2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
29 * metadata/data stored in disk with 4k size unit (a block) regardless
30 * underneath hardware sector size. only works with PAGE_SIZE == 4096
32 #define BLOCK_SECTORS (8)
35 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37 * In write through mode, the reclaim runs every log->max_free_space.
38 * This can prevent the recovery scans for too long
40 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
41 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43 /* wake up reclaim thread periodically */
44 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
45 /* start flush with these full stripes */
46 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
47 /* reclaim stripes in groups */
48 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51 * We only need 2 bios per I/O unit to make progress, but ensure we
52 * have a few more available to not get too tight.
54 #define R5L_POOL_SIZE 4
57 * r5c journal modes of the array: write-back or write-through.
58 * write-through mode has identical behavior as existing log only
61 enum r5c_journal_mode
{
62 R5C_JOURNAL_MODE_WRITE_THROUGH
= 0,
63 R5C_JOURNAL_MODE_WRITE_BACK
= 1,
66 static char *r5c_journal_mode_str
[] = {"write-through",
69 * raid5 cache state machine
71 * With the RAID cache, each stripe works in two phases:
75 * These two phases are controlled by bit STRIPE_R5C_CACHING:
76 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
77 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
79 * When there is no journal, or the journal is in write-through mode,
80 * the stripe is always in writing-out phase.
82 * For write-back journal, the stripe is sent to caching phase on write
83 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
84 * the write-out phase by clearing STRIPE_R5C_CACHING.
86 * Stripes in caching phase do not write the raid disks. Instead, all
87 * writes are committed from the log device. Therefore, a stripe in
88 * caching phase handles writes as:
89 * - write to log device
92 * Stripes in writing-out phase handle writes as:
94 * - write pending data and parity to journal
95 * - write data and parity to raid disks
96 * - return IO for pending writes
100 struct md_rdev
*rdev
;
104 sector_t device_size
; /* log device size, round to
106 sector_t max_free_space
; /* reclaim run if free space is at
109 sector_t last_checkpoint
; /* log tail. where recovery scan
111 u64 last_cp_seq
; /* log tail sequence */
113 sector_t log_start
; /* log head. where new data appends */
114 u64 seq
; /* log head sequence */
116 sector_t next_checkpoint
;
118 struct mutex io_mutex
;
119 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
121 spinlock_t io_list_lock
;
122 struct list_head running_ios
; /* io_units which are still running,
123 * and have not yet been completely
124 * written to the log */
125 struct list_head io_end_ios
; /* io_units which have been completely
126 * written to the log but not yet written
128 struct list_head flushing_ios
; /* io_units which are waiting for log
130 struct list_head finished_ios
; /* io_units which settle down in log disk */
131 struct bio flush_bio
;
133 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
135 struct kmem_cache
*io_kc
;
138 mempool_t
*meta_pool
;
140 struct md_thread
*reclaim_thread
;
141 unsigned long reclaim_target
; /* number of space that need to be
142 * reclaimed. if it's 0, reclaim spaces
143 * used by io_units which are in
144 * IO_UNIT_STRIPE_END state (eg, reclaim
145 * dones't wait for specific io_unit
146 * switching to IO_UNIT_STRIPE_END
148 wait_queue_head_t iounit_wait
;
150 struct list_head no_space_stripes
; /* pending stripes, log has no space */
151 spinlock_t no_space_stripes_lock
;
153 bool need_cache_flush
;
156 enum r5c_journal_mode r5c_journal_mode
;
158 /* all stripes in r5cache, in the order of seq at sh->log_start */
159 struct list_head stripe_in_journal_list
;
161 spinlock_t stripe_in_journal_lock
;
162 atomic_t stripe_in_journal_count
;
164 /* to submit async io_units, to fulfill ordering of flush */
165 struct work_struct deferred_io_work
;
166 /* to disable write back during in degraded mode */
167 struct work_struct disable_writeback_work
;
169 /* to for chunk_aligned_read in writeback mode, details below */
170 spinlock_t tree_lock
;
171 struct radix_tree_root big_stripe_tree
;
175 * Enable chunk_aligned_read() with write back cache.
177 * Each chunk may contain more than one stripe (for example, a 256kB
178 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
179 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
180 * For each big_stripe, we count how many stripes of this big_stripe
181 * are in the write back cache. These data are tracked in a radix tree
182 * (big_stripe_tree). We use radix_tree item pointer as the counter.
183 * r5c_tree_index() is used to calculate keys for the radix tree.
185 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
186 * big_stripe of each chunk in the tree. If this big_stripe is in the
187 * tree, chunk_aligned_read() aborts. This look up is protected by
190 * It is necessary to remember whether a stripe is counted in
191 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
192 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
193 * two flags are set, the stripe is counted in big_stripe_tree. This
194 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
195 * r5c_try_caching_write(); and moving clear_bit of
196 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
197 * r5c_finish_stripe_write_out().
201 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
202 * So it is necessary to left shift the counter by 2 bits before using it
203 * as data pointer of the tree.
205 #define R5C_RADIX_COUNT_SHIFT 2
208 * calculate key for big_stripe_tree
210 * sect: align_bi->bi_iter.bi_sector or sh->sector
212 static inline sector_t
r5c_tree_index(struct r5conf
*conf
,
217 offset
= sector_div(sect
, conf
->chunk_sectors
);
222 * an IO range starts from a meta data block and end at the next meta data
223 * block. The io unit's the meta data block tracks data/parity followed it. io
224 * unit is written to log disk with normal write, as we always flush log disk
225 * first and then start move data to raid disks, there is no requirement to
226 * write io unit with FLUSH/FUA
231 struct page
*meta_page
; /* store meta block */
232 int meta_offset
; /* current offset in meta_page */
234 struct bio
*current_bio
;/* current_bio accepting new data */
236 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
237 u64 seq
; /* seq number of the metablock */
238 sector_t log_start
; /* where the io_unit starts */
239 sector_t log_end
; /* where the io_unit ends */
240 struct list_head log_sibling
; /* log->running_ios */
241 struct list_head stripe_list
; /* stripes added to the io_unit */
245 struct bio
*split_bio
;
247 unsigned int has_flush
:1; /* include flush request */
248 unsigned int has_fua
:1; /* include fua request */
249 unsigned int has_null_flush
:1; /* include empty flush request */
251 * io isn't sent yet, flush/fua request can only be submitted till it's
252 * the first IO in running_ios list
254 unsigned int io_deferred
:1;
256 struct bio_list flush_barriers
; /* size == 0 flush bios */
259 /* r5l_io_unit state */
260 enum r5l_io_unit_state
{
261 IO_UNIT_RUNNING
= 0, /* accepting new IO */
262 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
263 * don't accepting new bio */
264 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
265 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
268 bool r5c_is_writeback(struct r5l_log
*log
)
270 return (log
!= NULL
&&
271 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
274 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
277 if (start
>= log
->device_size
)
278 start
= start
- log
->device_size
;
282 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
288 return end
+ log
->device_size
- start
;
291 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
295 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
298 return log
->device_size
> used_size
+ size
;
301 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
302 enum r5l_io_unit_state state
)
304 if (WARN_ON(io
->state
>= state
))
310 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
,
311 struct bio_list
*return_bi
)
313 struct bio
*wbi
, *wbi2
;
317 while (wbi
&& wbi
->bi_iter
.bi_sector
<
318 dev
->sector
+ STRIPE_SECTORS
) {
319 wbi2
= r5_next_bio(wbi
, dev
->sector
);
320 if (!raid5_dec_bi_active_stripes(wbi
)) {
321 md_write_end(conf
->mddev
);
322 bio_list_add(return_bi
, wbi
);
328 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
329 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
333 for (i
= sh
->disks
; i
--; ) {
334 if (sh
->dev
[i
].written
) {
335 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
336 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
],
338 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
340 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
346 /* Check whether we should flush some stripes to free up stripe cache */
347 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
351 if (!r5c_is_writeback(conf
->log
))
354 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
355 atomic_read(&conf
->r5c_cached_full_stripes
);
358 * The following condition is true for either of the following:
359 * - stripe cache pressure high:
360 * total_cached > 3/4 min_nr_stripes ||
361 * empty_inactive_list_nr > 0
362 * - stripe cache pressure moderate:
363 * total_cached > 1/2 min_nr_stripes
365 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
366 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
367 r5l_wake_reclaim(conf
->log
, 0);
371 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
372 * stripes in the cache
374 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
376 if (!r5c_is_writeback(conf
->log
))
380 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
381 * or a full stripe (chunk size / 4k stripes).
