]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
Merge tag 'for-linus' of git://linux-c6x.org/git/projects/linux-c6x-upstreaming
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct r10bio *r10_bio = bio->bi_private;
446 int dev;
447 int dec_rdev = 1;
448 struct r10conf *conf = r10_bio->mddev->private;
449 int slot, repl;
450 struct md_rdev *rdev = NULL;
451
452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
459 rdev = conf->mirrors[dev].rdev;
460 }
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
464 if (!uptodate) {
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
478 } else {
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
488 sector_t first_bad;
489 int bad_sectors;
490
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503 /* Maybe we can clear some bad blocks. */
504 if (is_badblock(rdev,
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
523 one_write_done(r10_bio);
524 if (dec_rdev)
525 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529 * RAID10 layout manager
530 * As well as the chunksize and raid_disks count, there are two
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
537 * Chunks are laid out in raid0 style with near_copies copies of the
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
547 * on each device that it is on.
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
560 int slot = 0;
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569 /* now calculate first sector/dev */
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
572
573 chunk *= geo->near_copies;
574 stripe = chunk;
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
578
579 sector += stripe << geo->chunk_shift;
580
581 /* and calculate all the others */
582 for (n = 0; n < geo->near_copies; n++) {
583 int d = dev;
584 int set;
585 sector_t s = sector;
586 r10bio->devs[slot].devnum = d;
587 r10bio->devs[slot].addr = s;
588 slot++;
589
590 for (f = 1; f < geo->far_copies; f++) {
591 set = d / geo->far_set_size;
592 d += geo->near_copies;
593
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
603 s += geo->stride;
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
609 if (dev >= geo->raid_disks) {
610 dev = 0;
611 sector += (geo->chunk_mask + 1);
612 }
613 }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 sector_t offset, chunk, vchunk;
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
637 struct geom *geo = &conf->geo;
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
652
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
655 int fc;
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
659 if (dev < far_set_start)
660 dev += far_set_size;
661 } else {
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
666 else
667 dev -= geo->near_copies;
668 }
669 chunk = sector >> geo->chunk_shift;
670 }
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
679 * @bvm: properties of new bio
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
685 */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
689 {
690 struct mddev *mddev = q->queuedata;
691 struct r10conf *conf = mddev->private;
692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 int max;
694 unsigned int chunk_sectors;
695 unsigned int bio_sectors = bvm->bi_size >> 9;
696 struct geom *geo = &conf->geo;
697
698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
704 if (geo->near_copies < geo->raid_disks) {
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
721 int s;
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
732 int disk = r10_bio->devs[s].devnum;
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
739 bvm->bi_sector = r10_bio->devs[s].addr
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
751 bvm->bi_sector = r10_bio->devs[s].addr
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
762 }
763
764 /*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779 /*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
786 {
787 const sector_t this_sector = r10_bio->sector;
788 int disk, slot;
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
791 sector_t new_distance, best_dist;
792 struct md_rdev *best_rdev, *rdev = NULL;
793 int do_balance;
794 int best_slot;
795 struct geom *geo = &conf->geo;
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
799 retry:
800 sectors = r10_bio->sectors;
801 best_slot = -1;
802 best_rdev = NULL;
803 best_dist = MaxSector;
804 best_good_sectors = 0;
805 do_balance = 1;
806 /*
807 * Check if we can balance. We can balance on the whole
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
811 */
812 if (conf->mddev->recovery_cp < MaxSector
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
815
816 for (slot = 0; slot < conf->copies ; slot++) {
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
823 disk = r10_bio->devs[slot].devnum;
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 test_bit(Unmerged, &rdev->flags) ||
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 continue;
836
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
859 best_rdev = rdev;
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
869 if (!do_balance)
870 break;
871
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 break;
878
879 /* for far > 1 always use the lowest address */
880 if (geo->far_copies > 1)
881 new_distance = r10_bio->devs[slot].addr;
882 else
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
888 best_rdev = rdev;
889 }
890 }
891 if (slot >= conf->copies) {
892 slot = best_slot;
893 rdev = best_rdev;
894 }
895
896 if (slot >= 0) {
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
907 rdev = NULL;
908 rcu_read_unlock();
909 *max_sectors = best_good_sectors;
910
911 return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 struct r10conf *conf = mddev->private;
917 int i, ret = 0;
918
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
923 rcu_read_lock();
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
952 */
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
958 conf->pending_count = 0;
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
963 wake_up(&conf->wait_barrier);
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
974 bio = next;
975 }
976 } else
977 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1000 */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 BUG_ON(force && !conf->barrier);
1005 spin_lock_irq(&conf->resync_lock);
1006
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 conf->resync_lock);
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
1014 /* Now wait for all pending IO to complete */
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 conf->resync_lock);
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
1050 conf->resync_lock);
1051 conf->nr_waiting--;
1052 }
1053 conf->nr_pending++;
1054 spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 /* stop syncio and normal IO and wait for everything to
1069 * go quiet.
1070 * We increment barrier and nr_waiting, and then
1071 * wait until nr_pending match nr_queued+extra
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
1076 * Thus the number queued (nr_queued) plus this request (extra)
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
1083 wait_event_lock_irq_cmd(conf->wait_barrier,
1084 conf->nr_pending == conf->nr_queued+extra,
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
1087
1088 spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103 {
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
1125 if (from_schedule || current->bio_list) {
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
1130 wake_up(&conf->wait_barrier);
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1151 }
1152 kfree(plug);
1153 }
1154
1155 static void __make_request(struct mddev *mddev, struct bio *bio)
1156 {
1157 struct r10conf *conf = mddev->private;
1158 struct r10bio *r10_bio;
1159 struct bio *read_bio;
1160 int i;
1161 const int rw = bio_data_dir(bio);
1162 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164 const unsigned long do_discard = (bio->bi_rw
1165 & (REQ_DISCARD | REQ_SECURE));
1166 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167 unsigned long flags;
1168 struct md_rdev *blocked_rdev;
1169 struct blk_plug_cb *cb;
1170 struct raid10_plug_cb *plug = NULL;
1171 int sectors_handled;
1172 int max_sectors;
1173 int sectors;
1174
1175 sectors = bio_sectors(bio);
1176 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 /* IO spans the reshape position. Need to wait for
1180 * reshape to pass
1181 */
1182 allow_barrier(conf);
1183 wait_event(conf->wait_barrier,
1184 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185 conf->reshape_progress >= bio->bi_iter.bi_sector +
1186 sectors);
1187 wait_barrier(conf);
1188 }
1189 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1190 bio_data_dir(bio) == WRITE &&
1191 (mddev->reshape_backwards
1192 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1193 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1194 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1195 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1196 /* Need to update reshape_position in metadata */
1197 mddev->reshape_position = conf->reshape_progress;
1198 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1199 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(mddev->sb_wait,
1202 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1203
1204 conf->reshape_safe = mddev->reshape_position;
1205 }
1206
1207 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1208
1209 r10_bio->master_bio = bio;
1210 r10_bio->sectors = sectors;
1211
1212 r10_bio->mddev = mddev;
1213 r10_bio->sector = bio->bi_iter.bi_sector;
1214 r10_bio->state = 0;
1215
1216 /* We might need to issue multiple reads to different
1217 * devices if there are bad blocks around, so we keep
1218 * track of the number of reads in bio->bi_phys_segments.
1219 * If this is 0, there is only one r10_bio and no locking
1220 * will be needed when the request completes. If it is
1221 * non-zero, then it is the number of not-completed requests.
1222 */
1223 bio->bi_phys_segments = 0;
1224 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1225
1226 if (rw == READ) {
1227 /*
1228 * read balancing logic:
1229 */
1230 struct md_rdev *rdev;
1231 int slot;
1232
1233 read_again:
1234 rdev = read_balance(conf, r10_bio, &max_sectors);
1235 if (!rdev) {
1236 raid_end_bio_io(r10_bio);
1237 return;
1238 }
1239 slot = r10_bio->read_slot;
1240
1241 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1242 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1243 max_sectors);
1244
1245 r10_bio->devs[slot].bio = read_bio;
1246 r10_bio->devs[slot].rdev = rdev;
1247
1248 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1249 choose_data_offset(r10_bio, rdev);
1250 read_bio->bi_bdev = rdev->bdev;
1251 read_bio->bi_end_io = raid10_end_read_request;
1252 read_bio->bi_rw = READ | do_sync;
1253 read_bio->bi_private = r10_bio;
1254
1255 if (max_sectors < r10_bio->sectors) {
1256 /* Could not read all from this device, so we will
1257 * need another r10_bio.
1258 */
1259 sectors_handled = (r10_bio->sector + max_sectors
1260 - bio->bi_iter.bi_sector);
1261 r10_bio->sectors = max_sectors;
1262 spin_lock_irq(&conf->device_lock);
1263 if (bio->bi_phys_segments == 0)
1264 bio->bi_phys_segments = 2;
1265 else
1266 bio->bi_phys_segments++;
1267 spin_unlock_irq(&conf->device_lock);
1268 /* Cannot call generic_make_request directly
1269 * as that will be queued in __generic_make_request
1270 * and subsequent mempool_alloc might block
1271 * waiting for it. so hand bio over to raid10d.
1272 */
1273 reschedule_retry(r10_bio);
1274
1275 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1276
1277 r10_bio->master_bio = bio;
1278 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1279 r10_bio->state = 0;
1280 r10_bio->mddev = mddev;
1281 r10_bio->sector = bio->bi_iter.bi_sector +
1282 sectors_handled;
1283 goto read_again;
1284 } else
1285 generic_make_request(read_bio);
1286 return;
1287 }
1288
1289 /*
1290 * WRITE:
1291 */
1292 if (conf->pending_count >= max_queued_requests) {
1293 md_wakeup_thread(mddev->thread);
1294 wait_event(conf->wait_barrier,
1295 conf->pending_count < max_queued_requests);
1296 }
1297 /* first select target devices under rcu_lock and
1298 * inc refcount on their rdev. Record them by setting
1299 * bios[x] to bio
1300 * If there are known/acknowledged bad blocks on any device
1301 * on which we have seen a write error, we want to avoid
1302 * writing to those blocks. This potentially requires several
1303 * writes to write around the bad blocks. Each set of writes
1304 * gets its own r10_bio with a set of bios attached. The number
1305 * of r10_bios is recored in bio->bi_phys_segments just as with
1306 * the read case.
1307 */
1308
1309 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1310 raid10_find_phys(conf, r10_bio);
1311 retry_write:
1312 blocked_rdev = NULL;
1313 rcu_read_lock();
1314 max_sectors = r10_bio->sectors;
1315
1316 for (i = 0; i < conf->copies; i++) {
1317 int d = r10_bio->devs[i].devnum;
1318 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1319 struct md_rdev *rrdev = rcu_dereference(
1320 conf->mirrors[d].replacement);
1321 if (rdev == rrdev)
1322 rrdev = NULL;
1323 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1324 atomic_inc(&rdev->nr_pending);
1325 blocked_rdev = rdev;
1326 break;
1327 }
1328 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1329 atomic_inc(&rrdev->nr_pending);
1330 blocked_rdev = rrdev;
1331 break;
1332 }
1333 if (rdev && (test_bit(Faulty, &rdev->flags)
1334 || test_bit(Unmerged, &rdev->flags)))
1335 rdev = NULL;
1336 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1337 || test_bit(Unmerged, &rrdev->flags)))
1338 rrdev = NULL;
1339
1340 r10_bio->devs[i].bio = NULL;
1341 r10_bio->devs[i].repl_bio = NULL;
1342
1343 if (!rdev && !rrdev) {
1344 set_bit(R10BIO_Degraded, &r10_bio->state);
1345 continue;
1346 }
1347 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1348 sector_t first_bad;
1349 sector_t dev_sector = r10_bio->devs[i].addr;
1350 int bad_sectors;
1351 int is_bad;
1352
1353 is_bad = is_badblock(rdev, dev_sector,
1354 max_sectors,
1355 &first_bad, &bad_sectors);
1356 if (is_bad < 0) {
1357 /* Mustn't write here until the bad block
1358 * is acknowledged
1359 */
1360 atomic_inc(&rdev->nr_pending);
1361 set_bit(BlockedBadBlocks, &rdev->flags);
1362 blocked_rdev = rdev;
1363 break;
1364 }
1365 if (is_bad && first_bad <= dev_sector) {
1366 /* Cannot write here at all */
1367 bad_sectors -= (dev_sector - first_bad);
1368 if (bad_sectors < max_sectors)
1369 /* Mustn't write more than bad_sectors
1370 * to other devices yet
1371 */
1372 max_sectors = bad_sectors;
1373 /* We don't set R10BIO_Degraded as that
1374 * only applies if the disk is missing,
1375 * so it might be re-added, and we want to
1376 * know to recover this chunk.
1377 * In this case the device is here, and the
1378 * fact that this chunk is not in-sync is
1379 * recorded in the bad block log.
1380 */
1381 continue;
1382 }
1383 if (is_bad) {
1384 int good_sectors = first_bad - dev_sector;
1385 if (good_sectors < max_sectors)
1386 max_sectors = good_sectors;
1387 }
1388 }
1389 if (rdev) {
1390 r10_bio->devs[i].bio = bio;
1391 atomic_inc(&rdev->nr_pending);
1392 }
1393 if (rrdev) {
1394 r10_bio->devs[i].repl_bio = bio;
1395 atomic_inc(&rrdev->nr_pending);
1396 }
1397 }
1398 rcu_read_unlock();
1399
1400 if (unlikely(blocked_rdev)) {
1401 /* Have to wait for this device to get unblocked, then retry */
1402 int j;
1403 int d;
1404
1405 for (j = 0; j < i; j++) {
1406 if (r10_bio->devs[j].bio) {
1407 d = r10_bio->devs[j].devnum;
1408 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1409 }
1410 if (r10_bio->devs[j].repl_bio) {
1411 struct md_rdev *rdev;
1412 d = r10_bio->devs[j].devnum;
1413 rdev = conf->mirrors[d].replacement;
1414 if (!rdev) {
1415 /* Race with remove_disk */
1416 smp_mb();
1417 rdev = conf->mirrors[d].rdev;
1418 }
1419 rdev_dec_pending(rdev, mddev);
1420 }
1421 }
1422 allow_barrier(conf);
1423 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1424 wait_barrier(conf);
1425 goto retry_write;
1426 }
1427
1428 if (max_sectors < r10_bio->sectors) {
1429 /* We are splitting this into multiple parts, so
1430 * we need to prepare for allocating another r10_bio.
