]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid10.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 struct r10conf *conf = data;
157 struct r10bio *r10_bio;
158 struct bio *bio;
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 if (!r10_bio)
165 return NULL;
166
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
181
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
201 for (j = 0; j < nalloc; j++) {
202 struct bio *rbio = r10_bio->devs[j].repl_bio;
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
209 bio = r10_bio->devs[j].bio;
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
214 goto out_free_pages;
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
219
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
225 }
226 }
227
228 return r10_bio;
229
230 out_free_pages:
231 while (--j >= 0)
232 resync_free_pages(&rps[j]);
233
234 j = 0;
235 out_free_bio:
236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
242 kfree(rps);
243 out_free_r10bio:
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 struct r10conf *conf = data;
251 struct r10bio *r10bio = __r10_bio;
252 int j;
253 struct resync_pages *rp = NULL;
254
255 for (j = conf->copies; j--; ) {
256 struct bio *bio = r10bio->devs[j].bio;
257
258 rp = get_resync_pages(bio);
259 resync_free_pages(rp);
260 bio_put(bio);
261
262 bio = r10bio->devs[j].repl_bio;
263 if (bio)
264 bio_put(bio);
265 }
266
267 /* resync pages array stored in the 1st bio's .bi_private */
268 kfree(rp);
269
270 r10bio_pool_free(r10bio, conf);
271 }
272
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275 int i;
276
277 for (i = 0; i < conf->copies; i++) {
278 struct bio **bio = & r10_bio->devs[i].bio;
279 if (!BIO_SPECIAL(*bio))
280 bio_put(*bio);
281 *bio = NULL;
282 bio = &r10_bio->devs[i].repl_bio;
283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 bio_put(*bio);
285 *bio = NULL;
286 }
287 }
288
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291 struct r10conf *conf = r10_bio->mddev->private;
292
293 put_all_bios(conf, r10_bio);
294 mempool_free(r10_bio, conf->r10bio_pool);
295 }
296
297 static void put_buf(struct r10bio *r10_bio)
298 {
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 mempool_free(r10_bio, conf->r10buf_pool);
302
303 lower_barrier(conf);
304 }
305
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308 unsigned long flags;
309 struct mddev *mddev = r10_bio->mddev;
310 struct r10conf *conf = mddev->private;
311
312 spin_lock_irqsave(&conf->device_lock, flags);
313 list_add(&r10_bio->retry_list, &conf->retry_list);
314 conf->nr_queued ++;
315 spin_unlock_irqrestore(&conf->device_lock, flags);
316
317 /* wake up frozen array... */
318 wake_up(&conf->wait_barrier);
319
320 md_wakeup_thread(mddev->thread);
321 }
322
323 /*
324 * raid_end_bio_io() is called when we have finished servicing a mirrored
325 * operation and are ready to return a success/failure code to the buffer
326 * cache layer.
327 */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330 struct bio *bio = r10_bio->master_bio;
331 struct r10conf *conf = r10_bio->mddev->private;
332
333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 bio->bi_status = BLK_STS_IOERR;
335
336 bio_endio(bio);
337 /*
338 * Wake up any possible resync thread that waits for the device
339 * to go idle.
340 */
341 allow_barrier(conf);
342
343 free_r10bio(r10_bio);
344 }
345
346 /*
347 * Update disk head position estimator based on IRQ completion info.
348 */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351 struct r10conf *conf = r10_bio->mddev->private;
352
353 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356
357 /*
358 * Find the disk number which triggered given bio
359 */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 struct bio *bio, int *slotp, int *replp)
362 {
363 int slot;
364 int repl = 0;
365
366 for (slot = 0; slot < conf->copies; slot++) {
367 if (r10_bio->devs[slot].bio == bio)
368 break;
369 if (r10_bio->devs[slot].repl_bio == bio) {
370 repl = 1;
371 break;
372 }
373 }
374
375 BUG_ON(slot == conf->copies);
376 update_head_pos(slot, r10_bio);
377
378 if (slotp)
379 *slotp = slot;
380 if (replp)
381 *replp = repl;
382 return r10_bio->devs[slot].devnum;
383 }
384
385 static void raid10_end_read_request(struct bio *bio)
386 {
387 int uptodate = !bio->bi_status;
388 struct r10bio *r10_bio = bio->bi_private;
389 int slot;
390 struct md_rdev *rdev;
391 struct r10conf *conf = r10_bio->mddev->private;
392
393 slot = r10_bio->read_slot;
394 rdev = r10_bio->devs[slot].rdev;
395 /*
396 * this branch is our 'one mirror IO has finished' event handler:
397 */
398 update_head_pos(slot, r10_bio);
399
400 if (uptodate) {
401 /*
402 * Set R10BIO_Uptodate in our master bio, so that
403 * we will return a good error code to the higher
404 * levels even if IO on some other mirrored buffer fails.
405 *
406 * The 'master' represents the composite IO operation to
407 * user-side. So if something waits for IO, then it will
408 * wait for the 'master' bio.
409 */
410 set_bit(R10BIO_Uptodate, &r10_bio->state);
411 } else {
412 /* If all other devices that store this block have
413 * failed, we want to return the error upwards rather
414 * than fail the last device. Here we redefine
415 * "uptodate" to mean "Don't want to retry"
416 */
417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 rdev->raid_disk))
419 uptodate = 1;
420 }
421 if (uptodate) {
422 raid_end_bio_io(r10_bio);
423 rdev_dec_pending(rdev, conf->mddev);
424 } else {
425 /*
426 * oops, read error - keep the refcount on the rdev
427 */
428 char b[BDEVNAME_SIZE];
429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 mdname(conf->mddev),
431 bdevname(rdev->bdev, b),
432 (unsigned long long)r10_bio->sector);
433 set_bit(R10BIO_ReadError, &r10_bio->state);
434 reschedule_retry(r10_bio);
435 }
436 }
437
438 static void close_write(struct r10bio *r10_bio)
439 {
440 /* clear the bitmap if all writes complete successfully */
441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 r10_bio->sectors,
443 !test_bit(R10BIO_Degraded, &r10_bio->state),
444 0);
445 md_write_end(r10_bio->mddev);
446 }
447
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450 if (atomic_dec_and_test(&r10_bio->remaining)) {
451 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 reschedule_retry(r10_bio);
453 else {
454 close_write(r10_bio);
455 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 reschedule_retry(r10_bio);
457 else
458 raid_end_bio_io(r10_bio);
459 }
460 }
461 }
462
463 static void raid10_end_write_request(struct bio *bio)
464 {
465 struct r10bio *r10_bio = bio->bi_private;
466 int dev;
467 int dec_rdev = 1;
468 struct r10conf *conf = r10_bio->mddev->private;
469 int slot, repl;
470 struct md_rdev *rdev = NULL;
471 struct bio *to_put = NULL;
472 bool discard_error;
473
474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475
476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477
478 if (repl)
479 rdev = conf->mirrors[dev].replacement;
480 if (!rdev) {
481 smp_rmb();
482 repl = 0;
483 rdev = conf->mirrors[dev].rdev;
484 }
485 /*
486 * this branch is our 'one mirror IO has finished' event handler:
487 */
488 if (bio->bi_status && !discard_error) {
489 if (repl)
490 /* Never record new bad blocks to replacement,
491 * just fail it.
492 */
493 md_error(rdev->mddev, rdev);
494 else {
495 set_bit(WriteErrorSeen, &rdev->flags);
496 if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 set_bit(MD_RECOVERY_NEEDED,
498 &rdev->mddev->recovery);
499
500 dec_rdev = 0;
501 if (test_bit(FailFast, &rdev->flags) &&
502 (bio->bi_opf & MD_FAILFAST)) {
503 md_error(rdev->mddev, rdev);
504 if (!test_bit(Faulty, &rdev->flags))
505 /* This is the only remaining device,
506 * We need to retry the write without
507 * FailFast
508 */
509 set_bit(R10BIO_WriteError, &r10_bio->state);
510 else {
511 r10_bio->devs[slot].bio = NULL;
512 to_put = bio;
513 dec_rdev = 1;
514 }
515 } else
516 set_bit(R10BIO_WriteError, &r10_bio->state);
517 }
518 } else {
519 /*
520 * Set R10BIO_Uptodate in our master bio, so that
521 * we will return a good error code for to the higher
522 * levels even if IO on some other mirrored buffer fails.
523 *
524 * The 'master' represents the composite IO operation to
525 * user-side. So if something waits for IO, then it will
526 * wait for the 'master' bio.
527 */
528 sector_t first_bad;
529 int bad_sectors;
530
531 /*
532 * Do not set R10BIO_Uptodate if the current device is
533 * rebuilding or Faulty. This is because we cannot use
534 * such device for properly reading the data back (we could
535 * potentially use it, if the current write would have felt
536 * before rdev->recovery_offset, but for simplicity we don't
537 * check this here.
538 */
539 if (test_bit(In_sync, &rdev->flags) &&
540 !test_bit(Faulty, &rdev->flags))
541 set_bit(R10BIO_Uptodate, &r10_bio->state);
542
543 /* Maybe we can clear some bad blocks. */
544 if (is_badblock(rdev,
545 r10_bio->devs[slot].addr,
546 r10_bio->sectors,
547 &first_bad, &bad_sectors) && !discard_error) {
548 bio_put(bio);
549 if (repl)
550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 else
552 r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 dec_rdev = 0;
554 set_bit(R10BIO_MadeGood, &r10_bio->state);
555 }
556 }
557
558 /*
559 *
560 * Let's see if all mirrored write operations have finished
561 * already.
562 */
563 one_write_done(r10_bio);
564 if (dec_rdev)
565 rdev_dec_pending(rdev, conf->mddev);
566 if (to_put)
567 bio_put(to_put);
568 }
569
570 /*
571 * RAID10 layout manager
572 * As well as the chunksize and raid_disks count, there are two
573 * parameters: near_copies and far_copies.
574 * near_copies * far_copies must be <= raid_disks.
575 * Normally one of these will be 1.
576 * If both are 1, we get raid0.
577 * If near_copies == raid_disks, we get raid1.
578 *
579 * Chunks are laid out in raid0 style with near_copies copies of the
580 * first chunk, followed by near_copies copies of the next chunk and
581 * so on.
582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
583 * as described above, we start again with a device offset of near_copies.
584 * So we effectively have another copy of the whole array further down all
585 * the drives, but with blocks on different drives.
586 * With this layout, and block is never stored twice on the one device.
587 *
588 * raid10_find_phys finds the sector offset of a given virtual sector
589 * on each device that it is on.
590 *
591 * raid10_find_virt does the reverse mapping, from a device and a
592 * sector offset to a virtual address
593 */
594
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597 int n,f;
598 sector_t sector;
599 sector_t chunk;
600 sector_t stripe;
601 int dev;
602 int slot = 0;
603 int last_far_set_start, last_far_set_size;
604
605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 last_far_set_start *= geo->far_set_size;
607
608 last_far_set_size = geo->far_set_size;
609 last_far_set_size += (geo->raid_disks % geo->far_set_size);
610
611 /* now calculate first sector/dev */
612 chunk = r10bio->sector >> geo->chunk_shift;
613 sector = r10bio->sector & geo->chunk_mask;
614
615 chunk *= geo->near_copies;
616 stripe = chunk;
617 dev = sector_div(stripe, geo->raid_disks);
618 if (geo->far_offset)
619 stripe *= geo->far_copies;
620
621 sector += stripe << geo->chunk_shift;
622
623 /* and calculate all the others */
624 for (n = 0; n < geo->near_copies; n++) {
625 int d = dev;
626 int set;
627 sector_t s = sector;
628 r10bio->devs[slot].devnum = d;
629 r10bio->devs[slot].addr = s;
630 slot++;
631
632 for (f = 1; f < geo->far_copies; f++) {
633 set = d / geo->far_set_size;
634 d += geo->near_copies;
635
636 if ((geo->raid_disks % geo->far_set_size) &&
637 (d > last_far_set_start)) {
638 d -= last_far_set_start;
639 d %= last_far_set_size;
640 d += last_far_set_start;
641 } else {
642 d %= geo->far_set_size;
643 d += geo->far_set_size * set;
644 }
645 s += geo->stride;
646 r10bio->devs[slot].devnum = d;
647 r10bio->devs[slot].addr = s;
648 slot++;
649 }
650 dev++;
651 if (dev >= geo->raid_disks) {
652 dev = 0;
653 sector += (geo->chunk_mask + 1);
654 }
655 }
656 }
657
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660 struct geom *geo = &conf->geo;
661
662 if (conf->reshape_progress != MaxSector &&
663 ((r10bio->sector >= conf->reshape_progress) !=
664 conf->mddev->reshape_backwards)) {
665 set_bit(R10BIO_Previous, &r10bio->state);
666 geo = &conf->prev;
667 } else
668 clear_bit(R10BIO_Previous, &r10bio->state);
669
670 __raid10_find_phys(geo, r10bio);
671 }
672
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675 sector_t offset, chunk, vchunk;
676 /* Never use conf->prev as this is only called during resync
677 * or recovery, so reshape isn't happening
678 */
679 struct geom *geo = &conf->geo;
680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 int far_set_size = geo->far_set_size;
682 int last_far_set_start;
683
684 if (geo->raid_disks % geo->far_set_size) {
685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 last_far_set_start *= geo->far_set_size;
687
688 if (dev >= last_far_set_start) {
689 far_set_size = geo->far_set_size;
690 far_set_size += (geo->raid_disks % geo->far_set_size);
691 far_set_start = last_far_set_start;
692 }
693 }
694
695 offset = sector & geo->chunk_mask;
696 if (geo->far_offset) {
697 int fc;
698 chunk = sector >> geo->chunk_shift;
699 fc = sector_div(chunk, geo->far_copies);
700 dev -= fc * geo->near_copies;
701 if (dev < far_set_start)
702 dev += far_set_size;
703 } else {
704 while (sector >= geo->stride) {
705 sector -= geo->stride;
706 if (dev < (geo->near_copies + far_set_start))
707 dev += far_set_size - geo->near_copies;
708 else
709 dev -= geo->near_copies;
710 }
711 chunk = sector >> geo->chunk_shift;
712 }
713 vchunk = chunk * geo->raid_disks + dev;
714 sector_div(vchunk, geo->near_copies);
715 return (vchunk << geo->chunk_shift) + offset;
716 }
717
718 /*
719 * This routine returns the disk from which the requested read should
720 * be done. There is a per-array 'next expected sequential IO' sector
721 * number - if this matches on the next IO then we use the last disk.
722 * There is also a per-disk 'last know head position' sector that is
723 * maintained from IRQ contexts, both the normal and the resync IO
724 * completion handlers update this position correctly. If there is no
725 * perfect sequential match then we pick the disk whose head is closest.
726 *
727 * If there are 2 mirrors in the same 2 devices, performance degrades
728 * because position is mirror, not device based.
729 *
730 * The rdev for the device selected will have nr_pending incremented.
731 */
732
733 /*
734 * FIXME: possibly should rethink readbalancing and do it differently
735 * depending on near_copies / far_copies geometry.
736 */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 struct r10bio *r10_bio,
739 int *max_sectors)
740 {
741 const sector_t this_sector = r10_bio->sector;
742 int disk, slot;
743 int sectors = r10_bio->sectors;
744 int best_good_sectors;
745 sector_t new_distance, best_dist;
746 struct md_rdev *best_rdev, *rdev = NULL;
747 int do_balance;
748 int best_slot;
749 struct geom *geo = &conf->geo;
750
751 raid10_find_phys(conf, r10_bio);
752 rcu_read_lock();
753 best_slot = -1;
754 best_rdev = NULL;
755 best_dist = MaxSector;
756 best_good_sectors = 0;
757 do_balance = 1;
758 clear_bit(R10BIO_FailFast, &r10_bio->state);
759 /*
760 * Check if we can balance. We can balance on the whole
761 * device if no resync is going on (recovery is ok), or below
762 * the resync window. We take the first readable disk when
763 * above the resync window.
764 */
765 if ((conf->mddev->recovery_cp < MaxSector
766 && (this_sector + sectors >= conf->next_resync)) ||
767 (mddev_is_clustered(conf->mddev) &&
768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 this_sector + sectors)))
770 do_balance = 0;
771
772 for (slot = 0; slot < conf->copies ; slot++) {
773 sector_t first_bad;
774 int bad_sectors;
775 sector_t dev_sector;
776
777 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 continue;
779 disk = r10_bio->devs[slot].devnum;
780 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 if (rdev == NULL ||
785 test_bit(Faulty, &rdev->flags))
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 continue;
790
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_slot = slot;
813 best_rdev = rdev;
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
823 if (!do_balance)
824 break;
825
826 if (best_slot >= 0)
827 /* At least 2 disks to choose from so failfast is OK */
828 set_bit(R10BIO_FailFast, &r10_bio->state);
829 /* This optimisation is debatable, and completely destroys
830 * sequential read speed for 'far copies' arrays. So only
831 * keep it for 'near' arrays, and review those later.
832 */
833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 new_distance = 0;
835
836 /* for far > 1 always use the lowest address */
837 else if (geo->far_copies > 1)
838 new_distance = r10_bio->devs[slot].addr;
839 else
840 new_distance = abs(r10_bio->devs[slot].addr -
841 conf->mirrors[disk].head_position);
842 if (new_distance < best_dist) {
843 best_dist = new_distance;
844 best_slot = slot;
845 best_rdev = rdev;
846 }
847 }
848 if (slot >= conf->copies) {
849 slot = best_slot;
850 rdev = best_rdev;
851 }
852
853 if (slot >= 0) {
854 atomic_inc(&rdev->nr_pending);
855 r10_bio->read_slot = slot;
856 } else
857 rdev = NULL;
858 rcu_read_unlock();
859 *max_sectors = best_good_sectors;
860
861 return rdev;
862 }
863
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866 struct r10conf *conf = mddev->private;
867 int i, ret = 0;
868
869 if ((bits & (1 << WB_async_congested)) &&
870 conf->pending_count >= max_queued_requests)
871 return 1;
872
873 rcu_read_lock();
874 for (i = 0;
875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 && ret == 0;
877 i++) {
878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 struct request_queue *q = bdev_get_queue(rdev->bdev);
881
882 ret |= bdi_congested(q->backing_dev_info, bits);
883 }
884 }
885 rcu_read_unlock();
886 return ret;
887 }
888
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891 /* Any writes that have been queued but are awaiting
892 * bitmap updates get flushed here.
