2010 end_sync_request(r10_bio);
2011 }
2012
2013 /*
2014 * Note: sync and recover and handled very differently for raid10
2015 * This code is for resync.
2016 * For resync, we read through virtual addresses and read all blocks.
2017 * If there is any error, we schedule a write. The lowest numbered
2018 * drive is authoritative.
2019 * However requests come for physical address, so we need to map.
2020 * For every physical address there are raid_disks/copies virtual addresses,
2021 * which is always are least one, but is not necessarly an integer.
2022 * This means that a physical address can span multiple chunks, so we may
2023 * have to submit multiple io requests for a single sync request.
2024 */
2025 /*
2026 * We check if all blocks are in-sync and only write to blocks that
2027 * aren't in sync
2028 */
2029 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2030 {
2031 struct r10conf *conf = mddev->private;
2032 int i, first;
2033 struct bio *tbio, *fbio;
2034 int vcnt;
2035
2036 atomic_set(&r10_bio->remaining, 1);
2037
2038 /* find the first device with a block */
2039 for (i=0; i<conf->copies; i++)
2040 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2041 break;
2042
2043 if (i == conf->copies)
2044 goto done;
2045
2046 first = i;
2047 fbio = r10_bio->devs[i].bio;
2048
2049 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2050 /* now find blocks with errors */
2051 for (i=0 ; i < conf->copies ; i++) {
2052 int j, d;
2053
2054 tbio = r10_bio->devs[i].bio;
2055
2056 if (tbio->bi_end_io != end_sync_read)
2057 continue;
2058 if (i == first)
2059 continue;
2060 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2061 /* We know that the bi_io_vec layout is the same for
2062 * both 'first' and 'i', so we just compare them.
2063 * All vec entries are PAGE_SIZE;
2064 */
2065 for (j = 0; j < vcnt; j++)
2066 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2067 page_address(tbio->bi_io_vec[j].bv_page),
2068 fbio->bi_io_vec[j].bv_len))
2069 break;
2070 if (j == vcnt)
2071 continue;
2072 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2073 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2074 /* Don't fix anything. */
2075 continue;
2076 }
2077 /* Ok, we need to write this bio, either to correct an
2078 * inconsistency or to correct an unreadable block.
2079 * First we need to fixup bv_offset, bv_len and
2080 * bi_vecs, as the read request might have corrupted these
2081 */
2082 tbio->bi_vcnt = vcnt;
2083 tbio->bi_size = r10_bio->sectors << 9;
2084 tbio->bi_idx = 0;
2085 tbio->bi_phys_segments = 0;
2086 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2087 tbio->bi_flags |= 1 << BIO_UPTODATE;
2088 tbio->bi_next = NULL;
2089 tbio->bi_rw = WRITE;
2090 tbio->bi_private = r10_bio;
2091 tbio->bi_sector = r10_bio->devs[i].addr;
2092
2093 for (j=0; j < vcnt ; j++) {
2094 tbio->bi_io_vec[j].bv_offset = 0;
2095 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2096
2097 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2098 page_address(fbio->bi_io_vec[j].bv_page),
2099 PAGE_SIZE);
2100 }
2101 tbio->bi_end_io = end_sync_write;
2102
2103 d = r10_bio->devs[i].devnum;
2104 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2105 atomic_inc(&r10_bio->remaining);
2106 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2107
2108 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2109 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2110 generic_make_request(tbio);
2111 }
2112
2113 /* Now write out to any replacement devices
2114 * that are active
2115 */
2116 for (i = 0; i < conf->copies; i++) {
2117 int j, d;
2118
2119 tbio = r10_bio->devs[i].repl_bio;
2120 if (!tbio || !tbio->bi_end_io)
2121 continue;
2122 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2123 && r10_bio->devs[i].bio != fbio)
2124 for (j = 0; j < vcnt; j++)
2125 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2126 page_address(fbio->bi_io_vec[j].bv_page),
2127 PAGE_SIZE);
2128 d = r10_bio->devs[i].devnum;
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].replacement->bdev,
2131 tbio->bi_size >> 9);
2132 generic_make_request(tbio);
2133 }
2134
2135 done:
2136 if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 md_done_sync(mddev, r10_bio->sectors, 1);
2138 put_buf(r10_bio);
2139 }
2140 }
2141
2142 /*
2143 * Now for the recovery code.
2144 * Recovery happens across physical sectors.
2145 * We recover all non-is_sync drives by finding the virtual address of
2146 * each, and then choose a working drive that also has that virt address.
2147 * There is a separate r10_bio for each non-in_sync drive.
2148 * Only the first two slots are in use. The first for reading,
2149 * The second for writing.
2150 *
2151 */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154 /* We got a read error during recovery.
2155 * We repeat the read in smaller page-sized sections.
2156 * If a read succeeds, write it to the new device or record
2157 * a bad block if we cannot.
2158 * If a read fails, record a bad block on both old and
2159 * new devices.
2160 */
2161 struct mddev *mddev = r10_bio->mddev;
2162 struct r10conf *conf = mddev->private;
2163 struct bio *bio = r10_bio->devs[0].bio;
2164 sector_t sect = 0;
2165 int sectors = r10_bio->sectors;
2166 int idx = 0;
2167 int dr = r10_bio->devs[0].devnum;
2168 int dw = r10_bio->devs[1].devnum;
2169
2170 while (sectors) {
2171 int s = sectors;
2172 struct md_rdev *rdev;
2173 sector_t addr;
2174 int ok;
2175
2176 if (s > (PAGE_SIZE>>9))
2177 s = PAGE_SIZE >> 9;
2178
2179 rdev = conf->mirrors[dr].rdev;
2180 addr = r10_bio->devs[0].addr + sect,
2181 ok = sync_page_io(rdev,
2182 addr,
2183 s << 9,
2184 bio->bi_io_vec[idx].bv_page,
2185 READ, false);
2186 if (ok) {
2187 rdev = conf->mirrors[dw].rdev;
2188 addr = r10_bio->devs[1].addr + sect;
2189 ok = sync_page_io(rdev,
2190 addr,
2191 s << 9,
2192 bio->bi_io_vec[idx].bv_page,
2193 WRITE, false);
2194 if (!ok) {
2195 set_bit(WriteErrorSeen, &rdev->flags);
2196 if (!test_and_set_bit(WantReplacement,
2197 &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
2201 }
2202 if (!ok) {
2203 /* We don't worry if we cannot set a bad block -
2204 * it really is bad so there is no loss in not
2205 * recording it yet
2206 */
2207 rdev_set_badblocks(rdev, addr, s, 0);
2208
2209 if (rdev != conf->mirrors[dw].rdev) {
2210 /* need bad block on destination too */
2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 if (!ok) {
2215 /* just abort the recovery */
2216 printk(KERN_NOTICE
2217 "md/raid10:%s: recovery aborted"
2218 " due to read error\n",
2219 mdname(mddev));
2220
2221 conf->mirrors[dw].recovery_disabled
2222 = mddev->recovery_disabled;
2223 set_bit(MD_RECOVERY_INTR,
2224 &mddev->recovery);
2225 break;
2226 }
2227 }
2228 }
2229
2230 sectors -= s;
2231 sect += s;
2232 idx++;
2233 }
2234 }
2235
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238 struct r10conf *conf = mddev->private;
2239 int d;
2240 struct bio *wbio, *wbio2;
2241
2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 fix_recovery_read_error(r10_bio);
2244 end_sync_request(r10_bio);
2245 return;
2246 }
2247
2248 /*
2249 * share the pages with the first bio
2250 * and submit the write request
2251 */
2252 d = r10_bio->devs[1].devnum;
2253 wbio = r10_bio->devs[1].bio;
2254 wbio2 = r10_bio->devs[1].repl_bio;
2255 if (wbio->bi_end_io) {
2256 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2258 generic_make_request(wbio);
2259 }
2260 if (wbio2 && wbio2->bi_end_io) {
2261 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263 wbio2->bi_size >> 9);
2264 generic_make_request(wbio2);
2265 }
2266 }
2267
2268
2269 /*
2270 * Used by fix_read_error() to decay the per rdev read_errors.
2271 * We halve the read error count for every hour that has elapsed
2272 * since the last recorded read error.
2273 *
2274 */
2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2276 {
2277 struct timespec cur_time_mon;
2278 unsigned long hours_since_last;
2279 unsigned int read_errors = atomic_read(&rdev->read_errors);
2280
2281 ktime_get_ts(&cur_time_mon);
2282
2283 if (rdev->last_read_error.tv_sec == 0 &&
2284 rdev->last_read_error.tv_nsec == 0) {
2285 /* first time we've seen a read error */
2286 rdev->last_read_error = cur_time_mon;
2287 return;
2288 }
2289
2290 hours_since_last = (cur_time_mon.tv_sec -
2291 rdev->last_read_error.tv_sec) / 3600;
2292
2293 rdev->last_read_error = cur_time_mon;
2294
2295 /*
2296 * if hours_since_last is > the number of bits in read_errors
2297 * just set read errors to 0. We do this to avoid
2298 * overflowing the shift of read_errors by hours_since_last.
2299 */
2300 if (hours_since_last >= 8 * sizeof(read_errors))
2301 atomic_set(&rdev->read_errors, 0);
2302 else
2303 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2304 }
2305
2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2307 int sectors, struct page *page, int rw)
2308 {
2309 sector_t first_bad;
2310 int bad_sectors;
2311
2312 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2313 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2314 return -1;
2315 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2316 /* success */
2317 return 1;
2318 if (rw == WRITE) {
2319 set_bit(WriteErrorSeen, &rdev->flags);
2320 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321 set_bit(MD_RECOVERY_NEEDED,
2322 &rdev->mddev->recovery);
2323 }
2324 /* need to record an error - either for the block or the device */
2325 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2326 md_error(rdev->mddev, rdev);
2327 return 0;
2328 }
2329
2330 /*
2331 * This is a kernel thread which:
2332 *
2333 * 1. Retries failed read operations on working mirrors.
2334 * 2. Updates the raid superblock when problems encounter.
2335 * 3. Performs writes following reads for array synchronising.
2336 */
2337
2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2339 {
2340 int sect = 0; /* Offset from r10_bio->sector */
2341 int sectors = r10_bio->sectors;
2342 struct md_rdev*rdev;
2343 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2344 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2345
2346 /* still own a reference to this rdev, so it cannot
2347 * have been cleared recently.