1431 */
1432 r10_bio->sectors = max_sectors;
1433 spin_lock_irq(&conf->device_lock);
1434 if (bio->bi_phys_segments == 0)
1435 bio->bi_phys_segments = 2;
1436 else
1437 bio->bi_phys_segments++;
1438 spin_unlock_irq(&conf->device_lock);
1439 }
1440 sectors_handled = r10_bio->sector + max_sectors -
1441 bio->bi_iter.bi_sector;
1442
1443 atomic_set(&r10_bio->remaining, 1);
1444 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1445
1446 for (i = 0; i < conf->copies; i++) {
1447 struct bio *mbio;
1448 int d = r10_bio->devs[i].devnum;
1449 if (r10_bio->devs[i].bio) {
1450 struct md_rdev *rdev = conf->mirrors[d].rdev;
1451 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1452 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1453 max_sectors);
1454 r10_bio->devs[i].bio = mbio;
1455
1456 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1457 choose_data_offset(r10_bio,
1458 rdev));
1459 mbio->bi_bdev = rdev->bdev;
1460 mbio->bi_end_io = raid10_end_write_request;
1461 mbio->bi_rw =
1462 WRITE | do_sync | do_fua | do_discard | do_same;
1463 mbio->bi_private = r10_bio;
1464
1465 atomic_inc(&r10_bio->remaining);
1466
1467 cb = blk_check_plugged(raid10_unplug, mddev,
1468 sizeof(*plug));
1469 if (cb)
1470 plug = container_of(cb, struct raid10_plug_cb,
1471 cb);
1472 else
1473 plug = NULL;
1474 spin_lock_irqsave(&conf->device_lock, flags);
1475 if (plug) {
1476 bio_list_add(&plug->pending, mbio);
1477 plug->pending_cnt++;
1478 } else {
1479 bio_list_add(&conf->pending_bio_list, mbio);
1480 conf->pending_count++;
1481 }
1482 spin_unlock_irqrestore(&conf->device_lock, flags);
1483 if (!plug)
1484 md_wakeup_thread(mddev->thread);
1485 }
1486
1487 if (r10_bio->devs[i].repl_bio) {
1488 struct md_rdev *rdev = conf->mirrors[d].replacement;
1489 if (rdev == NULL) {
1490 /* Replacement just got moved to main 'rdev' */
1491 smp_mb();
1492 rdev = conf->mirrors[d].rdev;
1493 }
1494 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1495 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1496 max_sectors);
1497 r10_bio->devs[i].repl_bio = mbio;
1498
1499 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1500 choose_data_offset(
1501 r10_bio, rdev));
1502 mbio->bi_bdev = rdev->bdev;
1503 mbio->bi_end_io = raid10_end_write_request;
1504 mbio->bi_rw =
1505 WRITE | do_sync | do_fua | do_discard | do_same;
1506 mbio->bi_private = r10_bio;
1507
1508 atomic_inc(&r10_bio->remaining);
1509 spin_lock_irqsave(&conf->device_lock, flags);
1510 bio_list_add(&conf->pending_bio_list, mbio);
1511 conf->pending_count++;
1512 spin_unlock_irqrestore(&conf->device_lock, flags);
1513 if (!mddev_check_plugged(mddev))
1514 md_wakeup_thread(mddev->thread);
1515 }
1516 }
1517
1518 /* Don't remove the bias on 'remaining' (one_write_done) until
1519 * after checking if we need to go around again.
1520 */
1521
1522 if (sectors_handled < bio_sectors(bio)) {
1523 one_write_done(r10_bio);
1524 /* We need another r10_bio. It has already been counted
1525 * in bio->bi_phys_segments.
1526 */
1527 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1528
1529 r10_bio->master_bio = bio;
1530 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1531
1532 r10_bio->mddev = mddev;
1533 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1534 r10_bio->state = 0;
1535 goto retry_write;
1536 }
1537 one_write_done(r10_bio);
1538 }
1539
1540 static void make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542 struct r10conf *conf = mddev->private;
1543 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1544 int chunk_sects = chunk_mask + 1;
1545
1546 struct bio *split;
1547
1548 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1549 md_flush_request(mddev, bio);
1550 return;
1551 }
1552
1553 md_write_start(mddev, bio);
1554
1555 /*
1556 * Register the new request and wait if the reconstruction
1557 * thread has put up a bar for new requests.
1558 * Continue immediately if no resync is active currently.
1559 */
1560 wait_barrier(conf);
1561
1562 do {
1563
1564 /*
1565 * If this request crosses a chunk boundary, we need to split
1566 * it.
1567 */
1568 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1569 bio_sectors(bio) > chunk_sects
1570 && (conf->geo.near_copies < conf->geo.raid_disks
1571 || conf->prev.near_copies <
1572 conf->prev.raid_disks))) {
1573 split = bio_split(bio, chunk_sects -
1574 (bio->bi_iter.bi_sector &
1575 (chunk_sects - 1)),
1576 GFP_NOIO, fs_bio_set);
1577 bio_chain(split, bio);
1578 } else {
1579 split = bio;
1580 }
1581
1582 __make_request(mddev, split);
1583 } while (split != bio);
1584
1585 /* In case raid10d snuck in to freeze_array */
1586 wake_up(&conf->wait_barrier);
1587 }
1588
1589 static void status(struct seq_file *seq, struct mddev *mddev)
1590 {
1591 struct r10conf *conf = mddev->private;
1592 int i;
1593
1594 if (conf->geo.near_copies < conf->geo.raid_disks)
1595 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1596 if (conf->geo.near_copies > 1)
1597 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1598 if (conf->geo.far_copies > 1) {
1599 if (conf->geo.far_offset)
1600 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1601 else
1602 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1603 }
1604 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1605 conf->geo.raid_disks - mddev->degraded);
1606 for (i = 0; i < conf->geo.raid_disks; i++)
1607 seq_printf(seq, "%s",
1608 conf->mirrors[i].rdev &&
1609 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1610 seq_printf(seq, "]");
1611 }
1612
1613 /* check if there are enough drives for
1614 * every block to appear on atleast one.
1615 * Don't consider the device numbered 'ignore'
1616 * as we might be about to remove it.
1617 */
1618 static int _enough(struct r10conf *conf, int previous, int ignore)
1619 {
1620 int first = 0;
1621 int has_enough = 0;
1622 int disks, ncopies;
1623 if (previous) {
1624 disks = conf->prev.raid_disks;
1625 ncopies = conf->prev.near_copies;
1626 } else {
1627 disks = conf->geo.raid_disks;
1628 ncopies = conf->geo.near_copies;
1629 }
1630
1631 rcu_read_lock();
1632 do {
1633 int n = conf->copies;
1634 int cnt = 0;
1635 int this = first;
1636 while (n--) {
1637 struct md_rdev *rdev;
1638 if (this != ignore &&
1639 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1640 test_bit(In_sync, &rdev->flags))
1641 cnt++;
1642 this = (this+1) % disks;
1643 }
1644 if (cnt == 0)
1645 goto out;
1646 first = (first + ncopies) % disks;
1647 } while (first != 0);
1648 has_enough = 1;
1649 out:
1650 rcu_read_unlock();
1651 return has_enough;
1652 }
1653
1654 static int enough(struct r10conf *conf, int ignore)
1655 {
1656 /* when calling 'enough', both 'prev' and 'geo' must
1657 * be stable.
1658 * This is ensured if ->reconfig_mutex or ->device_lock
1659 * is held.
1660 */
1661 return _enough(conf, 0, ignore) &&
1662 _enough(conf, 1, ignore);
1663 }
1664
1665 static void error(struct mddev *mddev, struct md_rdev *rdev)
1666 {
1667 char b[BDEVNAME_SIZE];
1668 struct r10conf *conf = mddev->private;
1669 unsigned long flags;
1670
1671 /*
1672 * If it is not operational, then we have already marked it as dead
1673 * else if it is the last working disks, ignore the error, let the
1674 * next level up know.
1675 * else mark the drive as failed
1676 */
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 if (test_bit(In_sync, &rdev->flags)
1679 && !enough(conf, rdev->raid_disk)) {
1680 /*
1681 * Don't fail the drive, just return an IO error.
1682 */
1683 spin_unlock_irqrestore(&conf->device_lock, flags);
1684 return;
1685 }
1686 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1687 mddev->degraded++;
1688 /*
1689 * if recovery is running, make sure it aborts.
1690 */
1691 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1692 }
1693 set_bit(Blocked, &rdev->flags);
1694 set_bit(Faulty, &rdev->flags);
1695 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696 spin_unlock_irqrestore(&conf->device_lock, flags);
1697 printk(KERN_ALERT
1698 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 "md/raid10:%s: Operation continuing on %d devices.\n",
1700 mdname(mddev), bdevname(rdev->bdev, b),
1701 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702 }
1703
1704 static void print_conf(struct r10conf *conf)
1705 {
1706 int i;
1707 struct raid10_info *tmp;
1708
1709 printk(KERN_DEBUG "RAID10 conf printout:\n");
1710 if (!conf) {
1711 printk(KERN_DEBUG "(!conf)\n");
1712 return;
1713 }
1714 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715 conf->geo.raid_disks);
1716
1717 for (i = 0; i < conf->geo.raid_disks; i++) {
1718 char b[BDEVNAME_SIZE];
1719 tmp = conf->mirrors + i;
1720 if (tmp->rdev)
1721 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1722 i, !test_bit(In_sync, &tmp->rdev->flags),
1723 !test_bit(Faulty, &tmp->rdev->flags),
1724 bdevname(tmp->rdev->bdev,b));
1725 }
1726 }
1727
1728 static void close_sync(struct r10conf *conf)
1729 {
1730 wait_barrier(conf);
1731 allow_barrier(conf);
1732
1733 mempool_destroy(conf->r10buf_pool);
1734 conf->r10buf_pool = NULL;
1735 }
1736
1737 static int raid10_spare_active(struct mddev *mddev)
1738 {
1739 int i;
1740 struct r10conf *conf = mddev->private;
1741 struct raid10_info *tmp;
1742 int count = 0;
1743 unsigned long flags;
1744
1745 /*
1746 * Find all non-in_sync disks within the RAID10 configuration
1747 * and mark them in_sync
1748 */
1749 for (i = 0; i < conf->geo.raid_disks; i++) {
1750 tmp = conf->mirrors + i;
1751 if (tmp->replacement
1752 && tmp->replacement->recovery_offset == MaxSector
1753 && !test_bit(Faulty, &tmp->replacement->flags)
1754 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1755 /* Replacement has just become active */
1756 if (!tmp->rdev
1757 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1758 count++;
1759 if (tmp->rdev) {
1760 /* Replaced device not technically faulty,
1761 * but we need to be sure it gets removed
1762 * and never re-added.
1763 */
1764 set_bit(Faulty, &tmp->rdev->flags);
1765 sysfs_notify_dirent_safe(
1766 tmp->rdev->sysfs_state);
1767 }
1768 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1769 } else if (tmp->rdev
1770 && tmp->rdev->recovery_offset == MaxSector
1771 && !test_bit(Faulty, &tmp->rdev->flags)
1772 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1773 count++;
1774 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1775 }
1776 }
1777 spin_lock_irqsave(&conf->device_lock, flags);
1778 mddev->degraded -= count;
1779 spin_unlock_irqrestore(&conf->device_lock, flags);
1780
1781 print_conf(conf);
1782 return count;
1783 }
1784
1785
1786 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1787 {
1788 struct r10conf *conf = mddev->private;
1789 int err = -EEXIST;
1790 int mirror;
1791 int first = 0;
1792 int last = conf->geo.raid_disks - 1;
1793 struct request_queue *q = bdev_get_queue(rdev->bdev);
1794
1795 if (mddev->recovery_cp < MaxSector)
1796 /* only hot-add to in-sync arrays, as recovery is
1797 * very different from resync
1798 */
1799 return -EBUSY;
1800 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801 return -EINVAL;
1802
1803 if (rdev->raid_disk >= 0)
1804 first = last = rdev->raid_disk;
1805
1806 if (q->merge_bvec_fn) {
1807 set_bit(Unmerged, &rdev->flags);
1808 mddev->merge_check_needed = 1;
1809 }
1810
1811 if (rdev->saved_raid_disk >= first &&
1812 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1813 mirror = rdev->saved_raid_disk;
1814 else
1815 mirror = first;
1816 for ( ; mirror <= last ; mirror++) {
1817 struct raid10_info *p = &conf->mirrors[mirror];
1818 if (p->recovery_disabled == mddev->recovery_disabled)
1819 continue;
1820 if (p->rdev) {
1821 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1822 p->replacement != NULL)
1823 continue;
1824 clear_bit(In_sync, &rdev->flags);
1825 set_bit(Replacement, &rdev->flags);
1826 rdev->raid_disk = mirror;
1827 err = 0;
1828 if (mddev->gendisk)
1829 disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 rdev->data_offset << 9);
1831 conf->fullsync = 1;
1832 rcu_assign_pointer(p->replacement, rdev);
1833 break;
1834 }
1835
1836 if (mddev->gendisk)
1837 disk_stack_limits(mddev->gendisk, rdev->bdev,
1838 rdev->data_offset << 9);
1839
1840 p->head_position = 0;
1841 p->recovery_disabled = mddev->recovery_disabled - 1;
1842 rdev->raid_disk = mirror;
1843 err = 0;
1844 if (rdev->saved_raid_disk != mirror)
1845 conf->fullsync = 1;
1846 rcu_assign_pointer(p->rdev, rdev);
1847 break;
1848 }
1849 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1850 /* Some requests might not have seen this new
1851 * merge_bvec_fn. We must wait for them to complete
1852 * before merging the device fully.
1853 * First we make sure any code which has tested
1854 * our function has submitted the request, then
1855 * we wait for all outstanding requests to complete.
1856 */
1857 synchronize_sched();
1858 freeze_array(conf, 0);
1859 unfreeze_array(conf);
1860 clear_bit(Unmerged, &rdev->flags);
1861 }
1862 md_integrity_add_rdev(rdev, mddev);
1863 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1864 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1865
1866 print_conf(conf);
1867 return err;
1868 }
1869
1870 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1871 {
1872 struct r10conf *conf = mddev->private;
1873 int err = 0;
1874 int number = rdev->raid_disk;
1875 struct md_rdev **rdevp;
1876 struct raid10_info *p = conf->mirrors + number;
1877
1878 print_conf(conf);
1879 if (rdev == p->rdev)
1880 rdevp = &p->rdev;
1881 else if (rdev == p->replacement)
1882 rdevp = &p->replacement;
1883 else
1884 return 0;
1885
1886 if (test_bit(In_sync, &rdev->flags) ||
1887 atomic_read(&rdev->nr_pending)) {
1888 err = -EBUSY;
1889 goto abort;
1890 }
1891 /* Only remove faulty devices if recovery
1892 * is not possible.
1893 */
1894 if (!test_bit(Faulty, &rdev->flags) &&
1895 mddev->recovery_disabled != p->recovery_disabled &&
1896 (!p->replacement || p->replacement == rdev) &&
1897 number < conf->geo.raid_disks &&
1898 enough(conf, -1)) {
1899 err = -EBUSY;
1900 goto abort;
1901 }
1902 *rdevp = NULL;
1903 synchronize_rcu();
1904 if (atomic_read(&rdev->nr_pending)) {
1905 /* lost the race, try later */
1906 err = -EBUSY;
1907 *rdevp = rdev;
1908 goto abort;
1909 } else if (p->replacement) {
1910 /* We must have just cleared 'rdev' */
1911 p->rdev = p->replacement;
1912 clear_bit(Replacement, &p->replacement->flags);
1913 smp_mb(); /* Make sure other CPUs may see both as identical
1914 * but will never see neither -- if they are careful.
1915 */
1916 p->replacement = NULL;
1917 clear_bit(WantReplacement, &rdev->flags);
1918 } else
1919 /* We might have just remove the Replacement as faulty
1920 * Clear the flag just in case
1921 */
1922 clear_bit(WantReplacement, &rdev->flags);
1923
1924 err = md_integrity_register(mddev);
1925
1926 abort:
1927
1928 print_conf(conf);
1929 return err;
1930 }
1931
1932
1933 static void end_sync_read(struct bio *bio, int error)
1934 {
1935 struct r10bio *r10_bio = bio->bi_private;
1936 struct r10conf *conf = r10_bio->mddev->private;
1937 int d;
1938
1939 if (bio == r10_bio->master_bio) {
1940 /* this is a reshape read */
1941 d = r10_bio->read_slot; /* really the read dev */
1942 } else
1943 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1944
1945 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1946 set_bit(R10BIO_Uptodate, &r10_bio->state);
1947 else
1948 /* The write handler will notice the lack of
1949 * R10BIO_Uptodate and record any errors etc
1950 */
1951 atomic_add(r10_bio->sectors,
1952 &conf->mirrors[d].rdev->corrected_errors);
1953
1954 /* for reconstruct, we always reschedule after a read.
