2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
28 * metadata/data stored in disk with 4k size unit (a block) regardless
29 * underneath hardware sector size. only works with PAGE_SIZE == 4096
31 #define BLOCK_SECTORS (8)
34 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
36 * In write through mode, the reclaim runs every log->max_free_space.
37 * This can prevent the recovery scans for too long
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50 * We only need 2 bios per I/O unit to make progress, but ensure we
51 * have a few more available to not get too tight.
53 #define R5L_POOL_SIZE 4
56 * r5c journal modes of the array: write-back or write-through.
57 * write-through mode has identical behavior as existing log only
60 enum r5c_journal_mode
{
61 R5C_JOURNAL_MODE_WRITE_THROUGH
= 0,
62 R5C_JOURNAL_MODE_WRITE_BACK
= 1,
65 static char *r5c_journal_mode_str
[] = {"write-through",
68 * raid5 cache state machine
70 * With the RAID cache, each stripe works in two phases:
74 * These two phases are controlled by bit STRIPE_R5C_CACHING:
75 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
78 * When there is no journal, or the journal is in write-through mode,
79 * the stripe is always in writing-out phase.
81 * For write-back journal, the stripe is sent to caching phase on write
82 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83 * the write-out phase by clearing STRIPE_R5C_CACHING.
85 * Stripes in caching phase do not write the raid disks. Instead, all
86 * writes are committed from the log device. Therefore, a stripe in
87 * caching phase handles writes as:
88 * - write to log device
91 * Stripes in writing-out phase handle writes as:
93 * - write pending data and parity to journal
94 * - write data and parity to raid disks
95 * - return IO for pending writes
103 sector_t device_size
; /* log device size, round to
105 sector_t max_free_space
; /* reclaim run if free space is at
108 sector_t last_checkpoint
; /* log tail. where recovery scan
110 u64 last_cp_seq
; /* log tail sequence */
112 sector_t log_start
; /* log head. where new data appends */
113 u64 seq
; /* log head sequence */
115 sector_t next_checkpoint
;
117 struct mutex io_mutex
;
118 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
120 spinlock_t io_list_lock
;
121 struct list_head running_ios
; /* io_units which are still running,
122 * and have not yet been completely
123 * written to the log */
124 struct list_head io_end_ios
; /* io_units which have been completely
125 * written to the log but not yet written
127 struct list_head flushing_ios
; /* io_units which are waiting for log
129 struct list_head finished_ios
; /* io_units which settle down in log disk */
130 struct bio flush_bio
;
132 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
134 struct kmem_cache
*io_kc
;
137 mempool_t
*meta_pool
;
139 struct md_thread
*reclaim_thread
;
140 unsigned long reclaim_target
; /* number of space that need to be
141 * reclaimed. if it's 0, reclaim spaces
142 * used by io_units which are in
143 * IO_UNIT_STRIPE_END state (eg, reclaim
144 * dones't wait for specific io_unit
145 * switching to IO_UNIT_STRIPE_END
147 wait_queue_head_t iounit_wait
;
149 struct list_head no_space_stripes
; /* pending stripes, log has no space */
150 spinlock_t no_space_stripes_lock
;
152 bool need_cache_flush
;
155 enum r5c_journal_mode r5c_journal_mode
;
157 /* all stripes in r5cache, in the order of seq at sh->log_start */
158 struct list_head stripe_in_journal_list
;
160 spinlock_t stripe_in_journal_lock
;
161 atomic_t stripe_in_journal_count
;
163 /* to submit async io_units, to fulfill ordering of flush */
164 struct work_struct deferred_io_work
;
165 /* to disable write back during in degraded mode */
166 struct work_struct disable_writeback_work
;
170 * an IO range starts from a meta data block and end at the next meta data
171 * block. The io unit's the meta data block tracks data/parity followed it. io
172 * unit is written to log disk with normal write, as we always flush log disk
173 * first and then start move data to raid disks, there is no requirement to
174 * write io unit with FLUSH/FUA
179 struct page
*meta_page
; /* store meta block */
180 int meta_offset
; /* current offset in meta_page */
182 struct bio
*current_bio
;/* current_bio accepting new data */
184 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
185 u64 seq
; /* seq number of the metablock */
186 sector_t log_start
; /* where the io_unit starts */
187 sector_t log_end
; /* where the io_unit ends */
188 struct list_head log_sibling
; /* log->running_ios */
189 struct list_head stripe_list
; /* stripes added to the io_unit */
193 struct bio
*split_bio
;
195 unsigned int has_flush
:1; /* include flush request */
196 unsigned int has_fua
:1; /* include fua request */
197 unsigned int has_null_flush
:1; /* include empty flush request */
199 * io isn't sent yet, flush/fua request can only be submitted till it's
200 * the first IO in running_ios list
202 unsigned int io_deferred
:1;
204 struct bio_list flush_barriers
; /* size == 0 flush bios */
207 /* r5l_io_unit state */
208 enum r5l_io_unit_state
{
209 IO_UNIT_RUNNING
= 0, /* accepting new IO */
210 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
211 * don't accepting new bio */
212 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
213 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
216 bool r5c_is_writeback(struct r5l_log
*log
)
218 return (log
!= NULL
&&
219 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
222 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
225 if (start
>= log
->device_size
)
226 start
= start
- log
->device_size
;
230 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
236 return end
+ log
->device_size
- start
;
239 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
243 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
246 return log
->device_size
> used_size
+ size
;
249 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
250 enum r5l_io_unit_state state
)
252 if (WARN_ON(io
->state
>= state
))
258 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
,
259 struct bio_list
*return_bi
)
261 struct bio
*wbi
, *wbi2
;
265 while (wbi
&& wbi
->bi_iter
.bi_sector
<
266 dev
->sector
+ STRIPE_SECTORS
) {
267 wbi2
= r5_next_bio(wbi
, dev
->sector
);
268 if (!raid5_dec_bi_active_stripes(wbi
)) {
269 md_write_end(conf
->mddev
);
270 bio_list_add(return_bi
, wbi
);
276 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
277 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
281 for (i
= sh
->disks
; i
--; ) {
282 if (sh
->dev
[i
].written
) {
283 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
284 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
],
286 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
288 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
294 /* Check whether we should flush some stripes to free up stripe cache */
295 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
299 if (!r5c_is_writeback(conf
->log
))
302 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
303 atomic_read(&conf
->r5c_cached_full_stripes
);
306 * The following condition is true for either of the following:
307 * - stripe cache pressure high:
308 * total_cached > 3/4 min_nr_stripes ||
309 * empty_inactive_list_nr > 0
310 * - stripe cache pressure moderate:
311 * total_cached > 1/2 min_nr_stripes
313 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
314 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
315 r5l_wake_reclaim(conf
->log
, 0);
319 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
320 * stripes in the cache
322 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
324 if (!r5c_is_writeback(conf
->log
))
328 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
329 * or a full stripe (chunk size / 4k stripes).
331 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
332 min(R5C_FULL_STRIPE_FLUSH_BATCH
,
333 conf
->chunk_sectors
>> STRIPE_SHIFT
))
334 r5l_wake_reclaim(conf
->log
, 0);
338 * Total log space (in sectors) needed to flush all data in cache
340 * Currently, writing-out phase automatically includes all pending writes
341 * to the same sector. So the reclaim of each stripe takes up to
342 * (conf->raid_disks + 1) pages of log space.
344 * To totally avoid deadlock due to log space, the code reserves
345 * (conf->raid_disks + 1) pages for each stripe in cache, which is not
346 * necessary in most cases.
348 * To improve this, we will need writing-out phase to be able to NOT include
349 * pending writes, which will reduce the requirement to
350 * (conf->max_degraded + 1) pages per stripe in cache.
