]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid5-cache.c
block/fs/drivers: remove rw argument from submit_bio
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5-cache.c
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28 #define BLOCK_SECTORS (8)
29
30 /*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 /*
38 * We only need 2 bios per I/O unit to make progress, but ensure we
39 * have a few more available to not get too tight.
40 */
41 #define R5L_POOL_SIZE 4
42
43 struct r5l_log {
44 struct md_rdev *rdev;
45
46 u32 uuid_checksum;
47
48 sector_t device_size; /* log device size, round to
49 * BLOCK_SECTORS */
50 sector_t max_free_space; /* reclaim run if free space is at
51 * this size */
52
53 sector_t last_checkpoint; /* log tail. where recovery scan
54 * starts from */
55 u64 last_cp_seq; /* log tail sequence */
56
57 sector_t log_start; /* log head. where new data appends */
58 u64 seq; /* log head sequence */
59
60 sector_t next_checkpoint;
61 u64 next_cp_seq;
62
63 struct mutex io_mutex;
64 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
65
66 spinlock_t io_list_lock;
67 struct list_head running_ios; /* io_units which are still running,
68 * and have not yet been completely
69 * written to the log */
70 struct list_head io_end_ios; /* io_units which have been completely
71 * written to the log but not yet written
72 * to the RAID */
73 struct list_head flushing_ios; /* io_units which are waiting for log
74 * cache flush */
75 struct list_head finished_ios; /* io_units which settle down in log disk */
76 struct bio flush_bio;
77
78 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
79
80 struct kmem_cache *io_kc;
81 mempool_t *io_pool;
82 struct bio_set *bs;
83 mempool_t *meta_pool;
84
85 struct md_thread *reclaim_thread;
86 unsigned long reclaim_target; /* number of space that need to be
87 * reclaimed. if it's 0, reclaim spaces
88 * used by io_units which are in
89 * IO_UNIT_STRIPE_END state (eg, reclaim
90 * dones't wait for specific io_unit
91 * switching to IO_UNIT_STRIPE_END
92 * state) */
93 wait_queue_head_t iounit_wait;
94
95 struct list_head no_space_stripes; /* pending stripes, log has no space */
96 spinlock_t no_space_stripes_lock;
97
98 bool need_cache_flush;
99 bool in_teardown;
100 };
101
102 /*
103 * an IO range starts from a meta data block and end at the next meta data
104 * block. The io unit's the meta data block tracks data/parity followed it. io
105 * unit is written to log disk with normal write, as we always flush log disk
106 * first and then start move data to raid disks, there is no requirement to
107 * write io unit with FLUSH/FUA
108 */
109 struct r5l_io_unit {
110 struct r5l_log *log;
111
112 struct page *meta_page; /* store meta block */
113 int meta_offset; /* current offset in meta_page */
114
115 struct bio *current_bio;/* current_bio accepting new data */
116
117 atomic_t pending_stripe;/* how many stripes not flushed to raid */
118 u64 seq; /* seq number of the metablock */
119 sector_t log_start; /* where the io_unit starts */
120 sector_t log_end; /* where the io_unit ends */
121 struct list_head log_sibling; /* log->running_ios */
122 struct list_head stripe_list; /* stripes added to the io_unit */
123
124 int state;
125 bool need_split_bio;
126 };
127
128 /* r5l_io_unit state */
129 enum r5l_io_unit_state {
130 IO_UNIT_RUNNING = 0, /* accepting new IO */
131 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
132 * don't accepting new bio */
133 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
134 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
135 };
136
137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138 {
139 start += inc;
140 if (start >= log->device_size)
141 start = start - log->device_size;
142 return start;
143 }
144
145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
146 sector_t end)
147 {
148 if (end >= start)
149 return end - start;
150 else
151 return end + log->device_size - start;
152 }
153
154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155 {
156 sector_t used_size;
157
158 used_size = r5l_ring_distance(log, log->last_checkpoint,
159 log->log_start);
160
161 return log->device_size > used_size + size;
162 }
163
164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
165 enum r5l_io_unit_state state)
166 {
167 if (WARN_ON(io->state >= state))
168 return;
169 io->state = state;
170 }
171
172 static void r5l_io_run_stripes(struct r5l_io_unit *io)
173 {
174 struct stripe_head *sh, *next;
175
176 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
177 list_del_init(&sh->log_list);
178 set_bit(STRIPE_HANDLE, &sh->state);
179 raid5_release_stripe(sh);
180 }
181 }
182
183 static void r5l_log_run_stripes(struct r5l_log *log)
184 {
185 struct r5l_io_unit *io, *next;
186
187 assert_spin_locked(&log->io_list_lock);