1955 * for resync, only after all reads
1956 */
1957 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1958 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1959 atomic_dec_and_test(&r10_bio->remaining)) {
1960 /* we have read all the blocks,
1961 * do the comparison in process context in raid10d
1962 */
1963 reschedule_retry(r10_bio);
1964 }
1965 }
1966
1967 static void end_sync_request(struct r10bio *r10_bio)
1968 {
1969 struct mddev *mddev = r10_bio->mddev;
1970
1971 while (atomic_dec_and_test(&r10_bio->remaining)) {
1972 if (r10_bio->master_bio == NULL) {
1973 /* the primary of several recovery bios */
1974 sector_t s = r10_bio->sectors;
1975 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976 test_bit(R10BIO_WriteError, &r10_bio->state))
1977 reschedule_retry(r10_bio);
1978 else
1979 put_buf(r10_bio);
1980 md_done_sync(mddev, s, 1);
1981 break;
1982 } else {
1983 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1984 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985 test_bit(R10BIO_WriteError, &r10_bio->state))
1986 reschedule_retry(r10_bio);
1987 else
1988 put_buf(r10_bio);
1989 r10_bio = r10_bio2;
1990 }
1991 }
1992 }
1993
1994 static void end_sync_write(struct bio *bio, int error)
1995 {
1996 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1997 struct r10bio *r10_bio = bio->bi_private;
1998 struct mddev *mddev = r10_bio->mddev;
1999 struct r10conf *conf = mddev->private;
2000 int d;
2001 sector_t first_bad;
2002 int bad_sectors;
2003 int slot;
2004 int repl;
2005 struct md_rdev *rdev = NULL;
2006
2007 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2008 if (repl)
2009 rdev = conf->mirrors[d].replacement;
2010 else
2011 rdev = conf->mirrors[d].rdev;
2012
2013 if (!uptodate) {
2014 if (repl)
2015 md_error(mddev, rdev);
2016 else {
2017 set_bit(WriteErrorSeen, &rdev->flags);
2018 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019 set_bit(MD_RECOVERY_NEEDED,
2020 &rdev->mddev->recovery);
2021 set_bit(R10BIO_WriteError, &r10_bio->state);
2022 }
2023 } else if (is_badblock(rdev,
2024 r10_bio->devs[slot].addr,
2025 r10_bio->sectors,
2026 &first_bad, &bad_sectors))
2027 set_bit(R10BIO_MadeGood, &r10_bio->state);
2028
2029 rdev_dec_pending(rdev, mddev);
2030
2031 end_sync_request(r10_bio);
2032 }
2033
2034 /*
2035 * Note: sync and recover and handled very differently for raid10
2036 * This code is for resync.
2037 * For resync, we read through virtual addresses and read all blocks.
2038 * If there is any error, we schedule a write. The lowest numbered
2039 * drive is authoritative.
2040 * However requests come for physical address, so we need to map.
2041 * For every physical address there are raid_disks/copies virtual addresses,
2042 * which is always are least one, but is not necessarly an integer.
2043 * This means that a physical address can span multiple chunks, so we may
2044 * have to submit multiple io requests for a single sync request.
2045 */
2046 /*
2047 * We check if all blocks are in-sync and only write to blocks that
2048 * aren't in sync
2049 */
2050 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2051 {
2052 struct r10conf *conf = mddev->private;
2053 int i, first;
2054 struct bio *tbio, *fbio;
2055 int vcnt;
2056
2057 atomic_set(&r10_bio->remaining, 1);
2058
2059 /* find the first device with a block */
2060 for (i=0; i<conf->copies; i++)
2061 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2062 break;
2063
2064 if (i == conf->copies)
2065 goto done;
2066
2067 first = i;
2068 fbio = r10_bio->devs[i].bio;
2069
2070 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2071 /* now find blocks with errors */
2072 for (i=0 ; i < conf->copies ; i++) {
2073 int j, d;
2074
2075 tbio = r10_bio->devs[i].bio;
2076
2077 if (tbio->bi_end_io != end_sync_read)
2078 continue;
2079 if (i == first)
2080 continue;
2081 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2082 /* We know that the bi_io_vec layout is the same for
2083 * both 'first' and 'i', so we just compare them.
2084 * All vec entries are PAGE_SIZE;
2085 */
2086 int sectors = r10_bio->sectors;
2087 for (j = 0; j < vcnt; j++) {
2088 int len = PAGE_SIZE;
2089 if (sectors < (len / 512))
2090 len = sectors * 512;
2091 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2092 page_address(tbio->bi_io_vec[j].bv_page),
2093 len))
2094 break;
2095 sectors -= len/512;
2096 }
2097 if (j == vcnt)
2098 continue;
2099 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101 /* Don't fix anything. */
2102 continue;
2103 }
2104 /* Ok, we need to write this bio, either to correct an
2105 * inconsistency or to correct an unreadable block.
2106 * First we need to fixup bv_offset, bv_len and
2107 * bi_vecs, as the read request might have corrupted these
2108 */
2109 bio_reset(tbio);
2110
2111 tbio->bi_vcnt = vcnt;
2112 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2113 tbio->bi_rw = WRITE;
2114 tbio->bi_private = r10_bio;
2115 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2116
2117 for (j=0; j < vcnt ; j++) {
2118 tbio->bi_io_vec[j].bv_offset = 0;
2119 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2120
2121 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2122 page_address(fbio->bi_io_vec[j].bv_page),
2123 PAGE_SIZE);
2124 }
2125 tbio->bi_end_io = end_sync_write;
2126
2127 d = r10_bio->devs[i].devnum;
2128 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2131
2132 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2134 generic_make_request(tbio);
2135 }
2136
2137 /* Now write out to any replacement devices
2138 * that are active
2139 */
2140 for (i = 0; i < conf->copies; i++) {
2141 int j, d;
2142
2143 tbio = r10_bio->devs[i].repl_bio;
2144 if (!tbio || !tbio->bi_end_io)
2145 continue;
2146 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147 && r10_bio->devs[i].bio != fbio)
2148 for (j = 0; j < vcnt; j++)
2149 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2150 page_address(fbio->bi_io_vec[j].bv_page),
2151 PAGE_SIZE);
2152 d = r10_bio->devs[i].devnum;
2153 atomic_inc(&r10_bio->remaining);
2154 md_sync_acct(conf->mirrors[d].replacement->bdev,
2155 bio_sectors(tbio));
2156 generic_make_request(tbio);
2157 }
2158
2159 done:
2160 if (atomic_dec_and_test(&r10_bio->remaining)) {
2161 md_done_sync(mddev, r10_bio->sectors, 1);
2162 put_buf(r10_bio);
2163 }
2164 }
2165
2166 /*
2167 * Now for the recovery code.
2168 * Recovery happens across physical sectors.
2169 * We recover all non-is_sync drives by finding the virtual address of
2170 * each, and then choose a working drive that also has that virt address.
2171 * There is a separate r10_bio for each non-in_sync drive.
2172 * Only the first two slots are in use. The first for reading,
2173 * The second for writing.
2174 *
2175 */
2176 static void fix_recovery_read_error(struct r10bio *r10_bio)
2177 {
2178 /* We got a read error during recovery.
2179 * We repeat the read in smaller page-sized sections.
2180 * If a read succeeds, write it to the new device or record
2181 * a bad block if we cannot.
2182 * If a read fails, record a bad block on both old and
2183 * new devices.
2184 */
2185 struct mddev *mddev = r10_bio->mddev;
2186 struct r10conf *conf = mddev->private;
2187 struct bio *bio = r10_bio->devs[0].bio;
2188 sector_t sect = 0;
2189 int sectors = r10_bio->sectors;
2190 int idx = 0;
2191 int dr = r10_bio->devs[0].devnum;
2192 int dw = r10_bio->devs[1].devnum;
2193
2194 while (sectors) {
2195 int s = sectors;
2196 struct md_rdev *rdev;
2197 sector_t addr;
2198 int ok;
2199
2200 if (s > (PAGE_SIZE>>9))
2201 s = PAGE_SIZE >> 9;
2202
2203 rdev = conf->mirrors[dr].rdev;
2204 addr = r10_bio->devs[0].addr + sect,
2205 ok = sync_page_io(rdev,
2206 addr,
2207 s << 9,
2208 bio->bi_io_vec[idx].bv_page,
2209 READ, false);
2210 if (ok) {
2211 rdev = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = sync_page_io(rdev,
2214 addr,
2215 s << 9,
2216 bio->bi_io_vec[idx].bv_page,
2217 WRITE, false);
2218 if (!ok) {
2219 set_bit(WriteErrorSeen, &rdev->flags);
2220 if (!test_and_set_bit(WantReplacement,
2221 &rdev->flags))
2222 set_bit(MD_RECOVERY_NEEDED,
2223 &rdev->mddev->recovery);
2224 }
2225 }
2226 if (!ok) {
2227 /* We don't worry if we cannot set a bad block -
2228 * it really is bad so there is no loss in not
2229 * recording it yet
2230 */
2231 rdev_set_badblocks(rdev, addr, s, 0);
2232
2233 if (rdev != conf->mirrors[dw].rdev) {
2234 /* need bad block on destination too */
2235 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2236 addr = r10_bio->devs[1].addr + sect;
2237 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2238 if (!ok) {
2239 /* just abort the recovery */
2240 printk(KERN_NOTICE
2241 "md/raid10:%s: recovery aborted"
2242 " due to read error\n",
2243 mdname(mddev));
2244
2245 conf->mirrors[dw].recovery_disabled
2246 = mddev->recovery_disabled;
2247 set_bit(MD_RECOVERY_INTR,
2248 &mddev->recovery);
2249 break;
2250 }
2251 }
2252 }
2253
2254 sectors -= s;
2255 sect += s;
2256 idx++;
2257 }
2258 }
2259
2260 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2261 {
2262 struct r10conf *conf = mddev->private;
2263 int d;
2264 struct bio *wbio, *wbio2;
2265
2266 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2267 fix_recovery_read_error(r10_bio);
2268 end_sync_request(r10_bio);
2269 return;
2270 }
2271
2272 /*
2273 * share the pages with the first bio
2274 * and submit the write request
2275 */
2276 d = r10_bio->devs[1].devnum;
2277 wbio = r10_bio->devs[1].bio;
2278 wbio2 = r10_bio->devs[1].repl_bio;
2279 /* Need to test wbio2->bi_end_io before we call
2280 * generic_make_request as if the former is NULL,
2281 * the latter is free to free wbio2.
2282 */
2283 if (wbio2 && !wbio2->bi_end_io)
2284 wbio2 = NULL;
2285 if (wbio->bi_end_io) {
2286 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2287 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2288 generic_make_request(wbio);
2289 }
2290 if (wbio2) {
2291 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2292 md_sync_acct(conf->mirrors[d].replacement->bdev,
2293 bio_sectors(wbio2));
2294 generic_make_request(wbio2);
2295 }
2296 }
2297
2298
2299 /*
2300 * Used by fix_read_error() to decay the per rdev read_errors.
2301 * We halve the read error count for every hour that has elapsed
2302 * since the last recorded read error.
2303 *
2304 */
2305 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2306 {
2307 struct timespec cur_time_mon;
2308 unsigned long hours_since_last;
2309 unsigned int read_errors = atomic_read(&rdev->read_errors);
2310
2311 ktime_get_ts(&cur_time_mon);
2312
2313 if (rdev->last_read_error.tv_sec == 0 &&
2314 rdev->last_read_error.tv_nsec == 0) {
2315 /* first time we've seen a read error */
2316 rdev->last_read_error = cur_time_mon;
2317 return;
2318 }
2319
2320 hours_since_last = (cur_time_mon.tv_sec -
2321 rdev->last_read_error.tv_sec) / 3600;
2322
2323 rdev->last_read_error = cur_time_mon;
2324
2325 /*
2326 * if hours_since_last is > the number of bits in read_errors
2327 * just set read errors to 0. We do this to avoid
2328 * overflowing the shift of read_errors by hours_since_last.
2329 */
2330 if (hours_since_last >= 8 * sizeof(read_errors))
2331 atomic_set(&rdev->read_errors, 0);
2332 else
2333 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2334 }
2335
2336 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2337 int sectors, struct page *page, int rw)
2338 {
2339 sector_t first_bad;
2340 int bad_sectors;
2341
2342 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2343 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2344 return -1;
2345 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2346 /* success */
2347 return 1;
2348 if (rw == WRITE) {
2349 set_bit(WriteErrorSeen, &rdev->flags);
2350 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2351 set_bit(MD_RECOVERY_NEEDED,
2352 &rdev->mddev->recovery);
2353 }
2354 /* need to record an error - either for the block or the device */
2355 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2356 md_error(rdev->mddev, rdev);
2357 return 0;
2358 }
2359
2360 /*
2361 * This is a kernel thread which:
2362 *
2363 * 1. Retries failed read operations on working mirrors.
2364 * 2. Updates the raid superblock when problems encounter.
2365 * 3. Performs writes following reads for array synchronising.
2366 */
2367
2368 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2369 {
2370 int sect = 0; /* Offset from r10_bio->sector */
2371 int sectors = r10_bio->sectors;
2372 struct md_rdev*rdev;
2373 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2374 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2375
2376 /* still own a reference to this rdev, so it cannot
2377 * have been cleared recently.
2378 */
2379 rdev = conf->mirrors[d].rdev;
2380
2381 if (test_bit(Faulty, &rdev->flags))
2382 /* drive has already been failed, just ignore any
2383 more fix_read_error() attempts */
2384 return;
2385
2386 check_decay_read_errors(mddev, rdev);
2387 atomic_inc(&rdev->read_errors);
2388 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2389 char b[BDEVNAME_SIZE];
2390 bdevname(rdev->bdev, b);
2391
2392 printk(KERN_NOTICE
2393 "md/raid10:%s: %s: Raid device exceeded "
2394 "read_error threshold [cur %d:max %d]\n",
2395 mdname(mddev), b,
2396 atomic_read(&rdev->read_errors), max_read_errors);
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: %s: Failing raid device\n",
2399 mdname(mddev), b);
2400 md_error(mddev, conf->mirrors[d].rdev);
2401 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2402 return;
2403 }
2404
2405 while(sectors) {
2406 int s = sectors;
2407 int sl = r10_bio->read_slot;
2408 int success = 0;
2409 int start;
2410
2411 if (s > (PAGE_SIZE>>9))
2412 s = PAGE_SIZE >> 9;
2413
2414 rcu_read_lock();
2415 do {
2416 sector_t first_bad;
2417 int bad_sectors;
2418
2419 d = r10_bio->devs[sl].devnum;
2420 rdev = rcu_dereference(conf->mirrors[d].rdev);
2421 if (rdev &&
2422 !test_bit(Unmerged, &rdev->flags) &&
2423 test_bit(In_sync, &rdev->flags) &&
2424 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2425 &first_bad, &bad_sectors) == 0) {
2426 atomic_inc(&rdev->nr_pending);
2427 rcu_read_unlock();
2428 success = sync_page_io(rdev,
2429 r10_bio->devs[sl].addr +
2430 sect,
2431 s<<9,
2432 conf->tmppage, READ, false);
2433 rdev_dec_pending(rdev, mddev);
2434 rcu_read_lock();
2435 if (success)
2436 break;
2437 }
2438 sl++;
2439 if (sl == conf->copies)
2440 sl = 0;
2441 } while (!success && sl != r10_bio->read_slot);
2442 rcu_read_unlock();
2443
2444 if (!success) {
2445 /* Cannot read from anywhere, just mark the block
2446 * as bad on the first device to discourage future
2447 * reads.
