]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5-cache.c
iommu/vt-d: Fix usage of force parameter in intel_ir_reconfigure_irte()
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5-cache.c
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
28
29 /*
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
32 */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35
36 /*
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38 *
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
41 */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51
52 /*
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
55 */
56 #define R5L_POOL_SIZE 4
57
58 static char *r5c_journal_mode_str[] = {"write-through",
59 "write-back"};
60 /*
61 * raid5 cache state machine
62 *
63 * With the RAID cache, each stripe works in two phases:
64 * - caching phase
65 * - writing-out phase
66 *
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70 *
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
73 *
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
77 *
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
82 * - return IO
83 *
84 * Stripes in writing-out phase handle writes as:
85 * - calculate parity
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
89 */
90
91 struct r5l_log {
92 struct md_rdev *rdev;
93
94 u32 uuid_checksum;
95
96 sector_t device_size; /* log device size, round to
97 * BLOCK_SECTORS */
98 sector_t max_free_space; /* reclaim run if free space is at
99 * this size */
100
101 sector_t last_checkpoint; /* log tail. where recovery scan
102 * starts from */
103 u64 last_cp_seq; /* log tail sequence */
104
105 sector_t log_start; /* log head. where new data appends */
106 u64 seq; /* log head sequence */
107
108 sector_t next_checkpoint;
109
110 struct mutex io_mutex;
111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
112
113 spinlock_t io_list_lock;
114 struct list_head running_ios; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios; /* io_units which have been completely
118 * written to the log but not yet written
119 * to the RAID */
120 struct list_head flushing_ios; /* io_units which are waiting for log
121 * cache flush */
122 struct list_head finished_ios; /* io_units which settle down in log disk */
123 struct bio flush_bio;
124
125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
126
127 struct kmem_cache *io_kc;
128 mempool_t *io_pool;
129 struct bio_set *bs;
130 mempool_t *meta_pool;
131
132 struct md_thread *reclaim_thread;
133 unsigned long reclaim_target; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
139 * state) */
140 wait_queue_head_t iounit_wait;
141
142 struct list_head no_space_stripes; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock;
144
145 bool need_cache_flush;
146
147 /* for r5c_cache */
148 enum r5c_journal_mode r5c_journal_mode;
149
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list;
152
153 spinlock_t stripe_in_journal_lock;
154 atomic_t stripe_in_journal_count;
155
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work;
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work;
160
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock;
163 struct radix_tree_root big_stripe_tree;
164 };
165
166 /*
167 * Enable chunk_aligned_read() with write back cache.
168 *
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
176 *
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
180 * rcu_read_lock().
181 *
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
190 */
191
192 /*
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
196 */
197 #define R5C_RADIX_COUNT_SHIFT 2
198
199 /*
200 * calculate key for big_stripe_tree
201 *
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
203 */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 sector_t sect)
206 {
207 sector_t offset;
208
209 offset = sector_div(sect, conf->chunk_sectors);
210 return sect;
211 }
212
213 /*
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
219 */
220 struct r5l_io_unit {
221 struct r5l_log *log;
222
223 struct page *meta_page; /* store meta block */
224 int meta_offset; /* current offset in meta_page */
225
226 struct bio *current_bio;/* current_bio accepting new data */
227
228 atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 u64 seq; /* seq number of the metablock */
230 sector_t log_start; /* where the io_unit starts */
231 sector_t log_end; /* where the io_unit ends */
232 struct list_head log_sibling; /* log->running_ios */
233 struct list_head stripe_list; /* stripes added to the io_unit */
234
235 int state;
236 bool need_split_bio;
237 struct bio *split_bio;
238
239 unsigned int has_flush:1; /* include flush request */
240 unsigned int has_fua:1; /* include fua request */
241 unsigned int has_null_flush:1; /* include null flush request */
242 unsigned int has_flush_payload:1; /* include flush payload */
243 /*
244 * io isn't sent yet, flush/fua request can only be submitted till it's
245 * the first IO in running_ios list
246 */
247 unsigned int io_deferred:1;
248
249 struct bio_list flush_barriers; /* size == 0 flush bios */
250 };
251
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254 IO_UNIT_RUNNING = 0, /* accepting new IO */
255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
256 * don't accepting new bio */
257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
259 };
260
261 bool r5c_is_writeback(struct r5l_log *log)
262 {
263 return (log != NULL &&
264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265 }
266
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268 {
269 start += inc;
270 if (start >= log->device_size)
271 start = start - log->device_size;
272 return start;
273 }
274
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 sector_t end)
277 {
278 if (end >= start)
279 return end - start;
280 else
281 return end + log->device_size - start;
282 }
283
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285 {
286 sector_t used_size;
287
288 used_size = r5l_ring_distance(log, log->last_checkpoint,
289 log->log_start);
290
291 return log->device_size > used_size + size;
292 }
293
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 enum r5l_io_unit_state state)
296 {
297 if (WARN_ON(io->state >= state))
298 return;
299 io->state = state;
300 }
301
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
304 {
305 struct bio *wbi, *wbi2;
306
307 wbi = dev->written;
308 dev->written = NULL;
309 while (wbi && wbi->bi_iter.bi_sector <
310 dev->sector + STRIPE_SECTORS) {
311 wbi2 = r5_next_bio(wbi, dev->sector);
312 md_write_end(conf->mddev);
313 bio_endio(wbi);
314 wbi = wbi2;
315 }
316 }
317
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319 struct stripe_head *sh, int disks)
320 {
321 int i;
322
323 for (i = sh->disks; i--; ) {
324 if (sh->dev[i].written) {
325 set_bit(R5_UPTODATE, &sh->dev[i].flags);
326 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 STRIPE_SECTORS,
329 !test_bit(STRIPE_DEGRADED, &sh->state),
330 0);
331 }
332 }
333 }
334
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
339 {
340 int total_cached;
341
342 if (!r5c_is_writeback(conf->log))
343 return;
344
345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 atomic_read(&conf->r5c_cached_full_stripes);
347
348 /*
349 * The following condition is true for either of the following:
350 * - stripe cache pressure high:
351 * total_cached > 3/4 min_nr_stripes ||
352 * empty_inactive_list_nr > 0
353 * - stripe cache pressure moderate:
354 * total_cached > 1/2 min_nr_stripes
355 */
356 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 atomic_read(&conf->empty_inactive_list_nr) > 0)
358 r5l_wake_reclaim(conf->log, 0);
359 }
360
361 /*
362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363 * stripes in the cache
364 */
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
366 {
367 if (!r5c_is_writeback(conf->log))
368 return;
369
370 /*
371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 * or a full stripe (chunk size / 4k stripes).
373 */
374 if (atomic_read(&conf->r5c_cached_full_stripes) >=
375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376 conf->chunk_sectors >> STRIPE_SHIFT))
377 r5l_wake_reclaim(conf->log, 0);
378 }
379
380 /*
381 * Total log space (in sectors) needed to flush all data in cache
382 *
383 * To avoid deadlock due to log space, it is necessary to reserve log
384 * space to flush critical stripes (stripes that occupying log space near
385 * last_checkpoint). This function helps check how much log space is
386 * required to flush all cached stripes.
387 *
388 * To reduce log space requirements, two mechanisms are used to give cache
389 * flush higher priorities:
390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
391 * stripes ALREADY in journal can be flushed w/o pending writes;
392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393 * can be delayed (r5l_add_no_space_stripe).
394 *
395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397 * pages of journal space. For stripes that has not passed 1, flushing it
398 * requires (conf->raid_disks + 1) pages of journal space. There are at
399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400 * required to flush all cached stripes (in pages) is:
401 *
402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403 * (group_cnt + 1) * (raid_disks + 1)
404 * or
405 * (stripe_in_journal_count) * (max_degraded + 1) +
406 * (group_cnt + 1) * (raid_disks - max_degraded)
407 */
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409 {
410 struct r5l_log *log = conf->log;
411
412 if (!r5c_is_writeback(log))
413 return 0;
414
415 return BLOCK_SECTORS *
416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
418 }
419
420 /*
421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422 *
423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425 * device is less than 2x of reclaim_required_space.
426 */
427 static inline void r5c_update_log_state(struct r5l_log *log)
428 {
429 struct r5conf *conf = log->rdev->mddev->private;
430 sector_t free_space;
431 sector_t reclaim_space;
432 bool wake_reclaim = false;
433
434 if (!r5c_is_writeback(log))
435 return;
436
437 free_space = r5l_ring_distance(log, log->log_start,
438 log->last_checkpoint);
439 reclaim_space = r5c_log_required_to_flush_cache(conf);
440 if (free_space < 2 * reclaim_space)
441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442 else {
443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 wake_reclaim = true;
445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
446 }
447 if (free_space < 3 * reclaim_space)
448 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 else
450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
451
452 if (wake_reclaim)
453 r5l_wake_reclaim(log, 0);
454 }
455
456 /*
457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458 * This function should only be called in write-back mode.
459 */
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
461 {
462 struct r5conf *conf = sh->raid_conf;
463 struct r5l_log *log = conf->log;
464
465 BUG_ON(!r5c_is_writeback(log));
466
467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 clear_bit(STRIPE_R5C_CACHING, &sh->state);
469
470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 atomic_inc(&conf->preread_active_stripes);
472 }
473
474 static void r5c_handle_data_cached(struct stripe_head *sh)
475 {
476 int i;
477
478 for (i = sh->disks; i--; )
479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 set_bit(R5_InJournal, &sh->dev[i].flags);
481 clear_bit(R5_LOCKED, &sh->dev[i].flags);
482 }
483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484 }
485
486 /*
487 * this journal write must contain full parity,
488 * it may also contain some data pages
489 */
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
491 {
492 int i;
493
494 for (i = sh->disks; i--; )
495 if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 set_bit(R5_Wantwrite, &sh->dev[i].flags);
497 }
498
499 /*
500 * Setting proper flags after writing (or flushing) data and/or parity to the
501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502 */
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
504 {
505 struct r5l_log *log = sh->raid_conf->log;
506
507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509 /*
510 * Set R5_InJournal for parity dev[pd_idx]. This means
511 * all data AND parity in the journal. For RAID 6, it is
512 * NOT necessary to set the flag for dev[qd_idx], as the
513 * two parities are written out together.
514 */
515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 r5c_handle_data_cached(sh);
518 } else {
519 r5c_handle_parity_cached(sh);
520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521 }
522 }
523
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
525 {
526 struct stripe_head *sh, *next;
527
528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 list_del_init(&sh->log_list);
530
531 r5c_finish_cache_stripe(sh);
532
533 set_bit(STRIPE_HANDLE, &sh->state);
534 raid5_release_stripe(sh);
535 }
536 }
537
538 static void r5l_log_run_stripes(struct r5l_log *log)
539 {
540 struct r5l_io_unit *io, *next;
541
542 lockdep_assert_held(&log->io_list_lock);
543
544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 /* don't change list order */
546 if (io->state < IO_UNIT_IO_END)
547 break;
548
549 list_move_tail(&io->log_sibling, &log->finished_ios);
550 r5l_io_run_stripes(io);
551 }
552 }
553
554 static void r5l_move_to_end_ios(struct r5l_log *log)
555 {
556 struct r5l_io_unit *io, *next;
557
558 lockdep_assert_held(&log->io_list_lock);
559
560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 /* don't change list order */
562 if (io->state < IO_UNIT_IO_END)
563 break;
564 list_move_tail(&io->log_sibling, &log->io_end_ios);
565 }
566 }
567
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
570 {
571 struct r5l_io_unit *io = bio->bi_private;
572 struct r5l_io_unit *io_deferred;
573 struct r5l_log *log = io->log;
574 unsigned long flags;
575 bool has_null_flush;
576 bool has_flush_payload;
577
578 if (bio->bi_status)
579 md_error(log->rdev->mddev, log->rdev);
580
581 bio_put(bio);
582 mempool_free(io->meta_page, log->meta_pool);
583
584 spin_lock_irqsave(&log->io_list_lock, flags);
585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
586
587 /*
588 * if the io doesn't not have null_flush or flush payload,
589 * it is not safe to access it after releasing io_list_lock.
