]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid10.c
md/raid10: Handle write errors by updating badblock log.
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30
31 /*
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
39 *
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
50 *
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
54 */
55
56 /*
57 * Number of guaranteed r10bios in case of extreme VM load:
58 */
59 #define NR_RAID10_BIOS 256
60
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66 conf_t *conf = data;
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 return kzalloc(size, gfp_flags);
71 }
72
73 static void r10bio_pool_free(void *r10_bio, void *data)
74 {
75 kfree(r10_bio);
76 }
77
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
85
86 /*
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
91 *
92 */
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 {
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
101
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 if (!r10_bio)
104 return NULL;
105
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
110
111 /*
112 * Allocate bios.
113 */
114 for (j = nalloc ; j-- ; ) {
115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
119 }
120 /*
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
123 */
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
137
138 bio->bi_io_vec[i].bv_page = page;
139 }
140 }
141
142 return r10_bio;
143
144 out_free_pages:
145 for ( ; i > 0 ; i--)
146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
156 }
157
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
164
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
169 safe_put_page(bio->bi_io_vec[i].bv_page);
170 bio->bi_io_vec[i].bv_page = NULL;
171 }
172 bio_put(bio);
173 }
174 }
175 r10bio_pool_free(r10bio, conf);
176 }
177
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180 int i;
181
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
184 if (!BIO_SPECIAL(*bio))
185 bio_put(*bio);
186 *bio = NULL;
187 }
188 }
189
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192 conf_t *conf = r10_bio->mddev->private;
193
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
196 }
197
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 conf_t *conf = r10_bio->mddev->private;
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
204 lower_barrier(conf);
205 }
206
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev->private;
212
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
217
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
220
221 md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
228 */
229 static void raid_end_bio_io(r10bio_t *r10_bio)
230 {
231 struct bio *bio = r10_bio->master_bio;
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
234
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
247 /*
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
250 */
251 allow_barrier(conf);
252 }
253 free_r10bio(r10_bio);
254 }
255
256 /*
257 * Update disk head position estimator based on IRQ completion info.
258 */
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260 {
261 conf_t *conf = r10_bio->mddev->private;
262
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
265 }
266
267 /*
268 * Find the disk number which triggered given bio
269 */
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 struct bio *bio, int *slotp)
272 {
273 int slot;
274
275 for (slot = 0; slot < conf->copies; slot++)
276 if (r10_bio->devs[slot].bio == bio)
277 break;
278
279 BUG_ON(slot == conf->copies);
280 update_head_pos(slot, r10_bio);
281
282 if (slotp)
283 *slotp = slot;
284 return r10_bio->devs[slot].devnum;
285 }
286
287 static void raid10_end_read_request(struct bio *bio, int error)
288 {
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t *r10_bio = bio->bi_private;
291 int slot, dev;
292 conf_t *conf = r10_bio->mddev->private;
293
294
295 slot = r10_bio->read_slot;
296 dev = r10_bio->devs[slot].devnum;
297 /*
298 * this branch is our 'one mirror IO has finished' event handler:
299 */
300 update_head_pos(slot, r10_bio);
301
302 if (uptodate) {
303 /*
304 * Set R10BIO_Uptodate in our master bio, so that
305 * we will return a good error code to the higher
306 * levels even if IO on some other mirrored buffer fails.
307 *
308 * The 'master' represents the composite IO operation to
309 * user-side. So if something waits for IO, then it will
310 * wait for the 'master' bio.
311 */
312 set_bit(R10BIO_Uptodate, &r10_bio->state);
313 raid_end_bio_io(r10_bio);
314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
315 } else {
316 /*
317 * oops, read error - keep the refcount on the rdev
318 */
319 char b[BDEVNAME_SIZE];
320 printk_ratelimited(KERN_ERR
321 "md/raid10:%s: %s: rescheduling sector %llu\n",
322 mdname(conf->mddev),
323 bdevname(conf->mirrors[dev].rdev->bdev, b),
324 (unsigned long long)r10_bio->sector);
325 set_bit(R10BIO_ReadError, &r10_bio->state);
326 reschedule_retry(r10_bio);
327 }
328 }
329
330 static void close_write(r10bio_t *r10_bio)
331 {
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
336 0);
337 md_write_end(r10_bio->mddev);
338 }
339
340 static void raid10_end_write_request(struct bio *bio, int error)
341 {
342 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
343 r10bio_t *r10_bio = bio->bi_private;
344 int dev;
345 int dec_rdev = 1;
346 conf_t *conf = r10_bio->mddev->private;
347 int slot;
348
349 dev = find_bio_disk(conf, r10_bio, bio, &slot);
350
351 /*
352 * this branch is our 'one mirror IO has finished' event handler:
353 */
354 if (!uptodate) {
355 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
356 set_bit(R10BIO_WriteError, &r10_bio->state);
357 dec_rdev = 0;
358 } else {
359 /*
360 * Set R10BIO_Uptodate in our master bio, so that
361 * we will return a good error code for to the higher
362 * levels even if IO on some other mirrored buffer fails.
363 *
364 * The 'master' represents the composite IO operation to
365 * user-side. So if something waits for IO, then it will
366 * wait for the 'master' bio.
367 */
368 sector_t first_bad;
369 int bad_sectors;
370
371 set_bit(R10BIO_Uptodate, &r10_bio->state);
372
373 /* Maybe we can clear some bad blocks. */
374 if (is_badblock(conf->mirrors[dev].rdev,
375 r10_bio->devs[slot].addr,
376 r10_bio->sectors,
377 &first_bad, &bad_sectors)) {
378 bio_put(bio);
379 r10_bio->devs[slot].bio = IO_MADE_GOOD;
380 dec_rdev = 0;
381 set_bit(R10BIO_MadeGood, &r10_bio->state);
382 }
383 }
384
385 /*
386 *
387 * Let's see if all mirrored write operations have finished
388 * already.
389 */
390 if (atomic_dec_and_test(&r10_bio->remaining)) {
391 if (test_bit(R10BIO_WriteError, &r10_bio->state))
392 reschedule_retry(r10_bio);
393 else {
394 close_write(r10_bio);
395 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396 reschedule_retry(r10_bio);
397 else
398 raid_end_bio_io(r10_bio);
399 }
400 }
401 if (dec_rdev)
402 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
403 }
404
405
406 /*
407 * RAID10 layout manager
408 * As well as the chunksize and raid_disks count, there are two
409 * parameters: near_copies and far_copies.
410 * near_copies * far_copies must be <= raid_disks.
411 * Normally one of these will be 1.
412 * If both are 1, we get raid0.
413 * If near_copies == raid_disks, we get raid1.
414 *
415 * Chunks are laid out in raid0 style with near_copies copies of the
416 * first chunk, followed by near_copies copies of the next chunk and
417 * so on.
418 * If far_copies > 1, then after 1/far_copies of the array has been assigned
419 * as described above, we start again with a device offset of near_copies.
420 * So we effectively have another copy of the whole array further down all
421 * the drives, but with blocks on different drives.
422 * With this layout, and block is never stored twice on the one device.
423 *
424 * raid10_find_phys finds the sector offset of a given virtual sector
425 * on each device that it is on.
426 *
427 * raid10_find_virt does the reverse mapping, from a device and a
428 * sector offset to a virtual address
429 */
430
431 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
432 {
433 int n,f;
434 sector_t sector;
435 sector_t chunk;
436 sector_t stripe;
437 int dev;
438
439 int slot = 0;
440
441 /* now calculate first sector/dev */
442 chunk = r10bio->sector >> conf->chunk_shift;
443 sector = r10bio->sector & conf->chunk_mask;
444
445 chunk *= conf->near_copies;
446 stripe = chunk;
447 dev = sector_div(stripe, conf->raid_disks);
448 if (conf->far_offset)
449 stripe *= conf->far_copies;
450
451 sector += stripe << conf->chunk_shift;
452
453 /* and calculate all the others */
454 for (n=0; n < conf->near_copies; n++) {
455 int d = dev;
456 sector_t s = sector;
457 r10bio->devs[slot].addr = sector;
458 r10bio->devs[slot].devnum = d;
459 slot++;
460
461 for (f = 1; f < conf->far_copies; f++) {
462 d += conf->near_copies;
463 if (d >= conf->raid_disks)
464 d -= conf->raid_disks;
465 s += conf->stride;
466 r10bio->devs[slot].devnum = d;
467 r10bio->devs[slot].addr = s;
468 slot++;
469 }
470 dev++;
471 if (dev >= conf->raid_disks) {
472 dev = 0;
473 sector += (conf->chunk_mask + 1);
474 }
475 }
476 BUG_ON(slot != conf->copies);
477 }
478
479 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
480 {
481 sector_t offset, chunk, vchunk;
482
483 offset = sector & conf->chunk_mask;
484 if (conf->far_offset) {
485 int fc;
486 chunk = sector >> conf->chunk_shift;
487 fc = sector_div(chunk, conf->far_copies);
488 dev -= fc * conf->near_copies;
489 if (dev < 0)
490 dev += conf->raid_disks;
491 } else {
492 while (sector >= conf->stride) {
493 sector -= conf->stride;
494 if (dev < conf->near_copies)
495 dev += conf->raid_disks - conf->near_copies;
496 else
497 dev -= conf->near_copies;
498 }
499 chunk = sector >> conf->chunk_shift;
500 }
501 vchunk = chunk * conf->raid_disks + dev;
502 sector_div(vchunk, conf->near_copies);
503 return (vchunk << conf->chunk_shift) + offset;
504 }
505
506 /**
507 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508 * @q: request queue
509 * @bvm: properties of new bio
510 * @biovec: the request that could be merged to it.
511 *
512 * Return amount of bytes we can accept at this offset
513 * If near_copies == raid_disk, there are no striping issues,
514 * but in that case, the function isn't called at all.
515 */
516 static int raid10_mergeable_bvec(struct request_queue *q,
517 struct bvec_merge_data *bvm,
518 struct bio_vec *biovec)
519 {
520 mddev_t *mddev = q->queuedata;
521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
522 int max;
523 unsigned int chunk_sectors = mddev->chunk_sectors;
524 unsigned int bio_sectors = bvm->bi_size >> 9;
525
526 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
528 if (max <= biovec->bv_len && bio_sectors == 0)
529 return biovec->bv_len;
530 else
531 return max;
532 }
533
534 /*
535 * This routine returns the disk from which the requested read should
536 * be done. There is a per-array 'next expected sequential IO' sector
537 * number - if this matches on the next IO then we use the last disk.
538 * There is also a per-disk 'last know head position' sector that is
539 * maintained from IRQ contexts, both the normal and the resync IO
540 * completion handlers update this position correctly. If there is no
541 * perfect sequential match then we pick the disk whose head is closest.
542 *
543 * If there are 2 mirrors in the same 2 devices, performance degrades
544 * because position is mirror, not device based.
545 *
546 * The rdev for the device selected will have nr_pending incremented.
547 */
548
549 /*
550 * FIXME: possibly should rethink readbalancing and do it differently
551 * depending on near_copies / far_copies geometry.