188
189 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
190 /* don't change list order */
191 if (io->state < IO_UNIT_IO_END)
192 break;
193
194 list_move_tail(&io->log_sibling, &log->finished_ios);
195 r5l_io_run_stripes(io);
196 }
197 }
198
199 static void r5l_move_to_end_ios(struct r5l_log *log)
200 {
201 struct r5l_io_unit *io, *next;
202
203 assert_spin_locked(&log->io_list_lock);
204
205 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
206 /* don't change list order */
207 if (io->state < IO_UNIT_IO_END)
208 break;
209 list_move_tail(&io->log_sibling, &log->io_end_ios);
210 }
211 }
212
213 static void r5l_log_endio(struct bio *bio)
214 {
215 struct r5l_io_unit *io = bio->bi_private;
216 struct r5l_log *log = io->log;
217 unsigned long flags;
218
219 if (bio->bi_error)
220 md_error(log->rdev->mddev, log->rdev);
221
222 bio_put(bio);
223 mempool_free(io->meta_page, log->meta_pool);
224
225 spin_lock_irqsave(&log->io_list_lock, flags);
226 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
227 if (log->need_cache_flush)
228 r5l_move_to_end_ios(log);
229 else
230 r5l_log_run_stripes(log);
231 spin_unlock_irqrestore(&log->io_list_lock, flags);
232
233 if (log->need_cache_flush)
234 md_wakeup_thread(log->rdev->mddev->thread);
235 }
236
237 static void r5l_submit_current_io(struct r5l_log *log)
238 {
239 struct r5l_io_unit *io = log->current_io;
240 struct r5l_meta_block *block;
241 unsigned long flags;
242 u32 crc;
243
244 if (!io)
245 return;
246
247 block = page_address(io->meta_page);
248 block->meta_size = cpu_to_le32(io->meta_offset);
249 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
250 block->checksum = cpu_to_le32(crc);
251
252 log->current_io = NULL;
253 spin_lock_irqsave(&log->io_list_lock, flags);
254 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
255 spin_unlock_irqrestore(&log->io_list_lock, flags);
256
257 submit_bio(io->current_bio);
258 }
259
260 static struct bio *r5l_bio_alloc(struct r5l_log *log)
261 {
262 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
263
264 bio->bi_rw = WRITE;
265 bio->bi_bdev = log->rdev->bdev;
266 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
267
268 return bio;
269 }
270
271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272 {
273 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
274
275 /*
276 * If we filled up the log device start from the beginning again,
277 * which will require a new bio.
278 *
279 * Note: for this to work properly the log size needs to me a multiple
280 * of BLOCK_SECTORS.
281 */
282 if (log->log_start == 0)
283 io->need_split_bio = true;
284
285 io->log_end = log->log_start;
286 }
287
288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289 {
290 struct r5l_io_unit *io;
291 struct r5l_meta_block *block;
292
293 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
294 if (!io)
295 return NULL;
296 memset(io, 0, sizeof(*io));
297
298 io->log = log;
299 INIT_LIST_HEAD(&io->log_sibling);
300 INIT_LIST_HEAD(&io->stripe_list);
301 io->state = IO_UNIT_RUNNING;
302
303 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
304 block = page_address(io->meta_page);
305 clear_page(block);
306 block->magic = cpu_to_le32(R5LOG_MAGIC);
307 block->version = R5LOG_VERSION;
308 block->seq = cpu_to_le64(log->seq);
309 block->position = cpu_to_le64(log->log_start);
310
311 io->log_start = log->log_start;
312 io->meta_offset = sizeof(struct r5l_meta_block);
313 io->seq = log->seq++;
314
315 io->current_bio = r5l_bio_alloc(log);
316 io->current_bio->bi_end_io = r5l_log_endio;
317 io->current_bio->bi_private = io;
318 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
319
320 r5_reserve_log_entry(log, io);
321
322 spin_lock_irq(&log->io_list_lock);
323 list_add_tail(&io->log_sibling, &log->running_ios);
324 spin_unlock_irq(&log->io_list_lock);
325
326 return io;
327 }
328
329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330 {
331 if (log->current_io &&
332 log->current_io->meta_offset + payload_size > PAGE_SIZE)
333 r5l_submit_current_io(log);
334
335 if (!log->current_io) {
336 log->current_io = r5l_new_meta(log);
337 if (!log->current_io)
338 return -ENOMEM;
339 }
340
341 return 0;
342 }
343
344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
345 sector_t location,
346 u32 checksum1, u32 checksum2,
347 bool checksum2_valid)
348 {
349 struct r5l_io_unit *io = log->current_io;
350 struct r5l_payload_data_parity *payload;
351
352 payload = page_address(io->meta_page) + io->meta_offset;
353 payload->header.type = cpu_to_le16(type);
354 payload->header.flags = cpu_to_le16(0);
355 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
356 (PAGE_SHIFT - 9));
357 payload->location = cpu_to_le64(location);
358 payload->checksum[0] = cpu_to_le32(checksum1);
359 if (checksum2_valid)