352 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
354 struct r5l_log
*log
= conf
->log
;
356 if (!r5c_is_writeback(log
))
359 return BLOCK_SECTORS
* (conf
->raid_disks
+ 1) *
360 atomic_read(&log
->stripe_in_journal_count
);
364 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
366 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
367 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
368 * device is less than 2x of reclaim_required_space.
370 static inline void r5c_update_log_state(struct r5l_log
*log
)
372 struct r5conf
*conf
= log
->rdev
->mddev
->private;
374 sector_t reclaim_space
;
375 bool wake_reclaim
= false;
377 if (!r5c_is_writeback(log
))
380 free_space
= r5l_ring_distance(log
, log
->log_start
,
381 log
->last_checkpoint
);
382 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
383 if (free_space
< 2 * reclaim_space
)
384 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
386 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
388 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
390 if (free_space
< 3 * reclaim_space
)
391 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
393 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
396 r5l_wake_reclaim(log
, 0);
400 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
401 * This function should only be called in write-back mode.
403 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
405 struct r5conf
*conf
= sh
->raid_conf
;
406 struct r5l_log
*log
= conf
->log
;
408 BUG_ON(!r5c_is_writeback(log
));
410 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
411 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
413 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
414 atomic_inc(&conf
->preread_active_stripes
);
416 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
417 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
418 atomic_dec(&conf
->r5c_cached_partial_stripes
);
421 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
422 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
423 atomic_dec(&conf
->r5c_cached_full_stripes
);
427 static void r5c_handle_data_cached(struct stripe_head
*sh
)
431 for (i
= sh
->disks
; i
--; )
432 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
433 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
434 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
436 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
440 * this journal write must contain full parity,
441 * it may also contain some data pages
443 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
447 for (i
= sh
->disks
; i
--; )
448 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
449 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
453 * Setting proper flags after writing (or flushing) data and/or parity to the
454 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
456 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
458 struct r5l_log
*log
= sh
->raid_conf
->log
;
460 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
461 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
463 * Set R5_InJournal for parity dev[pd_idx]. This means
464 * all data AND parity in the journal. For RAID 6, it is
465 * NOT necessary to set the flag for dev[qd_idx], as the
466 * two parities are written out together.
468 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
469 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
470 r5c_handle_data_cached(sh
);
472 r5c_handle_parity_cached(sh
);
473 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
477 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
479 struct stripe_head
*sh
, *next
;
481 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
482 list_del_init(&sh
->log_list
);
484 r5c_finish_cache_stripe(sh
);
486 set_bit(STRIPE_HANDLE
, &sh
->state
);
487 raid5_release_stripe(sh
);
491 static void r5l_log_run_stripes(struct r5l_log
*log
)
493 struct r5l_io_unit
*io
, *next
;
495 assert_spin_locked(&log
->io_list_lock
);
497 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
498 /* don't change list order */
499 if (io
->state
< IO_UNIT_IO_END
)
502 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
503 r5l_io_run_stripes(io
);
507 static void r5l_move_to_end_ios(struct r5l_log
*log
)
509 struct r5l_io_unit
*io
, *next
;
511 assert_spin_locked(&log
->io_list_lock
);
513 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
514 /* don't change list order */
515 if (io
->state
< IO_UNIT_IO_END
)
517 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
521 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
522 static void r5l_log_endio(struct bio
*bio
)
524 struct r5l_io_unit
*io
= bio
->bi_private
;
525 struct r5l_io_unit
*io_deferred
;
526 struct r5l_log
*log
= io
->log
;
530 md_error(log
->rdev
->mddev
, log
->rdev
);
533 mempool_free(io
->meta_page
, log
->meta_pool
);
535 spin_lock_irqsave(&log
->io_list_lock
, flags
);
536 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
537 if (log
->need_cache_flush
)
538 r5l_move_to_end_ios(log
);
540 r5l_log_run_stripes(log
);
541 if (!list_empty(&log
->running_ios
)) {
543 * FLUSH/FUA io_unit is deferred because of ordering, now we
546 io_deferred
= list_first_entry(&log
->running_ios
,
547 struct r5l_io_unit
, log_sibling
);
548 if (io_deferred
->io_deferred
)
549 schedule_work(&log
->deferred_io_work
);
552 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
554 if (log
->need_cache_flush
)
555 md_wakeup_thread(log
->rdev
->mddev
->thread
);
557 if (io
->has_null_flush
) {
560 WARN_ON(bio_list_empty(&io
->flush_barriers
));
561 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
563 atomic_dec(&io
->pending_stripe
);
565 if (atomic_read(&io
->pending_stripe
) == 0)
566 __r5l_stripe_write_finished(io
);
570 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
574 spin_lock_irqsave(&log
->io_list_lock
, flags
);
575 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
576 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
579 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
581 io
->current_bio
->bi_opf
|= REQ_FUA
;
582 submit_bio(io
->current_bio
);
588 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
590 io
->split_bio
->bi_opf
|= REQ_FUA
;
591 submit_bio(io
->split_bio
);
594 /* deferred io_unit will be dispatched here */
595 static void r5l_submit_io_async(struct work_struct
*work
)
597 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
599 struct r5l_io_unit
*io
= NULL
;
602 spin_lock_irqsave(&log
->io_list_lock
, flags
);
603 if (!list_empty(&log
->running_ios
)) {
604 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
606 if (!io
->io_deferred
)
611 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
613 r5l_do_submit_io(log
, io
);
616 static void r5c_disable_writeback_async(struct work_struct
*work
)
618 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
619 disable_writeback_work
);
620 struct mddev
*mddev
= log
->rdev
->mddev
;
622 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
624 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
626 mddev_suspend(mddev
);
627 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
631 static void r5l_submit_current_io(struct r5l_log
*log
)
633 struct r5l_io_unit
*io
= log
->current_io
;
635 struct r5l_meta_block
*block
;
638 bool do_submit
= true;
643 block
= page_address(io
->meta_page
);
644 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
645 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
646 block
->checksum
= cpu_to_le32(crc
);
647 bio
= io
->current_bio
;
649 log
->current_io
= NULL
;
650 spin_lock_irqsave(&log
->io_list_lock
, flags
);
651 if (io
->has_flush
|| io
->has_fua
) {
652 if (io
!= list_first_entry(&log
->running_ios
,
653 struct r5l_io_unit
, log_sibling
)) {
658 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
660 r5l_do_submit_io(log
, io
);
663 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
665 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, log
->bs
);
667 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
668 bio
->bi_bdev
= log
->rdev
->bdev
;
669 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
674 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
676 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
678 r5c_update_log_state(log
);
680 * If we filled up the log device start from the beginning again,
681 * which will require a new bio.