2448 */
2449 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2450 rdev = conf->mirrors[dn].rdev;
2451
2452 if (!rdev_set_badblocks(
2453 rdev,
2454 r10_bio->devs[r10_bio->read_slot].addr
2455 + sect,
2456 s, 0)) {
2457 md_error(mddev, rdev);
2458 r10_bio->devs[r10_bio->read_slot].bio
2459 = IO_BLOCKED;
2460 }
2461 break;
2462 }
2463
2464 start = sl;
2465 /* write it back and re-read */
2466 rcu_read_lock();
2467 while (sl != r10_bio->read_slot) {
2468 char b[BDEVNAME_SIZE];
2469
2470 if (sl==0)
2471 sl = conf->copies;
2472 sl--;
2473 d = r10_bio->devs[sl].devnum;
2474 rdev = rcu_dereference(conf->mirrors[d].rdev);
2475 if (!rdev ||
2476 test_bit(Unmerged, &rdev->flags) ||
2477 !test_bit(In_sync, &rdev->flags))
2478 continue;
2479
2480 atomic_inc(&rdev->nr_pending);
2481 rcu_read_unlock();
2482 if (r10_sync_page_io(rdev,
2483 r10_bio->devs[sl].addr +
2484 sect,
2485 s, conf->tmppage, WRITE)
2486 == 0) {
2487 /* Well, this device is dead */
2488 printk(KERN_NOTICE
2489 "md/raid10:%s: read correction "
2490 "write failed"
2491 " (%d sectors at %llu on %s)\n",
2492 mdname(mddev), s,
2493 (unsigned long long)(
2494 sect +
2495 choose_data_offset(r10_bio,
2496 rdev)),
2497 bdevname(rdev->bdev, b));
2498 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2499 "drive\n",
2500 mdname(mddev),
2501 bdevname(rdev->bdev, b));
2502 }
2503 rdev_dec_pending(rdev, mddev);
2504 rcu_read_lock();
2505 }
2506 sl = start;
2507 while (sl != r10_bio->read_slot) {
2508 char b[BDEVNAME_SIZE];
2509
2510 if (sl==0)
2511 sl = conf->copies;
2512 sl--;
2513 d = r10_bio->devs[sl].devnum;
2514 rdev = rcu_dereference(conf->mirrors[d].rdev);
2515 if (!rdev ||
2516 !test_bit(In_sync, &rdev->flags))
2517 continue;
2518
2519 atomic_inc(&rdev->nr_pending);
2520 rcu_read_unlock();
2521 switch (r10_sync_page_io(rdev,
2522 r10_bio->devs[sl].addr +
2523 sect,
2524 s, conf->tmppage,
2525 READ)) {
2526 case 0:
2527 /* Well, this device is dead */
2528 printk(KERN_NOTICE
2529 "md/raid10:%s: unable to read back "
2530 "corrected sectors"
2531 " (%d sectors at %llu on %s)\n",
2532 mdname(mddev), s,
2533 (unsigned long long)(
2534 sect +
2535 choose_data_offset(r10_bio, rdev)),
2536 bdevname(rdev->bdev, b));
2537 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2538 "drive\n",
2539 mdname(mddev),
2540 bdevname(rdev->bdev, b));
2541 break;
2542 case 1:
2543 printk(KERN_INFO
2544 "md/raid10:%s: read error corrected"
2545 " (%d sectors at %llu on %s)\n",
2546 mdname(mddev), s,
2547 (unsigned long long)(
2548 sect +
2549 choose_data_offset(r10_bio, rdev)),
2550 bdevname(rdev->bdev, b));
2551 atomic_add(s, &rdev->corrected_errors);
2552 }
2553
2554 rdev_dec_pending(rdev, mddev);
2555 rcu_read_lock();
2556 }
2557 rcu_read_unlock();
2558
2559 sectors -= s;
2560 sect += s;
2561 }
2562 }
2563
2564 static int narrow_write_error(struct r10bio *r10_bio, int i)
2565 {
2566 struct bio *bio = r10_bio->master_bio;
2567 struct mddev *mddev = r10_bio->mddev;
2568 struct r10conf *conf = mddev->private;
2569 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2570 /* bio has the data to be written to slot 'i' where
2571 * we just recently had a write error.
2572 * We repeatedly clone the bio and trim down to one block,
2573 * then try the write. Where the write fails we record
2574 * a bad block.
2575 * It is conceivable that the bio doesn't exactly align with
2576 * blocks. We must handle this.
2577 *
2578 * We currently own a reference to the rdev.
2579 */
2580
2581 int block_sectors;
2582 sector_t sector;
2583 int sectors;
2584 int sect_to_write = r10_bio->sectors;
2585 int ok = 1;
2586
2587 if (rdev->badblocks.shift < 0)
2588 return 0;
2589
2590 block_sectors = 1 << rdev->badblocks.shift;
2591 sector = r10_bio->sector;
2592 sectors = ((r10_bio->sector + block_sectors)
2593 & ~(sector_t)(block_sectors - 1))
2594 - sector;
2595
2596 while (sect_to_write) {
2597 struct bio *wbio;
2598 if (sectors > sect_to_write)
2599 sectors = sect_to_write;
2600 /* Write at 'sector' for 'sectors' */
2601 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2602 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2603 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2604 choose_data_offset(r10_bio, rdev) +
2605 (sector - r10_bio->sector));
2606 wbio->bi_bdev = rdev->bdev;
2607 if (submit_bio_wait(WRITE, wbio) == 0)
2608 /* Failure! */
2609 ok = rdev_set_badblocks(rdev, sector,
2610 sectors, 0)
2611 && ok;
2612
2613 bio_put(wbio);
2614 sect_to_write -= sectors;
2615 sector += sectors;
2616 sectors = block_sectors;
2617 }
2618 return ok;
2619 }
2620
2621 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2622 {
2623 int slot = r10_bio->read_slot;
2624 struct bio *bio;
2625 struct r10conf *conf = mddev->private;
2626 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2627 char b[BDEVNAME_SIZE];
2628 unsigned long do_sync;
2629 int max_sectors;
2630
2631 /* we got a read error. Maybe the drive is bad. Maybe just
2632 * the block and we can fix it.
2633 * We freeze all other IO, and try reading the block from
2634 * other devices. When we find one, we re-write
2635 * and check it that fixes the read error.
2636 * This is all done synchronously while the array is
2637 * frozen.
2638 */
2639 bio = r10_bio->devs[slot].bio;
2640 bdevname(bio->bi_bdev, b);
2641 bio_put(bio);
2642 r10_bio->devs[slot].bio = NULL;
2643
2644 if (mddev->ro == 0) {
2645 freeze_array(conf, 1);
2646 fix_read_error(conf, mddev, r10_bio);
2647 unfreeze_array(conf);
2648 } else
2649 r10_bio->devs[slot].bio = IO_BLOCKED;
2650
2651 rdev_dec_pending(rdev, mddev);
2652
2653 read_more:
2654 rdev = read_balance(conf, r10_bio, &max_sectors);
2655 if (rdev == NULL) {
2656 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2657 " read error for block %llu\n",
2658 mdname(mddev), b,
2659 (unsigned long long)r10_bio->sector);
2660 raid_end_bio_io(r10_bio);
2661 return;
2662 }
2663
2664 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2665 slot = r10_bio->read_slot;
2666 printk_ratelimited(
2667 KERN_ERR
2668 "md/raid10:%s: %s: redirecting "
2669 "sector %llu to another mirror\n",
2670 mdname(mddev),
2671 bdevname(rdev->bdev, b),
2672 (unsigned long long)r10_bio->sector);
2673 bio = bio_clone_mddev(r10_bio->master_bio,
2674 GFP_NOIO, mddev);
2675 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2676 r10_bio->devs[slot].bio = bio;
2677 r10_bio->devs[slot].rdev = rdev;
2678 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2679 + choose_data_offset(r10_bio, rdev);
2680 bio->bi_bdev = rdev->bdev;
2681 bio->bi_rw = READ | do_sync;
2682 bio->bi_private = r10_bio;
2683 bio->bi_end_io = raid10_end_read_request;
2684 if (max_sectors < r10_bio->sectors) {
2685 /* Drat - have to split this up more */
2686 struct bio *mbio = r10_bio->master_bio;
2687 int sectors_handled =
2688 r10_bio->sector + max_sectors
2689 - mbio->bi_iter.bi_sector;
2690 r10_bio->sectors = max_sectors;
2691 spin_lock_irq(&conf->device_lock);
2692 if (mbio->bi_phys_segments == 0)
2693 mbio->bi_phys_segments = 2;
2694 else
2695 mbio->bi_phys_segments++;
2696 spin_unlock_irq(&conf->device_lock);
2697 generic_make_request(bio);
2698
2699 r10_bio = mempool_alloc(conf->r10bio_pool,
2700 GFP_NOIO);
2701 r10_bio->master_bio = mbio;
2702 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2703 r10_bio->state = 0;
2704 set_bit(R10BIO_ReadError,
2705 &r10_bio->state);
2706 r10_bio->mddev = mddev;
2707 r10_bio->sector = mbio->bi_iter.bi_sector
2708 + sectors_handled;
2709
2710 goto read_more;
2711 } else
2712 generic_make_request(bio);
2713 }
2714
2715 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2716 {
2717 /* Some sort of write request has finished and it
2718 * succeeded in writing where we thought there was a
2719 * bad block. So forget the bad block.
2720 * Or possibly if failed and we need to record
2721 * a bad block.
2722 */
2723 int m;
2724 struct md_rdev *rdev;
2725
2726 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2727 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2728 for (m = 0; m < conf->copies; m++) {
2729 int dev = r10_bio->devs[m].devnum;
2730 rdev = conf->mirrors[dev].rdev;
2731 if (r10_bio->devs[m].bio == NULL)
2732 continue;
2733 if (test_bit(BIO_UPTODATE,
2734 &r10_bio->devs[m].bio->bi_flags)) {
2735 rdev_clear_badblocks(
2736 rdev,
2737 r10_bio->devs[m].addr,
2738 r10_bio->sectors, 0);
2739 } else {
2740 if (!rdev_set_badblocks(
2741 rdev,
2742 r10_bio->devs[m].addr,
2743 r10_bio->sectors, 0))
2744 md_error(conf->mddev, rdev);
2745 }
2746 rdev = conf->mirrors[dev].replacement;
2747 if (r10_bio->devs[m].repl_bio == NULL)
2748 continue;
2749 if (test_bit(BIO_UPTODATE,
2750 &r10_bio->devs[m].repl_bio->bi_flags)) {
2751 rdev_clear_badblocks(
2752 rdev,
2753 r10_bio->devs[m].addr,
2754 r10_bio->sectors, 0);
2755 } else {
2756 if (!rdev_set_badblocks(
2757 rdev,
2758 r10_bio->devs[m].addr,
2759 r10_bio->sectors, 0))
2760 md_error(conf->mddev, rdev);
2761 }
2762 }
2763 put_buf(r10_bio);
2764 } else {
2765 for (m = 0; m < conf->copies; m++) {
2766 int dev = r10_bio->devs[m].devnum;
2767 struct bio *bio = r10_bio->devs[m].bio;
2768 rdev = conf->mirrors[dev].rdev;
2769 if (bio == IO_MADE_GOOD) {
2770 rdev_clear_badblocks(
2771 rdev,
2772 r10_bio->devs[m].addr,
2773 r10_bio->sectors, 0);
2774 rdev_dec_pending(rdev, conf->mddev);
2775 } else if (bio != NULL &&
2776 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2777 if (!narrow_write_error(r10_bio, m)) {
2778 md_error(conf->mddev, rdev);
2779 set_bit(R10BIO_Degraded,
2780 &r10_bio->state);
2781 }
2782 rdev_dec_pending(rdev, conf->mddev);
2783 }
2784 bio = r10_bio->devs[m].repl_bio;
2785 rdev = conf->mirrors[dev].replacement;
2786 if (rdev && bio == IO_MADE_GOOD) {
2787 rdev_clear_badblocks(
2788 rdev,
2789 r10_bio->devs[m].addr,
2790 r10_bio->sectors, 0);
2791 rdev_dec_pending(rdev, conf->mddev);
2792 }
2793 }
2794 if (test_bit(R10BIO_WriteError,
2795 &r10_bio->state))
2796 close_write(r10_bio);
2797 raid_end_bio_io(r10_bio);
2798 }
2799 }
2800
2801 static void raid10d(struct md_thread *thread)
2802 {
2803 struct mddev *mddev = thread->mddev;
2804 struct r10bio *r10_bio;
2805 unsigned long flags;
2806 struct r10conf *conf = mddev->private;
2807 struct list_head *head = &conf->retry_list;
2808 struct blk_plug plug;
2809
2810 md_check_recovery(mddev);
2811
2812 blk_start_plug(&plug);
2813 for (;;) {
2814
2815 flush_pending_writes(conf);
2816
2817 spin_lock_irqsave(&conf->device_lock, flags);
2818 if (list_empty(head)) {
2819 spin_unlock_irqrestore(&conf->device_lock, flags);
2820 break;
2821 }
2822 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2823 list_del(head->prev);
2824 conf->nr_queued--;
2825 spin_unlock_irqrestore(&conf->device_lock, flags);
2826
2827 mddev = r10_bio->mddev;
2828 conf = mddev->private;
2829 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2830 test_bit(R10BIO_WriteError, &r10_bio->state))
2831 handle_write_completed(conf, r10_bio);
2832 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2833 reshape_request_write(mddev, r10_bio);
2834 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2835 sync_request_write(mddev, r10_bio);
2836 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2837 recovery_request_write(mddev, r10_bio);
2838 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2839 handle_read_error(mddev, r10_bio);
2840 else {
2841 /* just a partial read to be scheduled from a
2842 * separate context
2843 */
2844 int slot = r10_bio->read_slot;
2845 generic_make_request(r10_bio->devs[slot].bio);
2846 }
2847
2848 cond_resched();
2849 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2850 md_check_recovery(mddev);
2851 }
2852 blk_finish_plug(&plug);
2853 }
2854
2855
2856 static int init_resync(struct r10conf *conf)
2857 {
2858 int buffs;
2859 int i;
2860
2861 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2862 BUG_ON(conf->r10buf_pool);
2863 conf->have_replacement = 0;
2864 for (i = 0; i < conf->geo.raid_disks; i++)
2865 if (conf->mirrors[i].replacement)
2866 conf->have_replacement = 1;
2867 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2868 if (!conf->r10buf_pool)
2869 return -ENOMEM;
2870 conf->next_resync = 0;
2871 return 0;
2872 }
2873
2874 /*
2875 * perform a "sync" on one "block"
2876 *
2877 * We need to make sure that no normal I/O request - particularly write
2878 * requests - conflict with active sync requests.
2879 *
2880 * This is achieved by tracking pending requests and a 'barrier' concept
2881 * that can be installed to exclude normal IO requests.
2882 *
2883 * Resync and recovery are handled very differently.
2884 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2885 *
2886 * For resync, we iterate over virtual addresses, read all copies,
2887 * and update if there are differences. If only one copy is live,
2888 * skip it.
