]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/md/raid5-ppl.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / md / raid5-ppl.c
1 /*
2 * Partial Parity Log for closing the RAID5 write hole
3 * Copyright (c) 2017, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/async_tx.h>
20 #include <linux/raid/md_p.h>
21 #include "md.h"
22 #include "raid5.h"
23 #include "raid5-log.h"
24
25 /*
26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27 * partial parity data. The header contains an array of entries
28 * (struct ppl_header_entry) which describe the logged write requests.
29 * Partial parity for the entries comes after the header, written in the same
30 * sequence as the entries:
31 *
32 * Header
33 * entry0
34 * ...
35 * entryN
36 * PP data
37 * PP for entry0
38 * ...
39 * PP for entryN
40 *
41 * An entry describes one or more consecutive stripe_heads, up to a full
42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43 * number of stripe_heads in the entry and n is the number of modified data
44 * disks. Every stripe_head in the entry must write to the same data disks.
45 * An example of a valid case described by a single entry (writes to the first
46 * stripe of a 4 disk array, 16k chunk size):
47 *
48 * sh->sector dd0 dd1 dd2 ppl
49 * +-----+-----+-----+
50 * 0 | --- | --- | --- | +----+
51 * 8 | -W- | -W- | --- | | pp | data_sector = 8
52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
54 * +-----+-----+-----+ +----+
55 *
56 * data_sector is the first raid sector of the modified data, data_size is the
57 * total size of modified data and pp_size is the size of partial parity for
58 * this entry. Entries for full stripe writes contain no partial parity
59 * (pp_size = 0), they only mark the stripes for which parity should be
60 * recalculated after an unclean shutdown. Every entry holds a checksum of its
61 * partial parity, the header also has a checksum of the header itself.
62 *
63 * A write request is always logged to the PPL instance stored on the parity
64 * disk of the corresponding stripe. For each member disk there is one ppl_log
65 * used to handle logging for this disk, independently from others. They are
66 * grouped in child_logs array in struct ppl_conf, which is assigned to
67 * r5conf->log_private.
68 *
69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71 * can be appended to the last entry if it meets the conditions for a valid
72 * entry described above, otherwise a new entry is added. Checksums of entries
73 * are calculated incrementally as stripes containing partial parity are being
74 * added. ppl_submit_iounit() calculates the checksum of the header and submits
75 * a bio containing the header page and partial parity pages (sh->ppl_page) for
76 * all stripes of the io_unit. When the PPL write completes, the stripes
77 * associated with the io_unit are released and raid5d starts writing their data
78 * and parity. When all stripes are written, the io_unit is freed and the next
79 * can be submitted.
80 *
81 * An io_unit is used to gather stripes until it is submitted or becomes full
82 * (if the maximum number of entries or size of PPL is reached). Another io_unit
83 * can't be submitted until the previous has completed (PPL and stripe
84 * data+parity is written). The log->io_list tracks all io_units of a log
85 * (for a single member disk). New io_units are added to the end of the list
86 * and the first io_unit is submitted, if it is not submitted already.
87 * The current io_unit accepting new stripes is always at the end of the list.
88 *
89 * If write-back cache is enabled for any of the disks in the array, its data
90 * must be flushed before next io_unit is submitted.
91 */
92
93 #define PPL_SPACE_SIZE (128 * 1024)
94
95 struct ppl_conf {
96 struct mddev *mddev;
97
98 /* array of child logs, one for each raid disk */
99 struct ppl_log *child_logs;
100 int count;
101
102 int block_size; /* the logical block size used for data_sector
103 * in ppl_header_entry */
104 u32 signature; /* raid array identifier */
105 atomic64_t seq; /* current log write sequence number */
106
107 struct kmem_cache *io_kc;
108 mempool_t io_pool;
109 struct bio_set bs;
110 struct bio_set flush_bs;
111
112 /* used only for recovery */
113 int recovered_entries;
114 int mismatch_count;
115
116 /* stripes to retry if failed to allocate io_unit */
117 struct list_head no_mem_stripes;
118 spinlock_t no_mem_stripes_lock;
119
120 unsigned short write_hint;
121 };
122
123 struct ppl_log {
124 struct ppl_conf *ppl_conf; /* shared between all log instances */
125
126 struct md_rdev *rdev; /* array member disk associated with
127 * this log instance */
128 struct mutex io_mutex;
129 struct ppl_io_unit *current_io; /* current io_unit accepting new data
130 * always at the end of io_list */
131 spinlock_t io_list_lock;
132 struct list_head io_list; /* all io_units of this log */
133
134 sector_t next_io_sector;
135 unsigned int entry_space;
136 bool use_multippl;
137 bool wb_cache_on;
138 unsigned long disk_flush_bitmap;
139 };
140
141 #define PPL_IO_INLINE_BVECS 32
142
143 struct ppl_io_unit {
144 struct ppl_log *log;
145
146 struct page *header_page; /* for ppl_header */
147
148 unsigned int entries_count; /* number of entries in ppl_header */
149 unsigned int pp_size; /* total size current of partial parity */
150
151 u64 seq; /* sequence number of this log write */
152 struct list_head log_sibling; /* log->io_list */
153
154 struct list_head stripe_list; /* stripes added to the io_unit */
155 atomic_t pending_stripes; /* how many stripes not written to raid */
156 atomic_t pending_flushes; /* how many disk flushes are in progress */
157
158 bool submitted; /* true if write to log started */
159
160 /* inline bio and its biovec for submitting the iounit */
161 struct bio bio;
162 struct bio_vec biovec[PPL_IO_INLINE_BVECS];
163 };
164
165 struct dma_async_tx_descriptor *
166 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
167 struct dma_async_tx_descriptor *tx)
168 {
169 int disks = sh->disks;
170 struct page **srcs = percpu->scribble;
171 int count = 0, pd_idx = sh->pd_idx, i;
172 struct async_submit_ctl submit;
173
174 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
175
176 /*
177 * Partial parity is the XOR of stripe data chunks that are not changed
178 * during the write request. Depending on available data
179 * (read-modify-write vs. reconstruct-write case) we calculate it
180 * differently.