2348 */
2349 rdev = conf->mirrors[d].rdev;
2350
2351 if (test_bit(Faulty, &rdev->flags))
2352 /* drive has already been failed, just ignore any
2353 more fix_read_error() attempts */
2354 return;
2355
2356 check_decay_read_errors(mddev, rdev);
2357 atomic_inc(&rdev->read_errors);
2358 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2359 char b[BDEVNAME_SIZE];
2360 bdevname(rdev->bdev, b);
2361
2362 printk(KERN_NOTICE
2363 "md/raid10:%s: %s: Raid device exceeded "
2364 "read_error threshold [cur %d:max %d]\n",
2365 mdname(mddev), b,
2366 atomic_read(&rdev->read_errors), max_read_errors);
2367 printk(KERN_NOTICE
2368 "md/raid10:%s: %s: Failing raid device\n",
2369 mdname(mddev), b);
2370 md_error(mddev, conf->mirrors[d].rdev);
2371 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2372 return;
2373 }
2374
2375 while(sectors) {
2376 int s = sectors;
2377 int sl = r10_bio->read_slot;
2378 int success = 0;
2379 int start;
2380
2381 if (s > (PAGE_SIZE>>9))
2382 s = PAGE_SIZE >> 9;
2383
2384 rcu_read_lock();
2385 do {
2386 sector_t first_bad;
2387 int bad_sectors;
2388
2389 d = r10_bio->devs[sl].devnum;
2390 rdev = rcu_dereference(conf->mirrors[d].rdev);
2391 if (rdev &&
2392 !test_bit(Unmerged, &rdev->flags) &&
2393 test_bit(In_sync, &rdev->flags) &&
2394 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2395 &first_bad, &bad_sectors) == 0) {
2396 atomic_inc(&rdev->nr_pending);
2397 rcu_read_unlock();
2398 success = sync_page_io(rdev,
2399 r10_bio->devs[sl].addr +
2400 sect,
2401 s<<9,
2402 conf->tmppage, READ, false);
2403 rdev_dec_pending(rdev, mddev);
2404 rcu_read_lock();
2405 if (success)
2406 break;
2407 }
2408 sl++;
2409 if (sl == conf->copies)
2410 sl = 0;
2411 } while (!success && sl != r10_bio->read_slot);
2412 rcu_read_unlock();
2413
2414 if (!success) {
2415 /* Cannot read from anywhere, just mark the block
2416 * as bad on the first device to discourage future
2417 * reads.
2418 */
2419 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2420 rdev = conf->mirrors[dn].rdev;
2421
2422 if (!rdev_set_badblocks(
2423 rdev,
2424 r10_bio->devs[r10_bio->read_slot].addr
2425 + sect,
2426 s, 0)) {
2427 md_error(mddev, rdev);
2428 r10_bio->devs[r10_bio->read_slot].bio
2429 = IO_BLOCKED;
2430 }
2431 break;
2432 }
2433
2434 start = sl;
2435 /* write it back and re-read */
2436 rcu_read_lock();
2437 while (sl != r10_bio->read_slot) {
2438 char b[BDEVNAME_SIZE];
2439
2440 if (sl==0)
2441 sl = conf->copies;
2442 sl--;
2443 d = r10_bio->devs[sl].devnum;
2444 rdev = rcu_dereference(conf->mirrors[d].rdev);
2445 if (!rdev ||
2446 test_bit(Unmerged, &rdev->flags) ||
2447 !test_bit(In_sync, &rdev->flags))
2448 continue;
2449
2450 atomic_inc(&rdev->nr_pending);
2451 rcu_read_unlock();
2452 if (r10_sync_page_io(rdev,
2453 r10_bio->devs[sl].addr +
2454 sect,
2455 s, conf->tmppage, WRITE)
2456 == 0) {
2457 /* Well, this device is dead */
2458 printk(KERN_NOTICE
2459 "md/raid10:%s: read correction "
2460 "write failed"
2461 " (%d sectors at %llu on %s)\n",
2462 mdname(mddev), s,
2463 (unsigned long long)(
2464 sect +
2465 choose_data_offset(r10_bio,
2466 rdev)),
2467 bdevname(rdev->bdev, b));
2468 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2469 "drive\n",
2470 mdname(mddev),
2471 bdevname(rdev->bdev, b));
2472 }
2473 rdev_dec_pending(rdev, mddev);
2474 rcu_read_lock();
2475 }
2476 sl = start;
2477 while (sl != r10_bio->read_slot) {
2478 char b[BDEVNAME_SIZE];
2479
2480 if (sl==0)
2481 sl = conf->copies;
2482 sl--;
2483 d = r10_bio->devs[sl].devnum;
2484 rdev = rcu_dereference(conf->mirrors[d].rdev);
2485 if (!rdev ||
2486 !test_bit(In_sync, &rdev->flags))
2487 continue;
2488
2489 atomic_inc(&rdev->nr_pending);
2490 rcu_read_unlock();
2491 switch (r10_sync_page_io(rdev,
2492 r10_bio->devs[sl].addr +
2493 sect,
2494 s, conf->tmppage,
2495 READ)) {
2496 case 0:
2497 /* Well, this device is dead */
2498 printk(KERN_NOTICE
2499 "md/raid10:%s: unable to read back "
2500 "corrected sectors"
2501 " (%d sectors at %llu on %s)\n",
2502 mdname(mddev), s,
2503 (unsigned long long)(
2504 sect +
2505 choose_data_offset(r10_bio, rdev)),
2506 bdevname(rdev->bdev, b));
2507 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2508 "drive\n",
2509 mdname(mddev),
2510 bdevname(rdev->bdev, b));
2511 break;
2512 case 1:
2513 printk(KERN_INFO
2514 "md/raid10:%s: read error corrected"
2515 " (%d sectors at %llu on %s)\n",
2516 mdname(mddev), s,
2517 (unsigned long long)(
2518 sect +
2519 choose_data_offset(r10_bio, rdev)),
2520 bdevname(rdev->bdev, b));
2521 atomic_add(s, &rdev->corrected_errors);
2522 }
2523
2524 rdev_dec_pending(rdev, mddev);
2525 rcu_read_lock();
2526 }
2527 rcu_read_unlock();
2528
2529 sectors -= s;
2530 sect += s;
2531 }
2532 }
2533
2534 static void bi_complete(struct bio *bio, int error)
2535 {
2536 complete((struct completion *)bio->bi_private);
2537 }
2538
2539 static int submit_bio_wait(int rw, struct bio *bio)
2540 {
2541 struct completion event;
2542 rw |= REQ_SYNC;
2543
2544 init_completion(&event);
2545 bio->bi_private = &event;
2546 bio->bi_end_io = bi_complete;
2547 submit_bio(rw, bio);
2548 wait_for_completion(&event);
2549
2550 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2551 }
2552
2553 static int narrow_write_error(struct r10bio *r10_bio, int i)
2554 {
2555 struct bio *bio = r10_bio->master_bio;
2556 struct mddev *mddev = r10_bio->mddev;
2557 struct r10conf *conf = mddev->private;
2558 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2559 /* bio has the data to be written to slot 'i' where
2560 * we just recently had a write error.
2561 * We repeatedly clone the bio and trim down to one block,
2562 * then try the write. Where the write fails we record
2563 * a bad block.
2564 * It is conceivable that the bio doesn't exactly align with
2565 * blocks. We must handle this.
2566 *
2567 * We currently own a reference to the rdev.
2568 */
2569
2570 int block_sectors;
2571 sector_t sector;
2572 int sectors;
2573 int sect_to_write = r10_bio->sectors;
2574 int ok = 1;
2575
2576 if (rdev->badblocks.shift < 0)
2577 return 0;
2578
2579 block_sectors = 1 << rdev->badblocks.shift;
2580 sector = r10_bio->sector;
2581 sectors = ((r10_bio->sector + block_sectors)
2582 & ~(sector_t)(block_sectors - 1))
2583 - sector;
2584
2585 while (sect_to_write) {
2586 struct bio *wbio;
2587 if (sectors > sect_to_write)
2588 sectors = sect_to_write;
2589 /* Write at 'sector' for 'sectors' */
2590 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2591 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2592 wbio->bi_sector = (r10_bio->devs[i].addr+
2593 choose_data_offset(r10_bio, rdev) +
2594 (sector - r10_bio->sector));
2595 wbio->bi_bdev = rdev->bdev;
2596 if (submit_bio_wait(WRITE, wbio) == 0)
2597 /* Failure! */
2598 ok = rdev_set_badblocks(rdev, sector,
2599 sectors, 0)
2600 && ok;
2601
2602 bio_put(wbio);
2603 sect_to_write -= sectors;
2604 sector += sectors;
2605 sectors = block_sectors;
2606 }
2607 return ok;
2608 }
2609
2610 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2611 {
2612 int slot = r10_bio->read_slot;
2613 struct bio *bio;
2614 struct r10conf *conf = mddev->private;
2615 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2616 char b[BDEVNAME_SIZE];
2617 unsigned long do_sync;
2618 int max_sectors;
2619
2620 /* we got a read error. Maybe the drive is bad. Maybe just
2621 * the block and we can fix it.
2622 * We freeze all other IO, and try reading the block from
2623 * other devices. When we find one, we re-write
2624 * and check it that fixes the read error.
2625 * This is all done synchronously while the array is
2626 * frozen.
2627 */
2628 bio = r10_bio->devs[slot].bio;
2629 bdevname(bio->bi_bdev, b);
2630 bio_put(bio);
2631 r10_bio->devs[slot].bio = NULL;
2632
2633 if (mddev->ro == 0) {
2634 freeze_array(conf);
2635 fix_read_error(conf, mddev, r10_bio);
2636 unfreeze_array(conf);
2637 } else
2638 r10_bio->devs[slot].bio = IO_BLOCKED;
2639
2640 rdev_dec_pending(rdev, mddev);
2641
2642 read_more:
2643 rdev = read_balance(conf, r10_bio, &max_sectors);
2644 if (rdev == NULL) {
2645 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2646 " read error for block %llu\n",
2647 mdname(mddev), b,
2648 (unsigned long long)r10_bio->sector);
2649 raid_end_bio_io(r10_bio);
2650 return;
2651 }
2652
2653 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2654 slot = r10_bio->read_slot;
2655 printk_ratelimited(
2656 KERN_ERR
2657 "md/raid10:%s: %s: redirecting "
2658 "sector %llu to another mirror\n",
2659 mdname(mddev),
2660 bdevname(rdev->bdev, b),
2661 (unsigned long long)r10_bio->sector);
2662 bio = bio_clone_mddev(r10_bio->master_bio,
2663 GFP_NOIO, mddev);
2664 md_trim_bio(bio,
2665 r10_bio->sector - bio->bi_sector,
2666 max_sectors);
2667 r10_bio->devs[slot].bio = bio;
2668 r10_bio->devs[slot].rdev = rdev;
2669 bio->bi_sector = r10_bio->devs[slot].addr
2670 + choose_data_offset(r10_bio, rdev);
2671 bio->bi_bdev = rdev->bdev;
2672 bio->bi_rw = READ | do_sync;
2673 bio->bi_private = r10_bio;
2674 bio->bi_end_io = raid10_end_read_request;
2675 if (max_sectors < r10_bio->sectors) {
2676 /* Drat - have to split this up more */
2677 struct bio *mbio = r10_bio->master_bio;
2678 int sectors_handled =
2679 r10_bio->sector + max_sectors
2680 - mbio->bi_sector;
2681 r10_bio->sectors = max_sectors;
2682 spin_lock_irq(&conf->device_lock);
2683 if (mbio->bi_phys_segments == 0)
2684 mbio->bi_phys_segments = 2;
2685 else
2686 mbio->bi_phys_segments++;
2687 spin_unlock_irq(&conf->device_lock);
2688 generic_make_request(bio);
2689
2690 r10_bio = mempool_alloc(conf->r10bio_pool,
2691 GFP_NOIO);
2692 r10_bio->master_bio = mbio;
2693 r10_bio->sectors = (mbio->bi_size >> 9)
2694 - sectors_handled;
2695 r10_bio->state = 0;
2696 set_bit(R10BIO_ReadError,
2697 &r10_bio->state);
2698 r10_bio->mddev = mddev;
2699 r10_bio->sector = mbio->bi_sector
2700 + sectors_handled;
2701
2702 goto read_more;
2703 } else
2704 generic_make_request(bio);
2705 }
2706
2707 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2708 {
2709 /* Some sort of write request has finished and it
2710 * succeeded in writing where we thought there was a
2711 * bad block. So forget the bad block.