893 */
894 spin_lock_irq(&conf->device_lock);
895
896 if (conf->pending_bio_list.head) {
897 struct blk_plug plug;
898 struct bio *bio;
899
900 bio = bio_list_get(&conf->pending_bio_list);
901 conf->pending_count = 0;
902 spin_unlock_irq(&conf->device_lock);
903 blk_start_plug(&plug);
904 /* flush any pending bitmap writes to disk
905 * before proceeding w/ I/O */
906 bitmap_unplug(conf->mddev->bitmap);
907 wake_up(&conf->wait_barrier);
908
909 while (bio) { /* submit pending writes */
910 struct bio *next = bio->bi_next;
911 struct md_rdev *rdev = (void*)bio->bi_disk;
912 bio->bi_next = NULL;
913 bio_set_dev(bio, rdev->bdev);
914 if (test_bit(Faulty, &rdev->flags)) {
915 bio_io_error(bio);
916 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
917 !blk_queue_discard(bio->bi_disk->queue)))
918 /* Just ignore it */
919 bio_endio(bio);
920 else
921 generic_make_request(bio);
922 bio = next;
923 }
924 blk_finish_plug(&plug);
925 } else
926 spin_unlock_irq(&conf->device_lock);
927 }
928
929 /* Barriers....
930 * Sometimes we need to suspend IO while we do something else,
931 * either some resync/recovery, or reconfigure the array.
932 * To do this we raise a 'barrier'.
933 * The 'barrier' is a counter that can be raised multiple times
934 * to count how many activities are happening which preclude
935 * normal IO.
936 * We can only raise the barrier if there is no pending IO.
937 * i.e. if nr_pending == 0.
938 * We choose only to raise the barrier if no-one is waiting for the
939 * barrier to go down. This means that as soon as an IO request
940 * is ready, no other operations which require a barrier will start
941 * until the IO request has had a chance.
942 *
943 * So: regular IO calls 'wait_barrier'. When that returns there
944 * is no backgroup IO happening, It must arrange to call
945 * allow_barrier when it has finished its IO.
946 * backgroup IO calls must call raise_barrier. Once that returns
947 * there is no normal IO happeing. It must arrange to call
948 * lower_barrier when the particular background IO completes.
949 */
950
951 static void raise_barrier(struct r10conf *conf, int force)
952 {
953 BUG_ON(force && !conf->barrier);
954 spin_lock_irq(&conf->resync_lock);
955
956 /* Wait until no block IO is waiting (unless 'force') */
957 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
958 conf->resync_lock);
959
960 /* block any new IO from starting */
961 conf->barrier++;
962
963 /* Now wait for all pending IO to complete */
964 wait_event_lock_irq(conf->wait_barrier,
965 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
966 conf->resync_lock);
967
968 spin_unlock_irq(&conf->resync_lock);
969 }
970
971 static void lower_barrier(struct r10conf *conf)
972 {
973 unsigned long flags;
974 spin_lock_irqsave(&conf->resync_lock, flags);
975 conf->barrier--;
976 spin_unlock_irqrestore(&conf->resync_lock, flags);
977 wake_up(&conf->wait_barrier);
978 }
979
980 static void wait_barrier(struct r10conf *conf)
981 {
982 spin_lock_irq(&conf->resync_lock);
983 if (conf->barrier) {
984 conf->nr_waiting++;
985 /* Wait for the barrier to drop.
986 * However if there are already pending
987 * requests (preventing the barrier from
988 * rising completely), and the
989 * pre-process bio queue isn't empty,
990 * then don't wait, as we need to empty
991 * that queue to get the nr_pending
992 * count down.
993 */
994 raid10_log(conf->mddev, "wait barrier");
995 wait_event_lock_irq(conf->wait_barrier,
996 !conf->barrier ||
997 (atomic_read(&conf->nr_pending) &&
998 current->bio_list &&
999 (!bio_list_empty(&current->bio_list[0]) ||
1000 !bio_list_empty(&current->bio_list[1]))),
1001 conf->resync_lock);
1002 conf->nr_waiting--;
1003 if (!conf->nr_waiting)
1004 wake_up(&conf->wait_barrier);
1005 }
1006 atomic_inc(&conf->nr_pending);
1007 spin_unlock_irq(&conf->resync_lock);
1008 }
1009
1010 static void allow_barrier(struct r10conf *conf)
1011 {
1012 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1013 (conf->array_freeze_pending))
1014 wake_up(&conf->wait_barrier);
1015 }
1016
1017 static void freeze_array(struct r10conf *conf, int extra)
1018 {
1019 /* stop syncio and normal IO and wait for everything to
1020 * go quiet.
1021 * We increment barrier and nr_waiting, and then
1022 * wait until nr_pending match nr_queued+extra
1023 * This is called in the context of one normal IO request
1024 * that has failed. Thus any sync request that might be pending
1025 * will be blocked by nr_pending, and we need to wait for
1026 * pending IO requests to complete or be queued for re-try.
1027 * Thus the number queued (nr_queued) plus this request (extra)
1028 * must match the number of pending IOs (nr_pending) before
1029 * we continue.
1030 */
1031 spin_lock_irq(&conf->resync_lock);
1032 conf->array_freeze_pending++;
1033 conf->barrier++;
1034 conf->nr_waiting++;
1035 wait_event_lock_irq_cmd(conf->wait_barrier,
1036 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1037 conf->resync_lock,
1038 flush_pending_writes(conf));
1039
1040 conf->array_freeze_pending--;
1041 spin_unlock_irq(&conf->resync_lock);
1042 }
1043
1044 static void unfreeze_array(struct r10conf *conf)
1045 {
1046 /* reverse the effect of the freeze */
1047 spin_lock_irq(&conf->resync_lock);
1048 conf->barrier--;
1049 conf->nr_waiting--;
1050 wake_up(&conf->wait_barrier);
1051 spin_unlock_irq(&conf->resync_lock);
1052 }
1053
1054 static sector_t choose_data_offset(struct r10bio *r10_bio,
1055 struct md_rdev *rdev)
1056 {
1057 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1058 test_bit(R10BIO_Previous, &r10_bio->state))
1059 return rdev->data_offset;
1060 else
1061 return rdev->new_data_offset;
1062 }
1063
1064 struct raid10_plug_cb {
1065 struct blk_plug_cb cb;
1066 struct bio_list pending;
1067 int pending_cnt;
1068 };
1069
1070 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1071 {
1072 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1073 cb);
1074 struct mddev *mddev = plug->cb.data;
1075 struct r10conf *conf = mddev->private;
1076 struct bio *bio;
1077
1078 if (from_schedule || current->bio_list) {
1079 spin_lock_irq(&conf->device_lock);
1080 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1081 conf->pending_count += plug->pending_cnt;
1082 spin_unlock_irq(&conf->device_lock);
1083 wake_up(&conf->wait_barrier);
1084 md_wakeup_thread(mddev->thread);
1085 kfree(plug);
1086 return;
1087 }
1088
1089 /* we aren't scheduling, so we can do the write-out directly. */
1090 bio = bio_list_get(&plug->pending);
1091 bitmap_unplug(mddev->bitmap);
1092 wake_up(&conf->wait_barrier);
1093
1094 while (bio) { /* submit pending writes */
1095 struct bio *next = bio->bi_next;
1096 struct md_rdev *rdev = (void*)bio->bi_disk;
1097 bio->bi_next = NULL;
1098 bio_set_dev(bio, rdev->bdev);
1099 if (test_bit(Faulty, &rdev->flags)) {
1100 bio_io_error(bio);
1101 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1102 !blk_queue_discard(bio->bi_disk->queue)))
1103 /* Just ignore it */
1104 bio_endio(bio);
1105 else
1106 generic_make_request(bio);
1107 bio = next;
1108 }
1109 kfree(plug);
1110 }
1111
1112 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1113 struct r10bio *r10_bio)
1114 {
1115 struct r10conf *conf = mddev->private;
1116 struct bio *read_bio;
1117 const int op = bio_op(bio);
1118 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1119 int max_sectors;
1120 sector_t sectors;
1121 struct md_rdev *rdev;
1122 char b[BDEVNAME_SIZE];
1123 int slot = r10_bio->read_slot;
1124 struct md_rdev *err_rdev = NULL;
1125 gfp_t gfp = GFP_NOIO;
1126
1127 if (r10_bio->devs[slot].rdev) {
1128 /*
1129 * This is an error retry, but we cannot
1130 * safely dereference the rdev in the r10_bio,
1131 * we must use the one in conf.
1132 * If it has already been disconnected (unlikely)
1133 * we lose the device name in error messages.
1134 */
1135 int disk;
1136 /*
1137 * As we are blocking raid10, it is a little safer to
1138 * use __GFP_HIGH.
1139 */
1140 gfp = GFP_NOIO | __GFP_HIGH;
1141
1142 rcu_read_lock();
1143 disk = r10_bio->devs[slot].devnum;
1144 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1145 if (err_rdev)
1146 bdevname(err_rdev->bdev, b);
1147 else {
1148 strcpy(b, "???");
1149 /* This never gets dereferenced */
1150 err_rdev = r10_bio->devs[slot].rdev;
1151 }
1152 rcu_read_unlock();
1153 }
1154 /*
1155 * Register the new request and wait if the reconstruction
1156 * thread has put up a bar for new requests.
1157 * Continue immediately if no resync is active currently.
1158 */
1159 wait_barrier(conf);
1160
1161 sectors = r10_bio->sectors;
1162 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1163 bio->bi_iter.bi_sector < conf->reshape_progress &&
1164 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1165 /*
1166 * IO spans the reshape position. Need to wait for reshape to
1167 * pass
1168 */
1169 raid10_log(conf->mddev, "wait reshape");
1170 allow_barrier(conf);
1171 wait_event(conf->wait_barrier,
1172 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1173 conf->reshape_progress >= bio->bi_iter.bi_sector +
1174 sectors);
1175 wait_barrier(conf);
1176 }
1177
1178 rdev = read_balance(conf, r10_bio, &max_sectors);
1179 if (!rdev) {
1180 if (err_rdev) {
1181 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 mdname(mddev), b,
1183 (unsigned long long)r10_bio->sector);
1184 }
1185 raid_end_bio_io(r10_bio);
1186 return;
1187 }
1188 if (err_rdev)
1189 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190 mdname(mddev),
1191 bdevname(rdev->bdev, b),
1192 (unsigned long long)r10_bio->sector);
1193 if (max_sectors < bio_sectors(bio)) {
1194 struct bio *split = bio_split(bio, max_sectors,
1195 gfp, conf->bio_split);
1196 bio_chain(split, bio);
1197 allow_barrier(conf);
1198 generic_make_request(bio);
1199 wait_barrier(conf);
1200 bio = split;
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1203 }
1204 slot = r10_bio->read_slot;
1205
1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208 r10_bio->devs[slot].bio = read_bio;
1209 r10_bio->devs[slot].rdev = rdev;
1210
1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 choose_data_offset(r10_bio, rdev);
1213 bio_set_dev(read_bio, rdev->bdev);
1214 read_bio->bi_end_io = raid10_end_read_request;
1215 bio_set_op_attrs(read_bio, op, do_sync);
1216 if (test_bit(FailFast, &rdev->flags) &&
1217 test_bit(R10BIO_FailFast, &r10_bio->state))
1218 read_bio->bi_opf |= MD_FAILFAST;
1219 read_bio->bi_private = r10_bio;
1220
1221 if (mddev->gendisk)
1222 trace_block_bio_remap(read_bio->bi_disk->queue,
1223 read_bio, disk_devt(mddev->gendisk),
1224 r10_bio->sector);
1225 generic_make_request(read_bio);
1226 return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
1231 int n_copy)
1232 {
1233 const int op = bio_op(bio);
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 unsigned long flags;
1237 struct blk_plug_cb *cb;
1238 struct raid10_plug_cb *plug = NULL;
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1242 struct bio *mbio;
1243
1244 if (replacement) {
1245 rdev = conf->mirrors[devnum].replacement;
1246 if (rdev == NULL) {
1247 /* Replacement just got moved to main 'rdev' */
1248 smp_mb();
1249 rdev = conf->mirrors[devnum].rdev;
1250 }
1251 } else
1252 rdev = conf->mirrors[devnum].rdev;
1253
1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 if (replacement)
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1257 else
1258 r10_bio->devs[n_copy].bio = mbio;
1259
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
1262 bio_set_dev(mbio, rdev->bdev);
1263 mbio->bi_end_io = raid10_end_write_request;
1264 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 if (!replacement && test_bit(FailFast,
1266 &conf->mirrors[devnum].rdev->flags)
1267 && enough(conf, devnum))
1268 mbio->bi_opf |= MD_FAILFAST;
1269 mbio->bi_private = r10_bio;
1270
1271 if (conf->mddev->gendisk)
1272 trace_block_bio_remap(mbio->bi_disk->queue,
1273 mbio, disk_devt(conf->mddev->gendisk),
1274 r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
1276 mbio->bi_disk = (void *)rdev;
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 if (cb)
1282 plug = container_of(cb, struct raid10_plug_cb, cb);
1283 else
1284 plug = NULL;
1285 if (plug) {
1286 bio_list_add(&plug->pending, mbio);
1287 plug->pending_cnt++;
1288 } else {
1289 spin_lock_irqsave(&conf->device_lock, flags);
1290 bio_list_add(&conf->pending_bio_list, mbio);
1291 conf->pending_count++;
1292 spin_unlock_irqrestore(&conf->device_lock, flags);
1293 md_wakeup_thread(mddev->thread);
1294 }
1295 }
1296
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 struct r10bio *r10_bio)
1299 {
1300 struct r10conf *conf = mddev->private;
1301 int i;
1302 struct md_rdev *blocked_rdev;
1303 sector_t sectors;
1304 int max_sectors;
1305
1306 if ((mddev_is_clustered(mddev) &&
1307 md_cluster_ops->area_resyncing(mddev, WRITE,
1308 bio->bi_iter.bi_sector,
1309 bio_end_sector(bio)))) {
1310 DEFINE_WAIT(w);
1311 for (;;) {
1312 prepare_to_wait(&conf->wait_barrier,
1313 &w, TASK_IDLE);
1314 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1315 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1316 break;
1317 schedule();
1318 }
1319 finish_wait(&conf->wait_barrier, &w);
1320 }
1321
1322 /*
1323 * Register the new request and wait if the reconstruction
1324 * thread has put up a bar for new requests.
1325 * Continue immediately if no resync is active currently.
1326 */
1327 wait_barrier(conf);
1328
1329 sectors = r10_bio->sectors;
1330 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1331 bio->bi_iter.bi_sector < conf->reshape_progress &&
1332 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1333 /*
1334 * IO spans the reshape position. Need to wait for reshape to
1335 * pass
1336 */
1337 raid10_log(conf->mddev, "wait reshape");
1338 allow_barrier(conf);
1339 wait_event(conf->wait_barrier,
1340 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1341 conf->reshape_progress >= bio->bi_iter.bi_sector +
1342 sectors);
1343 wait_barrier(conf);
1344 }
1345
1346 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1347 (mddev->reshape_backwards
1348 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1349 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1350 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1351 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1352 /* Need to update reshape_position in metadata */
1353 mddev->reshape_position = conf->reshape_progress;
1354 set_mask_bits(&mddev->sb_flags, 0,
1355 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1356 md_wakeup_thread(mddev->thread);
1357 raid10_log(conf->mddev, "wait reshape metadata");
1358 wait_event(mddev->sb_wait,
1359 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1360
1361 conf->reshape_safe = mddev->reshape_position;
1362 }
1363
1364 if (conf->pending_count >= max_queued_requests) {
1365 md_wakeup_thread(mddev->thread);
1366 raid10_log(mddev, "wait queued");
1367 wait_event(conf->wait_barrier,
1368 conf->pending_count < max_queued_requests);
1369 }
1370 /* first select target devices under rcu_lock and
1371 * inc refcount on their rdev. Record them by setting
1372 * bios[x] to bio
1373 * If there are known/acknowledged bad blocks on any device
1374 * on which we have seen a write error, we want to avoid
1375 * writing to those blocks. This potentially requires several
1376 * writes to write around the bad blocks. Each set of writes
1377 * gets its own r10_bio with a set of bios attached.
1378 */
1379
1380 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1381 raid10_find_phys(conf, r10_bio);
1382 retry_write:
1383 blocked_rdev = NULL;
1384 rcu_read_lock();
1385 max_sectors = r10_bio->sectors;
1386
1387 for (i = 0; i < conf->copies; i++) {
1388 int d = r10_bio->devs[i].devnum;
1389 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1390 struct md_rdev *rrdev = rcu_dereference(
1391 conf->mirrors[d].replacement);
1392 if (rdev == rrdev)
1393 rrdev = NULL;
1394 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1395 atomic_inc(&rdev->nr_pending);
1396 blocked_rdev = rdev;
1397 break;
1398 }
1399 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1400 atomic_inc(&rrdev->nr_pending);
1401 blocked_rdev = rrdev;
1402 break;
1403 }
1404 if (rdev && (test_bit(Faulty, &rdev->flags)))
1405 rdev = NULL;
1406 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1407 rrdev = NULL;
1408
1409 r10_bio->devs[i].bio = NULL;
1410 r10_bio->devs[i].repl_bio = NULL;
1411
1412 if (!rdev && !rrdev) {
1413 set_bit(R10BIO_Degraded, &r10_bio->state);
1414 continue;
1415 }
1416 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1417 sector_t first_bad;
1418 sector_t dev_sector = r10_bio->devs[i].addr;
1419 int bad_sectors;
1420 int is_bad;
1421
1422 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1423 &first_bad, &bad_sectors);
1424 if (is_bad < 0) {
1425 /* Mustn't write here until the bad block
1426 * is acknowledged
1427 */
1428 atomic_inc(&rdev->nr_pending);
1429 set_bit(BlockedBadBlocks, &rdev->flags);
1430 blocked_rdev = rdev;
1431 break;
1432 }
1433 if (is_bad && first_bad <= dev_sector) {
1434 /* Cannot write here at all */
1435 bad_sectors -= (dev_sector - first_bad);
1436 if (bad_sectors < max_sectors)
1437 /* Mustn't write more than bad_sectors
1438 * to other devices yet
1439 */
1440 max_sectors = bad_sectors;
1441 /* We don't set R10BIO_Degraded as that
1442 * only applies if the disk is missing,
1443 * so it might be re-added, and we want to
1444 * know to recover this chunk.
1445 * In this case the device is here, and the
1446 * fact that this chunk is not in-sync is
1447 * recorded in the bad block log.