181 */
182 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
183 /*
184 * rmw: xor old data and parity from updated disks
185 * This is calculated earlier by ops_run_prexor5() so just copy
186 * the parity dev page.
187 */
188 srcs[count++] = sh->dev[pd_idx].page;
189 } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
190 /* rcw: xor data from all not updated disks */
191 for (i = disks; i--;) {
192 struct r5dev *dev = &sh->dev[i];
193 if (test_bit(R5_UPTODATE, &dev->flags))
194 srcs[count++] = dev->page;
195 }
196 } else {
197 return tx;
198 }
199
200 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
201 NULL, sh, (void *) (srcs + sh->disks + 2));
202
203 if (count == 1)
204 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
205 &submit);
206 else
207 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
208 &submit);
209
210 return tx;
211 }
212
213 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
214 {
215 struct kmem_cache *kc = pool_data;
216 struct ppl_io_unit *io;
217
218 io = kmem_cache_alloc(kc, gfp_mask);
219 if (!io)
220 return NULL;
221
222 io->header_page = alloc_page(gfp_mask);
223 if (!io->header_page) {
224 kmem_cache_free(kc, io);
225 return NULL;
226 }
227
228 return io;
229 }
230
231 static void ppl_io_pool_free(void *element, void *pool_data)
232 {
233 struct kmem_cache *kc = pool_data;
234 struct ppl_io_unit *io = element;
235
236 __free_page(io->header_page);
237 kmem_cache_free(kc, io);
238 }
239
240 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
241 struct stripe_head *sh)
242 {
243 struct ppl_conf *ppl_conf = log->ppl_conf;
244 struct ppl_io_unit *io;
245 struct ppl_header *pplhdr;
246 struct page *header_page;
247
248 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
249 if (!io)
250 return NULL;
251
252 header_page = io->header_page;
253 memset(io, 0, sizeof(*io));
254 io->header_page = header_page;
255
256 io->log = log;
257 INIT_LIST_HEAD(&io->log_sibling);
258 INIT_LIST_HEAD(&io->stripe_list);
259 atomic_set(&io->pending_stripes, 0);
260 atomic_set(&io->pending_flushes, 0);
261 bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
262
263 pplhdr = page_address(io->header_page);
264 clear_page(pplhdr);
265 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
266 pplhdr->signature = cpu_to_le32(ppl_conf->signature);
267
268 io->seq = atomic64_add_return(1, &ppl_conf->seq);
269 pplhdr->generation = cpu_to_le64(io->seq);
270
271 return io;
272 }
273
274 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
275 {
276 struct ppl_io_unit *io = log->current_io;
277 struct ppl_header_entry *e = NULL;
278 struct ppl_header *pplhdr;
279 int i;
280 sector_t data_sector = 0;
281 int data_disks = 0;
282 struct r5conf *conf = sh->raid_conf;
283
284 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
285
286 /* check if current io_unit is full */
287 if (io && (io->pp_size == log->entry_space ||
288 io->entries_count == PPL_HDR_MAX_ENTRIES)) {
289 pr_debug("%s: add io_unit blocked by seq: %llu\n",
290 __func__, io->seq);
291 io = NULL;
292 }
293
294 /* add a new unit if there is none or the current is full */
295 if (!io) {
296 io = ppl_new_iounit(log, sh);
297 if (!io)
298 return -ENOMEM;
299 spin_lock_irq(&log->io_list_lock);
300 list_add_tail(&io->log_sibling, &log->io_list);
301 spin_unlock_irq(&log->io_list_lock);
302
303 log->current_io = io;
304 }
305
306 for (i = 0; i < sh->disks; i++) {
307 struct r5dev *dev = &sh->dev[i];
308
309 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
310 if (!data_disks || dev->sector < data_sector)
311 data_sector = dev->sector;
312 data_disks++;
313 }
314 }
315 BUG_ON(!data_disks);
316
317 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
318 io->seq, (unsigned long long)data_sector, data_disks);
319
320 pplhdr = page_address(io->header_page);
321
322 if (io->entries_count > 0) {
323 struct ppl_header_entry *last =
324 &pplhdr->entries[io->entries_count - 1];
325 struct stripe_head *sh_last = list_last_entry(
326 &io->stripe_list, struct stripe_head, log_list);
327 u64 data_sector_last = le64_to_cpu(last->data_sector);
328 u32 data_size_last = le32_to_cpu(last->data_size);
329
330 /*
331 * Check if we can append the stripe to the last entry. It must
332 * be just after the last logged stripe and write to the same
333 * disks. Use bit shift and logarithm to avoid 64-bit division.