590 * Therefore, it is necessary to check the condition with
591 * the lock held.
592 */
593 has_null_flush = io->has_null_flush;
594 has_flush_payload = io->has_flush_payload;
595
596 if (log->need_cache_flush && !list_empty(&io->stripe_list))
597 r5l_move_to_end_ios(log);
598 else
599 r5l_log_run_stripes(log);
600 if (!list_empty(&log->running_ios)) {
601 /*
602 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 * can dispatch it
604 */
605 io_deferred = list_first_entry(&log->running_ios,
606 struct r5l_io_unit, log_sibling);
607 if (io_deferred->io_deferred)
608 schedule_work(&log->deferred_io_work);
609 }
610
611 spin_unlock_irqrestore(&log->io_list_lock, flags);
612
613 if (log->need_cache_flush)
614 md_wakeup_thread(log->rdev->mddev->thread);
615
616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 if (has_null_flush) {
618 struct bio *bi;
619
620 WARN_ON(bio_list_empty(&io->flush_barriers));
621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 bio_endio(bi);
623 if (atomic_dec_and_test(&io->pending_stripe)) {
624 __r5l_stripe_write_finished(io);
625 return;
626 }
627 }
628 }
629 /* decrease pending_stripe for flush payload */
630 if (has_flush_payload)
631 if (atomic_dec_and_test(&io->pending_stripe))
632 __r5l_stripe_write_finished(io);
633 }
634
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636 {
637 unsigned long flags;
638
639 spin_lock_irqsave(&log->io_list_lock, flags);
640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 spin_unlock_irqrestore(&log->io_list_lock, flags);
642
643 /*
644 * In case of journal device failures, submit_bio will get error
645 * and calls endio, then active stripes will continue write
646 * process. Therefore, it is not necessary to check Faulty bit
647 * of journal device here.
648 *
649 * We can't check split_bio after current_bio is submitted. If
650 * io->split_bio is null, after current_bio is submitted, current_bio
651 * might already be completed and the io_unit is freed. We submit
652 * split_bio first to avoid the issue.
653 */
654 if (io->split_bio) {
655 if (io->has_flush)
656 io->split_bio->bi_opf |= REQ_PREFLUSH;
657 if (io->has_fua)
658 io->split_bio->bi_opf |= REQ_FUA;
659 submit_bio(io->split_bio);
660 }
661
662 if (io->has_flush)
663 io->current_bio->bi_opf |= REQ_PREFLUSH;
664 if (io->has_fua)
665 io->current_bio->bi_opf |= REQ_FUA;
666 submit_bio(io->current_bio);
667 }
668
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
671 {
672 struct r5l_log *log = container_of(work, struct r5l_log,
673 deferred_io_work);
674 struct r5l_io_unit *io = NULL;
675 unsigned long flags;
676
677 spin_lock_irqsave(&log->io_list_lock, flags);
678 if (!list_empty(&log->running_ios)) {
679 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 log_sibling);
681 if (!io->io_deferred)
682 io = NULL;
683 else
684 io->io_deferred = 0;
685 }
686 spin_unlock_irqrestore(&log->io_list_lock, flags);
687 if (io)
688 r5l_do_submit_io(log, io);
689 }
690
691 static void r5c_disable_writeback_async(struct work_struct *work)
692 {
693 struct r5l_log *log = container_of(work, struct r5l_log,
694 disable_writeback_work);
695 struct mddev *mddev = log->rdev->mddev;
696 struct r5conf *conf = mddev->private;
697 int locked = 0;
698
699 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
700 return;
701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
702 mdname(mddev));
703
704 /* wait superblock change before suspend */
705 wait_event(mddev->sb_wait,
706 conf->log == NULL ||
707 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
708 (locked = mddev_trylock(mddev))));
709 if (locked) {
710 mddev_suspend(mddev);
711 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
712 mddev_resume(mddev);
713 mddev_unlock(mddev);
714 }
715 }
716
717 static void r5l_submit_current_io(struct r5l_log *log)
718 {
719 struct r5l_io_unit *io = log->current_io;
720 struct bio *bio;
721 struct r5l_meta_block *block;
722 unsigned long flags;
723 u32 crc;
724 bool do_submit = true;
725
726 if (!io)
727 return;
728
729 block = page_address(io->meta_page);
730 block->meta_size = cpu_to_le32(io->meta_offset);
731 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
732 block->checksum = cpu_to_le32(crc);
733 bio = io->current_bio;
734
735 log->current_io = NULL;
736 spin_lock_irqsave(&log->io_list_lock, flags);
737 if (io->has_flush || io->has_fua) {
738 if (io != list_first_entry(&log->running_ios,
739 struct r5l_io_unit, log_sibling)) {
740 io->io_deferred = 1;
741 do_submit = false;
742 }
743 }
744 spin_unlock_irqrestore(&log->io_list_lock, flags);
745 if (do_submit)
746 r5l_do_submit_io(log, io);
747 }
748
749 static struct bio *r5l_bio_alloc(struct r5l_log *log)
750 {
751 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
752
753 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
754 bio_set_dev(bio, log->rdev->bdev);
755 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
756
757 return bio;
758 }
759
760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
761 {
762 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
763
764 r5c_update_log_state(log);
765 /*
766 * If we filled up the log device start from the beginning again,
767 * which will require a new bio.
768 *
769 * Note: for this to work properly the log size needs to me a multiple
770 * of BLOCK_SECTORS.
771 */
772 if (log->log_start == 0)
773 io->need_split_bio = true;
774
775 io->log_end = log->log_start;
776 }
777
778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
779 {
780 struct r5l_io_unit *io;
781 struct r5l_meta_block *block;
782
783 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
784 if (!io)
785 return NULL;
786 memset(io, 0, sizeof(*io));
787
788 io->log = log;
789 INIT_LIST_HEAD(&io->log_sibling);
790 INIT_LIST_HEAD(&io->stripe_list);
791 bio_list_init(&io->flush_barriers);
792 io->state = IO_UNIT_RUNNING;
793
794 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
795 block = page_address(io->meta_page);
796 clear_page(block);
797 block->magic = cpu_to_le32(R5LOG_MAGIC);
798 block->version = R5LOG_VERSION;
799 block->seq = cpu_to_le64(log->seq);
800 block->position = cpu_to_le64(log->log_start);
801
802 io->log_start = log->log_start;
803 io->meta_offset = sizeof(struct r5l_meta_block);
804 io->seq = log->seq++;
805
806 io->current_bio = r5l_bio_alloc(log);
807 io->current_bio->bi_end_io = r5l_log_endio;
808 io->current_bio->bi_private = io;
809 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
810
811 r5_reserve_log_entry(log, io);
812
813 spin_lock_irq(&log->io_list_lock);
814 list_add_tail(&io->log_sibling, &log->running_ios);
815 spin_unlock_irq(&log->io_list_lock);
816
817 return io;
818 }
819
820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
821 {
822 if (log->current_io &&
823 log->current_io->meta_offset + payload_size > PAGE_SIZE)
824 r5l_submit_current_io(log);
825
826 if (!log->current_io) {
827 log->current_io = r5l_new_meta(log);
828 if (!log->current_io)
829 return -ENOMEM;
830 }
831
832 return 0;
833 }
834
835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
836 sector_t location,
837 u32 checksum1, u32 checksum2,
838 bool checksum2_valid)
839 {
840 struct r5l_io_unit *io = log->current_io;
841 struct r5l_payload_data_parity *payload;
842
843 payload = page_address(io->meta_page) + io->meta_offset;
844 payload->header.type = cpu_to_le16(type);
845 payload->header.flags = cpu_to_le16(0);
846 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
847 (PAGE_SHIFT - 9));
848 payload->location = cpu_to_le64(location);
849 payload->checksum[0] = cpu_to_le32(checksum1);
850 if (checksum2_valid)
851 payload->checksum[1] = cpu_to_le32(checksum2);
852
853 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
854 sizeof(__le32) * (1 + !!checksum2_valid);
855 }
856
857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
858 {
859 struct r5l_io_unit *io = log->current_io;
860
861 if (io->need_split_bio) {
862 BUG_ON(io->split_bio);
863 io->split_bio = io->current_bio;
864 io->current_bio = r5l_bio_alloc(log);
865 bio_chain(io->current_bio, io->split_bio);
866 io->need_split_bio = false;
867 }
868
869 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
870 BUG();
871
872 r5_reserve_log_entry(log, io);
873 }
874
875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
876 {
877 struct mddev *mddev = log->rdev->mddev;
878 struct r5conf *conf = mddev->private;
879 struct r5l_io_unit *io;
880 struct r5l_payload_flush *payload;
881 int meta_size;
882
883 /*
884 * payload_flush requires extra writes to the journal.