2889 * For recovery, we iterate over physical addresses, read a good
2890 * value for each non-in_sync drive, and over-write.
2891 *
2892 * So, for recovery we may have several outstanding complex requests for a
2893 * given address, one for each out-of-sync device. We model this by allocating
2894 * a number of r10_bio structures, one for each out-of-sync device.
2895 * As we setup these structures, we collect all bio's together into a list
2896 * which we then process collectively to add pages, and then process again
2897 * to pass to generic_make_request.
2898 *
2899 * The r10_bio structures are linked using a borrowed master_bio pointer.
2900 * This link is counted in ->remaining. When the r10_bio that points to NULL
2901 * has its remaining count decremented to 0, the whole complex operation
2902 * is complete.
2903 *
2904 */
2905
2906 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2907 int *skipped, int go_faster)
2908 {
2909 struct r10conf *conf = mddev->private;
2910 struct r10bio *r10_bio;
2911 struct bio *biolist = NULL, *bio;
2912 sector_t max_sector, nr_sectors;
2913 int i;
2914 int max_sync;
2915 sector_t sync_blocks;
2916 sector_t sectors_skipped = 0;
2917 int chunks_skipped = 0;
2918 sector_t chunk_mask = conf->geo.chunk_mask;
2919
2920 if (!conf->r10buf_pool)
2921 if (init_resync(conf))
2922 return 0;
2923
2924 /*
2925 * Allow skipping a full rebuild for incremental assembly
2926 * of a clean array, like RAID1 does.
2927 */
2928 if (mddev->bitmap == NULL &&
2929 mddev->recovery_cp == MaxSector &&
2930 mddev->reshape_position == MaxSector &&
2931 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2932 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2933 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2934 conf->fullsync == 0) {
2935 *skipped = 1;
2936 return mddev->dev_sectors - sector_nr;
2937 }
2938
2939 skipped:
2940 max_sector = mddev->dev_sectors;
2941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2943 max_sector = mddev->resync_max_sectors;
2944 if (sector_nr >= max_sector) {
2945 /* If we aborted, we need to abort the
2946 * sync on the 'current' bitmap chucks (there can
2947 * be several when recovering multiple devices).
2948 * as we may have started syncing it but not finished.
2949 * We can find the current address in
2950 * mddev->curr_resync, but for recovery,
2951 * we need to convert that to several
2952 * virtual addresses.
2953 */
2954 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955 end_reshape(conf);
2956 return 0;
2957 }
2958
2959 if (mddev->curr_resync < max_sector) { /* aborted */
2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2961 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2962 &sync_blocks, 1);
2963 else for (i = 0; i < conf->geo.raid_disks; i++) {
2964 sector_t sect =
2965 raid10_find_virt(conf, mddev->curr_resync, i);
2966 bitmap_end_sync(mddev->bitmap, sect,
2967 &sync_blocks, 1);
2968 }
2969 } else {
2970 /* completed sync */
2971 if ((!mddev->bitmap || conf->fullsync)
2972 && conf->have_replacement
2973 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2974 /* Completed a full sync so the replacements
2975 * are now fully recovered.
2976 */
2977 for (i = 0; i < conf->geo.raid_disks; i++)
2978 if (conf->mirrors[i].replacement)
2979 conf->mirrors[i].replacement
2980 ->recovery_offset
2981 = MaxSector;
2982 }
2983 conf->fullsync = 0;
2984 }
2985 bitmap_close_sync(mddev->bitmap);
2986 close_sync(conf);
2987 *skipped = 1;
2988 return sectors_skipped;
2989 }
2990
2991 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2992 return reshape_request(mddev, sector_nr, skipped);
2993
2994 if (chunks_skipped >= conf->geo.raid_disks) {
2995 /* if there has been nothing to do on any drive,
2996 * then there is nothing to do at all..
2997 */
2998 *skipped = 1;
2999 return (max_sector - sector_nr) + sectors_skipped;
3000 }
3001
3002 if (max_sector > mddev->resync_max)
3003 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3004
3005 /* make sure whole request will fit in a chunk - if chunks
3006 * are meaningful
3007 */
3008 if (conf->geo.near_copies < conf->geo.raid_disks &&
3009 max_sector > (sector_nr | chunk_mask))
3010 max_sector = (sector_nr | chunk_mask) + 1;
3011 /*
3012 * If there is non-resync activity waiting for us then
3013 * put in a delay to throttle resync.
3014 */
3015 if (!go_faster && conf->nr_waiting)
3016 msleep_interruptible(1000);
3017
3018 /* Again, very different code for resync and recovery.
3019 * Both must result in an r10bio with a list of bios that
3020 * have bi_end_io, bi_sector, bi_bdev set,
3021 * and bi_private set to the r10bio.
3022 * For recovery, we may actually create several r10bios
3023 * with 2 bios in each, that correspond to the bios in the main one.
3024 * In this case, the subordinate r10bios link back through a
3025 * borrowed master_bio pointer, and the counter in the master
3026 * includes a ref from each subordinate.
3027 */
3028 /* First, we decide what to do and set ->bi_end_io
3029 * To end_sync_read if we want to read, and
3030 * end_sync_write if we will want to write.
3031 */
3032
3033 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3034 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3035 /* recovery... the complicated one */
3036 int j;
3037 r10_bio = NULL;
3038
3039 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3040 int still_degraded;
3041 struct r10bio *rb2;
3042 sector_t sect;
3043 int must_sync;
3044 int any_working;
3045 struct raid10_info *mirror = &conf->mirrors[i];
3046
3047 if ((mirror->rdev == NULL ||
3048 test_bit(In_sync, &mirror->rdev->flags))
3049 &&
3050 (mirror->replacement == NULL ||
3051 test_bit(Faulty,
3052 &mirror->replacement->flags)))
3053 continue;
3054
3055 still_degraded = 0;
3056 /* want to reconstruct this device */
3057 rb2 = r10_bio;
3058 sect = raid10_find_virt(conf, sector_nr, i);
3059 if (sect >= mddev->resync_max_sectors) {
3060 /* last stripe is not complete - don't
3061 * try to recover this sector.
3062 */
3063 continue;
3064 }
3065 /* Unless we are doing a full sync, or a replacement
3066 * we only need to recover the block if it is set in
3067 * the bitmap
3068 */
3069 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3070 &sync_blocks, 1);
3071 if (sync_blocks < max_sync)
3072 max_sync = sync_blocks;
3073 if (!must_sync &&
3074 mirror->replacement == NULL &&
3075 !conf->fullsync) {
3076 /* yep, skip the sync_blocks here, but don't assume
3077 * that there will never be anything to do here
3078 */
3079 chunks_skipped = -1;
3080 continue;
3081 }
3082
3083 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3084 raise_barrier(conf, rb2 != NULL);
3085 atomic_set(&r10_bio->remaining, 0);
3086
3087 r10_bio->master_bio = (struct bio*)rb2;
3088 if (rb2)
3089 atomic_inc(&rb2->remaining);
3090 r10_bio->mddev = mddev;
3091 set_bit(R10BIO_IsRecover, &r10_bio->state);
3092 r10_bio->sector = sect;
3093
3094 raid10_find_phys(conf, r10_bio);
3095
3096 /* Need to check if the array will still be
3097 * degraded
3098 */
3099 for (j = 0; j < conf->geo.raid_disks; j++)
3100 if (conf->mirrors[j].rdev == NULL ||
3101 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3102 still_degraded = 1;
3103 break;
3104 }
3105
3106 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3107 &sync_blocks, still_degraded);
3108
3109 any_working = 0;
3110 for (j=0; j<conf->copies;j++) {
3111 int k;
3112 int d = r10_bio->devs[j].devnum;
3113 sector_t from_addr, to_addr;
3114 struct md_rdev *rdev;
3115 sector_t sector, first_bad;
3116 int bad_sectors;
3117 if (!conf->mirrors[d].rdev ||
3118 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3119 continue;
3120 /* This is where we read from */
3121 any_working = 1;
3122 rdev = conf->mirrors[d].rdev;
3123 sector = r10_bio->devs[j].addr;
3124
3125 if (is_badblock(rdev, sector, max_sync,
3126 &first_bad, &bad_sectors)) {
3127 if (first_bad > sector)
3128 max_sync = first_bad - sector;
3129 else {
3130 bad_sectors -= (sector
3131 - first_bad);
3132 if (max_sync > bad_sectors)
3133 max_sync = bad_sectors;
3134 continue;
3135 }
3136 }
3137 bio = r10_bio->devs[0].bio;
3138 bio_reset(bio);
3139 bio->bi_next = biolist;
3140 biolist = bio;
3141 bio->bi_private = r10_bio;
3142 bio->bi_end_io = end_sync_read;
3143 bio->bi_rw = READ;
3144 from_addr = r10_bio->devs[j].addr;
3145 bio->bi_iter.bi_sector = from_addr +
3146 rdev->data_offset;
3147 bio->bi_bdev = rdev->bdev;
3148 atomic_inc(&rdev->nr_pending);
3149 /* and we write to 'i' (if not in_sync) */
3150
3151 for (k=0; k<conf->copies; k++)
3152 if (r10_bio->devs[k].devnum == i)
3153 break;
3154 BUG_ON(k == conf->copies);
3155 to_addr = r10_bio->devs[k].addr;
3156 r10_bio->devs[0].devnum = d;
3157 r10_bio->devs[0].addr = from_addr;
3158 r10_bio->devs[1].devnum = i;
3159 r10_bio->devs[1].addr = to_addr;
3160
3161 rdev = mirror->rdev;
3162 if (!test_bit(In_sync, &rdev->flags)) {
3163 bio = r10_bio->devs[1].bio;
3164 bio_reset(bio);
3165 bio->bi_next = biolist;
3166 biolist = bio;
3167 bio->bi_private = r10_bio;
3168 bio->bi_end_io = end_sync_write;
3169 bio->bi_rw = WRITE;
3170 bio->bi_iter.bi_sector = to_addr
3171 + rdev->data_offset;
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
3174 } else
3175 r10_bio->devs[1].bio->bi_end_io = NULL;
3176
3177 /* and maybe write to replacement */
3178 bio = r10_bio->devs[1].repl_bio;
3179 if (bio)
3180 bio->bi_end_io = NULL;
3181 rdev = mirror->replacement;
3182 /* Note: if rdev != NULL, then bio
3183 * cannot be NULL as r10buf_pool_alloc will
3184 * have allocated it.
3185 * So the second test here is pointless.
3186 * But it keeps semantic-checkers happy, and
3187 * this comment keeps human reviewers
3188 * happy.
3189 */
3190 if (rdev == NULL || bio == NULL ||
3191 test_bit(Faulty, &rdev->flags))
3192 break;
3193 bio_reset(bio);
3194 bio->bi_next = biolist;
3195 biolist = bio;
3196 bio->bi_private = r10_bio;
3197 bio->bi_end_io = end_sync_write;
3198 bio->bi_rw = WRITE;
3199 bio->bi_iter.bi_sector = to_addr +
3200 rdev->data_offset;
3201 bio->bi_bdev = rdev->bdev;
3202 atomic_inc(&r10_bio->remaining);
3203 break;
3204 }
3205 if (j == conf->copies) {
3206 /* Cannot recover, so abort the recovery or
3207 * record a bad block */
3208 if (any_working) {
3209 /* problem is that there are bad blocks
3210 * on other device(s)
3211 */
3212 int k;
3213 for (k = 0; k < conf->copies; k++)
3214 if (r10_bio->devs[k].devnum == i)
3215 break;
3216 if (!test_bit(In_sync,
3217 &mirror->rdev->flags)
3218 && !rdev_set_badblocks(
3219 mirror->rdev,
3220 r10_bio->devs[k].addr,
3221 max_sync, 0))
3222 any_working = 0;
3223 if (mirror->replacement &&
3224 !rdev_set_badblocks(
3225 mirror->replacement,
3226 r10_bio->devs[k].addr,
3227 max_sync, 0))
3228 any_working = 0;
3229 }
3230 if (!any_working) {
3231 if (!test_and_set_bit(MD_RECOVERY_INTR,
3232 &mddev->recovery))
3233 printk(KERN_INFO "md/raid10:%s: insufficient "
3234 "working devices for recovery.\n",
3235 mdname(mddev));
3236 mirror->recovery_disabled
3237 = mddev->recovery_disabled;
3238 }
3239 put_buf(r10_bio);
3240 if (rb2)
3241 atomic_dec(&rb2->remaining);
3242 r10_bio = rb2;
3243 break;
3244 }
3245 }
3246 if (biolist == NULL) {
3247 while (r10_bio) {
3248 struct r10bio *rb2 = r10_bio;
3249 r10_bio = (struct r10bio*) rb2->master_bio;
3250 rb2->master_bio = NULL;
3251 put_buf(rb2);
3252 }
3253 goto giveup;
3254 }
3255 } else {
3256 /* resync. Schedule a read for every block at this virt offset */
3257 int count = 0;
3258
3259 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3260
3261 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3262 &sync_blocks, mddev->degraded) &&
3263 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3264 &mddev->recovery)) {
3265 /* We can skip this block */
3266 *skipped = 1;
3267 return sync_blocks + sectors_skipped;
3268 }
3269 if (sync_blocks < max_sync)
3270 max_sync = sync_blocks;
3271 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3272
3273 r10_bio->mddev = mddev;
3274 atomic_set(&r10_bio->remaining, 0);
3275 raise_barrier(conf, 0);
3276 conf->next_resync = sector_nr;
3277
3278 r10_bio->master_bio = NULL;
3279 r10_bio->sector = sector_nr;
3280 set_bit(R10BIO_IsSync, &r10_bio->state);
3281 raid10_find_phys(conf, r10_bio);
3282 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3283
3284 for (i = 0; i < conf->copies; i++) {
3285 int d = r10_bio->devs[i].devnum;
3286 sector_t first_bad, sector;
3287 int bad_sectors;
3288
3289 if (r10_bio->devs[i].repl_bio)
3290 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3291
3292 bio = r10_bio->devs[i].bio;
3293 bio_reset(bio);
3294 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3295 if (conf->mirrors[d].rdev == NULL ||
3296 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3297 continue;
3298 sector = r10_bio->devs[i].addr;
3299 if (is_badblock(conf->mirrors[d].rdev,
3300 sector, max_sync,
3301 &first_bad, &bad_sectors)) {
3302 if (first_bad > sector)
3303 max_sync = first_bad - sector;
3304 else {
3305 bad_sectors -= (sector - first_bad);
3306 if (max_sync > bad_sectors)
3307 max_sync = bad_sectors;
3308 continue;
3309 }
3310 }
3311 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3312 atomic_inc(&r10_bio->remaining);
3313 bio->bi_next = biolist;
3314 biolist = bio;
3315 bio->bi_private = r10_bio;
3316 bio->bi_end_io = end_sync_read;
3317 bio->bi_rw = READ;
3318 bio->bi_iter.bi_sector = sector +
3319 conf->mirrors[d].rdev->data_offset;
3320 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3321 count++;
3322
3323 if (conf->mirrors[d].replacement == NULL ||
3324 test_bit(Faulty,
3325 &conf->mirrors[d].replacement->flags))
3326 continue;
3327
3328 /* Need to set up for writing to the replacement */
3329 bio = r10_bio->devs[i].repl_bio;
3330 bio_reset(bio);
3331 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3332
3333 sector = r10_bio->devs[i].addr;
3334 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3335 bio->bi_next = biolist;
3336 biolist = bio;
3337 bio->bi_private = r10_bio;
3338 bio->bi_end_io = end_sync_write;
3339 bio->bi_rw = WRITE;
3340 bio->bi_iter.bi_sector = sector +
3341 conf->mirrors[d].replacement->data_offset;
3342 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3343 count++;
3344 }
3345
3346 if (count < 2) {
3347 for (i=0; i<conf->copies; i++) {
3348 int d = r10_bio->devs[i].devnum;
3349 if (r10_bio->devs[i].bio->bi_end_io)
3350 rdev_dec_pending(conf->mirrors[d].rdev,
3351 mddev);
3352 if (r10_bio->devs[i].repl_bio &&
3353 r10_bio->devs[i].repl_bio->bi_end_io)
3354 rdev_dec_pending(
3355 conf->mirrors[d].replacement,
3356 mddev);
3357 }
3358 put_buf(r10_bio);
3359 biolist = NULL;
3360 goto giveup;
3361 }
3362 }
3363
3364 nr_sectors = 0;
3365 if (sector_nr + max_sync < max_sector)
3366 max_sector = sector_nr + max_sync;
3367 do {
3368 struct page *page;
3369 int len = PAGE_SIZE;
3370 if (sector_nr + (len>>9) > max_sector)
3371 len = (max_sector - sector_nr) << 9;
3372 if (len == 0)
3373 break;
3374 for (bio= biolist ; bio ; bio=bio->bi_next) {
3375 struct bio *bio2;
3376 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3377 if (bio_add_page(bio, page, len, 0))
3378 continue;
3379
3380 /* stop here */
3381 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3382 for (bio2 = biolist;
3383 bio2 && bio2 != bio;
3384 bio2 = bio2->bi_next) {
3385 /* remove last page from this bio */
3386 bio2->bi_vcnt--;
3387 bio2->bi_iter.bi_size -= len;
3388 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3389 }
3390 goto bio_full;
3391 }
3392 nr_sectors += len>>9;
3393 sector_nr += len>>9;
3394 } while (biolist->bi_vcnt < RESYNC_PAGES);
3395 bio_full:
3396 r10_bio->sectors = nr_sectors;
3397
3398 while (biolist) {
3399 bio = biolist;
3400 biolist = biolist->bi_next;
3401
3402 bio->bi_next = NULL;
3403 r10_bio = bio->bi_private;
3404 r10_bio->sectors = nr_sectors;
3405
3406 if (bio->bi_end_io == end_sync_read) {
3407 md_sync_acct(bio->bi_bdev, nr_sectors);
3408 set_bit(BIO_UPTODATE, &bio->bi_flags);
3409 generic_make_request(bio);
3410 }
3411 }
3412
3413 if (sectors_skipped)
3414 /* pretend they weren't skipped, it makes
3415 * no important difference in this case
3416 */
3417 md_done_sync(mddev, sectors_skipped, 1);
3418
3419 return sectors_skipped + nr_sectors;
3420 giveup:
3421 /* There is nowhere to write, so all non-sync
3422 * drives must be failed or in resync, all drives
3423 * have a bad block, so try the next chunk...