334 */
335 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
336 (data_sector >> ilog2(conf->chunk_sectors) ==
337 data_sector_last >> ilog2(conf->chunk_sectors)) &&
338 ((data_sector - data_sector_last) * data_disks ==
339 data_size_last >> 9))
340 e = last;
341 }
342
343 if (!e) {
344 e = &pplhdr->entries[io->entries_count++];
345 e->data_sector = cpu_to_le64(data_sector);
346 e->parity_disk = cpu_to_le32(sh->pd_idx);
347 e->checksum = cpu_to_le32(~0);
348 }
349
350 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
351
352 /* don't write any PP if full stripe write */
353 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
354 le32_add_cpu(&e->pp_size, PAGE_SIZE);
355 io->pp_size += PAGE_SIZE;
356 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
357 page_address(sh->ppl_page),
358 PAGE_SIZE));
359 }
360
361 list_add_tail(&sh->log_list, &io->stripe_list);
362 atomic_inc(&io->pending_stripes);
363 sh->ppl_io = io;
364
365 return 0;
366 }
367
368 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
369 {
370 struct ppl_conf *ppl_conf = conf->log_private;
371 struct ppl_io_unit *io = sh->ppl_io;
372 struct ppl_log *log;
373
374 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
375 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
376 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
377 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
378 return -EAGAIN;
379 }
380
381 log = &ppl_conf->child_logs[sh->pd_idx];
382
383 mutex_lock(&log->io_mutex);
384
385 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
386 mutex_unlock(&log->io_mutex);
387 return -EAGAIN;
388 }
389
390 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
391 clear_bit(STRIPE_DELAYED, &sh->state);
392 atomic_inc(&sh->count);
393
394 if (ppl_log_stripe(log, sh)) {
395 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
396 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
397 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
398 }
399
400 mutex_unlock(&log->io_mutex);
401
402 return 0;
403 }
404
405 static void ppl_log_endio(struct bio *bio)
406 {
407 struct ppl_io_unit *io = bio->bi_private;
408 struct ppl_log *log = io->log;
409 struct ppl_conf *ppl_conf = log->ppl_conf;
410 struct stripe_head *sh, *next;
411
412 pr_debug("%s: seq: %llu\n", __func__, io->seq);
413
414 if (bio->bi_status)
415 md_error(ppl_conf->mddev, log->rdev);
416
417 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
418 list_del_init(&sh->log_list);
419
420 set_bit(STRIPE_HANDLE, &sh->state);
421 raid5_release_stripe(sh);
422 }
423 }
424
425 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
426 {
427 char b[BDEVNAME_SIZE];
428
429 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
430 __func__, io->seq, bio->bi_iter.bi_size,
431 (unsigned long long)bio->bi_iter.bi_sector,
432 bio_devname(bio, b));
433
434 submit_bio(bio);
435 }
436
437 static void ppl_submit_iounit(struct ppl_io_unit *io)
438 {
439 struct ppl_log *log = io->log;
440 struct ppl_conf *ppl_conf = log->ppl_conf;
441 struct ppl_header *pplhdr = page_address(io->header_page);
442 struct bio *bio = &io->bio;
443 struct stripe_head *sh;
444 int i;
445
446 bio->bi_private = io;
447
448 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
449 ppl_log_endio(bio);
450 return;
451 }
452
453 for (i = 0; i < io->entries_count; i++) {
454 struct ppl_header_entry *e = &pplhdr->entries[i];
455
456 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
457 __func__, io->seq, i, le64_to_cpu(e->data_sector),
458 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
459
460 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
461 ilog2(ppl_conf->block_size >> 9));
462 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
463 }
464
465 pplhdr->entries_count = cpu_to_le32(io->entries_count);
466 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
467
468 /* Rewind the buffer if current PPL is larger then remaining space */
469 if (log->use_multippl &&
470 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
471 (PPL_HEADER_SIZE + io->pp_size) >> 9)
472 log->next_io_sector = log->rdev->ppl.sector;
473
474
475 bio->bi_end_io = ppl_log_endio;
476 bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
477 bio_set_dev(bio, log->rdev->bdev);
478 bio->bi_iter.bi_sector = log->next_io_sector;
479 bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
480 bio->bi_write_hint = ppl_conf->write_hint;
481
482 pr_debug("%s: log->current_io_sector: %llu\n", __func__,
483 (unsigned long long)log->next_io_sector);
484
485 if (log->use_multippl)
486 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
487
488 WARN_ON(log->disk_flush_bitmap != 0);
489
490 list_for_each_entry(sh, &io->stripe_list, log_list) {
491 for (i = 0; i < sh->disks; i++) {
492 struct r5dev *dev = &sh->dev[i];
493
494 if ((ppl_conf->child_logs[i].wb_cache_on) &&
495 (test_bit(R5_Wantwrite, &dev->flags))) {
496 set_bit(i, &log->disk_flush_bitmap);
497 }
498 }
499
500 /* entries for full stripe writes have no partial parity */
501 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
502 continue;
503
504 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
505 struct bio *prev = bio;
506
507 bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
508 &ppl_conf->bs);
509 bio->bi_opf = prev->bi_opf;
510 bio->bi_write_hint = prev->bi_write_hint;
511 bio_copy_dev(bio, prev);
512 bio->bi_iter.bi_sector = bio_end_sector(prev);
513 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
514
515 bio_chain(bio, prev);
516 ppl_submit_iounit_bio(io, prev);
517 }
518 }
519
520 ppl_submit_iounit_bio(io, bio);
521 }
522
523 static void ppl_submit_current_io(struct ppl_log *log)