383 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
384 min(R5C_FULL_STRIPE_FLUSH_BATCH
,
385 conf
->chunk_sectors
>> STRIPE_SHIFT
))
386 r5l_wake_reclaim(conf
->log
, 0);
390 * Total log space (in sectors) needed to flush all data in cache
392 * To avoid deadlock due to log space, it is necessary to reserve log
393 * space to flush critical stripes (stripes that occupying log space near
394 * last_checkpoint). This function helps check how much log space is
395 * required to flush all cached stripes.
397 * To reduce log space requirements, two mechanisms are used to give cache
398 * flush higher priorities:
399 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
400 * stripes ALREADY in journal can be flushed w/o pending writes;
401 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
402 * can be delayed (r5l_add_no_space_stripe).
404 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
405 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
406 * pages of journal space. For stripes that has not passed 1, flushing it
407 * requires (conf->raid_disks + 1) pages of journal space. There are at
408 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
409 * required to flush all cached stripes (in pages) is:
411 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
412 * (group_cnt + 1) * (raid_disks + 1)
414 * (stripe_in_journal_count) * (max_degraded + 1) +
415 * (group_cnt + 1) * (raid_disks - max_degraded)
417 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
419 struct r5l_log
*log
= conf
->log
;
421 if (!r5c_is_writeback(log
))
424 return BLOCK_SECTORS
*
425 ((conf
->max_degraded
+ 1) * atomic_read(&log
->stripe_in_journal_count
) +
426 (conf
->raid_disks
- conf
->max_degraded
) * (conf
->group_cnt
+ 1));
430 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
432 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
433 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
434 * device is less than 2x of reclaim_required_space.
436 static inline void r5c_update_log_state(struct r5l_log
*log
)
438 struct r5conf
*conf
= log
->rdev
->mddev
->private;
440 sector_t reclaim_space
;
441 bool wake_reclaim
= false;
443 if (!r5c_is_writeback(log
))
446 free_space
= r5l_ring_distance(log
, log
->log_start
,
447 log
->last_checkpoint
);
448 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
449 if (free_space
< 2 * reclaim_space
)
450 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
452 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
454 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
456 if (free_space
< 3 * reclaim_space
)
457 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
459 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
462 r5l_wake_reclaim(log
, 0);
466 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
467 * This function should only be called in write-back mode.
469 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
471 struct r5conf
*conf
= sh
->raid_conf
;
472 struct r5l_log
*log
= conf
->log
;
474 BUG_ON(!r5c_is_writeback(log
));
476 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
477 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
479 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
480 atomic_inc(&conf
->preread_active_stripes
);
483 static void r5c_handle_data_cached(struct stripe_head
*sh
)
487 for (i
= sh
->disks
; i
--; )
488 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
489 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
490 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
492 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
496 * this journal write must contain full parity,
497 * it may also contain some data pages
499 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
503 for (i
= sh
->disks
; i
--; )
504 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
505 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
509 * Setting proper flags after writing (or flushing) data and/or parity to the
510 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
512 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
514 struct r5l_log
*log
= sh
->raid_conf
->log
;
516 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
517 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
519 * Set R5_InJournal for parity dev[pd_idx]. This means
520 * all data AND parity in the journal. For RAID 6, it is
521 * NOT necessary to set the flag for dev[qd_idx], as the
522 * two parities are written out together.
524 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
525 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
526 r5c_handle_data_cached(sh
);
528 r5c_handle_parity_cached(sh
);
529 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
533 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
535 struct stripe_head
*sh
, *next
;
537 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
538 list_del_init(&sh
->log_list
);
540 r5c_finish_cache_stripe(sh
);
542 set_bit(STRIPE_HANDLE
, &sh
->state
);
543 raid5_release_stripe(sh
);
547 static void r5l_log_run_stripes(struct r5l_log
*log
)
549 struct r5l_io_unit
*io
, *next
;
551 assert_spin_locked(&log
->io_list_lock
);
553 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
554 /* don't change list order */
555 if (io
->state
< IO_UNIT_IO_END
)
558 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
559 r5l_io_run_stripes(io
);
563 static void r5l_move_to_end_ios(struct r5l_log
*log
)
565 struct r5l_io_unit
*io
, *next
;
567 assert_spin_locked(&log
->io_list_lock
);
569 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
570 /* don't change list order */
571 if (io
->state
< IO_UNIT_IO_END
)
573 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
577 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
578 static void r5l_log_endio(struct bio
*bio
)
580 struct r5l_io_unit
*io
= bio
->bi_private
;
581 struct r5l_io_unit
*io_deferred
;
582 struct r5l_log
*log
= io
->log
;
586 md_error(log
->rdev
->mddev
, log
->rdev
);
589 mempool_free(io
->meta_page
, log
->meta_pool
);
591 spin_lock_irqsave(&log
->io_list_lock
, flags
);
592 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
593 if (log
->need_cache_flush
)
594 r5l_move_to_end_ios(log
);
596 r5l_log_run_stripes(log
);
597 if (!list_empty(&log
->running_ios
)) {
599 * FLUSH/FUA io_unit is deferred because of ordering, now we
602 io_deferred
= list_first_entry(&log
->running_ios
,
603 struct r5l_io_unit
, log_sibling
);
604 if (io_deferred
->io_deferred
)
605 schedule_work(&log
->deferred_io_work
);
608 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
610 if (log
->need_cache_flush
)
611 md_wakeup_thread(log
->rdev
->mddev
->thread
);
613 if (io
->has_null_flush
) {
616 WARN_ON(bio_list_empty(&io
->flush_barriers
));
617 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
619 atomic_dec(&io
->pending_stripe
);
621 if (atomic_read(&io
->pending_stripe
) == 0)
622 __r5l_stripe_write_finished(io
);
626 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
630 spin_lock_irqsave(&log
->io_list_lock
, flags
);
631 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
632 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
635 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
637 io
->current_bio
->bi_opf
|= REQ_FUA
;
638 submit_bio(io
->current_bio
);
644 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
646 io
->split_bio
->bi_opf
|= REQ_FUA
;
647 submit_bio(io
->split_bio
);
650 /* deferred io_unit will be dispatched here */
651 static void r5l_submit_io_async(struct work_struct
*work
)
653 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
655 struct r5l_io_unit
*io
= NULL
;
658 spin_lock_irqsave(&log
->io_list_lock
, flags
);
659 if (!list_empty(&log
->running_ios
)) {
660 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
662 if (!io
->io_deferred
)
667 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
669 r5l_do_submit_io(log
, io
);
672 static void r5c_disable_writeback_async(struct work_struct
*work
)
674 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
675 disable_writeback_work
);
676 struct mddev
*mddev
= log
->rdev
->mddev
;
678 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
680 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
682 mddev_suspend(mddev
);
683 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
687 static void r5l_submit_current_io(struct r5l_log
*log
)
689 struct r5l_io_unit
*io
= log
->current_io
;
691 struct r5l_meta_block
*block
;
694 bool do_submit
= true;
699 block
= page_address(io
->meta_page
);
700 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
701 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
702 block
->checksum
= cpu_to_le32(crc
);
703 bio
= io
->current_bio
;
705 log
->current_io
= NULL
;
706 spin_lock_irqsave(&log
->io_list_lock
, flags
);
707 if (io
->has_flush
|| io
->has_fua
) {
708 if (io
!= list_first_entry(&log
->running_ios
,
709 struct r5l_io_unit
, log_sibling
)) {
714 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
716 r5l_do_submit_io(log
, io
);
719 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
721 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, log
->bs
);
723 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
724 bio
->bi_bdev
= log
->rdev
->bdev
;
725 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
730 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
732 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
734 r5c_update_log_state(log
);
736 * If we filled up the log device start from the beginning again,
737 * which will require a new bio.