360 payload->checksum[1] = cpu_to_le32(checksum2);
361
362 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
363 sizeof(__le32) * (1 + !!checksum2_valid);
364 }
365
366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367 {
368 struct r5l_io_unit *io = log->current_io;
369
370 if (io->need_split_bio) {
371 struct bio *prev = io->current_bio;
372
373 io->current_bio = r5l_bio_alloc(log);
374 bio_chain(io->current_bio, prev);
375
376 submit_bio(prev);
377 }
378
379 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
380 BUG();
381
382 r5_reserve_log_entry(log, io);
383 }
384
385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
386 int data_pages, int parity_pages)
387 {
388 int i;
389 int meta_size;
390 int ret;
391 struct r5l_io_unit *io;
392
393 meta_size =
394 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
395 * data_pages) +
396 sizeof(struct r5l_payload_data_parity) +
397 sizeof(__le32) * parity_pages;
398
399 ret = r5l_get_meta(log, meta_size);
400 if (ret)
401 return ret;
402
403 io = log->current_io;
404
405 for (i = 0; i < sh->disks; i++) {
406 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
407 continue;
408 if (i == sh->pd_idx || i == sh->qd_idx)
409 continue;
410 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
411 raid5_compute_blocknr(sh, i, 0),
412 sh->dev[i].log_checksum, 0, false);
413 r5l_append_payload_page(log, sh->dev[i].page);
414 }
415
416 if (sh->qd_idx >= 0) {
417 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
418 sh->sector, sh->dev[sh->pd_idx].log_checksum,
419 sh->dev[sh->qd_idx].log_checksum, true);
420 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
421 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
422 } else {
423 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
424 sh->sector, sh->dev[sh->pd_idx].log_checksum,
425 0, false);
426 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
427 }
428
429 list_add_tail(&sh->log_list, &io->stripe_list);
430 atomic_inc(&io->pending_stripe);
431 sh->log_io = io;
432
433 return 0;
434 }
435
436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 /*
438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439 * data from log to raid disks), so we shouldn't wait for reclaim here
440 */
441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 {
443 int write_disks = 0;
444 int data_pages, parity_pages;
445 int meta_size;
446 int reserve;
447 int i;
448 int ret = 0;
449
450 if (!log)
451 return -EAGAIN;
452 /* Don't support stripe batch */
453 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
454 test_bit(STRIPE_SYNCING, &sh->state)) {
455 /* the stripe is written to log, we start writing it to raid */
456 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
457 return -EAGAIN;
458 }
459
460 for (i = 0; i < sh->disks; i++) {
461 void *addr;
462
463 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
464 continue;
465 write_disks++;
466 /* checksum is already calculated in last run */
467 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
468 continue;
469 addr = kmap_atomic(sh->dev[i].page);
470 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
471 addr, PAGE_SIZE);
472 kunmap_atomic(addr);
473 }
474 parity_pages = 1 + !!(sh->qd_idx >= 0);
475 data_pages = write_disks - parity_pages;
476
477 meta_size =
478 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
479 * data_pages) +
480 sizeof(struct r5l_payload_data_parity) +
481 sizeof(__le32) * parity_pages;
482 /* Doesn't work with very big raid array */
483 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
484 return -EINVAL;
485
486 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
487 /*
488 * The stripe must enter state machine again to finish the write, so
489 * don't delay.
490 */
491 clear_bit(STRIPE_DELAYED, &sh->state);
492 atomic_inc(&sh->count);
493
494 mutex_lock(&log->io_mutex);
495 /* meta + data */
496 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
497 if (!r5l_has_free_space(log, reserve)) {
498 spin_lock(&log->no_space_stripes_lock);
499 list_add_tail(&sh->log_list, &log->no_space_stripes);
500 spin_unlock(&log->no_space_stripes_lock);
501
502 r5l_wake_reclaim(log, reserve);
503 } else {
504 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
505 if (ret) {
506 spin_lock_irq(&log->io_list_lock);
507 list_add_tail(&sh->log_list, &log->no_mem_stripes);
508 spin_unlock_irq(&log->io_list_lock);
509 }
510 }
511
512 mutex_unlock(&log->io_mutex);
513 return 0;
514 }
515
516 void r5l_write_stripe_run(struct r5l_log *log)
517 {
518 if (!log)
519 return;
520 mutex_lock(&log->io_mutex);
521 r5l_submit_current_io(log);
522 mutex_unlock(&log->io_mutex);
523 }
524
525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526 {
527 if (!log)
528 return -ENODEV;
529 /*
530 * we flush log disk cache first, then write stripe data to raid disks.