683 * Note: for this to work properly the log size needs to me a multiple
686 if (log
->log_start
== 0)
687 io
->need_split_bio
= true;
689 io
->log_end
= log
->log_start
;
692 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
694 struct r5l_io_unit
*io
;
695 struct r5l_meta_block
*block
;
697 io
= mempool_alloc(log
->io_pool
, GFP_ATOMIC
);
700 memset(io
, 0, sizeof(*io
));
703 INIT_LIST_HEAD(&io
->log_sibling
);
704 INIT_LIST_HEAD(&io
->stripe_list
);
705 bio_list_init(&io
->flush_barriers
);
706 io
->state
= IO_UNIT_RUNNING
;
708 io
->meta_page
= mempool_alloc(log
->meta_pool
, GFP_NOIO
);
709 block
= page_address(io
->meta_page
);
711 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
712 block
->version
= R5LOG_VERSION
;
713 block
->seq
= cpu_to_le64(log
->seq
);
714 block
->position
= cpu_to_le64(log
->log_start
);
716 io
->log_start
= log
->log_start
;
717 io
->meta_offset
= sizeof(struct r5l_meta_block
);
718 io
->seq
= log
->seq
++;
720 io
->current_bio
= r5l_bio_alloc(log
);
721 io
->current_bio
->bi_end_io
= r5l_log_endio
;
722 io
->current_bio
->bi_private
= io
;
723 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
725 r5_reserve_log_entry(log
, io
);
727 spin_lock_irq(&log
->io_list_lock
);
728 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
729 spin_unlock_irq(&log
->io_list_lock
);
734 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
736 if (log
->current_io
&&
737 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
738 r5l_submit_current_io(log
);
740 if (!log
->current_io
) {
741 log
->current_io
= r5l_new_meta(log
);
742 if (!log
->current_io
)
749 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
751 u32 checksum1
, u32 checksum2
,
752 bool checksum2_valid
)
754 struct r5l_io_unit
*io
= log
->current_io
;
755 struct r5l_payload_data_parity
*payload
;
757 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
758 payload
->header
.type
= cpu_to_le16(type
);
759 payload
->header
.flags
= cpu_to_le16(0);
760 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
762 payload
->location
= cpu_to_le64(location
);
763 payload
->checksum
[0] = cpu_to_le32(checksum1
);
765 payload
->checksum
[1] = cpu_to_le32(checksum2
);
767 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
768 sizeof(__le32
) * (1 + !!checksum2_valid
);
771 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
773 struct r5l_io_unit
*io
= log
->current_io
;
775 if (io
->need_split_bio
) {
776 BUG_ON(io
->split_bio
);
777 io
->split_bio
= io
->current_bio
;
778 io
->current_bio
= r5l_bio_alloc(log
);
779 bio_chain(io
->current_bio
, io
->split_bio
);
780 io
->need_split_bio
= false;
783 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
786 r5_reserve_log_entry(log
, io
);
789 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
790 int data_pages
, int parity_pages
)
795 struct r5l_io_unit
*io
;
798 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
800 sizeof(struct r5l_payload_data_parity
) +
801 sizeof(__le32
) * parity_pages
;
803 ret
= r5l_get_meta(log
, meta_size
);
807 io
= log
->current_io
;
809 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
812 for (i
= 0; i
< sh
->disks
; i
++) {
813 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
814 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
816 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
818 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
819 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
822 * we need to flush journal to make sure recovery can
823 * reach the data with fua flag
827 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
828 raid5_compute_blocknr(sh
, i
, 0),
829 sh
->dev
[i
].log_checksum
, 0, false);
830 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
833 if (parity_pages
== 2) {
834 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
835 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
836 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
837 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
838 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
839 } else if (parity_pages
== 1) {
840 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
841 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
843 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
844 } else /* Just writing data, not parity, in caching phase */
845 BUG_ON(parity_pages
!= 0);
847 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
848 atomic_inc(&io
->pending_stripe
);
851 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
854 if (sh
->log_start
== MaxSector
) {
855 BUG_ON(!list_empty(&sh
->r5c
));
856 sh
->log_start
= io
->log_start
;
857 spin_lock_irq(&log
->stripe_in_journal_lock
);
858 list_add_tail(&sh
->r5c
,
859 &log
->stripe_in_journal_list
);
860 spin_unlock_irq(&log
->stripe_in_journal_lock
);
861 atomic_inc(&log
->stripe_in_journal_count
);
866 /* add stripe to no_space_stripes, and then wake up reclaim */
867 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
868 struct stripe_head
*sh
)
870 spin_lock(&log
->no_space_stripes_lock
);
871 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
872 spin_unlock(&log
->no_space_stripes_lock
);
876 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
877 * data from log to raid disks), so we shouldn't wait for reclaim here
879 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
881 struct r5conf
*conf
= sh
->raid_conf
;
883 int data_pages
, parity_pages
;
887 bool wake_reclaim
= false;
891 /* Don't support stripe batch */
892 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
893 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
894 /* the stripe is written to log, we start writing it to raid */
895 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
899 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
901 for (i
= 0; i
< sh
->disks
; i
++) {
904 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
905 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
909 /* checksum is already calculated in last run */
910 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
912 addr
= kmap_atomic(sh
->dev
[i
].page
);
913 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
917 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
918 data_pages
= write_disks
- parity_pages
;
920 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
922 * The stripe must enter state machine again to finish the write, so
925 clear_bit(STRIPE_DELAYED
, &sh
->state
);
926 atomic_inc(&sh
->count
);
928 mutex_lock(&log
->io_mutex
);
930 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
932 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
933 if (!r5l_has_free_space(log
, reserve
)) {
934 r5l_add_no_space_stripe(log
, sh
);
937 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
939 spin_lock_irq(&log
->io_list_lock
);
940 list_add_tail(&sh
->log_list
,
941 &log
->no_mem_stripes
);
942 spin_unlock_irq(&log
->io_list_lock
);
945 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
947 * log space critical, do not process stripes that are
948 * not in cache yet (sh->log_start == MaxSector).
950 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
951 sh
->log_start
== MaxSector
) {
952 r5l_add_no_space_stripe(log
, sh
);
955 } else if (!r5l_has_free_space(log
, reserve
)) {
956 if (sh
->log_start
== log
->last_checkpoint
)
959 r5l_add_no_space_stripe(log
, sh
);
961 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
963 spin_lock_irq(&log
->io_list_lock
);
964 list_add_tail(&sh
->log_list
,
965 &log
->no_mem_stripes
);
966 spin_unlock_irq(&log
->io_list_lock
);
971 mutex_unlock(&log
->io_mutex
);
973 r5l_wake_reclaim(log
, reserve
);
977 void r5l_write_stripe_run(struct r5l_log
*log
)
981 mutex_lock(&log
->io_mutex
);
982 r5l_submit_current_io(log
);
983 mutex_unlock(&log
->io_mutex
);
986 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
991 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
993 * in write through (journal only)
994 * we flush log disk cache first, then write stripe data to
995 * raid disks. So if bio is finished, the log disk cache is
996 * flushed already. The recovery guarantees we can recovery
997 * the bio from log disk, so we don't need to flush again
999 if (bio
->bi_iter
.bi_size
== 0) {
1003 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1005 /* write back (with cache) */
1006 if (bio
->bi_iter
.bi_size
== 0) {
1007 mutex_lock(&log
->io_mutex
);
1008 r5l_get_meta(log
, 0);
1009 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1010 log
->current_io
->has_flush
= 1;
1011 log
->current_io
->has_null_flush
= 1;
1012 atomic_inc(&log
->current_io
->pending_stripe
);
1013 r5l_submit_current_io(log
);
1014 mutex_unlock(&log
->io_mutex
);
1021 /* This will run after log space is reclaimed */
1022 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1024 struct stripe_head
*sh
;
1026 spin_lock(&log
->no_space_stripes_lock
);
1027 while (!list_empty(&log
->no_space_stripes
)) {
1028 sh
= list_first_entry(&log
->no_space_stripes
,
1029 struct stripe_head
, log_list
);
1030 list_del_init(&sh
->log_list
);
1031 set_bit(STRIPE_HANDLE
, &sh
->state
);
1032 raid5_release_stripe(sh
);
1034 spin_unlock(&log
->no_space_stripes_lock
);
1038 * calculate new last_checkpoint
1039 * for write through mode, returns log->next_checkpoint
1040 * for write back, returns log_start of first sh in stripe_in_journal_list
1042 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1044 struct stripe_head
*sh
;
1045 struct r5l_log
*log
= conf
->log
;
1047 unsigned long flags
;
1049 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1050 return log
->next_checkpoint
;
1052 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1053 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1054 /* all stripes flushed */
1055 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1056 return log
->next_checkpoint
;
1058 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1059 struct stripe_head
, r5c
);
1060 new_cp
= sh
->log_start
;
1061 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1065 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1067 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1069 return r5l_ring_distance(log
, log
->last_checkpoint
,
1070 r5c_calculate_new_cp(conf
));
1073 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1075 struct stripe_head
*sh
;
1077 assert_spin_locked(&log
->io_list_lock
);
1079 if (!list_empty(&log
->no_mem_stripes
)) {
1080 sh
= list_first_entry(&log
->no_mem_stripes
,
1081 struct stripe_head
, log_list
);
1082 list_del_init(&sh
->log_list
);
1083 set_bit(STRIPE_HANDLE
, &sh
->state
);
1084 raid5_release_stripe(sh
);
1088 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1090 struct r5l_io_unit
*io
, *next
;
1093 assert_spin_locked(&log
->io_list_lock
);
1095 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1096 /* don't change list order */
1097 if (io
->state
< IO_UNIT_STRIPE_END
)
1100 log
->next_checkpoint
= io
->log_start
;
1102 list_del(&io
->log_sibling
);
1103 mempool_free(io
, log
->io_pool
);
1104 r5l_run_no_mem_stripe(log
);
1112 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1114 struct r5l_log
*log
= io
->log
;
1115 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1116 unsigned long flags
;
1118 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1119 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1121 if (!r5l_complete_finished_ios(log
)) {
1122 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1126 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1127 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1128 r5l_wake_reclaim(log
, 0);
1130 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1131 wake_up(&log
->iounit_wait
);
1134 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1136 struct r5l_io_unit
*io
;
1141 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1142 __r5l_stripe_write_finished(io
);
1145 static void r5l_log_flush_endio(struct bio
*bio
)
1147 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1149 unsigned long flags
;
1150 struct r5l_io_unit
*io
;
1153 md_error(log
->rdev
->mddev
, log
->rdev
);
1155 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1156 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1157 r5l_io_run_stripes(io
);
1158 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1159 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1163 * Starting dispatch IO to raid.