739 * Note: for this to work properly the log size needs to me a multiple
742 if (log
->log_start
== 0)
743 io
->need_split_bio
= true;
745 io
->log_end
= log
->log_start
;
748 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
750 struct r5l_io_unit
*io
;
751 struct r5l_meta_block
*block
;
753 io
= mempool_alloc(log
->io_pool
, GFP_ATOMIC
);
756 memset(io
, 0, sizeof(*io
));
759 INIT_LIST_HEAD(&io
->log_sibling
);
760 INIT_LIST_HEAD(&io
->stripe_list
);
761 bio_list_init(&io
->flush_barriers
);
762 io
->state
= IO_UNIT_RUNNING
;
764 io
->meta_page
= mempool_alloc(log
->meta_pool
, GFP_NOIO
);
765 block
= page_address(io
->meta_page
);
767 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
768 block
->version
= R5LOG_VERSION
;
769 block
->seq
= cpu_to_le64(log
->seq
);
770 block
->position
= cpu_to_le64(log
->log_start
);
772 io
->log_start
= log
->log_start
;
773 io
->meta_offset
= sizeof(struct r5l_meta_block
);
774 io
->seq
= log
->seq
++;
776 io
->current_bio
= r5l_bio_alloc(log
);
777 io
->current_bio
->bi_end_io
= r5l_log_endio
;
778 io
->current_bio
->bi_private
= io
;
779 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
781 r5_reserve_log_entry(log
, io
);
783 spin_lock_irq(&log
->io_list_lock
);
784 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
785 spin_unlock_irq(&log
->io_list_lock
);
790 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
792 if (log
->current_io
&&
793 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
794 r5l_submit_current_io(log
);
796 if (!log
->current_io
) {
797 log
->current_io
= r5l_new_meta(log
);
798 if (!log
->current_io
)
805 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
807 u32 checksum1
, u32 checksum2
,
808 bool checksum2_valid
)
810 struct r5l_io_unit
*io
= log
->current_io
;
811 struct r5l_payload_data_parity
*payload
;
813 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
814 payload
->header
.type
= cpu_to_le16(type
);
815 payload
->header
.flags
= cpu_to_le16(0);
816 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
818 payload
->location
= cpu_to_le64(location
);
819 payload
->checksum
[0] = cpu_to_le32(checksum1
);
821 payload
->checksum
[1] = cpu_to_le32(checksum2
);
823 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
824 sizeof(__le32
) * (1 + !!checksum2_valid
);
827 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
829 struct r5l_io_unit
*io
= log
->current_io
;
831 if (io
->need_split_bio
) {
832 BUG_ON(io
->split_bio
);
833 io
->split_bio
= io
->current_bio
;
834 io
->current_bio
= r5l_bio_alloc(log
);
835 bio_chain(io
->current_bio
, io
->split_bio
);
836 io
->need_split_bio
= false;
839 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
842 r5_reserve_log_entry(log
, io
);
845 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
846 int data_pages
, int parity_pages
)
851 struct r5l_io_unit
*io
;
854 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
856 sizeof(struct r5l_payload_data_parity
) +
857 sizeof(__le32
) * parity_pages
;
859 ret
= r5l_get_meta(log
, meta_size
);
863 io
= log
->current_io
;
865 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
868 for (i
= 0; i
< sh
->disks
; i
++) {
869 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
870 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
872 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
874 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
875 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
878 * we need to flush journal to make sure recovery can
879 * reach the data with fua flag
883 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
884 raid5_compute_blocknr(sh
, i
, 0),
885 sh
->dev
[i
].log_checksum
, 0, false);
886 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
889 if (parity_pages
== 2) {
890 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
891 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
892 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
893 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
894 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
895 } else if (parity_pages
== 1) {
896 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
897 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
899 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
900 } else /* Just writing data, not parity, in caching phase */
901 BUG_ON(parity_pages
!= 0);
903 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
904 atomic_inc(&io
->pending_stripe
);
907 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
910 if (sh
->log_start
== MaxSector
) {
911 BUG_ON(!list_empty(&sh
->r5c
));
912 sh
->log_start
= io
->log_start
;
913 spin_lock_irq(&log
->stripe_in_journal_lock
);
914 list_add_tail(&sh
->r5c
,
915 &log
->stripe_in_journal_list
);
916 spin_unlock_irq(&log
->stripe_in_journal_lock
);
917 atomic_inc(&log
->stripe_in_journal_count
);
922 /* add stripe to no_space_stripes, and then wake up reclaim */
923 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
924 struct stripe_head
*sh
)
926 spin_lock(&log
->no_space_stripes_lock
);
927 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
928 spin_unlock(&log
->no_space_stripes_lock
);
932 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
933 * data from log to raid disks), so we shouldn't wait for reclaim here
935 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
937 struct r5conf
*conf
= sh
->raid_conf
;
939 int data_pages
, parity_pages
;
943 bool wake_reclaim
= false;
947 /* Don't support stripe batch */
948 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
949 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
950 /* the stripe is written to log, we start writing it to raid */
951 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
955 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
957 for (i
= 0; i
< sh
->disks
; i
++) {
960 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
961 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
965 /* checksum is already calculated in last run */
966 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
968 addr
= kmap_atomic(sh
->dev
[i
].page
);
969 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
973 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
974 data_pages
= write_disks
- parity_pages
;
976 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
978 * The stripe must enter state machine again to finish the write, so
981 clear_bit(STRIPE_DELAYED
, &sh
->state
);
982 atomic_inc(&sh
->count
);
984 mutex_lock(&log
->io_mutex
);
986 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
988 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
989 if (!r5l_has_free_space(log
, reserve
)) {
990 r5l_add_no_space_stripe(log
, sh
);
993 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
995 spin_lock_irq(&log
->io_list_lock
);
996 list_add_tail(&sh
->log_list
,
997 &log
->no_mem_stripes
);
998 spin_unlock_irq(&log
->io_list_lock
);
1001 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1003 * log space critical, do not process stripes that are
1004 * not in cache yet (sh->log_start == MaxSector).
1006 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
1007 sh
->log_start
== MaxSector
) {
1008 r5l_add_no_space_stripe(log
, sh
);
1009 wake_reclaim
= true;
1011 } else if (!r5l_has_free_space(log
, reserve
)) {
1012 if (sh
->log_start
== log
->last_checkpoint
)
1015 r5l_add_no_space_stripe(log
, sh
);
1017 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1019 spin_lock_irq(&log
->io_list_lock
);
1020 list_add_tail(&sh
->log_list
,
1021 &log
->no_mem_stripes
);
1022 spin_unlock_irq(&log
->io_list_lock
);
1027 mutex_unlock(&log
->io_mutex
);
1029 r5l_wake_reclaim(log
, reserve
);
1033 void r5l_write_stripe_run(struct r5l_log
*log
)
1037 mutex_lock(&log
->io_mutex
);
1038 r5l_submit_current_io(log
);
1039 mutex_unlock(&log
->io_mutex
);
1042 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
1047 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1049 * in write through (journal only)
1050 * we flush log disk cache first, then write stripe data to
1051 * raid disks. So if bio is finished, the log disk cache is
1052 * flushed already. The recovery guarantees we can recovery
1053 * the bio from log disk, so we don't need to flush again
1055 if (bio
->bi_iter
.bi_size
== 0) {
1059 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1061 /* write back (with cache) */
1062 if (bio
->bi_iter
.bi_size
== 0) {
1063 mutex_lock(&log
->io_mutex
);
1064 r5l_get_meta(log
, 0);
1065 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1066 log
->current_io
->has_flush
= 1;
1067 log
->current_io
->has_null_flush
= 1;
1068 atomic_inc(&log
->current_io
->pending_stripe
);
1069 r5l_submit_current_io(log
);
1070 mutex_unlock(&log
->io_mutex
);
1077 /* This will run after log space is reclaimed */
1078 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1080 struct stripe_head
*sh
;
1082 spin_lock(&log
->no_space_stripes_lock
);
1083 while (!list_empty(&log
->no_space_stripes
)) {
1084 sh
= list_first_entry(&log
->no_space_stripes
,
1085 struct stripe_head
, log_list
);
1086 list_del_init(&sh
->log_list
);
1087 set_bit(STRIPE_HANDLE
, &sh
->state
);
1088 raid5_release_stripe(sh
);
1090 spin_unlock(&log
->no_space_stripes_lock
);
1094 * calculate new last_checkpoint
1095 * for write through mode, returns log->next_checkpoint
1096 * for write back, returns log_start of first sh in stripe_in_journal_list
1098 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1100 struct stripe_head
*sh
;
1101 struct r5l_log
*log
= conf
->log
;
1103 unsigned long flags
;
1105 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1106 return log
->next_checkpoint
;
1108 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1109 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1110 /* all stripes flushed */
1111 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1112 return log
->next_checkpoint
;
1114 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1115 struct stripe_head
, r5c
);
1116 new_cp
= sh
->log_start
;
1117 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1121 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1123 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1125 return r5l_ring_distance(log
, log
->last_checkpoint
,
1126 r5c_calculate_new_cp(conf
));
1129 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1131 struct stripe_head
*sh
;
1133 assert_spin_locked(&log
->io_list_lock
);
1135 if (!list_empty(&log
->no_mem_stripes
)) {
1136 sh
= list_first_entry(&log
->no_mem_stripes
,
1137 struct stripe_head
, log_list
);
1138 list_del_init(&sh
->log_list
);
1139 set_bit(STRIPE_HANDLE
, &sh
->state
);
1140 raid5_release_stripe(sh
);
1144 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1146 struct r5l_io_unit
*io
, *next
;
1149 assert_spin_locked(&log
->io_list_lock
);
1151 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1152 /* don't change list order */
1153 if (io
->state
< IO_UNIT_STRIPE_END
)
1156 log
->next_checkpoint
= io
->log_start
;
1158 list_del(&io
->log_sibling
);
1159 mempool_free(io
, log
->io_pool
);
1160 r5l_run_no_mem_stripe(log
);
1168 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1170 struct r5l_log
*log
= io
->log
;
1171 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1172 unsigned long flags
;
1174 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1175 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1177 if (!r5l_complete_finished_ios(log
)) {
1178 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1182 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1183 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1184 r5l_wake_reclaim(log
, 0);
1186 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1187 wake_up(&log
->iounit_wait
);
1190 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1192 struct r5l_io_unit
*io
;
1197 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1198 __r5l_stripe_write_finished(io
);
1201 static void r5l_log_flush_endio(struct bio
*bio
)
1203 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1205 unsigned long flags
;
1206 struct r5l_io_unit
*io
;
1209 md_error(log
->rdev
->mddev
, log
->rdev
);
1211 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1212 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1213 r5l_io_run_stripes(io
);
1214 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1215 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1219 * Starting dispatch IO to raid.