531 * So if bio is finished, the log disk cache is flushed already. The
532 * recovery guarantees we can recovery the bio from log disk, so we
533 * don't need to flush again
534 */
535 if (bio->bi_iter.bi_size == 0) {
536 bio_endio(bio);
537 return 0;
538 }
539 bio->bi_rw &= ~REQ_FLUSH;
540 return -EAGAIN;
541 }
542
543 /* This will run after log space is reclaimed */
544 static void r5l_run_no_space_stripes(struct r5l_log *log)
545 {
546 struct stripe_head *sh;
547
548 spin_lock(&log->no_space_stripes_lock);
549 while (!list_empty(&log->no_space_stripes)) {
550 sh = list_first_entry(&log->no_space_stripes,
551 struct stripe_head, log_list);
552 list_del_init(&sh->log_list);
553 set_bit(STRIPE_HANDLE, &sh->state);
554 raid5_release_stripe(sh);
555 }
556 spin_unlock(&log->no_space_stripes_lock);
557 }
558
559 static sector_t r5l_reclaimable_space(struct r5l_log *log)
560 {
561 return r5l_ring_distance(log, log->last_checkpoint,
562 log->next_checkpoint);
563 }
564
565 static void r5l_run_no_mem_stripe(struct r5l_log *log)
566 {
567 struct stripe_head *sh;
568
569 assert_spin_locked(&log->io_list_lock);
570
571 if (!list_empty(&log->no_mem_stripes)) {
572 sh = list_first_entry(&log->no_mem_stripes,
573 struct stripe_head, log_list);
574 list_del_init(&sh->log_list);
575 set_bit(STRIPE_HANDLE, &sh->state);
576 raid5_release_stripe(sh);
577 }
578 }
579
580 static bool r5l_complete_finished_ios(struct r5l_log *log)
581 {
582 struct r5l_io_unit *io, *next;
583 bool found = false;
584
585 assert_spin_locked(&log->io_list_lock);
586
587 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
588 /* don't change list order */
589 if (io->state < IO_UNIT_STRIPE_END)
590 break;
591
592 log->next_checkpoint = io->log_start;
593 log->next_cp_seq = io->seq;
594
595 list_del(&io->log_sibling);
596 mempool_free(io, log->io_pool);
597 r5l_run_no_mem_stripe(log);
598
599 found = true;
600 }
601
602 return found;
603 }
604
605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606 {
607 struct r5l_log *log = io->log;
608 unsigned long flags;
609
610 spin_lock_irqsave(&log->io_list_lock, flags);
611 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
612
613 if (!r5l_complete_finished_ios(log)) {
614 spin_unlock_irqrestore(&log->io_list_lock, flags);
615 return;
616 }
617
618 if (r5l_reclaimable_space(log) > log->max_free_space)
619 r5l_wake_reclaim(log, 0);
620
621 spin_unlock_irqrestore(&log->io_list_lock, flags);
622 wake_up(&log->iounit_wait);
623 }
624
625 void r5l_stripe_write_finished(struct stripe_head *sh)
626 {
627 struct r5l_io_unit *io;
628
629 io = sh->log_io;
630 sh->log_io = NULL;
631
632 if (io && atomic_dec_and_test(&io->pending_stripe))
633 __r5l_stripe_write_finished(io);
634 }
635
636 static void r5l_log_flush_endio(struct bio *bio)
637 {
638 struct r5l_log *log = container_of(bio, struct r5l_log,
639 flush_bio);
640 unsigned long flags;
641 struct r5l_io_unit *io;
642
643 if (bio->bi_error)
644 md_error(log->rdev->mddev, log->rdev);
645
646 spin_lock_irqsave(&log->io_list_lock, flags);
647 list_for_each_entry(io, &log->flushing_ios, log_sibling)
648 r5l_io_run_stripes(io);
649 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
650 spin_unlock_irqrestore(&log->io_list_lock, flags);
651 }
652
653 /*
654 * Starting dispatch IO to raid.
655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
656 * broken meta in the middle of a log causes recovery can't find meta at the
657 * head of log. If operations require meta at the head persistent in log, we
658 * must make sure meta before it persistent in log too. A case is:
659 *
660 * stripe data/parity is in log, we start write stripe to raid disks. stripe
661 * data/parity must be persistent in log before we do the write to raid disks.
662 *
663 * The solution is we restrictly maintain io_unit list order. In this case, we
664 * only write stripes of an io_unit to raid disks till the io_unit is the first
665 * one whose data/parity is in log.
