]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
blk-mq: do not initialize req->special
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69 * Stripe cache
70 */
71
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
130 * This function is used to determine the 'next' bio in the list, given the sector
131 * of the current stripe+device
132 */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 int sectors = bio_sectors(bio);
136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 return bio->bi_next;
138 else
139 return NULL;
140 }
141
142 /*
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145 */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
166 {
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
169
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
207 {
208 int slot = *count;
209
210 if (sh->ddf_layout)
211 (*count)++;
212 if (idx == sh->pd_idx)
213 return syndrome_disks;
214 if (idx == sh->qd_idx)
215 return syndrome_disks + 1;
216 if (!sh->ddf_layout)
217 (*count)++;
218 return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223 struct bio *bi = return_bi;
224 while (bi) {
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
228 bi->bi_iter.bi_size = 0;
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
231 bio_endio(bi, 0);
232 bi = return_bi;
233 }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
249 int thread_cnt;
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
261 group->stripes_cnt++;
262 sh->group = group;
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
290 {
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 list_add_tail(&sh->lru, &conf->delayed_list);
297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 sh->bm_seq - conf->seq_write > 0)
299 list_add_tail(&sh->lru, &conf->bitmap_list);
300 else {
301 clear_bit(STRIPE_DELAYED, &sh->state);
302 clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 if (conf->worker_cnt_per_group == 0) {
304 list_add_tail(&sh->lru, &conf->handle_list);
305 } else {
306 raid5_wakeup_stripe_thread(sh);
307 return;
308 }
309 }
310 md_wakeup_thread(conf->mddev->thread);
311 } else {
312 BUG_ON(stripe_operations_active(sh));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 if (atomic_dec_return(&conf->preread_active_stripes)
315 < IO_THRESHOLD)
316 md_wakeup_thread(conf->mddev->thread);
317 atomic_dec(&conf->active_stripes);
318 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 list_add_tail(&sh->lru, temp_inactive_list);
320 }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 struct list_head *temp_inactive_list)
325 {
326 if (atomic_dec_and_test(&sh->count))
327 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332 *
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
336 */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 struct list_head *temp_inactive_list,
339 int hash)
340 {
341 int size;
342 bool do_wakeup = false;
343 unsigned long flags;
344
345 if (hash == NR_STRIPE_HASH_LOCKS) {
346 size = NR_STRIPE_HASH_LOCKS;
347 hash = NR_STRIPE_HASH_LOCKS - 1;
348 } else
349 size = 1;
350 while (size) {
351 struct list_head *list = &temp_inactive_list[size - 1];
352
353 /*
354 * We don't hold any lock here yet, get_active_stripe() might
355 * remove stripes from the list
356 */
357 if (!list_empty_careful(list)) {
358 spin_lock_irqsave(conf->hash_locks + hash, flags);
359 if (list_empty(conf->inactive_list + hash) &&
360 !list_empty(list))
361 atomic_dec(&conf->empty_inactive_list_nr);
362 list_splice_tail_init(list, conf->inactive_list + hash);
363 do_wakeup = true;
364 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 }
366 size--;
367 hash--;
368 }
369
370 if (do_wakeup) {
371 wake_up(&conf->wait_for_stripe);
372 if (conf->retry_read_aligned)
373 md_wakeup_thread(conf->mddev->thread);
374 }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 struct list_head *temp_inactive_list)
380 {
381 struct stripe_head *sh;
382 int count = 0;
383 struct llist_node *head;
384
385 head = llist_del_all(&conf->released_stripes);
386 head = llist_reverse_order(head);
387 while (head) {
388 int hash;
389
390 sh = llist_entry(head, struct stripe_head, release_list);
391 head = llist_next(head);
392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 smp_mb();
394 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 /*
396 * Don't worry the bit is set here, because if the bit is set
397 * again, the count is always > 1. This is true for
398 * STRIPE_ON_UNPLUG_LIST bit too.