1164 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1165 * broken meta in the middle of a log causes recovery can't find meta at the
1166 * head of log. If operations require meta at the head persistent in log, we
1167 * must make sure meta before it persistent in log too. A case is:
1169 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1170 * data/parity must be persistent in log before we do the write to raid disks.
1172 * The solution is we restrictly maintain io_unit list order. In this case, we
1173 * only write stripes of an io_unit to raid disks till the io_unit is the first
1174 * one whose data/parity is in log.
1176 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1180 if (!log
|| !log
->need_cache_flush
)
1183 spin_lock_irq(&log
->io_list_lock
);
1184 /* flush bio is running */
1185 if (!list_empty(&log
->flushing_ios
)) {
1186 spin_unlock_irq(&log
->io_list_lock
);
1189 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1190 do_flush
= !list_empty(&log
->flushing_ios
);
1191 spin_unlock_irq(&log
->io_list_lock
);
1195 bio_reset(&log
->flush_bio
);
1196 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
1197 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1198 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1199 submit_bio(&log
->flush_bio
);
1202 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1203 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1206 struct block_device
*bdev
= log
->rdev
->bdev
;
1207 struct mddev
*mddev
;
1209 r5l_write_super(log
, end
);
1211 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1214 mddev
= log
->rdev
->mddev
;
1216 * Discard could zero data, so before discard we must make sure
1217 * superblock is updated to new log tail. Updating superblock (either
1218 * directly call md_update_sb() or depend on md thread) must hold
1219 * reconfig mutex. On the other hand, raid5_quiesce is called with
1220 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1221 * for all IO finish, hence waitting for reclaim thread, while reclaim
1222 * thread is calling this function and waitting for reconfig mutex. So
1223 * there is a deadlock. We workaround this issue with a trylock.
1224 * FIXME: we could miss discard if we can't take reconfig mutex
1226 set_mask_bits(&mddev
->sb_flags
, 0,
1227 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1228 if (!mddev_trylock(mddev
))
1230 md_update_sb(mddev
, 1);
1231 mddev_unlock(mddev
);
1233 /* discard IO error really doesn't matter, ignore it */
1234 if (log
->last_checkpoint
< end
) {
1235 blkdev_issue_discard(bdev
,
1236 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1237 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1239 blkdev_issue_discard(bdev
,
1240 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1241 log
->device_size
- log
->last_checkpoint
,
1243 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1249 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1250 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1252 * must hold conf->device_lock
1254 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1256 BUG_ON(list_empty(&sh
->lru
));
1257 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1258 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1261 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1262 * raid5_release_stripe() while holding conf->device_lock
1264 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1265 assert_spin_locked(&conf
->device_lock
);
1267 list_del_init(&sh
->lru
);
1268 atomic_inc(&sh
->count
);
1270 set_bit(STRIPE_HANDLE
, &sh
->state
);
1271 atomic_inc(&conf
->active_stripes
);
1272 r5c_make_stripe_write_out(sh
);
1274 raid5_release_stripe(sh
);
1278 * if num == 0, flush all full stripes
1279 * if num > 0, flush all full stripes. If less than num full stripes are
1280 * flushed, flush some partial stripes until totally num stripes are
1281 * flushed or there is no more cached stripes.
1283 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1286 struct stripe_head
*sh
, *next
;
1288 assert_spin_locked(&conf
->device_lock
);
1293 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1294 r5c_flush_stripe(conf
, sh
);
1300 list_for_each_entry_safe(sh
, next
,
1301 &conf
->r5c_partial_stripe_list
, lru
) {
1302 r5c_flush_stripe(conf
, sh
);
1308 static void r5c_do_reclaim(struct r5conf
*conf
)
1310 struct r5l_log
*log
= conf
->log
;
1311 struct stripe_head
*sh
;
1313 unsigned long flags
;
1315 int stripes_to_flush
;
1317 if (!r5c_is_writeback(log
))
1320 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1321 atomic_read(&conf
->r5c_cached_full_stripes
);
1323 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1324 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1326 * if stripe cache pressure high, flush all full stripes and
1327 * some partial stripes
1329 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1330 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1331 atomic_read(&conf
->r5c_cached_full_stripes
) >
1332 R5C_FULL_STRIPE_FLUSH_BATCH
)
1334 * if stripe cache pressure moderate, or if there is many full
1335 * stripes,flush all full stripes
1337 stripes_to_flush
= 0;
1339 /* no need to flush */
1340 stripes_to_flush
= -1;
1342 if (stripes_to_flush
>= 0) {
1343 spin_lock_irqsave(&conf
->device_lock
, flags
);
1344 r5c_flush_cache(conf
, stripes_to_flush
);
1345 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1348 /* if log space is tight, flush stripes on stripe_in_journal_list */
1349 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1350 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1351 spin_lock(&conf
->device_lock
);
1352 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1354 * stripes on stripe_in_journal_list could be in any
1355 * state of the stripe_cache state machine. In this
1356 * case, we only want to flush stripe on
1357 * r5c_cached_full/partial_stripes. The following
1358 * condition makes sure the stripe is on one of the
1361 if (!list_empty(&sh
->lru
) &&
1362 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1363 atomic_read(&sh
->count
) == 0) {
1364 r5c_flush_stripe(conf
, sh
);
1366 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1369 spin_unlock(&conf
->device_lock
);
1370 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1373 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1374 r5l_run_no_space_stripes(log
);
1376 md_wakeup_thread(conf
->mddev
->thread
);
1379 static void r5l_do_reclaim(struct r5l_log
*log
)
1381 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1382 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1383 sector_t reclaimable
;
1384 sector_t next_checkpoint
;
1387 spin_lock_irq(&log
->io_list_lock
);
1388 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1389 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1391 * move proper io_unit to reclaim list. We should not change the order.