666 */
667 void r5l_flush_stripe_to_raid(struct r5l_log *log)
668 {
669 bool do_flush;
670
671 if (!log || !log->need_cache_flush)
672 return;
673
674 spin_lock_irq(&log->io_list_lock);
675 /* flush bio is running */
676 if (!list_empty(&log->flushing_ios)) {
677 spin_unlock_irq(&log->io_list_lock);
678 return;
679 }
680 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
681 do_flush = !list_empty(&log->flushing_ios);
682 spin_unlock_irq(&log->io_list_lock);
683
684 if (!do_flush)
685 return;
686 bio_reset(&log->flush_bio);
687 log->flush_bio.bi_bdev = log->rdev->bdev;
688 log->flush_bio.bi_end_io = r5l_log_flush_endio;
689 log->flush_bio.bi_rw = WRITE_FLUSH;
690 submit_bio(&log->flush_bio);
691 }
692
693 static void r5l_write_super(struct r5l_log *log, sector_t cp);
694 static void r5l_write_super_and_discard_space(struct r5l_log *log,
695 sector_t end)
696 {
697 struct block_device *bdev = log->rdev->bdev;
698 struct mddev *mddev;
699
700 r5l_write_super(log, end);
701
702 if (!blk_queue_discard(bdev_get_queue(bdev)))
703 return;
704
705 mddev = log->rdev->mddev;
706 /*
707 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
708 * wait for this thread to finish. This thread waits for
709 * MD_CHANGE_PENDING clear, which is supposed to be done in
710 * md_check_recovery(). md_check_recovery() tries to get
711 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
712 * md_check_recovery() fails, so the PENDING never get cleared. The
713 * in_teardown check workaround this issue.
714 */
715 if (!log->in_teardown) {
716 set_mask_bits(&mddev->flags, 0,
717 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
718 md_wakeup_thread(mddev->thread);
719 wait_event(mddev->sb_wait,
720 !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
721 log->in_teardown);
722 /*
723 * r5l_quiesce could run after in_teardown check and hold
724 * mutex first. Superblock might get updated twice.
725 */
726 if (log->in_teardown)
727 md_update_sb(mddev, 1);
728 } else {
729 WARN_ON(!mddev_is_locked(mddev));
730 md_update_sb(mddev, 1);
731 }
732
733 /* discard IO error really doesn't matter, ignore it */
734 if (log->last_checkpoint < end) {
735 blkdev_issue_discard(bdev,
736 log->last_checkpoint + log->rdev->data_offset,
737 end - log->last_checkpoint, GFP_NOIO, 0);
738 } else {
739 blkdev_issue_discard(bdev,
740 log->last_checkpoint + log->rdev->data_offset,
741 log->device_size - log->last_checkpoint,
742 GFP_NOIO, 0);
743 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
744 GFP_NOIO, 0);
745 }
746 }
747
748
749 static void r5l_do_reclaim(struct r5l_log *log)
750 {
751 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
752 sector_t reclaimable;
753 sector_t next_checkpoint;
754 u64 next_cp_seq;
755
756 spin_lock_irq(&log->io_list_lock);
757 /*
758 * move proper io_unit to reclaim list. We should not change the order.
759 * reclaimable/unreclaimable io_unit can be mixed in the list, we
760 * shouldn't reuse space of an unreclaimable io_unit
761 */
762 while (1) {
763 reclaimable = r5l_reclaimable_space(log);
764 if (reclaimable >= reclaim_target ||
765 (list_empty(&log->running_ios) &&
766 list_empty(&log->io_end_ios) &&
767 list_empty(&log->flushing_ios) &&
768 list_empty(&log->finished_ios)))
769 break;
770
771 md_wakeup_thread(log->rdev->mddev->thread);
772 wait_event_lock_irq(log->iounit_wait,
773 r5l_reclaimable_space(log) > reclaimable,
774 log->io_list_lock);
775 }
776
777 next_checkpoint = log->next_checkpoint;
778 next_cp_seq = log->next_cp_seq;
779 spin_unlock_irq(&log->io_list_lock);
780
781 BUG_ON(reclaimable < 0);
782 if (reclaimable == 0)
783 return;
784
785 /*
786 * write_super will flush cache of each raid disk. We must write super
787 * here, because the log area might be reused soon and we don't want to
788 * confuse recovery
789 */
790 r5l_write_super_and_discard_space(log, next_checkpoint);
791
792 mutex_lock(&log->io_mutex);
793 log->last_checkpoint = next_checkpoint;
794 log->last_cp_seq = next_cp_seq;
795 mutex_unlock(&log->io_mutex);
796
797 r5l_run_no_space_stripes(log);
798 }
799
800 static void r5l_reclaim_thread(struct md_thread *thread)
801 {
802 struct mddev *mddev = thread->mddev;
803 struct r5conf *conf = mddev->private;
804 struct r5l_log *log = conf->log;
805
806 if (!log)
807 return;
808 r5l_do_reclaim(log);
809 }
810
811 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
812 {
813 unsigned long target;
814 unsigned long new = (unsigned long)space; /* overflow in theory */
815
816 do {
817 target = log->reclaim_target;
818 if (new < target)
819 return;
820 } while (cmpxchg(&log->reclaim_target, target, new) != target);
821 md_wakeup_thread(log->reclaim_thread);
822 }
823
824 void r5l_quiesce(struct r5l_log *log, int state)
825 {
826 struct mddev *mddev;
827 if (!log || state == 2)
828 return;
829 if (state == 0) {
830 log->in_teardown = 0;
831 /*
832 * This is a special case for hotadd. In suspend, the array has
833 * no journal. In resume, journal is initialized as well as the
834 * reclaim thread.