885 * To avoid handling the extra IO in quiesce, just skip
886 * flush_payload
887 */
888 if (conf->quiesce)
889 return;
890
891 mutex_lock(&log->io_mutex);
892 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
893
894 if (r5l_get_meta(log, meta_size)) {
895 mutex_unlock(&log->io_mutex);
896 return;
897 }
898
899 /* current implementation is one stripe per flush payload */
900 io = log->current_io;
901 payload = page_address(io->meta_page) + io->meta_offset;
902 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
903 payload->header.flags = cpu_to_le16(0);
904 payload->size = cpu_to_le32(sizeof(__le64));
905 payload->flush_stripes[0] = cpu_to_le64(sect);
906 io->meta_offset += meta_size;
907 /* multiple flush payloads count as one pending_stripe */
908 if (!io->has_flush_payload) {
909 io->has_flush_payload = 1;
910 atomic_inc(&io->pending_stripe);
911 }
912 mutex_unlock(&log->io_mutex);
913 }
914
915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
916 int data_pages, int parity_pages)
917 {
918 int i;
919 int meta_size;
920 int ret;
921 struct r5l_io_unit *io;
922
923 meta_size =
924 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
925 * data_pages) +
926 sizeof(struct r5l_payload_data_parity) +
927 sizeof(__le32) * parity_pages;
928
929 ret = r5l_get_meta(log, meta_size);
930 if (ret)
931 return ret;
932
933 io = log->current_io;
934
935 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
936 io->has_flush = 1;
937
938 for (i = 0; i < sh->disks; i++) {
939 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
940 test_bit(R5_InJournal, &sh->dev[i].flags))
941 continue;
942 if (i == sh->pd_idx || i == sh->qd_idx)
943 continue;
944 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
945 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
946 io->has_fua = 1;
947 /*
948 * we need to flush journal to make sure recovery can
949 * reach the data with fua flag
950 */
951 io->has_flush = 1;
952 }
953 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
954 raid5_compute_blocknr(sh, i, 0),
955 sh->dev[i].log_checksum, 0, false);
956 r5l_append_payload_page(log, sh->dev[i].page);
957 }
958
959 if (parity_pages == 2) {
960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 sh->dev[sh->qd_idx].log_checksum, true);
963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
964 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
965 } else if (parity_pages == 1) {
966 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
967 sh->sector, sh->dev[sh->pd_idx].log_checksum,
968 0, false);
969 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
970 } else /* Just writing data, not parity, in caching phase */
971 BUG_ON(parity_pages != 0);
972
973 list_add_tail(&sh->log_list, &io->stripe_list);
974 atomic_inc(&io->pending_stripe);
975 sh->log_io = io;
976
977 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
978 return 0;
979
980 if (sh->log_start == MaxSector) {
981 BUG_ON(!list_empty(&sh->r5c));
982 sh->log_start = io->log_start;
983 spin_lock_irq(&log->stripe_in_journal_lock);
984 list_add_tail(&sh->r5c,
985 &log->stripe_in_journal_list);
986 spin_unlock_irq(&log->stripe_in_journal_lock);
987 atomic_inc(&log->stripe_in_journal_count);
988 }
989 return 0;
990 }
991
992 /* add stripe to no_space_stripes, and then wake up reclaim */
993 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
994 struct stripe_head *sh)
995 {
996 spin_lock(&log->no_space_stripes_lock);
997 list_add_tail(&sh->log_list, &log->no_space_stripes);
998 spin_unlock(&log->no_space_stripes_lock);
999 }
1000
1001 /*
1002 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1003 * data from log to raid disks), so we shouldn't wait for reclaim here
1004 */
1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1006 {
1007 struct r5conf *conf = sh->raid_conf;
1008 int write_disks = 0;
1009 int data_pages, parity_pages;
1010 int reserve;
1011 int i;
1012 int ret = 0;
1013 bool wake_reclaim = false;
1014
1015 if (!log)
1016 return -EAGAIN;
1017 /* Don't support stripe batch */
1018 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1019 test_bit(STRIPE_SYNCING, &sh->state)) {
1020 /* the stripe is written to log, we start writing it to raid */
1021 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1022 return -EAGAIN;
1023 }
1024
1025 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1026
1027 for (i = 0; i < sh->disks; i++) {
1028 void *addr;
1029
1030 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1031 test_bit(R5_InJournal, &sh->dev[i].flags))
1032 continue;
1033
1034 write_disks++;
1035 /* checksum is already calculated in last run */
1036 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1037 continue;
1038 addr = kmap_atomic(sh->dev[i].page);
1039 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1040 addr, PAGE_SIZE);
1041 kunmap_atomic(addr);
1042 }
1043 parity_pages = 1 + !!(sh->qd_idx >= 0);
1044 data_pages = write_disks - parity_pages;
1045
1046 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1047 /*
1048 * The stripe must enter state machine again to finish the write, so
1049 * don't delay.
1050 */
1051 clear_bit(STRIPE_DELAYED, &sh->state);
1052 atomic_inc(&sh->count);
1053
1054 mutex_lock(&log->io_mutex);
1055 /* meta + data */
1056 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1057
1058 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1059 if (!r5l_has_free_space(log, reserve)) {
1060 r5l_add_no_space_stripe(log, sh);
1061 wake_reclaim = true;
1062 } else {
1063 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1064 if (ret) {
1065 spin_lock_irq(&log->io_list_lock);
1066 list_add_tail(&sh->log_list,
1067 &log->no_mem_stripes);
1068 spin_unlock_irq(&log->io_list_lock);
1069 }
1070 }
1071 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1072 /*
1073 * log space critical, do not process stripes that are
1074 * not in cache yet (sh->log_start == MaxSector).
1075 */
1076 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1077 sh->log_start == MaxSector) {
1078 r5l_add_no_space_stripe(log, sh);
1079 wake_reclaim = true;
1080 reserve = 0;
1081 } else if (!r5l_has_free_space(log, reserve)) {
1082 if (sh->log_start == log->last_checkpoint)
1083 BUG();
1084 else
1085 r5l_add_no_space_stripe(log, sh);
1086 } else {
1087 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1088 if (ret) {
1089 spin_lock_irq(&log->io_list_lock);
1090 list_add_tail(&sh->log_list,
1091 &log->no_mem_stripes);
1092 spin_unlock_irq(&log->io_list_lock);
1093 }
1094 }
1095 }
1096
1097 mutex_unlock(&log->io_mutex);
1098 if (wake_reclaim)
1099 r5l_wake_reclaim(log, reserve);
1100 return 0;
1101 }
1102
1103 void r5l_write_stripe_run(struct r5l_log *log)
1104 {
1105 if (!log)
1106 return;
1107 mutex_lock(&log->io_mutex);
1108 r5l_submit_current_io(log);
1109 mutex_unlock(&log->io_mutex);
1110 }
1111
1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1113 {
1114 if (!log)
1115 return -ENODEV;
1116
1117 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1118 /*
1119 * in write through (journal only)
1120 * we flush log disk cache first, then write stripe data to
1121 * raid disks. So if bio is finished, the log disk cache is
1122 * flushed already. The recovery guarantees we can recovery
1123 * the bio from log disk, so we don't need to flush again
1124 */
1125 if (bio->bi_iter.bi_size == 0) {
1126 bio_endio(bio);
1127 return 0;
1128 }
1129 bio->bi_opf &= ~REQ_PREFLUSH;
1130 } else {
1131 /* write back (with cache) */
1132 if (bio->bi_iter.bi_size == 0) {
1133 mutex_lock(&log->io_mutex);
1134 r5l_get_meta(log, 0);
1135 bio_list_add(&log->current_io->flush_barriers, bio);
1136 log->current_io->has_flush = 1;
1137 log->current_io->has_null_flush = 1;
1138 atomic_inc(&log->current_io->pending_stripe);
1139 r5l_submit_current_io(log);
1140 mutex_unlock(&log->io_mutex);
1141 return 0;
1142 }
1143 }
1144 return -EAGAIN;
1145 }
1146
1147 /* This will run after log space is reclaimed */
1148 static void r5l_run_no_space_stripes(struct r5l_log *log)
1149 {
1150 struct stripe_head *sh;
1151
1152 spin_lock(&log->no_space_stripes_lock);
1153 while (!list_empty(&log->no_space_stripes)) {
1154 sh = list_first_entry(&log->no_space_stripes,
1155 struct stripe_head, log_list);
1156 list_del_init(&sh->log_list);
1157 set_bit(STRIPE_HANDLE, &sh->state);
1158 raid5_release_stripe(sh);
1159 }
1160 spin_unlock(&log->no_space_stripes_lock);
1161 }
1162
1163 /*
1164 * calculate new last_checkpoint
1165 * for write through mode, returns log->next_checkpoint
1166 * for write back, returns log_start of first sh in stripe_in_journal_list
1167 */
1168 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1169 {
1170 struct stripe_head *sh;
1171 struct r5l_log *log = conf->log;
1172 sector_t new_cp;
1173 unsigned long flags;
1174
1175 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1176 return log->next_checkpoint;
1177
1178 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1179 if (list_empty(&conf->log->stripe_in_journal_list)) {
1180 /* all stripes flushed */
1181 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1182 return log->next_checkpoint;
1183 }
1184 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1185 struct stripe_head, r5c);
1186 new_cp = sh->log_start;
1187 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1188 return new_cp;
1189 }
1190
1191 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1192 {
1193 struct r5conf *conf = log->rdev->mddev->private;
1194
1195 return r5l_ring_distance(log, log->last_checkpoint,
1196 r5c_calculate_new_cp(conf));
1197 }
1198
1199 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1200 {
1201 struct stripe_head *sh;
1202
1203 lockdep_assert_held(&log->io_list_lock);
1204
1205 if (!list_empty(&log->no_mem_stripes)) {
1206 sh = list_first_entry(&log->no_mem_stripes,
1207 struct stripe_head, log_list);
1208 list_del_init(&sh->log_list);
1209 set_bit(STRIPE_HANDLE, &sh->state);
1210 raid5_release_stripe(sh);
1211 }
1212 }
1213
1214 static bool r5l_complete_finished_ios(struct r5l_log *log)
1215 {
1216 struct r5l_io_unit *io, *next;
1217 bool found = false;
1218
1219 lockdep_assert_held(&log->io_list_lock);
1220
1221 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1222 /* don't change list order */
1223 if (io->state < IO_UNIT_STRIPE_END)
1224 break;
1225
1226 log->next_checkpoint = io->log_start;
1227
1228 list_del(&io->log_sibling);
1229 mempool_free(io, log->io_pool);
1230 r5l_run_no_mem_stripe(log);
1231
1232 found = true;
1233 }
1234
1235 return found;
1236 }
1237
1238 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1239 {
1240 struct r5l_log *log = io->log;
1241 struct r5conf *conf = log->rdev->mddev->private;
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&log->io_list_lock, flags);
1245 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1246
1247 if (!r5l_complete_finished_ios(log)) {
1248 spin_unlock_irqrestore(&log->io_list_lock, flags);
1249 return;
1250 }
1251
1252 if (r5l_reclaimable_space(log) > log->max_free_space ||
1253 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1254 r5l_wake_reclaim(log, 0);
1255
1256 spin_unlock_irqrestore(&log->io_list_lock, flags);
1257 wake_up(&log->iounit_wait);
1258 }
1259
1260 void r5l_stripe_write_finished(struct stripe_head *sh)
1261 {
1262 struct r5l_io_unit *io;
1263
1264 io = sh->log_io;
1265 sh->log_io = NULL;
1266
1267 if (io && atomic_dec_and_test(&io->pending_stripe))
1268 __r5l_stripe_write_finished(io);
1269 }
1270
1271 static void r5l_log_flush_endio(struct bio *bio)
1272 {
1273 struct r5l_log *log = container_of(bio, struct r5l_log,
1274 flush_bio);
1275 unsigned long flags;
1276 struct r5l_io_unit *io;
1277
1278 if (bio->bi_status)
1279 md_error(log->rdev->mddev, log->rdev);
1280
1281 spin_lock_irqsave(&log->io_list_lock, flags);
1282 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1283 r5l_io_run_stripes(io);
1284 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1285 spin_unlock_irqrestore(&log->io_list_lock, flags);
1286 }
1287
1288 /*
1289 * Starting dispatch IO to raid.
1290 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1291 * broken meta in the middle of a log causes recovery can't find meta at the
1292 * head of log. If operations require meta at the head persistent in log, we
1293 * must make sure meta before it persistent in log too. A case is:
1294 *
1295 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1296 * data/parity must be persistent in log before we do the write to raid disks.
1297 *
1298 * The solution is we restrictly maintain io_unit list order. In this case, we
1299 * only write stripes of an io_unit to raid disks till the io_unit is the first
1300 * one whose data/parity is in log.