1448 */
1449 continue;
1450 }
1451 if (is_bad) {
1452 int good_sectors = first_bad - dev_sector;
1453 if (good_sectors < max_sectors)
1454 max_sectors = good_sectors;
1455 }
1456 }
1457 if (rdev) {
1458 r10_bio->devs[i].bio = bio;
1459 atomic_inc(&rdev->nr_pending);
1460 }
1461 if (rrdev) {
1462 r10_bio->devs[i].repl_bio = bio;
1463 atomic_inc(&rrdev->nr_pending);
1464 }
1465 }
1466 rcu_read_unlock();
1467
1468 if (unlikely(blocked_rdev)) {
1469 /* Have to wait for this device to get unblocked, then retry */
1470 int j;
1471 int d;
1472
1473 for (j = 0; j < i; j++) {
1474 if (r10_bio->devs[j].bio) {
1475 d = r10_bio->devs[j].devnum;
1476 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1477 }
1478 if (r10_bio->devs[j].repl_bio) {
1479 struct md_rdev *rdev;
1480 d = r10_bio->devs[j].devnum;
1481 rdev = conf->mirrors[d].replacement;
1482 if (!rdev) {
1483 /* Race with remove_disk */
1484 smp_mb();
1485 rdev = conf->mirrors[d].rdev;
1486 }
1487 rdev_dec_pending(rdev, mddev);
1488 }
1489 }
1490 allow_barrier(conf);
1491 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1492 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1493 wait_barrier(conf);
1494 goto retry_write;
1495 }
1496
1497 if (max_sectors < r10_bio->sectors)
1498 r10_bio->sectors = max_sectors;
1499
1500 if (r10_bio->sectors < bio_sectors(bio)) {
1501 struct bio *split = bio_split(bio, r10_bio->sectors,
1502 GFP_NOIO, conf->bio_split);
1503 bio_chain(split, bio);
1504 allow_barrier(conf);
1505 generic_make_request(bio);
1506 wait_barrier(conf);
1507 bio = split;
1508 r10_bio->master_bio = bio;
1509 }
1510
1511 atomic_set(&r10_bio->remaining, 1);
1512 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1513
1514 for (i = 0; i < conf->copies; i++) {
1515 if (r10_bio->devs[i].bio)
1516 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1517 if (r10_bio->devs[i].repl_bio)
1518 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1519 }
1520 one_write_done(r10_bio);
1521 }
1522
1523 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1524 {
1525 struct r10conf *conf = mddev->private;
1526 struct r10bio *r10_bio;
1527
1528 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529
1530 r10_bio->master_bio = bio;
1531 r10_bio->sectors = sectors;
1532
1533 r10_bio->mddev = mddev;
1534 r10_bio->sector = bio->bi_iter.bi_sector;
1535 r10_bio->state = 0;
1536 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1537
1538 if (bio_data_dir(bio) == READ)
1539 raid10_read_request(mddev, bio, r10_bio);
1540 else
1541 raid10_write_request(mddev, bio, r10_bio);
1542 }
1543
1544 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1545 {
1546 struct r10conf *conf = mddev->private;
1547 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1548 int chunk_sects = chunk_mask + 1;
1549 int sectors = bio_sectors(bio);
1550
1551 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1552 && md_flush_request(mddev, bio))
1553 return true;
1554
1555 if (!md_write_start(mddev, bio))
1556 return false;
1557
1558 /*
1559 * If this request crosses a chunk boundary, we need to split
1560 * it.
1561 */
1562 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1563 sectors > chunk_sects
1564 && (conf->geo.near_copies < conf->geo.raid_disks
1565 || conf->prev.near_copies <
1566 conf->prev.raid_disks)))
1567 sectors = chunk_sects -
1568 (bio->bi_iter.bi_sector &
1569 (chunk_sects - 1));
1570 __make_request(mddev, bio, sectors);
1571
1572 /* In case raid10d snuck in to freeze_array */
1573 wake_up(&conf->wait_barrier);
1574 return true;
1575 }
1576
1577 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1578 {
1579 struct r10conf *conf = mddev->private;
1580 int i;
1581
1582 if (conf->geo.near_copies < conf->geo.raid_disks)
1583 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1584 if (conf->geo.near_copies > 1)
1585 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1586 if (conf->geo.far_copies > 1) {
1587 if (conf->geo.far_offset)
1588 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1589 else
1590 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1591 if (conf->geo.far_set_size != conf->geo.raid_disks)
1592 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1593 }
1594 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1595 conf->geo.raid_disks - mddev->degraded);
1596 rcu_read_lock();
1597 for (i = 0; i < conf->geo.raid_disks; i++) {
1598 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1599 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1600 }
1601 rcu_read_unlock();
1602 seq_printf(seq, "]");
1603 }
1604
1605 /* check if there are enough drives for
1606 * every block to appear on atleast one.
1607 * Don't consider the device numbered 'ignore'
1608 * as we might be about to remove it.
1609 */
1610 static int _enough(struct r10conf *conf, int previous, int ignore)
1611 {
1612 int first = 0;
1613 int has_enough = 0;
1614 int disks, ncopies;
1615 if (previous) {
1616 disks = conf->prev.raid_disks;
1617 ncopies = conf->prev.near_copies;
1618 } else {
1619 disks = conf->geo.raid_disks;
1620 ncopies = conf->geo.near_copies;
1621 }
1622
1623 rcu_read_lock();
1624 do {
1625 int n = conf->copies;
1626 int cnt = 0;
1627 int this = first;
1628 while (n--) {
1629 struct md_rdev *rdev;
1630 if (this != ignore &&
1631 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1632 test_bit(In_sync, &rdev->flags))
1633 cnt++;
1634 this = (this+1) % disks;
1635 }
1636 if (cnt == 0)
1637 goto out;
1638 first = (first + ncopies) % disks;
1639 } while (first != 0);
1640 has_enough = 1;
1641 out:
1642 rcu_read_unlock();
1643 return has_enough;
1644 }
1645
1646 static int enough(struct r10conf *conf, int ignore)
1647 {
1648 /* when calling 'enough', both 'prev' and 'geo' must
1649 * be stable.
1650 * This is ensured if ->reconfig_mutex or ->device_lock
1651 * is held.
1652 */
1653 return _enough(conf, 0, ignore) &&
1654 _enough(conf, 1, ignore);
1655 }
1656
1657 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1658 {
1659 char b[BDEVNAME_SIZE];
1660 struct r10conf *conf = mddev->private;
1661 unsigned long flags;
1662
1663 /*
1664 * If it is not operational, then we have already marked it as dead
1665 * else if it is the last working disks, ignore the error, let the
1666 * next level up know.
1667 * else mark the drive as failed
1668 */
1669 spin_lock_irqsave(&conf->device_lock, flags);
1670 if (test_bit(In_sync, &rdev->flags)
1671 && !enough(conf, rdev->raid_disk)) {
1672 /*
1673 * Don't fail the drive, just return an IO error.
1674 */
1675 spin_unlock_irqrestore(&conf->device_lock, flags);
1676 return;
1677 }
1678 if (test_and_clear_bit(In_sync, &rdev->flags))
1679 mddev->degraded++;
1680 /*
1681 * If recovery is running, make sure it aborts.
1682 */
1683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1684 set_bit(Blocked, &rdev->flags);
1685 set_bit(Faulty, &rdev->flags);
1686 set_mask_bits(&mddev->sb_flags, 0,
1687 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1688 spin_unlock_irqrestore(&conf->device_lock, flags);
1689 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1690 "md/raid10:%s: Operation continuing on %d devices.\n",
1691 mdname(mddev), bdevname(rdev->bdev, b),
1692 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1693 }
1694
1695 static void print_conf(struct r10conf *conf)
1696 {
1697 int i;
1698 struct md_rdev *rdev;
1699
1700 pr_debug("RAID10 conf printout:\n");
1701 if (!conf) {
1702 pr_debug("(!conf)\n");
1703 return;
1704 }
1705 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1706 conf->geo.raid_disks);
1707
1708 /* This is only called with ->reconfix_mutex held, so
1709 * rcu protection of rdev is not needed */
1710 for (i = 0; i < conf->geo.raid_disks; i++) {
1711 char b[BDEVNAME_SIZE];
1712 rdev = conf->mirrors[i].rdev;
1713 if (rdev)
1714 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1715 i, !test_bit(In_sync, &rdev->flags),
1716 !test_bit(Faulty, &rdev->flags),
1717 bdevname(rdev->bdev,b));
1718 }
1719 }
1720
1721 static void close_sync(struct r10conf *conf)
1722 {
1723 wait_barrier(conf);
1724 allow_barrier(conf);
1725
1726 mempool_destroy(conf->r10buf_pool);
1727 conf->r10buf_pool = NULL;
1728 }
1729
1730 static int raid10_spare_active(struct mddev *mddev)
1731 {
1732 int i;
1733 struct r10conf *conf = mddev->private;
1734 struct raid10_info *tmp;
1735 int count = 0;
1736 unsigned long flags;
1737
1738 /*
1739 * Find all non-in_sync disks within the RAID10 configuration
1740 * and mark them in_sync
1741 */
1742 for (i = 0; i < conf->geo.raid_disks; i++) {
1743 tmp = conf->mirrors + i;
1744 if (tmp->replacement
1745 && tmp->replacement->recovery_offset == MaxSector
1746 && !test_bit(Faulty, &tmp->replacement->flags)
1747 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1748 /* Replacement has just become active */
1749 if (!tmp->rdev
1750 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1751 count++;
1752 if (tmp->rdev) {
1753 /* Replaced device not technically faulty,
1754 * but we need to be sure it gets removed
1755 * and never re-added.
1756 */
1757 set_bit(Faulty, &tmp->rdev->flags);
1758 sysfs_notify_dirent_safe(
1759 tmp->rdev->sysfs_state);
1760 }
1761 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1762 } else if (tmp->rdev
1763 && tmp->rdev->recovery_offset == MaxSector
1764 && !test_bit(Faulty, &tmp->rdev->flags)
1765 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1766 count++;
1767 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1768 }
1769 }
1770 spin_lock_irqsave(&conf->device_lock, flags);
1771 mddev->degraded -= count;
1772 spin_unlock_irqrestore(&conf->device_lock, flags);
1773
1774 print_conf(conf);
1775 return count;
1776 }
1777
1778 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1779 {
1780 struct r10conf *conf = mddev->private;
1781 int err = -EEXIST;
1782 int mirror;
1783 int first = 0;
1784 int last = conf->geo.raid_disks - 1;
1785
1786 if (mddev->recovery_cp < MaxSector)
1787 /* only hot-add to in-sync arrays, as recovery is
1788 * very different from resync
1789 */
1790 return -EBUSY;
1791 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1792 return -EINVAL;
1793
1794 if (md_integrity_add_rdev(rdev, mddev))
1795 return -ENXIO;
1796
1797 if (rdev->raid_disk >= 0)
1798 first = last = rdev->raid_disk;
1799
1800 if (rdev->saved_raid_disk >= first &&
1801 rdev->saved_raid_disk < conf->geo.raid_disks &&
1802 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1803 mirror = rdev->saved_raid_disk;
1804 else
1805 mirror = first;
1806 for ( ; mirror <= last ; mirror++) {
1807 struct raid10_info *p = &conf->mirrors[mirror];
1808 if (p->recovery_disabled == mddev->recovery_disabled)
1809 continue;
1810 if (p->rdev) {
1811 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1812 p->replacement != NULL)
1813 continue;
1814 clear_bit(In_sync, &rdev->flags);
1815 set_bit(Replacement, &rdev->flags);
1816 rdev->raid_disk = mirror;
1817 err = 0;
1818 if (mddev->gendisk)
1819 disk_stack_limits(mddev->gendisk, rdev->bdev,
1820 rdev->data_offset << 9);
1821 conf->fullsync = 1;
1822 rcu_assign_pointer(p->replacement, rdev);
1823 break;
1824 }
1825
1826 if (mddev->gendisk)
1827 disk_stack_limits(mddev->gendisk, rdev->bdev,
1828 rdev->data_offset << 9);
1829
1830 p->head_position = 0;
1831 p->recovery_disabled = mddev->recovery_disabled - 1;
1832 rdev->raid_disk = mirror;
1833 err = 0;
1834 if (rdev->saved_raid_disk != mirror)
1835 conf->fullsync = 1;
1836 rcu_assign_pointer(p->rdev, rdev);
1837 break;
1838 }
1839 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1840 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1841
1842 print_conf(conf);
1843 return err;
1844 }
1845
1846 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1847 {
1848 struct r10conf *conf = mddev->private;
1849 int err = 0;
1850 int number = rdev->raid_disk;
1851 struct md_rdev **rdevp;
1852 struct raid10_info *p = conf->mirrors + number;
1853
1854 print_conf(conf);
1855 if (rdev == p->rdev)
1856 rdevp = &p->rdev;
1857 else if (rdev == p->replacement)
1858 rdevp = &p->replacement;
1859 else
1860 return 0;
1861
1862 if (test_bit(In_sync, &rdev->flags) ||
1863 atomic_read(&rdev->nr_pending)) {
1864 err = -EBUSY;
1865 goto abort;
1866 }
1867 /* Only remove non-faulty devices if recovery
1868 * is not possible.
1869 */
1870 if (!test_bit(Faulty, &rdev->flags) &&
1871 mddev->recovery_disabled != p->recovery_disabled &&
1872 (!p->replacement || p->replacement == rdev) &&
1873 number < conf->geo.raid_disks &&
1874 enough(conf, -1)) {
1875 err = -EBUSY;
1876 goto abort;
1877 }
1878 *rdevp = NULL;
1879 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1880 synchronize_rcu();
1881 if (atomic_read(&rdev->nr_pending)) {
1882 /* lost the race, try later */
1883 err = -EBUSY;
1884 *rdevp = rdev;
1885 goto abort;
1886 }
1887 }
1888 if (p->replacement) {
1889 /* We must have just cleared 'rdev' */
1890 p->rdev = p->replacement;
1891 clear_bit(Replacement, &p->replacement->flags);
1892 smp_mb(); /* Make sure other CPUs may see both as identical
1893 * but will never see neither -- if they are careful.
1894 */
1895 p->replacement = NULL;
1896 }
1897
1898 clear_bit(WantReplacement, &rdev->flags);
1899 err = md_integrity_register(mddev);
1900
1901 abort:
1902
1903 print_conf(conf);
1904 return err;
1905 }
1906
1907 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1908 {
1909 struct r10conf *conf = r10_bio->mddev->private;
1910
1911 if (!bio->bi_status)
1912 set_bit(R10BIO_Uptodate, &r10_bio->state);
1913 else
1914 /* The write handler will notice the lack of
1915 * R10BIO_Uptodate and record any errors etc
1916 */
1917 atomic_add(r10_bio->sectors,
1918 &conf->mirrors[d].rdev->corrected_errors);
1919
1920 /* for reconstruct, we always reschedule after a read.
1921 * for resync, only after all reads
1922 */
1923 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1924 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1925 atomic_dec_and_test(&r10_bio->remaining)) {
1926 /* we have read all the blocks,
1927 * do the comparison in process context in raid10d
1928 */
1929 reschedule_retry(r10_bio);
1930 }
1931 }
1932
1933 static void end_sync_read(struct bio *bio)
1934 {
1935 struct r10bio *r10_bio = get_resync_r10bio(bio);
1936 struct r10conf *conf = r10_bio->mddev->private;
1937 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1938
1939 __end_sync_read(r10_bio, bio, d);
1940 }
1941
1942 static void end_reshape_read(struct bio *bio)
1943 {
1944 /* reshape read bio isn't allocated from r10buf_pool */
1945 struct r10bio *r10_bio = bio->bi_private;
1946
1947 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1948 }
1949
1950 static void end_sync_request(struct r10bio *r10_bio)
1951 {
1952 struct mddev *mddev = r10_bio->mddev;
1953
1954 while (atomic_dec_and_test(&r10_bio->remaining)) {
1955 if (r10_bio->master_bio == NULL) {
1956 /* the primary of several recovery bios */
1957 sector_t s = r10_bio->sectors;
1958 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1959 test_bit(R10BIO_WriteError, &r10_bio->state))
1960 reschedule_retry(r10_bio);
1961 else
1962 put_buf(r10_bio);
1963 md_done_sync(mddev, s, 1);
1964 break;
1965 } else {
1966 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1967 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 test_bit(R10BIO_WriteError, &r10_bio->state))
1969 reschedule_retry(r10_bio);
1970 else
1971 put_buf(r10_bio);
1972 r10_bio = r10_bio2;
1973 }
1974 }
1975 }
1976
1977 static void end_sync_write(struct bio *bio)
1978 {
1979 struct r10bio *r10_bio = get_resync_r10bio(bio);
1980 struct mddev *mddev = r10_bio->mddev;
1981 struct r10conf *conf = mddev->private;
1982 int d;
1983 sector_t first_bad;
1984 int bad_sectors;
1985 int slot;
1986 int repl;
1987 struct md_rdev *rdev = NULL;
1988
1989 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1990 if (repl)
1991 rdev = conf->mirrors[d].replacement;
1992 else
1993 rdev = conf->mirrors[d].rdev;
1994
1995 if (bio->bi_status) {
1996 if (repl)
1997 md_error(mddev, rdev);
1998 else {
1999 set_bit(WriteErrorSeen, &rdev->flags);
2000 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2001 set_bit(MD_RECOVERY_NEEDED,
2002 &rdev->mddev->recovery);
2003 set_bit(R10BIO_WriteError, &r10_bio->state);
2004 }
2005 } else if (is_badblock(rdev,
2006 r10_bio->devs[slot].addr,
2007 r10_bio->sectors,
2008 &first_bad, &bad_sectors))
2009 set_bit(R10BIO_MadeGood, &r10_bio->state);
2010
2011 rdev_dec_pending(rdev, mddev);
2012
2013 end_sync_request(r10_bio);
2014 }
2015
2016 /*
2017 * Note: sync and recover and handled very differently for raid10
2018 * This code is for resync.
2019 * For resync, we read through virtual addresses and read all blocks.
2020 * If there is any error, we schedule a write. The lowest numbered
2021 * drive is authoritative.
2022 * However requests come for physical address, so we need to map.
2023 * For every physical address there are raid_disks/copies virtual addresses,
2024 * which is always are least one, but is not necessarly an integer.
2025 * This means that a physical address can span multiple chunks, so we may
2026 * have to submit multiple io requests for a single sync request.
2027 */
2028 /*
2029 * We check if all blocks are in-sync and only write to blocks that
2030 * aren't in sync
2031 */
2032 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2033 {
2034 struct r10conf *conf = mddev->private;
2035 int i, first;
2036 struct bio *tbio, *fbio;
2037 int vcnt;
2038 struct page **tpages, **fpages;
2039
2040 atomic_set(&r10_bio->remaining, 1);
2041
2042 /* find the first device with a block */
2043 for (i=0; i<conf->copies; i++)
2044 if (!r10_bio->devs[i].bio->bi_status)
2045 break;
2046
2047 if (i == conf->copies)
2048 goto done;
2049
2050 first = i;
2051 fbio = r10_bio->devs[i].bio;
2052 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2053 fbio->bi_iter.bi_idx = 0;
2054 fpages = get_resync_pages(fbio)->pages;
2055
2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2057 /* now find blocks with errors */
2058 for (i=0 ; i < conf->copies ; i++) {
2059 int j, d;
2060 struct md_rdev *rdev;
2061 struct resync_pages *rp;
2062
2063 tbio = r10_bio->devs[i].bio;
2064
2065 if (tbio->bi_end_io != end_sync_read)
2066 continue;
2067 if (i == first)
2068 continue;
2069
2070 tpages = get_resync_pages(tbio)->pages;
2071 d = r10_bio->devs[i].devnum;
2072 rdev = conf->mirrors[d].rdev;
2073 if (!r10_bio->devs[i].bio->bi_status) {
2074 /* We know that the bi_io_vec layout is the same for
2075 * both 'first' and 'i', so we just compare them.