3424 */
3425 if (sector_nr + max_sync < max_sector)
3426 max_sector = sector_nr + max_sync;
3427
3428 sectors_skipped += (max_sector - sector_nr);
3429 chunks_skipped ++;
3430 sector_nr = max_sector;
3431 goto skipped;
3432 }
3433
3434 static sector_t
3435 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3436 {
3437 sector_t size;
3438 struct r10conf *conf = mddev->private;
3439
3440 if (!raid_disks)
3441 raid_disks = min(conf->geo.raid_disks,
3442 conf->prev.raid_disks);
3443 if (!sectors)
3444 sectors = conf->dev_sectors;
3445
3446 size = sectors >> conf->geo.chunk_shift;
3447 sector_div(size, conf->geo.far_copies);
3448 size = size * raid_disks;
3449 sector_div(size, conf->geo.near_copies);
3450
3451 return size << conf->geo.chunk_shift;
3452 }
3453
3454 static void calc_sectors(struct r10conf *conf, sector_t size)
3455 {
3456 /* Calculate the number of sectors-per-device that will
3457 * actually be used, and set conf->dev_sectors and
3458 * conf->stride
3459 */
3460
3461 size = size >> conf->geo.chunk_shift;
3462 sector_div(size, conf->geo.far_copies);
3463 size = size * conf->geo.raid_disks;
3464 sector_div(size, conf->geo.near_copies);
3465 /* 'size' is now the number of chunks in the array */
3466 /* calculate "used chunks per device" */
3467 size = size * conf->copies;
3468
3469 /* We need to round up when dividing by raid_disks to
3470 * get the stride size.
3471 */
3472 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3473
3474 conf->dev_sectors = size << conf->geo.chunk_shift;
3475
3476 if (conf->geo.far_offset)
3477 conf->geo.stride = 1 << conf->geo.chunk_shift;
3478 else {
3479 sector_div(size, conf->geo.far_copies);
3480 conf->geo.stride = size << conf->geo.chunk_shift;
3481 }
3482 }
3483
3484 enum geo_type {geo_new, geo_old, geo_start};
3485 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3486 {
3487 int nc, fc, fo;
3488 int layout, chunk, disks;
3489 switch (new) {
3490 case geo_old:
3491 layout = mddev->layout;
3492 chunk = mddev->chunk_sectors;
3493 disks = mddev->raid_disks - mddev->delta_disks;
3494 break;
3495 case geo_new:
3496 layout = mddev->new_layout;
3497 chunk = mddev->new_chunk_sectors;
3498 disks = mddev->raid_disks;
3499 break;
3500 default: /* avoid 'may be unused' warnings */
3501 case geo_start: /* new when starting reshape - raid_disks not
3502 * updated yet. */
3503 layout = mddev->new_layout;
3504 chunk = mddev->new_chunk_sectors;
3505 disks = mddev->raid_disks + mddev->delta_disks;
3506 break;
3507 }
3508 if (layout >> 18)
3509 return -1;
3510 if (chunk < (PAGE_SIZE >> 9) ||
3511 !is_power_of_2(chunk))
3512 return -2;
3513 nc = layout & 255;
3514 fc = (layout >> 8) & 255;
3515 fo = layout & (1<<16);
3516 geo->raid_disks = disks;
3517 geo->near_copies = nc;
3518 geo->far_copies = fc;
3519 geo->far_offset = fo;
3520 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3521 geo->chunk_mask = chunk - 1;
3522 geo->chunk_shift = ffz(~chunk);
3523 return nc*fc;
3524 }
3525
3526 static struct r10conf *setup_conf(struct mddev *mddev)
3527 {
3528 struct r10conf *conf = NULL;
3529 int err = -EINVAL;
3530 struct geom geo;
3531 int copies;
3532
3533 copies = setup_geo(&geo, mddev, geo_new);
3534
3535 if (copies == -2) {
3536 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3537 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3538 mdname(mddev), PAGE_SIZE);
3539 goto out;
3540 }
3541
3542 if (copies < 2 || copies > mddev->raid_disks) {
3543 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3544 mdname(mddev), mddev->new_layout);
3545 goto out;
3546 }
3547
3548 err = -ENOMEM;
3549 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3550 if (!conf)
3551 goto out;
3552
3553 /* FIXME calc properly */
3554 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3555 max(0,-mddev->delta_disks)),
3556 GFP_KERNEL);
3557 if (!conf->mirrors)
3558 goto out;
3559
3560 conf->tmppage = alloc_page(GFP_KERNEL);
3561 if (!conf->tmppage)
3562 goto out;
3563
3564 conf->geo = geo;
3565 conf->copies = copies;
3566 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3567 r10bio_pool_free, conf);
3568 if (!conf->r10bio_pool)
3569 goto out;
3570
3571 calc_sectors(conf, mddev->dev_sectors);
3572 if (mddev->reshape_position == MaxSector) {
3573 conf->prev = conf->geo;
3574 conf->reshape_progress = MaxSector;
3575 } else {
3576 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3577 err = -EINVAL;
3578 goto out;
3579 }
3580 conf->reshape_progress = mddev->reshape_position;
3581 if (conf->prev.far_offset)
3582 conf->prev.stride = 1 << conf->prev.chunk_shift;
3583 else
3584 /* far_copies must be 1 */
3585 conf->prev.stride = conf->dev_sectors;
3586 }
3587 spin_lock_init(&conf->device_lock);
3588 INIT_LIST_HEAD(&conf->retry_list);
3589
3590 spin_lock_init(&conf->resync_lock);
3591 init_waitqueue_head(&conf->wait_barrier);
3592
3593 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3594 if (!conf->thread)
3595 goto out;
3596
3597 conf->mddev = mddev;
3598 return conf;
3599
3600 out:
3601 if (err == -ENOMEM)
3602 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3603 mdname(mddev));
3604 if (conf) {
3605 if (conf->r10bio_pool)
3606 mempool_destroy(conf->r10bio_pool);
3607 kfree(conf->mirrors);
3608 safe_put_page(conf->tmppage);
3609 kfree(conf);
3610 }
3611 return ERR_PTR(err);
3612 }
3613
3614 static int run(struct mddev *mddev)
3615 {
3616 struct r10conf *conf;
3617 int i, disk_idx, chunk_size;
3618 struct raid10_info *disk;
3619 struct md_rdev *rdev;
3620 sector_t size;
3621 sector_t min_offset_diff = 0;
3622 int first = 1;
3623 bool discard_supported = false;
3624
3625 if (mddev->private == NULL) {
3626 conf = setup_conf(mddev);
3627 if (IS_ERR(conf))
3628 return PTR_ERR(conf);
3629 mddev->private = conf;
3630 }
3631 conf = mddev->private;
3632 if (!conf)
3633 goto out;
3634
3635 mddev->thread = conf->thread;
3636 conf->thread = NULL;
3637
3638 chunk_size = mddev->chunk_sectors << 9;
3639 if (mddev->queue) {
3640 blk_queue_max_discard_sectors(mddev->queue,
3641 mddev->chunk_sectors);
3642 blk_queue_max_write_same_sectors(mddev->queue, 0);
3643 blk_queue_io_min(mddev->queue, chunk_size);
3644 if (conf->geo.raid_disks % conf->geo.near_copies)
3645 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3646 else
3647 blk_queue_io_opt(mddev->queue, chunk_size *
3648 (conf->geo.raid_disks / conf->geo.near_copies));
3649 }
3650
3651 rdev_for_each(rdev, mddev) {
3652 long long diff;
3653 struct request_queue *q;
3654
3655 disk_idx = rdev->raid_disk;
3656 if (disk_idx < 0)
3657 continue;
3658 if (disk_idx >= conf->geo.raid_disks &&
3659 disk_idx >= conf->prev.raid_disks)
3660 continue;
3661 disk = conf->mirrors + disk_idx;
3662
3663 if (test_bit(Replacement, &rdev->flags)) {
3664 if (disk->replacement)
3665 goto out_free_conf;
3666 disk->replacement = rdev;
3667 } else {
3668 if (disk->rdev)
3669 goto out_free_conf;
3670 disk->rdev = rdev;
3671 }
3672 q = bdev_get_queue(rdev->bdev);
3673 if (q->merge_bvec_fn)
3674 mddev->merge_check_needed = 1;
3675 diff = (rdev->new_data_offset - rdev->data_offset);
3676 if (!mddev->reshape_backwards)
3677 diff = -diff;
3678 if (diff < 0)
3679 diff = 0;
3680 if (first || diff < min_offset_diff)
3681 min_offset_diff = diff;
3682
3683 if (mddev->gendisk)
3684 disk_stack_limits(mddev->gendisk, rdev->bdev,
3685 rdev->data_offset << 9);
3686
3687 disk->head_position = 0;
3688
3689 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3690 discard_supported = true;
3691 }
3692
3693 if (mddev->queue) {
3694 if (discard_supported)
3695 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3696 mddev->queue);
3697 else
3698 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3699 mddev->queue);
3700 }
3701 /* need to check that every block has at least one working mirror */
3702 if (!enough(conf, -1)) {
3703 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3704 mdname(mddev));
3705 goto out_free_conf;
3706 }
3707
3708 if (conf->reshape_progress != MaxSector) {
3709 /* must ensure that shape change is supported */
3710 if (conf->geo.far_copies != 1 &&
3711 conf->geo.far_offset == 0)
3712 goto out_free_conf;
3713 if (conf->prev.far_copies != 1 &&
3714 conf->prev.far_offset == 0)
3715 goto out_free_conf;
3716 }
3717
3718 mddev->degraded = 0;
3719 for (i = 0;
3720 i < conf->geo.raid_disks
3721 || i < conf->prev.raid_disks;
3722 i++) {
3723
3724 disk = conf->mirrors + i;
3725
3726 if (!disk->rdev && disk->replacement) {
3727 /* The replacement is all we have - use it */
3728 disk->rdev = disk->replacement;
3729 disk->replacement = NULL;
3730 clear_bit(Replacement, &disk->rdev->flags);
3731 }
3732
3733 if (!disk->rdev ||
3734 !test_bit(In_sync, &disk->rdev->flags)) {
3735 disk->head_position = 0;
3736 mddev->degraded++;
3737 if (disk->rdev &&
3738 disk->rdev->saved_raid_disk < 0)
3739 conf->fullsync = 1;
3740 }
3741 disk->recovery_disabled = mddev->recovery_disabled - 1;
3742 }
3743
3744 if (mddev->recovery_cp != MaxSector)
3745 printk(KERN_NOTICE "md/raid10:%s: not clean"
3746 " -- starting background reconstruction\n",
3747 mdname(mddev));
3748 printk(KERN_INFO
3749 "md/raid10:%s: active with %d out of %d devices\n",
3750 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3751 conf->geo.raid_disks);
3752 /*
3753 * Ok, everything is just fine now
3754 */
3755 mddev->dev_sectors = conf->dev_sectors;
3756 size = raid10_size(mddev, 0, 0);
3757 md_set_array_sectors(mddev, size);
3758 mddev->resync_max_sectors = size;
3759
3760 if (mddev->queue) {
3761 int stripe = conf->geo.raid_disks *
3762 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3763 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3764 mddev->queue->backing_dev_info.congested_data = mddev;
3765
3766 /* Calculate max read-ahead size.
3767 * We need to readahead at least twice a whole stripe....
3768 * maybe...
3769 */
3770 stripe /= conf->geo.near_copies;
3771 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3772 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3773 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3774 }
3775
3776
3777 if (md_integrity_register(mddev))
3778 goto out_free_conf;
3779
3780 if (conf->reshape_progress != MaxSector) {
3781 unsigned long before_length, after_length;
3782
3783 before_length = ((1 << conf->prev.chunk_shift) *
3784 conf->prev.far_copies);
3785 after_length = ((1 << conf->geo.chunk_shift) *
3786 conf->geo.far_copies);
3787
3788 if (max(before_length, after_length) > min_offset_diff) {
3789 /* This cannot work */
3790 printk("md/raid10: offset difference not enough to continue reshape\n");
3791 goto out_free_conf;
3792 }
3793 conf->offset_diff = min_offset_diff;
3794
3795 conf->reshape_safe = conf->reshape_progress;
3796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3799 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3800 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3801 "reshape");
3802 }
3803
3804 return 0;
3805
3806 out_free_conf:
3807 md_unregister_thread(&mddev->thread);
3808 if (conf->r10bio_pool)
3809 mempool_destroy(conf->r10bio_pool);
3810 safe_put_page(conf->tmppage);
3811 kfree(conf->mirrors);
3812 kfree(conf);
3813 mddev->private = NULL;
3814 out:
3815 return -EIO;
3816 }
3817
3818 static int stop(struct mddev *mddev)
3819 {
3820 struct r10conf *conf = mddev->private;
3821
3822 raise_barrier(conf, 0);
3823 lower_barrier(conf);
3824
3825 md_unregister_thread(&mddev->thread);
3826 if (mddev->queue)
3827 /* the unplug fn references 'conf'*/
3828 blk_sync_queue(mddev->queue);
3829
3830 if (conf->r10bio_pool)
3831 mempool_destroy(conf->r10bio_pool);
3832 safe_put_page(conf->tmppage);
3833 kfree(conf->mirrors);
3834 kfree(conf);
3835 mddev->private = NULL;
3836 return 0;
3837 }
3838
3839 static void raid10_quiesce(struct mddev *mddev, int state)
3840 {
3841 struct r10conf *conf = mddev->private;
3842
3843 switch(state) {
3844 case 1:
3845 raise_barrier(conf, 0);
3846 break;
3847 case 0:
3848 lower_barrier(conf);
3849 break;
3850 }
3851 }
3852
3853 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3854 {
3855 /* Resize of 'far' arrays is not supported.