1301 */
1302 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1303 {
1304 bool do_flush;
1305
1306 if (!log || !log->need_cache_flush)
1307 return;
1308
1309 spin_lock_irq(&log->io_list_lock);
1310 /* flush bio is running */
1311 if (!list_empty(&log->flushing_ios)) {
1312 spin_unlock_irq(&log->io_list_lock);
1313 return;
1314 }
1315 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1316 do_flush = !list_empty(&log->flushing_ios);
1317 spin_unlock_irq(&log->io_list_lock);
1318
1319 if (!do_flush)
1320 return;
1321 bio_reset(&log->flush_bio);
1322 bio_set_dev(&log->flush_bio, log->rdev->bdev);
1323 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1324 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1325 submit_bio(&log->flush_bio);
1326 }
1327
1328 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1329 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1330 sector_t end)
1331 {
1332 struct block_device *bdev = log->rdev->bdev;
1333 struct mddev *mddev;
1334
1335 r5l_write_super(log, end);
1336
1337 if (!blk_queue_discard(bdev_get_queue(bdev)))
1338 return;
1339
1340 mddev = log->rdev->mddev;
1341 /*
1342 * Discard could zero data, so before discard we must make sure
1343 * superblock is updated to new log tail. Updating superblock (either
1344 * directly call md_update_sb() or depend on md thread) must hold
1345 * reconfig mutex. On the other hand, raid5_quiesce is called with
1346 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1347 * for all IO finish, hence waitting for reclaim thread, while reclaim
1348 * thread is calling this function and waitting for reconfig mutex. So
1349 * there is a deadlock. We workaround this issue with a trylock.
1350 * FIXME: we could miss discard if we can't take reconfig mutex
1351 */
1352 set_mask_bits(&mddev->sb_flags, 0,
1353 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1354 if (!mddev_trylock(mddev))
1355 return;
1356 md_update_sb(mddev, 1);
1357 mddev_unlock(mddev);
1358
1359 /* discard IO error really doesn't matter, ignore it */
1360 if (log->last_checkpoint < end) {
1361 blkdev_issue_discard(bdev,
1362 log->last_checkpoint + log->rdev->data_offset,
1363 end - log->last_checkpoint, GFP_NOIO, 0);
1364 } else {
1365 blkdev_issue_discard(bdev,
1366 log->last_checkpoint + log->rdev->data_offset,
1367 log->device_size - log->last_checkpoint,
1368 GFP_NOIO, 0);
1369 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1370 GFP_NOIO, 0);
1371 }
1372 }
1373
1374 /*
1375 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1376 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1377 *
1378 * must hold conf->device_lock
1379 */
1380 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1381 {
1382 BUG_ON(list_empty(&sh->lru));
1383 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1384 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1385
1386 /*
1387 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1388 * raid5_release_stripe() while holding conf->device_lock
1389 */
1390 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1391 lockdep_assert_held(&conf->device_lock);
1392
1393 list_del_init(&sh->lru);
1394 atomic_inc(&sh->count);
1395
1396 set_bit(STRIPE_HANDLE, &sh->state);
1397 atomic_inc(&conf->active_stripes);
1398 r5c_make_stripe_write_out(sh);
1399
1400 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1401 atomic_inc(&conf->r5c_flushing_partial_stripes);
1402 else
1403 atomic_inc(&conf->r5c_flushing_full_stripes);
1404 raid5_release_stripe(sh);
1405 }
1406
1407 /*
1408 * if num == 0, flush all full stripes
1409 * if num > 0, flush all full stripes. If less than num full stripes are
1410 * flushed, flush some partial stripes until totally num stripes are
1411 * flushed or there is no more cached stripes.
1412 */
1413 void r5c_flush_cache(struct r5conf *conf, int num)
1414 {
1415 int count;
1416 struct stripe_head *sh, *next;
1417
1418 lockdep_assert_held(&conf->device_lock);
1419 if (!conf->log)
1420 return;
1421
1422 count = 0;
1423 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1424 r5c_flush_stripe(conf, sh);
1425 count++;
1426 }
1427
1428 if (count >= num)
1429 return;
1430 list_for_each_entry_safe(sh, next,
1431 &conf->r5c_partial_stripe_list, lru) {
1432 r5c_flush_stripe(conf, sh);
1433 if (++count >= num)
1434 break;
1435 }
1436 }
1437
1438 static void r5c_do_reclaim(struct r5conf *conf)
1439 {
1440 struct r5l_log *log = conf->log;
1441 struct stripe_head *sh;
1442 int count = 0;
1443 unsigned long flags;
1444 int total_cached;
1445 int stripes_to_flush;
1446 int flushing_partial, flushing_full;
1447
1448 if (!r5c_is_writeback(log))
1449 return;
1450
1451 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1452 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1453 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1454 atomic_read(&conf->r5c_cached_full_stripes) -
1455 flushing_full - flushing_partial;
1456
1457 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1458 atomic_read(&conf->empty_inactive_list_nr) > 0)
1459 /*
1460 * if stripe cache pressure high, flush all full stripes and
1461 * some partial stripes
1462 */
1463 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1464 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1465 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1466 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1467 /*
1468 * if stripe cache pressure moderate, or if there is many full
1469 * stripes,flush all full stripes
1470 */
1471 stripes_to_flush = 0;
1472 else
1473 /* no need to flush */
1474 stripes_to_flush = -1;
1475
1476 if (stripes_to_flush >= 0) {
1477 spin_lock_irqsave(&conf->device_lock, flags);
1478 r5c_flush_cache(conf, stripes_to_flush);
1479 spin_unlock_irqrestore(&conf->device_lock, flags);
1480 }
1481
1482 /* if log space is tight, flush stripes on stripe_in_journal_list */
1483 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1484 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1485 spin_lock(&conf->device_lock);
1486 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1487 /*
1488 * stripes on stripe_in_journal_list could be in any
1489 * state of the stripe_cache state machine. In this
1490 * case, we only want to flush stripe on
1491 * r5c_cached_full/partial_stripes. The following
1492 * condition makes sure the stripe is on one of the
1493 * two lists.
1494 */
1495 if (!list_empty(&sh->lru) &&
1496 !test_bit(STRIPE_HANDLE, &sh->state) &&
1497 atomic_read(&sh->count) == 0) {
1498 r5c_flush_stripe(conf, sh);
1499 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1500 break;
1501 }
1502 }
1503 spin_unlock(&conf->device_lock);
1504 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1505 }
1506
1507 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1508 r5l_run_no_space_stripes(log);
1509
1510 md_wakeup_thread(conf->mddev->thread);
1511 }
1512
1513 static void r5l_do_reclaim(struct r5l_log *log)
1514 {
1515 struct r5conf *conf = log->rdev->mddev->private;
1516 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1517 sector_t reclaimable;
1518 sector_t next_checkpoint;
1519 bool write_super;
1520
1521 spin_lock_irq(&log->io_list_lock);
1522 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1523 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1524 /*
1525 * move proper io_unit to reclaim list. We should not change the order.
1526 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1527 * shouldn't reuse space of an unreclaimable io_unit
1528 */
1529 while (1) {
1530 reclaimable = r5l_reclaimable_space(log);
1531 if (reclaimable >= reclaim_target ||
1532 (list_empty(&log->running_ios) &&
1533 list_empty(&log->io_end_ios) &&
1534 list_empty(&log->flushing_ios) &&
1535 list_empty(&log->finished_ios)))
1536 break;
1537
1538 md_wakeup_thread(log->rdev->mddev->thread);
1539 wait_event_lock_irq(log->iounit_wait,
1540 r5l_reclaimable_space(log) > reclaimable,
1541 log->io_list_lock);
1542 }
1543
1544 next_checkpoint = r5c_calculate_new_cp(conf);
1545 spin_unlock_irq(&log->io_list_lock);
1546
1547 if (reclaimable == 0 || !write_super)
1548 return;
1549
1550 /*
1551 * write_super will flush cache of each raid disk. We must write super
1552 * here, because the log area might be reused soon and we don't want to
1553 * confuse recovery
1554 */
1555 r5l_write_super_and_discard_space(log, next_checkpoint);
1556
1557 mutex_lock(&log->io_mutex);
1558 log->last_checkpoint = next_checkpoint;
1559 r5c_update_log_state(log);
1560 mutex_unlock(&log->io_mutex);
1561
1562 r5l_run_no_space_stripes(log);
1563 }
1564
1565 static void r5l_reclaim_thread(struct md_thread *thread)
1566 {
1567 struct mddev *mddev = thread->mddev;
1568 struct r5conf *conf = mddev->private;
1569 struct r5l_log *log = conf->log;
1570
1571 if (!log)
1572 return;
1573 r5c_do_reclaim(conf);
1574 r5l_do_reclaim(log);
1575 }
1576
1577 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1578 {
1579 unsigned long target;
1580 unsigned long new = (unsigned long)space; /* overflow in theory */
1581
1582 if (!log)
1583 return;
1584 do {
1585 target = log->reclaim_target;
1586 if (new < target)
1587 return;
1588 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1589 md_wakeup_thread(log->reclaim_thread);
1590 }
1591
1592 void r5l_quiesce(struct r5l_log *log, int quiesce)
1593 {
1594 struct mddev *mddev;
1595 if (!log)
1596 return;
1597
1598 if (quiesce) {
1599 /* make sure r5l_write_super_and_discard_space exits */
1600 mddev = log->rdev->mddev;
1601 wake_up(&mddev->sb_wait);
1602 kthread_park(log->reclaim_thread->tsk);
1603 r5l_wake_reclaim(log, MaxSector);
1604 r5l_do_reclaim(log);
1605 } else
1606 kthread_unpark(log->reclaim_thread->tsk);
1607 }
1608
1609 bool r5l_log_disk_error(struct r5conf *conf)
1610 {
1611 struct r5l_log *log;
1612 bool ret;
1613 /* don't allow write if journal disk is missing */
1614 rcu_read_lock();
1615 log = rcu_dereference(conf->log);
1616
1617 if (!log)
1618 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1619 else
1620 ret = test_bit(Faulty, &log->rdev->flags);
1621 rcu_read_unlock();
1622 return ret;
1623 }
1624
1625 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1626
1627 struct r5l_recovery_ctx {
1628 struct page *meta_page; /* current meta */
1629 sector_t meta_total_blocks; /* total size of current meta and data */
1630 sector_t pos; /* recovery position */
1631 u64 seq; /* recovery position seq */
1632 int data_parity_stripes; /* number of data_parity stripes */
1633 int data_only_stripes; /* number of data_only stripes */
1634 struct list_head cached_list;
1635
1636 /*
1637 * read ahead page pool (ra_pool)
1638 * in recovery, log is read sequentially. It is not efficient to
1639 * read every page with sync_page_io(). The read ahead page pool
1640 * reads multiple pages with one IO, so further log read can
1641 * just copy data from the pool.