552 */
553 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
554 {
555 const sector_t this_sector = r10_bio->sector;
556 int disk, slot;
557 int sectors = r10_bio->sectors;
558 int best_good_sectors;
559 sector_t new_distance, best_dist;
560 mdk_rdev_t *rdev;
561 int do_balance;
562 int best_slot;
563
564 raid10_find_phys(conf, r10_bio);
565 rcu_read_lock();
566 retry:
567 sectors = r10_bio->sectors;
568 best_slot = -1;
569 best_dist = MaxSector;
570 best_good_sectors = 0;
571 do_balance = 1;
572 /*
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on (recovery is ok), or below
575 * the resync window. We take the first readable disk when
576 * above the resync window.
577 */
578 if (conf->mddev->recovery_cp < MaxSector
579 && (this_sector + sectors >= conf->next_resync))
580 do_balance = 0;
581
582 for (slot = 0; slot < conf->copies ; slot++) {
583 sector_t first_bad;
584 int bad_sectors;
585 sector_t dev_sector;
586
587 if (r10_bio->devs[slot].bio == IO_BLOCKED)
588 continue;
589 disk = r10_bio->devs[slot].devnum;
590 rdev = rcu_dereference(conf->mirrors[disk].rdev);
591 if (rdev == NULL)
592 continue;
593 if (!test_bit(In_sync, &rdev->flags))
594 continue;
595
596 dev_sector = r10_bio->devs[slot].addr;
597 if (is_badblock(rdev, dev_sector, sectors,
598 &first_bad, &bad_sectors)) {
599 if (best_dist < MaxSector)
600 /* Already have a better slot */
601 continue;
602 if (first_bad <= dev_sector) {
603 /* Cannot read here. If this is the
604 * 'primary' device, then we must not read
605 * beyond 'bad_sectors' from another device.
606 */
607 bad_sectors -= (dev_sector - first_bad);
608 if (!do_balance && sectors > bad_sectors)
609 sectors = bad_sectors;
610 if (best_good_sectors > sectors)
611 best_good_sectors = sectors;
612 } else {
613 sector_t good_sectors =
614 first_bad - dev_sector;
615 if (good_sectors > best_good_sectors) {
616 best_good_sectors = good_sectors;
617 best_slot = slot;
618 }
619 if (!do_balance)
620 /* Must read from here */
621 break;
622 }
623 continue;
624 } else
625 best_good_sectors = sectors;
626
627 if (!do_balance)
628 break;
629
630 /* This optimisation is debatable, and completely destroys
631 * sequential read speed for 'far copies' arrays. So only
632 * keep it for 'near' arrays, and review those later.
633 */
634 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
635 break;
636
637 /* for far > 1 always use the lowest address */
638 if (conf->far_copies > 1)
639 new_distance = r10_bio->devs[slot].addr;
640 else
641 new_distance = abs(r10_bio->devs[slot].addr -
642 conf->mirrors[disk].head_position);
643 if (new_distance < best_dist) {
644 best_dist = new_distance;
645 best_slot = slot;
646 }
647 }
648 if (slot == conf->copies)
649 slot = best_slot;
650
651 if (slot >= 0) {
652 disk = r10_bio->devs[slot].devnum;
653 rdev = rcu_dereference(conf->mirrors[disk].rdev);
654 if (!rdev)
655 goto retry;
656 atomic_inc(&rdev->nr_pending);
657 if (test_bit(Faulty, &rdev->flags)) {
658 /* Cannot risk returning a device that failed
659 * before we inc'ed nr_pending
660 */
661 rdev_dec_pending(rdev, conf->mddev);
662 goto retry;
663 }
664 r10_bio->read_slot = slot;
665 } else
666 disk = -1;
667 rcu_read_unlock();
668 *max_sectors = best_good_sectors;
669
670 return disk;
671 }
672
673 static int raid10_congested(void *data, int bits)
674 {
675 mddev_t *mddev = data;
676 conf_t *conf = mddev->private;
677 int i, ret = 0;
678
679 if (mddev_congested(mddev, bits))
680 return 1;
681 rcu_read_lock();
682 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
683 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684 if (rdev && !test_bit(Faulty, &rdev->flags)) {
685 struct request_queue *q = bdev_get_queue(rdev->bdev);
686
687 ret |= bdi_congested(&q->backing_dev_info, bits);
688 }
689 }
690 rcu_read_unlock();
691 return ret;
692 }
693
694 static void flush_pending_writes(conf_t *conf)
695 {
696 /* Any writes that have been queued but are awaiting
697 * bitmap updates get flushed here.
698 */
699 spin_lock_irq(&conf->device_lock);
700
701 if (conf->pending_bio_list.head) {
702 struct bio *bio;
703 bio = bio_list_get(&conf->pending_bio_list);
704 spin_unlock_irq(&conf->device_lock);
705 /* flush any pending bitmap writes to disk
706 * before proceeding w/ I/O */
707 bitmap_unplug(conf->mddev->bitmap);
708
709 while (bio) { /* submit pending writes */
710 struct bio *next = bio->bi_next;
711 bio->bi_next = NULL;
712 generic_make_request(bio);
713 bio = next;
714 }
715 } else
716 spin_unlock_irq(&conf->device_lock);
717 }
718
719 /* Barriers....
720 * Sometimes we need to suspend IO while we do something else,
721 * either some resync/recovery, or reconfigure the array.
722 * To do this we raise a 'barrier'.
723 * The 'barrier' is a counter that can be raised multiple times
724 * to count how many activities are happening which preclude
725 * normal IO.
726 * We can only raise the barrier if there is no pending IO.
727 * i.e. if nr_pending == 0.
728 * We choose only to raise the barrier if no-one is waiting for the
729 * barrier to go down. This means that as soon as an IO request
730 * is ready, no other operations which require a barrier will start
731 * until the IO request has had a chance.
732 *
733 * So: regular IO calls 'wait_barrier'. When that returns there
734 * is no backgroup IO happening, It must arrange to call
735 * allow_barrier when it has finished its IO.
736 * backgroup IO calls must call raise_barrier. Once that returns
737 * there is no normal IO happeing. It must arrange to call
738 * lower_barrier when the particular background IO completes.
739 */
740
741 static void raise_barrier(conf_t *conf, int force)
742 {
743 BUG_ON(force && !conf->barrier);
744 spin_lock_irq(&conf->resync_lock);
745
746 /* Wait until no block IO is waiting (unless 'force') */
747 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
748 conf->resync_lock, );
749
750 /* block any new IO from starting */
751 conf->barrier++;
752
753 /* Now wait for all pending IO to complete */
754 wait_event_lock_irq(conf->wait_barrier,
755 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
756 conf->resync_lock, );
757
758 spin_unlock_irq(&conf->resync_lock);
759 }
760
761 static void lower_barrier(conf_t *conf)
762 {
763 unsigned long flags;
764 spin_lock_irqsave(&conf->resync_lock, flags);
765 conf->barrier--;
766 spin_unlock_irqrestore(&conf->resync_lock, flags);
767 wake_up(&conf->wait_barrier);
768 }
769
770 static void wait_barrier(conf_t *conf)
771 {
772 spin_lock_irq(&conf->resync_lock);
773 if (conf->barrier) {
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776 conf->resync_lock,
777 );
778 conf->nr_waiting--;
779 }
780 conf->nr_pending++;
781 spin_unlock_irq(&conf->resync_lock);
782 }
783
784 static void allow_barrier(conf_t *conf)
785 {
786 unsigned long flags;
787 spin_lock_irqsave(&conf->resync_lock, flags);
788 conf->nr_pending--;
789 spin_unlock_irqrestore(&conf->resync_lock, flags);
790 wake_up(&conf->wait_barrier);
791 }
792
793 static void freeze_array(conf_t *conf)
794 {
795 /* stop syncio and normal IO and wait for everything to
796 * go quiet.
797 * We increment barrier and nr_waiting, and then
798 * wait until nr_pending match nr_queued+1
799 * This is called in the context of one normal IO request
800 * that has failed. Thus any sync request that might be pending
801 * will be blocked by nr_pending, and we need to wait for
802 * pending IO requests to complete or be queued for re-try.
803 * Thus the number queued (nr_queued) plus this request (1)
804 * must match the number of pending IOs (nr_pending) before
805 * we continue.
806 */
807 spin_lock_irq(&conf->resync_lock);
808 conf->barrier++;
809 conf->nr_waiting++;
810 wait_event_lock_irq(conf->wait_barrier,
811 conf->nr_pending == conf->nr_queued+1,
812 conf->resync_lock,
813 flush_pending_writes(conf));
814
815 spin_unlock_irq(&conf->resync_lock);
816 }
817
818 static void unfreeze_array(conf_t *conf)
819 {
820 /* reverse the effect of the freeze */
821 spin_lock_irq(&conf->resync_lock);
822 conf->barrier--;
823 conf->nr_waiting--;
824 wake_up(&conf->wait_barrier);
825 spin_unlock_irq(&conf->resync_lock);
826 }
827
828 static int make_request(mddev_t *mddev, struct bio * bio)
829 {
830 conf_t *conf = mddev->private;
831 mirror_info_t *mirror;
832 r10bio_t *r10_bio;
833 struct bio *read_bio;
834 int i;
835 int chunk_sects = conf->chunk_mask + 1;
836 const int rw = bio_data_dir(bio);
837 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
838 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
839 unsigned long flags;
840 mdk_rdev_t *blocked_rdev;
841 int plugged;
842 int sectors_handled;
843 int max_sectors;
844
845 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846 md_flush_request(mddev, bio);
847 return 0;
848 }
849
850 /* If this request crosses a chunk boundary, we need to
851 * split it. This will only happen for 1 PAGE (or less) requests.
852 */
853 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854 > chunk_sects &&
855 conf->near_copies < conf->raid_disks)) {
856 struct bio_pair *bp;
857 /* Sanity check -- queue functions should prevent this happening */
858 if (bio->bi_vcnt != 1 ||
859 bio->bi_idx != 0)
860 goto bad_map;
861 /* This is a one page bio that upper layers
862 * refuse to split for us, so we need to split it.
863 */
864 bp = bio_split(bio,
865 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
866
867 /* Each of these 'make_request' calls will call 'wait_barrier'.
868 * If the first succeeds but the second blocks due to the resync
869 * thread raising the barrier, we will deadlock because the
870 * IO to the underlying device will be queued in generic_make_request
871 * and will never complete, so will never reduce nr_pending.
872 * So increment nr_waiting here so no new raise_barriers will
873 * succeed, and so the second wait_barrier cannot block.
874 */
875 spin_lock_irq(&conf->resync_lock);
876 conf->nr_waiting++;
877 spin_unlock_irq(&conf->resync_lock);
878
879 if (make_request(mddev, &bp->bio1))
880 generic_make_request(&bp->bio1);
881 if (make_request(mddev, &bp->bio2))
882 generic_make_request(&bp->bio2);
883
884 spin_lock_irq(&conf->resync_lock);
885 conf->nr_waiting--;
886 wake_up(&conf->wait_barrier);
887 spin_unlock_irq(&conf->resync_lock);
888
889 bio_pair_release(bp);
890 return 0;
891 bad_map:
892 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
893 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
894 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
895
896 bio_io_error(bio);
897 return 0;
898 }
899
900 md_write_start(mddev, bio);
901
902 /*
903 * Register the new request and wait if the reconstruction
904 * thread has put up a bar for new requests.
905 * Continue immediately if no resync is active currently.