2712 * Or possibly if failed and we need to record
2713 * a bad block.
2714 */
2715 int m;
2716 struct md_rdev *rdev;
2717
2718 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2719 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2720 for (m = 0; m < conf->copies; m++) {
2721 int dev = r10_bio->devs[m].devnum;
2722 rdev = conf->mirrors[dev].rdev;
2723 if (r10_bio->devs[m].bio == NULL)
2724 continue;
2725 if (test_bit(BIO_UPTODATE,
2726 &r10_bio->devs[m].bio->bi_flags)) {
2727 rdev_clear_badblocks(
2728 rdev,
2729 r10_bio->devs[m].addr,
2730 r10_bio->sectors, 0);
2731 } else {
2732 if (!rdev_set_badblocks(
2733 rdev,
2734 r10_bio->devs[m].addr,
2735 r10_bio->sectors, 0))
2736 md_error(conf->mddev, rdev);
2737 }
2738 rdev = conf->mirrors[dev].replacement;
2739 if (r10_bio->devs[m].repl_bio == NULL)
2740 continue;
2741 if (test_bit(BIO_UPTODATE,
2742 &r10_bio->devs[m].repl_bio->bi_flags)) {
2743 rdev_clear_badblocks(
2744 rdev,
2745 r10_bio->devs[m].addr,
2746 r10_bio->sectors, 0);
2747 } else {
2748 if (!rdev_set_badblocks(
2749 rdev,
2750 r10_bio->devs[m].addr,
2751 r10_bio->sectors, 0))
2752 md_error(conf->mddev, rdev);
2753 }
2754 }
2755 put_buf(r10_bio);
2756 } else {
2757 for (m = 0; m < conf->copies; m++) {
2758 int dev = r10_bio->devs[m].devnum;
2759 struct bio *bio = r10_bio->devs[m].bio;
2760 rdev = conf->mirrors[dev].rdev;
2761 if (bio == IO_MADE_GOOD) {
2762 rdev_clear_badblocks(
2763 rdev,
2764 r10_bio->devs[m].addr,
2765 r10_bio->sectors, 0);
2766 rdev_dec_pending(rdev, conf->mddev);
2767 } else if (bio != NULL &&
2768 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2769 if (!narrow_write_error(r10_bio, m)) {
2770 md_error(conf->mddev, rdev);
2771 set_bit(R10BIO_Degraded,
2772 &r10_bio->state);
2773 }
2774 rdev_dec_pending(rdev, conf->mddev);
2775 }
2776 bio = r10_bio->devs[m].repl_bio;
2777 rdev = conf->mirrors[dev].replacement;
2778 if (rdev && bio == IO_MADE_GOOD) {
2779 rdev_clear_badblocks(
2780 rdev,
2781 r10_bio->devs[m].addr,
2782 r10_bio->sectors, 0);
2783 rdev_dec_pending(rdev, conf->mddev);
2784 }
2785 }
2786 if (test_bit(R10BIO_WriteError,
2787 &r10_bio->state))
2788 close_write(r10_bio);
2789 raid_end_bio_io(r10_bio);
2790 }
2791 }
2792
2793 static void raid10d(struct md_thread *thread)
2794 {
2795 struct mddev *mddev = thread->mddev;
2796 struct r10bio *r10_bio;
2797 unsigned long flags;
2798 struct r10conf *conf = mddev->private;
2799 struct list_head *head = &conf->retry_list;
2800 struct blk_plug plug;
2801
2802 md_check_recovery(mddev);
2803
2804 blk_start_plug(&plug);
2805 for (;;) {
2806
2807 flush_pending_writes(conf);
2808
2809 spin_lock_irqsave(&conf->device_lock, flags);
2810 if (list_empty(head)) {
2811 spin_unlock_irqrestore(&conf->device_lock, flags);
2812 break;
2813 }
2814 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2815 list_del(head->prev);
2816 conf->nr_queued--;
2817 spin_unlock_irqrestore(&conf->device_lock, flags);
2818
2819 mddev = r10_bio->mddev;
2820 conf = mddev->private;
2821 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2822 test_bit(R10BIO_WriteError, &r10_bio->state))
2823 handle_write_completed(conf, r10_bio);
2824 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2825 reshape_request_write(mddev, r10_bio);
2826 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2827 sync_request_write(mddev, r10_bio);
2828 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2829 recovery_request_write(mddev, r10_bio);
2830 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2831 handle_read_error(mddev, r10_bio);
2832 else {
2833 /* just a partial read to be scheduled from a
2834 * separate context
2835 */
2836 int slot = r10_bio->read_slot;
2837 generic_make_request(r10_bio->devs[slot].bio);
2838 }
2839
2840 cond_resched();
2841 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2842 md_check_recovery(mddev);
2843 }
2844 blk_finish_plug(&plug);
2845 }
2846
2847
2848 static int init_resync(struct r10conf *conf)
2849 {
2850 int buffs;
2851 int i;
2852
2853 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2854 BUG_ON(conf->r10buf_pool);
2855 conf->have_replacement = 0;
2856 for (i = 0; i < conf->geo.raid_disks; i++)
2857 if (conf->mirrors[i].replacement)
2858 conf->have_replacement = 1;
2859 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2860 if (!conf->r10buf_pool)
2861 return -ENOMEM;
2862 conf->next_resync = 0;
2863 return 0;
2864 }
2865
2866 /*
2867 * perform a "sync" on one "block"
2868 *
2869 * We need to make sure that no normal I/O request - particularly write
2870 * requests - conflict with active sync requests.
2871 *
2872 * This is achieved by tracking pending requests and a 'barrier' concept
2873 * that can be installed to exclude normal IO requests.
2874 *
2875 * Resync and recovery are handled very differently.
2876 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2877 *
2878 * For resync, we iterate over virtual addresses, read all copies,
2879 * and update if there are differences. If only one copy is live,
2880 * skip it.
2881 * For recovery, we iterate over physical addresses, read a good
2882 * value for each non-in_sync drive, and over-write.
2883 *
2884 * So, for recovery we may have several outstanding complex requests for a
2885 * given address, one for each out-of-sync device. We model this by allocating
2886 * a number of r10_bio structures, one for each out-of-sync device.
2887 * As we setup these structures, we collect all bio's together into a list
2888 * which we then process collectively to add pages, and then process again
2889 * to pass to generic_make_request.
2890 *
2891 * The r10_bio structures are linked using a borrowed master_bio pointer.
2892 * This link is counted in ->remaining. When the r10_bio that points to NULL
2893 * has its remaining count decremented to 0, the whole complex operation
2894 * is complete.
2895 *
2896 */
2897
2898 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2899 int *skipped, int go_faster)
2900 {
2901 struct r10conf *conf = mddev->private;
2902 struct r10bio *r10_bio;
2903 struct bio *biolist = NULL, *bio;
2904 sector_t max_sector, nr_sectors;
2905 int i;
2906 int max_sync;
2907 sector_t sync_blocks;
2908 sector_t sectors_skipped = 0;
2909 int chunks_skipped = 0;
2910 sector_t chunk_mask = conf->geo.chunk_mask;
2911
2912 if (!conf->r10buf_pool)
2913 if (init_resync(conf))
2914 return 0;
2915
2916 skipped:
2917 max_sector = mddev->dev_sectors;
2918 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2919 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920 max_sector = mddev->resync_max_sectors;
2921 if (sector_nr >= max_sector) {
2922 /* If we aborted, we need to abort the
2923 * sync on the 'current' bitmap chucks (there can
2924 * be several when recovering multiple devices).
2925 * as we may have started syncing it but not finished.
2926 * We can find the current address in
2927 * mddev->curr_resync, but for recovery,
2928 * we need to convert that to several
2929 * virtual addresses.
2930 */
2931 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2932 end_reshape(conf);
2933 return 0;
2934 }
2935
2936 if (mddev->curr_resync < max_sector) { /* aborted */
2937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2938 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2939 &sync_blocks, 1);
2940 else for (i = 0; i < conf->geo.raid_disks; i++) {
2941 sector_t sect =
2942 raid10_find_virt(conf, mddev->curr_resync, i);
2943 bitmap_end_sync(mddev->bitmap, sect,
2944 &sync_blocks, 1);
2945 }
2946 } else {
2947 /* completed sync */
2948 if ((!mddev->bitmap || conf->fullsync)
2949 && conf->have_replacement
2950 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2951 /* Completed a full sync so the replacements
2952 * are now fully recovered.
2953 */
2954 for (i = 0; i < conf->geo.raid_disks; i++)
2955 if (conf->mirrors[i].replacement)
2956 conf->mirrors[i].replacement
2957 ->recovery_offset
2958 = MaxSector;
2959 }
2960 conf->fullsync = 0;
2961 }
2962 bitmap_close_sync(mddev->bitmap);
2963 close_sync(conf);
2964 *skipped = 1;
2965 return sectors_skipped;
2966 }
2967
2968 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2969 return reshape_request(mddev, sector_nr, skipped);
2970
2971 if (chunks_skipped >= conf->geo.raid_disks) {
2972 /* if there has been nothing to do on any drive,
2973 * then there is nothing to do at all..
2974 */
2975 *skipped = 1;
2976 return (max_sector - sector_nr) + sectors_skipped;
2977 }
2978
2979 if (max_sector > mddev->resync_max)
2980 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2981
2982 /* make sure whole request will fit in a chunk - if chunks
2983 * are meaningful
2984 */
2985 if (conf->geo.near_copies < conf->geo.raid_disks &&
2986 max_sector > (sector_nr | chunk_mask))
2987 max_sector = (sector_nr | chunk_mask) + 1;
2988 /*
2989 * If there is non-resync activity waiting for us then
2990 * put in a delay to throttle resync.
2991 */
2992 if (!go_faster && conf->nr_waiting)
2993 msleep_interruptible(1000);
2994
2995 /* Again, very different code for resync and recovery.
2996 * Both must result in an r10bio with a list of bios that
2997 * have bi_end_io, bi_sector, bi_bdev set,
2998 * and bi_private set to the r10bio.
2999 * For recovery, we may actually create several r10bios
3000 * with 2 bios in each, that correspond to the bios in the main one.
3001 * In this case, the subordinate r10bios link back through a
3002 * borrowed master_bio pointer, and the counter in the master
3003 * includes a ref from each subordinate.
3004 */
3005 /* First, we decide what to do and set ->bi_end_io
3006 * To end_sync_read if we want to read, and
3007 * end_sync_write if we will want to write.
3008 */
3009
3010 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3011 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3012 /* recovery... the complicated one */
3013 int j;
3014 r10_bio = NULL;
3015
3016 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3017 int still_degraded;
3018 struct r10bio *rb2;
3019 sector_t sect;
3020 int must_sync;
3021 int any_working;
3022 struct raid10_info *mirror = &conf->mirrors[i];
3023
3024 if ((mirror->rdev == NULL ||
3025 test_bit(In_sync, &mirror->rdev->flags))
3026 &&
3027 (mirror->replacement == NULL ||
3028 test_bit(Faulty,
3029 &mirror->replacement->flags)))
3030 continue;
3031
3032 still_degraded = 0;
3033 /* want to reconstruct this device */
3034 rb2 = r10_bio;
3035 sect = raid10_find_virt(conf, sector_nr, i);
3036 if (sect >= mddev->resync_max_sectors) {
3037 /* last stripe is not complete - don't
3038 * try to recover this sector.