524 {
525 struct ppl_io_unit *io;
526
527 spin_lock_irq(&log->io_list_lock);
528
529 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
530 log_sibling);
531 if (io && io->submitted)
532 io = NULL;
533
534 spin_unlock_irq(&log->io_list_lock);
535
536 if (io) {
537 io->submitted = true;
538
539 if (io == log->current_io)
540 log->current_io = NULL;
541
542 ppl_submit_iounit(io);
543 }
544 }
545
546 void ppl_write_stripe_run(struct r5conf *conf)
547 {
548 struct ppl_conf *ppl_conf = conf->log_private;
549 struct ppl_log *log;
550 int i;
551
552 for (i = 0; i < ppl_conf->count; i++) {
553 log = &ppl_conf->child_logs[i];
554
555 mutex_lock(&log->io_mutex);
556 ppl_submit_current_io(log);
557 mutex_unlock(&log->io_mutex);
558 }
559 }
560
561 static void ppl_io_unit_finished(struct ppl_io_unit *io)
562 {
563 struct ppl_log *log = io->log;
564 struct ppl_conf *ppl_conf = log->ppl_conf;
565 struct r5conf *conf = ppl_conf->mddev->private;
566 unsigned long flags;
567
568 pr_debug("%s: seq: %llu\n", __func__, io->seq);
569
570 local_irq_save(flags);
571
572 spin_lock(&log->io_list_lock);
573 list_del(&io->log_sibling);
574 spin_unlock(&log->io_list_lock);
575
576 mempool_free(io, &ppl_conf->io_pool);
577
578 spin_lock(&ppl_conf->no_mem_stripes_lock);
579 if (!list_empty(&ppl_conf->no_mem_stripes)) {
580 struct stripe_head *sh;
581
582 sh = list_first_entry(&ppl_conf->no_mem_stripes,
583 struct stripe_head, log_list);
584 list_del_init(&sh->log_list);
585 set_bit(STRIPE_HANDLE, &sh->state);
586 raid5_release_stripe(sh);
587 }
588 spin_unlock(&ppl_conf->no_mem_stripes_lock);
589
590 local_irq_restore(flags);
591
592 wake_up(&conf->wait_for_quiescent);
593 }
594
595 static void ppl_flush_endio(struct bio *bio)
596 {
597 struct ppl_io_unit *io = bio->bi_private;
598 struct ppl_log *log = io->log;
599 struct ppl_conf *ppl_conf = log->ppl_conf;
600 struct r5conf *conf = ppl_conf->mddev->private;
601 char b[BDEVNAME_SIZE];
602
603 pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
604
605 if (bio->bi_status) {
606 struct md_rdev *rdev;
607
608 rcu_read_lock();
609 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
610 if (rdev)
611 md_error(rdev->mddev, rdev);
612 rcu_read_unlock();
613 }
614
615 bio_put(bio);
616
617 if (atomic_dec_and_test(&io->pending_flushes)) {
618 ppl_io_unit_finished(io);
619 md_wakeup_thread(conf->mddev->thread);
620 }
621 }
622
623 static void ppl_do_flush(struct ppl_io_unit *io)
624 {
625 struct ppl_log *log = io->log;
626 struct ppl_conf *ppl_conf = log->ppl_conf;
627 struct r5conf *conf = ppl_conf->mddev->private;
628 int raid_disks = conf->raid_disks;
629 int flushed_disks = 0;
630 int i;
631
632 atomic_set(&io->pending_flushes, raid_disks);
633
634 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
635 struct md_rdev *rdev;
636 struct block_device *bdev = NULL;
637
638 rcu_read_lock();
639 rdev = rcu_dereference(conf->disks[i].rdev);
640 if (rdev && !test_bit(Faulty, &rdev->flags))
641 bdev = rdev->bdev;
642 rcu_read_unlock();
643
644 if (bdev) {
645 struct bio *bio;
646 char b[BDEVNAME_SIZE];
647
648 bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
649 bio_set_dev(bio, bdev);
650 bio->bi_private = io;
651 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
652 bio->bi_end_io = ppl_flush_endio;
653
654 pr_debug("%s: dev: %s\n", __func__,
655 bio_devname(bio, b));
656
657 submit_bio(bio);
658 flushed_disks++;
659 }
660 }
661
662 log->disk_flush_bitmap = 0;
663
664 for (i = flushed_disks ; i < raid_disks; i++) {
665 if (atomic_dec_and_test(&io->pending_flushes))
666 ppl_io_unit_finished(io);
667 }
668 }
669
670 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
671 struct ppl_log *log)
672 {
673 struct ppl_io_unit *io;
674
675 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
676 log_sibling);
677
678 return !io || !io->submitted;
679 }
680
681 void ppl_quiesce(struct r5conf *conf, int quiesce)
682 {
683 struct ppl_conf *ppl_conf = conf->log_private;
684 int i;
685
686 if (quiesce) {
687 for (i = 0; i < ppl_conf->count; i++) {
688 struct ppl_log *log = &ppl_conf->child_logs[i];
689
690 spin_lock_irq(&log->io_list_lock);
691 wait_event_lock_irq(conf->wait_for_quiescent,
692 ppl_no_io_unit_submitted(conf, log),
693 log->io_list_lock);
694 spin_unlock_irq(&log->io_list_lock);
695 }
696 }
697 }
698
699 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
700 {
701 if (bio->bi_iter.bi_size == 0) {
702 bio_endio(bio);
703 return 0;
704 }
705 bio->bi_opf &= ~REQ_PREFLUSH;
706 return -EAGAIN;
707 }
708
709 void ppl_stripe_write_finished(struct stripe_head *sh)
710 {
711 struct ppl_io_unit *io;
712
713 io = sh->ppl_io;
714 sh->ppl_io = NULL;
715
716 if (io && atomic_dec_and_test(&io->pending_stripes)) {
717 if (io->log->disk_flush_bitmap)
718 ppl_do_flush(io);
719 else
720 ppl_io_unit_finished(io);
721 }
722 }
723
724 static void ppl_xor(int size, struct page *page1, struct page *page2)
725 {
726 struct async_submit_ctl submit;
727 struct dma_async_tx_descriptor *tx;
728 struct page *xor_srcs[] = { page1, page2 };
729
730 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
731 NULL, NULL, NULL, NULL);
732 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
733
734 async_tx_quiesce(&tx);
735 }
736
737 /*
738 * PPL recovery strategy: xor partial parity and data from all modified data
739 * disks within a stripe and write the result as the new stripe parity. If all
740 * stripe data disks are modified (full stripe write), no partial parity is
741 * available, so just xor the data disks.
742 *
743 * Recovery of a PPL entry shall occur only if all modified data disks are
744 * available and read from all of them succeeds.