399 */
400 hash = sh->hash_lock_index;
401 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402 count++;
403 }
404
405 return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410 struct r5conf *conf = sh->raid_conf;
411 unsigned long flags;
412 struct list_head list;
413 int hash;
414 bool wakeup;
415
416 if (unlikely(!conf->mddev->thread) ||
417 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 goto slow_path;
419 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 if (wakeup)
421 md_wakeup_thread(conf->mddev->thread);
422 return;
423 slow_path:
424 local_irq_save(flags);
425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 INIT_LIST_HEAD(&list);
428 hash = sh->hash_lock_index;
429 do_release_stripe(conf, sh, &list);
430 spin_unlock(&conf->device_lock);
431 release_inactive_stripe_list(conf, &list, hash);
432 }
433 local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 pr_debug("remove_hash(), stripe %llu\n",
439 (unsigned long long)sh->sector);
440
441 hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448 pr_debug("insert_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 struct stripe_head *sh = NULL;
459 struct list_head *first;
460
461 if (list_empty(conf->inactive_list + hash))
462 goto out;
463 first = (conf->inactive_list + hash)->next;
464 sh = list_entry(first, struct stripe_head, lru);
465 list_del_init(first);
466 remove_hash(sh);
467 atomic_inc(&conf->active_stripes);
468 BUG_ON(hash != sh->hash_lock_index);
469 if (list_empty(conf->inactive_list + hash))
470 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 struct page *p;
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num ; i++) {
482 p = sh->dev[i].page;
483 if (!p)
484 continue;
485 sh->dev[i].page = NULL;
486 put_page(p);
487 }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 int i;
493 int num = sh->raid_conf->pool_size;
494
495 for (i = 0; i < num; i++) {
496 struct page *page;
497
498 if (!(page = alloc_page(GFP_KERNEL))) {
499 return 1;
500 }
501 sh->dev[i].page = page;
502 }
503 return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 struct r5conf *conf = sh->raid_conf;
513 int i, seq;
514
515 BUG_ON(atomic_read(&sh->count) != 0);
516 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 BUG_ON(stripe_operations_active(sh));
518
519 pr_debug("init_stripe called, stripe %llu\n",
520 (unsigned long long)sh->sector);
521
522 remove_hash(sh);
523 retry:
524 seq = read_seqcount_begin(&conf->gen_lock);
525 sh->generation = conf->generation - previous;
526 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 sh->sector = sector;
528 stripe_set_idx(sector, conf, previous, sh);
529 sh->state = 0;
530
531
532 for (i = sh->disks; i--; ) {
533 struct r5dev *dev = &sh->dev[i];
534
535 if (dev->toread || dev->read || dev->towrite || dev->written ||
536 test_bit(R5_LOCKED, &dev->flags)) {
537 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 (unsigned long long)sh->sector, i, dev->toread,
539 dev->read, dev->towrite, dev->written,
540 test_bit(R5_LOCKED, &dev->flags));
541 WARN_ON(1);
542 }
543 dev->flags = 0;
544 raid5_build_block(sh, i, previous);
545 }
546 if (read_seqcount_retry(&conf->gen_lock, seq))
547 goto retry;
548 insert_hash(conf, sh);
549 sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 short generation)
554 {
555 struct stripe_head *sh;
556
557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 if (sh->sector == sector && sh->generation == generation)
560 return sh;
561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 return NULL;
563 }
564
565 /*
566 * Need to check if array has failed when deciding whether to:
567 * - start an array
568 * - remove non-faulty devices
569 * - add a spare
570 * - allow a reshape
571 * This determination is simple when no reshape is happening.
572 * However if there is a reshape, we need to carefully check
573 * both the before and after sections.
574 * This is because some failed devices may only affect one
575 * of the two sections, and some non-in_sync devices may
576 * be insync in the section most affected by failed devices.
577 */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 int degraded, degraded2;
581 int i;
582
583 rcu_read_lock();
584 degraded = 0;
585 for (i = 0; i < conf->previous_raid_disks; i++) {
586 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 if (rdev && test_bit(Faulty, &rdev->flags))
588 rdev = rcu_dereference(conf->disks[i].replacement);
589 if (!rdev || test_bit(Faulty, &rdev->flags))
590 degraded++;
591 else if (test_bit(In_sync, &rdev->flags))
592 ;
593 else
594 /* not in-sync or faulty.
595 * If the reshape increases the number of devices,
596 * this is being recovered by the reshape, so
597 * this 'previous' section is not in_sync.