3039 */
3040 continue;
3041 }
3042 /* Unless we are doing a full sync, or a replacement
3043 * we only need to recover the block if it is set in
3044 * the bitmap
3045 */
3046 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3047 &sync_blocks, 1);
3048 if (sync_blocks < max_sync)
3049 max_sync = sync_blocks;
3050 if (!must_sync &&
3051 mirror->replacement == NULL &&
3052 !conf->fullsync) {
3053 /* yep, skip the sync_blocks here, but don't assume
3054 * that there will never be anything to do here
3055 */
3056 chunks_skipped = -1;
3057 continue;
3058 }
3059
3060 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3061 raise_barrier(conf, rb2 != NULL);
3062 atomic_set(&r10_bio->remaining, 0);
3063
3064 r10_bio->master_bio = (struct bio*)rb2;
3065 if (rb2)
3066 atomic_inc(&rb2->remaining);
3067 r10_bio->mddev = mddev;
3068 set_bit(R10BIO_IsRecover, &r10_bio->state);
3069 r10_bio->sector = sect;
3070
3071 raid10_find_phys(conf, r10_bio);
3072
3073 /* Need to check if the array will still be
3074 * degraded
3075 */
3076 for (j = 0; j < conf->geo.raid_disks; j++)
3077 if (conf->mirrors[j].rdev == NULL ||
3078 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3079 still_degraded = 1;
3080 break;
3081 }
3082
3083 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3084 &sync_blocks, still_degraded);
3085
3086 any_working = 0;
3087 for (j=0; j<conf->copies;j++) {
3088 int k;
3089 int d = r10_bio->devs[j].devnum;
3090 sector_t from_addr, to_addr;
3091 struct md_rdev *rdev;
3092 sector_t sector, first_bad;
3093 int bad_sectors;
3094 if (!conf->mirrors[d].rdev ||
3095 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3096 continue;
3097 /* This is where we read from */
3098 any_working = 1;
3099 rdev = conf->mirrors[d].rdev;
3100 sector = r10_bio->devs[j].addr;
3101
3102 if (is_badblock(rdev, sector, max_sync,
3103 &first_bad, &bad_sectors)) {
3104 if (first_bad > sector)
3105 max_sync = first_bad - sector;
3106 else {
3107 bad_sectors -= (sector
3108 - first_bad);
3109 if (max_sync > bad_sectors)
3110 max_sync = bad_sectors;
3111 continue;
3112 }
3113 }
3114 bio = r10_bio->devs[0].bio;
3115 bio->bi_next = biolist;
3116 biolist = bio;
3117 bio->bi_private = r10_bio;
3118 bio->bi_end_io = end_sync_read;
3119 bio->bi_rw = READ;
3120 from_addr = r10_bio->devs[j].addr;
3121 bio->bi_sector = from_addr + rdev->data_offset;
3122 bio->bi_bdev = rdev->bdev;
3123 atomic_inc(&rdev->nr_pending);
3124 /* and we write to 'i' (if not in_sync) */
3125
3126 for (k=0; k<conf->copies; k++)
3127 if (r10_bio->devs[k].devnum == i)
3128 break;
3129 BUG_ON(k == conf->copies);
3130 to_addr = r10_bio->devs[k].addr;
3131 r10_bio->devs[0].devnum = d;
3132 r10_bio->devs[0].addr = from_addr;
3133 r10_bio->devs[1].devnum = i;
3134 r10_bio->devs[1].addr = to_addr;
3135
3136 rdev = mirror->rdev;
3137 if (!test_bit(In_sync, &rdev->flags)) {
3138 bio = r10_bio->devs[1].bio;
3139 bio->bi_next = biolist;
3140 biolist = bio;
3141 bio->bi_private = r10_bio;
3142 bio->bi_end_io = end_sync_write;
3143 bio->bi_rw = WRITE;
3144 bio->bi_sector = to_addr
3145 + rdev->data_offset;
3146 bio->bi_bdev = rdev->bdev;
3147 atomic_inc(&r10_bio->remaining);
3148 } else
3149 r10_bio->devs[1].bio->bi_end_io = NULL;
3150
3151 /* and maybe write to replacement */
3152 bio = r10_bio->devs[1].repl_bio;
3153 if (bio)
3154 bio->bi_end_io = NULL;
3155 rdev = mirror->replacement;
3156 /* Note: if rdev != NULL, then bio
3157 * cannot be NULL as r10buf_pool_alloc will
3158 * have allocated it.
3159 * So the second test here is pointless.
3160 * But it keeps semantic-checkers happy, and
3161 * this comment keeps human reviewers
3162 * happy.
3163 */
3164 if (rdev == NULL || bio == NULL ||
3165 test_bit(Faulty, &rdev->flags))
3166 break;
3167 bio->bi_next = biolist;
3168 biolist = bio;
3169 bio->bi_private = r10_bio;
3170 bio->bi_end_io = end_sync_write;
3171 bio->bi_rw = WRITE;
3172 bio->bi_sector = to_addr + rdev->data_offset;
3173 bio->bi_bdev = rdev->bdev;
3174 atomic_inc(&r10_bio->remaining);
3175 break;
3176 }
3177 if (j == conf->copies) {
3178 /* Cannot recover, so abort the recovery or
3179 * record a bad block */
3180 put_buf(r10_bio);
3181 if (rb2)
3182 atomic_dec(&rb2->remaining);
3183 r10_bio = rb2;
3184 if (any_working) {
3185 /* problem is that there are bad blocks
3186 * on other device(s)
3187 */
3188 int k;
3189 for (k = 0; k < conf->copies; k++)
3190 if (r10_bio->devs[k].devnum == i)
3191 break;
3192 if (!test_bit(In_sync,
3193 &mirror->rdev->flags)
3194 && !rdev_set_badblocks(
3195 mirror->rdev,
3196 r10_bio->devs[k].addr,
3197 max_sync, 0))
3198 any_working = 0;
3199 if (mirror->replacement &&
3200 !rdev_set_badblocks(
3201 mirror->replacement,
3202 r10_bio->devs[k].addr,
3203 max_sync, 0))
3204 any_working = 0;
3205 }
3206 if (!any_working) {
3207 if (!test_and_set_bit(MD_RECOVERY_INTR,
3208 &mddev->recovery))
3209 printk(KERN_INFO "md/raid10:%s: insufficient "
3210 "working devices for recovery.\n",
3211 mdname(mddev));
3212 mirror->recovery_disabled
3213 = mddev->recovery_disabled;
3214 }
3215 break;
3216 }
3217 }
3218 if (biolist == NULL) {
3219 while (r10_bio) {
3220 struct r10bio *rb2 = r10_bio;
3221 r10_bio = (struct r10bio*) rb2->master_bio;
3222 rb2->master_bio = NULL;
3223 put_buf(rb2);
3224 }
3225 goto giveup;
3226 }
3227 } else {
3228 /* resync. Schedule a read for every block at this virt offset */
3229 int count = 0;
3230
3231 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3232
3233 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3234 &sync_blocks, mddev->degraded) &&
3235 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3236 &mddev->recovery)) {
3237 /* We can skip this block */
3238 *skipped = 1;
3239 return sync_blocks + sectors_skipped;
3240 }
3241 if (sync_blocks < max_sync)
3242 max_sync = sync_blocks;
3243 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3244
3245 r10_bio->mddev = mddev;
3246 atomic_set(&r10_bio->remaining, 0);
3247 raise_barrier(conf, 0);
3248 conf->next_resync = sector_nr;
3249
3250 r10_bio->master_bio = NULL;
3251 r10_bio->sector = sector_nr;
3252 set_bit(R10BIO_IsSync, &r10_bio->state);
3253 raid10_find_phys(conf, r10_bio);
3254 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3255
3256 for (i = 0; i < conf->copies; i++) {
3257 int d = r10_bio->devs[i].devnum;
3258 sector_t first_bad, sector;
3259 int bad_sectors;
3260
3261 if (r10_bio->devs[i].repl_bio)
3262 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263
3264 bio = r10_bio->devs[i].bio;
3265 bio->bi_end_io = NULL;
3266 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3267 if (conf->mirrors[d].rdev == NULL ||
3268 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3269 continue;
3270 sector = r10_bio->devs[i].addr;
3271 if (is_badblock(conf->mirrors[d].rdev,
3272 sector, max_sync,
3273 &first_bad, &bad_sectors)) {
3274 if (first_bad > sector)
3275 max_sync = first_bad - sector;
3276 else {
3277 bad_sectors -= (sector - first_bad);
3278 if (max_sync > bad_sectors)
3279 max_sync = bad_sectors;
3280 continue;
3281 }
3282 }
3283 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284 atomic_inc(&r10_bio->remaining);
3285 bio->bi_next = biolist;
3286 biolist = bio;
3287 bio->bi_private = r10_bio;
3288 bio->bi_end_io = end_sync_read;
3289 bio->bi_rw = READ;
3290 bio->bi_sector = sector +
3291 conf->mirrors[d].rdev->data_offset;
3292 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293 count++;
3294
3295 if (conf->mirrors[d].replacement == NULL ||
3296 test_bit(Faulty,
3297 &conf->mirrors[d].replacement->flags))
3298 continue;
3299
3300 /* Need to set up for writing to the replacement */
3301 bio = r10_bio->devs[i].repl_bio;
3302 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3303
3304 sector = r10_bio->devs[i].addr;
3305 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3306 bio->bi_next = biolist;
3307 biolist = bio;
3308 bio->bi_private = r10_bio;
3309 bio->bi_end_io = end_sync_write;
3310 bio->bi_rw = WRITE;
3311 bio->bi_sector = sector +
3312 conf->mirrors[d].replacement->data_offset;
3313 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3314 count++;
3315 }
3316
3317 if (count < 2) {
3318 for (i=0; i<conf->copies; i++) {
3319 int d = r10_bio->devs[i].devnum;
3320 if (r10_bio->devs[i].bio->bi_end_io)
3321 rdev_dec_pending(conf->mirrors[d].rdev,
3322 mddev);
3323 if (r10_bio->devs[i].repl_bio &&
3324 r10_bio->devs[i].repl_bio->bi_end_io)
3325 rdev_dec_pending(
3326 conf->mirrors[d].replacement,
3327 mddev);
3328 }
3329 put_buf(r10_bio);
3330 biolist = NULL;
3331 goto giveup;
3332 }
3333 }
3334
3335 for (bio = biolist; bio ; bio=bio->bi_next) {
3336
3337 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3338 if (bio->bi_end_io)
3339 bio->bi_flags |= 1 << BIO_UPTODATE;
3340 bio->bi_vcnt = 0;
3341 bio->bi_idx = 0;
3342 bio->bi_phys_segments = 0;
3343 bio->bi_size = 0;
3344 }
3345
3346 nr_sectors = 0;
3347 if (sector_nr + max_sync < max_sector)
3348 max_sector = sector_nr + max_sync;
3349 do {
3350 struct page *page;
3351 int len = PAGE_SIZE;
3352 if (sector_nr + (len>>9) > max_sector)
3353 len = (max_sector - sector_nr) << 9;
3354 if (len == 0)
3355 break;
3356 for (bio= biolist ; bio ; bio=bio->bi_next) {
3357 struct bio *bio2;
3358 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3359 if (bio_add_page(bio, page, len, 0))
3360 continue;
3361
3362 /* stop here */
3363 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3364 for (bio2 = biolist;
3365 bio2 && bio2 != bio;
3366 bio2 = bio2->bi_next) {
3367 /* remove last page from this bio */
3368 bio2->bi_vcnt--;
3369 bio2->bi_size -= len;
3370 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3371 }
3372 goto bio_full;
3373 }
3374 nr_sectors += len>>9;
3375 sector_nr += len>>9;
3376 } while (biolist->bi_vcnt < RESYNC_PAGES);
3377 bio_full:
3378 r10_bio->sectors = nr_sectors;
3379
3380 while (biolist) {
3381 bio = biolist;
3382 biolist = biolist->bi_next;
3383
3384 bio->bi_next = NULL;
3385 r10_bio = bio->bi_private;
3386 r10_bio->sectors = nr_sectors;
3387
3388 if (bio->bi_end_io == end_sync_read) {
3389 md_sync_acct(bio->bi_bdev, nr_sectors);
3390 generic_make_request(bio);
3391 }
3392 }
3393
3394 if (sectors_skipped)
3395 /* pretend they weren't skipped, it makes
3396 * no important difference in this case
3397 */
3398 md_done_sync(mddev, sectors_skipped, 1);
3399
3400 return sectors_skipped + nr_sectors;
3401 giveup:
3402 /* There is nowhere to write, so all non-sync
3403 * drives must be failed or in resync, all drives
3404 * have a bad block, so try the next chunk...