1642 */
1643 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1644 sector_t pool_offset; /* offset of first page in the pool */
1645 int total_pages; /* total allocated pages */
1646 int valid_pages; /* pages with valid data */
1647 struct bio *ra_bio; /* bio to do the read ahead */
1648 };
1649
1650 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1651 struct r5l_recovery_ctx *ctx)
1652 {
1653 struct page *page;
1654
1655 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1656 if (!ctx->ra_bio)
1657 return -ENOMEM;
1658
1659 ctx->valid_pages = 0;
1660 ctx->total_pages = 0;
1661 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1662 page = alloc_page(GFP_KERNEL);
1663
1664 if (!page)
1665 break;
1666 ctx->ra_pool[ctx->total_pages] = page;
1667 ctx->total_pages += 1;
1668 }
1669
1670 if (ctx->total_pages == 0) {
1671 bio_put(ctx->ra_bio);
1672 return -ENOMEM;
1673 }
1674
1675 ctx->pool_offset = 0;
1676 return 0;
1677 }
1678
1679 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1680 struct r5l_recovery_ctx *ctx)
1681 {
1682 int i;
1683
1684 for (i = 0; i < ctx->total_pages; ++i)
1685 put_page(ctx->ra_pool[i]);
1686 bio_put(ctx->ra_bio);
1687 }
1688
1689 /*
1690 * fetch ctx->valid_pages pages from offset
1691 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1692 * However, if the offset is close to the end of the journal device,
1693 * ctx->valid_pages could be smaller than ctx->total_pages
1694 */
1695 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1696 struct r5l_recovery_ctx *ctx,
1697 sector_t offset)
1698 {
1699 bio_reset(ctx->ra_bio);
1700 bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1701 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1702 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1703
1704 ctx->valid_pages = 0;
1705 ctx->pool_offset = offset;
1706
1707 while (ctx->valid_pages < ctx->total_pages) {
1708 bio_add_page(ctx->ra_bio,
1709 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1710 ctx->valid_pages += 1;
1711
1712 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1713
1714 if (offset == 0) /* reached end of the device */
1715 break;
1716 }
1717
1718 return submit_bio_wait(ctx->ra_bio);
1719 }
1720
1721 /*
1722 * try read a page from the read ahead page pool, if the page is not in the
1723 * pool, call r5l_recovery_fetch_ra_pool
1724 */
1725 static int r5l_recovery_read_page(struct r5l_log *log,
1726 struct r5l_recovery_ctx *ctx,
1727 struct page *page,
1728 sector_t offset)
1729 {
1730 int ret;
1731
1732 if (offset < ctx->pool_offset ||
1733 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1734 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1735 if (ret)
1736 return ret;
1737 }
1738
1739 BUG_ON(offset < ctx->pool_offset ||
1740 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1741
1742 memcpy(page_address(page),
1743 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1744 BLOCK_SECTOR_SHIFT]),
1745 PAGE_SIZE);
1746 return 0;
1747 }
1748
1749 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1750 struct r5l_recovery_ctx *ctx)
1751 {
1752 struct page *page = ctx->meta_page;
1753 struct r5l_meta_block *mb;
1754 u32 crc, stored_crc;
1755 int ret;
1756
1757 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1758 if (ret != 0)
1759 return ret;
1760
1761 mb = page_address(page);
1762 stored_crc = le32_to_cpu(mb->checksum);
1763 mb->checksum = 0;
1764
1765 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1766 le64_to_cpu(mb->seq) != ctx->seq ||
1767 mb->version != R5LOG_VERSION ||
1768 le64_to_cpu(mb->position) != ctx->pos)
1769 return -EINVAL;
1770
1771 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1772 if (stored_crc != crc)
1773 return -EINVAL;
1774
1775 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1776 return -EINVAL;
1777
1778 ctx->meta_total_blocks = BLOCK_SECTORS;
1779
1780 return 0;
1781 }
1782
1783 static void
1784 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1785 struct page *page,
1786 sector_t pos, u64 seq)
1787 {
1788 struct r5l_meta_block *mb;
1789
1790 mb = page_address(page);
1791 clear_page(mb);
1792 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1793 mb->version = R5LOG_VERSION;
1794 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1795 mb->seq = cpu_to_le64(seq);
1796 mb->position = cpu_to_le64(pos);
1797 }
1798
1799 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1800 u64 seq)
1801 {
1802 struct page *page;
1803 struct r5l_meta_block *mb;
1804
1805 page = alloc_page(GFP_KERNEL);
1806 if (!page)
1807 return -ENOMEM;
1808 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1809 mb = page_address(page);
1810 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1811 mb, PAGE_SIZE));
1812 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1813 REQ_SYNC | REQ_FUA, false)) {
1814 __free_page(page);
1815 return -EIO;
1816 }
1817 __free_page(page);
1818 return 0;
1819 }
1820
1821 /*
1822 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1823 * to mark valid (potentially not flushed) data in the journal.
1824 *
1825 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1826 * so there should not be any mismatch here.
1827 */
1828 static void r5l_recovery_load_data(struct r5l_log *log,
1829 struct stripe_head *sh,
1830 struct r5l_recovery_ctx *ctx,
1831 struct r5l_payload_data_parity *payload,
1832 sector_t log_offset)
1833 {
1834 struct mddev *mddev = log->rdev->mddev;
1835 struct r5conf *conf = mddev->private;
1836 int dd_idx;
1837
1838 raid5_compute_sector(conf,
1839 le64_to_cpu(payload->location), 0,
1840 &dd_idx, sh);
1841 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1842 sh->dev[dd_idx].log_checksum =
1843 le32_to_cpu(payload->checksum[0]);
1844 ctx->meta_total_blocks += BLOCK_SECTORS;
1845
1846 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1847 set_bit(STRIPE_R5C_CACHING, &sh->state);
1848 }
1849
1850 static void r5l_recovery_load_parity(struct r5l_log *log,
1851 struct stripe_head *sh,
1852 struct r5l_recovery_ctx *ctx,
1853 struct r5l_payload_data_parity *payload,
1854 sector_t log_offset)
1855 {
1856 struct mddev *mddev = log->rdev->mddev;
1857 struct r5conf *conf = mddev->private;
1858
1859 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1860 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1861 sh->dev[sh->pd_idx].log_checksum =
1862 le32_to_cpu(payload->checksum[0]);
1863 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1864
1865 if (sh->qd_idx >= 0) {
1866 r5l_recovery_read_page(
1867 log, ctx, sh->dev[sh->qd_idx].page,
1868 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1869 sh->dev[sh->qd_idx].log_checksum =
1870 le32_to_cpu(payload->checksum[1]);
1871 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1872 }
1873 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1874 }
1875
1876 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1877 {
1878 int i;
1879
1880 sh->state = 0;
1881 sh->log_start = MaxSector;
1882 for (i = sh->disks; i--; )
1883 sh->dev[i].flags = 0;
1884 }
1885
1886 static void
1887 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1888 struct stripe_head *sh,
1889 struct r5l_recovery_ctx *ctx)
1890 {
1891 struct md_rdev *rdev, *rrdev;
1892 int disk_index;
1893 int data_count = 0;
1894
1895 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1896 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1897 continue;
1898 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1899 continue;
1900 data_count++;
1901 }
1902
1903 /*
1904 * stripes that only have parity must have been flushed
1905 * before the crash that we are now recovering from, so
1906 * there is nothing more to recovery.
1907 */
1908 if (data_count == 0)
1909 goto out;
1910
1911 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1912 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1913 continue;
1914
1915 /* in case device is broken */
1916 rcu_read_lock();
1917 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1918 if (rdev) {
1919 atomic_inc(&rdev->nr_pending);
1920 rcu_read_unlock();
1921 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1922 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1923 false);
1924 rdev_dec_pending(rdev, rdev->mddev);
1925 rcu_read_lock();
1926 }
1927 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1928 if (rrdev) {
1929 atomic_inc(&rrdev->nr_pending);
1930 rcu_read_unlock();
1931 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1932 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1933 false);
1934 rdev_dec_pending(rrdev, rrdev->mddev);
1935 rcu_read_lock();
1936 }
1937 rcu_read_unlock();
1938 }
1939 ctx->data_parity_stripes++;
1940 out:
1941 r5l_recovery_reset_stripe(sh);
1942 }
1943
1944 static struct stripe_head *
1945 r5c_recovery_alloc_stripe(struct r5conf *conf,
1946 sector_t stripe_sect)
1947 {
1948 struct stripe_head *sh;
1949
1950 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1951 if (!sh)
1952 return NULL; /* no more stripe available */
1953
1954 r5l_recovery_reset_stripe(sh);
1955
1956 return sh;
1957 }
1958
1959 static struct stripe_head *
1960 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1961 {
1962 struct stripe_head *sh;
1963
1964 list_for_each_entry(sh, list, lru)
1965 if (sh->sector == sect)
1966 return sh;
1967 return NULL;
1968 }
1969
1970 static void
1971 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1972 struct r5l_recovery_ctx *ctx)
1973 {
1974 struct stripe_head *sh, *next;
1975
1976 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1977 r5l_recovery_reset_stripe(sh);
1978 list_del_init(&sh->lru);
1979 raid5_release_stripe(sh);
1980 }
1981 }
1982
1983 static void
1984 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1985 struct r5l_recovery_ctx *ctx)
1986 {
1987 struct stripe_head *sh, *next;
1988
1989 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1990 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1991 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1992 list_del_init(&sh->lru);
1993 raid5_release_stripe(sh);
1994 }
1995 }
1996
1997 /* if matches return 0; otherwise return -EINVAL */
1998 static int
1999 r5l_recovery_verify_data_checksum(struct r5l_log *log,
2000 struct r5l_recovery_ctx *ctx,
2001 struct page *page,
2002 sector_t log_offset, __le32 log_checksum)
2003 {
2004 void *addr;
2005 u32 checksum;
2006
2007 r5l_recovery_read_page(log, ctx, page, log_offset);
2008 addr = kmap_atomic(page);
2009 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2010 kunmap_atomic(addr);
2011 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2012 }
2013
2014 /*
2015 * before loading data to stripe cache, we need verify checksum for all data,
2016 * if there is mismatch for any data page, we drop all data in the mata block
2017 */
2018 static int
2019 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2020 struct r5l_recovery_ctx *ctx)
2021 {
2022 struct mddev *mddev = log->rdev->mddev;
2023 struct r5conf *conf = mddev->private;
2024 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2025 sector_t mb_offset = sizeof(struct r5l_meta_block);
2026 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2027 struct page *page;
2028 struct r5l_payload_data_parity *payload;
2029 struct r5l_payload_flush *payload_flush;
2030
2031 page = alloc_page(GFP_KERNEL);
2032 if (!page)
2033 return -ENOMEM;
2034
2035 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2036 payload = (void *)mb + mb_offset;
2037 payload_flush = (void *)mb + mb_offset;
2038
2039 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2040 if (r5l_recovery_verify_data_checksum(
2041 log, ctx, page, log_offset,
2042 payload->checksum[0]) < 0)
2043 goto mismatch;
2044 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2045 if (r5l_recovery_verify_data_checksum(
2046 log, ctx, page, log_offset,
2047 payload->checksum[0]) < 0)
2048 goto mismatch;
2049 if (conf->max_degraded == 2 && /* q for RAID 6 */
2050 r5l_recovery_verify_data_checksum(
2051 log, ctx, page,
2052 r5l_ring_add(log, log_offset,
2053 BLOCK_SECTORS),
2054 payload->checksum[1]) < 0)
2055 goto mismatch;
2056 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2057 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2058 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2059 goto mismatch;
2060
2061 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2062 mb_offset += sizeof(struct r5l_payload_flush) +
2063 le32_to_cpu(payload_flush->size);
2064 } else {
2065 /* DATA or PARITY payload */
2066 log_offset = r5l_ring_add(log, log_offset,
2067 le32_to_cpu(payload->size));
2068 mb_offset += sizeof(struct r5l_payload_data_parity) +
2069 sizeof(__le32) *
2070 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2071 }
2072
2073 }
2074
2075 put_page(page);
2076 return 0;
2077
2078 mismatch:
2079 put_page(page);
2080 return -EINVAL;
2081 }
2082
2083 /*
2084 * Analyze all data/parity pages in one meta block
2085 * Returns:
2086 * 0 for success
2087 * -EINVAL for unknown playload type
2088 * -EAGAIN for checksum mismatch of data page
2089 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2090 */
2091 static int
2092 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2093 struct r5l_recovery_ctx *ctx,
2094 struct list_head *cached_stripe_list)
2095 {
2096 struct mddev *mddev = log->rdev->mddev;
2097 struct r5conf *conf = mddev->private;
2098 struct r5l_meta_block *mb;
2099 struct r5l_payload_data_parity *payload;
2100 struct r5l_payload_flush *payload_flush;
2101 int mb_offset;
2102 sector_t log_offset;
2103 sector_t stripe_sect;
2104 struct stripe_head *sh;
2105 int ret;
2106
2107 /*
2108 * for mismatch in data blocks, we will drop all data in this mb, but
2109 * we will still read next mb for other data with FLUSH flag, as
2110 * io_unit could finish out of order.