906 */
907 wait_barrier(conf);
908
909 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
910
911 r10_bio->master_bio = bio;
912 r10_bio->sectors = bio->bi_size >> 9;
913
914 r10_bio->mddev = mddev;
915 r10_bio->sector = bio->bi_sector;
916 r10_bio->state = 0;
917
918 /* We might need to issue multiple reads to different
919 * devices if there are bad blocks around, so we keep
920 * track of the number of reads in bio->bi_phys_segments.
921 * If this is 0, there is only one r10_bio and no locking
922 * will be needed when the request completes. If it is
923 * non-zero, then it is the number of not-completed requests.
924 */
925 bio->bi_phys_segments = 0;
926 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
927
928 if (rw == READ) {
929 /*
930 * read balancing logic:
931 */
932 int disk;
933 int slot;
934
935 read_again:
936 disk = read_balance(conf, r10_bio, &max_sectors);
937 slot = r10_bio->read_slot;
938 if (disk < 0) {
939 raid_end_bio_io(r10_bio);
940 return 0;
941 }
942 mirror = conf->mirrors + disk;
943
944 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
945 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
946 max_sectors);
947
948 r10_bio->devs[slot].bio = read_bio;
949
950 read_bio->bi_sector = r10_bio->devs[slot].addr +
951 mirror->rdev->data_offset;
952 read_bio->bi_bdev = mirror->rdev->bdev;
953 read_bio->bi_end_io = raid10_end_read_request;
954 read_bio->bi_rw = READ | do_sync;
955 read_bio->bi_private = r10_bio;
956
957 if (max_sectors < r10_bio->sectors) {
958 /* Could not read all from this device, so we will
959 * need another r10_bio.
960 */
961 sectors_handled = (r10_bio->sectors + max_sectors
962 - bio->bi_sector);
963 r10_bio->sectors = max_sectors;
964 spin_lock_irq(&conf->device_lock);
965 if (bio->bi_phys_segments == 0)
966 bio->bi_phys_segments = 2;
967 else
968 bio->bi_phys_segments++;
969 spin_unlock(&conf->device_lock);
970 /* Cannot call generic_make_request directly
971 * as that will be queued in __generic_make_request
972 * and subsequent mempool_alloc might block
973 * waiting for it. so hand bio over to raid10d.
974 */
975 reschedule_retry(r10_bio);
976
977 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
978
979 r10_bio->master_bio = bio;
980 r10_bio->sectors = ((bio->bi_size >> 9)
981 - sectors_handled);
982 r10_bio->state = 0;
983 r10_bio->mddev = mddev;
984 r10_bio->sector = bio->bi_sector + sectors_handled;
985 goto read_again;
986 } else
987 generic_make_request(read_bio);
988 return 0;
989 }
990
991 /*
992 * WRITE:
993 */
994 /* first select target devices under rcu_lock and
995 * inc refcount on their rdev. Record them by setting
996 * bios[x] to bio
997 * If there are known/acknowledged bad blocks on any device
998 * on which we have seen a write error, we want to avoid
999 * writing to those blocks. This potentially requires several
1000 * writes to write around the bad blocks. Each set of writes
1001 * gets its own r10_bio with a set of bios attached. The number
1002 * of r10_bios is recored in bio->bi_phys_segments just as with
1003 * the read case.
1004 */
1005 plugged = mddev_check_plugged(mddev);
1006
1007 raid10_find_phys(conf, r10_bio);
1008 retry_write:
1009 blocked_rdev = NULL;
1010 rcu_read_lock();
1011 max_sectors = r10_bio->sectors;
1012
1013 for (i = 0; i < conf->copies; i++) {
1014 int d = r10_bio->devs[i].devnum;
1015 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
1016 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1017 atomic_inc(&rdev->nr_pending);
1018 blocked_rdev = rdev;
1019 break;
1020 }
1021 r10_bio->devs[i].bio = NULL;
1022 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1023 set_bit(R10BIO_Degraded, &r10_bio->state);
1024 continue;
1025 }
1026 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1027 sector_t first_bad;
1028 sector_t dev_sector = r10_bio->devs[i].addr;
1029 int bad_sectors;
1030 int is_bad;
1031
1032 is_bad = is_badblock(rdev, dev_sector,
1033 max_sectors,
1034 &first_bad, &bad_sectors);
1035 if (is_bad < 0) {
1036 /* Mustn't write here until the bad block
1037 * is acknowledged
1038 */
1039 atomic_inc(&rdev->nr_pending);
1040 set_bit(BlockedBadBlocks, &rdev->flags);
1041 blocked_rdev = rdev;
1042 break;
1043 }
1044 if (is_bad && first_bad <= dev_sector) {
1045 /* Cannot write here at all */
1046 bad_sectors -= (dev_sector - first_bad);
1047 if (bad_sectors < max_sectors)
1048 /* Mustn't write more than bad_sectors
1049 * to other devices yet
1050 */
1051 max_sectors = bad_sectors;
1052 /* We don't set R10BIO_Degraded as that
1053 * only applies if the disk is missing,
1054 * so it might be re-added, and we want to
1055 * know to recover this chunk.
1056 * In this case the device is here, and the
1057 * fact that this chunk is not in-sync is
1058 * recorded in the bad block log.
1059 */
1060 continue;
1061 }
1062 if (is_bad) {
1063 int good_sectors = first_bad - dev_sector;
1064 if (good_sectors < max_sectors)
1065 max_sectors = good_sectors;
1066 }
1067 }
1068 r10_bio->devs[i].bio = bio;
1069 atomic_inc(&rdev->nr_pending);
1070 }
1071 rcu_read_unlock();
1072
1073 if (unlikely(blocked_rdev)) {
1074 /* Have to wait for this device to get unblocked, then retry */
1075 int j;
1076 int d;
1077
1078 for (j = 0; j < i; j++)
1079 if (r10_bio->devs[j].bio) {
1080 d = r10_bio->devs[j].devnum;
1081 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1082 }
1083 allow_barrier(conf);
1084 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1085 wait_barrier(conf);
1086 goto retry_write;
1087 }
1088
1089 if (max_sectors < r10_bio->sectors) {
1090 /* We are splitting this into multiple parts, so
1091 * we need to prepare for allocating another r10_bio.
1092 */
1093 r10_bio->sectors = max_sectors;
1094 spin_lock_irq(&conf->device_lock);
1095 if (bio->bi_phys_segments == 0)
1096 bio->bi_phys_segments = 2;
1097 else
1098 bio->bi_phys_segments++;
1099 spin_unlock_irq(&conf->device_lock);
1100 }
1101 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1102
1103 atomic_set(&r10_bio->remaining, 1);
1104 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1105
1106 for (i = 0; i < conf->copies; i++) {
1107 struct bio *mbio;
1108 int d = r10_bio->devs[i].devnum;
1109 if (!r10_bio->devs[i].bio)
1110 continue;
1111
1112 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1113 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1114 max_sectors);
1115 r10_bio->devs[i].bio = mbio;
1116
1117 mbio->bi_sector = (r10_bio->devs[i].addr+
1118 conf->mirrors[d].rdev->data_offset);
1119 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1120 mbio->bi_end_io = raid10_end_write_request;
1121 mbio->bi_rw = WRITE | do_sync | do_fua;
1122 mbio->bi_private = r10_bio;
1123
1124 atomic_inc(&r10_bio->remaining);
1125 spin_lock_irqsave(&conf->device_lock, flags);
1126 bio_list_add(&conf->pending_bio_list, mbio);
1127 spin_unlock_irqrestore(&conf->device_lock, flags);
1128 }
1129
1130 if (atomic_dec_and_test(&r10_bio->remaining)) {
1131 /* This matches the end of raid10_end_write_request() */
1132 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1133 r10_bio->sectors,
1134 !test_bit(R10BIO_Degraded, &r10_bio->state),
1135 0);
1136 md_write_end(mddev);
1137 raid_end_bio_io(r10_bio);
1138 }
1139
1140 /* In case raid10d snuck in to freeze_array */
1141 wake_up(&conf->wait_barrier);
1142
1143 if (sectors_handled < (bio->bi_size >> 9)) {
1144 /* We need another r1_bio. It has already been counted
1145 * in bio->bi_phys_segments.
1146 */
1147 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1148
1149 r10_bio->master_bio = bio;
1150 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151
1152 r10_bio->mddev = mddev;
1153 r10_bio->sector = bio->bi_sector + sectors_handled;
1154 r10_bio->state = 0;
1155 goto retry_write;
1156 }
1157
1158 if (do_sync || !mddev->bitmap || !plugged)
1159 md_wakeup_thread(mddev->thread);
1160 return 0;
1161 }
1162
1163 static void status(struct seq_file *seq, mddev_t *mddev)
1164 {
1165 conf_t *conf = mddev->private;
1166 int i;
1167
1168 if (conf->near_copies < conf->raid_disks)
1169 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1170 if (conf->near_copies > 1)
1171 seq_printf(seq, " %d near-copies", conf->near_copies);
1172 if (conf->far_copies > 1) {
1173 if (conf->far_offset)
1174 seq_printf(seq, " %d offset-copies", conf->far_copies);
1175 else
1176 seq_printf(seq, " %d far-copies", conf->far_copies);
1177 }
1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179 conf->raid_disks - mddev->degraded);
1180 for (i = 0; i < conf->raid_disks; i++)
1181 seq_printf(seq, "%s",
1182 conf->mirrors[i].rdev &&
1183 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1184 seq_printf(seq, "]");
1185 }
1186
1187 /* check if there are enough drives for
1188 * every block to appear on atleast one.
1189 * Don't consider the device numbered 'ignore'
1190 * as we might be about to remove it.
1191 */
1192 static int enough(conf_t *conf, int ignore)
1193 {
1194 int first = 0;
1195
1196 do {
1197 int n = conf->copies;
1198 int cnt = 0;
1199 while (n--) {
1200 if (conf->mirrors[first].rdev &&
1201 first != ignore)
1202 cnt++;
1203 first = (first+1) % conf->raid_disks;
1204 }
1205 if (cnt == 0)
1206 return 0;
1207 } while (first != 0);
1208 return 1;
1209 }
1210
1211 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1212 {
1213 char b[BDEVNAME_SIZE];
1214 conf_t *conf = mddev->private;
1215
1216 /*
1217 * If it is not operational, then we have already marked it as dead
1218 * else if it is the last working disks, ignore the error, let the
1219 * next level up know.
1220 * else mark the drive as failed
1221 */
1222 if (test_bit(In_sync, &rdev->flags)
1223 && !enough(conf, rdev->raid_disk))
1224 /*
1225 * Don't fail the drive, just return an IO error.
1226 */
1227 return;
1228 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&conf->device_lock, flags);
1231 mddev->degraded++;
1232 spin_unlock_irqrestore(&conf->device_lock, flags);
1233 /*
1234 * if recovery is running, make sure it aborts.