3405 */
3406 if (sector_nr + max_sync < max_sector)
3407 max_sector = sector_nr + max_sync;
3408
3409 sectors_skipped += (max_sector - sector_nr);
3410 chunks_skipped ++;
3411 sector_nr = max_sector;
3412 goto skipped;
3413 }
3414
3415 static sector_t
3416 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3417 {
3418 sector_t size;
3419 struct r10conf *conf = mddev->private;
3420
3421 if (!raid_disks)
3422 raid_disks = min(conf->geo.raid_disks,
3423 conf->prev.raid_disks);
3424 if (!sectors)
3425 sectors = conf->dev_sectors;
3426
3427 size = sectors >> conf->geo.chunk_shift;
3428 sector_div(size, conf->geo.far_copies);
3429 size = size * raid_disks;
3430 sector_div(size, conf->geo.near_copies);
3431
3432 return size << conf->geo.chunk_shift;
3433 }
3434
3435 static void calc_sectors(struct r10conf *conf, sector_t size)
3436 {
3437 /* Calculate the number of sectors-per-device that will
3438 * actually be used, and set conf->dev_sectors and
3439 * conf->stride
3440 */
3441
3442 size = size >> conf->geo.chunk_shift;
3443 sector_div(size, conf->geo.far_copies);
3444 size = size * conf->geo.raid_disks;
3445 sector_div(size, conf->geo.near_copies);
3446 /* 'size' is now the number of chunks in the array */
3447 /* calculate "used chunks per device" */
3448 size = size * conf->copies;
3449
3450 /* We need to round up when dividing by raid_disks to
3451 * get the stride size.
3452 */
3453 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3454
3455 conf->dev_sectors = size << conf->geo.chunk_shift;
3456
3457 if (conf->geo.far_offset)
3458 conf->geo.stride = 1 << conf->geo.chunk_shift;
3459 else {
3460 sector_div(size, conf->geo.far_copies);
3461 conf->geo.stride = size << conf->geo.chunk_shift;
3462 }
3463 }
3464
3465 enum geo_type {geo_new, geo_old, geo_start};
3466 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3467 {
3468 int nc, fc, fo;
3469 int layout, chunk, disks;
3470 switch (new) {
3471 case geo_old:
3472 layout = mddev->layout;
3473 chunk = mddev->chunk_sectors;
3474 disks = mddev->raid_disks - mddev->delta_disks;
3475 break;
3476 case geo_new:
3477 layout = mddev->new_layout;
3478 chunk = mddev->new_chunk_sectors;
3479 disks = mddev->raid_disks;
3480 break;
3481 default: /* avoid 'may be unused' warnings */
3482 case geo_start: /* new when starting reshape - raid_disks not
3483 * updated yet. */
3484 layout = mddev->new_layout;
3485 chunk = mddev->new_chunk_sectors;
3486 disks = mddev->raid_disks + mddev->delta_disks;
3487 break;
3488 }
3489 if (layout >> 18)
3490 return -1;
3491 if (chunk < (PAGE_SIZE >> 9) ||
3492 !is_power_of_2(chunk))
3493 return -2;
3494 nc = layout & 255;
3495 fc = (layout >> 8) & 255;
3496 fo = layout & (1<<16);
3497 geo->raid_disks = disks;
3498 geo->near_copies = nc;
3499 geo->far_copies = fc;
3500 geo->far_offset = fo;
3501 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3502 geo->chunk_mask = chunk - 1;
3503 geo->chunk_shift = ffz(~chunk);
3504 return nc*fc;
3505 }
3506
3507 static struct r10conf *setup_conf(struct mddev *mddev)
3508 {
3509 struct r10conf *conf = NULL;
3510 int err = -EINVAL;
3511 struct geom geo;
3512 int copies;
3513
3514 copies = setup_geo(&geo, mddev, geo_new);
3515
3516 if (copies == -2) {
3517 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3518 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3519 mdname(mddev), PAGE_SIZE);
3520 goto out;
3521 }
3522
3523 if (copies < 2 || copies > mddev->raid_disks) {
3524 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3525 mdname(mddev), mddev->new_layout);
3526 goto out;
3527 }
3528
3529 err = -ENOMEM;
3530 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3531 if (!conf)
3532 goto out;
3533
3534 /* FIXME calc properly */
3535 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3536 max(0,mddev->delta_disks)),
3537 GFP_KERNEL);
3538 if (!conf->mirrors)
3539 goto out;
3540
3541 conf->tmppage = alloc_page(GFP_KERNEL);
3542 if (!conf->tmppage)
3543 goto out;
3544
3545 conf->geo = geo;
3546 conf->copies = copies;
3547 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3548 r10bio_pool_free, conf);
3549 if (!conf->r10bio_pool)
3550 goto out;
3551
3552 calc_sectors(conf, mddev->dev_sectors);
3553 if (mddev->reshape_position == MaxSector) {
3554 conf->prev = conf->geo;
3555 conf->reshape_progress = MaxSector;
3556 } else {
3557 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3558 err = -EINVAL;
3559 goto out;
3560 }
3561 conf->reshape_progress = mddev->reshape_position;
3562 if (conf->prev.far_offset)
3563 conf->prev.stride = 1 << conf->prev.chunk_shift;
3564 else
3565 /* far_copies must be 1 */
3566 conf->prev.stride = conf->dev_sectors;
3567 }
3568 spin_lock_init(&conf->device_lock);
3569 INIT_LIST_HEAD(&conf->retry_list);
3570
3571 spin_lock_init(&conf->resync_lock);
3572 init_waitqueue_head(&conf->wait_barrier);
3573
3574 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3575 if (!conf->thread)
3576 goto out;
3577
3578 conf->mddev = mddev;
3579 return conf;
3580
3581 out:
3582 if (err == -ENOMEM)
3583 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3584 mdname(mddev));
3585 if (conf) {
3586 if (conf->r10bio_pool)
3587 mempool_destroy(conf->r10bio_pool);
3588 kfree(conf->mirrors);
3589 safe_put_page(conf->tmppage);
3590 kfree(conf);
3591 }
3592 return ERR_PTR(err);
3593 }
3594
3595 static int run(struct mddev *mddev)
3596 {
3597 struct r10conf *conf;
3598 int i, disk_idx, chunk_size;
3599 struct raid10_info *disk;
3600 struct md_rdev *rdev;
3601 sector_t size;
3602 sector_t min_offset_diff = 0;
3603 int first = 1;
3604 bool discard_supported = false;
3605
3606 if (mddev->private == NULL) {
3607 conf = setup_conf(mddev);
3608 if (IS_ERR(conf))
3609 return PTR_ERR(conf);
3610 mddev->private = conf;
3611 }
3612 conf = mddev->private;
3613 if (!conf)
3614 goto out;
3615
3616 mddev->thread = conf->thread;
3617 conf->thread = NULL;
3618
3619 chunk_size = mddev->chunk_sectors << 9;
3620 if (mddev->queue) {
3621 blk_queue_max_discard_sectors(mddev->queue,
3622 mddev->chunk_sectors);
3623 blk_queue_max_write_same_sectors(mddev->queue,
3624 mddev->chunk_sectors);
3625 blk_queue_io_min(mddev->queue, chunk_size);
3626 if (conf->geo.raid_disks % conf->geo.near_copies)
3627 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3628 else
3629 blk_queue_io_opt(mddev->queue, chunk_size *
3630 (conf->geo.raid_disks / conf->geo.near_copies));
3631 }
3632
3633 rdev_for_each(rdev, mddev) {
3634 long long diff;
3635 struct request_queue *q;
3636
3637 disk_idx = rdev->raid_disk;
3638 if (disk_idx < 0)
3639 continue;
3640 if (disk_idx >= conf->geo.raid_disks &&
3641 disk_idx >= conf->prev.raid_disks)
3642 continue;
3643 disk = conf->mirrors + disk_idx;
3644
3645 if (test_bit(Replacement, &rdev->flags)) {
3646 if (disk->replacement)
3647 goto out_free_conf;
3648 disk->replacement = rdev;
3649 } else {
3650 if (disk->rdev)
3651 goto out_free_conf;
3652 disk->rdev = rdev;
3653 }
3654 q = bdev_get_queue(rdev->bdev);
3655 if (q->merge_bvec_fn)
3656 mddev->merge_check_needed = 1;
3657 diff = (rdev->new_data_offset - rdev->data_offset);
3658 if (!mddev->reshape_backwards)
3659 diff = -diff;
3660 if (diff < 0)
3661 diff = 0;
3662 if (first || diff < min_offset_diff)
3663 min_offset_diff = diff;
3664
3665 if (mddev->gendisk)
3666 disk_stack_limits(mddev->gendisk, rdev->bdev,
3667 rdev->data_offset << 9);
3668
3669 disk->head_position = 0;
3670
3671 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672 discard_supported = true;
3673 }
3674
3675 if (mddev->queue) {
3676 if (discard_supported)
3677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3678 mddev->queue);
3679 else
3680 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3681 mddev->queue);
3682 }
3683 /* need to check that every block has at least one working mirror */
3684 if (!enough(conf, -1)) {
3685 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3686 mdname(mddev));
3687 goto out_free_conf;
3688 }
3689
3690 if (conf->reshape_progress != MaxSector) {
3691 /* must ensure that shape change is supported */
3692 if (conf->geo.far_copies != 1 &&
3693 conf->geo.far_offset == 0)
3694 goto out_free_conf;
3695 if (conf->prev.far_copies != 1 &&
3696 conf->geo.far_offset == 0)
3697 goto out_free_conf;
3698 }
3699
3700 mddev->degraded = 0;
3701 for (i = 0;
3702 i < conf->geo.raid_disks
3703 || i < conf->prev.raid_disks;
3704 i++) {
3705
3706 disk = conf->mirrors + i;
3707
3708 if (!disk->rdev && disk->replacement) {
3709 /* The replacement is all we have - use it */
3710 disk->rdev = disk->replacement;
3711 disk->replacement = NULL;
3712 clear_bit(Replacement, &disk->rdev->flags);
3713 }
3714
3715 if (!disk->rdev ||
3716 !test_bit(In_sync, &disk->rdev->flags)) {
3717 disk->head_position = 0;
3718 mddev->degraded++;
3719 if (disk->rdev)
3720 conf->fullsync = 1;
3721 }
3722 disk->recovery_disabled = mddev->recovery_disabled - 1;
3723 }
3724
3725 if (mddev->recovery_cp != MaxSector)
3726 printk(KERN_NOTICE "md/raid10:%s: not clean"
3727 " -- starting background reconstruction\n",
3728 mdname(mddev));
3729 printk(KERN_INFO
3730 "md/raid10:%s: active with %d out of %d devices\n",
3731 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732 conf->geo.raid_disks);
3733 /*
3734 * Ok, everything is just fine now
3735 */
3736 mddev->dev_sectors = conf->dev_sectors;
3737 size = raid10_size(mddev, 0, 0);
3738 md_set_array_sectors(mddev, size);
3739 mddev->resync_max_sectors = size;
3740
3741 if (mddev->queue) {
3742 int stripe = conf->geo.raid_disks *
3743 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3744 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3745 mddev->queue->backing_dev_info.congested_data = mddev;
3746
3747 /* Calculate max read-ahead size.