2111 */
2112 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2113 if (ret == -EINVAL)
2114 return -EAGAIN;
2115 else if (ret)
2116 return ret; /* -ENOMEM duo to alloc_page() failed */
2117
2118 mb = page_address(ctx->meta_page);
2119 mb_offset = sizeof(struct r5l_meta_block);
2120 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2121
2122 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2123 int dd;
2124
2125 payload = (void *)mb + mb_offset;
2126 payload_flush = (void *)mb + mb_offset;
2127
2128 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2129 int i, count;
2130
2131 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2132 for (i = 0; i < count; ++i) {
2133 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2134 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2135 stripe_sect);
2136 if (sh) {
2137 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2138 r5l_recovery_reset_stripe(sh);
2139 list_del_init(&sh->lru);
2140 raid5_release_stripe(sh);
2141 }
2142 }
2143
2144 mb_offset += sizeof(struct r5l_payload_flush) +
2145 le32_to_cpu(payload_flush->size);
2146 continue;
2147 }
2148
2149 /* DATA or PARITY payload */
2150 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2151 raid5_compute_sector(
2152 conf, le64_to_cpu(payload->location), 0, &dd,
2153 NULL)
2154 : le64_to_cpu(payload->location);
2155
2156 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2157 stripe_sect);
2158
2159 if (!sh) {
2160 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2161 /*
2162 * cannot get stripe from raid5_get_active_stripe
2163 * try replay some stripes
2164 */
2165 if (!sh) {
2166 r5c_recovery_replay_stripes(
2167 cached_stripe_list, ctx);
2168 sh = r5c_recovery_alloc_stripe(
2169 conf, stripe_sect);
2170 }
2171 if (!sh) {
2172 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2173 mdname(mddev),
2174 conf->min_nr_stripes * 2);
2175 raid5_set_cache_size(mddev,
2176 conf->min_nr_stripes * 2);
2177 sh = r5c_recovery_alloc_stripe(conf,
2178 stripe_sect);
2179 }
2180 if (!sh) {
2181 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2182 mdname(mddev));
2183 return -ENOMEM;
2184 }
2185 list_add_tail(&sh->lru, cached_stripe_list);
2186 }
2187
2188 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2189 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2190 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2191 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2192 list_move_tail(&sh->lru, cached_stripe_list);
2193 }
2194 r5l_recovery_load_data(log, sh, ctx, payload,
2195 log_offset);
2196 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2197 r5l_recovery_load_parity(log, sh, ctx, payload,
2198 log_offset);
2199 else
2200 return -EINVAL;
2201
2202 log_offset = r5l_ring_add(log, log_offset,
2203 le32_to_cpu(payload->size));
2204
2205 mb_offset += sizeof(struct r5l_payload_data_parity) +
2206 sizeof(__le32) *
2207 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2208 }
2209
2210 return 0;
2211 }
2212
2213 /*
2214 * Load the stripe into cache. The stripe will be written out later by
2215 * the stripe cache state machine.
2216 */
2217 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2218 struct stripe_head *sh)
2219 {
2220 struct r5dev *dev;
2221 int i;
2222
2223 for (i = sh->disks; i--; ) {
2224 dev = sh->dev + i;
2225 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2226 set_bit(R5_InJournal, &dev->flags);
2227 set_bit(R5_UPTODATE, &dev->flags);
2228 }
2229 }
2230 }
2231
2232 /*
2233 * Scan through the log for all to-be-flushed data
2234 *
2235 * For stripes with data and parity, namely Data-Parity stripe
2236 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2237 *
2238 * For stripes with only data, namely Data-Only stripe
2239 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2240 *
2241 * For a stripe, if we see data after parity, we should discard all previous
2242 * data and parity for this stripe, as these data are already flushed to
2243 * the array.
2244 *
2245 * At the end of the scan, we return the new journal_tail, which points to
2246 * first data-only stripe on the journal device, or next invalid meta block.
2247 */
2248 static int r5c_recovery_flush_log(struct r5l_log *log,
2249 struct r5l_recovery_ctx *ctx)
2250 {
2251 struct stripe_head *sh;
2252 int ret = 0;
2253
2254 /* scan through the log */
2255 while (1) {
2256 if (r5l_recovery_read_meta_block(log, ctx))
2257 break;
2258
2259 ret = r5c_recovery_analyze_meta_block(log, ctx,
2260 &ctx->cached_list);
2261 /*
2262 * -EAGAIN means mismatch in data block, in this case, we still
2263 * try scan the next metablock
2264 */
2265 if (ret && ret != -EAGAIN)
2266 break; /* ret == -EINVAL or -ENOMEM */
2267 ctx->seq++;
2268 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2269 }
2270
2271 if (ret == -ENOMEM) {
2272 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2273 return ret;
2274 }
2275
2276 /* replay data-parity stripes */
2277 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2278
2279 /* load data-only stripes to stripe cache */
2280 list_for_each_entry(sh, &ctx->cached_list, lru) {
2281 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2282 r5c_recovery_load_one_stripe(log, sh);
2283 ctx->data_only_stripes++;
2284 }
2285
2286 return 0;
2287 }
2288
2289 /*
2290 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2291 * log will start here. but we can't let superblock point to last valid
2292 * meta block. The log might looks like:
2293 * | meta 1| meta 2| meta 3|
2294 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2295 * superblock points to meta 1, we write a new valid meta 2n. if crash
2296 * happens again, new recovery will start from meta 1. Since meta 2n is
2297 * valid now, recovery will think meta 3 is valid, which is wrong.
2298 * The solution is we create a new meta in meta2 with its seq == meta
2299 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2300 * will not think meta 3 is a valid meta, because its seq doesn't match
2301 */
2302
2303 /*
2304 * Before recovery, the log looks like the following
2305 *
2306 * ---------------------------------------------
2307 * | valid log | invalid log |
2308 * ---------------------------------------------
2309 * ^
2310 * |- log->last_checkpoint
2311 * |- log->last_cp_seq
2312 *
2313 * Now we scan through the log until we see invalid entry
2314 *
2315 * ---------------------------------------------
2316 * | valid log | invalid log |
2317 * ---------------------------------------------
2318 * ^ ^
2319 * |- log->last_checkpoint |- ctx->pos
2320 * |- log->last_cp_seq |- ctx->seq
2321 *
2322 * From this point, we need to increase seq number by 10 to avoid
2323 * confusing next recovery.
2324 *
2325 * ---------------------------------------------
2326 * | valid log | invalid log |
2327 * ---------------------------------------------
2328 * ^ ^
2329 * |- log->last_checkpoint |- ctx->pos+1
2330 * |- log->last_cp_seq |- ctx->seq+10001
2331 *
2332 * However, it is not safe to start the state machine yet, because data only
2333 * parities are not yet secured in RAID. To save these data only parities, we
2334 * rewrite them from seq+11.
2335 *
2336 * -----------------------------------------------------------------
2337 * | valid log | data only stripes | invalid log |
2338 * -----------------------------------------------------------------
2339 * ^ ^
2340 * |- log->last_checkpoint |- ctx->pos+n
2341 * |- log->last_cp_seq |- ctx->seq+10000+n
2342 *
2343 * If failure happens again during this process, the recovery can safe start
2344 * again from log->last_checkpoint.
2345 *
2346 * Once data only stripes are rewritten to journal, we move log_tail
2347 *
2348 * -----------------------------------------------------------------
2349 * | old log | data only stripes | invalid log |
2350 * -----------------------------------------------------------------
2351 * ^ ^
2352 * |- log->last_checkpoint |- ctx->pos+n
2353 * |- log->last_cp_seq |- ctx->seq+10000+n
2354 *
2355 * Then we can safely start the state machine. If failure happens from this
2356 * point on, the recovery will start from new log->last_checkpoint.