1235 */
1236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1237 }
1238 set_bit(Blocked, &rdev->flags);
1239 set_bit(Faulty, &rdev->flags);
1240 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1241 printk(KERN_ALERT
1242 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1243 "md/raid10:%s: Operation continuing on %d devices.\n",
1244 mdname(mddev), bdevname(rdev->bdev, b),
1245 mdname(mddev), conf->raid_disks - mddev->degraded);
1246 }
1247
1248 static void print_conf(conf_t *conf)
1249 {
1250 int i;
1251 mirror_info_t *tmp;
1252
1253 printk(KERN_DEBUG "RAID10 conf printout:\n");
1254 if (!conf) {
1255 printk(KERN_DEBUG "(!conf)\n");
1256 return;
1257 }
1258 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1259 conf->raid_disks);
1260
1261 for (i = 0; i < conf->raid_disks; i++) {
1262 char b[BDEVNAME_SIZE];
1263 tmp = conf->mirrors + i;
1264 if (tmp->rdev)
1265 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1266 i, !test_bit(In_sync, &tmp->rdev->flags),
1267 !test_bit(Faulty, &tmp->rdev->flags),
1268 bdevname(tmp->rdev->bdev,b));
1269 }
1270 }
1271
1272 static void close_sync(conf_t *conf)
1273 {
1274 wait_barrier(conf);
1275 allow_barrier(conf);
1276
1277 mempool_destroy(conf->r10buf_pool);
1278 conf->r10buf_pool = NULL;
1279 }
1280
1281 static int raid10_spare_active(mddev_t *mddev)
1282 {
1283 int i;
1284 conf_t *conf = mddev->private;
1285 mirror_info_t *tmp;
1286 int count = 0;
1287 unsigned long flags;
1288
1289 /*
1290 * Find all non-in_sync disks within the RAID10 configuration
1291 * and mark them in_sync
1292 */
1293 for (i = 0; i < conf->raid_disks; i++) {
1294 tmp = conf->mirrors + i;
1295 if (tmp->rdev
1296 && !test_bit(Faulty, &tmp->rdev->flags)
1297 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1298 count++;
1299 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1300 }
1301 }
1302 spin_lock_irqsave(&conf->device_lock, flags);
1303 mddev->degraded -= count;
1304 spin_unlock_irqrestore(&conf->device_lock, flags);
1305
1306 print_conf(conf);
1307 return count;
1308 }
1309
1310
1311 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1312 {
1313 conf_t *conf = mddev->private;
1314 int err = -EEXIST;
1315 int mirror;
1316 int first = 0;
1317 int last = conf->raid_disks - 1;
1318
1319 if (mddev->recovery_cp < MaxSector)
1320 /* only hot-add to in-sync arrays, as recovery is
1321 * very different from resync
1322 */
1323 return -EBUSY;
1324 if (!enough(conf, -1))
1325 return -EINVAL;
1326
1327 if (rdev->raid_disk >= 0)
1328 first = last = rdev->raid_disk;
1329
1330 if (rdev->saved_raid_disk >= first &&
1331 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1332 mirror = rdev->saved_raid_disk;
1333 else
1334 mirror = first;
1335 for ( ; mirror <= last ; mirror++) {
1336 mirror_info_t *p = &conf->mirrors[mirror];
1337 if (p->recovery_disabled == mddev->recovery_disabled)
1338 continue;
1339 if (!p->rdev)
1340 continue;
1341
1342 disk_stack_limits(mddev->gendisk, rdev->bdev,
1343 rdev->data_offset << 9);
1344 /* as we don't honour merge_bvec_fn, we must
1345 * never risk violating it, so limit
1346 * ->max_segments to one lying with a single
1347 * page, as a one page request is never in
1348 * violation.
1349 */
1350 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1351 blk_queue_max_segments(mddev->queue, 1);
1352 blk_queue_segment_boundary(mddev->queue,
1353 PAGE_CACHE_SIZE - 1);
1354 }
1355
1356 p->head_position = 0;
1357 rdev->raid_disk = mirror;
1358 err = 0;
1359 if (rdev->saved_raid_disk != mirror)
1360 conf->fullsync = 1;
1361 rcu_assign_pointer(p->rdev, rdev);
1362 break;
1363 }
1364
1365 md_integrity_add_rdev(rdev, mddev);
1366 print_conf(conf);
1367 return err;
1368 }
1369
1370 static int raid10_remove_disk(mddev_t *mddev, int number)
1371 {
1372 conf_t *conf = mddev->private;
1373 int err = 0;
1374 mdk_rdev_t *rdev;
1375 mirror_info_t *p = conf->mirrors+ number;
1376
1377 print_conf(conf);
1378 rdev = p->rdev;
1379 if (rdev) {
1380 if (test_bit(In_sync, &rdev->flags) ||
1381 atomic_read(&rdev->nr_pending)) {
1382 err = -EBUSY;
1383 goto abort;
1384 }
1385 /* Only remove faulty devices in recovery
1386 * is not possible.
1387 */
1388 if (!test_bit(Faulty, &rdev->flags) &&
1389 mddev->recovery_disabled != p->recovery_disabled &&
1390 enough(conf, -1)) {
1391 err = -EBUSY;
1392 goto abort;
1393 }
1394 p->rdev = NULL;
1395 synchronize_rcu();
1396 if (atomic_read(&rdev->nr_pending)) {
1397 /* lost the race, try later */
1398 err = -EBUSY;
1399 p->rdev = rdev;
1400 goto abort;
1401 }
1402 err = md_integrity_register(mddev);
1403 }
1404 abort:
1405
1406 print_conf(conf);
1407 return err;
1408 }
1409
1410
1411 static void end_sync_read(struct bio *bio, int error)
1412 {
1413 r10bio_t *r10_bio = bio->bi_private;
1414 conf_t *conf = r10_bio->mddev->private;
1415 int d;
1416
1417 d = find_bio_disk(conf, r10_bio, bio, NULL);
1418
1419 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1420 set_bit(R10BIO_Uptodate, &r10_bio->state);
1421 else {
1422 atomic_add(r10_bio->sectors,
1423 &conf->mirrors[d].rdev->corrected_errors);
1424 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1425 md_error(r10_bio->mddev,
1426 conf->mirrors[d].rdev);
1427 }
1428
1429 /* for reconstruct, we always reschedule after a read.
1430 * for resync, only after all reads
1431 */
1432 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1433 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1434 atomic_dec_and_test(&r10_bio->remaining)) {
1435 /* we have read all the blocks,
1436 * do the comparison in process context in raid10d
1437 */
1438 reschedule_retry(r10_bio);
1439 }
1440 }
1441
1442 static void end_sync_write(struct bio *bio, int error)
1443 {
1444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1445 r10bio_t *r10_bio = bio->bi_private;
1446 mddev_t *mddev = r10_bio->mddev;
1447 conf_t *conf = mddev->private;
1448 int d;
1449 sector_t first_bad;
1450 int bad_sectors;
1451 int slot;
1452
1453 d = find_bio_disk(conf, r10_bio, bio, &slot);
1454
1455 if (!uptodate)
1456 md_error(mddev, conf->mirrors[d].rdev);
1457 else if (is_badblock(conf->mirrors[d].rdev,
1458 r10_bio->devs[slot].addr,
1459 r10_bio->sectors,
1460 &first_bad, &bad_sectors))
1461 set_bit(R10BIO_MadeGood, &r10_bio->state);
1462
1463 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1464 while (atomic_dec_and_test(&r10_bio->remaining)) {
1465 if (r10_bio->master_bio == NULL) {
1466 /* the primary of several recovery bios */
1467 sector_t s = r10_bio->sectors;
1468 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
1469 reschedule_retry(r10_bio);
1470 else
1471 put_buf(r10_bio);
1472 md_done_sync(mddev, s, 1);
1473 break;
1474 } else {
1475 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1476 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
1477 reschedule_retry(r10_bio);
1478 else
1479 put_buf(r10_bio);
1480 r10_bio = r10_bio2;
1481 }
1482 }
1483 }
1484
1485 /*
1486 * Note: sync and recover and handled very differently for raid10
1487 * This code is for resync.
1488 * For resync, we read through virtual addresses and read all blocks.
1489 * If there is any error, we schedule a write. The lowest numbered
1490 * drive is authoritative.
1491 * However requests come for physical address, so we need to map.
1492 * For every physical address there are raid_disks/copies virtual addresses,
1493 * which is always are least one, but is not necessarly an integer.
1494 * This means that a physical address can span multiple chunks, so we may
1495 * have to submit multiple io requests for a single sync request.
1496 */
1497 /*
1498 * We check if all blocks are in-sync and only write to blocks that
1499 * aren't in sync
1500 */
1501 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1502 {
1503 conf_t *conf = mddev->private;
1504 int i, first;
1505 struct bio *tbio, *fbio;
1506
1507 atomic_set(&r10_bio->remaining, 1);
1508
1509 /* find the first device with a block */
1510 for (i=0; i<conf->copies; i++)
1511 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1512 break;
1513
1514 if (i == conf->copies)
1515 goto done;
1516
1517 first = i;
1518 fbio = r10_bio->devs[i].bio;
1519
1520 /* now find blocks with errors */
1521 for (i=0 ; i < conf->copies ; i++) {
1522 int j, d;
1523 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1524
1525 tbio = r10_bio->devs[i].bio;
1526
1527 if (tbio->bi_end_io != end_sync_read)
1528 continue;
1529 if (i == first)
1530 continue;
1531 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1532 /* We know that the bi_io_vec layout is the same for
1533 * both 'first' and 'i', so we just compare them.
1534 * All vec entries are PAGE_SIZE;
1535 */
1536 for (j = 0; j < vcnt; j++)
1537 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1538 page_address(tbio->bi_io_vec[j].bv_page),
1539 PAGE_SIZE))
1540 break;
1541 if (j == vcnt)
1542 continue;
1543 mddev->resync_mismatches += r10_bio->sectors;
1544 }
1545 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1546 /* Don't fix anything. */
1547 continue;
1548 /* Ok, we need to write this bio
1549 * First we need to fixup bv_offset, bv_len and
1550 * bi_vecs, as the read request might have corrupted these
1551 */
1552 tbio->bi_vcnt = vcnt;
1553 tbio->bi_size = r10_bio->sectors << 9;
1554 tbio->bi_idx = 0;
1555 tbio->bi_phys_segments = 0;
1556 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1557 tbio->bi_flags |= 1 << BIO_UPTODATE;
1558 tbio->bi_next = NULL;
1559 tbio->bi_rw = WRITE;
1560 tbio->bi_private = r10_bio;
1561 tbio->bi_sector = r10_bio->devs[i].addr;
1562
1563 for (j=0; j < vcnt ; j++) {
1564 tbio->bi_io_vec[j].bv_offset = 0;
1565 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1566
1567 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1568 page_address(fbio->bi_io_vec[j].bv_page),
1569 PAGE_SIZE);
1570 }
1571 tbio->bi_end_io = end_sync_write;
1572
1573 d = r10_bio->devs[i].devnum;
1574 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1575 atomic_inc(&r10_bio->remaining);
1576 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1577
1578 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1579 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1580 generic_make_request(tbio);
1581 }
1582
1583 done:
1584 if (atomic_dec_and_test(&r10_bio->remaining)) {
1585 md_done_sync(mddev, r10_bio->sectors, 1);
1586 put_buf(r10_bio);
1587 }
1588 }
1589
1590 /*
1591 * Now for the recovery code.
1592 * Recovery happens across physical sectors.
1593 * We recover all non-is_sync drives by finding the virtual address of
1594 * each, and then choose a working drive that also has that virt address.
1595 * There is a separate r10_bio for each non-in_sync drive.