3748 * We need to readahead at least twice a whole stripe....
3749 * maybe...
3750 */
3751 stripe /= conf->geo.near_copies;
3752 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3753 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3754 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3755 }
3756
3757
3758 if (md_integrity_register(mddev))
3759 goto out_free_conf;
3760
3761 if (conf->reshape_progress != MaxSector) {
3762 unsigned long before_length, after_length;
3763
3764 before_length = ((1 << conf->prev.chunk_shift) *
3765 conf->prev.far_copies);
3766 after_length = ((1 << conf->geo.chunk_shift) *
3767 conf->geo.far_copies);
3768
3769 if (max(before_length, after_length) > min_offset_diff) {
3770 /* This cannot work */
3771 printk("md/raid10: offset difference not enough to continue reshape\n");
3772 goto out_free_conf;
3773 }
3774 conf->offset_diff = min_offset_diff;
3775
3776 conf->reshape_safe = conf->reshape_progress;
3777 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782 "reshape");
3783 }
3784
3785 return 0;
3786
3787 out_free_conf:
3788 md_unregister_thread(&mddev->thread);
3789 if (conf->r10bio_pool)
3790 mempool_destroy(conf->r10bio_pool);
3791 safe_put_page(conf->tmppage);
3792 kfree(conf->mirrors);
3793 kfree(conf);
3794 mddev->private = NULL;
3795 out:
3796 return -EIO;
3797 }
3798
3799 static int stop(struct mddev *mddev)
3800 {
3801 struct r10conf *conf = mddev->private;
3802
3803 raise_barrier(conf, 0);
3804 lower_barrier(conf);
3805
3806 md_unregister_thread(&mddev->thread);
3807 if (mddev->queue)
3808 /* the unplug fn references 'conf'*/
3809 blk_sync_queue(mddev->queue);
3810
3811 if (conf->r10bio_pool)
3812 mempool_destroy(conf->r10bio_pool);
3813 kfree(conf->mirrors);
3814 kfree(conf);
3815 mddev->private = NULL;
3816 return 0;
3817 }
3818
3819 static void raid10_quiesce(struct mddev *mddev, int state)
3820 {
3821 struct r10conf *conf = mddev->private;
3822
3823 switch(state) {
3824 case 1:
3825 raise_barrier(conf, 0);
3826 break;
3827 case 0:
3828 lower_barrier(conf);
3829 break;
3830 }
3831 }
3832
3833 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3834 {
3835 /* Resize of 'far' arrays is not supported.
3836 * For 'near' and 'offset' arrays we can set the
3837 * number of sectors used to be an appropriate multiple
3838 * of the chunk size.
3839 * For 'offset', this is far_copies*chunksize.
3840 * For 'near' the multiplier is the LCM of
3841 * near_copies and raid_disks.
3842 * So if far_copies > 1 && !far_offset, fail.
3843 * Else find LCM(raid_disks, near_copy)*far_copies and
3844 * multiply by chunk_size. Then round to this number.
3845 * This is mostly done by raid10_size()
3846 */
3847 struct r10conf *conf = mddev->private;
3848 sector_t oldsize, size;
3849
3850 if (mddev->reshape_position != MaxSector)
3851 return -EBUSY;
3852
3853 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3854 return -EINVAL;
3855
3856 oldsize = raid10_size(mddev, 0, 0);
3857 size = raid10_size(mddev, sectors, 0);
3858 if (mddev->external_size &&
3859 mddev->array_sectors > size)
3860 return -EINVAL;
3861 if (mddev->bitmap) {
3862 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3863 if (ret)
3864 return ret;
3865 }
3866 md_set_array_sectors(mddev, size);
3867 set_capacity(mddev->gendisk, mddev->array_sectors);
3868 revalidate_disk(mddev->gendisk);
3869 if (sectors > mddev->dev_sectors &&
3870 mddev->recovery_cp > oldsize) {
3871 mddev->recovery_cp = oldsize;
3872 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3873 }
3874 calc_sectors(conf, sectors);
3875 mddev->dev_sectors = conf->dev_sectors;
3876 mddev->resync_max_sectors = size;
3877 return 0;
3878 }
3879
3880 static void *raid10_takeover_raid0(struct mddev *mddev)
3881 {
3882 struct md_rdev *rdev;
3883 struct r10conf *conf;
3884
3885 if (mddev->degraded > 0) {
3886 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3887 mdname(mddev));
3888 return ERR_PTR(-EINVAL);
3889 }
3890
3891 /* Set new parameters */
3892 mddev->new_level = 10;
3893 /* new layout: far_copies = 1, near_copies = 2 */
3894 mddev->new_layout = (1<<8) + 2;
3895 mddev->new_chunk_sectors = mddev->chunk_sectors;
3896 mddev->delta_disks = mddev->raid_disks;
3897 mddev->raid_disks *= 2;
3898 /* make sure it will be not marked as dirty */
3899 mddev->recovery_cp = MaxSector;
3900
3901 conf = setup_conf(mddev);
3902 if (!IS_ERR(conf)) {
3903 rdev_for_each(rdev, mddev)
3904 if (rdev->raid_disk >= 0)
3905 rdev->new_raid_disk = rdev->raid_disk * 2;
3906 conf->barrier = 1;
3907 }
3908
3909 return conf;
3910 }
3911
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914 struct r0conf *raid0_conf;
3915
3916 /* raid10 can take over:
3917 * raid0 - providing it has only two drives
3918 */
3919 if (mddev->level == 0) {
3920 /* for raid0 takeover only one zone is supported */
3921 raid0_conf = mddev->private;
3922 if (raid0_conf->nr_strip_zones > 1) {
3923 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3924 " with more than one zone.\n",
3925 mdname(mddev));
3926 return ERR_PTR(-EINVAL);
3927 }
3928 return raid10_takeover_raid0(mddev);
3929 }
3930 return ERR_PTR(-EINVAL);
3931 }
3932
3933 static int raid10_check_reshape(struct mddev *mddev)
3934 {
3935 /* Called when there is a request to change
3936 * - layout (to ->new_layout)
3937 * - chunk size (to ->new_chunk_sectors)
3938 * - raid_disks (by delta_disks)
3939 * or when trying to restart a reshape that was ongoing.
3940 *
3941 * We need to validate the request and possibly allocate
3942 * space if that might be an issue later.
3943 *
3944 * Currently we reject any reshape of a 'far' mode array,
3945 * allow chunk size to change if new is generally acceptable,
3946 * allow raid_disks to increase, and allow
3947 * a switch between 'near' mode and 'offset' mode.
3948 */
3949 struct r10conf *conf = mddev->private;
3950 struct geom geo;
3951
3952 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3953 return -EINVAL;
3954
3955 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3956 /* mustn't change number of copies */
3957 return -EINVAL;
3958 if (geo.far_copies > 1 && !geo.far_offset)
3959 /* Cannot switch to 'far' mode */
3960 return -EINVAL;
3961
3962 if (mddev->array_sectors & geo.chunk_mask)
3963 /* not factor of array size */
3964 return -EINVAL;
3965
3966 if (!enough(conf, -1))
3967 return -EINVAL;
3968
3969 kfree(conf->mirrors_new);
3970 conf->mirrors_new = NULL;
3971 if (mddev->delta_disks > 0) {
3972 /* allocate new 'mirrors' list */
3973 conf->mirrors_new = kzalloc(
3974 sizeof(struct raid10_info)
3975 *(mddev->raid_disks +
3976 mddev->delta_disks),
3977 GFP_KERNEL);
3978 if (!conf->mirrors_new)
3979 return -ENOMEM;
3980 }
3981 return 0;
3982 }
3983
3984 /*
3985 * Need to check if array has failed when deciding whether to:
3986 * - start an array
3987 * - remove non-faulty devices
3988 * - add a spare
3989 * - allow a reshape
3990 * This determination is simple when no reshape is happening.
3991 * However if there is a reshape, we need to carefully check
3992 * both the before and after sections.
3993 * This is because some failed devices may only affect one
3994 * of the two sections, and some non-in_sync devices may
3995 * be insync in the section most affected by failed devices.
3996 */
3997 static int calc_degraded(struct r10conf *conf)
3998 {
3999 int degraded, degraded2;
4000 int i;
4001
4002 rcu_read_lock();
4003 degraded = 0;
4004 /* 'prev' section first */
4005 for (i = 0; i < conf->prev.raid_disks; i++) {
4006 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4007 if (!rdev || test_bit(Faulty, &rdev->flags))
4008 degraded++;
4009 else if (!test_bit(In_sync, &rdev->flags))
4010 /* When we can reduce the number of devices in
4011 * an array, this might not contribute to
4012 * 'degraded'. It does now.
4013 */
4014 degraded++;
4015 }
4016 rcu_read_unlock();
4017 if (conf->geo.raid_disks == conf->prev.raid_disks)
4018 return degraded;
4019 rcu_read_lock();
4020 degraded2 = 0;
4021 for (i = 0; i < conf->geo.raid_disks; i++) {
4022 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4023 if (!rdev || test_bit(Faulty, &rdev->flags))
4024 degraded2++;
4025 else if (!test_bit(In_sync, &rdev->flags)) {
4026 /* If reshape is increasing the number of devices,
4027 * this section has already been recovered, so
4028 * it doesn't contribute to degraded.
4029 * else it does.
4030 */
4031 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4032 degraded2++;
4033 }
4034 }
4035 rcu_read_unlock();
4036 if (degraded2 > degraded)
4037 return degraded2;
4038 return degraded;
4039 }
4040
4041 static int raid10_start_reshape(struct mddev *mddev)
4042 {
4043 /* A 'reshape' has been requested. This commits
4044 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4045 * This also checks if there are enough spares and adds them
4046 * to the array.
4047 * We currently require enough spares to make the final
4048 * array non-degraded. We also require that the difference
4049 * between old and new data_offset - on each device - is
4050 * enough that we never risk over-writing.