835 */
836 if (log->reclaim_thread)
837 return;
838 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
839 log->rdev->mddev, "reclaim");
840 } else if (state == 1) {
841 /*
842 * at this point all stripes are finished, so io_unit is at
843 * least in STRIPE_END state
844 */
845 log->in_teardown = 1;
846 /* make sure r5l_write_super_and_discard_space exits */
847 mddev = log->rdev->mddev;
848 wake_up(&mddev->sb_wait);
849 r5l_wake_reclaim(log, -1L);
850 md_unregister_thread(&log->reclaim_thread);
851 r5l_do_reclaim(log);
852 }
853 }
854
855 bool r5l_log_disk_error(struct r5conf *conf)
856 {
857 struct r5l_log *log;
858 bool ret;
859 /* don't allow write if journal disk is missing */
860 rcu_read_lock();
861 log = rcu_dereference(conf->log);
862
863 if (!log)
864 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
865 else
866 ret = test_bit(Faulty, &log->rdev->flags);
867 rcu_read_unlock();
868 return ret;
869 }
870
871 struct r5l_recovery_ctx {
872 struct page *meta_page; /* current meta */
873 sector_t meta_total_blocks; /* total size of current meta and data */
874 sector_t pos; /* recovery position */
875 u64 seq; /* recovery position seq */
876 };
877
878 static int r5l_read_meta_block(struct r5l_log *log,
879 struct r5l_recovery_ctx *ctx)
880 {
881 struct page *page = ctx->meta_page;
882 struct r5l_meta_block *mb;
883 u32 crc, stored_crc;
884
885 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
886 return -EIO;
887
888 mb = page_address(page);
889 stored_crc = le32_to_cpu(mb->checksum);
890 mb->checksum = 0;
891
892 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
893 le64_to_cpu(mb->seq) != ctx->seq ||
894 mb->version != R5LOG_VERSION ||
895 le64_to_cpu(mb->position) != ctx->pos)
896 return -EINVAL;
897
898 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
899 if (stored_crc != crc)
900 return -EINVAL;
901
902 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
903 return -EINVAL;
904
905 ctx->meta_total_blocks = BLOCK_SECTORS;
906
907 return 0;
908 }
909
910 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
911 struct r5l_recovery_ctx *ctx,
912 sector_t stripe_sect,
913 int *offset, sector_t *log_offset)
914 {
915 struct r5conf *conf = log->rdev->mddev->private;
916 struct stripe_head *sh;
917 struct r5l_payload_data_parity *payload;
918 int disk_index;
919
920 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
921 while (1) {
922 payload = page_address(ctx->meta_page) + *offset;
923
924 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
925 raid5_compute_sector(conf,
926 le64_to_cpu(payload->location), 0,
927 &disk_index, sh);
928
929 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
930 sh->dev[disk_index].page, READ, false);
931 sh->dev[disk_index].log_checksum =
932 le32_to_cpu(payload->checksum[0]);
933 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
934 ctx->meta_total_blocks += BLOCK_SECTORS;
935 } else {
936 disk_index = sh->pd_idx;
937 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
938 sh->dev[disk_index].page, READ, false);
939 sh->dev[disk_index].log_checksum =
940 le32_to_cpu(payload->checksum[0]);
941 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
942
943 if (sh->qd_idx >= 0) {
944 disk_index = sh->qd_idx;
945 sync_page_io(log->rdev,
946 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
947 PAGE_SIZE, sh->dev[disk_index].page,
948 READ, false);
949 sh->dev[disk_index].log_checksum =
950 le32_to_cpu(payload->checksum[1]);
951 set_bit(R5_Wantwrite,
952 &sh->dev[disk_index].flags);
953 }
954 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
955 }
956
957 *log_offset = r5l_ring_add(log, *log_offset,
958 le32_to_cpu(payload->size));
959 *offset += sizeof(struct r5l_payload_data_parity) +
960 sizeof(__le32) *
961 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
962 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
963 break;
964 }
965
966 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