1596 * Only the first two slots are in use. The first for reading,
1597 * The second for writing.
1598 *
1599 */
1600
1601 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1602 {
1603 conf_t *conf = mddev->private;
1604 int d;
1605 struct bio *wbio;
1606
1607 /*
1608 * share the pages with the first bio
1609 * and submit the write request
1610 */
1611 wbio = r10_bio->devs[1].bio;
1612 d = r10_bio->devs[1].devnum;
1613
1614 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1615 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1616 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1617 generic_make_request(wbio);
1618 else {
1619 printk(KERN_NOTICE
1620 "md/raid10:%s: recovery aborted due to read error\n",
1621 mdname(mddev));
1622 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1623 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1624 bio_endio(wbio, 0);
1625 }
1626 }
1627
1628
1629 /*
1630 * Used by fix_read_error() to decay the per rdev read_errors.
1631 * We halve the read error count for every hour that has elapsed
1632 * since the last recorded read error.
1633 *
1634 */
1635 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1636 {
1637 struct timespec cur_time_mon;
1638 unsigned long hours_since_last;
1639 unsigned int read_errors = atomic_read(&rdev->read_errors);
1640
1641 ktime_get_ts(&cur_time_mon);
1642
1643 if (rdev->last_read_error.tv_sec == 0 &&
1644 rdev->last_read_error.tv_nsec == 0) {
1645 /* first time we've seen a read error */
1646 rdev->last_read_error = cur_time_mon;
1647 return;
1648 }
1649
1650 hours_since_last = (cur_time_mon.tv_sec -
1651 rdev->last_read_error.tv_sec) / 3600;
1652
1653 rdev->last_read_error = cur_time_mon;
1654
1655 /*
1656 * if hours_since_last is > the number of bits in read_errors
1657 * just set read errors to 0. We do this to avoid
1658 * overflowing the shift of read_errors by hours_since_last.
1659 */
1660 if (hours_since_last >= 8 * sizeof(read_errors))
1661 atomic_set(&rdev->read_errors, 0);
1662 else
1663 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1664 }
1665
1666 /*
1667 * This is a kernel thread which:
1668 *
1669 * 1. Retries failed read operations on working mirrors.
1670 * 2. Updates the raid superblock when problems encounter.
1671 * 3. Performs writes following reads for array synchronising.
1672 */
1673
1674 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1675 {
1676 int sect = 0; /* Offset from r10_bio->sector */
1677 int sectors = r10_bio->sectors;
1678 mdk_rdev_t*rdev;
1679 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1680 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1681
1682 /* still own a reference to this rdev, so it cannot
1683 * have been cleared recently.
1684 */
1685 rdev = conf->mirrors[d].rdev;
1686
1687 if (test_bit(Faulty, &rdev->flags))
1688 /* drive has already been failed, just ignore any
1689 more fix_read_error() attempts */
1690 return;
1691
1692 check_decay_read_errors(mddev, rdev);
1693 atomic_inc(&rdev->read_errors);
1694 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1695 char b[BDEVNAME_SIZE];
1696 bdevname(rdev->bdev, b);
1697
1698 printk(KERN_NOTICE
1699 "md/raid10:%s: %s: Raid device exceeded "
1700 "read_error threshold [cur %d:max %d]\n",
1701 mdname(mddev), b,
1702 atomic_read(&rdev->read_errors), max_read_errors);
1703 printk(KERN_NOTICE
1704 "md/raid10:%s: %s: Failing raid device\n",
1705 mdname(mddev), b);
1706 md_error(mddev, conf->mirrors[d].rdev);
1707 return;
1708 }
1709
1710 while(sectors) {
1711 int s = sectors;
1712 int sl = r10_bio->read_slot;
1713 int success = 0;
1714 int start;
1715
1716 if (s > (PAGE_SIZE>>9))
1717 s = PAGE_SIZE >> 9;
1718
1719 rcu_read_lock();
1720 do {
1721 sector_t first_bad;
1722 int bad_sectors;
1723
1724 d = r10_bio->devs[sl].devnum;
1725 rdev = rcu_dereference(conf->mirrors[d].rdev);
1726 if (rdev &&
1727 test_bit(In_sync, &rdev->flags) &&
1728 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1729 &first_bad, &bad_sectors) == 0) {
1730 atomic_inc(&rdev->nr_pending);
1731 rcu_read_unlock();
1732 success = sync_page_io(rdev,
1733 r10_bio->devs[sl].addr +
1734 sect,
1735 s<<9,
1736 conf->tmppage, READ, false);
1737 rdev_dec_pending(rdev, mddev);
1738 rcu_read_lock();
1739 if (success)
1740 break;
1741 }
1742 sl++;
1743 if (sl == conf->copies)
1744 sl = 0;
1745 } while (!success && sl != r10_bio->read_slot);
1746 rcu_read_unlock();
1747
1748 if (!success) {
1749 /* Cannot read from anywhere -- bye bye array */
1750 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1751 md_error(mddev, conf->mirrors[dn].rdev);
1752 break;
1753 }
1754
1755 start = sl;
1756 /* write it back and re-read */
1757 rcu_read_lock();
1758 while (sl != r10_bio->read_slot) {
1759 char b[BDEVNAME_SIZE];
1760
1761 if (sl==0)
1762 sl = conf->copies;
1763 sl--;
1764 d = r10_bio->devs[sl].devnum;
1765 rdev = rcu_dereference(conf->mirrors[d].rdev);
1766 if (!rdev ||
1767 !test_bit(In_sync, &rdev->flags))
1768 continue;
1769
1770 atomic_inc(&rdev->nr_pending);
1771 rcu_read_unlock();
1772 if (sync_page_io(rdev,
1773 r10_bio->devs[sl].addr +
1774 sect,
1775 s<<9, conf->tmppage, WRITE, false)
1776 == 0) {
1777 /* Well, this device is dead */
1778 printk(KERN_NOTICE
1779 "md/raid10:%s: read correction "
1780 "write failed"
1781 " (%d sectors at %llu on %s)\n",
1782 mdname(mddev), s,
1783 (unsigned long long)(
1784 sect + rdev->data_offset),
1785 bdevname(rdev->bdev, b));
1786 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1787 "drive\n",
1788 mdname(mddev),
1789 bdevname(rdev->bdev, b));
1790 md_error(mddev, rdev);
1791 }
1792 rdev_dec_pending(rdev, mddev);
1793 rcu_read_lock();
1794 }
1795 sl = start;
1796 while (sl != r10_bio->read_slot) {
1797 char b[BDEVNAME_SIZE];
1798
1799 if (sl==0)
1800 sl = conf->copies;
1801 sl--;
1802 d = r10_bio->devs[sl].devnum;
1803 rdev = rcu_dereference(conf->mirrors[d].rdev);
1804 if (!rdev ||
1805 !test_bit(In_sync, &rdev->flags))
1806 continue;
1807
1808 atomic_inc(&rdev->nr_pending);
1809 rcu_read_unlock();
1810 if (sync_page_io(rdev,
1811 r10_bio->devs[sl].addr +
1812 sect,
1813 s<<9, conf->tmppage,
1814 READ, false) == 0) {
1815 /* Well, this device is dead */
1816 printk(KERN_NOTICE
1817 "md/raid10:%s: unable to read back "
1818 "corrected sectors"
1819 " (%d sectors at %llu on %s)\n",
1820 mdname(mddev), s,
1821 (unsigned long long)(
1822 sect + rdev->data_offset),
1823 bdevname(rdev->bdev, b));
1824 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1825 "drive\n",
1826 mdname(mddev),
1827 bdevname(rdev->bdev, b));
1828
1829 md_error(mddev, rdev);
1830 } else {
1831 printk(KERN_INFO
1832 "md/raid10:%s: read error corrected"
1833 " (%d sectors at %llu on %s)\n",
1834 mdname(mddev), s,
1835 (unsigned long long)(
1836 sect + rdev->data_offset),
1837 bdevname(rdev->bdev, b));
1838 atomic_add(s, &rdev->corrected_errors);
1839 }
1840
1841 rdev_dec_pending(rdev, mddev);
1842 rcu_read_lock();
1843 }
1844 rcu_read_unlock();
1845
1846 sectors -= s;
1847 sect += s;
1848 }
1849 }
1850
1851 static void bi_complete(struct bio *bio, int error)
1852 {
1853 complete((struct completion *)bio->bi_private);
1854 }
1855
1856 static int submit_bio_wait(int rw, struct bio *bio)
1857 {
1858 struct completion event;
1859 rw |= REQ_SYNC;
1860
1861 init_completion(&event);
1862 bio->bi_private = &event;
1863 bio->bi_end_io = bi_complete;
1864 submit_bio(rw, bio);
1865 wait_for_completion(&event);
1866
1867 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1868 }
1869
1870 static int narrow_write_error(r10bio_t *r10_bio, int i)
1871 {
1872 struct bio *bio = r10_bio->master_bio;
1873 mddev_t *mddev = r10_bio->mddev;
1874 conf_t *conf = mddev->private;
1875 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1876 /* bio has the data to be written to slot 'i' where
1877 * we just recently had a write error.
1878 * We repeatedly clone the bio and trim down to one block,
1879 * then try the write. Where the write fails we record
1880 * a bad block.
1881 * It is conceivable that the bio doesn't exactly align with
1882 * blocks. We must handle this.
1883 *
1884 * We currently own a reference to the rdev.
1885 */
1886
1887 int block_sectors;
1888 sector_t sector;
1889 int sectors;
1890 int sect_to_write = r10_bio->sectors;
1891 int ok = 1;
1892
1893 if (rdev->badblocks.shift < 0)
1894 return 0;
1895
1896 block_sectors = 1 << rdev->badblocks.shift;
1897 sector = r10_bio->sector;
1898 sectors = ((r10_bio->sector + block_sectors)
1899 & ~(sector_t)(block_sectors - 1))
1900 - sector;
1901
1902 while (sect_to_write) {
1903 struct bio *wbio;
1904 if (sectors > sect_to_write)
1905 sectors = sect_to_write;
1906 /* Write at 'sector' for 'sectors' */
1907 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1908 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
1909 wbio->bi_sector = (r10_bio->devs[i].addr+
1910 rdev->data_offset+
1911 (sector - r10_bio->sector));
1912 wbio->bi_bdev = rdev->bdev;
1913 if (submit_bio_wait(WRITE, wbio) == 0)
1914 /* Failure! */
1915 ok = rdev_set_badblocks(rdev, sector,
1916 sectors, 0)
1917 && ok;
1918
1919 bio_put(wbio);
1920 sect_to_write -= sectors;
1921 sector += sectors;
1922 sectors = block_sectors;
1923 }
1924 return ok;
1925 }
1926
1927 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
1928 {
1929 int slot = r10_bio->read_slot;
1930 int mirror = r10_bio->devs[slot].devnum;
1931 struct bio *bio;
1932 conf_t *conf = mddev->private;
1933 mdk_rdev_t *rdev;
1934 char b[BDEVNAME_SIZE];
1935 unsigned long do_sync;
1936 int max_sectors;
1937
1938 /* we got a read error. Maybe the drive is bad. Maybe just
1939 * the block and we can fix it.
1940 * We freeze all other IO, and try reading the block from
1941 * other devices. When we find one, we re-write
1942 * and check it that fixes the read error.