598 * If the number of devices is being reduced however,
599 * the device can only be part of the array if
600 * we are reverting a reshape, so this section will
601 * be in-sync.
602 */
603 if (conf->raid_disks >= conf->previous_raid_disks)
604 degraded++;
605 }
606 rcu_read_unlock();
607 if (conf->raid_disks == conf->previous_raid_disks)
608 return degraded;
609 rcu_read_lock();
610 degraded2 = 0;
611 for (i = 0; i < conf->raid_disks; i++) {
612 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 if (rdev && test_bit(Faulty, &rdev->flags))
614 rdev = rcu_dereference(conf->disks[i].replacement);
615 if (!rdev || test_bit(Faulty, &rdev->flags))
616 degraded2++;
617 else if (test_bit(In_sync, &rdev->flags))
618 ;
619 else
620 /* not in-sync or faulty.
621 * If reshape increases the number of devices, this
622 * section has already been recovered, else it
623 * almost certainly hasn't.
624 */
625 if (conf->raid_disks <= conf->previous_raid_disks)
626 degraded2++;
627 }
628 rcu_read_unlock();
629 if (degraded2 > degraded)
630 return degraded2;
631 return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636 int degraded;
637
638 if (conf->mddev->reshape_position == MaxSector)
639 return conf->mddev->degraded > conf->max_degraded;
640
641 degraded = calc_degraded(conf);
642 if (degraded > conf->max_degraded)
643 return 1;
644 return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 int previous, int noblock, int noquiesce)
650 {
651 struct stripe_head *sh;
652 int hash = stripe_hash_locks_hash(sector);
653
654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656 spin_lock_irq(conf->hash_locks + hash);
657
658 do {
659 wait_event_lock_irq(conf->wait_for_stripe,
660 conf->quiesce == 0 || noquiesce,
661 *(conf->hash_locks + hash));
662 sh = __find_stripe(conf, sector, conf->generation - previous);
663 if (!sh) {
664 if (!conf->inactive_blocked)
665 sh = get_free_stripe(conf, hash);
666 if (noblock && sh == NULL)
667 break;
668 if (!sh) {
669 conf->inactive_blocked = 1;
670 wait_event_lock_irq(
671 conf->wait_for_stripe,
672 !list_empty(conf->inactive_list + hash) &&
673 (atomic_read(&conf->active_stripes)
674 < (conf->max_nr_stripes * 3 / 4)
675 || !conf->inactive_blocked),
676 *(conf->hash_locks + hash));
677 conf->inactive_blocked = 0;
678 } else {
679 init_stripe(sh, sector, previous);
680 atomic_inc(&sh->count);
681 }
682 } else if (!atomic_inc_not_zero(&sh->count)) {
683 spin_lock(&conf->device_lock);
684 if (!atomic_read(&sh->count)) {
685 if (!test_bit(STRIPE_HANDLE, &sh->state))
686 atomic_inc(&conf->active_stripes);
687 BUG_ON(list_empty(&sh->lru) &&
688 !test_bit(STRIPE_EXPANDING, &sh->state));
689 list_del_init(&sh->lru);
690 if (sh->group) {
691 sh->group->stripes_cnt--;
692 sh->group = NULL;
693 }
694 }
695 atomic_inc(&sh->count);
696 spin_unlock(&conf->device_lock);
697 }
698 } while (sh == NULL);
699
700 spin_unlock_irq(conf->hash_locks + hash);
701 return sh;
702 }
703
704 /* Determine if 'data_offset' or 'new_data_offset' should be used
705 * in this stripe_head.
706 */
707 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
708 {
709 sector_t progress = conf->reshape_progress;
710 /* Need a memory barrier to make sure we see the value
711 * of conf->generation, or ->data_offset that was set before
712 * reshape_progress was updated.
713 */
714 smp_rmb();
715 if (progress == MaxSector)
716 return 0;
717 if (sh->generation == conf->generation - 1)
718 return 0;
719 /* We are in a reshape, and this is a new-generation stripe,
720 * so use new_data_offset.