1220 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1221 * broken meta in the middle of a log causes recovery can't find meta at the
1222 * head of log. If operations require meta at the head persistent in log, we
1223 * must make sure meta before it persistent in log too. A case is:
1225 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1226 * data/parity must be persistent in log before we do the write to raid disks.
1228 * The solution is we restrictly maintain io_unit list order. In this case, we
1229 * only write stripes of an io_unit to raid disks till the io_unit is the first
1230 * one whose data/parity is in log.
1232 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1236 if (!log
|| !log
->need_cache_flush
)
1239 spin_lock_irq(&log
->io_list_lock
);
1240 /* flush bio is running */
1241 if (!list_empty(&log
->flushing_ios
)) {
1242 spin_unlock_irq(&log
->io_list_lock
);
1245 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1246 do_flush
= !list_empty(&log
->flushing_ios
);
1247 spin_unlock_irq(&log
->io_list_lock
);
1251 bio_reset(&log
->flush_bio
);
1252 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
1253 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1254 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1255 submit_bio(&log
->flush_bio
);
1258 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1259 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1262 struct block_device
*bdev
= log
->rdev
->bdev
;
1263 struct mddev
*mddev
;
1265 r5l_write_super(log
, end
);
1267 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1270 mddev
= log
->rdev
->mddev
;
1272 * Discard could zero data, so before discard we must make sure
1273 * superblock is updated to new log tail. Updating superblock (either
1274 * directly call md_update_sb() or depend on md thread) must hold
1275 * reconfig mutex. On the other hand, raid5_quiesce is called with
1276 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1277 * for all IO finish, hence waitting for reclaim thread, while reclaim
1278 * thread is calling this function and waitting for reconfig mutex. So
1279 * there is a deadlock. We workaround this issue with a trylock.
1280 * FIXME: we could miss discard if we can't take reconfig mutex
1282 set_mask_bits(&mddev
->sb_flags
, 0,
1283 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1284 if (!mddev_trylock(mddev
))
1286 md_update_sb(mddev
, 1);
1287 mddev_unlock(mddev
);
1289 /* discard IO error really doesn't matter, ignore it */
1290 if (log
->last_checkpoint
< end
) {
1291 blkdev_issue_discard(bdev
,
1292 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1293 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1295 blkdev_issue_discard(bdev
,
1296 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1297 log
->device_size
- log
->last_checkpoint
,
1299 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1305 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1306 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1308 * must hold conf->device_lock
1310 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1312 BUG_ON(list_empty(&sh
->lru
));
1313 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1314 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1317 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1318 * raid5_release_stripe() while holding conf->device_lock
1320 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1321 assert_spin_locked(&conf
->device_lock
);
1323 list_del_init(&sh
->lru
);
1324 atomic_inc(&sh
->count
);
1326 set_bit(STRIPE_HANDLE
, &sh
->state
);
1327 atomic_inc(&conf
->active_stripes
);
1328 r5c_make_stripe_write_out(sh
);
1330 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
1331 atomic_inc(&conf
->r5c_flushing_partial_stripes
);
1333 atomic_inc(&conf
->r5c_flushing_full_stripes
);
1334 raid5_release_stripe(sh
);
1338 * if num == 0, flush all full stripes
1339 * if num > 0, flush all full stripes. If less than num full stripes are
1340 * flushed, flush some partial stripes until totally num stripes are
1341 * flushed or there is no more cached stripes.
1343 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1346 struct stripe_head
*sh
, *next
;
1348 assert_spin_locked(&conf
->device_lock
);
1353 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1354 r5c_flush_stripe(conf
, sh
);
1360 list_for_each_entry_safe(sh
, next
,
1361 &conf
->r5c_partial_stripe_list
, lru
) {
1362 r5c_flush_stripe(conf
, sh
);
1368 static void r5c_do_reclaim(struct r5conf
*conf
)
1370 struct r5l_log
*log
= conf
->log
;
1371 struct stripe_head
*sh
;
1373 unsigned long flags
;
1375 int stripes_to_flush
;
1376 int flushing_partial
, flushing_full
;
1378 if (!r5c_is_writeback(log
))
1381 flushing_partial
= atomic_read(&conf
->r5c_flushing_partial_stripes
);
1382 flushing_full
= atomic_read(&conf
->r5c_flushing_full_stripes
);
1383 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1384 atomic_read(&conf
->r5c_cached_full_stripes
) -
1385 flushing_full
- flushing_partial
;
1387 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1388 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1390 * if stripe cache pressure high, flush all full stripes and
1391 * some partial stripes
1393 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1394 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1395 atomic_read(&conf
->r5c_cached_full_stripes
) - flushing_full
>
1396 R5C_FULL_STRIPE_FLUSH_BATCH
)
1398 * if stripe cache pressure moderate, or if there is many full
1399 * stripes,flush all full stripes
1401 stripes_to_flush
= 0;
1403 /* no need to flush */
1404 stripes_to_flush
= -1;
1406 if (stripes_to_flush
>= 0) {
1407 spin_lock_irqsave(&conf
->device_lock
, flags
);
1408 r5c_flush_cache(conf
, stripes_to_flush
);
1409 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1412 /* if log space is tight, flush stripes on stripe_in_journal_list */
1413 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1414 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1415 spin_lock(&conf
->device_lock
);
1416 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1418 * stripes on stripe_in_journal_list could be in any
1419 * state of the stripe_cache state machine. In this
1420 * case, we only want to flush stripe on
1421 * r5c_cached_full/partial_stripes. The following
1422 * condition makes sure the stripe is on one of the
1425 if (!list_empty(&sh
->lru
) &&
1426 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1427 atomic_read(&sh
->count
) == 0) {
1428 r5c_flush_stripe(conf
, sh
);
1429 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1433 spin_unlock(&conf
->device_lock
);
1434 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1437 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1438 r5l_run_no_space_stripes(log
);
1440 md_wakeup_thread(conf
->mddev
->thread
);
1443 static void r5l_do_reclaim(struct r5l_log
*log
)
1445 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1446 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1447 sector_t reclaimable
;
1448 sector_t next_checkpoint
;
1451 spin_lock_irq(&log
->io_list_lock
);
1452 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1453 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1455 * move proper io_unit to reclaim list. We should not change the order.