745 *
746 * A PPL entry applies to a stripe, partial parity size for an entry is at most
747 * the size of the chunk. Examples of possible cases for a single entry:
748 *
749 * case 0: single data disk write:
750 * data0 data1 data2 ppl parity
751 * +--------+--------+--------+ +--------------------+
752 * | ------ | ------ | ------ | +----+ | (no change) |
753 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
754 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
755 * | ------ | ------ | ------ | +----+ | (no change) |
756 * +--------+--------+--------+ +--------------------+
757 * pp_size = data_size
758 *
759 * case 1: more than one data disk write:
760 * data0 data1 data2 ppl parity
761 * +--------+--------+--------+ +--------------------+
762 * | ------ | ------ | ------ | +----+ | (no change) |
763 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
764 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
765 * | ------ | ------ | ------ | +----+ | (no change) |
766 * +--------+--------+--------+ +--------------------+
767 * pp_size = data_size / modified_data_disks
768 *
769 * case 2: write to all data disks (also full stripe write):
770 * data0 data1 data2 parity
771 * +--------+--------+--------+ +--------------------+
772 * | ------ | ------ | ------ | | (no change) |
773 * | -data- | -data- | -data- | --------> | xor all data |
774 * | ------ | ------ | ------ | --------> | (no change) |
775 * | ------ | ------ | ------ | | (no change) |
776 * +--------+--------+--------+ +--------------------+
777 * pp_size = 0
778 *
779 * The following cases are possible only in other implementations. The recovery
780 * code can handle them, but they are not generated at runtime because they can
781 * be reduced to cases 0, 1 and 2:
782 *
783 * case 3:
784 * data0 data1 data2 ppl parity
785 * +--------+--------+--------+ +----+ +--------------------+
786 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
787 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
788 * | -data- | -data- | -data- | | -- | -> | xor all data |
789 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
790 * +--------+--------+--------+ +----+ +--------------------+
791 * pp_size = chunk_size
792 *
793 * case 4:
794 * data0 data1 data2 ppl parity
795 * +--------+--------+--------+ +----+ +--------------------+
796 * | ------ | -data- | ------ | | pp | | data1 ^ pp |
797 * | ------ | ------ | ------ | | -- | -> | (no change) |
798 * | ------ | ------ | ------ | | -- | -> | (no change) |
799 * | -data- | ------ | ------ | | pp | | data0 ^ pp |
800 * +--------+--------+--------+ +----+ +--------------------+
801 * pp_size = chunk_size
802 */
803 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
804 sector_t ppl_sector)
805 {
806 struct ppl_conf *ppl_conf = log->ppl_conf;
807 struct mddev *mddev = ppl_conf->mddev;
808 struct r5conf *conf = mddev->private;
809 int block_size = ppl_conf->block_size;
810 struct page *page1;
811 struct page *page2;
812 sector_t r_sector_first;
813 sector_t r_sector_last;
814 int strip_sectors;
815 int data_disks;
816 int i;
817 int ret = 0;
818 char b[BDEVNAME_SIZE];
819 unsigned int pp_size = le32_to_cpu(e->pp_size);
820 unsigned int data_size = le32_to_cpu(e->data_size);
821
822 page1 = alloc_page(GFP_KERNEL);
823 page2 = alloc_page(GFP_KERNEL);
824
825 if (!page1 || !page2) {
826 ret = -ENOMEM;
827 goto out;
828 }
829
830 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
831
832 if ((pp_size >> 9) < conf->chunk_sectors) {
833 if (pp_size > 0) {
834 data_disks = data_size / pp_size;
835 strip_sectors = pp_size >> 9;
836 } else {
837 data_disks = conf->raid_disks - conf->max_degraded;
838 strip_sectors = (data_size >> 9) / data_disks;
839 }
840 r_sector_last = r_sector_first +
841 (data_disks - 1) * conf->chunk_sectors +
842 strip_sectors;
843 } else {
844 data_disks = conf->raid_disks - conf->max_degraded;
845 strip_sectors = conf->chunk_sectors;
846 r_sector_last = r_sector_first + (data_size >> 9);
847 }
848
849 pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
850 (unsigned long long)r_sector_first,
851 (unsigned long long)r_sector_last);
852
853 /* if start and end is 4k aligned, use a 4k block */
854 if (block_size == 512 &&
855 (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
856 (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
857 block_size = STRIPE_SIZE;
858
859 /* iterate through blocks in strip */
860 for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
861 bool update_parity = false;
862 sector_t parity_sector;
863 struct md_rdev *parity_rdev;
864 struct stripe_head sh;
865 int disk;
866 int indent = 0;
867
868 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
869 indent += 2;
870
871 memset(page_address(page1), 0, PAGE_SIZE);
872
873 /* iterate through data member disks */
874 for (disk = 0; disk < data_disks; disk++) {
875 int dd_idx;
876 struct md_rdev *rdev;
877 sector_t sector;
878 sector_t r_sector = r_sector_first + i +
879 (disk * conf->chunk_sectors);
880
881 pr_debug("%s:%*s data member disk %d start\n",
882 __func__, indent, "", disk);
883 indent += 2;
884
885 if (r_sector >= r_sector_last) {
886 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
887 __func__, indent, "",
888 (unsigned long long)r_sector);
889 indent -= 2;
890 continue;
891 }
892
893 update_parity = true;
894
895 /* map raid sector to member disk */
896 sector = raid5_compute_sector(conf, r_sector, 0,
897 &dd_idx, NULL);
898 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
899 __func__, indent, "",
900 (unsigned long long)r_sector, dd_idx,
901 (unsigned long long)sector);
902
903 rdev = conf->disks[dd_idx].rdev;
904 if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
905 sector >= rdev->recovery_offset)) {
906 pr_debug("%s:%*s data member disk %d missing\n",
907 __func__, indent, "", dd_idx);
908 update_parity = false;
909 break;
910 }
911
912 pr_debug("%s:%*s reading data member disk %s sector %llu\n",
913 __func__, indent, "", bdevname(rdev->bdev, b),
914 (unsigned long long)sector);
915 if (!sync_page_io(rdev, sector, block_size, page2,
916 REQ_OP_READ, 0, false)) {
917 md_error(mddev, rdev);
918 pr_debug("%s:%*s read failed!\n", __func__,
919 indent, "");
920 ret = -EIO;