2076 * All vec entries are PAGE_SIZE;
2077 */
2078 int sectors = r10_bio->sectors;
2079 for (j = 0; j < vcnt; j++) {
2080 int len = PAGE_SIZE;
2081 if (sectors < (len / 512))
2082 len = sectors * 512;
2083 if (memcmp(page_address(fpages[j]),
2084 page_address(tpages[j]),
2085 len))
2086 break;
2087 sectors -= len/512;
2088 }
2089 if (j == vcnt)
2090 continue;
2091 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2092 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2093 /* Don't fix anything. */
2094 continue;
2095 } else if (test_bit(FailFast, &rdev->flags)) {
2096 /* Just give up on this device */
2097 md_error(rdev->mddev, rdev);
2098 continue;
2099 }
2100 /* Ok, we need to write this bio, either to correct an
2101 * inconsistency or to correct an unreadable block.
2102 * First we need to fixup bv_offset, bv_len and
2103 * bi_vecs, as the read request might have corrupted these
2104 */
2105 rp = get_resync_pages(tbio);
2106 bio_reset(tbio);
2107
2108 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2109
2110 rp->raid_bio = r10_bio;
2111 tbio->bi_private = rp;
2112 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2113 tbio->bi_end_io = end_sync_write;
2114 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2115
2116 bio_copy_data(tbio, fbio);
2117
2118 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2119 atomic_inc(&r10_bio->remaining);
2120 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2121
2122 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2123 tbio->bi_opf |= MD_FAILFAST;
2124 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2125 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2126 generic_make_request(tbio);
2127 }
2128
2129 /* Now write out to any replacement devices
2130 * that are active
2131 */
2132 for (i = 0; i < conf->copies; i++) {
2133 int d;
2134
2135 tbio = r10_bio->devs[i].repl_bio;
2136 if (!tbio || !tbio->bi_end_io)
2137 continue;
2138 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2139 && r10_bio->devs[i].bio != fbio)
2140 bio_copy_data(tbio, fbio);
2141 d = r10_bio->devs[i].devnum;
2142 atomic_inc(&r10_bio->remaining);
2143 md_sync_acct(conf->mirrors[d].replacement->bdev,
2144 bio_sectors(tbio));
2145 generic_make_request(tbio);
2146 }
2147
2148 done:
2149 if (atomic_dec_and_test(&r10_bio->remaining)) {
2150 md_done_sync(mddev, r10_bio->sectors, 1);
2151 put_buf(r10_bio);
2152 }
2153 }
2154
2155 /*
2156 * Now for the recovery code.
2157 * Recovery happens across physical sectors.
2158 * We recover all non-is_sync drives by finding the virtual address of
2159 * each, and then choose a working drive that also has that virt address.
2160 * There is a separate r10_bio for each non-in_sync drive.
2161 * Only the first two slots are in use. The first for reading,
2162 * The second for writing.
2163 *
2164 */
2165 static void fix_recovery_read_error(struct r10bio *r10_bio)
2166 {
2167 /* We got a read error during recovery.
2168 * We repeat the read in smaller page-sized sections.
2169 * If a read succeeds, write it to the new device or record
2170 * a bad block if we cannot.
2171 * If a read fails, record a bad block on both old and
2172 * new devices.
2173 */
2174 struct mddev *mddev = r10_bio->mddev;
2175 struct r10conf *conf = mddev->private;
2176 struct bio *bio = r10_bio->devs[0].bio;
2177 sector_t sect = 0;
2178 int sectors = r10_bio->sectors;
2179 int idx = 0;
2180 int dr = r10_bio->devs[0].devnum;
2181 int dw = r10_bio->devs[1].devnum;
2182 struct page **pages = get_resync_pages(bio)->pages;
2183
2184 while (sectors) {
2185 int s = sectors;
2186 struct md_rdev *rdev;
2187 sector_t addr;
2188 int ok;
2189
2190 if (s > (PAGE_SIZE>>9))
2191 s = PAGE_SIZE >> 9;
2192
2193 rdev = conf->mirrors[dr].rdev;
2194 addr = r10_bio->devs[0].addr + sect,
2195 ok = sync_page_io(rdev,
2196 addr,
2197 s << 9,
2198 pages[idx],
2199 REQ_OP_READ, 0, false);
2200 if (ok) {
2201 rdev = conf->mirrors[dw].rdev;
2202 addr = r10_bio->devs[1].addr + sect;
2203 ok = sync_page_io(rdev,
2204 addr,
2205 s << 9,
2206 pages[idx],
2207 REQ_OP_WRITE, 0, false);
2208 if (!ok) {
2209 set_bit(WriteErrorSeen, &rdev->flags);
2210 if (!test_and_set_bit(WantReplacement,
2211 &rdev->flags))
2212 set_bit(MD_RECOVERY_NEEDED,
2213 &rdev->mddev->recovery);
2214 }
2215 }
2216 if (!ok) {
2217 /* We don't worry if we cannot set a bad block -
2218 * it really is bad so there is no loss in not
2219 * recording it yet
2220 */
2221 rdev_set_badblocks(rdev, addr, s, 0);
2222
2223 if (rdev != conf->mirrors[dw].rdev) {
2224 /* need bad block on destination too */
2225 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2226 addr = r10_bio->devs[1].addr + sect;
2227 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2228 if (!ok) {
2229 /* just abort the recovery */
2230 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2231 mdname(mddev));
2232
2233 conf->mirrors[dw].recovery_disabled
2234 = mddev->recovery_disabled;
2235 set_bit(MD_RECOVERY_INTR,
2236 &mddev->recovery);
2237 break;
2238 }
2239 }
2240 }
2241
2242 sectors -= s;
2243 sect += s;
2244 idx++;
2245 }
2246 }
2247
2248 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2249 {
2250 struct r10conf *conf = mddev->private;
2251 int d;
2252 struct bio *wbio, *wbio2;
2253
2254 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2255 fix_recovery_read_error(r10_bio);
2256 end_sync_request(r10_bio);
2257 return;
2258 }
2259
2260 /*
2261 * share the pages with the first bio
2262 * and submit the write request
2263 */
2264 d = r10_bio->devs[1].devnum;
2265 wbio = r10_bio->devs[1].bio;
2266 wbio2 = r10_bio->devs[1].repl_bio;
2267 /* Need to test wbio2->bi_end_io before we call
2268 * generic_make_request as if the former is NULL,
2269 * the latter is free to free wbio2.
2270 */
2271 if (wbio2 && !wbio2->bi_end_io)
2272 wbio2 = NULL;
2273 if (wbio->bi_end_io) {
2274 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2275 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2276 generic_make_request(wbio);
2277 }
2278 if (wbio2) {
2279 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2280 md_sync_acct(conf->mirrors[d].replacement->bdev,
2281 bio_sectors(wbio2));
2282 generic_make_request(wbio2);
2283 }
2284 }
2285
2286 /*
2287 * Used by fix_read_error() to decay the per rdev read_errors.
2288 * We halve the read error count for every hour that has elapsed
2289 * since the last recorded read error.
2290 *
2291 */
2292 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2293 {
2294 long cur_time_mon;
2295 unsigned long hours_since_last;
2296 unsigned int read_errors = atomic_read(&rdev->read_errors);
2297
2298 cur_time_mon = ktime_get_seconds();
2299
2300 if (rdev->last_read_error == 0) {
2301 /* first time we've seen a read error */
2302 rdev->last_read_error = cur_time_mon;
2303 return;
2304 }
2305
2306 hours_since_last = (long)(cur_time_mon -
2307 rdev->last_read_error) / 3600;
2308
2309 rdev->last_read_error = cur_time_mon;
2310
2311 /*
2312 * if hours_since_last is > the number of bits in read_errors
2313 * just set read errors to 0. We do this to avoid
2314 * overflowing the shift of read_errors by hours_since_last.
2315 */
2316 if (hours_since_last >= 8 * sizeof(read_errors))
2317 atomic_set(&rdev->read_errors, 0);
2318 else
2319 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2320 }
2321
2322 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2323 int sectors, struct page *page, int rw)
2324 {
2325 sector_t first_bad;
2326 int bad_sectors;
2327
2328 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2329 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2330 return -1;
2331 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2332 /* success */
2333 return 1;
2334 if (rw == WRITE) {
2335 set_bit(WriteErrorSeen, &rdev->flags);
2336 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2337 set_bit(MD_RECOVERY_NEEDED,
2338 &rdev->mddev->recovery);
2339 }
2340 /* need to record an error - either for the block or the device */
2341 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2342 md_error(rdev->mddev, rdev);
2343 return 0;
2344 }
2345
2346 /*
2347 * This is a kernel thread which:
2348 *
2349 * 1. Retries failed read operations on working mirrors.
2350 * 2. Updates the raid superblock when problems encounter.
2351 * 3. Performs writes following reads for array synchronising.
2352 */
2353
2354 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2355 {
2356 int sect = 0; /* Offset from r10_bio->sector */
2357 int sectors = r10_bio->sectors;
2358 struct md_rdev*rdev;
2359 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2360 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2361
2362 /* still own a reference to this rdev, so it cannot
2363 * have been cleared recently.
2364 */
2365 rdev = conf->mirrors[d].rdev;
2366
2367 if (test_bit(Faulty, &rdev->flags))
2368 /* drive has already been failed, just ignore any
2369 more fix_read_error() attempts */
2370 return;
2371
2372 check_decay_read_errors(mddev, rdev);
2373 atomic_inc(&rdev->read_errors);
2374 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2375 char b[BDEVNAME_SIZE];
2376 bdevname(rdev->bdev, b);
2377
2378 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2379 mdname(mddev), b,
2380 atomic_read(&rdev->read_errors), max_read_errors);
2381 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2382 mdname(mddev), b);
2383 md_error(mddev, rdev);
2384 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2385 return;
2386 }
2387
2388 while(sectors) {
2389 int s = sectors;
2390 int sl = r10_bio->read_slot;
2391 int success = 0;
2392 int start;
2393
2394 if (s > (PAGE_SIZE>>9))
2395 s = PAGE_SIZE >> 9;
2396
2397 rcu_read_lock();
2398 do {
2399 sector_t first_bad;
2400 int bad_sectors;
2401
2402 d = r10_bio->devs[sl].devnum;
2403 rdev = rcu_dereference(conf->mirrors[d].rdev);
2404 if (rdev &&
2405 test_bit(In_sync, &rdev->flags) &&
2406 !test_bit(Faulty, &rdev->flags) &&
2407 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2408 &first_bad, &bad_sectors) == 0) {
2409 atomic_inc(&rdev->nr_pending);
2410 rcu_read_unlock();
2411 success = sync_page_io(rdev,
2412 r10_bio->devs[sl].addr +
2413 sect,
2414 s<<9,
2415 conf->tmppage,
2416 REQ_OP_READ, 0, false);
2417 rdev_dec_pending(rdev, mddev);
2418 rcu_read_lock();
2419 if (success)
2420 break;
2421 }
2422 sl++;
2423 if (sl == conf->copies)
2424 sl = 0;
2425 } while (!success && sl != r10_bio->read_slot);
2426 rcu_read_unlock();
2427
2428 if (!success) {
2429 /* Cannot read from anywhere, just mark the block
2430 * as bad on the first device to discourage future
2431 * reads.
2432 */
2433 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2434 rdev = conf->mirrors[dn].rdev;
2435
2436 if (!rdev_set_badblocks(
2437 rdev,
2438 r10_bio->devs[r10_bio->read_slot].addr
2439 + sect,
2440 s, 0)) {
2441 md_error(mddev, rdev);
2442 r10_bio->devs[r10_bio->read_slot].bio
2443 = IO_BLOCKED;
2444 }
2445 break;
2446 }
2447
2448 start = sl;
2449 /* write it back and re-read */
2450 rcu_read_lock();
2451 while (sl != r10_bio->read_slot) {
2452 char b[BDEVNAME_SIZE];
2453
2454 if (sl==0)
2455 sl = conf->copies;
2456 sl--;
2457 d = r10_bio->devs[sl].devnum;
2458 rdev = rcu_dereference(conf->mirrors[d].rdev);
2459 if (!rdev ||
2460 test_bit(Faulty, &rdev->flags) ||
2461 !test_bit(In_sync, &rdev->flags))
2462 continue;
2463
2464 atomic_inc(&rdev->nr_pending);
2465 rcu_read_unlock();
2466 if (r10_sync_page_io(rdev,
2467 r10_bio->devs[sl].addr +
2468 sect,
2469 s, conf->tmppage, WRITE)
2470 == 0) {
2471 /* Well, this device is dead */
2472 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2473 mdname(mddev), s,
2474 (unsigned long long)(
2475 sect +
2476 choose_data_offset(r10_bio,
2477 rdev)),
2478 bdevname(rdev->bdev, b));
2479 pr_notice("md/raid10:%s: %s: failing drive\n",
2480 mdname(mddev),
2481 bdevname(rdev->bdev, b));
2482 }
2483 rdev_dec_pending(rdev, mddev);
2484 rcu_read_lock();
2485 }
2486 sl = start;
2487 while (sl != r10_bio->read_slot) {
2488 char b[BDEVNAME_SIZE];
2489
2490 if (sl==0)
2491 sl = conf->copies;
2492 sl--;
2493 d = r10_bio->devs[sl].devnum;
2494 rdev = rcu_dereference(conf->mirrors[d].rdev);
2495 if (!rdev ||
2496 test_bit(Faulty, &rdev->flags) ||
2497 !test_bit(In_sync, &rdev->flags))
2498 continue;
2499
2500 atomic_inc(&rdev->nr_pending);
2501 rcu_read_unlock();
2502 switch (r10_sync_page_io(rdev,
2503 r10_bio->devs[sl].addr +
2504 sect,
2505 s, conf->tmppage,
2506 READ)) {
2507 case 0:
2508 /* Well, this device is dead */
2509 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2510 mdname(mddev), s,
2511 (unsigned long long)(
2512 sect +
2513 choose_data_offset(r10_bio, rdev)),
2514 bdevname(rdev->bdev, b));
2515 pr_notice("md/raid10:%s: %s: failing drive\n",
2516 mdname(mddev),
2517 bdevname(rdev->bdev, b));
2518 break;
2519 case 1:
2520 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2521 mdname(mddev), s,
2522 (unsigned long long)(
2523 sect +
2524 choose_data_offset(r10_bio, rdev)),
2525 bdevname(rdev->bdev, b));
2526 atomic_add(s, &rdev->corrected_errors);
2527 }
2528
2529 rdev_dec_pending(rdev, mddev);
2530 rcu_read_lock();
2531 }
2532 rcu_read_unlock();
2533
2534 sectors -= s;
2535 sect += s;
2536 }
2537 }
2538
2539 static int narrow_write_error(struct r10bio *r10_bio, int i)
2540 {
2541 struct bio *bio = r10_bio->master_bio;
2542 struct mddev *mddev = r10_bio->mddev;
2543 struct r10conf *conf = mddev->private;
2544 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2545 /* bio has the data to be written to slot 'i' where
2546 * we just recently had a write error.
2547 * We repeatedly clone the bio and trim down to one block,
2548 * then try the write. Where the write fails we record
2549 * a bad block.
2550 * It is conceivable that the bio doesn't exactly align with
2551 * blocks. We must handle this.
2552 *
2553 * We currently own a reference to the rdev.
2554 */
2555
2556 int block_sectors;
2557 sector_t sector;
2558 int sectors;
2559 int sect_to_write = r10_bio->sectors;
2560 int ok = 1;
2561
2562 if (rdev->badblocks.shift < 0)
2563 return 0;
2564
2565 block_sectors = roundup(1 << rdev->badblocks.shift,
2566 bdev_logical_block_size(rdev->bdev) >> 9);
2567 sector = r10_bio->sector;
2568 sectors = ((r10_bio->sector + block_sectors)
2569 & ~(sector_t)(block_sectors - 1))
2570 - sector;
2571
2572 while (sect_to_write) {
2573 struct bio *wbio;
2574 sector_t wsector;
2575 if (sectors > sect_to_write)
2576 sectors = sect_to_write;
2577 /* Write at 'sector' for 'sectors' */
2578 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2579 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2580 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2581 wbio->bi_iter.bi_sector = wsector +
2582 choose_data_offset(r10_bio, rdev);
2583 bio_set_dev(wbio, rdev->bdev);
2584 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2585
2586 if (submit_bio_wait(wbio) < 0)
2587 /* Failure! */
2588 ok = rdev_set_badblocks(rdev, wsector,
2589 sectors, 0)
2590 && ok;
2591
2592 bio_put(wbio);
2593 sect_to_write -= sectors;
2594 sector += sectors;
2595 sectors = block_sectors;
2596 }
2597 return ok;
2598 }
2599
2600 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2601 {
2602 int slot = r10_bio->read_slot;
2603 struct bio *bio;
2604 struct r10conf *conf = mddev->private;
2605 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2606
2607 /* we got a read error. Maybe the drive is bad. Maybe just
2608 * the block and we can fix it.
2609 * We freeze all other IO, and try reading the block from
2610 * other devices. When we find one, we re-write
2611 * and check it that fixes the read error.
2612 * This is all done synchronously while the array is
2613 * frozen.
2614 */
2615 bio = r10_bio->devs[slot].bio;
2616 bio_put(bio);
2617 r10_bio->devs[slot].bio = NULL;
2618
2619 if (mddev->ro)
2620 r10_bio->devs[slot].bio = IO_BLOCKED;
2621 else if (!test_bit(FailFast, &rdev->flags)) {
2622 freeze_array(conf, 1);
2623 fix_read_error(conf, mddev, r10_bio);
2624 unfreeze_array(conf);
2625 } else
2626 md_error(mddev, rdev);
2627
2628 rdev_dec_pending(rdev, mddev);
2629 allow_barrier(conf);
2630 r10_bio->state = 0;
2631 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2632 }
2633
2634 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2635 {
2636 /* Some sort of write request has finished and it
2637 * succeeded in writing where we thought there was a
2638 * bad block. So forget the bad block.
2639 * Or possibly if failed and we need to record
2640 * a bad block.