1456 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1457 * shouldn't reuse space of an unreclaimable io_unit
1460 reclaimable
= r5l_reclaimable_space(log
);
1461 if (reclaimable
>= reclaim_target
||
1462 (list_empty(&log
->running_ios
) &&
1463 list_empty(&log
->io_end_ios
) &&
1464 list_empty(&log
->flushing_ios
) &&
1465 list_empty(&log
->finished_ios
)))
1468 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1469 wait_event_lock_irq(log
->iounit_wait
,
1470 r5l_reclaimable_space(log
) > reclaimable
,
1474 next_checkpoint
= r5c_calculate_new_cp(conf
);
1475 spin_unlock_irq(&log
->io_list_lock
);
1477 if (reclaimable
== 0 || !write_super
)
1481 * write_super will flush cache of each raid disk. We must write super
1482 * here, because the log area might be reused soon and we don't want to
1485 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1487 mutex_lock(&log
->io_mutex
);
1488 log
->last_checkpoint
= next_checkpoint
;
1489 r5c_update_log_state(log
);
1490 mutex_unlock(&log
->io_mutex
);
1492 r5l_run_no_space_stripes(log
);
1495 static void r5l_reclaim_thread(struct md_thread
*thread
)
1497 struct mddev
*mddev
= thread
->mddev
;
1498 struct r5conf
*conf
= mddev
->private;
1499 struct r5l_log
*log
= conf
->log
;
1503 r5c_do_reclaim(conf
);
1504 r5l_do_reclaim(log
);
1507 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1509 unsigned long target
;
1510 unsigned long new = (unsigned long)space
; /* overflow in theory */
1515 target
= log
->reclaim_target
;
1518 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1519 md_wakeup_thread(log
->reclaim_thread
);
1522 void r5l_quiesce(struct r5l_log
*log
, int state
)
1524 struct mddev
*mddev
;
1525 if (!log
|| state
== 2)
1528 kthread_unpark(log
->reclaim_thread
->tsk
);
1529 else if (state
== 1) {
1530 /* make sure r5l_write_super_and_discard_space exits */
1531 mddev
= log
->rdev
->mddev
;
1532 wake_up(&mddev
->sb_wait
);
1533 kthread_park(log
->reclaim_thread
->tsk
);
1534 r5l_wake_reclaim(log
, MaxSector
);
1535 r5l_do_reclaim(log
);
1539 bool r5l_log_disk_error(struct r5conf
*conf
)
1541 struct r5l_log
*log
;
1543 /* don't allow write if journal disk is missing */
1545 log
= rcu_dereference(conf
->log
);
1548 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1550 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1555 struct r5l_recovery_ctx
{
1556 struct page
*meta_page
; /* current meta */
1557 sector_t meta_total_blocks
; /* total size of current meta and data */
1558 sector_t pos
; /* recovery position */
1559 u64 seq
; /* recovery position seq */
1560 int data_parity_stripes
; /* number of data_parity stripes */
1561 int data_only_stripes
; /* number of data_only stripes */
1562 struct list_head cached_list
;
1565 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1566 struct r5l_recovery_ctx
*ctx
)
1568 struct page
*page
= ctx
->meta_page
;
1569 struct r5l_meta_block
*mb
;
1570 u32 crc
, stored_crc
;
1572 if (!sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
, REQ_OP_READ
, 0,
1576 mb
= page_address(page
);
1577 stored_crc
= le32_to_cpu(mb
->checksum
);
1580 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1581 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1582 mb
->version
!= R5LOG_VERSION
||
1583 le64_to_cpu(mb
->position
) != ctx
->pos
)
1586 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1587 if (stored_crc
!= crc
)
1590 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1593 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1599 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1601 sector_t pos
, u64 seq
)
1603 struct r5l_meta_block
*mb
;
1605 mb
= page_address(page
);
1607 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1608 mb
->version
= R5LOG_VERSION
;
1609 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1610 mb
->seq
= cpu_to_le64(seq
);
1611 mb
->position
= cpu_to_le64(pos
);
1614 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1618 struct r5l_meta_block
*mb
;
1620 page
= alloc_page(GFP_KERNEL
);
1623 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1624 mb
= page_address(page
);
1625 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1627 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1637 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1638 * to mark valid (potentially not flushed) data in the journal.
1640 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1641 * so there should not be any mismatch here.
1643 static void r5l_recovery_load_data(struct r5l_log
*log
,
1644 struct stripe_head
*sh
,
1645 struct r5l_recovery_ctx
*ctx
,
1646 struct r5l_payload_data_parity
*payload
,
1647 sector_t log_offset
)
1649 struct mddev
*mddev
= log
->rdev
->mddev
;
1650 struct r5conf
*conf
= mddev
->private;
1653 raid5_compute_sector(conf
,
1654 le64_to_cpu(payload
->location
), 0,
1656 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1657 sh
->dev
[dd_idx
].page
, REQ_OP_READ
, 0, false);
1658 sh
->dev
[dd_idx
].log_checksum
=
1659 le32_to_cpu(payload
->checksum
[0]);
1660 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1662 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1663 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1666 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1667 struct stripe_head
*sh
,
1668 struct r5l_recovery_ctx
*ctx
,
1669 struct r5l_payload_data_parity
*payload
,
1670 sector_t log_offset
)
1672 struct mddev
*mddev
= log
->rdev
->mddev
;
1673 struct r5conf
*conf
= mddev
->private;
1675 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1676 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1677 sh
->dev
[sh
->pd_idx
].page
, REQ_OP_READ
, 0, false);
1678 sh
->dev
[sh
->pd_idx
].log_checksum
=
1679 le32_to_cpu(payload
->checksum
[0]);
1680 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1682 if (sh
->qd_idx
>= 0) {
1683 sync_page_io(log
->rdev
,
1684 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
),
1685 PAGE_SIZE
, sh
->dev
[sh
->qd_idx
].page
,
1686 REQ_OP_READ
, 0, false);
1687 sh
->dev
[sh
->qd_idx
].log_checksum
=
1688 le32_to_cpu(payload
->checksum
[1]);
1689 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1691 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1694 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1699 sh
->log_start
= MaxSector
;
1700 for (i
= sh
->disks
; i
--; )
1701 sh
->dev
[i
].flags
= 0;
1705 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1706 struct stripe_head
*sh
,
1707 struct r5l_recovery_ctx
*ctx
)
1709 struct md_rdev
*rdev
, *rrdev
;
1713 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1714 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1716 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1722 * stripes that only have parity must have been flushed
1723 * before the crash that we are now recovering from, so
1724 * there is nothing more to recovery.
1726 if (data_count
== 0)
1729 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1730 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1733 /* in case device is broken */
1735 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1737 atomic_inc(&rdev
->nr_pending
);
1739 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1740 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1742 rdev_dec_pending(rdev
, rdev
->mddev
);
1745 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1747 atomic_inc(&rrdev
->nr_pending
);
1749 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1750 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1752 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1757 ctx
->data_parity_stripes
++;
1759 r5l_recovery_reset_stripe(sh
);
1762 static struct stripe_head
*
1763 r5c_recovery_alloc_stripe(struct r5conf
*conf
,
1764 sector_t stripe_sect
)
1766 struct stripe_head
*sh
;
1768 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 1, 0);
1770 return NULL
; /* no more stripe available */
1772 r5l_recovery_reset_stripe(sh
);
1777 static struct stripe_head
*
1778 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1780 struct stripe_head
*sh
;
1782 list_for_each_entry(sh
, list
, lru
)
1783 if (sh
->sector
== sect
)
1789 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1790 struct r5l_recovery_ctx
*ctx
)
1792 struct stripe_head
*sh
, *next
;
1794 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1795 r5l_recovery_reset_stripe(sh
);
1796 list_del_init(&sh
->lru
);
1797 raid5_release_stripe(sh
);
1802 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1803 struct r5l_recovery_ctx
*ctx
)
1805 struct stripe_head
*sh
, *next
;
1807 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1808 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1809 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1810 list_del_init(&sh
->lru
);
1811 raid5_release_stripe(sh
);
1815 /* if matches return 0; otherwise return -EINVAL */
1817 r5l_recovery_verify_data_checksum(struct r5l_log
*log
, struct page
*page
,
1818 sector_t log_offset
, __le32 log_checksum
)
1823 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1824 page
, REQ_OP_READ
, 0, false);
1825 addr
= kmap_atomic(page
);
1826 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1827 kunmap_atomic(addr
);
1828 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1832 * before loading data to stripe cache, we need verify checksum for all data,
1833 * if there is mismatch for any data page, we drop all data in the mata block
1836 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
1837 struct r5l_recovery_ctx
*ctx
)
1839 struct mddev
*mddev
= log
->rdev
->mddev
;
1840 struct r5conf
*conf
= mddev
->private;
1841 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
1842 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
1843 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1845 struct r5l_payload_data_parity
*payload
;
1847 page
= alloc_page(GFP_KERNEL
);
1851 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1852 payload
= (void *)mb
+ mb_offset
;
1854 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1855 if (r5l_recovery_verify_data_checksum(
1856 log
, page
, log_offset
,
1857 payload
->checksum
[0]) < 0)
1859 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
) {
1860 if (r5l_recovery_verify_data_checksum(
1861 log
, page
, log_offset
,
1862 payload
->checksum
[0]) < 0)
1864 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
1865 r5l_recovery_verify_data_checksum(
1867 r5l_ring_add(log
, log_offset
,
1869 payload
->checksum
[1]) < 0)
1871 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1874 log_offset
= r5l_ring_add(log
, log_offset
,
1875 le32_to_cpu(payload
->size
));
1877 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1879 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1891 * Analyze all data/parity pages in one meta block
1894 * -EINVAL for unknown playload type
1895 * -EAGAIN for checksum mismatch of data page
1896 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1899 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
1900 struct r5l_recovery_ctx
*ctx
,
1901 struct list_head
*cached_stripe_list
)
1903 struct mddev
*mddev
= log
->rdev
->mddev
;
1904 struct r5conf
*conf
= mddev
->private;
1905 struct r5l_meta_block
*mb
;
1906 struct r5l_payload_data_parity
*payload
;
1908 sector_t log_offset
;
1909 sector_t stripe_sect
;
1910 struct stripe_head
*sh
;
1914 * for mismatch in data blocks, we will drop all data in this mb, but
1915 * we will still read next mb for other data with FLUSH flag, as
1916 * io_unit could finish out of order.