1392 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1393 * shouldn't reuse space of an unreclaimable io_unit
1396 reclaimable
= r5l_reclaimable_space(log
);
1397 if (reclaimable
>= reclaim_target
||
1398 (list_empty(&log
->running_ios
) &&
1399 list_empty(&log
->io_end_ios
) &&
1400 list_empty(&log
->flushing_ios
) &&
1401 list_empty(&log
->finished_ios
)))
1404 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1405 wait_event_lock_irq(log
->iounit_wait
,
1406 r5l_reclaimable_space(log
) > reclaimable
,
1410 next_checkpoint
= r5c_calculate_new_cp(conf
);
1411 spin_unlock_irq(&log
->io_list_lock
);
1413 if (reclaimable
== 0 || !write_super
)
1417 * write_super will flush cache of each raid disk. We must write super
1418 * here, because the log area might be reused soon and we don't want to
1421 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1423 mutex_lock(&log
->io_mutex
);
1424 log
->last_checkpoint
= next_checkpoint
;
1425 r5c_update_log_state(log
);
1426 mutex_unlock(&log
->io_mutex
);
1428 r5l_run_no_space_stripes(log
);
1431 static void r5l_reclaim_thread(struct md_thread
*thread
)
1433 struct mddev
*mddev
= thread
->mddev
;
1434 struct r5conf
*conf
= mddev
->private;
1435 struct r5l_log
*log
= conf
->log
;
1439 r5c_do_reclaim(conf
);
1440 r5l_do_reclaim(log
);
1443 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1445 unsigned long target
;
1446 unsigned long new = (unsigned long)space
; /* overflow in theory */
1451 target
= log
->reclaim_target
;
1454 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1455 md_wakeup_thread(log
->reclaim_thread
);
1458 void r5l_quiesce(struct r5l_log
*log
, int state
)
1460 struct mddev
*mddev
;
1461 if (!log
|| state
== 2)
1464 kthread_unpark(log
->reclaim_thread
->tsk
);
1465 else if (state
== 1) {
1466 /* make sure r5l_write_super_and_discard_space exits */
1467 mddev
= log
->rdev
->mddev
;
1468 wake_up(&mddev
->sb_wait
);
1469 kthread_park(log
->reclaim_thread
->tsk
);
1470 r5l_wake_reclaim(log
, MaxSector
);
1471 r5l_do_reclaim(log
);
1475 bool r5l_log_disk_error(struct r5conf
*conf
)
1477 struct r5l_log
*log
;
1479 /* don't allow write if journal disk is missing */
1481 log
= rcu_dereference(conf
->log
);
1484 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1486 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1491 struct r5l_recovery_ctx
{
1492 struct page
*meta_page
; /* current meta */
1493 sector_t meta_total_blocks
; /* total size of current meta and data */
1494 sector_t pos
; /* recovery position */
1495 u64 seq
; /* recovery position seq */
1496 int data_parity_stripes
; /* number of data_parity stripes */
1497 int data_only_stripes
; /* number of data_only stripes */
1498 struct list_head cached_list
;
1501 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1502 struct r5l_recovery_ctx
*ctx
)
1504 struct page
*page
= ctx
->meta_page
;
1505 struct r5l_meta_block
*mb
;
1506 u32 crc
, stored_crc
;
1508 if (!sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
, REQ_OP_READ
, 0,
1512 mb
= page_address(page
);
1513 stored_crc
= le32_to_cpu(mb
->checksum
);
1516 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1517 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1518 mb
->version
!= R5LOG_VERSION
||
1519 le64_to_cpu(mb
->position
) != ctx
->pos
)
1522 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1523 if (stored_crc
!= crc
)
1526 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1529 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1535 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1537 sector_t pos
, u64 seq
)
1539 struct r5l_meta_block
*mb
;
1541 mb
= page_address(page
);
1543 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1544 mb
->version
= R5LOG_VERSION
;
1545 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1546 mb
->seq
= cpu_to_le64(seq
);
1547 mb
->position
= cpu_to_le64(pos
);
1550 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1554 struct r5l_meta_block
*mb
;
1556 page
= alloc_page(GFP_KERNEL
);
1559 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1560 mb
= page_address(page
);
1561 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1563 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1573 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1574 * to mark valid (potentially not flushed) data in the journal.
1576 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1577 * so there should not be any mismatch here.
1579 static void r5l_recovery_load_data(struct r5l_log
*log
,
1580 struct stripe_head
*sh
,
1581 struct r5l_recovery_ctx
*ctx
,
1582 struct r5l_payload_data_parity
*payload
,
1583 sector_t log_offset
)
1585 struct mddev
*mddev
= log
->rdev
->mddev
;
1586 struct r5conf
*conf
= mddev
->private;
1589 raid5_compute_sector(conf
,
1590 le64_to_cpu(payload
->location
), 0,
1592 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1593 sh
->dev
[dd_idx
].page
, REQ_OP_READ
, 0, false);
1594 sh
->dev
[dd_idx
].log_checksum
=
1595 le32_to_cpu(payload
->checksum
[0]);
1596 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1598 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1599 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1602 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1603 struct stripe_head
*sh
,
1604 struct r5l_recovery_ctx
*ctx
,
1605 struct r5l_payload_data_parity
*payload
,
1606 sector_t log_offset
)
1608 struct mddev
*mddev
= log
->rdev
->mddev
;
1609 struct r5conf
*conf
= mddev
->private;
1611 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1612 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1613 sh
->dev
[sh
->pd_idx
].page
, REQ_OP_READ
, 0, false);
1614 sh
->dev
[sh
->pd_idx
].log_checksum
=
1615 le32_to_cpu(payload
->checksum
[0]);
1616 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1618 if (sh
->qd_idx
>= 0) {
1619 sync_page_io(log
->rdev
,
1620 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
),
1621 PAGE_SIZE
, sh
->dev
[sh
->qd_idx
].page
,
1622 REQ_OP_READ
, 0, false);
1623 sh
->dev
[sh
->qd_idx
].log_checksum
=
1624 le32_to_cpu(payload
->checksum
[1]);
1625 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1627 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1630 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1635 sh
->log_start
= MaxSector
;
1636 for (i
= sh
->disks
; i
--; )
1637 sh
->dev
[i
].flags
= 0;
1641 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1642 struct stripe_head
*sh
,
1643 struct r5l_recovery_ctx
*ctx
)
1645 struct md_rdev
*rdev
, *rrdev
;
1649 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1650 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1652 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1658 * stripes that only have parity must have been flushed
1659 * before the crash that we are now recovering from, so
1660 * there is nothing more to recovery.