1943 * This is all done synchronously while the array is
1944 * frozen.
1945 */
1946 if (mddev->ro == 0) {
1947 freeze_array(conf);
1948 fix_read_error(conf, mddev, r10_bio);
1949 unfreeze_array(conf);
1950 }
1951 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1952
1953 bio = r10_bio->devs[slot].bio;
1954 bdevname(bio->bi_bdev, b);
1955 r10_bio->devs[slot].bio =
1956 mddev->ro ? IO_BLOCKED : NULL;
1957 read_more:
1958 mirror = read_balance(conf, r10_bio, &max_sectors);
1959 if (mirror == -1) {
1960 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1961 " read error for block %llu\n",
1962 mdname(mddev), b,
1963 (unsigned long long)r10_bio->sector);
1964 raid_end_bio_io(r10_bio);
1965 bio_put(bio);
1966 return;
1967 }
1968
1969 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1970 if (bio)
1971 bio_put(bio);
1972 slot = r10_bio->read_slot;
1973 rdev = conf->mirrors[mirror].rdev;
1974 printk_ratelimited(
1975 KERN_ERR
1976 "md/raid10:%s: %s: redirecting"
1977 "sector %llu to another mirror\n",
1978 mdname(mddev),
1979 bdevname(rdev->bdev, b),
1980 (unsigned long long)r10_bio->sector);
1981 bio = bio_clone_mddev(r10_bio->master_bio,
1982 GFP_NOIO, mddev);
1983 md_trim_bio(bio,
1984 r10_bio->sector - bio->bi_sector,
1985 max_sectors);
1986 r10_bio->devs[slot].bio = bio;
1987 bio->bi_sector = r10_bio->devs[slot].addr
1988 + rdev->data_offset;
1989 bio->bi_bdev = rdev->bdev;
1990 bio->bi_rw = READ | do_sync;
1991 bio->bi_private = r10_bio;
1992 bio->bi_end_io = raid10_end_read_request;
1993 if (max_sectors < r10_bio->sectors) {
1994 /* Drat - have to split this up more */
1995 struct bio *mbio = r10_bio->master_bio;
1996 int sectors_handled =
1997 r10_bio->sector + max_sectors
1998 - mbio->bi_sector;
1999 r10_bio->sectors = max_sectors;
2000 spin_lock_irq(&conf->device_lock);
2001 if (mbio->bi_phys_segments == 0)
2002 mbio->bi_phys_segments = 2;
2003 else
2004 mbio->bi_phys_segments++;
2005 spin_unlock_irq(&conf->device_lock);
2006 generic_make_request(bio);
2007 bio = NULL;
2008
2009 r10_bio = mempool_alloc(conf->r10bio_pool,
2010 GFP_NOIO);
2011 r10_bio->master_bio = mbio;
2012 r10_bio->sectors = (mbio->bi_size >> 9)
2013 - sectors_handled;
2014 r10_bio->state = 0;
2015 set_bit(R10BIO_ReadError,
2016 &r10_bio->state);
2017 r10_bio->mddev = mddev;
2018 r10_bio->sector = mbio->bi_sector
2019 + sectors_handled;
2020
2021 goto read_more;
2022 } else
2023 generic_make_request(bio);
2024 }
2025
2026 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2027 {
2028 /* Some sort of write request has finished and it
2029 * succeeded in writing where we thought there was a
2030 * bad block. So forget the bad block.
2031 */
2032 int m;
2033 mdk_rdev_t *rdev;
2034
2035 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2036 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2037 for (m = 0; m < conf->copies; m++)
2038 if (r10_bio->devs[m].bio &&
2039 test_bit(BIO_UPTODATE,
2040 &r10_bio->devs[m].bio->bi_flags)) {
2041 int dev = r10_bio->devs[m].devnum;
2042 rdev = conf->mirrors[dev].rdev;
2043 rdev_clear_badblocks(
2044 rdev,
2045 r10_bio->devs[m].addr,
2046 r10_bio->sectors);
2047 }
2048 put_buf(r10_bio);
2049 } else {
2050 for (m = 0; m < conf->copies; m++) {
2051 int dev = r10_bio->devs[m].devnum;
2052 struct bio *bio = r10_bio->devs[m].bio;
2053 rdev = conf->mirrors[dev].rdev;
2054 if (bio == IO_MADE_GOOD) {
2055 rdev_clear_badblocks(
2056 rdev,
2057 r10_bio->devs[m].addr,
2058 r10_bio->sectors);
2059 rdev_dec_pending(rdev, conf->mddev);
2060 } else if (bio != NULL &&
2061 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2062 if (!narrow_write_error(r10_bio, m)) {
2063 md_error(conf->mddev, rdev);
2064 set_bit(R10BIO_Degraded,
2065 &r10_bio->state);
2066 }
2067 rdev_dec_pending(rdev, conf->mddev);
2068 }
2069 }
2070 if (test_bit(R10BIO_WriteError,
2071 &r10_bio->state))
2072 close_write(r10_bio);
2073 raid_end_bio_io(r10_bio);
2074 }
2075 }
2076
2077 static void raid10d(mddev_t *mddev)
2078 {
2079 r10bio_t *r10_bio;
2080 unsigned long flags;
2081 conf_t *conf = mddev->private;
2082 struct list_head *head = &conf->retry_list;
2083 struct blk_plug plug;
2084
2085 md_check_recovery(mddev);
2086
2087 blk_start_plug(&plug);
2088 for (;;) {
2089
2090 flush_pending_writes(conf);
2091
2092 spin_lock_irqsave(&conf->device_lock, flags);
2093 if (list_empty(head)) {
2094 spin_unlock_irqrestore(&conf->device_lock, flags);
2095 break;
2096 }
2097 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2098 list_del(head->prev);
2099 conf->nr_queued--;
2100 spin_unlock_irqrestore(&conf->device_lock, flags);
2101
2102 mddev = r10_bio->mddev;
2103 conf = mddev->private;
2104 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2105 test_bit(R10BIO_WriteError, &r10_bio->state))
2106 handle_write_completed(conf, r10_bio);
2107 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2108 sync_request_write(mddev, r10_bio);
2109 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2110 recovery_request_write(mddev, r10_bio);
2111 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2112 handle_read_error(mddev, r10_bio);
2113 else {
2114 /* just a partial read to be scheduled from a
2115 * separate context
2116 */
2117 int slot = r10_bio->read_slot;
2118 generic_make_request(r10_bio->devs[slot].bio);
2119 }
2120
2121 cond_resched();
2122 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2123 md_check_recovery(mddev);
2124 }
2125 blk_finish_plug(&plug);
2126 }
2127
2128
2129 static int init_resync(conf_t *conf)
2130 {
2131 int buffs;
2132
2133 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2134 BUG_ON(conf->r10buf_pool);
2135 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2136 if (!conf->r10buf_pool)
2137 return -ENOMEM;
2138 conf->next_resync = 0;
2139 return 0;
2140 }
2141
2142 /*
2143 * perform a "sync" on one "block"
2144 *
2145 * We need to make sure that no normal I/O request - particularly write
2146 * requests - conflict with active sync requests.
2147 *
2148 * This is achieved by tracking pending requests and a 'barrier' concept
2149 * that can be installed to exclude normal IO requests.
2150 *
2151 * Resync and recovery are handled very differently.
2152 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2153 *
2154 * For resync, we iterate over virtual addresses, read all copies,
2155 * and update if there are differences. If only one copy is live,
2156 * skip it.
2157 * For recovery, we iterate over physical addresses, read a good
2158 * value for each non-in_sync drive, and over-write.
2159 *
2160 * So, for recovery we may have several outstanding complex requests for a
2161 * given address, one for each out-of-sync device. We model this by allocating
2162 * a number of r10_bio structures, one for each out-of-sync device.
2163 * As we setup these structures, we collect all bio's together into a list
2164 * which we then process collectively to add pages, and then process again
2165 * to pass to generic_make_request.
2166 *
2167 * The r10_bio structures are linked using a borrowed master_bio pointer.
2168 * This link is counted in ->remaining. When the r10_bio that points to NULL
2169 * has its remaining count decremented to 0, the whole complex operation
2170 * is complete.
2171 *
2172 */
2173
2174 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2175 int *skipped, int go_faster)
2176 {
2177 conf_t *conf = mddev->private;
2178 r10bio_t *r10_bio;
2179 struct bio *biolist = NULL, *bio;
2180 sector_t max_sector, nr_sectors;
2181 int i;
2182 int max_sync;
2183 sector_t sync_blocks;
2184 sector_t sectors_skipped = 0;
2185 int chunks_skipped = 0;
2186
2187 if (!conf->r10buf_pool)
2188 if (init_resync(conf))
2189 return 0;
2190
2191 skipped:
2192 max_sector = mddev->dev_sectors;
2193 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2194 max_sector = mddev->resync_max_sectors;
2195 if (sector_nr >= max_sector) {
2196 /* If we aborted, we need to abort the
2197 * sync on the 'current' bitmap chucks (there can
2198 * be several when recovering multiple devices).
2199 * as we may have started syncing it but not finished.
2200 * We can find the current address in
2201 * mddev->curr_resync, but for recovery,
2202 * we need to convert that to several
2203 * virtual addresses.
2204 */
2205 if (mddev->curr_resync < max_sector) { /* aborted */
2206 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2207 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2208 &sync_blocks, 1);
2209 else for (i=0; i<conf->raid_disks; i++) {
2210 sector_t sect =
2211 raid10_find_virt(conf, mddev->curr_resync, i);
2212 bitmap_end_sync(mddev->bitmap, sect,
2213 &sync_blocks, 1);
2214 }
2215 } else /* completed sync */
2216 conf->fullsync = 0;
2217
2218 bitmap_close_sync(mddev->bitmap);
2219 close_sync(conf);
2220 *skipped = 1;
2221 return sectors_skipped;
2222 }
2223 if (chunks_skipped >= conf->raid_disks) {
2224 /* if there has been nothing to do on any drive,
2225 * then there is nothing to do at all..
2226 */
2227 *skipped = 1;
2228 return (max_sector - sector_nr) + sectors_skipped;
2229 }
2230
2231 if (max_sector > mddev->resync_max)
2232 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2233
2234 /* make sure whole request will fit in a chunk - if chunks
2235 * are meaningful
2236 */
2237 if (conf->near_copies < conf->raid_disks &&
2238 max_sector > (sector_nr | conf->chunk_mask))
2239 max_sector = (sector_nr | conf->chunk_mask) + 1;
2240 /*
2241 * If there is non-resync activity waiting for us then
2242 * put in a delay to throttle resync.
2243 */
2244 if (!go_faster && conf->nr_waiting)
2245 msleep_interruptible(1000);
2246
2247 /* Again, very different code for resync and recovery.
2248 * Both must result in an r10bio with a list of bios that
2249 * have bi_end_io, bi_sector, bi_bdev set,
2250 * and bi_private set to the r10bio.
2251 * For recovery, we may actually create several r10bios
2252 * with 2 bios in each, that correspond to the bios in the main one.
2253 * In this case, the subordinate r10bios link back through a
2254 * borrowed master_bio pointer, and the counter in the master
2255 * includes a ref from each subordinate.