1918 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
1922 return ret
; /* -ENOMEM duo to alloc_page() failed */
1924 mb
= page_address(ctx
->meta_page
);
1925 mb_offset
= sizeof(struct r5l_meta_block
);
1926 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1928 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1931 payload
= (void *)mb
+ mb_offset
;
1932 stripe_sect
= (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) ?
1933 raid5_compute_sector(
1934 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
1936 : le64_to_cpu(payload
->location
);
1938 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
1942 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
);
1944 * cannot get stripe from raid5_get_active_stripe
1945 * try replay some stripes
1948 r5c_recovery_replay_stripes(
1949 cached_stripe_list
, ctx
);
1950 sh
= r5c_recovery_alloc_stripe(
1954 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1956 conf
->min_nr_stripes
* 2);
1957 raid5_set_cache_size(mddev
,
1958 conf
->min_nr_stripes
* 2);
1959 sh
= r5c_recovery_alloc_stripe(conf
,
1963 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1967 list_add_tail(&sh
->lru
, cached_stripe_list
);
1970 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1971 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
1972 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
1973 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
1974 list_move_tail(&sh
->lru
, cached_stripe_list
);
1976 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
1978 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
)
1979 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
1984 log_offset
= r5l_ring_add(log
, log_offset
,
1985 le32_to_cpu(payload
->size
));
1987 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1989 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1996 * Load the stripe into cache. The stripe will be written out later by
1997 * the stripe cache state machine.
1999 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
2000 struct stripe_head
*sh
)
2005 for (i
= sh
->disks
; i
--; ) {
2007 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
2008 set_bit(R5_InJournal
, &dev
->flags
);
2009 set_bit(R5_UPTODATE
, &dev
->flags
);
2015 * Scan through the log for all to-be-flushed data
2017 * For stripes with data and parity, namely Data-Parity stripe
2018 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2020 * For stripes with only data, namely Data-Only stripe
2021 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2023 * For a stripe, if we see data after parity, we should discard all previous
2024 * data and parity for this stripe, as these data are already flushed to
2027 * At the end of the scan, we return the new journal_tail, which points to
2028 * first data-only stripe on the journal device, or next invalid meta block.
2030 static int r5c_recovery_flush_log(struct r5l_log
*log
,
2031 struct r5l_recovery_ctx
*ctx
)
2033 struct stripe_head
*sh
;
2036 /* scan through the log */
2038 if (r5l_recovery_read_meta_block(log
, ctx
))
2041 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
2044 * -EAGAIN means mismatch in data block, in this case, we still
2045 * try scan the next metablock
2047 if (ret
&& ret
!= -EAGAIN
)
2048 break; /* ret == -EINVAL or -ENOMEM */
2050 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
2053 if (ret
== -ENOMEM
) {
2054 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
2058 /* replay data-parity stripes */
2059 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
2061 /* load data-only stripes to stripe cache */
2062 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2063 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2064 r5c_recovery_load_one_stripe(log
, sh
);
2065 ctx
->data_only_stripes
++;
2072 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2073 * log will start here. but we can't let superblock point to last valid
2074 * meta block. The log might looks like:
2075 * | meta 1| meta 2| meta 3|
2076 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2077 * superblock points to meta 1, we write a new valid meta 2n. if crash
2078 * happens again, new recovery will start from meta 1. Since meta 2n is
2079 * valid now, recovery will think meta 3 is valid, which is wrong.
2080 * The solution is we create a new meta in meta2 with its seq == meta
2081 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2082 * will not think meta 3 is a valid meta, because its seq doesn't match
2086 * Before recovery, the log looks like the following
2088 * ---------------------------------------------
2089 * | valid log | invalid log |
2090 * ---------------------------------------------
2092 * |- log->last_checkpoint
2093 * |- log->last_cp_seq
2095 * Now we scan through the log until we see invalid entry
2097 * ---------------------------------------------
2098 * | valid log | invalid log |
2099 * ---------------------------------------------
2101 * |- log->last_checkpoint |- ctx->pos
2102 * |- log->last_cp_seq |- ctx->seq
2104 * From this point, we need to increase seq number by 10 to avoid
2105 * confusing next recovery.
2107 * ---------------------------------------------
2108 * | valid log | invalid log |
2109 * ---------------------------------------------
2111 * |- log->last_checkpoint |- ctx->pos+1
2112 * |- log->last_cp_seq |- ctx->seq+10001
2114 * However, it is not safe to start the state machine yet, because data only
2115 * parities are not yet secured in RAID. To save these data only parities, we
2116 * rewrite them from seq+11.
2118 * -----------------------------------------------------------------
2119 * | valid log | data only stripes | invalid log |
2120 * -----------------------------------------------------------------
2122 * |- log->last_checkpoint |- ctx->pos+n
2123 * |- log->last_cp_seq |- ctx->seq+10000+n
2125 * If failure happens again during this process, the recovery can safe start
2126 * again from log->last_checkpoint.
2128 * Once data only stripes are rewritten to journal, we move log_tail
2130 * -----------------------------------------------------------------
2131 * | old log | data only stripes | invalid log |
2132 * -----------------------------------------------------------------
2134 * |- log->last_checkpoint |- ctx->pos+n
2135 * |- log->last_cp_seq |- ctx->seq+10000+n
2137 * Then we can safely start the state machine. If failure happens from this
2138 * point on, the recovery will start from new log->last_checkpoint.