1662 if (data_count
== 0)
1665 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1666 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1669 /* in case device is broken */
1671 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1673 atomic_inc(&rdev
->nr_pending
);
1675 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1676 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1678 rdev_dec_pending(rdev
, rdev
->mddev
);
1681 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1683 atomic_inc(&rrdev
->nr_pending
);
1685 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1686 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1688 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1693 ctx
->data_parity_stripes
++;
1695 r5l_recovery_reset_stripe(sh
);
1698 static struct stripe_head
*
1699 r5c_recovery_alloc_stripe(struct r5conf
*conf
,
1700 sector_t stripe_sect
)
1702 struct stripe_head
*sh
;
1704 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 1, 0);
1706 return NULL
; /* no more stripe available */
1708 r5l_recovery_reset_stripe(sh
);
1713 static struct stripe_head
*
1714 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1716 struct stripe_head
*sh
;
1718 list_for_each_entry(sh
, list
, lru
)
1719 if (sh
->sector
== sect
)
1725 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1726 struct r5l_recovery_ctx
*ctx
)
1728 struct stripe_head
*sh
, *next
;
1730 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1731 r5l_recovery_reset_stripe(sh
);
1732 list_del_init(&sh
->lru
);
1733 raid5_release_stripe(sh
);
1738 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1739 struct r5l_recovery_ctx
*ctx
)
1741 struct stripe_head
*sh
, *next
;
1743 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1744 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1745 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1746 list_del_init(&sh
->lru
);
1747 raid5_release_stripe(sh
);
1751 /* if matches return 0; otherwise return -EINVAL */
1753 r5l_recovery_verify_data_checksum(struct r5l_log
*log
, struct page
*page
,
1754 sector_t log_offset
, __le32 log_checksum
)
1759 sync_page_io(log
->rdev
, log_offset
, PAGE_SIZE
,
1760 page
, REQ_OP_READ
, 0, false);
1761 addr
= kmap_atomic(page
);
1762 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1763 kunmap_atomic(addr
);
1764 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1768 * before loading data to stripe cache, we need verify checksum for all data,
1769 * if there is mismatch for any data page, we drop all data in the mata block
1772 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
1773 struct r5l_recovery_ctx
*ctx
)
1775 struct mddev
*mddev
= log
->rdev
->mddev
;
1776 struct r5conf
*conf
= mddev
->private;
1777 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
1778 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
1779 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1781 struct r5l_payload_data_parity
*payload
;
1783 page
= alloc_page(GFP_KERNEL
);
1787 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1788 payload
= (void *)mb
+ mb_offset
;
1790 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1791 if (r5l_recovery_verify_data_checksum(
1792 log
, page
, log_offset
,
1793 payload
->checksum
[0]) < 0)
1795 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
) {
1796 if (r5l_recovery_verify_data_checksum(
1797 log
, page
, log_offset
,
1798 payload
->checksum
[0]) < 0)
1800 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
1801 r5l_recovery_verify_data_checksum(
1803 r5l_ring_add(log
, log_offset
,
1805 payload
->checksum
[1]) < 0)
1807 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1810 log_offset
= r5l_ring_add(log
, log_offset
,
1811 le32_to_cpu(payload
->size
));
1813 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1815 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1827 * Analyze all data/parity pages in one meta block
1830 * -EINVAL for unknown playload type
1831 * -EAGAIN for checksum mismatch of data page
1832 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1835 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
1836 struct r5l_recovery_ctx
*ctx
,
1837 struct list_head
*cached_stripe_list
)
1839 struct mddev
*mddev
= log
->rdev
->mddev
;
1840 struct r5conf
*conf
= mddev
->private;
1841 struct r5l_meta_block
*mb
;
1842 struct r5l_payload_data_parity
*payload
;
1844 sector_t log_offset
;
1845 sector_t stripe_sect
;
1846 struct stripe_head
*sh
;
1850 * for mismatch in data blocks, we will drop all data in this mb, but
1851 * we will still read next mb for other data with FLUSH flag, as
1852 * io_unit could finish out of order.
1854 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
1858 return ret
; /* -ENOMEM duo to alloc_page() failed */
1860 mb
= page_address(ctx
->meta_page
);
1861 mb_offset
= sizeof(struct r5l_meta_block
);
1862 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
1864 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
1867 payload
= (void *)mb
+ mb_offset
;
1868 stripe_sect
= (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) ?
1869 raid5_compute_sector(
1870 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
1872 : le64_to_cpu(payload
->location
);
1874 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
1878 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
);
1880 * cannot get stripe from raid5_get_active_stripe
1881 * try replay some stripes
1884 r5c_recovery_replay_stripes(
1885 cached_stripe_list
, ctx
);
1886 sh
= r5c_recovery_alloc_stripe(
1890 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1892 conf
->min_nr_stripes
* 2);
1893 raid5_set_cache_size(mddev
,
1894 conf
->min_nr_stripes
* 2);
1895 sh
= r5c_recovery_alloc_stripe(conf
,
1899 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1903 list_add_tail(&sh
->lru
, cached_stripe_list
);
1906 if (payload
->header
.type
== R5LOG_PAYLOAD_DATA
) {
1907 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
1908 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
1909 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
1910 list_move_tail(&sh
->lru
, cached_stripe_list
);
1912 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
1914 } else if (payload
->header
.type
== R5LOG_PAYLOAD_PARITY
)
1915 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
1920 log_offset
= r5l_ring_add(log
, log_offset
,
1921 le32_to_cpu(payload
->size
));
1923 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
1925 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
1932 * Load the stripe into cache. The stripe will be written out later by
1933 * the stripe cache state machine.
1935 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
1936 struct stripe_head
*sh
)
1941 for (i
= sh
->disks
; i
--; ) {
1943 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
1944 set_bit(R5_InJournal
, &dev
->flags
);
1945 set_bit(R5_UPTODATE
, &dev
->flags
);
1951 * Scan through the log for all to-be-flushed data
1953 * For stripes with data and parity, namely Data-Parity stripe
1954 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1956 * For stripes with only data, namely Data-Only stripe
1957 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1959 * For a stripe, if we see data after parity, we should discard all previous
1960 * data and parity for this stripe, as these data are already flushed to
1963 * At the end of the scan, we return the new journal_tail, which points to
1964 * first data-only stripe on the journal device, or next invalid meta block.
1966 static int r5c_recovery_flush_log(struct r5l_log
*log
,
1967 struct r5l_recovery_ctx
*ctx
)
1969 struct stripe_head
*sh
;
1972 /* scan through the log */
1974 if (r5l_recovery_read_meta_block(log
, ctx
))
1977 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
1980 * -EAGAIN means mismatch in data block, in this case, we still
1981 * try scan the next metablock
1983 if (ret
&& ret
!= -EAGAIN
)
1984 break; /* ret == -EINVAL or -ENOMEM */
1986 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
1989 if (ret
== -ENOMEM
) {
1990 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
1994 /* replay data-parity stripes */
1995 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
1997 /* load data-only stripes to stripe cache */
1998 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
1999 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2000 r5c_recovery_load_one_stripe(log
, sh
);
2001 ctx
->data_only_stripes
++;
2008 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2009 * log will start here. but we can't let superblock point to last valid
2010 * meta block. The log might looks like:
2011 * | meta 1| meta 2| meta 3|
2012 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2013 * superblock points to meta 1, we write a new valid meta 2n. if crash
2014 * happens again, new recovery will start from meta 1. Since meta 2n is
2015 * valid now, recovery will think meta 3 is valid, which is wrong.
2016 * The solution is we create a new meta in meta2 with its seq == meta
2017 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2018 * will not think meta 3 is a valid meta, because its seq doesn't match
2022 * Before recovery, the log looks like the following
2024 * ---------------------------------------------
2025 * | valid log | invalid log |
2026 * ---------------------------------------------
2028 * |- log->last_checkpoint
2029 * |- log->last_cp_seq
2031 * Now we scan through the log until we see invalid entry
2033 * ---------------------------------------------
2034 * | valid log | invalid log |
2035 * ---------------------------------------------
2037 * |- log->last_checkpoint |- ctx->pos
2038 * |- log->last_cp_seq |- ctx->seq
2040 * From this point, we need to increase seq number by 10 to avoid
2041 * confusing next recovery.
2043 * ---------------------------------------------
2044 * | valid log | invalid log |
2045 * ---------------------------------------------
2047 * |- log->last_checkpoint |- ctx->pos+1
2048 * |- log->last_cp_seq |- ctx->seq+10001
2050 * However, it is not safe to start the state machine yet, because data only
2051 * parities are not yet secured in RAID. To save these data only parities, we
2052 * rewrite them from seq+11.
2054 * -----------------------------------------------------------------
2055 * | valid log | data only stripes | invalid log |
2056 * -----------------------------------------------------------------
2058 * |- log->last_checkpoint |- ctx->pos+n
2059 * |- log->last_cp_seq |- ctx->seq+10000+n
2061 * If failure happens again during this process, the recovery can safe start
2062 * again from log->last_checkpoint.
2064 * Once data only stripes are rewritten to journal, we move log_tail
2066 * -----------------------------------------------------------------
2067 * | old log | data only stripes | invalid log |
2068 * -----------------------------------------------------------------
2070 * |- log->last_checkpoint |- ctx->pos+n
2071 * |- log->last_cp_seq |- ctx->seq+10000+n
2073 * Then we can safely start the state machine. If failure happens from this
2074 * point on, the recovery will start from new log->last_checkpoint.