921 goto out;
922 }
923
924 ppl_xor(block_size, page1, page2);
925
926 indent -= 2;
927 }
928
929 if (!update_parity)
930 continue;
931
932 if (pp_size > 0) {
933 pr_debug("%s:%*s reading pp disk sector %llu\n",
934 __func__, indent, "",
935 (unsigned long long)(ppl_sector + i));
936 if (!sync_page_io(log->rdev,
937 ppl_sector - log->rdev->data_offset + i,
938 block_size, page2, REQ_OP_READ, 0,
939 false)) {
940 pr_debug("%s:%*s read failed!\n", __func__,
941 indent, "");
942 md_error(mddev, log->rdev);
943 ret = -EIO;
944 goto out;
945 }
946
947 ppl_xor(block_size, page1, page2);
948 }
949
950 /* map raid sector to parity disk */
951 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
952 0, &disk, &sh);
953 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
954 parity_rdev = conf->disks[sh.pd_idx].rdev;
955
956 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
957 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
958 __func__, indent, "",
959 (unsigned long long)parity_sector,
960 bdevname(parity_rdev->bdev, b));
961 if (!sync_page_io(parity_rdev, parity_sector, block_size,
962 page1, REQ_OP_WRITE, 0, false)) {
963 pr_debug("%s:%*s parity write error!\n", __func__,
964 indent, "");
965 md_error(mddev, parity_rdev);
966 ret = -EIO;
967 goto out;
968 }
969 }
970 out:
971 if (page1)
972 __free_page(page1);
973 if (page2)
974 __free_page(page2);
975 return ret;
976 }
977
978 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
979 sector_t offset)
980 {
981 struct ppl_conf *ppl_conf = log->ppl_conf;
982 struct md_rdev *rdev = log->rdev;
983 struct mddev *mddev = rdev->mddev;
984 sector_t ppl_sector = rdev->ppl.sector + offset +
985 (PPL_HEADER_SIZE >> 9);
986 struct page *page;
987 int i;
988 int ret = 0;
989
990 page = alloc_page(GFP_KERNEL);
991 if (!page)
992 return -ENOMEM;
993
994 /* iterate through all PPL entries saved */
995 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
996 struct ppl_header_entry *e = &pplhdr->entries[i];
997 u32 pp_size = le32_to_cpu(e->pp_size);
998 sector_t sector = ppl_sector;
999 int ppl_entry_sectors = pp_size >> 9;
1000 u32 crc, crc_stored;
1001
1002 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
1003 __func__, rdev->raid_disk, i,
1004 (unsigned long long)ppl_sector, pp_size);
1005
1006 crc = ~0;
1007 crc_stored = le32_to_cpu(e->checksum);
1008
1009 /* read parial parity for this entry and calculate its checksum */
1010 while (pp_size) {
1011 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1012
1013 if (!sync_page_io(rdev, sector - rdev->data_offset,
1014 s, page, REQ_OP_READ, 0, false)) {
1015 md_error(mddev, rdev);
1016 ret = -EIO;
1017 goto out;
1018 }
1019
1020 crc = crc32c_le(crc, page_address(page), s);
1021
1022 pp_size -= s;
1023 sector += s >> 9;
1024 }
1025
1026 crc = ~crc;
1027
1028 if (crc != crc_stored) {
1029 /*
1030 * Don't recover this entry if the checksum does not
1031 * match, but keep going and try to recover other
1032 * entries.
1033 */
1034 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1035 __func__, crc_stored, crc);
1036 ppl_conf->mismatch_count++;
1037 } else {
1038 ret = ppl_recover_entry(log, e, ppl_sector);
1039 if (ret)
1040 goto out;
1041 ppl_conf->recovered_entries++;
1042 }
1043
1044 ppl_sector += ppl_entry_sectors;
1045 }
1046
1047 /* flush the disk cache after recovery if necessary */
1048 ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
1049 out:
1050 __free_page(page);
1051 return ret;
1052 }
1053
1054 static int ppl_write_empty_header(struct ppl_log *log)
1055 {
1056 struct page *page;
1057 struct ppl_header *pplhdr;
1058 struct md_rdev *rdev = log->rdev;
1059 int ret = 0;
1060
1061 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1062 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1063
1064 page = alloc_page(GFP_NOIO | __GFP_ZERO);
1065 if (!page)
1066 return -ENOMEM;
1067
1068 pplhdr = page_address(page);
1069 /* zero out PPL space to avoid collision with old PPLs */
1070 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1071 log->rdev->ppl.size, GFP_NOIO, 0);
1072 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1073 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1074 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1075
1076 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1077 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1078 REQ_FUA, 0, false)) {
1079 md_error(rdev->mddev, rdev);
1080 ret = -EIO;
1081 }
1082
1083 __free_page(page);
1084 return ret;
1085 }
1086
1087 static int ppl_load_distributed(struct ppl_log *log)
1088 {
1089 struct ppl_conf *ppl_conf = log->ppl_conf;
1090 struct md_rdev *rdev = log->rdev;
1091 struct mddev *mddev = rdev->mddev;
1092 struct page *page, *page2, *tmp;
1093 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1094 u32 crc, crc_stored;
1095 u32 signature;
1096 int ret = 0, i;
1097 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1098
1099 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1100 /* read PPL headers, find the recent one */
1101 page = alloc_page(GFP_KERNEL);
1102 if (!page)
1103 return -ENOMEM;
1104
1105 page2 = alloc_page(GFP_KERNEL);
1106 if (!page2) {
1107 __free_page(page);
1108 return -ENOMEM;
1109 }
1110
1111 /* searching ppl area for latest ppl */
1112 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1113 if (!sync_page_io(rdev,
1114 rdev->ppl.sector - rdev->data_offset +
1115 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1116 0, false)) {
1117 md_error(mddev, rdev);
1118 ret = -EIO;
1119 /* if not able to read - don't recover any PPL */
1120 pplhdr = NULL;
1121 break;
1122 }
1123 pplhdr = page_address(page);
1124
1125 /* check header validity */
1126 crc_stored = le32_to_cpu(pplhdr->checksum);
1127 pplhdr->checksum = 0;
1128 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1129
1130 if (crc_stored != crc) {
1131 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1132 __func__, crc_stored, crc,
1133 (unsigned long long)pplhdr_offset);
1134 pplhdr = prev_pplhdr;
1135 pplhdr_offset = prev_pplhdr_offset;
1136 break;
1137 }
1138
1139 signature = le32_to_cpu(pplhdr->signature);
1140
1141 if (mddev->external) {
1142 /*
1143 * For external metadata the header signature is set and
1144 * validated in userspace.