721 */
722 return 1;
723 }
724
725 static void
726 raid5_end_read_request(struct bio *bi, int error);
727 static void
728 raid5_end_write_request(struct bio *bi, int error);
729
730 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
731 {
732 struct r5conf *conf = sh->raid_conf;
733 int i, disks = sh->disks;
734
735 might_sleep();
736
737 for (i = disks; i--; ) {
738 int rw;
739 int replace_only = 0;
740 struct bio *bi, *rbi;
741 struct md_rdev *rdev, *rrdev = NULL;
742 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
743 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
744 rw = WRITE_FUA;
745 else
746 rw = WRITE;
747 if (test_bit(R5_Discard, &sh->dev[i].flags))
748 rw |= REQ_DISCARD;
749 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
750 rw = READ;
751 else if (test_and_clear_bit(R5_WantReplace,
752 &sh->dev[i].flags)) {
753 rw = WRITE;
754 replace_only = 1;
755 } else
756 continue;
757 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
758 rw |= REQ_SYNC;
759
760 bi = &sh->dev[i].req;
761 rbi = &sh->dev[i].rreq; /* For writing to replacement */
762
763 rcu_read_lock();
764 rrdev = rcu_dereference(conf->disks[i].replacement);
765 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
766 rdev = rcu_dereference(conf->disks[i].rdev);
767 if (!rdev) {
768 rdev = rrdev;
769 rrdev = NULL;
770 }
771 if (rw & WRITE) {
772 if (replace_only)
773 rdev = NULL;
774 if (rdev == rrdev)
775 /* We raced and saw duplicates */
776 rrdev = NULL;
777 } else {
778 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
779 rdev = rrdev;
780 rrdev = NULL;
781 }
782
783 if (rdev && test_bit(Faulty, &rdev->flags))
784 rdev = NULL;
785 if (rdev)
786 atomic_inc(&rdev->nr_pending);
787 if (rrdev && test_bit(Faulty, &rrdev->flags))
788 rrdev = NULL;
789 if (rrdev)
790 atomic_inc(&rrdev->nr_pending);
791 rcu_read_unlock();
792
793 /* We have already checked bad blocks for reads. Now
794 * need to check for writes. We never accept write errors
795 * on the replacement, so we don't to check rrdev.
796 */
797 while ((rw & WRITE) && rdev &&
798 test_bit(WriteErrorSeen, &rdev->flags)) {
799 sector_t first_bad;
800 int bad_sectors;
801 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
802 &first_bad, &bad_sectors);
803 if (!bad)
804 break;
805
806 if (bad < 0) {
807 set_bit(BlockedBadBlocks, &rdev->flags);
808 if (!conf->mddev->external &&
809 conf->mddev->flags) {
810 /* It is very unlikely, but we might
811 * still need to write out the
812 * bad block log - better give it
813 * a chance*/
814 md_check_recovery(conf->mddev);
815 }
816 /*
817 * Because md_wait_for_blocked_rdev
818 * will dec nr_pending, we must
819 * increment it first.
820 */
821 atomic_inc(&rdev->nr_pending);
822 md_wait_for_blocked_rdev(rdev, conf->mddev);
823 } else {
824 /* Acknowledged bad block - skip the write */
825 rdev_dec_pending(rdev, conf->mddev);
826 rdev = NULL;
827 }
828 }
829
830 if (rdev) {
831 if (s->syncing || s->expanding || s->expanded
832 || s->replacing)
833 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
834
835 set_bit(STRIPE_IO_STARTED, &sh->state);
836
837 bio_reset(bi);
838 bi->bi_bdev = rdev->bdev;
839 bi->bi_rw = rw;
840 bi->bi_end_io = (rw & WRITE)
841 ? raid5_end_write_request
842 : raid5_end_read_request;
843 bi->bi_private = sh;
844
845 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
846 __func__, (unsigned long long)sh->sector,
847 bi->bi_rw, i);
848 atomic_inc(&sh->count);
849 if (use_new_offset(conf, sh))
850 bi->bi_iter.bi_sector = (sh->sector
851 + rdev->new_data_offset);
852 else
853 bi->bi_iter.bi_sector = (sh->sector