2357 */
2358 static int
2359 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2360 struct r5l_recovery_ctx *ctx)
2361 {
2362 struct stripe_head *sh;
2363 struct mddev *mddev = log->rdev->mddev;
2364 struct page *page;
2365 sector_t next_checkpoint = MaxSector;
2366
2367 page = alloc_page(GFP_KERNEL);
2368 if (!page) {
2369 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2370 mdname(mddev));
2371 return -ENOMEM;
2372 }
2373
2374 WARN_ON(list_empty(&ctx->cached_list));
2375
2376 list_for_each_entry(sh, &ctx->cached_list, lru) {
2377 struct r5l_meta_block *mb;
2378 int i;
2379 int offset;
2380 sector_t write_pos;
2381
2382 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2383 r5l_recovery_create_empty_meta_block(log, page,
2384 ctx->pos, ctx->seq);
2385 mb = page_address(page);
2386 offset = le32_to_cpu(mb->meta_size);
2387 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2388
2389 for (i = sh->disks; i--; ) {
2390 struct r5dev *dev = &sh->dev[i];
2391 struct r5l_payload_data_parity *payload;
2392 void *addr;
2393
2394 if (test_bit(R5_InJournal, &dev->flags)) {
2395 payload = (void *)mb + offset;
2396 payload->header.type = cpu_to_le16(
2397 R5LOG_PAYLOAD_DATA);
2398 payload->size = cpu_to_le32(BLOCK_SECTORS);
2399 payload->location = cpu_to_le64(
2400 raid5_compute_blocknr(sh, i, 0));
2401 addr = kmap_atomic(dev->page);
2402 payload->checksum[0] = cpu_to_le32(
2403 crc32c_le(log->uuid_checksum, addr,
2404 PAGE_SIZE));
2405 kunmap_atomic(addr);
2406 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2407 dev->page, REQ_OP_WRITE, 0, false);
2408 write_pos = r5l_ring_add(log, write_pos,
2409 BLOCK_SECTORS);
2410 offset += sizeof(__le32) +
2411 sizeof(struct r5l_payload_data_parity);
2412
2413 }
2414 }
2415 mb->meta_size = cpu_to_le32(offset);
2416 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2417 mb, PAGE_SIZE));
2418 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2419 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2420 sh->log_start = ctx->pos;
2421 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2422 atomic_inc(&log->stripe_in_journal_count);
2423 ctx->pos = write_pos;
2424 ctx->seq += 1;
2425 next_checkpoint = sh->log_start;
2426 }
2427 log->next_checkpoint = next_checkpoint;
2428 __free_page(page);
2429 return 0;
2430 }
2431
2432 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2433 struct r5l_recovery_ctx *ctx)
2434 {
2435 struct mddev *mddev = log->rdev->mddev;
2436 struct r5conf *conf = mddev->private;
2437 struct stripe_head *sh, *next;
2438
2439 if (ctx->data_only_stripes == 0)
2440 return;
2441
2442 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2443
2444 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2445 r5c_make_stripe_write_out(sh);
2446 set_bit(STRIPE_HANDLE, &sh->state);
2447 list_del_init(&sh->lru);
2448 raid5_release_stripe(sh);
2449 }
2450
2451 md_wakeup_thread(conf->mddev->thread);
2452 /* reuse conf->wait_for_quiescent in recovery */
2453 wait_event(conf->wait_for_quiescent,
2454 atomic_read(&conf->active_stripes) == 0);
2455
2456 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2457 }
2458
2459 static int r5l_recovery_log(struct r5l_log *log)
2460 {
2461 struct mddev *mddev = log->rdev->mddev;
2462 struct r5l_recovery_ctx *ctx;
2463 int ret;
2464 sector_t pos;
2465
2466 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2467 if (!ctx)
2468 return -ENOMEM;
2469
2470 ctx->pos = log->last_checkpoint;
2471 ctx->seq = log->last_cp_seq;
2472 INIT_LIST_HEAD(&ctx->cached_list);
2473 ctx->meta_page = alloc_page(GFP_KERNEL);
2474
2475 if (!ctx->meta_page) {
2476 ret = -ENOMEM;
2477 goto meta_page;
2478 }
2479
2480 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2481 ret = -ENOMEM;
2482 goto ra_pool;
2483 }
2484
2485 ret = r5c_recovery_flush_log(log, ctx);
2486
2487 if (ret)
2488 goto error;
2489
2490 pos = ctx->pos;
2491 ctx->seq += 10000;
2492
2493 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2494 pr_debug("md/raid:%s: starting from clean shutdown\n",
2495 mdname(mddev));
2496 else
2497 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2498 mdname(mddev), ctx->data_only_stripes,
2499 ctx->data_parity_stripes);
2500
2501 if (ctx->data_only_stripes == 0) {
2502 log->next_checkpoint = ctx->pos;
2503 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2504 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2505 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2506 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2507 mdname(mddev));
2508 ret = -EIO;
2509 goto error;
2510 }
2511
2512 log->log_start = ctx->pos;
2513 log->seq = ctx->seq;
2514 log->last_checkpoint = pos;
2515 r5l_write_super(log, pos);
2516
2517 r5c_recovery_flush_data_only_stripes(log, ctx);
2518 ret = 0;
2519 error:
2520 r5l_recovery_free_ra_pool(log, ctx);
2521 ra_pool:
2522 __free_page(ctx->meta_page);
2523 meta_page:
2524 kfree(ctx);
2525 return ret;
2526 }
2527
2528 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2529 {
2530 struct mddev *mddev = log->rdev->mddev;
2531
2532 log->rdev->journal_tail = cp;
2533 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2534 }
2535
2536 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2537 {
2538 struct r5conf *conf;
2539 int ret;
2540
2541 ret = mddev_lock(mddev);
2542 if (ret)
2543 return ret;
2544
2545 conf = mddev->private;
2546 if (!conf || !conf->log) {
2547 mddev_unlock(mddev);
2548 return 0;
2549 }
2550
2551 switch (conf->log->r5c_journal_mode) {
2552 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2553 ret = snprintf(
2554 page, PAGE_SIZE, "[%s] %s\n",
2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 break;
2558 case R5C_JOURNAL_MODE_WRITE_BACK:
2559 ret = snprintf(
2560 page, PAGE_SIZE, "%s [%s]\n",
2561 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2562 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2563 break;
2564 default:
2565 ret = 0;
2566 }
2567 mddev_unlock(mddev);
2568 return ret;
2569 }
2570
2571 /*
2572 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2573 *
2574 * @mode as defined in 'enum r5c_journal_mode'.
2575 *
2576 */
2577 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2578 {
2579 struct r5conf *conf;
2580
2581 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2582 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2583 return -EINVAL;
2584
2585 conf = mddev->private;
2586 if (!conf || !conf->log)
2587 return -ENODEV;
2588
2589 if (raid5_calc_degraded(conf) > 0 &&
2590 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2591 return -EINVAL;
2592
2593 mddev_suspend(mddev);
2594 conf->log->r5c_journal_mode = mode;
2595 mddev_resume(mddev);
2596
2597 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2598 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2599 return 0;
2600 }
2601 EXPORT_SYMBOL(r5c_journal_mode_set);
2602
2603 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2604 const char *page, size_t length)
2605 {
2606 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2607 size_t len = length;
2608 int ret;
2609
2610 if (len < 2)
2611 return -EINVAL;
2612
2613 if (page[len - 1] == '\n')
2614 len--;
2615
2616 while (mode--)
2617 if (strlen(r5c_journal_mode_str[mode]) == len &&
2618 !strncmp(page, r5c_journal_mode_str[mode], len))
2619 break;
2620 ret = mddev_lock(mddev);
2621 if (ret)
2622 return ret;
2623 ret = r5c_journal_mode_set(mddev, mode);
2624 mddev_unlock(mddev);
2625 return ret ?: length;
2626 }
2627
2628 struct md_sysfs_entry
2629 r5c_journal_mode = __ATTR(journal_mode, 0644,
2630 r5c_journal_mode_show, r5c_journal_mode_store);
2631
2632 /*
2633 * Try handle write operation in caching phase. This function should only
2634 * be called in write-back mode.
2635 *
2636 * If all outstanding writes can be handled in caching phase, returns 0
2637 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2638 * and returns -EAGAIN
2639 */
2640 int r5c_try_caching_write(struct r5conf *conf,
2641 struct stripe_head *sh,
2642 struct stripe_head_state *s,
2643 int disks)
2644 {
2645 struct r5l_log *log = conf->log;
2646 int i;
2647 struct r5dev *dev;
2648 int to_cache = 0;
2649 void **pslot;
2650 sector_t tree_index;
2651 int ret;
2652 uintptr_t refcount;
2653
2654 BUG_ON(!r5c_is_writeback(log));
2655
2656 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2657 /*
2658 * There are two different scenarios here:
2659 * 1. The stripe has some data cached, and it is sent to
2660 * write-out phase for reclaim
2661 * 2. The stripe is clean, and this is the first write
2662 *
2663 * For 1, return -EAGAIN, so we continue with
2664 * handle_stripe_dirtying().
2665 *
2666 * For 2, set STRIPE_R5C_CACHING and continue with caching
2667 * write.
2668 */
2669
2670 /* case 1: anything injournal or anything in written */
2671 if (s->injournal > 0 || s->written > 0)
2672 return -EAGAIN;
2673 /* case 2 */
2674 set_bit(STRIPE_R5C_CACHING, &sh->state);
2675 }
2676
2677 /*
2678 * When run in degraded mode, array is set to write-through mode.
2679 * This check helps drain pending write safely in the transition to
2680 * write-through mode.
2681 *
2682 * When a stripe is syncing, the write is also handled in write
2683 * through mode.
2684 */
2685 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2686 r5c_make_stripe_write_out(sh);
2687 return -EAGAIN;
2688 }
2689
2690 for (i = disks; i--; ) {
2691 dev = &sh->dev[i];
2692 /* if non-overwrite, use writing-out phase */
2693 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2694 !test_bit(R5_InJournal, &dev->flags)) {
2695 r5c_make_stripe_write_out(sh);
2696 return -EAGAIN;
2697 }
2698 }
2699
2700 /* if the stripe is not counted in big_stripe_tree, add it now */
2701 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2702 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2703 tree_index = r5c_tree_index(conf, sh->sector);
2704 spin_lock(&log->tree_lock);
2705 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2706 tree_index);
2707 if (pslot) {
2708 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2709 pslot, &log->tree_lock) >>
2710 R5C_RADIX_COUNT_SHIFT;
2711 radix_tree_replace_slot(
2712 &log->big_stripe_tree, pslot,
2713 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2714 } else {
2715 /*
2716 * this radix_tree_insert can fail safely, so no
2717 * need to call radix_tree_preload()
2718 */
2719 ret = radix_tree_insert(
2720 &log->big_stripe_tree, tree_index,
2721 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2722 if (ret) {
2723 spin_unlock(&log->tree_lock);
2724 r5c_make_stripe_write_out(sh);
2725 return -EAGAIN;
2726 }
2727 }
2728 spin_unlock(&log->tree_lock);
2729
2730 /*
2731 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2732 * counted in the radix tree
2733 */
2734 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2735 atomic_inc(&conf->r5c_cached_partial_stripes);
2736 }
2737
2738 for (i = disks; i--; ) {
2739 dev = &sh->dev[i];
2740 if (dev->towrite) {
2741 set_bit(R5_Wantwrite, &dev->flags);
2742 set_bit(R5_Wantdrain, &dev->flags);
2743 set_bit(R5_LOCKED, &dev->flags);
2744 to_cache++;
2745 }
2746 }
2747
2748 if (to_cache) {
2749 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2750 /*
2751 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2752 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2753 * r5c_handle_data_cached()
2754 */
2755 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2756 }
2757
2758 return 0;
2759 }
2760
2761 /*
2762 * free extra pages (orig_page) we allocated for prexor
2763 */
2764 void r5c_release_extra_page(struct stripe_head *sh)
2765 {
2766 struct r5conf *conf = sh->raid_conf;
2767 int i;
2768 bool using_disk_info_extra_page;
2769
2770 using_disk_info_extra_page =
2771 sh->dev[0].orig_page == conf->disks[0].extra_page;
2772
2773 for (i = sh->disks; i--; )
2774 if (sh->dev[i].page != sh->dev[i].orig_page) {
2775 struct page *p = sh->dev[i].orig_page;
2776
2777 sh->dev[i].orig_page = sh->dev[i].page;
2778 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2779
2780 if (!using_disk_info_extra_page)
2781 put_page(p);
2782 }
2783
2784 if (using_disk_info_extra_page) {
2785 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2786 md_wakeup_thread(conf->mddev->thread);
2787 }
2788 }
2789
2790 void r5c_use_extra_page(struct stripe_head *sh)
2791 {
2792 struct r5conf *conf = sh->raid_conf;
2793 int i;
2794 struct r5dev *dev;
2795
2796 for (i = sh->disks; i--; ) {
2797 dev = &sh->dev[i];
2798 if (dev->orig_page != dev->page)
2799 put_page(dev->orig_page);
2800 dev->orig_page = conf->disks[i].extra_page;
2801 }
2802 }
2803
2804 /*
2805 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2806 * stripe is committed to RAID disks.