3856 * For 'near' and 'offset' arrays we can set the
3857 * number of sectors used to be an appropriate multiple
3858 * of the chunk size.
3859 * For 'offset', this is far_copies*chunksize.
3860 * For 'near' the multiplier is the LCM of
3861 * near_copies and raid_disks.
3862 * So if far_copies > 1 && !far_offset, fail.
3863 * Else find LCM(raid_disks, near_copy)*far_copies and
3864 * multiply by chunk_size. Then round to this number.
3865 * This is mostly done by raid10_size()
3866 */
3867 struct r10conf *conf = mddev->private;
3868 sector_t oldsize, size;
3869
3870 if (mddev->reshape_position != MaxSector)
3871 return -EBUSY;
3872
3873 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3874 return -EINVAL;
3875
3876 oldsize = raid10_size(mddev, 0, 0);
3877 size = raid10_size(mddev, sectors, 0);
3878 if (mddev->external_size &&
3879 mddev->array_sectors > size)
3880 return -EINVAL;
3881 if (mddev->bitmap) {
3882 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3883 if (ret)
3884 return ret;
3885 }
3886 md_set_array_sectors(mddev, size);
3887 set_capacity(mddev->gendisk, mddev->array_sectors);
3888 revalidate_disk(mddev->gendisk);
3889 if (sectors > mddev->dev_sectors &&
3890 mddev->recovery_cp > oldsize) {
3891 mddev->recovery_cp = oldsize;
3892 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3893 }
3894 calc_sectors(conf, sectors);
3895 mddev->dev_sectors = conf->dev_sectors;
3896 mddev->resync_max_sectors = size;
3897 return 0;
3898 }
3899
3900 static void *raid10_takeover_raid0(struct mddev *mddev)
3901 {
3902 struct md_rdev *rdev;
3903 struct r10conf *conf;
3904
3905 if (mddev->degraded > 0) {
3906 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3907 mdname(mddev));
3908 return ERR_PTR(-EINVAL);
3909 }
3910
3911 /* Set new parameters */
3912 mddev->new_level = 10;
3913 /* new layout: far_copies = 1, near_copies = 2 */
3914 mddev->new_layout = (1<<8) + 2;
3915 mddev->new_chunk_sectors = mddev->chunk_sectors;
3916 mddev->delta_disks = mddev->raid_disks;
3917 mddev->raid_disks *= 2;
3918 /* make sure it will be not marked as dirty */
3919 mddev->recovery_cp = MaxSector;
3920
3921 conf = setup_conf(mddev);
3922 if (!IS_ERR(conf)) {
3923 rdev_for_each(rdev, mddev)
3924 if (rdev->raid_disk >= 0)
3925 rdev->new_raid_disk = rdev->raid_disk * 2;
3926 conf->barrier = 1;
3927 }
3928
3929 return conf;
3930 }
3931
3932 static void *raid10_takeover(struct mddev *mddev)
3933 {
3934 struct r0conf *raid0_conf;
3935
3936 /* raid10 can take over:
3937 * raid0 - providing it has only two drives
3938 */
3939 if (mddev->level == 0) {
3940 /* for raid0 takeover only one zone is supported */
3941 raid0_conf = mddev->private;
3942 if (raid0_conf->nr_strip_zones > 1) {
3943 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3944 " with more than one zone.\n",
3945 mdname(mddev));
3946 return ERR_PTR(-EINVAL);
3947 }
3948 return raid10_takeover_raid0(mddev);
3949 }
3950 return ERR_PTR(-EINVAL);
3951 }
3952
3953 static int raid10_check_reshape(struct mddev *mddev)
3954 {
3955 /* Called when there is a request to change
3956 * - layout (to ->new_layout)
3957 * - chunk size (to ->new_chunk_sectors)
3958 * - raid_disks (by delta_disks)
3959 * or when trying to restart a reshape that was ongoing.
3960 *
3961 * We need to validate the request and possibly allocate
3962 * space if that might be an issue later.
3963 *
3964 * Currently we reject any reshape of a 'far' mode array,
3965 * allow chunk size to change if new is generally acceptable,
3966 * allow raid_disks to increase, and allow
3967 * a switch between 'near' mode and 'offset' mode.
3968 */
3969 struct r10conf *conf = mddev->private;
3970 struct geom geo;
3971
3972 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3973 return -EINVAL;
3974
3975 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3976 /* mustn't change number of copies */
3977 return -EINVAL;
3978 if (geo.far_copies > 1 && !geo.far_offset)
3979 /* Cannot switch to 'far' mode */
3980 return -EINVAL;
3981
3982 if (mddev->array_sectors & geo.chunk_mask)
3983 /* not factor of array size */
3984 return -EINVAL;
3985
3986 if (!enough(conf, -1))
3987 return -EINVAL;
3988
3989 kfree(conf->mirrors_new);
3990 conf->mirrors_new = NULL;
3991 if (mddev->delta_disks > 0) {
3992 /* allocate new 'mirrors' list */
3993 conf->mirrors_new = kzalloc(
3994 sizeof(struct raid10_info)
3995 *(mddev->raid_disks +
3996 mddev->delta_disks),
3997 GFP_KERNEL);
3998 if (!conf->mirrors_new)
3999 return -ENOMEM;
4000 }
4001 return 0;
4002 }
4003
4004 /*
4005 * Need to check if array has failed when deciding whether to:
4006 * - start an array
4007 * - remove non-faulty devices
4008 * - add a spare
4009 * - allow a reshape
4010 * This determination is simple when no reshape is happening.
4011 * However if there is a reshape, we need to carefully check
4012 * both the before and after sections.
4013 * This is because some failed devices may only affect one
4014 * of the two sections, and some non-in_sync devices may
4015 * be insync in the section most affected by failed devices.
4016 */
4017 static int calc_degraded(struct r10conf *conf)
4018 {
4019 int degraded, degraded2;
4020 int i;
4021
4022 rcu_read_lock();
4023 degraded = 0;
4024 /* 'prev' section first */
4025 for (i = 0; i < conf->prev.raid_disks; i++) {
4026 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4027 if (!rdev || test_bit(Faulty, &rdev->flags))
4028 degraded++;
4029 else if (!test_bit(In_sync, &rdev->flags))
4030 /* When we can reduce the number of devices in
4031 * an array, this might not contribute to
4032 * 'degraded'. It does now.
4033 */
4034 degraded++;
4035 }
4036 rcu_read_unlock();
4037 if (conf->geo.raid_disks == conf->prev.raid_disks)
4038 return degraded;
4039 rcu_read_lock();
4040 degraded2 = 0;
4041 for (i = 0; i < conf->geo.raid_disks; i++) {
4042 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4043 if (!rdev || test_bit(Faulty, &rdev->flags))
4044 degraded2++;
4045 else if (!test_bit(In_sync, &rdev->flags)) {
4046 /* If reshape is increasing the number of devices,
4047 * this section has already been recovered, so
4048 * it doesn't contribute to degraded.
4049 * else it does.
4050 */
4051 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4052 degraded2++;
4053 }
4054 }
4055 rcu_read_unlock();
4056 if (degraded2 > degraded)
4057 return degraded2;
4058 return degraded;
4059 }
4060
4061 static int raid10_start_reshape(struct mddev *mddev)
4062 {
4063 /* A 'reshape' has been requested. This commits
4064 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4065 * This also checks if there are enough spares and adds them
4066 * to the array.
4067 * We currently require enough spares to make the final
4068 * array non-degraded. We also require that the difference
4069 * between old and new data_offset - on each device - is
4070 * enough that we never risk over-writing.
4071 */
4072
4073 unsigned long before_length, after_length;
4074 sector_t min_offset_diff = 0;
4075 int first = 1;
4076 struct geom new;
4077 struct r10conf *conf = mddev->private;
4078 struct md_rdev *rdev;
4079 int spares = 0;
4080 int ret;
4081
4082 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4083 return -EBUSY;
4084
4085 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4086 return -EINVAL;
4087
4088 before_length = ((1 << conf->prev.chunk_shift) *
4089 conf->prev.far_copies);
4090 after_length = ((1 << conf->geo.chunk_shift) *
4091 conf->geo.far_copies);
4092
4093 rdev_for_each(rdev, mddev) {
4094 if (!test_bit(In_sync, &rdev->flags)
4095 && !test_bit(Faulty, &rdev->flags))
4096 spares++;
4097 if (rdev->raid_disk >= 0) {
4098 long long diff = (rdev->new_data_offset
4099 - rdev->data_offset);
4100 if (!mddev->reshape_backwards)
4101 diff = -diff;
4102 if (diff < 0)
4103 diff = 0;
4104 if (first || diff < min_offset_diff)
4105 min_offset_diff = diff;
4106 }
4107 }
4108
4109 if (max(before_length, after_length) > min_offset_diff)
4110 return -EINVAL;
4111
4112 if (spares < mddev->delta_disks)
4113 return -EINVAL;
4114
4115 conf->offset_diff = min_offset_diff;
4116 spin_lock_irq(&conf->device_lock);
4117 if (conf->mirrors_new) {
4118 memcpy(conf->mirrors_new, conf->mirrors,
4119 sizeof(struct raid10_info)*conf->prev.raid_disks);
4120 smp_mb();
4121 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4122 conf->mirrors_old = conf->mirrors;
4123 conf->mirrors = conf->mirrors_new;
4124 conf->mirrors_new = NULL;
4125 }
4126 setup_geo(&conf->geo, mddev, geo_start);
4127 smp_mb();
4128 if (mddev->reshape_backwards) {
4129 sector_t size = raid10_size(mddev, 0, 0);
4130 if (size < mddev->array_sectors) {
4131 spin_unlock_irq(&conf->device_lock);
4132 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4133 mdname(mddev));
4134 return -EINVAL;
4135 }
4136 mddev->resync_max_sectors = size;
4137 conf->reshape_progress = size;
4138 } else
4139 conf->reshape_progress = 0;
4140 spin_unlock_irq(&conf->device_lock);
4141
4142 if (mddev->delta_disks && mddev->bitmap) {
4143 ret = bitmap_resize(mddev->bitmap,
4144 raid10_size(mddev, 0,
4145 conf->geo.raid_disks),
4146 0, 0);
4147 if (ret)
4148 goto abort;
4149 }
4150 if (mddev->delta_disks > 0) {
4151 rdev_for_each(rdev, mddev)
4152 if (rdev->raid_disk < 0 &&
4153 !test_bit(Faulty, &rdev->flags)) {
4154 if (raid10_add_disk(mddev, rdev) == 0) {
4155 if (rdev->raid_disk >=
4156 conf->prev.raid_disks)
4157 set_bit(In_sync, &rdev->flags);
4158 else
4159 rdev->recovery_offset = 0;
4160
4161 if (sysfs_link_rdev(mddev, rdev))
4162 /* Failure here is OK */;
4163 }
4164 } else if (rdev->raid_disk >= conf->prev.raid_disks
4165 && !test_bit(Faulty, &rdev->flags)) {
4166 /* This is a spare that was manually added */
4167 set_bit(In_sync, &rdev->flags);
4168 }
4169 }
4170 /* When a reshape changes the number of devices,
4171 * ->degraded is measured against the larger of the
4172 * pre and post numbers.
4173 */
4174 spin_lock_irq(&conf->device_lock);
4175 mddev->degraded = calc_degraded(conf);
4176 spin_unlock_irq(&conf->device_lock);
4177 mddev->raid_disks = conf->geo.raid_disks;
4178 mddev->reshape_position = conf->reshape_progress;
4179 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4180
4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4184 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4185
4186 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4187 "reshape");
4188 if (!mddev->sync_thread) {
4189 ret = -EAGAIN;
4190 goto abort;
4191 }
4192 conf->reshape_checkpoint = jiffies;
4193 md_wakeup_thread(mddev->sync_thread);
4194 md_new_event(mddev);
4195 return 0;
4196
4197 abort:
4198 mddev->recovery = 0;
4199 spin_lock_irq(&conf->device_lock);
4200 conf->geo = conf->prev;
4201 mddev->raid_disks = conf->geo.raid_disks;
4202 rdev_for_each(rdev, mddev)
4203 rdev->new_data_offset = rdev->data_offset;
4204 smp_wmb();
4205 conf->reshape_progress = MaxSector;
4206 mddev->reshape_position = MaxSector;
4207 spin_unlock_irq(&conf->device_lock);
4208 return ret;
4209 }
4210
4211 /* Calculate the last device-address that could contain
4212 * any block from the chunk that includes the array-address 's'
4213 * and report the next address.
4214 * i.e. the address returned will be chunk-aligned and after
4215 * any data that is in the chunk containing 's'.
4216 */
4217 static sector_t last_dev_address(sector_t s, struct geom *geo)
4218 {
4219 s = (s | geo->chunk_mask) + 1;
4220 s >>= geo->chunk_shift;
4221 s *= geo->near_copies;
4222 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4223 s *= geo->far_copies;
4224 s <<= geo->chunk_shift;
4225 return s;
4226 }
4227
4228 /* Calculate the first device-address that could contain
4229 * any block from the chunk that includes the array-address 's'.
4230 * This too will be the start of a chunk
4231 */
4232 static sector_t first_dev_address(sector_t s, struct geom *geo)
4233 {
4234 s >>= geo->chunk_shift;
4235 s *= geo->near_copies;
4236 sector_div(s, geo->raid_disks);
4237 s *= geo->far_copies;
4238 s <<= geo->chunk_shift;
4239 return s;
4240 }
4241
4242 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4243 int *skipped)
4244 {
4245 /* We simply copy at most one chunk (smallest of old and new)
4246 * at a time, possibly less if that exceeds RESYNC_PAGES,
4247 * or we hit a bad block or something.
4248 * This might mean we pause for normal IO in the middle of
4249 * a chunk, but that is not a problem was mddev->reshape_position
4250 * can record any location.
4251 *
4252 * If we will want to write to a location that isn't
4253 * yet recorded as 'safe' (i.e. in metadata on disk) then
4254 * we need to flush all reshape requests and update the metadata.
4255 *
4256 * When reshaping forwards (e.g. to more devices), we interpret
4257 * 'safe' as the earliest block which might not have been copied
4258 * down yet. We divide this by previous stripe size and multiply
4259 * by previous stripe length to get lowest device offset that we
4260 * cannot write to yet.
4261 * We interpret 'sector_nr' as an address that we want to write to.
4262 * From this we use last_device_address() to find where we might
4263 * write to, and first_device_address on the 'safe' position.
4264 * If this 'next' write position is after the 'safe' position,
4265 * we must update the metadata to increase the 'safe' position.