2256 */
2257 /* First, we decide what to do and set ->bi_end_io
2258 * To end_sync_read if we want to read, and
2259 * end_sync_write if we will want to write.
2260 */
2261
2262 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2263 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2264 /* recovery... the complicated one */
2265 int j;
2266 r10_bio = NULL;
2267
2268 for (i=0 ; i<conf->raid_disks; i++) {
2269 int still_degraded;
2270 r10bio_t *rb2;
2271 sector_t sect;
2272 int must_sync;
2273 int any_working;
2274
2275 if (conf->mirrors[i].rdev == NULL ||
2276 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2277 continue;
2278
2279 still_degraded = 0;
2280 /* want to reconstruct this device */
2281 rb2 = r10_bio;
2282 sect = raid10_find_virt(conf, sector_nr, i);
2283 /* Unless we are doing a full sync, we only need
2284 * to recover the block if it is set in the bitmap
2285 */
2286 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2287 &sync_blocks, 1);
2288 if (sync_blocks < max_sync)
2289 max_sync = sync_blocks;
2290 if (!must_sync &&
2291 !conf->fullsync) {
2292 /* yep, skip the sync_blocks here, but don't assume
2293 * that there will never be anything to do here
2294 */
2295 chunks_skipped = -1;
2296 continue;
2297 }
2298
2299 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2300 raise_barrier(conf, rb2 != NULL);
2301 atomic_set(&r10_bio->remaining, 0);
2302
2303 r10_bio->master_bio = (struct bio*)rb2;
2304 if (rb2)
2305 atomic_inc(&rb2->remaining);
2306 r10_bio->mddev = mddev;
2307 set_bit(R10BIO_IsRecover, &r10_bio->state);
2308 r10_bio->sector = sect;
2309
2310 raid10_find_phys(conf, r10_bio);
2311
2312 /* Need to check if the array will still be
2313 * degraded
2314 */
2315 for (j=0; j<conf->raid_disks; j++)
2316 if (conf->mirrors[j].rdev == NULL ||
2317 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2318 still_degraded = 1;
2319 break;
2320 }
2321
2322 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2323 &sync_blocks, still_degraded);
2324
2325 any_working = 0;
2326 for (j=0; j<conf->copies;j++) {
2327 int k;
2328 int d = r10_bio->devs[j].devnum;
2329 mdk_rdev_t *rdev;
2330 sector_t sector, first_bad;
2331 int bad_sectors;
2332 if (!conf->mirrors[d].rdev ||
2333 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2334 continue;
2335 /* This is where we read from */
2336 any_working = 1;
2337 rdev = conf->mirrors[d].rdev;
2338 sector = r10_bio->devs[j].addr;
2339
2340 if (is_badblock(rdev, sector, max_sync,
2341 &first_bad, &bad_sectors)) {
2342 if (first_bad > sector)
2343 max_sync = first_bad - sector;
2344 else {
2345 bad_sectors -= (sector
2346 - first_bad);
2347 if (max_sync > bad_sectors)
2348 max_sync = bad_sectors;
2349 continue;
2350 }
2351 }
2352 bio = r10_bio->devs[0].bio;
2353 bio->bi_next = biolist;
2354 biolist = bio;
2355 bio->bi_private = r10_bio;
2356 bio->bi_end_io = end_sync_read;
2357 bio->bi_rw = READ;
2358 bio->bi_sector = r10_bio->devs[j].addr +
2359 conf->mirrors[d].rdev->data_offset;
2360 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2361 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2362 atomic_inc(&r10_bio->remaining);
2363 /* and we write to 'i' */
2364
2365 for (k=0; k<conf->copies; k++)
2366 if (r10_bio->devs[k].devnum == i)
2367 break;
2368 BUG_ON(k == conf->copies);
2369 bio = r10_bio->devs[1].bio;
2370 bio->bi_next = biolist;
2371 biolist = bio;
2372 bio->bi_private = r10_bio;
2373 bio->bi_end_io = end_sync_write;
2374 bio->bi_rw = WRITE;
2375 bio->bi_sector = r10_bio->devs[k].addr +
2376 conf->mirrors[i].rdev->data_offset;
2377 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2378
2379 r10_bio->devs[0].devnum = d;
2380 r10_bio->devs[1].devnum = i;
2381
2382 break;
2383 }
2384 if (j == conf->copies) {
2385 /* Cannot recover, so abort the recovery or
2386 * record a bad block */
2387 put_buf(r10_bio);
2388 if (rb2)
2389 atomic_dec(&rb2->remaining);
2390 r10_bio = rb2;
2391 if (any_working) {
2392 /* problem is that there are bad blocks
2393 * on other device(s)
2394 */
2395 int k;
2396 for (k = 0; k < conf->copies; k++)
2397 if (r10_bio->devs[k].devnum == i)
2398 break;
2399 if (!rdev_set_badblocks(
2400 conf->mirrors[i].rdev,
2401 r10_bio->devs[k].addr,
2402 max_sync, 0))
2403 any_working = 0;
2404 }
2405 if (!any_working) {
2406 if (!test_and_set_bit(MD_RECOVERY_INTR,
2407 &mddev->recovery))
2408 printk(KERN_INFO "md/raid10:%s: insufficient "
2409 "working devices for recovery.\n",
2410 mdname(mddev));
2411 conf->mirrors[i].recovery_disabled
2412 = mddev->recovery_disabled;
2413 }
2414 break;
2415 }
2416 }
2417 if (biolist == NULL) {
2418 while (r10_bio) {
2419 r10bio_t *rb2 = r10_bio;
2420 r10_bio = (r10bio_t*) rb2->master_bio;
2421 rb2->master_bio = NULL;
2422 put_buf(rb2);
2423 }
2424 goto giveup;
2425 }
2426 } else {
2427 /* resync. Schedule a read for every block at this virt offset */
2428 int count = 0;
2429
2430 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2431
2432 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2433 &sync_blocks, mddev->degraded) &&
2434 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2435 &mddev->recovery)) {
2436 /* We can skip this block */
2437 *skipped = 1;
2438 return sync_blocks + sectors_skipped;
2439 }
2440 if (sync_blocks < max_sync)
2441 max_sync = sync_blocks;
2442 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2443
2444 r10_bio->mddev = mddev;
2445 atomic_set(&r10_bio->remaining, 0);
2446 raise_barrier(conf, 0);
2447 conf->next_resync = sector_nr;
2448
2449 r10_bio->master_bio = NULL;
2450 r10_bio->sector = sector_nr;
2451 set_bit(R10BIO_IsSync, &r10_bio->state);
2452 raid10_find_phys(conf, r10_bio);
2453 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2454
2455 for (i=0; i<conf->copies; i++) {
2456 int d = r10_bio->devs[i].devnum;
2457 sector_t first_bad, sector;
2458 int bad_sectors;
2459
2460 bio = r10_bio->devs[i].bio;
2461 bio->bi_end_io = NULL;
2462 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2463 if (conf->mirrors[d].rdev == NULL ||
2464 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2465 continue;
2466 sector = r10_bio->devs[i].addr;
2467 if (is_badblock(conf->mirrors[d].rdev,
2468 sector, max_sync,
2469 &first_bad, &bad_sectors)) {
2470 if (first_bad > sector)
2471 max_sync = first_bad - sector;
2472 else {
2473 bad_sectors -= (sector - first_bad);
2474 if (max_sync > bad_sectors)
2475 max_sync = max_sync;
2476 continue;
2477 }
2478 }
2479 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2480 atomic_inc(&r10_bio->remaining);
2481 bio->bi_next = biolist;
2482 biolist = bio;
2483 bio->bi_private = r10_bio;
2484 bio->bi_end_io = end_sync_read;
2485 bio->bi_rw = READ;
2486 bio->bi_sector = sector +
2487 conf->mirrors[d].rdev->data_offset;
2488 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2489 count++;
2490 }
2491
2492 if (count < 2) {
2493 for (i=0; i<conf->copies; i++) {
2494 int d = r10_bio->devs[i].devnum;
2495 if (r10_bio->devs[i].bio->bi_end_io)
2496 rdev_dec_pending(conf->mirrors[d].rdev,
2497 mddev);
2498 }
2499 put_buf(r10_bio);
2500 biolist = NULL;
2501 goto giveup;
2502 }
2503 }
2504
2505 for (bio = biolist; bio ; bio=bio->bi_next) {
2506
2507 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2508 if (bio->bi_end_io)
2509 bio->bi_flags |= 1 << BIO_UPTODATE;
2510 bio->bi_vcnt = 0;
2511 bio->bi_idx = 0;
2512 bio->bi_phys_segments = 0;
2513 bio->bi_size = 0;
2514 }
2515
2516 nr_sectors = 0;
2517 if (sector_nr + max_sync < max_sector)
2518 max_sector = sector_nr + max_sync;
2519 do {
2520 struct page *page;
2521 int len = PAGE_SIZE;
2522 if (sector_nr + (len>>9) > max_sector)
2523 len = (max_sector - sector_nr) << 9;
2524 if (len == 0)
2525 break;
2526 for (bio= biolist ; bio ; bio=bio->bi_next) {
2527 struct bio *bio2;
2528 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2529 if (bio_add_page(bio, page, len, 0))
2530 continue;
2531
2532 /* stop here */
2533 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2534 for (bio2 = biolist;
2535 bio2 && bio2 != bio;
2536 bio2 = bio2->bi_next) {
2537 /* remove last page from this bio */
2538 bio2->bi_vcnt--;
2539 bio2->bi_size -= len;
2540 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2541 }
2542 goto bio_full;
2543 }
2544 nr_sectors += len>>9;
2545 sector_nr += len>>9;
2546 } while (biolist->bi_vcnt < RESYNC_PAGES);
2547 bio_full:
2548 r10_bio->sectors = nr_sectors;
2549
2550 while (biolist) {
2551 bio = biolist;
2552 biolist = biolist->bi_next;
2553
2554 bio->bi_next = NULL;
2555 r10_bio = bio->bi_private;
2556 r10_bio->sectors = nr_sectors;
2557
2558 if (bio->bi_end_io == end_sync_read) {
2559 md_sync_acct(bio->bi_bdev, nr_sectors);
2560 generic_make_request(bio);
2561 }
2562 }
2563
2564 if (sectors_skipped)
2565 /* pretend they weren't skipped, it makes
2566 * no important difference in this case
2567 */
2568 md_done_sync(mddev, sectors_skipped, 1);
2569
2570 return sectors_skipped + nr_sectors;
2571 giveup:
2572 /* There is nowhere to write, so all non-sync
2573 * drives must be failed or in resync, all drives
2574 * have a bad block, so try the next chunk...