1145 */
1146 ppl_conf->signature = signature;
1147 } else if (ppl_conf->signature != signature) {
1148 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1149 __func__, signature, ppl_conf->signature,
1150 (unsigned long long)pplhdr_offset);
1151 pplhdr = prev_pplhdr;
1152 pplhdr_offset = prev_pplhdr_offset;
1153 break;
1154 }
1155
1156 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1157 le64_to_cpu(pplhdr->generation)) {
1158 /* previous was newest */
1159 pplhdr = prev_pplhdr;
1160 pplhdr_offset = prev_pplhdr_offset;
1161 break;
1162 }
1163
1164 prev_pplhdr_offset = pplhdr_offset;
1165 prev_pplhdr = pplhdr;
1166
1167 tmp = page;
1168 page = page2;
1169 page2 = tmp;
1170
1171 /* calculate next potential ppl offset */
1172 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1173 pplhdr_offset +=
1174 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1175 pplhdr_offset += PPL_HEADER_SIZE >> 9;
1176 }
1177
1178 /* no valid ppl found */
1179 if (!pplhdr)
1180 ppl_conf->mismatch_count++;
1181 else
1182 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1183 __func__, (unsigned long long)pplhdr_offset,
1184 le64_to_cpu(pplhdr->generation));
1185
1186 /* attempt to recover from log if we are starting a dirty array */
1187 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1188 ret = ppl_recover(log, pplhdr, pplhdr_offset);
1189
1190 /* write empty header if we are starting the array */
1191 if (!ret && !mddev->pers)
1192 ret = ppl_write_empty_header(log);
1193
1194 __free_page(page);
1195 __free_page(page2);
1196
1197 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1198 __func__, ret, ppl_conf->mismatch_count,
1199 ppl_conf->recovered_entries);
1200 return ret;
1201 }
1202
1203 static int ppl_load(struct ppl_conf *ppl_conf)
1204 {
1205 int ret = 0;
1206 u32 signature = 0;
1207 bool signature_set = false;
1208 int i;
1209
1210 for (i = 0; i < ppl_conf->count; i++) {
1211 struct ppl_log *log = &ppl_conf->child_logs[i];
1212
1213 /* skip missing drive */
1214 if (!log->rdev)
1215 continue;
1216
1217 ret = ppl_load_distributed(log);
1218 if (ret)
1219 break;
1220
1221 /*
1222 * For external metadata we can't check if the signature is
1223 * correct on a single drive, but we can check if it is the same
1224 * on all drives.
1225 */
1226 if (ppl_conf->mddev->external) {
1227 if (!signature_set) {
1228 signature = ppl_conf->signature;
1229 signature_set = true;
1230 } else if (signature != ppl_conf->signature) {
1231 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1232 mdname(ppl_conf->mddev));
1233 ret = -EINVAL;
1234 break;
1235 }
1236 }
1237 }
1238
1239 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1240 __func__, ret, ppl_conf->mismatch_count,
1241 ppl_conf->recovered_entries);
1242 return ret;
1243 }
1244
1245 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1246 {
1247 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1248 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1249
1250 kfree(ppl_conf->child_logs);
1251
1252 bioset_exit(&ppl_conf->bs);
1253 bioset_exit(&ppl_conf->flush_bs);
1254 mempool_exit(&ppl_conf->io_pool);
1255 kmem_cache_destroy(ppl_conf->io_kc);
1256
1257 kfree(ppl_conf);
1258 }
1259
1260 void ppl_exit_log(struct r5conf *conf)
1261 {
1262 struct ppl_conf *ppl_conf = conf->log_private;
1263
1264 if (ppl_conf) {
1265 __ppl_exit_log(ppl_conf);
1266 conf->log_private = NULL;
1267 }
1268 }
1269
1270 static int ppl_validate_rdev(struct md_rdev *rdev)
1271 {
1272 char b[BDEVNAME_SIZE];
1273 int ppl_data_sectors;
1274 int ppl_size_new;
1275
1276 /*
1277 * The configured PPL size must be enough to store
1278 * the header and (at the very least) partial parity
1279 * for one stripe. Round it down to ensure the data
1280 * space is cleanly divisible by stripe size.
1281 */
1282 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1283
1284 if (ppl_data_sectors > 0)
1285 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1286
1287 if (ppl_data_sectors <= 0) {
1288 pr_warn("md/raid:%s: PPL space too small on %s\n",
1289 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1290 return -ENOSPC;
1291 }
1292
1293 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1294
1295 if ((rdev->ppl.sector < rdev->data_offset &&
1296 rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1297 (rdev->ppl.sector >= rdev->data_offset &&
1298 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1299 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1300 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1301 return -EINVAL;
1302 }
1303
1304 if (!rdev->mddev->external &&
1305 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1306 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1307 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1308 mdname(rdev->mddev), bdevname(rdev->bdev, b));
1309 return -EINVAL;
1310 }
1311
1312 rdev->ppl.size = ppl_size_new;
1313
1314 return 0;
1315 }
1316
1317 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1318 {
1319 struct request_queue *q;
1320
1321 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1322 PPL_HEADER_SIZE) * 2) {
1323 log->use_multippl = true;
1324 set_bit(MD_HAS_MULTIPLE_PPLS,
1325 &log->ppl_conf->mddev->flags);
1326 log->entry_space = PPL_SPACE_SIZE;
1327 } else {
1328 log->use_multippl = false;
1329 log->entry_space = (log->rdev->ppl.size << 9) -
1330 PPL_HEADER_SIZE;
1331 }
1332 log->next_io_sector = rdev->ppl.sector;
1333
1334 q = bdev_get_queue(rdev->bdev);
1335 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1336 log->wb_cache_on = true;
1337 }
1338
1339 int ppl_init_log(struct r5conf *conf)
1340 {
1341 struct ppl_conf *ppl_conf;