2641 */
2642 int m;
2643 struct md_rdev *rdev;
2644
2645 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2646 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2647 for (m = 0; m < conf->copies; m++) {
2648 int dev = r10_bio->devs[m].devnum;
2649 rdev = conf->mirrors[dev].rdev;
2650 if (r10_bio->devs[m].bio == NULL ||
2651 r10_bio->devs[m].bio->bi_end_io == NULL)
2652 continue;
2653 if (!r10_bio->devs[m].bio->bi_status) {
2654 rdev_clear_badblocks(
2655 rdev,
2656 r10_bio->devs[m].addr,
2657 r10_bio->sectors, 0);
2658 } else {
2659 if (!rdev_set_badblocks(
2660 rdev,
2661 r10_bio->devs[m].addr,
2662 r10_bio->sectors, 0))
2663 md_error(conf->mddev, rdev);
2664 }
2665 rdev = conf->mirrors[dev].replacement;
2666 if (r10_bio->devs[m].repl_bio == NULL ||
2667 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2668 continue;
2669
2670 if (!r10_bio->devs[m].repl_bio->bi_status) {
2671 rdev_clear_badblocks(
2672 rdev,
2673 r10_bio->devs[m].addr,
2674 r10_bio->sectors, 0);
2675 } else {
2676 if (!rdev_set_badblocks(
2677 rdev,
2678 r10_bio->devs[m].addr,
2679 r10_bio->sectors, 0))
2680 md_error(conf->mddev, rdev);
2681 }
2682 }
2683 put_buf(r10_bio);
2684 } else {
2685 bool fail = false;
2686 for (m = 0; m < conf->copies; m++) {
2687 int dev = r10_bio->devs[m].devnum;
2688 struct bio *bio = r10_bio->devs[m].bio;
2689 rdev = conf->mirrors[dev].rdev;
2690 if (bio == IO_MADE_GOOD) {
2691 rdev_clear_badblocks(
2692 rdev,
2693 r10_bio->devs[m].addr,
2694 r10_bio->sectors, 0);
2695 rdev_dec_pending(rdev, conf->mddev);
2696 } else if (bio != NULL && bio->bi_status) {
2697 fail = true;
2698 if (!narrow_write_error(r10_bio, m)) {
2699 md_error(conf->mddev, rdev);
2700 set_bit(R10BIO_Degraded,
2701 &r10_bio->state);
2702 }
2703 rdev_dec_pending(rdev, conf->mddev);
2704 }
2705 bio = r10_bio->devs[m].repl_bio;
2706 rdev = conf->mirrors[dev].replacement;
2707 if (rdev && bio == IO_MADE_GOOD) {
2708 rdev_clear_badblocks(
2709 rdev,
2710 r10_bio->devs[m].addr,
2711 r10_bio->sectors, 0);
2712 rdev_dec_pending(rdev, conf->mddev);
2713 }
2714 }
2715 if (fail) {
2716 spin_lock_irq(&conf->device_lock);
2717 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2718 conf->nr_queued++;
2719 spin_unlock_irq(&conf->device_lock);
2720 /*
2721 * In case freeze_array() is waiting for condition
2722 * nr_pending == nr_queued + extra to be true.
2723 */
2724 wake_up(&conf->wait_barrier);
2725 md_wakeup_thread(conf->mddev->thread);
2726 } else {
2727 if (test_bit(R10BIO_WriteError,
2728 &r10_bio->state))
2729 close_write(r10_bio);
2730 raid_end_bio_io(r10_bio);
2731 }
2732 }
2733 }
2734
2735 static void raid10d(struct md_thread *thread)
2736 {
2737 struct mddev *mddev = thread->mddev;
2738 struct r10bio *r10_bio;
2739 unsigned long flags;
2740 struct r10conf *conf = mddev->private;
2741 struct list_head *head = &conf->retry_list;
2742 struct blk_plug plug;
2743
2744 md_check_recovery(mddev);
2745
2746 if (!list_empty_careful(&conf->bio_end_io_list) &&
2747 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2748 LIST_HEAD(tmp);
2749 spin_lock_irqsave(&conf->device_lock, flags);
2750 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2751 while (!list_empty(&conf->bio_end_io_list)) {
2752 list_move(conf->bio_end_io_list.prev, &tmp);
2753 conf->nr_queued--;
2754 }
2755 }
2756 spin_unlock_irqrestore(&conf->device_lock, flags);
2757 while (!list_empty(&tmp)) {
2758 r10_bio = list_first_entry(&tmp, struct r10bio,
2759 retry_list);
2760 list_del(&r10_bio->retry_list);
2761 if (mddev->degraded)
2762 set_bit(R10BIO_Degraded, &r10_bio->state);
2763
2764 if (test_bit(R10BIO_WriteError,
2765 &r10_bio->state))
2766 close_write(r10_bio);
2767 raid_end_bio_io(r10_bio);
2768 }
2769 }
2770
2771 blk_start_plug(&plug);
2772 for (;;) {
2773
2774 flush_pending_writes(conf);
2775
2776 spin_lock_irqsave(&conf->device_lock, flags);
2777 if (list_empty(head)) {
2778 spin_unlock_irqrestore(&conf->device_lock, flags);
2779 break;
2780 }
2781 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2782 list_del(head->prev);
2783 conf->nr_queued--;
2784 spin_unlock_irqrestore(&conf->device_lock, flags);
2785
2786 mddev = r10_bio->mddev;
2787 conf = mddev->private;
2788 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2789 test_bit(R10BIO_WriteError, &r10_bio->state))
2790 handle_write_completed(conf, r10_bio);
2791 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2792 reshape_request_write(mddev, r10_bio);
2793 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2794 sync_request_write(mddev, r10_bio);
2795 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2796 recovery_request_write(mddev, r10_bio);
2797 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2798 handle_read_error(mddev, r10_bio);
2799 else
2800 WARN_ON_ONCE(1);
2801
2802 cond_resched();
2803 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2804 md_check_recovery(mddev);
2805 }
2806 blk_finish_plug(&plug);
2807 }
2808
2809 static int init_resync(struct r10conf *conf)
2810 {
2811 int buffs;
2812 int i;
2813
2814 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2815 BUG_ON(conf->r10buf_pool);
2816 conf->have_replacement = 0;
2817 for (i = 0; i < conf->geo.raid_disks; i++)
2818 if (conf->mirrors[i].replacement)
2819 conf->have_replacement = 1;
2820 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2821 if (!conf->r10buf_pool)
2822 return -ENOMEM;
2823 conf->next_resync = 0;
2824 return 0;
2825 }
2826
2827 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2828 {
2829 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2830 struct rsync_pages *rp;
2831 struct bio *bio;
2832 int nalloc;
2833 int i;
2834
2835 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2836 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2837 nalloc = conf->copies; /* resync */
2838 else
2839 nalloc = 2; /* recovery */
2840
2841 for (i = 0; i < nalloc; i++) {
2842 bio = r10bio->devs[i].bio;
2843 rp = bio->bi_private;
2844 bio_reset(bio);
2845 bio->bi_private = rp;
2846 bio = r10bio->devs[i].repl_bio;
2847 if (bio) {
2848 rp = bio->bi_private;
2849 bio_reset(bio);
2850 bio->bi_private = rp;
2851 }
2852 }
2853 return r10bio;
2854 }
2855
2856 /*
2857 * Set cluster_sync_high since we need other nodes to add the
2858 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2859 */
2860 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2861 {
2862 sector_t window_size;
2863 int extra_chunk, chunks;
2864
2865 /*
2866 * First, here we define "stripe" as a unit which across
2867 * all member devices one time, so we get chunks by use
2868 * raid_disks / near_copies. Otherwise, if near_copies is
2869 * close to raid_disks, then resync window could increases
2870 * linearly with the increase of raid_disks, which means
2871 * we will suspend a really large IO window while it is not
2872 * necessary. If raid_disks is not divisible by near_copies,
2873 * an extra chunk is needed to ensure the whole "stripe" is
2874 * covered.
2875 */
2876
2877 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2878 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2879 extra_chunk = 0;
2880 else
2881 extra_chunk = 1;
2882 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2883
2884 /*
2885 * At least use a 32M window to align with raid1's resync window
2886 */
2887 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2888 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2889
2890 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2891 }
2892
2893 /*
2894 * perform a "sync" on one "block"
2895 *
2896 * We need to make sure that no normal I/O request - particularly write
2897 * requests - conflict with active sync requests.
2898 *
2899 * This is achieved by tracking pending requests and a 'barrier' concept
2900 * that can be installed to exclude normal IO requests.
2901 *
2902 * Resync and recovery are handled very differently.
2903 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2904 *
2905 * For resync, we iterate over virtual addresses, read all copies,
2906 * and update if there are differences. If only one copy is live,
2907 * skip it.
2908 * For recovery, we iterate over physical addresses, read a good
2909 * value for each non-in_sync drive, and over-write.
2910 *
2911 * So, for recovery we may have several outstanding complex requests for a
2912 * given address, one for each out-of-sync device. We model this by allocating
2913 * a number of r10_bio structures, one for each out-of-sync device.
2914 * As we setup these structures, we collect all bio's together into a list
2915 * which we then process collectively to add pages, and then process again
2916 * to pass to generic_make_request.
2917 *
2918 * The r10_bio structures are linked using a borrowed master_bio pointer.
2919 * This link is counted in ->remaining. When the r10_bio that points to NULL
2920 * has its remaining count decremented to 0, the whole complex operation
2921 * is complete.
2922 *
2923 */
2924
2925 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2926 int *skipped)
2927 {
2928 struct r10conf *conf = mddev->private;
2929 struct r10bio *r10_bio;
2930 struct bio *biolist = NULL, *bio;
2931 sector_t max_sector, nr_sectors;
2932 int i;
2933 int max_sync;
2934 sector_t sync_blocks;
2935 sector_t sectors_skipped = 0;
2936 int chunks_skipped = 0;
2937 sector_t chunk_mask = conf->geo.chunk_mask;
2938 int page_idx = 0;
2939
2940 if (!conf->r10buf_pool)
2941 if (init_resync(conf))
2942 return 0;
2943
2944 /*
2945 * Allow skipping a full rebuild for incremental assembly
2946 * of a clean array, like RAID1 does.
2947 */
2948 if (mddev->bitmap == NULL &&
2949 mddev->recovery_cp == MaxSector &&
2950 mddev->reshape_position == MaxSector &&
2951 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2952 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2953 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2954 conf->fullsync == 0) {
2955 *skipped = 1;
2956 return mddev->dev_sectors - sector_nr;
2957 }
2958
2959 skipped:
2960 max_sector = mddev->dev_sectors;
2961 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2962 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2963 max_sector = mddev->resync_max_sectors;
2964 if (sector_nr >= max_sector) {
2965 conf->cluster_sync_low = 0;
2966 conf->cluster_sync_high = 0;
2967
2968 /* If we aborted, we need to abort the
2969 * sync on the 'current' bitmap chucks (there can
2970 * be several when recovering multiple devices).
2971 * as we may have started syncing it but not finished.
2972 * We can find the current address in
2973 * mddev->curr_resync, but for recovery,
2974 * we need to convert that to several
2975 * virtual addresses.
2976 */
2977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2978 end_reshape(conf);
2979 close_sync(conf);
2980 return 0;
2981 }
2982
2983 if (mddev->curr_resync < max_sector) { /* aborted */
2984 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2985 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2986 &sync_blocks, 1);
2987 else for (i = 0; i < conf->geo.raid_disks; i++) {
2988 sector_t sect =
2989 raid10_find_virt(conf, mddev->curr_resync, i);
2990 bitmap_end_sync(mddev->bitmap, sect,
2991 &sync_blocks, 1);
2992 }
2993 } else {
2994 /* completed sync */
2995 if ((!mddev->bitmap || conf->fullsync)
2996 && conf->have_replacement
2997 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2998 /* Completed a full sync so the replacements
2999 * are now fully recovered.
3000 */
3001 rcu_read_lock();
3002 for (i = 0; i < conf->geo.raid_disks; i++) {
3003 struct md_rdev *rdev =
3004 rcu_dereference(conf->mirrors[i].replacement);
3005 if (rdev)
3006 rdev->recovery_offset = MaxSector;
3007 }
3008 rcu_read_unlock();
3009 }
3010 conf->fullsync = 0;
3011 }
3012 bitmap_close_sync(mddev->bitmap);
3013 close_sync(conf);
3014 *skipped = 1;
3015 return sectors_skipped;
3016 }
3017
3018 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3019 return reshape_request(mddev, sector_nr, skipped);
3020
3021 if (chunks_skipped >= conf->geo.raid_disks) {
3022 /* if there has been nothing to do on any drive,
3023 * then there is nothing to do at all..
3024 */
3025 *skipped = 1;
3026 return (max_sector - sector_nr) + sectors_skipped;
3027 }
3028
3029 if (max_sector > mddev->resync_max)
3030 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3031
3032 /* make sure whole request will fit in a chunk - if chunks
3033 * are meaningful
3034 */
3035 if (conf->geo.near_copies < conf->geo.raid_disks &&
3036 max_sector > (sector_nr | chunk_mask))
3037 max_sector = (sector_nr | chunk_mask) + 1;
3038
3039 /*
3040 * If there is non-resync activity waiting for a turn, then let it
3041 * though before starting on this new sync request.
3042 */
3043 if (conf->nr_waiting)
3044 schedule_timeout_uninterruptible(1);
3045
3046 /* Again, very different code for resync and recovery.
3047 * Both must result in an r10bio with a list of bios that
3048 * have bi_end_io, bi_sector, bi_disk set,
3049 * and bi_private set to the r10bio.
3050 * For recovery, we may actually create several r10bios
3051 * with 2 bios in each, that correspond to the bios in the main one.
3052 * In this case, the subordinate r10bios link back through a
3053 * borrowed master_bio pointer, and the counter in the master
3054 * includes a ref from each subordinate.
3055 */
3056 /* First, we decide what to do and set ->bi_end_io
3057 * To end_sync_read if we want to read, and
3058 * end_sync_write if we will want to write.
3059 */
3060
3061 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3062 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3063 /* recovery... the complicated one */
3064 int j;
3065 r10_bio = NULL;
3066
3067 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3068 int still_degraded;
3069 struct r10bio *rb2;
3070 sector_t sect;
3071 int must_sync;
3072 int any_working;
3073 struct raid10_info *mirror = &conf->mirrors[i];
3074 struct md_rdev *mrdev, *mreplace;
3075
3076 rcu_read_lock();
3077 mrdev = rcu_dereference(mirror->rdev);
3078 mreplace = rcu_dereference(mirror->replacement);
3079
3080 if ((mrdev == NULL ||
3081 test_bit(Faulty, &mrdev->flags) ||
3082 test_bit(In_sync, &mrdev->flags)) &&
3083 (mreplace == NULL ||
3084 test_bit(Faulty, &mreplace->flags))) {
3085 rcu_read_unlock();
3086 continue;
3087 }
3088
3089 still_degraded = 0;
3090 /* want to reconstruct this device */
3091 rb2 = r10_bio;
3092 sect = raid10_find_virt(conf, sector_nr, i);
3093 if (sect >= mddev->resync_max_sectors) {
3094 /* last stripe is not complete - don't
3095 * try to recover this sector.
3096 */
3097 rcu_read_unlock();
3098 continue;
3099 }
3100 if (mreplace && test_bit(Faulty, &mreplace->flags))
3101 mreplace = NULL;
3102 /* Unless we are doing a full sync, or a replacement
3103 * we only need to recover the block if it is set in
3104 * the bitmap
3105 */
3106 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3107 &sync_blocks, 1);
3108 if (sync_blocks < max_sync)
3109 max_sync = sync_blocks;
3110 if (!must_sync &&
3111 mreplace == NULL &&
3112 !conf->fullsync) {
3113 /* yep, skip the sync_blocks here, but don't assume
3114 * that there will never be anything to do here
3115 */
3116 chunks_skipped = -1;
3117 rcu_read_unlock();
3118 continue;
3119 }
3120 atomic_inc(&mrdev->nr_pending);
3121 if (mreplace)
3122 atomic_inc(&mreplace->nr_pending);
3123 rcu_read_unlock();
3124
3125 r10_bio = raid10_alloc_init_r10buf(conf);
3126 r10_bio->state = 0;
3127 raise_barrier(conf, rb2 != NULL);
3128 atomic_set(&r10_bio->remaining, 0);
3129
3130 r10_bio->master_bio = (struct bio*)rb2;
3131 if (rb2)
3132 atomic_inc(&rb2->remaining);
3133 r10_bio->mddev = mddev;
3134 set_bit(R10BIO_IsRecover, &r10_bio->state);
3135 r10_bio->sector = sect;
3136
3137 raid10_find_phys(conf, r10_bio);
3138
3139 /* Need to check if the array will still be
3140 * degraded
3141 */
3142 rcu_read_lock();
3143 for (j = 0; j < conf->geo.raid_disks; j++) {
3144 struct md_rdev *rdev = rcu_dereference(
3145 conf->mirrors[j].rdev);
3146 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3147 still_degraded = 1;
3148 break;
3149 }
3150 }
3151
3152 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3153 &sync_blocks, still_degraded);
3154
3155 any_working = 0;
3156 for (j=0; j<conf->copies;j++) {
3157 int k;
3158 int d = r10_bio->devs[j].devnum;
3159 sector_t from_addr, to_addr;
3160 struct md_rdev *rdev =
3161 rcu_dereference(conf->mirrors[d].rdev);
3162 sector_t sector, first_bad;
3163 int bad_sectors;
3164 if (!rdev ||
3165 !test_bit(In_sync, &rdev->flags))
3166 continue;
3167 /* This is where we read from */
3168 any_working = 1;
3169 sector = r10_bio->devs[j].addr;
3170
3171 if (is_badblock(rdev, sector, max_sync,
3172 &first_bad, &bad_sectors)) {
3173 if (first_bad > sector)
3174 max_sync = first_bad - sector;
3175 else {
3176 bad_sectors -= (sector
3177 - first_bad);
3178 if (max_sync > bad_sectors)
3179 max_sync = bad_sectors;
3180 continue;
3181 }
3182 }
3183 bio = r10_bio->devs[0].bio;
3184 bio->bi_next = biolist;
3185 biolist = bio;
3186 bio->bi_end_io = end_sync_read;
3187 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3188 if (test_bit(FailFast, &rdev->flags))
3189 bio->bi_opf |= MD_FAILFAST;
3190 from_addr = r10_bio->devs[j].addr;
3191 bio->bi_iter.bi_sector = from_addr +
3192 rdev->data_offset;
3193 bio_set_dev(bio, rdev->bdev);
3194 atomic_inc(&rdev->nr_pending);
3195 /* and we write to 'i' (if not in_sync) */
3196
3197 for (k=0; k<conf->copies; k++)
3198 if (r10_bio->devs[k].devnum == i)
3199 break;
3200 BUG_ON(k == conf->copies);
3201 to_addr = r10_bio->devs[k].addr;
3202 r10_bio->devs[0].devnum = d;
3203 r10_bio->devs[0].addr = from_addr;
3204 r10_bio->devs[1].devnum = i;
3205 r10_bio->devs[1].addr = to_addr;
3206
3207 if (!test_bit(In_sync, &mrdev->flags)) {
3208 bio = r10_bio->devs[1].bio;
3209 bio->bi_next = biolist;
3210 biolist = bio;
3211 bio->bi_end_io = end_sync_write;
3212 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3213 bio->bi_iter.bi_sector = to_addr
3214 + mrdev->data_offset;
3215 bio_set_dev(bio, mrdev->bdev);
3216 atomic_inc(&r10_bio->remaining);
3217 } else
3218 r10_bio->devs[1].bio->bi_end_io = NULL;
3219
3220 /* and maybe write to replacement */
3221 bio = r10_bio->devs[1].repl_bio;
3222 if (bio)
3223 bio->bi_end_io = NULL;
3224 /* Note: if mreplace != NULL, then bio
3225 * cannot be NULL as r10buf_pool_alloc will
3226 * have allocated it.