2141 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2142 struct r5l_recovery_ctx
*ctx
)
2144 struct stripe_head
*sh
;
2145 struct mddev
*mddev
= log
->rdev
->mddev
;
2147 sector_t next_checkpoint
= MaxSector
;
2149 page
= alloc_page(GFP_KERNEL
);
2151 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2156 WARN_ON(list_empty(&ctx
->cached_list
));
2158 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2159 struct r5l_meta_block
*mb
;
2164 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2165 r5l_recovery_create_empty_meta_block(log
, page
,
2166 ctx
->pos
, ctx
->seq
);
2167 mb
= page_address(page
);
2168 offset
= le32_to_cpu(mb
->meta_size
);
2169 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2171 for (i
= sh
->disks
; i
--; ) {
2172 struct r5dev
*dev
= &sh
->dev
[i
];
2173 struct r5l_payload_data_parity
*payload
;
2176 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2177 payload
= (void *)mb
+ offset
;
2178 payload
->header
.type
= cpu_to_le16(
2179 R5LOG_PAYLOAD_DATA
);
2180 payload
->size
= BLOCK_SECTORS
;
2181 payload
->location
= cpu_to_le64(
2182 raid5_compute_blocknr(sh
, i
, 0));
2183 addr
= kmap_atomic(dev
->page
);
2184 payload
->checksum
[0] = cpu_to_le32(
2185 crc32c_le(log
->uuid_checksum
, addr
,
2187 kunmap_atomic(addr
);
2188 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2189 dev
->page
, REQ_OP_WRITE
, 0, false);
2190 write_pos
= r5l_ring_add(log
, write_pos
,
2192 offset
+= sizeof(__le32
) +
2193 sizeof(struct r5l_payload_data_parity
);
2197 mb
->meta_size
= cpu_to_le32(offset
);
2198 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2200 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2201 REQ_OP_WRITE
, REQ_FUA
, false);
2202 sh
->log_start
= ctx
->pos
;
2203 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2204 atomic_inc(&log
->stripe_in_journal_count
);
2205 ctx
->pos
= write_pos
;
2207 next_checkpoint
= sh
->log_start
;
2209 log
->next_checkpoint
= next_checkpoint
;
2214 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2215 struct r5l_recovery_ctx
*ctx
)
2217 struct mddev
*mddev
= log
->rdev
->mddev
;
2218 struct r5conf
*conf
= mddev
->private;
2219 struct stripe_head
*sh
, *next
;
2221 if (ctx
->data_only_stripes
== 0)
2224 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2226 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2227 r5c_make_stripe_write_out(sh
);
2228 set_bit(STRIPE_HANDLE
, &sh
->state
);
2229 list_del_init(&sh
->lru
);
2230 raid5_release_stripe(sh
);
2233 md_wakeup_thread(conf
->mddev
->thread
);
2234 /* reuse conf->wait_for_quiescent in recovery */
2235 wait_event(conf
->wait_for_quiescent
,
2236 atomic_read(&conf
->active_stripes
) == 0);
2238 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2241 static int r5l_recovery_log(struct r5l_log
*log
)
2243 struct mddev
*mddev
= log
->rdev
->mddev
;
2244 struct r5l_recovery_ctx ctx
;
2248 ctx
.pos
= log
->last_checkpoint
;
2249 ctx
.seq
= log
->last_cp_seq
;
2250 ctx
.meta_page
= alloc_page(GFP_KERNEL
);
2251 ctx
.data_only_stripes
= 0;
2252 ctx
.data_parity_stripes
= 0;
2253 INIT_LIST_HEAD(&ctx
.cached_list
);
2258 ret
= r5c_recovery_flush_log(log
, &ctx
);
2259 __free_page(ctx
.meta_page
);
2268 if ((ctx
.data_only_stripes
== 0) && (ctx
.data_parity_stripes
== 0))
2269 pr_debug("md/raid:%s: starting from clean shutdown\n",
2272 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2273 mdname(mddev
), ctx
.data_only_stripes
,
2274 ctx
.data_parity_stripes
);
2276 if (ctx
.data_only_stripes
== 0) {
2277 log
->next_checkpoint
= ctx
.pos
;
2278 r5l_log_write_empty_meta_block(log
, ctx
.pos
, ctx
.seq
++);
2279 ctx
.pos
= r5l_ring_add(log
, ctx
.pos
, BLOCK_SECTORS
);
2280 } else if (r5c_recovery_rewrite_data_only_stripes(log
, &ctx
)) {
2281 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2286 log
->log_start
= ctx
.pos
;
2288 log
->last_checkpoint
= pos
;
2289 r5l_write_super(log
, pos
);
2291 r5c_recovery_flush_data_only_stripes(log
, &ctx
);
2295 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2297 struct mddev
*mddev
= log
->rdev
->mddev
;
2299 log
->rdev
->journal_tail
= cp
;
2300 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2303 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2305 struct r5conf
*conf
= mddev
->private;
2311 switch (conf
->log
->r5c_journal_mode
) {
2312 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2314 page
, PAGE_SIZE
, "[%s] %s\n",
2315 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2316 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2318 case R5C_JOURNAL_MODE_WRITE_BACK
:
2320 page
, PAGE_SIZE
, "%s [%s]\n",
2321 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2322 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2330 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2331 const char *page
, size_t length
)
2333 struct r5conf
*conf
= mddev
->private;
2334 struct r5l_log
*log
= conf
->log
;
2341 if (len
&& page
[len
- 1] == '\n')
2343 for (i
= 0; i
< ARRAY_SIZE(r5c_journal_mode_str
); i
++)
2344 if (strlen(r5c_journal_mode_str
[i
]) == len
&&
2345 strncmp(page
, r5c_journal_mode_str
[i
], len
) == 0) {
2349 if (val
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2350 val
> R5C_JOURNAL_MODE_WRITE_BACK
)
2353 if (raid5_calc_degraded(conf
) > 0 &&
2354 val
== R5C_JOURNAL_MODE_WRITE_BACK
)
2357 mddev_suspend(mddev
);
2358 conf
->log
->r5c_journal_mode
= val
;
2359 mddev_resume(mddev
);
2361 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2362 mdname(mddev
), val
, r5c_journal_mode_str
[val
]);
2366 struct md_sysfs_entry
2367 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2368 r5c_journal_mode_show
, r5c_journal_mode_store
);
2371 * Try handle write operation in caching phase. This function should only
2372 * be called in write-back mode.
2374 * If all outstanding writes can be handled in caching phase, returns 0
2375 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2376 * and returns -EAGAIN
2378 int r5c_try_caching_write(struct r5conf
*conf
,
2379 struct stripe_head
*sh
,
2380 struct stripe_head_state
*s
,
2383 struct r5l_log
*log
= conf
->log
;
2388 sector_t tree_index
;
2392 BUG_ON(!r5c_is_writeback(log
));
2394 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2396 * There are two different scenarios here:
2397 * 1. The stripe has some data cached, and it is sent to
2398 * write-out phase for reclaim
2399 * 2. The stripe is clean, and this is the first write
2401 * For 1, return -EAGAIN, so we continue with
2402 * handle_stripe_dirtying().
2404 * For 2, set STRIPE_R5C_CACHING and continue with caching
2408 /* case 1: anything injournal or anything in written */
2409 if (s
->injournal
> 0 || s
->written
> 0)
2412 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2416 * When run in degraded mode, array is set to write-through mode.
2417 * This check helps drain pending write safely in the transition to
2418 * write-through mode.
2421 r5c_make_stripe_write_out(sh
);
2425 for (i
= disks
; i
--; ) {
2427 /* if non-overwrite, use writing-out phase */
2428 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2429 !test_bit(R5_InJournal
, &dev
->flags
)) {
2430 r5c_make_stripe_write_out(sh
);
2435 /* if the stripe is not counted in big_stripe_tree, add it now */
2436 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
2437 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2438 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2439 spin_lock(&log
->tree_lock
);
2440 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2443 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2444 pslot
, &log
->tree_lock
) >>
2445 R5C_RADIX_COUNT_SHIFT
;
2446 radix_tree_replace_slot(
2447 &log
->big_stripe_tree
, pslot
,
2448 (void *)((refcount
+ 1) << R5C_RADIX_COUNT_SHIFT
));
2451 * this radix_tree_insert can fail safely, so no
2452 * need to call radix_tree_preload()
2454 ret
= radix_tree_insert(
2455 &log
->big_stripe_tree
, tree_index
,
2456 (void *)(1 << R5C_RADIX_COUNT_SHIFT
));
2458 spin_unlock(&log
->tree_lock
);
2459 r5c_make_stripe_write_out(sh
);
2463 spin_unlock(&log
->tree_lock
);
2466 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2467 * counted in the radix tree
2469 set_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
);
2470 atomic_inc(&conf
->r5c_cached_partial_stripes
);
2473 for (i
= disks
; i
--; ) {
2476 set_bit(R5_Wantwrite
, &dev
->flags
);
2477 set_bit(R5_Wantdrain
, &dev
->flags
);
2478 set_bit(R5_LOCKED
, &dev
->flags
);
2484 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2486 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2487 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2488 * r5c_handle_data_cached()
2490 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2497 * free extra pages (orig_page) we allocated for prexor
2499 void r5c_release_extra_page(struct stripe_head
*sh
)
2501 struct r5conf
*conf
= sh
->raid_conf
;
2503 bool using_disk_info_extra_page
;
2505 using_disk_info_extra_page
=
2506 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2508 for (i
= sh
->disks
; i
--; )
2509 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2510 struct page
*p
= sh
->dev
[i
].orig_page
;
2512 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2513 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2515 if (!using_disk_info_extra_page
)
2519 if (using_disk_info_extra_page
) {
2520 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2521 md_wakeup_thread(conf
->mddev
->thread
);
2525 void r5c_use_extra_page(struct stripe_head
*sh
)
2527 struct r5conf
*conf
= sh
->raid_conf
;
2531 for (i
= sh
->disks
; i
--; ) {
2533 if (dev
->orig_page
!= dev
->page
)
2534 put_page(dev
->orig_page
);
2535 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2540 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2541 * stripe is committed to RAID disks.