1342 struct mddev *mddev = conf->mddev;
1343 int ret = 0;
1344 int max_disks;
1345 int i;
1346
1347 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1348 mdname(conf->mddev));
1349
1350 if (PAGE_SIZE != 4096)
1351 return -EINVAL;
1352
1353 if (mddev->level != 5) {
1354 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1355 mdname(mddev), mddev->level);
1356 return -EINVAL;
1357 }
1358
1359 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1360 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1361 mdname(mddev));
1362 return -EINVAL;
1363 }
1364
1365 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1366 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1367 mdname(mddev));
1368 return -EINVAL;
1369 }
1370
1371 max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) *
1372 BITS_PER_BYTE;
1373 if (conf->raid_disks > max_disks) {
1374 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1375 mdname(mddev), max_disks);
1376 return -EINVAL;
1377 }
1378
1379 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1380 if (!ppl_conf)
1381 return -ENOMEM;
1382
1383 ppl_conf->mddev = mddev;
1384
1385 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1386 if (!ppl_conf->io_kc) {
1387 ret = -ENOMEM;
1388 goto err;
1389 }
1390
1391 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1392 ppl_io_pool_free, ppl_conf->io_kc);
1393 if (ret)
1394 goto err;
1395
1396 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1397 if (ret)
1398 goto err;
1399
1400 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1401 if (ret)
1402 goto err;
1403
1404 ppl_conf->count = conf->raid_disks;
1405 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1406 GFP_KERNEL);
1407 if (!ppl_conf->child_logs) {
1408 ret = -ENOMEM;
1409 goto err;
1410 }
1411
1412 atomic64_set(&ppl_conf->seq, 0);
1413 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1414 spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1415 ppl_conf->write_hint = RWF_WRITE_LIFE_NOT_SET;
1416
1417 if (!mddev->external) {
1418 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1419 ppl_conf->block_size = 512;
1420 } else {
1421 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1422 }
1423
1424 for (i = 0; i < ppl_conf->count; i++) {
1425 struct ppl_log *log = &ppl_conf->child_logs[i];
1426 struct md_rdev *rdev = conf->disks[i].rdev;
1427
1428 mutex_init(&log->io_mutex);
1429 spin_lock_init(&log->io_list_lock);
1430 INIT_LIST_HEAD(&log->io_list);
1431
1432 log->ppl_conf = ppl_conf;
1433 log->rdev = rdev;
1434
1435 if (rdev) {
1436 ret = ppl_validate_rdev(rdev);
1437 if (ret)
1438 goto err;
1439
1440 ppl_init_child_log(log, rdev);
1441 }
1442 }
1443
1444 /* load and possibly recover the logs from the member disks */
1445 ret = ppl_load(ppl_conf);
1446
1447 if (ret) {
1448 goto err;
1449 } else if (!mddev->pers && mddev->recovery_cp == 0 &&
1450 ppl_conf->recovered_entries > 0 &&
1451 ppl_conf->mismatch_count == 0) {
1452 /*
1453 * If we are starting a dirty array and the recovery succeeds
1454 * without any issues, set the array as clean.
1455 */
1456 mddev->recovery_cp = MaxSector;
1457 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1458 } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1459 /* no mismatch allowed when enabling PPL for a running array */
1460 ret = -EINVAL;
1461 goto err;
1462 }
1463
1464 conf->log_private = ppl_conf;
1465 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1466
1467 return 0;
1468 err:
1469 __ppl_exit_log(ppl_conf);
1470 return ret;
1471 }
1472
1473 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1474 {
1475 struct ppl_conf *ppl_conf = conf->log_private;
1476 struct ppl_log *log;
1477 int ret = 0;
1478 char b[BDEVNAME_SIZE];
1479
1480 if (!rdev)
1481 return -EINVAL;
1482
1483 pr_debug("%s: disk: %d operation: %s dev: %s\n",
1484 __func__, rdev->raid_disk, add ? "add" : "remove",
1485 bdevname(rdev->bdev, b));
1486
1487 if (rdev->raid_disk < 0)
1488 return 0;
1489
1490 if (rdev->raid_disk >= ppl_conf->count)
1491 return -ENODEV;
1492
1493 log = &ppl_conf->child_logs[rdev->raid_disk];
1494
1495 mutex_lock(&log->io_mutex);
1496 if (add) {
1497 ret = ppl_validate_rdev(rdev);
1498 if (!ret) {
1499 log->rdev = rdev;
1500 ret = ppl_write_empty_header(log);
1501 ppl_init_child_log(log, rdev);
1502 }
1503 } else {
1504 log->rdev = NULL;
1505 }
1506 mutex_unlock(&log->io_mutex);
1507
1508 return ret;
1509 }
1510
1511 static ssize_t
1512 ppl_write_hint_show(struct mddev *mddev, char *buf)
1513 {
1514 size_t ret = 0;
1515 struct r5conf *conf;
1516 struct ppl_conf *ppl_conf = NULL;
1517
1518 spin_lock(&mddev->lock);
1519 conf = mddev->private;
1520 if (conf && raid5_has_ppl(conf))
1521 ppl_conf = conf->log_private;
1522 ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1523 spin_unlock(&mddev->lock);
1524
1525 return ret;
1526 }
1527
1528 static ssize_t
1529 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1530 {
1531 struct r5conf *conf;
1532 struct ppl_conf *ppl_conf;
1533 int err = 0;
1534 unsigned short new;
1535
1536 if (len >= PAGE_SIZE)
1537 return -EINVAL;
1538 if (kstrtou16(page, 10, &new))
1539 return -EINVAL;
1540
1541 err = mddev_lock(mddev);
1542 if (err)
1543 return err;
1544
1545 conf = mddev->private;
1546 if (!conf) {
1547 err = -ENODEV;
1548 } else if (raid5_has_ppl(conf)) {
1549 ppl_conf = conf->log_private;
1550 if (!ppl_conf)
1551 err = -EINVAL;
1552 else
1553 ppl_conf->write_hint = new;
1554 } else {
1555 err = -EINVAL;
1556 }
1557
1558 mddev_unlock(mddev);
1559
1560 return err ?: len;
1561 }
1562
1563 struct md_sysfs_entry
1564 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1565 ppl_write_hint_show,
1566 ppl_write_hint_store);