3227 * So the second test here is pointless.
3228 * But it keeps semantic-checkers happy, and
3229 * this comment keeps human reviewers
3230 * happy.
3231 */
3232 if (mreplace == NULL || bio == NULL ||
3233 test_bit(Faulty, &mreplace->flags))
3234 break;
3235 bio->bi_next = biolist;
3236 biolist = bio;
3237 bio->bi_end_io = end_sync_write;
3238 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3239 bio->bi_iter.bi_sector = to_addr +
3240 mreplace->data_offset;
3241 bio_set_dev(bio, mreplace->bdev);
3242 atomic_inc(&r10_bio->remaining);
3243 break;
3244 }
3245 rcu_read_unlock();
3246 if (j == conf->copies) {
3247 /* Cannot recover, so abort the recovery or
3248 * record a bad block */
3249 if (any_working) {
3250 /* problem is that there are bad blocks
3251 * on other device(s)
3252 */
3253 int k;
3254 for (k = 0; k < conf->copies; k++)
3255 if (r10_bio->devs[k].devnum == i)
3256 break;
3257 if (!test_bit(In_sync,
3258 &mrdev->flags)
3259 && !rdev_set_badblocks(
3260 mrdev,
3261 r10_bio->devs[k].addr,
3262 max_sync, 0))
3263 any_working = 0;
3264 if (mreplace &&
3265 !rdev_set_badblocks(
3266 mreplace,
3267 r10_bio->devs[k].addr,
3268 max_sync, 0))
3269 any_working = 0;
3270 }
3271 if (!any_working) {
3272 if (!test_and_set_bit(MD_RECOVERY_INTR,
3273 &mddev->recovery))
3274 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3275 mdname(mddev));
3276 mirror->recovery_disabled
3277 = mddev->recovery_disabled;
3278 }
3279 put_buf(r10_bio);
3280 if (rb2)
3281 atomic_dec(&rb2->remaining);
3282 r10_bio = rb2;
3283 rdev_dec_pending(mrdev, mddev);
3284 if (mreplace)
3285 rdev_dec_pending(mreplace, mddev);
3286 break;
3287 }
3288 rdev_dec_pending(mrdev, mddev);
3289 if (mreplace)
3290 rdev_dec_pending(mreplace, mddev);
3291 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3292 /* Only want this if there is elsewhere to
3293 * read from. 'j' is currently the first
3294 * readable copy.
3295 */
3296 int targets = 1;
3297 for (; j < conf->copies; j++) {
3298 int d = r10_bio->devs[j].devnum;
3299 if (conf->mirrors[d].rdev &&
3300 test_bit(In_sync,
3301 &conf->mirrors[d].rdev->flags))
3302 targets++;
3303 }
3304 if (targets == 1)
3305 r10_bio->devs[0].bio->bi_opf
3306 &= ~MD_FAILFAST;
3307 }
3308 }
3309 if (biolist == NULL) {
3310 while (r10_bio) {
3311 struct r10bio *rb2 = r10_bio;
3312 r10_bio = (struct r10bio*) rb2->master_bio;
3313 rb2->master_bio = NULL;
3314 put_buf(rb2);
3315 }
3316 goto giveup;
3317 }
3318 } else {
3319 /* resync. Schedule a read for every block at this virt offset */
3320 int count = 0;
3321
3322 /*
3323 * Since curr_resync_completed could probably not update in
3324 * time, and we will set cluster_sync_low based on it.
3325 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3326 * safety reason, which ensures curr_resync_completed is
3327 * updated in bitmap_cond_end_sync.
3328 */
3329 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3330 mddev_is_clustered(mddev) &&
3331 (sector_nr + 2 * RESYNC_SECTORS >
3332 conf->cluster_sync_high));
3333
3334 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3335 &sync_blocks, mddev->degraded) &&
3336 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3337 &mddev->recovery)) {
3338 /* We can skip this block */
3339 *skipped = 1;
3340 return sync_blocks + sectors_skipped;
3341 }
3342 if (sync_blocks < max_sync)
3343 max_sync = sync_blocks;
3344 r10_bio = raid10_alloc_init_r10buf(conf);
3345 r10_bio->state = 0;
3346
3347 r10_bio->mddev = mddev;
3348 atomic_set(&r10_bio->remaining, 0);
3349 raise_barrier(conf, 0);
3350 conf->next_resync = sector_nr;
3351
3352 r10_bio->master_bio = NULL;
3353 r10_bio->sector = sector_nr;
3354 set_bit(R10BIO_IsSync, &r10_bio->state);
3355 raid10_find_phys(conf, r10_bio);
3356 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3357
3358 for (i = 0; i < conf->copies; i++) {
3359 int d = r10_bio->devs[i].devnum;
3360 sector_t first_bad, sector;
3361 int bad_sectors;
3362 struct md_rdev *rdev;
3363
3364 if (r10_bio->devs[i].repl_bio)
3365 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3366
3367 bio = r10_bio->devs[i].bio;
3368 bio->bi_status = BLK_STS_IOERR;
3369 rcu_read_lock();
3370 rdev = rcu_dereference(conf->mirrors[d].rdev);
3371 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3372 rcu_read_unlock();
3373 continue;
3374 }
3375 sector = r10_bio->devs[i].addr;
3376 if (is_badblock(rdev, sector, max_sync,
3377 &first_bad, &bad_sectors)) {
3378 if (first_bad > sector)
3379 max_sync = first_bad - sector;
3380 else {
3381 bad_sectors -= (sector - first_bad);
3382 if (max_sync > bad_sectors)
3383 max_sync = bad_sectors;
3384 rcu_read_unlock();
3385 continue;
3386 }
3387 }
3388 atomic_inc(&rdev->nr_pending);
3389 atomic_inc(&r10_bio->remaining);
3390 bio->bi_next = biolist;
3391 biolist = bio;
3392 bio->bi_end_io = end_sync_read;
3393 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3394 if (test_bit(FailFast, &rdev->flags))
3395 bio->bi_opf |= MD_FAILFAST;
3396 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3397 bio_set_dev(bio, rdev->bdev);
3398 count++;
3399
3400 rdev = rcu_dereference(conf->mirrors[d].replacement);
3401 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3402 rcu_read_unlock();
3403 continue;
3404 }
3405 atomic_inc(&rdev->nr_pending);
3406
3407 /* Need to set up for writing to the replacement */
3408 bio = r10_bio->devs[i].repl_bio;
3409 bio->bi_status = BLK_STS_IOERR;
3410
3411 sector = r10_bio->devs[i].addr;
3412 bio->bi_next = biolist;
3413 biolist = bio;
3414 bio->bi_end_io = end_sync_write;
3415 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3416 if (test_bit(FailFast, &rdev->flags))
3417 bio->bi_opf |= MD_FAILFAST;
3418 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3419 bio_set_dev(bio, rdev->bdev);
3420 count++;
3421 rcu_read_unlock();
3422 }
3423
3424 if (count < 2) {
3425 for (i=0; i<conf->copies; i++) {
3426 int d = r10_bio->devs[i].devnum;
3427 if (r10_bio->devs[i].bio->bi_end_io)
3428 rdev_dec_pending(conf->mirrors[d].rdev,
3429 mddev);
3430 if (r10_bio->devs[i].repl_bio &&
3431 r10_bio->devs[i].repl_bio->bi_end_io)
3432 rdev_dec_pending(
3433 conf->mirrors[d].replacement,
3434 mddev);
3435 }
3436 put_buf(r10_bio);
3437 biolist = NULL;
3438 goto giveup;
3439 }
3440 }
3441
3442 nr_sectors = 0;
3443 if (sector_nr + max_sync < max_sector)
3444 max_sector = sector_nr + max_sync;
3445 do {
3446 struct page *page;
3447 int len = PAGE_SIZE;
3448 if (sector_nr + (len>>9) > max_sector)
3449 len = (max_sector - sector_nr) << 9;
3450 if (len == 0)
3451 break;
3452 for (bio= biolist ; bio ; bio=bio->bi_next) {
3453 struct resync_pages *rp = get_resync_pages(bio);
3454 page = resync_fetch_page(rp, page_idx);
3455 /*
3456 * won't fail because the vec table is big enough
3457 * to hold all these pages
3458 */
3459 bio_add_page(bio, page, len, 0);
3460 }
3461 nr_sectors += len>>9;
3462 sector_nr += len>>9;
3463 } while (++page_idx < RESYNC_PAGES);
3464 r10_bio->sectors = nr_sectors;
3465
3466 if (mddev_is_clustered(mddev) &&
3467 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3468 /* It is resync not recovery */
3469 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3470 conf->cluster_sync_low = mddev->curr_resync_completed;
3471 raid10_set_cluster_sync_high(conf);
3472 /* Send resync message */
3473 md_cluster_ops->resync_info_update(mddev,
3474 conf->cluster_sync_low,
3475 conf->cluster_sync_high);
3476 }
3477 } else if (mddev_is_clustered(mddev)) {
3478 /* This is recovery not resync */
3479 sector_t sect_va1, sect_va2;
3480 bool broadcast_msg = false;
3481
3482 for (i = 0; i < conf->geo.raid_disks; i++) {
3483 /*
3484 * sector_nr is a device address for recovery, so we
3485 * need translate it to array address before compare
3486 * with cluster_sync_high.
3487 */
3488 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3489
3490 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3491 broadcast_msg = true;
3492 /*
3493 * curr_resync_completed is similar as
3494 * sector_nr, so make the translation too.
3495 */
3496 sect_va2 = raid10_find_virt(conf,
3497 mddev->curr_resync_completed, i);
3498
3499 if (conf->cluster_sync_low == 0 ||
3500 conf->cluster_sync_low > sect_va2)
3501 conf->cluster_sync_low = sect_va2;
3502 }
3503 }
3504 if (broadcast_msg) {
3505 raid10_set_cluster_sync_high(conf);
3506 md_cluster_ops->resync_info_update(mddev,
3507 conf->cluster_sync_low,
3508 conf->cluster_sync_high);
3509 }
3510 }
3511
3512 while (biolist) {
3513 bio = biolist;
3514 biolist = biolist->bi_next;
3515
3516 bio->bi_next = NULL;
3517 r10_bio = get_resync_r10bio(bio);
3518 r10_bio->sectors = nr_sectors;
3519
3520 if (bio->bi_end_io == end_sync_read) {
3521 md_sync_acct_bio(bio, nr_sectors);
3522 bio->bi_status = 0;
3523 generic_make_request(bio);
3524 }
3525 }
3526
3527 if (sectors_skipped)
3528 /* pretend they weren't skipped, it makes
3529 * no important difference in this case
3530 */
3531 md_done_sync(mddev, sectors_skipped, 1);
3532
3533 return sectors_skipped + nr_sectors;
3534 giveup:
3535 /* There is nowhere to write, so all non-sync
3536 * drives must be failed or in resync, all drives
3537 * have a bad block, so try the next chunk...
3538 */
3539 if (sector_nr + max_sync < max_sector)
3540 max_sector = sector_nr + max_sync;
3541
3542 sectors_skipped += (max_sector - sector_nr);
3543 chunks_skipped ++;
3544 sector_nr = max_sector;
3545 goto skipped;
3546 }
3547
3548 static sector_t
3549 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3550 {
3551 sector_t size;
3552 struct r10conf *conf = mddev->private;
3553
3554 if (!raid_disks)
3555 raid_disks = min(conf->geo.raid_disks,
3556 conf->prev.raid_disks);
3557 if (!sectors)
3558 sectors = conf->dev_sectors;
3559
3560 size = sectors >> conf->geo.chunk_shift;
3561 sector_div(size, conf->geo.far_copies);
3562 size = size * raid_disks;
3563 sector_div(size, conf->geo.near_copies);
3564
3565 return size << conf->geo.chunk_shift;
3566 }
3567
3568 static void calc_sectors(struct r10conf *conf, sector_t size)
3569 {
3570 /* Calculate the number of sectors-per-device that will
3571 * actually be used, and set conf->dev_sectors and
3572 * conf->stride
3573 */
3574
3575 size = size >> conf->geo.chunk_shift;
3576 sector_div(size, conf->geo.far_copies);
3577 size = size * conf->geo.raid_disks;
3578 sector_div(size, conf->geo.near_copies);
3579 /* 'size' is now the number of chunks in the array */
3580 /* calculate "used chunks per device" */
3581 size = size * conf->copies;
3582
3583 /* We need to round up when dividing by raid_disks to
3584 * get the stride size.
3585 */
3586 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3587
3588 conf->dev_sectors = size << conf->geo.chunk_shift;
3589
3590 if (conf->geo.far_offset)
3591 conf->geo.stride = 1 << conf->geo.chunk_shift;
3592 else {
3593 sector_div(size, conf->geo.far_copies);
3594 conf->geo.stride = size << conf->geo.chunk_shift;
3595 }
3596 }
3597
3598 enum geo_type {geo_new, geo_old, geo_start};
3599 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3600 {
3601 int nc, fc, fo;
3602 int layout, chunk, disks;
3603 switch (new) {
3604 case geo_old:
3605 layout = mddev->layout;
3606 chunk = mddev->chunk_sectors;
3607 disks = mddev->raid_disks - mddev->delta_disks;
3608 break;
3609 case geo_new:
3610 layout = mddev->new_layout;
3611 chunk = mddev->new_chunk_sectors;
3612 disks = mddev->raid_disks;
3613 break;
3614 default: /* avoid 'may be unused' warnings */
3615 case geo_start: /* new when starting reshape - raid_disks not
3616 * updated yet. */
3617 layout = mddev->new_layout;
3618 chunk = mddev->new_chunk_sectors;
3619 disks = mddev->raid_disks + mddev->delta_disks;
3620 break;
3621 }
3622 if (layout >> 19)
3623 return -1;
3624 if (chunk < (PAGE_SIZE >> 9) ||
3625 !is_power_of_2(chunk))
3626 return -2;
3627 nc = layout & 255;
3628 fc = (layout >> 8) & 255;
3629 fo = layout & (1<<16);
3630 geo->raid_disks = disks;
3631 geo->near_copies = nc;
3632 geo->far_copies = fc;
3633 geo->far_offset = fo;
3634 switch (layout >> 17) {
3635 case 0: /* original layout. simple but not always optimal */
3636 geo->far_set_size = disks;
3637 break;
3638 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3639 * actually using this, but leave code here just in case.*/
3640 geo->far_set_size = disks/fc;
3641 WARN(geo->far_set_size < fc,
3642 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3643 break;
3644 case 2: /* "improved" layout fixed to match documentation */
3645 geo->far_set_size = fc * nc;
3646 break;
3647 default: /* Not a valid layout */
3648 return -1;
3649 }
3650 geo->chunk_mask = chunk - 1;
3651 geo->chunk_shift = ffz(~chunk);
3652 return nc*fc;
3653 }
3654
3655 static struct r10conf *setup_conf(struct mddev *mddev)
3656 {
3657 struct r10conf *conf = NULL;
3658 int err = -EINVAL;
3659 struct geom geo;
3660 int copies;
3661
3662 copies = setup_geo(&geo, mddev, geo_new);
3663
3664 if (copies == -2) {
3665 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3666 mdname(mddev), PAGE_SIZE);
3667 goto out;
3668 }
3669
3670 if (copies < 2 || copies > mddev->raid_disks) {
3671 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3672 mdname(mddev), mddev->new_layout);
3673 goto out;
3674 }
3675
3676 err = -ENOMEM;
3677 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3678 if (!conf)
3679 goto out;
3680
3681 /* FIXME calc properly */
3682 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3683 max(0,-mddev->delta_disks)),
3684 GFP_KERNEL);
3685 if (!conf->mirrors)
3686 goto out;
3687
3688 conf->tmppage = alloc_page(GFP_KERNEL);
3689 if (!conf->tmppage)
3690 goto out;
3691
3692 conf->geo = geo;
3693 conf->copies = copies;
3694 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3695 r10bio_pool_free, conf);
3696 if (!conf->r10bio_pool)
3697 goto out;
3698
3699 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3700 if (!conf->bio_split)
3701 goto out;
3702
3703 calc_sectors(conf, mddev->dev_sectors);
3704 if (mddev->reshape_position == MaxSector) {
3705 conf->prev = conf->geo;
3706 conf->reshape_progress = MaxSector;
3707 } else {
3708 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3709 err = -EINVAL;
3710 goto out;
3711 }
3712 conf->reshape_progress = mddev->reshape_position;
3713 if (conf->prev.far_offset)
3714 conf->prev.stride = 1 << conf->prev.chunk_shift;
3715 else
3716 /* far_copies must be 1 */
3717 conf->prev.stride = conf->dev_sectors;
3718 }
3719 conf->reshape_safe = conf->reshape_progress;
3720 spin_lock_init(&conf->device_lock);
3721 INIT_LIST_HEAD(&conf->retry_list);
3722 INIT_LIST_HEAD(&conf->bio_end_io_list);
3723
3724 spin_lock_init(&conf->resync_lock);
3725 init_waitqueue_head(&conf->wait_barrier);
3726 atomic_set(&conf->nr_pending, 0);
3727
3728 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3729 if (!conf->thread)
3730 goto out;
3731
3732 conf->mddev = mddev;
3733 return conf;
3734
3735 out:
3736 if (conf) {
3737 mempool_destroy(conf->r10bio_pool);
3738 kfree(conf->mirrors);
3739 safe_put_page(conf->tmppage);
3740 if (conf->bio_split)
3741 bioset_free(conf->bio_split);
3742 kfree(conf);
3743 }
3744 return ERR_PTR(err);
3745 }
3746
3747 static int raid10_run(struct mddev *mddev)
3748 {
3749 struct r10conf *conf;
3750 int i, disk_idx, chunk_size;
3751 struct raid10_info *disk;
3752 struct md_rdev *rdev;
3753 sector_t size;
3754 sector_t min_offset_diff = 0;
3755 int first = 1;
3756 bool discard_supported = false;
3757
3758 if (mddev_init_writes_pending(mddev) < 0)
3759 return -ENOMEM;
3760
3761 if (mddev->private == NULL) {
3762 conf = setup_conf(mddev);
3763 if (IS_ERR(conf))
3764 return PTR_ERR(conf);
3765 mddev->private = conf;
3766 }
3767 conf = mddev->private;
3768 if (!conf)
3769 goto out;
3770
3771 if (mddev_is_clustered(conf->mddev)) {
3772 int fc, fo;
3773
3774 fc = (mddev->layout >> 8) & 255;
3775 fo = mddev->layout & (1<<16);
3776 if (fc > 1 || fo > 0) {
3777 pr_err("only near layout is supported by clustered"
3778 " raid10\n");
3779 goto out;
3780 }
3781 }
3782
3783 mddev->thread = conf->thread;
3784 conf->thread = NULL;
3785
3786 chunk_size = mddev->chunk_sectors << 9;
3787 if (mddev->queue) {
3788 blk_queue_max_discard_sectors(mddev->queue,
3789 mddev->chunk_sectors);
3790 blk_queue_max_write_same_sectors(mddev->queue, 0);
3791 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3792 blk_queue_io_min(mddev->queue, chunk_size);
3793 if (conf->geo.raid_disks % conf->geo.near_copies)
3794 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3795 else
3796 blk_queue_io_opt(mddev->queue, chunk_size *
3797 (conf->geo.raid_disks / conf->geo.near_copies));
3798 }
3799
3800 rdev_for_each(rdev, mddev) {
3801 long long diff;
3802
3803 disk_idx = rdev->raid_disk;
3804 if (disk_idx < 0)
3805 continue;
3806 if (disk_idx >= conf->geo.raid_disks &&
3807 disk_idx >= conf->prev.raid_disks)
3808 continue;
3809 disk = conf->mirrors + disk_idx;
3810
3811 if (test_bit(Replacement, &rdev->flags)) {
3812 if (disk->replacement)
3813 goto out_free_conf;
3814 disk->replacement = rdev;
3815 } else {
3816 if (disk->rdev)
3817 goto out_free_conf;
3818 disk->rdev = rdev;
3819 }
3820 diff = (rdev->new_data_offset - rdev->data_offset);
3821 if (!mddev->reshape_backwards)
3822 diff = -diff;
3823 if (diff < 0)
3824 diff = 0;
3825 if (first || diff < min_offset_diff)
3826 min_offset_diff = diff;
3827
3828 if (mddev->gendisk)
3829 disk_stack_limits(mddev->gendisk, rdev->bdev,
3830 rdev->data_offset << 9);
3831
3832 disk->head_position = 0;
3833
3834 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3835 discard_supported = true;
3836 first = 0;
3837 }
3838
3839 if (mddev->queue) {
3840 if (discard_supported)
3841 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3842 mddev->queue);
3843 else
3844 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3845 mddev->queue);
3846 }
3847 /* need to check that every block has at least one working mirror */
3848 if (!enough(conf, -1)) {
3849 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3850 mdname(mddev));
3851 goto out_free_conf;
3852 }
3853
3854 if (conf->reshape_progress != MaxSector) {
3855 /* must ensure that shape change is supported */
3856 if (conf->geo.far_copies != 1 &&
3857 conf->geo.far_offset == 0)
3858 goto out_free_conf;
3859 if (conf->prev.far_copies != 1 &&
3860 conf->prev.far_offset == 0)
3861 goto out_free_conf;
3862 }
3863
3864 mddev->degraded = 0;
3865 for (i = 0;
3866 i < conf->geo.raid_disks
3867 || i < conf->prev.raid_disks;
3868 i++) {
3869
3870 disk = conf->mirrors + i;
3871
3872 if (!disk->rdev && disk->replacement) {
3873 /* The replacement is all we have - use it */
3874 disk->rdev = disk->replacement;
3875 disk->replacement = NULL;
3876 clear_bit(Replacement, &disk->rdev->flags);
3877 }
3878
3879 if (!disk->rdev ||
3880 !test_bit(In_sync, &disk->rdev->flags)) {
3881 disk->head_position = 0;
3882 mddev->degraded++;
3883 if (disk->rdev &&
3884 disk->rdev->saved_raid_disk < 0)
3885 conf->fullsync = 1;
3886 }
3887
3888 if (disk->replacement &&
3889 !test_bit(In_sync, &disk->replacement->flags) &&
3890 disk->replacement->saved_raid_disk < 0) {
3891 conf->fullsync = 1;
3892 }
3893
3894 disk->recovery_disabled = mddev->recovery_disabled - 1;
3895 }
3896
3897 if (mddev->recovery_cp != MaxSector)
3898 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3899 mdname(mddev));
3900 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3901 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3902 conf->geo.raid_disks);
3903 /*
3904 * Ok, everything is just fine now
3905 */
3906 mddev->dev_sectors = conf->dev_sectors;
3907 size = raid10_size(mddev, 0, 0);
3908 md_set_array_sectors(mddev, size);
3909 mddev->resync_max_sectors = size;
3910 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3911
3912 if (mddev->queue) {
3913 int stripe = conf->geo.raid_disks *
3914 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3915
3916 /* Calculate max read-ahead size.