2543 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2544 struct stripe_head
*sh
,
2545 struct stripe_head_state
*s
)
2547 struct r5l_log
*log
= conf
->log
;
2550 sector_t tree_index
;
2554 if (!log
|| !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2557 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2558 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2560 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2563 for (i
= sh
->disks
; i
--; ) {
2564 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2565 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2570 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2571 * We updated R5_InJournal, so we also update s->injournal.
2575 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2576 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2577 md_wakeup_thread(conf
->mddev
->thread
);
2580 wake_up(&conf
->wait_for_overlap
);
2582 spin_lock_irq(&log
->stripe_in_journal_lock
);
2583 list_del_init(&sh
->r5c
);
2584 spin_unlock_irq(&log
->stripe_in_journal_lock
);
2585 sh
->log_start
= MaxSector
;
2587 atomic_dec(&log
->stripe_in_journal_count
);
2588 r5c_update_log_state(log
);
2590 /* stop counting this stripe in big_stripe_tree */
2591 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) ||
2592 test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2593 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2594 spin_lock(&log
->tree_lock
);
2595 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2597 BUG_ON(pslot
== NULL
);
2598 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2599 pslot
, &log
->tree_lock
) >>
2600 R5C_RADIX_COUNT_SHIFT
;
2602 radix_tree_delete(&log
->big_stripe_tree
, tree_index
);
2604 radix_tree_replace_slot(
2605 &log
->big_stripe_tree
, pslot
,
2606 (void *)((refcount
- 1) << R5C_RADIX_COUNT_SHIFT
));
2607 spin_unlock(&log
->tree_lock
);
2610 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
2611 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
2612 atomic_dec(&conf
->r5c_flushing_partial_stripes
);
2613 atomic_dec(&conf
->r5c_cached_partial_stripes
);
2616 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2617 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
2618 atomic_dec(&conf
->r5c_flushing_full_stripes
);
2619 atomic_dec(&conf
->r5c_cached_full_stripes
);
2624 r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
,
2625 struct stripe_head_state
*s
)
2627 struct r5conf
*conf
= sh
->raid_conf
;
2635 for (i
= 0; i
< sh
->disks
; i
++) {
2638 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2640 addr
= kmap_atomic(sh
->dev
[i
].page
);
2641 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2643 kunmap_atomic(addr
);
2646 WARN_ON(pages
== 0);
2649 * The stripe must enter state machine again to call endio, so
2652 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2653 atomic_inc(&sh
->count
);
2655 mutex_lock(&log
->io_mutex
);
2657 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2659 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2660 sh
->log_start
== MaxSector
)
2661 r5l_add_no_space_stripe(log
, sh
);
2662 else if (!r5l_has_free_space(log
, reserve
)) {
2663 if (sh
->log_start
== log
->last_checkpoint
)
2666 r5l_add_no_space_stripe(log
, sh
);
2668 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2670 spin_lock_irq(&log
->io_list_lock
);
2671 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2672 spin_unlock_irq(&log
->io_list_lock
);
2676 mutex_unlock(&log
->io_mutex
);
2680 /* check whether this big stripe is in write back cache. */
2681 bool r5c_big_stripe_cached(struct r5conf
*conf
, sector_t sect
)
2683 struct r5l_log
*log
= conf
->log
;
2684 sector_t tree_index
;
2690 WARN_ON_ONCE(!rcu_read_lock_held());
2691 tree_index
= r5c_tree_index(conf
, sect
);
2692 slot
= radix_tree_lookup(&log
->big_stripe_tree
, tree_index
);
2693 return slot
!= NULL
;
2696 static int r5l_load_log(struct r5l_log
*log
)
2698 struct md_rdev
*rdev
= log
->rdev
;
2700 struct r5l_meta_block
*mb
;
2701 sector_t cp
= log
->rdev
->journal_tail
;
2702 u32 stored_crc
, expected_crc
;
2703 bool create_super
= false;
2706 /* Make sure it's valid */
2707 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2709 page
= alloc_page(GFP_KERNEL
);
2713 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2717 mb
= page_address(page
);
2719 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2720 mb
->version
!= R5LOG_VERSION
) {
2721 create_super
= true;
2724 stored_crc
= le32_to_cpu(mb
->checksum
);
2726 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2727 if (stored_crc
!= expected_crc
) {
2728 create_super
= true;
2731 if (le64_to_cpu(mb
->position
) != cp
) {
2732 create_super
= true;
2737 log
->last_cp_seq
= prandom_u32();
2739 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
2741 * Make sure super points to correct address. Log might have
2742 * data very soon. If super hasn't correct log tail address,
2743 * recovery can't find the log
2745 r5l_write_super(log
, cp
);
2747 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
2749 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
2750 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
2751 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
2752 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
2753 log
->last_checkpoint
= cp
;
2758 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
2759 log
->seq
= log
->last_cp_seq
+ 1;
2760 log
->next_checkpoint
= cp
;
2762 ret
= r5l_recovery_log(log
);
2764 r5c_update_log_state(log
);
2771 void r5c_update_on_rdev_error(struct mddev
*mddev
)
2773 struct r5conf
*conf
= mddev
->private;
2774 struct r5l_log
*log
= conf
->log
;
2779 if (raid5_calc_degraded(conf
) > 0 &&
2780 conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2781 schedule_work(&log
->disable_writeback_work
);
2784 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
2786 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
2787 struct r5l_log
*log
;
2789 if (PAGE_SIZE
!= 4096)
2793 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2794 * raid_disks r5l_payload_data_parity.
2796 * Write journal and cache does not work for very big array
2797 * (raid_disks > 203)
2799 if (sizeof(struct r5l_meta_block
) +
2800 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
2801 conf
->raid_disks
) > PAGE_SIZE
) {
2802 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2803 mdname(conf
->mddev
), conf
->raid_disks
);
2807 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
2812 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
2814 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
2815 sizeof(rdev
->mddev
->uuid
));
2817 mutex_init(&log
->io_mutex
);
2819 spin_lock_init(&log
->io_list_lock
);
2820 INIT_LIST_HEAD(&log
->running_ios
);
2821 INIT_LIST_HEAD(&log
->io_end_ios
);
2822 INIT_LIST_HEAD(&log
->flushing_ios
);
2823 INIT_LIST_HEAD(&log
->finished_ios
);
2824 bio_init(&log
->flush_bio
, NULL
, 0);
2826 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
2830 log
->io_pool
= mempool_create_slab_pool(R5L_POOL_SIZE
, log
->io_kc
);
2834 log
->bs
= bioset_create(R5L_POOL_SIZE
, 0);
2838 log
->meta_pool
= mempool_create_page_pool(R5L_POOL_SIZE
, 0);
2839 if (!log
->meta_pool
)
2842 spin_lock_init(&log
->tree_lock
);
2843 INIT_RADIX_TREE(&log
->big_stripe_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
2845 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
2846 log
->rdev
->mddev
, "reclaim");
2847 if (!log
->reclaim_thread
)
2848 goto reclaim_thread
;
2849 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
2851 init_waitqueue_head(&log
->iounit_wait
);
2853 INIT_LIST_HEAD(&log
->no_mem_stripes
);
2855 INIT_LIST_HEAD(&log
->no_space_stripes
);
2856 spin_lock_init(&log
->no_space_stripes_lock
);
2858 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
2859 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
2861 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2862 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
2863 spin_lock_init(&log
->stripe_in_journal_lock
);
2864 atomic_set(&log
->stripe_in_journal_count
, 0);
2866 rcu_assign_pointer(conf
->log
, log
);
2868 if (r5l_load_log(log
))
2871 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
2875 rcu_assign_pointer(conf
->log
, NULL
);
2876 md_unregister_thread(&log
->reclaim_thread
);
2878 mempool_destroy(log
->meta_pool
);
2880 bioset_free(log
->bs
);
2882 mempool_destroy(log
->io_pool
);
2884 kmem_cache_destroy(log
->io_kc
);
2890 void r5l_exit_log(struct r5l_log
*log
)
2892 flush_work(&log
->disable_writeback_work
);
2893 md_unregister_thread(&log
->reclaim_thread
);
2894 mempool_destroy(log
->meta_pool
);
2895 bioset_free(log
->bs
);
2896 mempool_destroy(log
->io_pool
);
2897 kmem_cache_destroy(log
->io_kc
);