4266 *
4267 * When reshaping backwards, we round in the opposite direction
4268 * and perform the reverse test: next write position must not be
4269 * less than current safe position.
4270 *
4271 * In all this the minimum difference in data offsets
4272 * (conf->offset_diff - always positive) allows a bit of slack,
4273 * so next can be after 'safe', but not by more than offset_disk
4274 *
4275 * We need to prepare all the bios here before we start any IO
4276 * to ensure the size we choose is acceptable to all devices.
4277 * The means one for each copy for write-out and an extra one for
4278 * read-in.
4279 * We store the read-in bio in ->master_bio and the others in
4280 * ->devs[x].bio and ->devs[x].repl_bio.
4281 */
4282 struct r10conf *conf = mddev->private;
4283 struct r10bio *r10_bio;
4284 sector_t next, safe, last;
4285 int max_sectors;
4286 int nr_sectors;
4287 int s;
4288 struct md_rdev *rdev;
4289 int need_flush = 0;
4290 struct bio *blist;
4291 struct bio *bio, *read_bio;
4292 int sectors_done = 0;
4293
4294 if (sector_nr == 0) {
4295 /* If restarting in the middle, skip the initial sectors */
4296 if (mddev->reshape_backwards &&
4297 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4298 sector_nr = (raid10_size(mddev, 0, 0)
4299 - conf->reshape_progress);
4300 } else if (!mddev->reshape_backwards &&
4301 conf->reshape_progress > 0)
4302 sector_nr = conf->reshape_progress;
4303 if (sector_nr) {
4304 mddev->curr_resync_completed = sector_nr;
4305 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4306 *skipped = 1;
4307 return sector_nr;
4308 }
4309 }
4310
4311 /* We don't use sector_nr to track where we are up to
4312 * as that doesn't work well for ->reshape_backwards.
4313 * So just use ->reshape_progress.
4314 */
4315 if (mddev->reshape_backwards) {
4316 /* 'next' is the earliest device address that we might
4317 * write to for this chunk in the new layout
4318 */
4319 next = first_dev_address(conf->reshape_progress - 1,
4320 &conf->geo);
4321
4322 /* 'safe' is the last device address that we might read from
4323 * in the old layout after a restart
4324 */
4325 safe = last_dev_address(conf->reshape_safe - 1,
4326 &conf->prev);
4327
4328 if (next + conf->offset_diff < safe)
4329 need_flush = 1;
4330
4331 last = conf->reshape_progress - 1;
4332 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4333 & conf->prev.chunk_mask);
4334 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4335 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4336 } else {
4337 /* 'next' is after the last device address that we
4338 * might write to for this chunk in the new layout
4339 */
4340 next = last_dev_address(conf->reshape_progress, &conf->geo);
4341
4342 /* 'safe' is the earliest device address that we might
4343 * read from in the old layout after a restart
4344 */
4345 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4346
4347 /* Need to update metadata if 'next' might be beyond 'safe'
4348 * as that would possibly corrupt data
4349 */
4350 if (next > safe + conf->offset_diff)
4351 need_flush = 1;
4352
4353 sector_nr = conf->reshape_progress;
4354 last = sector_nr | (conf->geo.chunk_mask
4355 & conf->prev.chunk_mask);
4356
4357 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4358 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4359 }
4360
4361 if (need_flush ||
4362 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4363 /* Need to update reshape_position in metadata */
4364 wait_barrier(conf);
4365 mddev->reshape_position = conf->reshape_progress;
4366 if (mddev->reshape_backwards)
4367 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4368 - conf->reshape_progress;
4369 else
4370 mddev->curr_resync_completed = conf->reshape_progress;
4371 conf->reshape_checkpoint = jiffies;
4372 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4373 md_wakeup_thread(mddev->thread);
4374 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4375 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4376 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4377 allow_barrier(conf);
4378 return sectors_done;
4379 }
4380 conf->reshape_safe = mddev->reshape_position;
4381 allow_barrier(conf);
4382 }
4383
4384 read_more:
4385 /* Now schedule reads for blocks from sector_nr to last */
4386 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4387 raise_barrier(conf, sectors_done != 0);
4388 atomic_set(&r10_bio->remaining, 0);
4389 r10_bio->mddev = mddev;
4390 r10_bio->sector = sector_nr;
4391 set_bit(R10BIO_IsReshape, &r10_bio->state);
4392 r10_bio->sectors = last - sector_nr + 1;
4393 rdev = read_balance(conf, r10_bio, &max_sectors);
4394 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4395
4396 if (!rdev) {
4397 /* Cannot read from here, so need to record bad blocks
4398 * on all the target devices.
4399 */
4400 // FIXME
4401 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402 return sectors_done;
4403 }
4404
4405 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407 read_bio->bi_bdev = rdev->bdev;
4408 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409 + rdev->data_offset);
4410 read_bio->bi_private = r10_bio;
4411 read_bio->bi_end_io = end_sync_read;
4412 read_bio->bi_rw = READ;
4413 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4414 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4415 read_bio->bi_vcnt = 0;
4416 read_bio->bi_iter.bi_size = 0;
4417 r10_bio->master_bio = read_bio;
4418 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420 /* Now find the locations in the new layout */
4421 __raid10_find_phys(&conf->geo, r10_bio);
4422
4423 blist = read_bio;
4424 read_bio->bi_next = NULL;
4425
4426 for (s = 0; s < conf->copies*2; s++) {
4427 struct bio *b;
4428 int d = r10_bio->devs[s/2].devnum;
4429 struct md_rdev *rdev2;
4430 if (s&1) {
4431 rdev2 = conf->mirrors[d].replacement;
4432 b = r10_bio->devs[s/2].repl_bio;
4433 } else {
4434 rdev2 = conf->mirrors[d].rdev;
4435 b = r10_bio->devs[s/2].bio;
4436 }
4437 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438 continue;
4439
4440 bio_reset(b);
4441 b->bi_bdev = rdev2->bdev;
4442 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443 rdev2->new_data_offset;
4444 b->bi_private = r10_bio;
4445 b->bi_end_io = end_reshape_write;
4446 b->bi_rw = WRITE;
4447 b->bi_next = blist;
4448 blist = b;
4449 }
4450
4451 /* Now add as many pages as possible to all of these bios. */
4452
4453 nr_sectors = 0;
4454 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456 int len = (max_sectors - s) << 9;
4457 if (len > PAGE_SIZE)
4458 len = PAGE_SIZE;
4459 for (bio = blist; bio ; bio = bio->bi_next) {
4460 struct bio *bio2;
4461 if (bio_add_page(bio, page, len, 0))
4462 continue;
4463
4464 /* Didn't fit, must stop */
4465 for (bio2 = blist;
4466 bio2 && bio2 != bio;
4467 bio2 = bio2->bi_next) {
4468 /* Remove last page from this bio */
4469 bio2->bi_vcnt--;
4470 bio2->bi_iter.bi_size -= len;
4471 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4472 }
4473 goto bio_full;
4474 }
4475 sector_nr += len >> 9;
4476 nr_sectors += len >> 9;
4477 }
4478 bio_full:
4479 r10_bio->sectors = nr_sectors;
4480
4481 /* Now submit the read */
4482 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483 atomic_inc(&r10_bio->remaining);
4484 read_bio->bi_next = NULL;
4485 generic_make_request(read_bio);
4486 sector_nr += nr_sectors;
4487 sectors_done += nr_sectors;
4488 if (sector_nr <= last)
4489 goto read_more;
4490
4491 /* Now that we have done the whole section we can
4492 * update reshape_progress
4493 */
4494 if (mddev->reshape_backwards)
4495 conf->reshape_progress -= sectors_done;
4496 else
4497 conf->reshape_progress += sectors_done;
4498
4499 return sectors_done;
4500 }
4501
4502 static void end_reshape_request(struct r10bio *r10_bio);
4503 static int handle_reshape_read_error(struct mddev *mddev,
4504 struct r10bio *r10_bio);
4505 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506 {
4507 /* Reshape read completed. Hopefully we have a block
4508 * to write out.
4509 * If we got a read error then we do sync 1-page reads from
4510 * elsewhere until we find the data - or give up.
4511 */
4512 struct r10conf *conf = mddev->private;
4513 int s;
4514
4515 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517 /* Reshape has been aborted */
4518 md_done_sync(mddev, r10_bio->sectors, 0);
4519 return;
4520 }
4521
4522 /* We definitely have the data in the pages, schedule the
4523 * writes.
4524 */
4525 atomic_set(&r10_bio->remaining, 1);
4526 for (s = 0; s < conf->copies*2; s++) {
4527 struct bio *b;
4528 int d = r10_bio->devs[s/2].devnum;
4529 struct md_rdev *rdev;
4530 if (s&1) {
4531 rdev = conf->mirrors[d].replacement;
4532 b = r10_bio->devs[s/2].repl_bio;
4533 } else {
4534 rdev = conf->mirrors[d].rdev;
4535 b = r10_bio->devs[s/2].bio;
4536 }
4537 if (!rdev || test_bit(Faulty, &rdev->flags))
4538 continue;
4539 atomic_inc(&rdev->nr_pending);
4540 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541 atomic_inc(&r10_bio->remaining);
4542 b->bi_next = NULL;
4543 generic_make_request(b);
4544 }
4545 end_reshape_request(r10_bio);
4546 }
4547
4548 static void end_reshape(struct r10conf *conf)
4549 {
4550 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551 return;
4552
4553 spin_lock_irq(&conf->device_lock);
4554 conf->prev = conf->geo;
4555 md_finish_reshape(conf->mddev);
4556 smp_wmb();
4557 conf->reshape_progress = MaxSector;
4558 spin_unlock_irq(&conf->device_lock);
4559
4560 /* read-ahead size must cover two whole stripes, which is
4561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562 */
4563 if (conf->mddev->queue) {
4564 int stripe = conf->geo.raid_disks *
4565 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566 stripe /= conf->geo.near_copies;
4567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569 }
4570 conf->fullsync = 0;
4571 }
4572
4573
4574 static int handle_reshape_read_error(struct mddev *mddev,
4575 struct r10bio *r10_bio)
4576 {
4577 /* Use sync reads to get the blocks from somewhere else */
4578 int sectors = r10_bio->sectors;
4579 struct r10conf *conf = mddev->private;
4580 struct {
4581 struct r10bio r10_bio;
4582 struct r10dev devs[conf->copies];
4583 } on_stack;
4584 struct r10bio *r10b = &on_stack.r10_bio;
4585 int slot = 0;
4586 int idx = 0;
4587 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4588
4589 r10b->sector = r10_bio->sector;
4590 __raid10_find_phys(&conf->prev, r10b);
4591
4592 while (sectors) {
4593 int s = sectors;
4594 int success = 0;
4595 int first_slot = slot;
4596
4597 if (s > (PAGE_SIZE >> 9))
4598 s = PAGE_SIZE >> 9;
4599
4600 while (!success) {
4601 int d = r10b->devs[slot].devnum;
4602 struct md_rdev *rdev = conf->mirrors[d].rdev;
4603 sector_t addr;
4604 if (rdev == NULL ||
4605 test_bit(Faulty, &rdev->flags) ||
4606 !test_bit(In_sync, &rdev->flags))
4607 goto failed;
4608
4609 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4610 success = sync_page_io(rdev,
4611 addr,
4612 s << 9,
4613 bvec[idx].bv_page,
4614 READ, false);
4615 if (success)
4616 break;
4617 failed:
4618 slot++;
4619 if (slot >= conf->copies)
4620 slot = 0;
4621 if (slot == first_slot)
4622 break;
4623 }
4624 if (!success) {
4625 /* couldn't read this block, must give up */
4626 set_bit(MD_RECOVERY_INTR,
4627 &mddev->recovery);
4628 return -EIO;
4629 }
4630 sectors -= s;
4631 idx++;
4632 }
4633 return 0;
4634 }
4635
4636 static void end_reshape_write(struct bio *bio, int error)
4637 {
4638 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4639 struct r10bio *r10_bio = bio->bi_private;
4640 struct mddev *mddev = r10_bio->mddev;
4641 struct r10conf *conf = mddev->private;
4642 int d;
4643 int slot;
4644 int repl;
4645 struct md_rdev *rdev = NULL;
4646
4647 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4648 if (repl)
4649 rdev = conf->mirrors[d].replacement;
4650 if (!rdev) {
4651 smp_mb();
4652 rdev = conf->mirrors[d].rdev;
4653 }
4654
4655 if (!uptodate) {
4656 /* FIXME should record badblock */
4657 md_error(mddev, rdev);
4658 }
4659
4660 rdev_dec_pending(rdev, mddev);
4661 end_reshape_request(r10_bio);
4662 }
4663
4664 static void end_reshape_request(struct r10bio *r10_bio)
4665 {
4666 if (!atomic_dec_and_test(&r10_bio->remaining))
4667 return;
4668 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4669 bio_put(r10_bio->master_bio);
4670 put_buf(r10_bio);
4671 }
4672
4673 static void raid10_finish_reshape(struct mddev *mddev)
4674 {
4675 struct r10conf *conf = mddev->private;
4676
4677 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4678 return;
4679
4680 if (mddev->delta_disks > 0) {
4681 sector_t size = raid10_size(mddev, 0, 0);
4682 md_set_array_sectors(mddev, size);
4683 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4684 mddev->recovery_cp = mddev->resync_max_sectors;
4685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4686 }
4687 mddev->resync_max_sectors = size;
4688 set_capacity(mddev->gendisk, mddev->array_sectors);
4689 revalidate_disk(mddev->gendisk);
4690 } else {
4691 int d;
4692 for (d = conf->geo.raid_disks ;
4693 d < conf->geo.raid_disks - mddev->delta_disks;
4694 d++) {
4695 struct md_rdev *rdev = conf->mirrors[d].rdev;
4696 if (rdev)
4697 clear_bit(In_sync, &rdev->flags);
4698 rdev = conf->mirrors[d].replacement;
4699 if (rdev)
4700 clear_bit(In_sync, &rdev->flags);
4701 }
4702 }
4703 mddev->layout = mddev->new_layout;
4704 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4705 mddev->reshape_position = MaxSector;
4706 mddev->delta_disks = 0;
4707 mddev->reshape_backwards = 0;
4708 }
4709
4710 static struct md_personality raid10_personality =
4711 {
4712 .name = "raid10",
4713 .level = 10,
4714 .owner = THIS_MODULE,
4715 .make_request = make_request,
4716 .run = run,
4717 .stop = stop,
4718 .status = status,
4719 .error_handler = error,
4720 .hot_add_disk = raid10_add_disk,
4721 .hot_remove_disk= raid10_remove_disk,
4722 .spare_active = raid10_spare_active,
4723 .sync_request = sync_request,
4724 .quiesce = raid10_quiesce,
4725 .size = raid10_size,
4726 .resize = raid10_resize,
4727 .takeover = raid10_takeover,
4728 .check_reshape = raid10_check_reshape,
4729 .start_reshape = raid10_start_reshape,
4730 .finish_reshape = raid10_finish_reshape,
4731 };
4732
4733 static int __init raid_init(void)
4734 {
4735 return register_md_personality(&raid10_personality);
4736 }
4737
4738 static void raid_exit(void)
4739 {
4740 unregister_md_personality(&raid10_personality);
4741 }
4742
4743 module_init(raid_init);
4744 module_exit(raid_exit);
4745 MODULE_LICENSE("GPL");
4746 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4747 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4748 MODULE_ALIAS("md-raid10");
4749 MODULE_ALIAS("md-level-10");
4750
4751 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);