3917 * We need to readahead at least twice a whole stripe....
3918 * maybe...
3919 */
3920 stripe /= conf->geo.near_copies;
3921 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3922 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3923 }
3924
3925 if (md_integrity_register(mddev))
3926 goto out_free_conf;
3927
3928 if (conf->reshape_progress != MaxSector) {
3929 unsigned long before_length, after_length;
3930
3931 before_length = ((1 << conf->prev.chunk_shift) *
3932 conf->prev.far_copies);
3933 after_length = ((1 << conf->geo.chunk_shift) *
3934 conf->geo.far_copies);
3935
3936 if (max(before_length, after_length) > min_offset_diff) {
3937 /* This cannot work */
3938 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3939 goto out_free_conf;
3940 }
3941 conf->offset_diff = min_offset_diff;
3942
3943 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3944 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3945 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3946 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3947 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3948 "reshape");
3949 if (!mddev->sync_thread)
3950 goto out_free_conf;
3951 }
3952
3953 return 0;
3954
3955 out_free_conf:
3956 md_unregister_thread(&mddev->thread);
3957 mempool_destroy(conf->r10bio_pool);
3958 safe_put_page(conf->tmppage);
3959 kfree(conf->mirrors);
3960 kfree(conf);
3961 mddev->private = NULL;
3962 out:
3963 return -EIO;
3964 }
3965
3966 static void raid10_free(struct mddev *mddev, void *priv)
3967 {
3968 struct r10conf *conf = priv;
3969
3970 mempool_destroy(conf->r10bio_pool);
3971 safe_put_page(conf->tmppage);
3972 kfree(conf->mirrors);
3973 kfree(conf->mirrors_old);
3974 kfree(conf->mirrors_new);
3975 if (conf->bio_split)
3976 bioset_free(conf->bio_split);
3977 kfree(conf);
3978 }
3979
3980 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3981 {
3982 struct r10conf *conf = mddev->private;
3983
3984 if (quiesce)
3985 raise_barrier(conf, 0);
3986 else
3987 lower_barrier(conf);
3988 }
3989
3990 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3991 {
3992 /* Resize of 'far' arrays is not supported.
3993 * For 'near' and 'offset' arrays we can set the
3994 * number of sectors used to be an appropriate multiple
3995 * of the chunk size.
3996 * For 'offset', this is far_copies*chunksize.
3997 * For 'near' the multiplier is the LCM of
3998 * near_copies and raid_disks.
3999 * So if far_copies > 1 && !far_offset, fail.
4000 * Else find LCM(raid_disks, near_copy)*far_copies and
4001 * multiply by chunk_size. Then round to this number.
4002 * This is mostly done by raid10_size()
4003 */
4004 struct r10conf *conf = mddev->private;
4005 sector_t oldsize, size;
4006
4007 if (mddev->reshape_position != MaxSector)
4008 return -EBUSY;
4009
4010 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4011 return -EINVAL;
4012
4013 oldsize = raid10_size(mddev, 0, 0);
4014 size = raid10_size(mddev, sectors, 0);
4015 if (mddev->external_size &&
4016 mddev->array_sectors > size)
4017 return -EINVAL;
4018 if (mddev->bitmap) {
4019 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4020 if (ret)
4021 return ret;
4022 }
4023 md_set_array_sectors(mddev, size);
4024 if (sectors > mddev->dev_sectors &&
4025 mddev->recovery_cp > oldsize) {
4026 mddev->recovery_cp = oldsize;
4027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4028 }
4029 calc_sectors(conf, sectors);
4030 mddev->dev_sectors = conf->dev_sectors;
4031 mddev->resync_max_sectors = size;
4032 return 0;
4033 }
4034
4035 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4036 {
4037 struct md_rdev *rdev;
4038 struct r10conf *conf;
4039
4040 if (mddev->degraded > 0) {
4041 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4042 mdname(mddev));
4043 return ERR_PTR(-EINVAL);
4044 }
4045 sector_div(size, devs);
4046
4047 /* Set new parameters */
4048 mddev->new_level = 10;
4049 /* new layout: far_copies = 1, near_copies = 2 */
4050 mddev->new_layout = (1<<8) + 2;
4051 mddev->new_chunk_sectors = mddev->chunk_sectors;
4052 mddev->delta_disks = mddev->raid_disks;
4053 mddev->raid_disks *= 2;
4054 /* make sure it will be not marked as dirty */
4055 mddev->recovery_cp = MaxSector;
4056 mddev->dev_sectors = size;
4057
4058 conf = setup_conf(mddev);
4059 if (!IS_ERR(conf)) {
4060 rdev_for_each(rdev, mddev)
4061 if (rdev->raid_disk >= 0) {
4062 rdev->new_raid_disk = rdev->raid_disk * 2;
4063 rdev->sectors = size;
4064 }
4065 conf->barrier = 1;
4066 }
4067
4068 return conf;
4069 }
4070
4071 static void *raid10_takeover(struct mddev *mddev)
4072 {
4073 struct r0conf *raid0_conf;
4074
4075 /* raid10 can take over:
4076 * raid0 - providing it has only two drives
4077 */
4078 if (mddev->level == 0) {
4079 /* for raid0 takeover only one zone is supported */
4080 raid0_conf = mddev->private;
4081 if (raid0_conf->nr_strip_zones > 1) {
4082 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4083 mdname(mddev));
4084 return ERR_PTR(-EINVAL);
4085 }
4086 return raid10_takeover_raid0(mddev,
4087 raid0_conf->strip_zone->zone_end,
4088 raid0_conf->strip_zone->nb_dev);
4089 }
4090 return ERR_PTR(-EINVAL);
4091 }
4092
4093 static int raid10_check_reshape(struct mddev *mddev)
4094 {
4095 /* Called when there is a request to change
4096 * - layout (to ->new_layout)
4097 * - chunk size (to ->new_chunk_sectors)
4098 * - raid_disks (by delta_disks)
4099 * or when trying to restart a reshape that was ongoing.
4100 *
4101 * We need to validate the request and possibly allocate
4102 * space if that might be an issue later.
4103 *
4104 * Currently we reject any reshape of a 'far' mode array,
4105 * allow chunk size to change if new is generally acceptable,
4106 * allow raid_disks to increase, and allow
4107 * a switch between 'near' mode and 'offset' mode.
4108 */
4109 struct r10conf *conf = mddev->private;
4110 struct geom geo;
4111
4112 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4113 return -EINVAL;
4114
4115 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4116 /* mustn't change number of copies */
4117 return -EINVAL;
4118 if (geo.far_copies > 1 && !geo.far_offset)
4119 /* Cannot switch to 'far' mode */
4120 return -EINVAL;
4121
4122 if (mddev->array_sectors & geo.chunk_mask)
4123 /* not factor of array size */
4124 return -EINVAL;
4125
4126 if (!enough(conf, -1))
4127 return -EINVAL;
4128
4129 kfree(conf->mirrors_new);
4130 conf->mirrors_new = NULL;
4131 if (mddev->delta_disks > 0) {
4132 /* allocate new 'mirrors' list */
4133 conf->mirrors_new = kzalloc(
4134 sizeof(struct raid10_info)
4135 *(mddev->raid_disks +
4136 mddev->delta_disks),
4137 GFP_KERNEL);
4138 if (!conf->mirrors_new)
4139 return -ENOMEM;
4140 }
4141 return 0;
4142 }
4143
4144 /*
4145 * Need to check if array has failed when deciding whether to:
4146 * - start an array
4147 * - remove non-faulty devices
4148 * - add a spare
4149 * - allow a reshape
4150 * This determination is simple when no reshape is happening.
4151 * However if there is a reshape, we need to carefully check
4152 * both the before and after sections.
4153 * This is because some failed devices may only affect one
4154 * of the two sections, and some non-in_sync devices may
4155 * be insync in the section most affected by failed devices.
4156 */
4157 static int calc_degraded(struct r10conf *conf)
4158 {
4159 int degraded, degraded2;
4160 int i;
4161
4162 rcu_read_lock();
4163 degraded = 0;
4164 /* 'prev' section first */
4165 for (i = 0; i < conf->prev.raid_disks; i++) {
4166 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4167 if (!rdev || test_bit(Faulty, &rdev->flags))
4168 degraded++;
4169 else if (!test_bit(In_sync, &rdev->flags))
4170 /* When we can reduce the number of devices in
4171 * an array, this might not contribute to
4172 * 'degraded'. It does now.
4173 */
4174 degraded++;
4175 }
4176 rcu_read_unlock();
4177 if (conf->geo.raid_disks == conf->prev.raid_disks)
4178 return degraded;
4179 rcu_read_lock();
4180 degraded2 = 0;
4181 for (i = 0; i < conf->geo.raid_disks; i++) {
4182 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4183 if (!rdev || test_bit(Faulty, &rdev->flags))
4184 degraded2++;
4185 else if (!test_bit(In_sync, &rdev->flags)) {
4186 /* If reshape is increasing the number of devices,
4187 * this section has already been recovered, so
4188 * it doesn't contribute to degraded.
4189 * else it does.
4190 */
4191 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4192 degraded2++;
4193 }
4194 }
4195 rcu_read_unlock();
4196 if (degraded2 > degraded)
4197 return degraded2;
4198 return degraded;
4199 }
4200
4201 static int raid10_start_reshape(struct mddev *mddev)
4202 {
4203 /* A 'reshape' has been requested. This commits
4204 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4205 * This also checks if there are enough spares and adds them
4206 * to the array.
4207 * We currently require enough spares to make the final
4208 * array non-degraded. We also require that the difference
4209 * between old and new data_offset - on each device - is
4210 * enough that we never risk over-writing.
4211 */
4212
4213 unsigned long before_length, after_length;
4214 sector_t min_offset_diff = 0;
4215 int first = 1;
4216 struct geom new;
4217 struct r10conf *conf = mddev->private;
4218 struct md_rdev *rdev;
4219 int spares = 0;
4220 int ret;
4221
4222 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4223 return -EBUSY;
4224
4225 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4226 return -EINVAL;
4227
4228 before_length = ((1 << conf->prev.chunk_shift) *
4229 conf->prev.far_copies);
4230 after_length = ((1 << conf->geo.chunk_shift) *
4231 conf->geo.far_copies);
4232
4233 rdev_for_each(rdev, mddev) {
4234 if (!test_bit(In_sync, &rdev->flags)
4235 && !test_bit(Faulty, &rdev->flags))
4236 spares++;
4237 if (rdev->raid_disk >= 0) {
4238 long long diff = (rdev->new_data_offset
4239 - rdev->data_offset);
4240 if (!mddev->reshape_backwards)
4241 diff = -diff;
4242 if (diff < 0)
4243 diff = 0;
4244 if (first || diff < min_offset_diff)
4245 min_offset_diff = diff;
4246 first = 0;
4247 }
4248 }
4249
4250 if (max(before_length, after_length) > min_offset_diff)
4251 return -EINVAL;
4252
4253 if (spares < mddev->delta_disks)
4254 return -EINVAL;
4255
4256 conf->offset_diff = min_offset_diff;
4257 spin_lock_irq(&conf->device_lock);
4258 if (conf->mirrors_new) {
4259 memcpy(conf->mirrors_new, conf->mirrors,
4260 sizeof(struct raid10_info)*conf->prev.raid_disks);
4261 smp_mb();
4262 kfree(conf->mirrors_old);
4263 conf->mirrors_old = conf->mirrors;
4264 conf->mirrors = conf->mirrors_new;
4265 conf->mirrors_new = NULL;
4266 }
4267 setup_geo(&conf->geo, mddev, geo_start);
4268 smp_mb();
4269 if (mddev->reshape_backwards) {
4270 sector_t size = raid10_size(mddev, 0, 0);
4271 if (size < mddev->array_sectors) {
4272 spin_unlock_irq(&conf->device_lock);
4273 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4274 mdname(mddev));
4275 return -EINVAL;
4276 }
4277 mddev->resync_max_sectors = size;
4278 conf->reshape_progress = size;
4279 } else
4280 conf->reshape_progress = 0;
4281 conf->reshape_safe = conf->reshape_progress;
4282 spin_unlock_irq(&conf->device_lock);
4283
4284 if (mddev->delta_disks && mddev->bitmap) {
4285 ret = bitmap_resize(mddev->bitmap,
4286 raid10_size(mddev, 0,
4287 conf->geo.raid_disks),
4288 0, 0);
4289 if (ret)
4290 goto abort;
4291 }
4292 if (mddev->delta_disks > 0) {
4293 rdev_for_each(rdev, mddev)
4294 if (rdev->raid_disk < 0 &&
4295 !test_bit(Faulty, &rdev->flags)) {
4296 if (raid10_add_disk(mddev, rdev) == 0) {
4297 if (rdev->raid_disk >=
4298 conf->prev.raid_disks)
4299 set_bit(In_sync, &rdev->flags);
4300 else
4301 rdev->recovery_offset = 0;
4302
4303 if (sysfs_link_rdev(mddev, rdev))
4304 /* Failure here is OK */;
4305 }
4306 } else if (rdev->raid_disk >= conf->prev.raid_disks
4307 && !test_bit(Faulty, &rdev->flags)) {
4308 /* This is a spare that was manually added */
4309 set_bit(In_sync, &rdev->flags);
4310 }
4311 }
4312 /* When a reshape changes the number of devices,
4313 * ->degraded is measured against the larger of the
4314 * pre and post numbers.