4051 */
4052
4053 unsigned long before_length, after_length;
4054 sector_t min_offset_diff = 0;
4055 int first = 1;
4056 struct geom new;
4057 struct r10conf *conf = mddev->private;
4058 struct md_rdev *rdev;
4059 int spares = 0;
4060 int ret;
4061
4062 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4063 return -EBUSY;
4064
4065 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4066 return -EINVAL;
4067
4068 before_length = ((1 << conf->prev.chunk_shift) *
4069 conf->prev.far_copies);
4070 after_length = ((1 << conf->geo.chunk_shift) *
4071 conf->geo.far_copies);
4072
4073 rdev_for_each(rdev, mddev) {
4074 if (!test_bit(In_sync, &rdev->flags)
4075 && !test_bit(Faulty, &rdev->flags))
4076 spares++;
4077 if (rdev->raid_disk >= 0) {
4078 long long diff = (rdev->new_data_offset
4079 - rdev->data_offset);
4080 if (!mddev->reshape_backwards)
4081 diff = -diff;
4082 if (diff < 0)
4083 diff = 0;
4084 if (first || diff < min_offset_diff)
4085 min_offset_diff = diff;
4086 }
4087 }
4088
4089 if (max(before_length, after_length) > min_offset_diff)
4090 return -EINVAL;
4091
4092 if (spares < mddev->delta_disks)
4093 return -EINVAL;
4094
4095 conf->offset_diff = min_offset_diff;
4096 spin_lock_irq(&conf->device_lock);
4097 if (conf->mirrors_new) {
4098 memcpy(conf->mirrors_new, conf->mirrors,
4099 sizeof(struct raid10_info)*conf->prev.raid_disks);
4100 smp_mb();
4101 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4102 conf->mirrors_old = conf->mirrors;
4103 conf->mirrors = conf->mirrors_new;
4104 conf->mirrors_new = NULL;
4105 }
4106 setup_geo(&conf->geo, mddev, geo_start);
4107 smp_mb();
4108 if (mddev->reshape_backwards) {
4109 sector_t size = raid10_size(mddev, 0, 0);
4110 if (size < mddev->array_sectors) {
4111 spin_unlock_irq(&conf->device_lock);
4112 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4113 mdname(mddev));
4114 return -EINVAL;
4115 }
4116 mddev->resync_max_sectors = size;
4117 conf->reshape_progress = size;
4118 } else
4119 conf->reshape_progress = 0;
4120 spin_unlock_irq(&conf->device_lock);
4121
4122 if (mddev->delta_disks && mddev->bitmap) {
4123 ret = bitmap_resize(mddev->bitmap,
4124 raid10_size(mddev, 0,
4125 conf->geo.raid_disks),
4126 0, 0);
4127 if (ret)
4128 goto abort;
4129 }
4130 if (mddev->delta_disks > 0) {
4131 rdev_for_each(rdev, mddev)
4132 if (rdev->raid_disk < 0 &&
4133 !test_bit(Faulty, &rdev->flags)) {
4134 if (raid10_add_disk(mddev, rdev) == 0) {
4135 if (rdev->raid_disk >=
4136 conf->prev.raid_disks)
4137 set_bit(In_sync, &rdev->flags);
4138 else
4139 rdev->recovery_offset = 0;
4140
4141 if (sysfs_link_rdev(mddev, rdev))
4142 /* Failure here is OK */;
4143 }
4144 } else if (rdev->raid_disk >= conf->prev.raid_disks
4145 && !test_bit(Faulty, &rdev->flags)) {
4146 /* This is a spare that was manually added */
4147 set_bit(In_sync, &rdev->flags);
4148 }
4149 }
4150 /* When a reshape changes the number of devices,
4151 * ->degraded is measured against the larger of the
4152 * pre and post numbers.
4153 */
4154 spin_lock_irq(&conf->device_lock);
4155 mddev->degraded = calc_degraded(conf);
4156 spin_unlock_irq(&conf->device_lock);
4157 mddev->raid_disks = conf->geo.raid_disks;
4158 mddev->reshape_position = conf->reshape_progress;
4159 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4160
4161 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4162 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4163 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4164 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4165
4166 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4167 "reshape");
4168 if (!mddev->sync_thread) {
4169 ret = -EAGAIN;
4170 goto abort;
4171 }
4172 conf->reshape_checkpoint = jiffies;
4173 md_wakeup_thread(mddev->sync_thread);
4174 md_new_event(mddev);
4175 return 0;
4176
4177 abort:
4178 mddev->recovery = 0;
4179 spin_lock_irq(&conf->device_lock);
4180 conf->geo = conf->prev;
4181 mddev->raid_disks = conf->geo.raid_disks;
4182 rdev_for_each(rdev, mddev)
4183 rdev->new_data_offset = rdev->data_offset;
4184 smp_wmb();
4185 conf->reshape_progress = MaxSector;
4186 mddev->reshape_position = MaxSector;
4187 spin_unlock_irq(&conf->device_lock);
4188 return ret;
4189 }
4190
4191 /* Calculate the last device-address that could contain
4192 * any block from the chunk that includes the array-address 's'
4193 * and report the next address.
4194 * i.e. the address returned will be chunk-aligned and after
4195 * any data that is in the chunk containing 's'.
4196 */
4197 static sector_t last_dev_address(sector_t s, struct geom *geo)
4198 {
4199 s = (s | geo->chunk_mask) + 1;
4200 s >>= geo->chunk_shift;
4201 s *= geo->near_copies;
4202 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4203 s *= geo->far_copies;
4204 s <<= geo->chunk_shift;
4205 return s;
4206 }
4207
4208 /* Calculate the first device-address that could contain
4209 * any block from the chunk that includes the array-address 's'.
4210 * This too will be the start of a chunk
4211 */
4212 static sector_t first_dev_address(sector_t s, struct geom *geo)
4213 {
4214 s >>= geo->chunk_shift;
4215 s *= geo->near_copies;
4216 sector_div(s, geo->raid_disks);
4217 s *= geo->far_copies;
4218 s <<= geo->chunk_shift;
4219 return s;
4220 }
4221
4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4223 int *skipped)
4224 {
4225 /* We simply copy at most one chunk (smallest of old and new)
4226 * at a time, possibly less if that exceeds RESYNC_PAGES,
4227 * or we hit a bad block or something.
4228 * This might mean we pause for normal IO in the middle of
4229 * a chunk, but that is not a problem was mddev->reshape_position
4230 * can record any location.
4231 *
4232 * If we will want to write to a location that isn't
4233 * yet recorded as 'safe' (i.e. in metadata on disk) then
4234 * we need to flush all reshape requests and update the metadata.
4235 *
4236 * When reshaping forwards (e.g. to more devices), we interpret
4237 * 'safe' as the earliest block which might not have been copied
4238 * down yet. We divide this by previous stripe size and multiply
4239 * by previous stripe length to get lowest device offset that we
4240 * cannot write to yet.
4241 * We interpret 'sector_nr' as an address that we want to write to.
4242 * From this we use last_device_address() to find where we might
4243 * write to, and first_device_address on the 'safe' position.
4244 * If this 'next' write position is after the 'safe' position,
4245 * we must update the metadata to increase the 'safe' position.
4246 *
4247 * When reshaping backwards, we round in the opposite direction
4248 * and perform the reverse test: next write position must not be
4249 * less than current safe position.
4250 *
4251 * In all this the minimum difference in data offsets
4252 * (conf->offset_diff - always positive) allows a bit of slack,
4253 * so next can be after 'safe', but not by more than offset_disk
4254 *
4255 * We need to prepare all the bios here before we start any IO
4256 * to ensure the size we choose is acceptable to all devices.
4257 * The means one for each copy for write-out and an extra one for
4258 * read-in.
4259 * We store the read-in bio in ->master_bio and the others in
4260 * ->devs[x].bio and ->devs[x].repl_bio.
4261 */
4262 struct r10conf *conf = mddev->private;
4263 struct r10bio *r10_bio;
4264 sector_t next, safe, last;
4265 int max_sectors;
4266 int nr_sectors;
4267 int s;
4268 struct md_rdev *rdev;
4269 int need_flush = 0;
4270 struct bio *blist;
4271 struct bio *bio, *read_bio;
4272 int sectors_done = 0;
4273
4274 if (sector_nr == 0) {
4275 /* If restarting in the middle, skip the initial sectors */
4276 if (mddev->reshape_backwards &&
4277 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4278 sector_nr = (raid10_size(mddev, 0, 0)
4279 - conf->reshape_progress);
4280 } else if (!mddev->reshape_backwards &&
4281 conf->reshape_progress > 0)
4282 sector_nr = conf->reshape_progress;
4283 if (sector_nr) {
4284 mddev->curr_resync_completed = sector_nr;
4285 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4286 *skipped = 1;
4287 return sector_nr;
4288 }
4289 }
4290
4291 /* We don't use sector_nr to track where we are up to
4292 * as that doesn't work well for ->reshape_backwards.
4293 * So just use ->reshape_progress.
4294 */
4295 if (mddev->reshape_backwards) {
4296 /* 'next' is the earliest device address that we might
4297 * write to for this chunk in the new layout
4298 */
4299 next = first_dev_address(conf->reshape_progress - 1,
4300 &conf->geo);
4301
4302 /* 'safe' is the last device address that we might read from
4303 * in the old layout after a restart
4304 */
4305 safe = last_dev_address(conf->reshape_safe - 1,
4306 &conf->prev);
4307
4308 if (next + conf->offset_diff < safe)
4309 need_flush = 1;
4310
4311 last = conf->reshape_progress - 1;
4312 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4313 & conf->prev.chunk_mask);
4314 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4315 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4316 } else {
4317 /* 'next' is after the last device address that we
4318 * might write to for this chunk in the new layout
4319 */
4320 next = last_dev_address(conf->reshape_progress, &conf->geo);
4321
4322 /* 'safe' is the earliest device address that we might
4323 * read from in the old layout after a restart
4324 */
4325 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4326
4327 /* Need to update metadata if 'next' might be beyond 'safe'
4328 * as that would possibly corrupt data
4329 */
4330 if (next > safe + conf->offset_diff)
4331 need_flush = 1;
4332
4333 sector_nr = conf->reshape_progress;
4334 last = sector_nr | (conf->geo.chunk_mask
4335 & conf->prev.chunk_mask);
4336
4337 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4338 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4339 }
4340
4341 if (need_flush ||
4342 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4343 /* Need to update reshape_position in metadata */
4344 wait_barrier(conf);
4345 mddev->reshape_position = conf->reshape_progress;
4346 if (mddev->reshape_backwards)
4347 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4348 - conf->reshape_progress;
4349 else
4350 mddev->curr_resync_completed = conf->reshape_progress;
4351 conf->reshape_checkpoint = jiffies;
4352 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4353 md_wakeup_thread(mddev->thread);
4354 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4355 kthread_should_stop());
4356 conf->reshape_safe = mddev->reshape_position;
4357 allow_barrier(conf);
4358 }
4359
4360 read_more:
4361 /* Now schedule reads for blocks from sector_nr to last */
4362 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4363 raise_barrier(conf, sectors_done != 0);
4364 atomic_set(&r10_bio->remaining, 0);
4365 r10_bio->mddev = mddev;
4366 r10_bio->sector = sector_nr;
4367 set_bit(R10BIO_IsReshape, &r10_bio->state);
4368 r10_bio->sectors = last - sector_nr + 1;
4369 rdev = read_balance(conf, r10_bio, &max_sectors);
4370 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4371
4372 if (!rdev) {
4373 /* Cannot read from here, so need to record bad blocks
4374 * on all the target devices.