854 + rdev->data_offset);
855 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
856 bi->bi_rw |= REQ_NOMERGE;
857
858 bi->bi_vcnt = 1;
859 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
860 bi->bi_io_vec[0].bv_offset = 0;
861 bi->bi_iter.bi_size = STRIPE_SIZE;
862 /*
863 * If this is discard request, set bi_vcnt 0. We don't
864 * want to confuse SCSI because SCSI will replace payload
865 */
866 if (rw & REQ_DISCARD)
867 bi->bi_vcnt = 0;
868 if (rrdev)
869 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
870
871 if (conf->mddev->gendisk)
872 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
873 bi, disk_devt(conf->mddev->gendisk),
874 sh->dev[i].sector);
875 generic_make_request(bi);
876 }
877 if (rrdev) {
878 if (s->syncing || s->expanding || s->expanded
879 || s->replacing)
880 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
881
882 set_bit(STRIPE_IO_STARTED, &sh->state);
883
884 bio_reset(rbi);
885 rbi->bi_bdev = rrdev->bdev;
886 rbi->bi_rw = rw;
887 BUG_ON(!(rw & WRITE));
888 rbi->bi_end_io = raid5_end_write_request;
889 rbi->bi_private = sh;
890
891 pr_debug("%s: for %llu schedule op %ld on "
892 "replacement disc %d\n",
893 __func__, (unsigned long long)sh->sector,
894 rbi->bi_rw, i);
895 atomic_inc(&sh->count);
896 if (use_new_offset(conf, sh))
897 rbi->bi_iter.bi_sector = (sh->sector
898 + rrdev->new_data_offset);
899 else
900 rbi->bi_iter.bi_sector = (sh->sector
901 + rrdev->data_offset);
902 rbi->bi_vcnt = 1;
903 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
904 rbi->bi_io_vec[0].bv_offset = 0;
905 rbi->bi_iter.bi_size = STRIPE_SIZE;
906 /*
907 * If this is discard request, set bi_vcnt 0. We don't
908 * want to confuse SCSI because SCSI will replace payload
909 */
910 if (rw & REQ_DISCARD)
911 rbi->bi_vcnt = 0;
912 if (conf->mddev->gendisk)
913 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
914 rbi, disk_devt(conf->mddev->gendisk),
915 sh->dev[i].sector);
916 generic_make_request(rbi);
917 }
918 if (!rdev && !rrdev) {
919 if (rw & WRITE)
920 set_bit(STRIPE_DEGRADED, &sh->state);
921 pr_debug("skip op %ld on disc %d for sector %llu\n",
922 bi->bi_rw, i, (unsigned long long)sh->sector);
923 clear_bit(R5_LOCKED, &sh->dev[i].flags);
924 set_bit(STRIPE_HANDLE, &sh->state);
925 }
926 }
927 }
928
929 static struct dma_async_tx_descriptor *
930 async_copy_data(int frombio, struct bio *bio, struct page *page,
931 sector_t sector, struct dma_async_tx_descriptor *tx)
932 {
933 struct bio_vec bvl;
934 struct bvec_iter iter;
935 struct page *bio_page;
936 int page_offset;
937 struct async_submit_ctl submit;
938 enum async_tx_flags flags = 0;
939
940 if (bio->bi_iter.bi_sector >= sector)
941 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
942 else
943 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
944
945 if (frombio)
946 flags |= ASYNC_TX_FENCE;
947 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
948
949 bio_for_each_segment(bvl, bio, iter) {
950 int len = bvl.bv_len;
951 int clen;
952 int b_offset = 0;
953
954 if (page_offset < 0) {
955 b_offset = -page_offset;
956 page_offset += b_offset;
957 len -= b_offset;
958 }
959
960 if (len > 0 && page_offset + len > STRIPE_SIZE)
961 clen = STRIPE_SIZE - page_offset;
962 else
963 clen = len;
964
965 if (clen > 0) {
966 b_offset += bvl.bv_offset;
967 bio_page = bvl.bv_page;
968 if (frombio)
969 tx = async_memcpy(page, bio_page, page_offset,
970 b_offset, clen, &submit);
971 else
972 tx = async_memcpy(bio_page, page, b_offset,
973 page_offset, clen, &submit);
974 }
975 /* chain the operations */