4315 */
4316 spin_lock_irq(&conf->device_lock);
4317 mddev->degraded = calc_degraded(conf);
4318 spin_unlock_irq(&conf->device_lock);
4319 mddev->raid_disks = conf->geo.raid_disks;
4320 mddev->reshape_position = conf->reshape_progress;
4321 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4322
4323 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4324 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4325 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4326 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4327 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4328
4329 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4330 "reshape");
4331 if (!mddev->sync_thread) {
4332 ret = -EAGAIN;
4333 goto abort;
4334 }
4335 conf->reshape_checkpoint = jiffies;
4336 md_wakeup_thread(mddev->sync_thread);
4337 md_new_event(mddev);
4338 return 0;
4339
4340 abort:
4341 mddev->recovery = 0;
4342 spin_lock_irq(&conf->device_lock);
4343 conf->geo = conf->prev;
4344 mddev->raid_disks = conf->geo.raid_disks;
4345 rdev_for_each(rdev, mddev)
4346 rdev->new_data_offset = rdev->data_offset;
4347 smp_wmb();
4348 conf->reshape_progress = MaxSector;
4349 conf->reshape_safe = MaxSector;
4350 mddev->reshape_position = MaxSector;
4351 spin_unlock_irq(&conf->device_lock);
4352 return ret;
4353 }
4354
4355 /* Calculate the last device-address that could contain
4356 * any block from the chunk that includes the array-address 's'
4357 * and report the next address.
4358 * i.e. the address returned will be chunk-aligned and after
4359 * any data that is in the chunk containing 's'.
4360 */
4361 static sector_t last_dev_address(sector_t s, struct geom *geo)
4362 {
4363 s = (s | geo->chunk_mask) + 1;
4364 s >>= geo->chunk_shift;
4365 s *= geo->near_copies;
4366 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4367 s *= geo->far_copies;
4368 s <<= geo->chunk_shift;
4369 return s;
4370 }
4371
4372 /* Calculate the first device-address that could contain
4373 * any block from the chunk that includes the array-address 's'.
4374 * This too will be the start of a chunk
4375 */
4376 static sector_t first_dev_address(sector_t s, struct geom *geo)
4377 {
4378 s >>= geo->chunk_shift;
4379 s *= geo->near_copies;
4380 sector_div(s, geo->raid_disks);
4381 s *= geo->far_copies;
4382 s <<= geo->chunk_shift;
4383 return s;
4384 }
4385
4386 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4387 int *skipped)
4388 {
4389 /* We simply copy at most one chunk (smallest of old and new)
4390 * at a time, possibly less if that exceeds RESYNC_PAGES,
4391 * or we hit a bad block or something.
4392 * This might mean we pause for normal IO in the middle of
4393 * a chunk, but that is not a problem as mddev->reshape_position
4394 * can record any location.
4395 *
4396 * If we will want to write to a location that isn't
4397 * yet recorded as 'safe' (i.e. in metadata on disk) then
4398 * we need to flush all reshape requests and update the metadata.
4399 *
4400 * When reshaping forwards (e.g. to more devices), we interpret
4401 * 'safe' as the earliest block which might not have been copied
4402 * down yet. We divide this by previous stripe size and multiply
4403 * by previous stripe length to get lowest device offset that we
4404 * cannot write to yet.
4405 * We interpret 'sector_nr' as an address that we want to write to.
4406 * From this we use last_device_address() to find where we might
4407 * write to, and first_device_address on the 'safe' position.
4408 * If this 'next' write position is after the 'safe' position,
4409 * we must update the metadata to increase the 'safe' position.
4410 *
4411 * When reshaping backwards, we round in the opposite direction
4412 * and perform the reverse test: next write position must not be
4413 * less than current safe position.
4414 *
4415 * In all this the minimum difference in data offsets
4416 * (conf->offset_diff - always positive) allows a bit of slack,
4417 * so next can be after 'safe', but not by more than offset_diff
4418 *
4419 * We need to prepare all the bios here before we start any IO
4420 * to ensure the size we choose is acceptable to all devices.
4421 * The means one for each copy for write-out and an extra one for
4422 * read-in.
4423 * We store the read-in bio in ->master_bio and the others in
4424 * ->devs[x].bio and ->devs[x].repl_bio.
4425 */
4426 struct r10conf *conf = mddev->private;
4427 struct r10bio *r10_bio;
4428 sector_t next, safe, last;
4429 int max_sectors;
4430 int nr_sectors;
4431 int s;
4432 struct md_rdev *rdev;
4433 int need_flush = 0;
4434 struct bio *blist;
4435 struct bio *bio, *read_bio;
4436 int sectors_done = 0;
4437 struct page **pages;
4438
4439 if (sector_nr == 0) {
4440 /* If restarting in the middle, skip the initial sectors */
4441 if (mddev->reshape_backwards &&
4442 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4443 sector_nr = (raid10_size(mddev, 0, 0)
4444 - conf->reshape_progress);
4445 } else if (!mddev->reshape_backwards &&
4446 conf->reshape_progress > 0)
4447 sector_nr = conf->reshape_progress;
4448 if (sector_nr) {
4449 mddev->curr_resync_completed = sector_nr;
4450 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4451 *skipped = 1;
4452 return sector_nr;
4453 }
4454 }
4455
4456 /* We don't use sector_nr to track where we are up to
4457 * as that doesn't work well for ->reshape_backwards.
4458 * So just use ->reshape_progress.
4459 */
4460 if (mddev->reshape_backwards) {
4461 /* 'next' is the earliest device address that we might
4462 * write to for this chunk in the new layout
4463 */
4464 next = first_dev_address(conf->reshape_progress - 1,
4465 &conf->geo);
4466
4467 /* 'safe' is the last device address that we might read from
4468 * in the old layout after a restart
4469 */
4470 safe = last_dev_address(conf->reshape_safe - 1,
4471 &conf->prev);
4472
4473 if (next + conf->offset_diff < safe)
4474 need_flush = 1;
4475
4476 last = conf->reshape_progress - 1;
4477 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4478 & conf->prev.chunk_mask);
4479 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4480 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4481 } else {
4482 /* 'next' is after the last device address that we
4483 * might write to for this chunk in the new layout
4484 */
4485 next = last_dev_address(conf->reshape_progress, &conf->geo);
4486
4487 /* 'safe' is the earliest device address that we might
4488 * read from in the old layout after a restart
4489 */
4490 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4491
4492 /* Need to update metadata if 'next' might be beyond 'safe'
4493 * as that would possibly corrupt data
4494 */
4495 if (next > safe + conf->offset_diff)
4496 need_flush = 1;
4497
4498 sector_nr = conf->reshape_progress;
4499 last = sector_nr | (conf->geo.chunk_mask
4500 & conf->prev.chunk_mask);
4501
4502 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4503 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4504 }
4505
4506 if (need_flush ||
4507 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4508 /* Need to update reshape_position in metadata */
4509 wait_barrier(conf);
4510 mddev->reshape_position = conf->reshape_progress;
4511 if (mddev->reshape_backwards)
4512 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4513 - conf->reshape_progress;
4514 else
4515 mddev->curr_resync_completed = conf->reshape_progress;
4516 conf->reshape_checkpoint = jiffies;
4517 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4518 md_wakeup_thread(mddev->thread);
4519 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4520 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4521 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4522 allow_barrier(conf);
4523 return sectors_done;
4524 }
4525 conf->reshape_safe = mddev->reshape_position;
4526 allow_barrier(conf);
4527 }
4528
4529 raise_barrier(conf, 0);
4530 read_more:
4531 /* Now schedule reads for blocks from sector_nr to last */
4532 r10_bio = raid10_alloc_init_r10buf(conf);
4533 r10_bio->state = 0;
4534 raise_barrier(conf, 1);
4535 atomic_set(&r10_bio->remaining, 0);
4536 r10_bio->mddev = mddev;
4537 r10_bio->sector = sector_nr;
4538 set_bit(R10BIO_IsReshape, &r10_bio->state);
4539 r10_bio->sectors = last - sector_nr + 1;
4540 rdev = read_balance(conf, r10_bio, &max_sectors);
4541 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4542
4543 if (!rdev) {
4544 /* Cannot read from here, so need to record bad blocks
4545 * on all the target devices.
4546 */
4547 // FIXME
4548 mempool_free(r10_bio, conf->r10buf_pool);
4549 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4550 return sectors_done;
4551 }
4552
4553 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4554
4555 bio_set_dev(read_bio, rdev->bdev);
4556 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4557 + rdev->data_offset);
4558 read_bio->bi_private = r10_bio;
4559 read_bio->bi_end_io = end_reshape_read;
4560 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4561 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4562 read_bio->bi_status = 0;
4563 read_bio->bi_vcnt = 0;
4564 read_bio->bi_iter.bi_size = 0;
4565 r10_bio->master_bio = read_bio;
4566 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4567
4568 /* Now find the locations in the new layout */
4569 __raid10_find_phys(&conf->geo, r10_bio);
4570
4571 blist = read_bio;
4572 read_bio->bi_next = NULL;
4573
4574 rcu_read_lock();
4575 for (s = 0; s < conf->copies*2; s++) {
4576 struct bio *b;
4577 int d = r10_bio->devs[s/2].devnum;
4578 struct md_rdev *rdev2;
4579 if (s&1) {
4580 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4581 b = r10_bio->devs[s/2].repl_bio;
4582 } else {
4583 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4584 b = r10_bio->devs[s/2].bio;
4585 }
4586 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4587 continue;
4588
4589 bio_set_dev(b, rdev2->bdev);
4590 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4591 rdev2->new_data_offset;
4592 b->bi_end_io = end_reshape_write;
4593 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4594 b->bi_next = blist;
4595 blist = b;
4596 }
4597
4598 /* Now add as many pages as possible to all of these bios. */
4599
4600 nr_sectors = 0;
4601 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4602 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4603 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4604 int len = (max_sectors - s) << 9;
4605 if (len > PAGE_SIZE)
4606 len = PAGE_SIZE;
4607 for (bio = blist; bio ; bio = bio->bi_next) {
4608 /*
4609 * won't fail because the vec table is big enough
4610 * to hold all these pages
4611 */
4612 bio_add_page(bio, page, len, 0);
4613 }
4614 sector_nr += len >> 9;
4615 nr_sectors += len >> 9;
4616 }
4617 rcu_read_unlock();
4618 r10_bio->sectors = nr_sectors;
4619
4620 /* Now submit the read */
4621 md_sync_acct_bio(read_bio, r10_bio->sectors);
4622 atomic_inc(&r10_bio->remaining);
4623 read_bio->bi_next = NULL;
4624 generic_make_request(read_bio);
4625 sectors_done += nr_sectors;
4626 if (sector_nr <= last)
4627 goto read_more;
4628
4629 lower_barrier(conf);
4630
4631 /* Now that we have done the whole section we can
4632 * update reshape_progress
4633 */
4634 if (mddev->reshape_backwards)
4635 conf->reshape_progress -= sectors_done;
4636 else
4637 conf->reshape_progress += sectors_done;
4638
4639 return sectors_done;
4640 }
4641
4642 static void end_reshape_request(struct r10bio *r10_bio);
4643 static int handle_reshape_read_error(struct mddev *mddev,
4644 struct r10bio *r10_bio);
4645 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4646 {
4647 /* Reshape read completed. Hopefully we have a block
4648 * to write out.
4649 * If we got a read error then we do sync 1-page reads from
4650 * elsewhere until we find the data - or give up.
4651 */
4652 struct r10conf *conf = mddev->private;
4653 int s;
4654
4655 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4656 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4657 /* Reshape has been aborted */
4658 md_done_sync(mddev, r10_bio->sectors, 0);
4659 return;
4660 }
4661
4662 /* We definitely have the data in the pages, schedule the
4663 * writes.
4664 */
4665 atomic_set(&r10_bio->remaining, 1);
4666 for (s = 0; s < conf->copies*2; s++) {
4667 struct bio *b;
4668 int d = r10_bio->devs[s/2].devnum;
4669 struct md_rdev *rdev;
4670 rcu_read_lock();
4671 if (s&1) {
4672 rdev = rcu_dereference(conf->mirrors[d].replacement);
4673 b = r10_bio->devs[s/2].repl_bio;
4674 } else {
4675 rdev = rcu_dereference(conf->mirrors[d].rdev);
4676 b = r10_bio->devs[s/2].bio;
4677 }
4678 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4679 rcu_read_unlock();
4680 continue;
4681 }
4682 atomic_inc(&rdev->nr_pending);
4683 rcu_read_unlock();
4684 md_sync_acct_bio(b, r10_bio->sectors);
4685 atomic_inc(&r10_bio->remaining);
4686 b->bi_next = NULL;
4687 generic_make_request(b);
4688 }
4689 end_reshape_request(r10_bio);
4690 }
4691
4692 static void end_reshape(struct r10conf *conf)
4693 {
4694 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4695 return;
4696
4697 spin_lock_irq(&conf->device_lock);
4698 conf->prev = conf->geo;
4699 md_finish_reshape(conf->mddev);
4700 smp_wmb();
4701 conf->reshape_progress = MaxSector;
4702 conf->reshape_safe = MaxSector;
4703 spin_unlock_irq(&conf->device_lock);
4704
4705 /* read-ahead size must cover two whole stripes, which is
4706 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4707 */
4708 if (conf->mddev->queue) {
4709 int stripe = conf->geo.raid_disks *
4710 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4711 stripe /= conf->geo.near_copies;
4712 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4713 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4714 }
4715 conf->fullsync = 0;
4716 }
4717
4718 static int handle_reshape_read_error(struct mddev *mddev,
4719 struct r10bio *r10_bio)
4720 {
4721 /* Use sync reads to get the blocks from somewhere else */
4722 int sectors = r10_bio->sectors;
4723 struct r10conf *conf = mddev->private;
4724 struct r10bio *r10b;
4725 int slot = 0;
4726 int idx = 0;
4727 struct page **pages;
4728
4729 r10b = kmalloc(sizeof(*r10b) +
4730 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4731 if (!r10b) {
4732 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4733 return -ENOMEM;
4734 }
4735
4736 /* reshape IOs share pages from .devs[0].bio */
4737 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4738
4739 r10b->sector = r10_bio->sector;
4740 __raid10_find_phys(&conf->prev, r10b);
4741
4742 while (sectors) {
4743 int s = sectors;
4744 int success = 0;
4745 int first_slot = slot;
4746
4747 if (s > (PAGE_SIZE >> 9))
4748 s = PAGE_SIZE >> 9;
4749
4750 rcu_read_lock();
4751 while (!success) {
4752 int d = r10b->devs[slot].devnum;
4753 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4754 sector_t addr;
4755 if (rdev == NULL ||
4756 test_bit(Faulty, &rdev->flags) ||
4757 !test_bit(In_sync, &rdev->flags))
4758 goto failed;
4759
4760 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4761 atomic_inc(&rdev->nr_pending);
4762 rcu_read_unlock();
4763 success = sync_page_io(rdev,
4764 addr,
4765 s << 9,
4766 pages[idx],
4767 REQ_OP_READ, 0, false);
4768 rdev_dec_pending(rdev, mddev);
4769 rcu_read_lock();
4770 if (success)
4771 break;
4772 failed:
4773 slot++;
4774 if (slot >= conf->copies)
4775 slot = 0;
4776 if (slot == first_slot)
4777 break;
4778 }
4779 rcu_read_unlock();
4780 if (!success) {
4781 /* couldn't read this block, must give up */
4782 set_bit(MD_RECOVERY_INTR,
4783 &mddev->recovery);
4784 kfree(r10b);
4785 return -EIO;
4786 }
4787 sectors -= s;
4788 idx++;
4789 }
4790 kfree(r10b);
4791 return 0;
4792 }
4793
4794 static void end_reshape_write(struct bio *bio)
4795 {
4796 struct r10bio *r10_bio = get_resync_r10bio(bio);
4797 struct mddev *mddev = r10_bio->mddev;
4798 struct r10conf *conf = mddev->private;
4799 int d;
4800 int slot;
4801 int repl;
4802 struct md_rdev *rdev = NULL;
4803
4804 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4805 if (repl)
4806 rdev = conf->mirrors[d].replacement;
4807 if (!rdev) {
4808 smp_mb();
4809 rdev = conf->mirrors[d].rdev;
4810 }
4811
4812 if (bio->bi_status) {
4813 /* FIXME should record badblock */
4814 md_error(mddev, rdev);
4815 }
4816
4817 rdev_dec_pending(rdev, mddev);
4818 end_reshape_request(r10_bio);
4819 }
4820
4821 static void end_reshape_request(struct r10bio *r10_bio)
4822 {
4823 if (!atomic_dec_and_test(&r10_bio->remaining))
4824 return;
4825 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4826 bio_put(r10_bio->master_bio);
4827 put_buf(r10_bio);
4828 }
4829
4830 static void raid10_finish_reshape(struct mddev *mddev)
4831 {
4832 struct r10conf *conf = mddev->private;
4833
4834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4835 return;
4836
4837 if (mddev->delta_disks > 0) {
4838 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4839 mddev->recovery_cp = mddev->resync_max_sectors;
4840 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4841 }
4842 mddev->resync_max_sectors = mddev->array_sectors;
4843 } else {
4844 int d;
4845 rcu_read_lock();
4846 for (d = conf->geo.raid_disks ;
4847 d < conf->geo.raid_disks - mddev->delta_disks;
4848 d++) {
4849 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4850 if (rdev)
4851 clear_bit(In_sync, &rdev->flags);
4852 rdev = rcu_dereference(conf->mirrors[d].replacement);
4853 if (rdev)
4854 clear_bit(In_sync, &rdev->flags);
4855 }
4856 rcu_read_unlock();
4857 }
4858 mddev->layout = mddev->new_layout;
4859 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4860 mddev->reshape_position = MaxSector;
4861 mddev->delta_disks = 0;
4862 mddev->reshape_backwards = 0;
4863 }
4864
4865 static struct md_personality raid10_personality =
4866 {
4867 .name = "raid10",
4868 .level = 10,
4869 .owner = THIS_MODULE,
4870 .make_request = raid10_make_request,
4871 .run = raid10_run,
4872 .free = raid10_free,
4873 .status = raid10_status,
4874 .error_handler = raid10_error,
4875 .hot_add_disk = raid10_add_disk,
4876 .hot_remove_disk= raid10_remove_disk,
4877 .spare_active = raid10_spare_active,
4878 .sync_request = raid10_sync_request,
4879 .quiesce = raid10_quiesce,
4880 .size = raid10_size,
4881 .resize = raid10_resize,
4882 .takeover = raid10_takeover,
4883 .check_reshape = raid10_check_reshape,
4884 .start_reshape = raid10_start_reshape,
4885 .finish_reshape = raid10_finish_reshape,
4886 .congested = raid10_congested,
4887 };
4888
4889 static int __init raid_init(void)
4890 {
4891 return register_md_personality(&raid10_personality);
4892 }
4893
4894 static void raid_exit(void)
4895 {
4896 unregister_md_personality(&raid10_personality);
4897 }
4898
4899 module_init(raid_init);
4900 module_exit(raid_exit);
4901 MODULE_LICENSE("GPL");
4902 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4903 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4904 MODULE_ALIAS("md-raid10");
4905 MODULE_ALIAS("md-level-10");
4906
4907 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);