4375 */
4376 // FIXME
4377 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4378 return sectors_done;
4379 }
4380
4381 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4382
4383 read_bio->bi_bdev = rdev->bdev;
4384 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4385 + rdev->data_offset);
4386 read_bio->bi_private = r10_bio;
4387 read_bio->bi_end_io = end_sync_read;
4388 read_bio->bi_rw = READ;
4389 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4390 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4391 read_bio->bi_vcnt = 0;
4392 read_bio->bi_idx = 0;
4393 read_bio->bi_size = 0;
4394 r10_bio->master_bio = read_bio;
4395 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4396
4397 /* Now find the locations in the new layout */
4398 __raid10_find_phys(&conf->geo, r10_bio);
4399
4400 blist = read_bio;
4401 read_bio->bi_next = NULL;
4402
4403 for (s = 0; s < conf->copies*2; s++) {
4404 struct bio *b;
4405 int d = r10_bio->devs[s/2].devnum;
4406 struct md_rdev *rdev2;
4407 if (s&1) {
4408 rdev2 = conf->mirrors[d].replacement;
4409 b = r10_bio->devs[s/2].repl_bio;
4410 } else {
4411 rdev2 = conf->mirrors[d].rdev;
4412 b = r10_bio->devs[s/2].bio;
4413 }
4414 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4415 continue;
4416 b->bi_bdev = rdev2->bdev;
4417 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4418 b->bi_private = r10_bio;
4419 b->bi_end_io = end_reshape_write;
4420 b->bi_rw = WRITE;
4421 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4422 b->bi_flags |= 1 << BIO_UPTODATE;
4423 b->bi_next = blist;
4424 b->bi_vcnt = 0;
4425 b->bi_idx = 0;
4426 b->bi_size = 0;
4427 blist = b;
4428 }
4429
4430 /* Now add as many pages as possible to all of these bios. */
4431
4432 nr_sectors = 0;
4433 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4434 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4435 int len = (max_sectors - s) << 9;
4436 if (len > PAGE_SIZE)
4437 len = PAGE_SIZE;
4438 for (bio = blist; bio ; bio = bio->bi_next) {
4439 struct bio *bio2;
4440 if (bio_add_page(bio, page, len, 0))
4441 continue;
4442
4443 /* Didn't fit, must stop */
4444 for (bio2 = blist;
4445 bio2 && bio2 != bio;
4446 bio2 = bio2->bi_next) {
4447 /* Remove last page from this bio */
4448 bio2->bi_vcnt--;
4449 bio2->bi_size -= len;
4450 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4451 }
4452 goto bio_full;
4453 }
4454 sector_nr += len >> 9;
4455 nr_sectors += len >> 9;
4456 }
4457 bio_full:
4458 r10_bio->sectors = nr_sectors;
4459
4460 /* Now submit the read */
4461 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4462 atomic_inc(&r10_bio->remaining);
4463 read_bio->bi_next = NULL;
4464 generic_make_request(read_bio);
4465 sector_nr += nr_sectors;
4466 sectors_done += nr_sectors;
4467 if (sector_nr <= last)
4468 goto read_more;
4469
4470 /* Now that we have done the whole section we can
4471 * update reshape_progress
4472 */
4473 if (mddev->reshape_backwards)
4474 conf->reshape_progress -= sectors_done;
4475 else
4476 conf->reshape_progress += sectors_done;
4477
4478 return sectors_done;
4479 }
4480
4481 static void end_reshape_request(struct r10bio *r10_bio);
4482 static int handle_reshape_read_error(struct mddev *mddev,
4483 struct r10bio *r10_bio);
4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4485 {
4486 /* Reshape read completed. Hopefully we have a block
4487 * to write out.
4488 * If we got a read error then we do sync 1-page reads from
4489 * elsewhere until we find the data - or give up.
4490 */
4491 struct r10conf *conf = mddev->private;
4492 int s;
4493
4494 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4495 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4496 /* Reshape has been aborted */
4497 md_done_sync(mddev, r10_bio->sectors, 0);
4498 return;
4499 }
4500
4501 /* We definitely have the data in the pages, schedule the
4502 * writes.
4503 */
4504 atomic_set(&r10_bio->remaining, 1);
4505 for (s = 0; s < conf->copies*2; s++) {
4506 struct bio *b;
4507 int d = r10_bio->devs[s/2].devnum;
4508 struct md_rdev *rdev;
4509 if (s&1) {
4510 rdev = conf->mirrors[d].replacement;
4511 b = r10_bio->devs[s/2].repl_bio;
4512 } else {
4513 rdev = conf->mirrors[d].rdev;
4514 b = r10_bio->devs[s/2].bio;
4515 }
4516 if (!rdev || test_bit(Faulty, &rdev->flags))
4517 continue;
4518 atomic_inc(&rdev->nr_pending);
4519 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4520 atomic_inc(&r10_bio->remaining);
4521 b->bi_next = NULL;
4522 generic_make_request(b);
4523 }
4524 end_reshape_request(r10_bio);
4525 }
4526
4527 static void end_reshape(struct r10conf *conf)
4528 {
4529 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4530 return;
4531
4532 spin_lock_irq(&conf->device_lock);
4533 conf->prev = conf->geo;
4534 md_finish_reshape(conf->mddev);
4535 smp_wmb();
4536 conf->reshape_progress = MaxSector;
4537 spin_unlock_irq(&conf->device_lock);
4538
4539 /* read-ahead size must cover two whole stripes, which is
4540 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4541 */
4542 if (conf->mddev->queue) {
4543 int stripe = conf->geo.raid_disks *
4544 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4545 stripe /= conf->geo.near_copies;
4546 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4547 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4548 }
4549 conf->fullsync = 0;
4550 }
4551
4552
4553 static int handle_reshape_read_error(struct mddev *mddev,
4554 struct r10bio *r10_bio)
4555 {
4556 /* Use sync reads to get the blocks from somewhere else */
4557 int sectors = r10_bio->sectors;
4558 struct r10conf *conf = mddev->private;
4559 struct {
4560 struct r10bio r10_bio;
4561 struct r10dev devs[conf->copies];
4562 } on_stack;
4563 struct r10bio *r10b = &on_stack.r10_bio;
4564 int slot = 0;
4565 int idx = 0;
4566 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4567
4568 r10b->sector = r10_bio->sector;
4569 __raid10_find_phys(&conf->prev, r10b);
4570
4571 while (sectors) {
4572 int s = sectors;
4573 int success = 0;
4574 int first_slot = slot;
4575
4576 if (s > (PAGE_SIZE >> 9))
4577 s = PAGE_SIZE >> 9;
4578
4579 while (!success) {
4580 int d = r10b->devs[slot].devnum;
4581 struct md_rdev *rdev = conf->mirrors[d].rdev;
4582 sector_t addr;
4583 if (rdev == NULL ||
4584 test_bit(Faulty, &rdev->flags) ||
4585 !test_bit(In_sync, &rdev->flags))
4586 goto failed;
4587
4588 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4589 success = sync_page_io(rdev,
4590 addr,
4591 s << 9,
4592 bvec[idx].bv_page,
4593 READ, false);
4594 if (success)
4595 break;
4596 failed:
4597 slot++;
4598 if (slot >= conf->copies)
4599 slot = 0;
4600 if (slot == first_slot)
4601 break;
4602 }
4603 if (!success) {
4604 /* couldn't read this block, must give up */
4605 set_bit(MD_RECOVERY_INTR,
4606 &mddev->recovery);
4607 return -EIO;
4608 }
4609 sectors -= s;
4610 idx++;
4611 }
4612 return 0;
4613 }
4614
4615 static void end_reshape_write(struct bio *bio, int error)
4616 {
4617 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4618 struct r10bio *r10_bio = bio->bi_private;
4619 struct mddev *mddev = r10_bio->mddev;
4620 struct r10conf *conf = mddev->private;
4621 int d;
4622 int slot;
4623 int repl;
4624 struct md_rdev *rdev = NULL;
4625
4626 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4627 if (repl)
4628 rdev = conf->mirrors[d].replacement;
4629 if (!rdev) {
4630 smp_mb();
4631 rdev = conf->mirrors[d].rdev;
4632 }
4633
4634 if (!uptodate) {
4635 /* FIXME should record badblock */
4636 md_error(mddev, rdev);
4637 }
4638
4639 rdev_dec_pending(rdev, mddev);
4640 end_reshape_request(r10_bio);
4641 }
4642
4643 static void end_reshape_request(struct r10bio *r10_bio)
4644 {
4645 if (!atomic_dec_and_test(&r10_bio->remaining))
4646 return;
4647 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4648 bio_put(r10_bio->master_bio);
4649 put_buf(r10_bio);
4650 }
4651
4652 static void raid10_finish_reshape(struct mddev *mddev)
4653 {
4654 struct r10conf *conf = mddev->private;
4655
4656 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4657 return;
4658
4659 if (mddev->delta_disks > 0) {
4660 sector_t size = raid10_size(mddev, 0, 0);
4661 md_set_array_sectors(mddev, size);
4662 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4663 mddev->recovery_cp = mddev->resync_max_sectors;
4664 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4665 }
4666 mddev->resync_max_sectors = size;
4667 set_capacity(mddev->gendisk, mddev->array_sectors);
4668 revalidate_disk(mddev->gendisk);
4669 } else {
4670 int d;
4671 for (d = conf->geo.raid_disks ;
4672 d < conf->geo.raid_disks - mddev->delta_disks;
4673 d++) {
4674 struct md_rdev *rdev = conf->mirrors[d].rdev;
4675 if (rdev)
4676 clear_bit(In_sync, &rdev->flags);
4677 rdev = conf->mirrors[d].replacement;
4678 if (rdev)
4679 clear_bit(In_sync, &rdev->flags);
4680 }
4681 }
4682 mddev->layout = mddev->new_layout;
4683 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4684 mddev->reshape_position = MaxSector;
4685 mddev->delta_disks = 0;
4686 mddev->reshape_backwards = 0;
4687 }
4688
4689 static struct md_personality raid10_personality =
4690 {
4691 .name = "raid10",
4692 .level = 10,
4693 .owner = THIS_MODULE,
4694 .make_request = make_request,
4695 .run = run,
4696 .stop = stop,
4697 .status = status,
4698 .error_handler = error,
4699 .hot_add_disk = raid10_add_disk,
4700 .hot_remove_disk= raid10_remove_disk,
4701 .spare_active = raid10_spare_active,
4702 .sync_request = sync_request,
4703 .quiesce = raid10_quiesce,
4704 .size = raid10_size,
4705 .resize = raid10_resize,
4706 .takeover = raid10_takeover,
4707 .check_reshape = raid10_check_reshape,
4708 .start_reshape = raid10_start_reshape,
4709 .finish_reshape = raid10_finish_reshape,
4710 };
4711
4712 static int __init raid_init(void)
4713 {
4714 return register_md_personality(&raid10_personality);
4715 }
4716
4717 static void raid_exit(void)
4718 {
4719 unregister_md_personality(&raid10_personality);
4720 }
4721
4722 module_init(raid_init);
4723 module_exit(raid_exit);
4724 MODULE_LICENSE("GPL");
4725 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4726 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4727 MODULE_ALIAS("md-raid10");
4728 MODULE_ALIAS("md-level-10");
4729
4730 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);