967 void *addr;
968 u32 checksum;
969
970 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
971 continue;
972 addr = kmap_atomic(sh->dev[disk_index].page);
973 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
974 kunmap_atomic(addr);
975 if (checksum != sh->dev[disk_index].log_checksum)
976 goto error;
977 }
978
979 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
980 struct md_rdev *rdev, *rrdev;
981
982 if (!test_and_clear_bit(R5_Wantwrite,
983 &sh->dev[disk_index].flags))
984 continue;
985
986 /* in case device is broken */
987 rdev = rcu_dereference(conf->disks[disk_index].rdev);
988 if (rdev)
989 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
990 sh->dev[disk_index].page, WRITE, false);
991 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
992 if (rrdev)
993 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
994 sh->dev[disk_index].page, WRITE, false);
995 }
996 raid5_release_stripe(sh);
997 return 0;
998
999 error:
1000 for (disk_index = 0; disk_index < sh->disks; disk_index++)
1001 sh->dev[disk_index].flags = 0;
1002 raid5_release_stripe(sh);
1003 return -EINVAL;
1004 }
1005
1006 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1007 struct r5l_recovery_ctx *ctx)
1008 {
1009 struct r5conf *conf = log->rdev->mddev->private;
1010 struct r5l_payload_data_parity *payload;
1011 struct r5l_meta_block *mb;
1012 int offset;
1013 sector_t log_offset;
1014 sector_t stripe_sector;
1015
1016 mb = page_address(ctx->meta_page);
1017 offset = sizeof(struct r5l_meta_block);
1018 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1019
1020 while (offset < le32_to_cpu(mb->meta_size)) {
1021 int dd;
1022
1023 payload = (void *)mb + offset;
1024 stripe_sector = raid5_compute_sector(conf,
1025 le64_to_cpu(payload->location), 0, &dd, NULL);
1026 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1027 &offset, &log_offset))
1028 return -EINVAL;
1029 }
1030 return 0;
1031 }
1032
1033 /* copy data/parity from log to raid disks */
1034 static void r5l_recovery_flush_log(struct r5l_log *log,
1035 struct r5l_recovery_ctx *ctx)
1036 {
1037 while (1) {
1038 if (r5l_read_meta_block(log, ctx))
1039 return;
1040 if (r5l_recovery_flush_one_meta(log, ctx))
1041 return;
1042 ctx->seq++;
1043 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1044 }
1045 }
1046
1047 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1048 u64 seq)
1049 {
1050 struct page *page;
1051 struct r5l_meta_block *mb;
1052 u32 crc;
1053
1054 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1055 if (!page)
1056 return -ENOMEM;
1057 mb = page_address(page);
1058 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1059 mb->version = R5LOG_VERSION;
1060 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1061 mb->seq = cpu_to_le64(seq);
1062 mb->position = cpu_to_le64(pos);
1063 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1064 mb->checksum = cpu_to_le32(crc);
1065
1066 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1067 __free_page(page);
1068 return -EIO;
1069 }
1070 __free_page(page);
1071 return 0;
1072 }
1073
1074 static int r5l_recovery_log(struct r5l_log *log)
1075 {
1076 struct r5l_recovery_ctx ctx;
1077
1078 ctx.pos = log->last_checkpoint;
1079 ctx.seq = log->last_cp_seq;
1080 ctx.meta_page = alloc_page(GFP_KERNEL);
1081 if (!ctx.meta_page)
1082 return -ENOMEM;
1083
1084 r5l_recovery_flush_log(log, &ctx);
1085 __free_page(ctx.meta_page);
1086
1087 /*
1088 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1089 * log will start here. but we can't let superblock point to last valid
1090 * meta block. The log might looks like:
1091 * | meta 1| meta 2| meta 3|
1092 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1093 * superblock points to meta 1, we write a new valid meta 2n. if crash
1094 * happens again, new recovery will start from meta 1. Since meta 2n is
1095 * valid now, recovery will think meta 3 is valid, which is wrong.