2077 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2078 struct r5l_recovery_ctx
*ctx
)
2080 struct stripe_head
*sh
;
2081 struct mddev
*mddev
= log
->rdev
->mddev
;
2083 sector_t next_checkpoint
= MaxSector
;
2085 page
= alloc_page(GFP_KERNEL
);
2087 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2092 WARN_ON(list_empty(&ctx
->cached_list
));
2094 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2095 struct r5l_meta_block
*mb
;
2100 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2101 r5l_recovery_create_empty_meta_block(log
, page
,
2102 ctx
->pos
, ctx
->seq
);
2103 mb
= page_address(page
);
2104 offset
= le32_to_cpu(mb
->meta_size
);
2105 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2107 for (i
= sh
->disks
; i
--; ) {
2108 struct r5dev
*dev
= &sh
->dev
[i
];
2109 struct r5l_payload_data_parity
*payload
;
2112 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2113 payload
= (void *)mb
+ offset
;
2114 payload
->header
.type
= cpu_to_le16(
2115 R5LOG_PAYLOAD_DATA
);
2116 payload
->size
= BLOCK_SECTORS
;
2117 payload
->location
= cpu_to_le64(
2118 raid5_compute_blocknr(sh
, i
, 0));
2119 addr
= kmap_atomic(dev
->page
);
2120 payload
->checksum
[0] = cpu_to_le32(
2121 crc32c_le(log
->uuid_checksum
, addr
,
2123 kunmap_atomic(addr
);
2124 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2125 dev
->page
, REQ_OP_WRITE
, 0, false);
2126 write_pos
= r5l_ring_add(log
, write_pos
,
2128 offset
+= sizeof(__le32
) +
2129 sizeof(struct r5l_payload_data_parity
);
2133 mb
->meta_size
= cpu_to_le32(offset
);
2134 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2136 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2137 REQ_OP_WRITE
, REQ_FUA
, false);
2138 sh
->log_start
= ctx
->pos
;
2139 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2140 atomic_inc(&log
->stripe_in_journal_count
);
2141 ctx
->pos
= write_pos
;
2143 next_checkpoint
= sh
->log_start
;
2145 log
->next_checkpoint
= next_checkpoint
;
2150 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2151 struct r5l_recovery_ctx
*ctx
)
2153 struct mddev
*mddev
= log
->rdev
->mddev
;
2154 struct r5conf
*conf
= mddev
->private;
2155 struct stripe_head
*sh
, *next
;
2157 if (ctx
->data_only_stripes
== 0)
2160 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2162 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2163 r5c_make_stripe_write_out(sh
);
2164 set_bit(STRIPE_HANDLE
, &sh
->state
);
2165 list_del_init(&sh
->lru
);
2166 raid5_release_stripe(sh
);
2169 md_wakeup_thread(conf
->mddev
->thread
);
2170 /* reuse conf->wait_for_quiescent in recovery */
2171 wait_event(conf
->wait_for_quiescent
,
2172 atomic_read(&conf
->active_stripes
) == 0);
2174 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2177 static int r5l_recovery_log(struct r5l_log
*log
)
2179 struct mddev
*mddev
= log
->rdev
->mddev
;
2180 struct r5l_recovery_ctx ctx
;
2184 ctx
.pos
= log
->last_checkpoint
;
2185 ctx
.seq
= log
->last_cp_seq
;
2186 ctx
.meta_page
= alloc_page(GFP_KERNEL
);
2187 ctx
.data_only_stripes
= 0;
2188 ctx
.data_parity_stripes
= 0;
2189 INIT_LIST_HEAD(&ctx
.cached_list
);
2194 ret
= r5c_recovery_flush_log(log
, &ctx
);
2195 __free_page(ctx
.meta_page
);
2204 if ((ctx
.data_only_stripes
== 0) && (ctx
.data_parity_stripes
== 0))
2205 pr_debug("md/raid:%s: starting from clean shutdown\n",
2208 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2209 mdname(mddev
), ctx
.data_only_stripes
,
2210 ctx
.data_parity_stripes
);
2212 if (ctx
.data_only_stripes
== 0) {
2213 log
->next_checkpoint
= ctx
.pos
;
2214 r5l_log_write_empty_meta_block(log
, ctx
.pos
, ctx
.seq
++);
2215 ctx
.pos
= r5l_ring_add(log
, ctx
.pos
, BLOCK_SECTORS
);
2216 } else if (r5c_recovery_rewrite_data_only_stripes(log
, &ctx
)) {
2217 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2222 log
->log_start
= ctx
.pos
;
2224 log
->last_checkpoint
= pos
;
2225 r5l_write_super(log
, pos
);
2227 r5c_recovery_flush_data_only_stripes(log
, &ctx
);
2231 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2233 struct mddev
*mddev
= log
->rdev
->mddev
;
2235 log
->rdev
->journal_tail
= cp
;
2236 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2239 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2241 struct r5conf
*conf
= mddev
->private;
2247 switch (conf
->log
->r5c_journal_mode
) {
2248 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2250 page
, PAGE_SIZE
, "[%s] %s\n",
2251 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2252 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2254 case R5C_JOURNAL_MODE_WRITE_BACK
:
2256 page
, PAGE_SIZE
, "%s [%s]\n",
2257 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2258 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2266 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2267 const char *page
, size_t length
)
2269 struct r5conf
*conf
= mddev
->private;
2270 struct r5l_log
*log
= conf
->log
;
2277 if (len
&& page
[len
- 1] == '\n')
2279 for (i
= 0; i
< ARRAY_SIZE(r5c_journal_mode_str
); i
++)
2280 if (strlen(r5c_journal_mode_str
[i
]) == len
&&
2281 strncmp(page
, r5c_journal_mode_str
[i
], len
) == 0) {
2285 if (val
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2286 val
> R5C_JOURNAL_MODE_WRITE_BACK
)
2289 if (raid5_calc_degraded(conf
) > 0 &&
2290 val
== R5C_JOURNAL_MODE_WRITE_BACK
)
2293 mddev_suspend(mddev
);
2294 conf
->log
->r5c_journal_mode
= val
;
2295 mddev_resume(mddev
);
2297 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2298 mdname(mddev
), val
, r5c_journal_mode_str
[val
]);
2302 struct md_sysfs_entry
2303 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2304 r5c_journal_mode_show
, r5c_journal_mode_store
);
2307 * Try handle write operation in caching phase. This function should only
2308 * be called in write-back mode.
2310 * If all outstanding writes can be handled in caching phase, returns 0
2311 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2312 * and returns -EAGAIN
2314 int r5c_try_caching_write(struct r5conf
*conf
,
2315 struct stripe_head
*sh
,
2316 struct stripe_head_state
*s
,
2319 struct r5l_log
*log
= conf
->log
;
2324 BUG_ON(!r5c_is_writeback(log
));
2326 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2328 * There are two different scenarios here:
2329 * 1. The stripe has some data cached, and it is sent to
2330 * write-out phase for reclaim
2331 * 2. The stripe is clean, and this is the first write
2333 * For 1, return -EAGAIN, so we continue with
2334 * handle_stripe_dirtying().
2336 * For 2, set STRIPE_R5C_CACHING and continue with caching
2340 /* case 1: anything injournal or anything in written */
2341 if (s
->injournal
> 0 || s
->written
> 0)
2344 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2348 * When run in degraded mode, array is set to write-through mode.
2349 * This check helps drain pending write safely in the transition to
2350 * write-through mode.