2575 */
2576 if (sector_nr + max_sync < max_sector)
2577 max_sector = sector_nr + max_sync;
2578
2579 sectors_skipped += (max_sector - sector_nr);
2580 chunks_skipped ++;
2581 sector_nr = max_sector;
2582 goto skipped;
2583 }
2584
2585 static sector_t
2586 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2587 {
2588 sector_t size;
2589 conf_t *conf = mddev->private;
2590
2591 if (!raid_disks)
2592 raid_disks = conf->raid_disks;
2593 if (!sectors)
2594 sectors = conf->dev_sectors;
2595
2596 size = sectors >> conf->chunk_shift;
2597 sector_div(size, conf->far_copies);
2598 size = size * raid_disks;
2599 sector_div(size, conf->near_copies);
2600
2601 return size << conf->chunk_shift;
2602 }
2603
2604
2605 static conf_t *setup_conf(mddev_t *mddev)
2606 {
2607 conf_t *conf = NULL;
2608 int nc, fc, fo;
2609 sector_t stride, size;
2610 int err = -EINVAL;
2611
2612 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2613 !is_power_of_2(mddev->new_chunk_sectors)) {
2614 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2615 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2616 mdname(mddev), PAGE_SIZE);
2617 goto out;
2618 }
2619
2620 nc = mddev->new_layout & 255;
2621 fc = (mddev->new_layout >> 8) & 255;
2622 fo = mddev->new_layout & (1<<16);
2623
2624 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2625 (mddev->new_layout >> 17)) {
2626 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2627 mdname(mddev), mddev->new_layout);
2628 goto out;
2629 }
2630
2631 err = -ENOMEM;
2632 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2633 if (!conf)
2634 goto out;
2635
2636 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2637 GFP_KERNEL);
2638 if (!conf->mirrors)
2639 goto out;
2640
2641 conf->tmppage = alloc_page(GFP_KERNEL);
2642 if (!conf->tmppage)
2643 goto out;
2644
2645
2646 conf->raid_disks = mddev->raid_disks;
2647 conf->near_copies = nc;
2648 conf->far_copies = fc;
2649 conf->copies = nc*fc;
2650 conf->far_offset = fo;
2651 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2652 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2653
2654 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2655 r10bio_pool_free, conf);
2656 if (!conf->r10bio_pool)
2657 goto out;
2658
2659 size = mddev->dev_sectors >> conf->chunk_shift;
2660 sector_div(size, fc);
2661 size = size * conf->raid_disks;
2662 sector_div(size, nc);
2663 /* 'size' is now the number of chunks in the array */
2664 /* calculate "used chunks per device" in 'stride' */
2665 stride = size * conf->copies;
2666
2667 /* We need to round up when dividing by raid_disks to
2668 * get the stride size.
2669 */
2670 stride += conf->raid_disks - 1;
2671 sector_div(stride, conf->raid_disks);
2672
2673 conf->dev_sectors = stride << conf->chunk_shift;
2674
2675 if (fo)
2676 stride = 1;
2677 else
2678 sector_div(stride, fc);
2679 conf->stride = stride << conf->chunk_shift;
2680
2681
2682 spin_lock_init(&conf->device_lock);
2683 INIT_LIST_HEAD(&conf->retry_list);
2684
2685 spin_lock_init(&conf->resync_lock);
2686 init_waitqueue_head(&conf->wait_barrier);
2687
2688 conf->thread = md_register_thread(raid10d, mddev, NULL);
2689 if (!conf->thread)
2690 goto out;
2691
2692 conf->mddev = mddev;
2693 return conf;
2694
2695 out:
2696 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2697 mdname(mddev));
2698 if (conf) {
2699 if (conf->r10bio_pool)
2700 mempool_destroy(conf->r10bio_pool);
2701 kfree(conf->mirrors);
2702 safe_put_page(conf->tmppage);
2703 kfree(conf);
2704 }
2705 return ERR_PTR(err);
2706 }
2707
2708 static int run(mddev_t *mddev)
2709 {
2710 conf_t *conf;
2711 int i, disk_idx, chunk_size;
2712 mirror_info_t *disk;
2713 mdk_rdev_t *rdev;
2714 sector_t size;
2715
2716 /*
2717 * copy the already verified devices into our private RAID10
2718 * bookkeeping area. [whatever we allocate in run(),
2719 * should be freed in stop()]
2720 */
2721
2722 if (mddev->private == NULL) {
2723 conf = setup_conf(mddev);
2724 if (IS_ERR(conf))
2725 return PTR_ERR(conf);
2726 mddev->private = conf;
2727 }
2728 conf = mddev->private;
2729 if (!conf)
2730 goto out;
2731
2732 mddev->thread = conf->thread;
2733 conf->thread = NULL;
2734
2735 chunk_size = mddev->chunk_sectors << 9;
2736 blk_queue_io_min(mddev->queue, chunk_size);
2737 if (conf->raid_disks % conf->near_copies)
2738 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2739 else
2740 blk_queue_io_opt(mddev->queue, chunk_size *
2741 (conf->raid_disks / conf->near_copies));
2742
2743 list_for_each_entry(rdev, &mddev->disks, same_set) {
2744
2745 disk_idx = rdev->raid_disk;
2746 if (disk_idx >= conf->raid_disks
2747 || disk_idx < 0)
2748 continue;
2749 disk = conf->mirrors + disk_idx;
2750
2751 disk->rdev = rdev;
2752 disk_stack_limits(mddev->gendisk, rdev->bdev,
2753 rdev->data_offset << 9);
2754 /* as we don't honour merge_bvec_fn, we must never risk
2755 * violating it, so limit max_segments to 1 lying
2756 * within a single page.
2757 */
2758 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2759 blk_queue_max_segments(mddev->queue, 1);
2760 blk_queue_segment_boundary(mddev->queue,
2761 PAGE_CACHE_SIZE - 1);
2762 }
2763
2764 disk->head_position = 0;
2765 }
2766 /* need to check that every block has at least one working mirror */
2767 if (!enough(conf, -1)) {
2768 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2769 mdname(mddev));
2770 goto out_free_conf;
2771 }
2772
2773 mddev->degraded = 0;
2774 for (i = 0; i < conf->raid_disks; i++) {
2775
2776 disk = conf->mirrors + i;
2777
2778 if (!disk->rdev ||
2779 !test_bit(In_sync, &disk->rdev->flags)) {
2780 disk->head_position = 0;
2781 mddev->degraded++;
2782 if (disk->rdev)
2783 conf->fullsync = 1;
2784 }
2785 }
2786
2787 if (mddev->recovery_cp != MaxSector)
2788 printk(KERN_NOTICE "md/raid10:%s: not clean"
2789 " -- starting background reconstruction\n",
2790 mdname(mddev));
2791 printk(KERN_INFO
2792 "md/raid10:%s: active with %d out of %d devices\n",
2793 mdname(mddev), conf->raid_disks - mddev->degraded,
2794 conf->raid_disks);
2795 /*
2796 * Ok, everything is just fine now
2797 */
2798 mddev->dev_sectors = conf->dev_sectors;
2799 size = raid10_size(mddev, 0, 0);
2800 md_set_array_sectors(mddev, size);
2801 mddev->resync_max_sectors = size;
2802
2803 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2804 mddev->queue->backing_dev_info.congested_data = mddev;
2805
2806 /* Calculate max read-ahead size.
2807 * We need to readahead at least twice a whole stripe....
2808 * maybe...
2809 */
2810 {
2811 int stripe = conf->raid_disks *
2812 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2813 stripe /= conf->near_copies;
2814 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2815 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2816 }
2817
2818 if (conf->near_copies < conf->raid_disks)
2819 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2820
2821 if (md_integrity_register(mddev))
2822 goto out_free_conf;
2823
2824 return 0;
2825
2826 out_free_conf:
2827 md_unregister_thread(mddev->thread);
2828 if (conf->r10bio_pool)
2829 mempool_destroy(conf->r10bio_pool);
2830 safe_put_page(conf->tmppage);
2831 kfree(conf->mirrors);
2832 kfree(conf);
2833 mddev->private = NULL;
2834 out:
2835 return -EIO;
2836 }
2837
2838 static int stop(mddev_t *mddev)
2839 {
2840 conf_t *conf = mddev->private;
2841
2842 raise_barrier(conf, 0);
2843 lower_barrier(conf);
2844
2845 md_unregister_thread(mddev->thread);
2846 mddev->thread = NULL;
2847 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2848 if (conf->r10bio_pool)
2849 mempool_destroy(conf->r10bio_pool);
2850 kfree(conf->mirrors);
2851 kfree(conf);
2852 mddev->private = NULL;
2853 return 0;
2854 }
2855
2856 static void raid10_quiesce(mddev_t *mddev, int state)
2857 {
2858 conf_t *conf = mddev->private;
2859
2860 switch(state) {
2861 case 1:
2862 raise_barrier(conf, 0);
2863 break;
2864 case 0:
2865 lower_barrier(conf);
2866 break;
2867 }
2868 }
2869
2870 static void *raid10_takeover_raid0(mddev_t *mddev)
2871 {
2872 mdk_rdev_t *rdev;
2873 conf_t *conf;
2874
2875 if (mddev->degraded > 0) {
2876 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2877 mdname(mddev));
2878 return ERR_PTR(-EINVAL);
2879 }
2880
2881 /* Set new parameters */
2882 mddev->new_level = 10;
2883 /* new layout: far_copies = 1, near_copies = 2 */
2884 mddev->new_layout = (1<<8) + 2;
2885 mddev->new_chunk_sectors = mddev->chunk_sectors;
2886 mddev->delta_disks = mddev->raid_disks;
2887 mddev->raid_disks *= 2;
2888 /* make sure it will be not marked as dirty */
2889 mddev->recovery_cp = MaxSector;
2890
2891 conf = setup_conf(mddev);
2892 if (!IS_ERR(conf)) {
2893 list_for_each_entry(rdev, &mddev->disks, same_set)
2894 if (rdev->raid_disk >= 0)
2895 rdev->new_raid_disk = rdev->raid_disk * 2;
2896 conf->barrier = 1;
2897 }
2898
2899 return conf;
2900 }
2901
2902 static void *raid10_takeover(mddev_t *mddev)
2903 {
2904 struct raid0_private_data *raid0_priv;
2905
2906 /* raid10 can take over:
2907 * raid0 - providing it has only two drives
2908 */
2909 if (mddev->level == 0) {
2910 /* for raid0 takeover only one zone is supported */
2911 raid0_priv = mddev->private;
2912 if (raid0_priv->nr_strip_zones > 1) {
2913 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2914 " with more than one zone.\n",
2915 mdname(mddev));
2916 return ERR_PTR(-EINVAL);
2917 }
2918 return raid10_takeover_raid0(mddev);
2919 }
2920 return ERR_PTR(-EINVAL);
2921 }
2922
2923 static struct mdk_personality raid10_personality =
2924 {
2925 .name = "raid10",
2926 .level = 10,
2927 .owner = THIS_MODULE,
2928 .make_request = make_request,
2929 .run = run,
2930 .stop = stop,
2931 .status = status,
2932 .error_handler = error,
2933 .hot_add_disk = raid10_add_disk,
2934 .hot_remove_disk= raid10_remove_disk,
2935 .spare_active = raid10_spare_active,
2936 .sync_request = sync_request,
2937 .quiesce = raid10_quiesce,
2938 .size = raid10_size,
2939 .takeover = raid10_takeover,
2940 };
2941
2942 static int __init raid_init(void)
2943 {
2944 return register_md_personality(&raid10_personality);
2945 }
2946
2947 static void raid_exit(void)
2948 {
2949 unregister_md_personality(&raid10_personality);
2950 }
2951
2952 module_init(raid_init);
2953 module_exit(raid_exit);
2954 MODULE_LICENSE("GPL");
2955 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2956 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2957 MODULE_ALIAS("md-raid10");
2958 MODULE_ALIAS("md-level-10");