2807 */
2808 void r5c_finish_stripe_write_out(struct r5conf *conf,
2809 struct stripe_head *sh,
2810 struct stripe_head_state *s)
2811 {
2812 struct r5l_log *log = conf->log;
2813 int i;
2814 int do_wakeup = 0;
2815 sector_t tree_index;
2816 void **pslot;
2817 uintptr_t refcount;
2818
2819 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2820 return;
2821
2822 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2823 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2824
2825 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2826 return;
2827
2828 for (i = sh->disks; i--; ) {
2829 clear_bit(R5_InJournal, &sh->dev[i].flags);
2830 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2831 do_wakeup = 1;
2832 }
2833
2834 /*
2835 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2836 * We updated R5_InJournal, so we also update s->injournal.
2837 */
2838 s->injournal = 0;
2839
2840 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2841 if (atomic_dec_and_test(&conf->pending_full_writes))
2842 md_wakeup_thread(conf->mddev->thread);
2843
2844 if (do_wakeup)
2845 wake_up(&conf->wait_for_overlap);
2846
2847 spin_lock_irq(&log->stripe_in_journal_lock);
2848 list_del_init(&sh->r5c);
2849 spin_unlock_irq(&log->stripe_in_journal_lock);
2850 sh->log_start = MaxSector;
2851
2852 atomic_dec(&log->stripe_in_journal_count);
2853 r5c_update_log_state(log);
2854
2855 /* stop counting this stripe in big_stripe_tree */
2856 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2857 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2858 tree_index = r5c_tree_index(conf, sh->sector);
2859 spin_lock(&log->tree_lock);
2860 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2861 tree_index);
2862 BUG_ON(pslot == NULL);
2863 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2864 pslot, &log->tree_lock) >>
2865 R5C_RADIX_COUNT_SHIFT;
2866 if (refcount == 1)
2867 radix_tree_delete(&log->big_stripe_tree, tree_index);
2868 else
2869 radix_tree_replace_slot(
2870 &log->big_stripe_tree, pslot,
2871 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2872 spin_unlock(&log->tree_lock);
2873 }
2874
2875 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2876 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2877 atomic_dec(&conf->r5c_flushing_partial_stripes);
2878 atomic_dec(&conf->r5c_cached_partial_stripes);
2879 }
2880
2881 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2882 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2883 atomic_dec(&conf->r5c_flushing_full_stripes);
2884 atomic_dec(&conf->r5c_cached_full_stripes);
2885 }
2886
2887 r5l_append_flush_payload(log, sh->sector);
2888 /* stripe is flused to raid disks, we can do resync now */
2889 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2890 set_bit(STRIPE_HANDLE, &sh->state);
2891 }
2892
2893 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2894 {
2895 struct r5conf *conf = sh->raid_conf;
2896 int pages = 0;
2897 int reserve;
2898 int i;
2899 int ret = 0;
2900
2901 BUG_ON(!log);
2902
2903 for (i = 0; i < sh->disks; i++) {
2904 void *addr;
2905
2906 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2907 continue;
2908 addr = kmap_atomic(sh->dev[i].page);
2909 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2910 addr, PAGE_SIZE);
2911 kunmap_atomic(addr);
2912 pages++;
2913 }
2914 WARN_ON(pages == 0);
2915
2916 /*
2917 * The stripe must enter state machine again to call endio, so
2918 * don't delay.
2919 */
2920 clear_bit(STRIPE_DELAYED, &sh->state);
2921 atomic_inc(&sh->count);
2922
2923 mutex_lock(&log->io_mutex);
2924 /* meta + data */
2925 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2926
2927 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2928 sh->log_start == MaxSector)
2929 r5l_add_no_space_stripe(log, sh);
2930 else if (!r5l_has_free_space(log, reserve)) {
2931 if (sh->log_start == log->last_checkpoint)
2932 BUG();
2933 else
2934 r5l_add_no_space_stripe(log, sh);
2935 } else {
2936 ret = r5l_log_stripe(log, sh, pages, 0);
2937 if (ret) {
2938 spin_lock_irq(&log->io_list_lock);
2939 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2940 spin_unlock_irq(&log->io_list_lock);
2941 }
2942 }
2943
2944 mutex_unlock(&log->io_mutex);
2945 return 0;
2946 }
2947
2948 /* check whether this big stripe is in write back cache. */
2949 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2950 {
2951 struct r5l_log *log = conf->log;
2952 sector_t tree_index;
2953 void *slot;
2954
2955 if (!log)
2956 return false;
2957
2958 WARN_ON_ONCE(!rcu_read_lock_held());
2959 tree_index = r5c_tree_index(conf, sect);
2960 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2961 return slot != NULL;
2962 }
2963
2964 static int r5l_load_log(struct r5l_log *log)
2965 {
2966 struct md_rdev *rdev = log->rdev;
2967 struct page *page;
2968 struct r5l_meta_block *mb;
2969 sector_t cp = log->rdev->journal_tail;
2970 u32 stored_crc, expected_crc;
2971 bool create_super = false;
2972 int ret = 0;
2973
2974 /* Make sure it's valid */
2975 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2976 cp = 0;
2977 page = alloc_page(GFP_KERNEL);
2978 if (!page)
2979 return -ENOMEM;
2980
2981 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2982 ret = -EIO;
2983 goto ioerr;
2984 }
2985 mb = page_address(page);
2986
2987 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2988 mb->version != R5LOG_VERSION) {
2989 create_super = true;
2990 goto create;
2991 }
2992 stored_crc = le32_to_cpu(mb->checksum);
2993 mb->checksum = 0;
2994 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2995 if (stored_crc != expected_crc) {
2996 create_super = true;
2997 goto create;
2998 }
2999 if (le64_to_cpu(mb->position) != cp) {
3000 create_super = true;
3001 goto create;
3002 }
3003 create:
3004 if (create_super) {
3005 log->last_cp_seq = prandom_u32();
3006 cp = 0;
3007 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3008 /*
3009 * Make sure super points to correct address. Log might have
3010 * data very soon. If super hasn't correct log tail address,
3011 * recovery can't find the log
3012 */
3013 r5l_write_super(log, cp);
3014 } else
3015 log->last_cp_seq = le64_to_cpu(mb->seq);
3016
3017 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3018 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3019 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3020 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3021 log->last_checkpoint = cp;
3022
3023 __free_page(page);
3024
3025 if (create_super) {
3026 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3027 log->seq = log->last_cp_seq + 1;
3028 log->next_checkpoint = cp;
3029 } else
3030 ret = r5l_recovery_log(log);
3031
3032 r5c_update_log_state(log);
3033 return ret;
3034 ioerr:
3035 __free_page(page);
3036 return ret;
3037 }
3038
3039 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3040 {
3041 struct r5conf *conf = mddev->private;
3042 struct r5l_log *log = conf->log;
3043
3044 if (!log)
3045 return;
3046
3047 if ((raid5_calc_degraded(conf) > 0 ||
3048 test_bit(Journal, &rdev->flags)) &&
3049 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3050 schedule_work(&log->disable_writeback_work);
3051 }
3052
3053 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3054 {
3055 struct request_queue *q = bdev_get_queue(rdev->bdev);
3056 struct r5l_log *log;
3057 char b[BDEVNAME_SIZE];
3058
3059 pr_debug("md/raid:%s: using device %s as journal\n",
3060 mdname(conf->mddev), bdevname(rdev->bdev, b));
3061
3062 if (PAGE_SIZE != 4096)
3063 return -EINVAL;
3064
3065 /*
3066 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3067 * raid_disks r5l_payload_data_parity.
3068 *
3069 * Write journal and cache does not work for very big array
3070 * (raid_disks > 203)
3071 */
3072 if (sizeof(struct r5l_meta_block) +
3073 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3074 conf->raid_disks) > PAGE_SIZE) {
3075 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3076 mdname(conf->mddev), conf->raid_disks);
3077 return -EINVAL;
3078 }
3079
3080 log = kzalloc(sizeof(*log), GFP_KERNEL);
3081 if (!log)
3082 return -ENOMEM;
3083 log->rdev = rdev;
3084
3085 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3086
3087 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3088 sizeof(rdev->mddev->uuid));
3089
3090 mutex_init(&log->io_mutex);
3091
3092 spin_lock_init(&log->io_list_lock);
3093 INIT_LIST_HEAD(&log->running_ios);
3094 INIT_LIST_HEAD(&log->io_end_ios);
3095 INIT_LIST_HEAD(&log->flushing_ios);
3096 INIT_LIST_HEAD(&log->finished_ios);
3097 bio_init(&log->flush_bio, NULL, 0);
3098
3099 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3100 if (!log->io_kc)
3101 goto io_kc;
3102
3103 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3104 if (!log->io_pool)
3105 goto io_pool;
3106
3107 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3108 if (!log->bs)
3109 goto io_bs;
3110
3111 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3112 if (!log->meta_pool)
3113 goto out_mempool;
3114
3115 spin_lock_init(&log->tree_lock);
3116 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3117
3118 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3119 log->rdev->mddev, "reclaim");
3120 if (!log->reclaim_thread)
3121 goto reclaim_thread;
3122 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3123
3124 init_waitqueue_head(&log->iounit_wait);
3125
3126 INIT_LIST_HEAD(&log->no_mem_stripes);
3127
3128 INIT_LIST_HEAD(&log->no_space_stripes);
3129 spin_lock_init(&log->no_space_stripes_lock);
3130
3131 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3132 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3133
3134 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3135 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3136 spin_lock_init(&log->stripe_in_journal_lock);
3137 atomic_set(&log->stripe_in_journal_count, 0);
3138
3139 rcu_assign_pointer(conf->log, log);
3140
3141 if (r5l_load_log(log))
3142 goto error;
3143
3144 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3145 return 0;
3146
3147 error:
3148 rcu_assign_pointer(conf->log, NULL);
3149 md_unregister_thread(&log->reclaim_thread);
3150 reclaim_thread:
3151 mempool_destroy(log->meta_pool);
3152 out_mempool:
3153 bioset_free(log->bs);
3154 io_bs:
3155 mempool_destroy(log->io_pool);
3156 io_pool:
3157 kmem_cache_destroy(log->io_kc);
3158 io_kc:
3159 kfree(log);
3160 return -EINVAL;
3161 }
3162
3163 void r5l_exit_log(struct r5conf *conf)
3164 {
3165 struct r5l_log *log = conf->log;
3166
3167 conf->log = NULL;
3168 synchronize_rcu();
3169
3170 /* Ensure disable_writeback_work wakes up and exits */
3171 wake_up(&conf->mddev->sb_wait);
3172 flush_work(&log->disable_writeback_work);
3173 md_unregister_thread(&log->reclaim_thread);
3174 mempool_destroy(log->meta_pool);
3175 bioset_free(log->bs);
3176 mempool_destroy(log->io_pool);
3177 kmem_cache_destroy(log->io_kc);
3178 kfree(log);
3179 }