2353 r5c_make_stripe_write_out(sh
);
2357 for (i
= disks
; i
--; ) {
2359 /* if non-overwrite, use writing-out phase */
2360 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2361 !test_bit(R5_InJournal
, &dev
->flags
)) {
2362 r5c_make_stripe_write_out(sh
);
2367 for (i
= disks
; i
--; ) {
2370 set_bit(R5_Wantwrite
, &dev
->flags
);
2371 set_bit(R5_Wantdrain
, &dev
->flags
);
2372 set_bit(R5_LOCKED
, &dev
->flags
);
2378 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2380 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2381 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2382 * r5c_handle_data_cached()
2384 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2391 * free extra pages (orig_page) we allocated for prexor
2393 void r5c_release_extra_page(struct stripe_head
*sh
)
2395 struct r5conf
*conf
= sh
->raid_conf
;
2397 bool using_disk_info_extra_page
;
2399 using_disk_info_extra_page
=
2400 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2402 for (i
= sh
->disks
; i
--; )
2403 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2404 struct page
*p
= sh
->dev
[i
].orig_page
;
2406 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2407 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2409 if (!using_disk_info_extra_page
)
2413 if (using_disk_info_extra_page
) {
2414 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2415 md_wakeup_thread(conf
->mddev
->thread
);
2419 void r5c_use_extra_page(struct stripe_head
*sh
)
2421 struct r5conf
*conf
= sh
->raid_conf
;
2425 for (i
= sh
->disks
; i
--; ) {
2427 if (dev
->orig_page
!= dev
->page
)
2428 put_page(dev
->orig_page
);
2429 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2434 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2435 * stripe is committed to RAID disks.
2437 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2438 struct stripe_head
*sh
,
2439 struct stripe_head_state
*s
)
2445 !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2448 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2449 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2451 if (conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2454 for (i
= sh
->disks
; i
--; ) {
2455 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2456 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2461 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2462 * We updated R5_InJournal, so we also update s->injournal.
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2467 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2468 md_wakeup_thread(conf
->mddev
->thread
);
2471 wake_up(&conf
->wait_for_overlap
);
2473 spin_lock_irq(&conf
->log
->stripe_in_journal_lock
);
2474 list_del_init(&sh
->r5c
);
2475 spin_unlock_irq(&conf
->log
->stripe_in_journal_lock
);
2476 sh
->log_start
= MaxSector
;
2477 atomic_dec(&conf
->log
->stripe_in_journal_count
);
2478 r5c_update_log_state(conf
->log
);
2482 r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
,
2483 struct stripe_head_state
*s
)
2485 struct r5conf
*conf
= sh
->raid_conf
;
2493 for (i
= 0; i
< sh
->disks
; i
++) {
2496 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2498 addr
= kmap_atomic(sh
->dev
[i
].page
);
2499 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2501 kunmap_atomic(addr
);
2504 WARN_ON(pages
== 0);
2507 * The stripe must enter state machine again to call endio, so
2510 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2511 atomic_inc(&sh
->count
);
2513 mutex_lock(&log
->io_mutex
);
2515 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2517 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2518 sh
->log_start
== MaxSector
)
2519 r5l_add_no_space_stripe(log
, sh
);
2520 else if (!r5l_has_free_space(log
, reserve
)) {
2521 if (sh
->log_start
== log
->last_checkpoint
)
2524 r5l_add_no_space_stripe(log
, sh
);
2526 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2528 spin_lock_irq(&log
->io_list_lock
);
2529 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2530 spin_unlock_irq(&log
->io_list_lock
);
2534 mutex_unlock(&log
->io_mutex
);
2538 static int r5l_load_log(struct r5l_log
*log
)
2540 struct md_rdev
*rdev
= log
->rdev
;
2542 struct r5l_meta_block
*mb
;
2543 sector_t cp
= log
->rdev
->journal_tail
;
2544 u32 stored_crc
, expected_crc
;
2545 bool create_super
= false;
2548 /* Make sure it's valid */
2549 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2551 page
= alloc_page(GFP_KERNEL
);
2555 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2559 mb
= page_address(page
);
2561 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2562 mb
->version
!= R5LOG_VERSION
) {
2563 create_super
= true;
2566 stored_crc
= le32_to_cpu(mb
->checksum
);
2568 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2569 if (stored_crc
!= expected_crc
) {
2570 create_super
= true;
2573 if (le64_to_cpu(mb
->position
) != cp
) {
2574 create_super
= true;
2579 log
->last_cp_seq
= prandom_u32();
2581 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
2583 * Make sure super points to correct address. Log might have
2584 * data very soon. If super hasn't correct log tail address,
2585 * recovery can't find the log
2587 r5l_write_super(log
, cp
);
2589 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
2591 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
2592 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
2593 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
2594 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
2595 log
->last_checkpoint
= cp
;
2600 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
2601 log
->seq
= log
->last_cp_seq
+ 1;
2602 log
->next_checkpoint
= cp
;
2604 ret
= r5l_recovery_log(log
);
2606 r5c_update_log_state(log
);
2613 void r5c_update_on_rdev_error(struct mddev
*mddev
)
2615 struct r5conf
*conf
= mddev
->private;
2616 struct r5l_log
*log
= conf
->log
;
2621 if (raid5_calc_degraded(conf
) > 0 &&
2622 conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2623 schedule_work(&log
->disable_writeback_work
);
2626 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
2628 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
2629 struct r5l_log
*log
;
2631 if (PAGE_SIZE
!= 4096)
2635 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2636 * raid_disks r5l_payload_data_parity.
2638 * Write journal and cache does not work for very big array
2639 * (raid_disks > 203)
2641 if (sizeof(struct r5l_meta_block
) +
2642 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
2643 conf
->raid_disks
) > PAGE_SIZE
) {
2644 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2645 mdname(conf
->mddev
), conf
->raid_disks
);
2649 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
2654 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
2656 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
2657 sizeof(rdev
->mddev
->uuid
));
2659 mutex_init(&log
->io_mutex
);
2661 spin_lock_init(&log
->io_list_lock
);
2662 INIT_LIST_HEAD(&log
->running_ios
);
2663 INIT_LIST_HEAD(&log
->io_end_ios
);
2664 INIT_LIST_HEAD(&log
->flushing_ios
);
2665 INIT_LIST_HEAD(&log
->finished_ios
);
2666 bio_init(&log
->flush_bio
, NULL
, 0);
2668 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
2672 log
->io_pool
= mempool_create_slab_pool(R5L_POOL_SIZE
, log
->io_kc
);
2676 log
->bs
= bioset_create(R5L_POOL_SIZE
, 0);
2680 log
->meta_pool
= mempool_create_page_pool(R5L_POOL_SIZE
, 0);
2681 if (!log
->meta_pool
)
2684 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
2685 log
->rdev
->mddev
, "reclaim");
2686 if (!log
->reclaim_thread
)
2687 goto reclaim_thread
;
2688 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
2690 init_waitqueue_head(&log
->iounit_wait
);
2692 INIT_LIST_HEAD(&log
->no_mem_stripes
);
2694 INIT_LIST_HEAD(&log
->no_space_stripes
);
2695 spin_lock_init(&log
->no_space_stripes_lock
);
2697 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
2698 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
2700 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2701 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
2702 spin_lock_init(&log
->stripe_in_journal_lock
);
2703 atomic_set(&log
->stripe_in_journal_count
, 0);
2705 rcu_assign_pointer(conf
->log
, log
);
2707 if (r5l_load_log(log
))
2710 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
2714 rcu_assign_pointer(conf
->log
, NULL
);
2715 md_unregister_thread(&log
->reclaim_thread
);
2717 mempool_destroy(log
->meta_pool
);
2719 bioset_free(log
->bs
);
2721 mempool_destroy(log
->io_pool
);
2723 kmem_cache_destroy(log
->io_kc
);
2729 void r5l_exit_log(struct r5l_log
*log
)
2731 flush_work(&log
->disable_writeback_work
);
2732 md_unregister_thread(&log
->reclaim_thread
);
2733 mempool_destroy(log
->meta_pool
);
2734 bioset_free(log
->bs
);
2735 mempool_destroy(log
->io_pool
);
2736 kmem_cache_destroy(log
->io_kc
);