1096 * The solution is we create a new meta in meta2 with its seq == meta
1097 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1098 * not think meta 3 is a valid meta, because its seq doesn't match
1099 */
1100 if (ctx.seq > log->last_cp_seq + 1) {
1101 int ret;
1102
1103 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1104 if (ret)
1105 return ret;
1106 log->seq = ctx.seq + 11;
1107 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1108 r5l_write_super(log, ctx.pos);
1109 } else {
1110 log->log_start = ctx.pos;
1111 log->seq = ctx.seq;
1112 }
1113 return 0;
1114 }
1115
1116 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1117 {
1118 struct mddev *mddev = log->rdev->mddev;
1119
1120 log->rdev->journal_tail = cp;
1121 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1122 }
1123
1124 static int r5l_load_log(struct r5l_log *log)
1125 {
1126 struct md_rdev *rdev = log->rdev;
1127 struct page *page;
1128 struct r5l_meta_block *mb;
1129 sector_t cp = log->rdev->journal_tail;
1130 u32 stored_crc, expected_crc;
1131 bool create_super = false;
1132 int ret;
1133
1134 /* Make sure it's valid */
1135 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1136 cp = 0;
1137 page = alloc_page(GFP_KERNEL);
1138 if (!page)
1139 return -ENOMEM;
1140
1141 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1142 ret = -EIO;
1143 goto ioerr;
1144 }
1145 mb = page_address(page);
1146
1147 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1148 mb->version != R5LOG_VERSION) {
1149 create_super = true;
1150 goto create;
1151 }
1152 stored_crc = le32_to_cpu(mb->checksum);
1153 mb->checksum = 0;
1154 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1155 if (stored_crc != expected_crc) {
1156 create_super = true;
1157 goto create;
1158 }
1159 if (le64_to_cpu(mb->position) != cp) {
1160 create_super = true;
1161 goto create;
1162 }
1163 create:
1164 if (create_super) {
1165 log->last_cp_seq = prandom_u32();
1166 cp = 0;
1167 /*
1168 * Make sure super points to correct address. Log might have
1169 * data very soon. If super hasn't correct log tail address,
1170 * recovery can't find the log
1171 */
1172 r5l_write_super(log, cp);
1173 } else
1174 log->last_cp_seq = le64_to_cpu(mb->seq);
1175
1176 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1177 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1178 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1179 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1180 log->last_checkpoint = cp;
1181
1182 __free_page(page);
1183
1184 return r5l_recovery_log(log);
1185 ioerr:
1186 __free_page(page);
1187 return ret;
1188 }
1189
1190 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1191 {
1192 struct request_queue *q = bdev_get_queue(rdev->bdev);
1193 struct r5l_log *log;
1194
1195 if (PAGE_SIZE != 4096)
1196 return -EINVAL;
1197 log = kzalloc(sizeof(*log), GFP_KERNEL);
1198 if (!log)
1199 return -ENOMEM;
1200 log->rdev = rdev;
1201
1202 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
1203
1204 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1205 sizeof(rdev->mddev->uuid));
1206
1207 mutex_init(&log->io_mutex);
1208
1209 spin_lock_init(&log->io_list_lock);
1210 INIT_LIST_HEAD(&log->running_ios);
1211 INIT_LIST_HEAD(&log->io_end_ios);
1212 INIT_LIST_HEAD(&log->flushing_ios);
1213 INIT_LIST_HEAD(&log->finished_ios);
1214 bio_init(&log->flush_bio);
1215
1216 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1217 if (!log->io_kc)
1218 goto io_kc;
1219
1220 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1221 if (!log->io_pool)
1222 goto io_pool;
1223
1224 log->bs = bioset_create(R5L_POOL_SIZE, 0);
1225 if (!log->bs)
1226 goto io_bs;
1227
1228 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1229 if (!log->meta_pool)
1230 goto out_mempool;
1231
1232 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1233 log->rdev->mddev, "reclaim");
1234 if (!log->reclaim_thread)
1235 goto reclaim_thread;
1236 init_waitqueue_head(&log->iounit_wait);
1237
1238 INIT_LIST_HEAD(&log->no_mem_stripes);
1239
1240 INIT_LIST_HEAD(&log->no_space_stripes);
1241 spin_lock_init(&log->no_space_stripes_lock);
1242
1243 if (r5l_load_log(log))
1244 goto error;
1245
1246 rcu_assign_pointer(conf->log, log);
1247 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1248 return 0;
1249
1250 error:
1251 md_unregister_thread(&log->reclaim_thread);
1252 reclaim_thread:
1253 mempool_destroy(log->meta_pool);
1254 out_mempool:
1255 bioset_free(log->bs);
1256 io_bs:
1257 mempool_destroy(log->io_pool);
1258 io_pool:
1259 kmem_cache_destroy(log->io_kc);
1260 io_kc:
1261 kfree(log);
1262 return -EINVAL;
1263 }
1264
1265 void r5l_exit_log(struct r5l_log *log)
1266 {
1267 md_unregister_thread(&log->reclaim_thread);
1268 mempool_destroy(log->meta_pool);
1269 bioset_free(log->bs);
1270 mempool_destroy(log->io_pool);
1271 kmem_cache_destroy(log->io_kc);
1272 kfree(log);
1273 }