976 submit.depend_tx = tx;
977
978 if (clen < len) /* hit end of page */
979 break;
980 page_offset += len;
981 }
982
983 return tx;
984 }
985
986 static void ops_complete_biofill(void *stripe_head_ref)
987 {
988 struct stripe_head *sh = stripe_head_ref;
989 struct bio *return_bi = NULL;
990 int i;
991
992 pr_debug("%s: stripe %llu\n", __func__,
993 (unsigned long long)sh->sector);
994
995 /* clear completed biofills */
996 for (i = sh->disks; i--; ) {
997 struct r5dev *dev = &sh->dev[i];
998
999 /* acknowledge completion of a biofill operation */
1000 /* and check if we need to reply to a read request,
1001 * new R5_Wantfill requests are held off until
1002 * !STRIPE_BIOFILL_RUN
1003 */
1004 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1005 struct bio *rbi, *rbi2;
1006
1007 BUG_ON(!dev->read);
1008 rbi = dev->read;
1009 dev->read = NULL;
1010 while (rbi && rbi->bi_iter.bi_sector <
1011 dev->sector + STRIPE_SECTORS) {
1012 rbi2 = r5_next_bio(rbi, dev->sector);
1013 if (!raid5_dec_bi_active_stripes(rbi)) {
1014 rbi->bi_next = return_bi;
1015 return_bi = rbi;
1016 }
1017 rbi = rbi2;
1018 }
1019 }
1020 }
1021 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1022
1023 return_io(return_bi);
1024
1025 set_bit(STRIPE_HANDLE, &sh->state);
1026 release_stripe(sh);
1027 }
1028
1029 static void ops_run_biofill(struct stripe_head *sh)
1030 {
1031 struct dma_async_tx_descriptor *tx = NULL;
1032 struct async_submit_ctl submit;
1033 int i;
1034
1035 pr_debug("%s: stripe %llu\n", __func__,
1036 (unsigned long long)sh->sector);
1037
1038 for (i = sh->disks; i--; ) {
1039 struct r5dev *dev = &sh->dev[i];
1040 if (test_bit(R5_Wantfill, &dev->flags)) {
1041 struct bio *rbi;
1042 spin_lock_irq(&sh->stripe_lock);
1043 dev->read = rbi = dev->toread;
1044 dev->toread = NULL;
1045 spin_unlock_irq(&sh->stripe_lock);
1046 while (rbi && rbi->bi_iter.bi_sector <
1047 dev->sector + STRIPE_SECTORS) {
1048 tx = async_copy_data(0, rbi, dev->page,
1049 dev->sector, tx);
1050 rbi = r5_next_bio(rbi, dev->sector);
1051 }
1052 }
1053 }
1054
1055 atomic_inc(&sh->count);
1056 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1057 async_trigger_callback(&submit);
1058 }
1059
1060 static void mark_target_uptodate(struct stripe_head *sh, int target)
1061 {
1062 struct r5dev *tgt;
1063
1064 if (target < 0)
1065 return;
1066
1067 tgt = &sh->dev[target];
1068 set_bit(R5_UPTODATE, &tgt->flags);
1069 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1070 clear_bit(R5_Wantcompute, &tgt->flags);
1071 }
1072
1073 static void ops_complete_compute(void *stripe_head_ref)
1074 {
1075 struct stripe_head *sh = stripe_head_ref;
1076
1077 pr_debug("%s: stripe %llu\n", __func__,
1078 (unsigned long long)sh->sector);
1079
1080 /* mark the computed target(s) as uptodate */
1081 mark_target_uptodate(sh, sh->ops.target);
1082 mark_target_uptodate(sh, sh->ops.target2);
1083
1084 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1085 if (sh->check_state == check_state_compute_run)
1086 sh->check_state = check_state_compute_result;
1087 set_bit(STRIPE_HANDLE, &sh->state);
1088 release_stripe(sh);
1089 }
1090
1091 /* return a pointer to the address conversion region of the scribble buffer */
1092 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1093 struct raid5_percpu *percpu)
1094 {
1095 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1096 }
1097
1098 static struct dma_async_tx_descriptor *
1099 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1100 {
1101 int disks = sh->disks;
1102 struct page **xor_srcs = percpu->scribble;
1103 int target = sh->ops.target;
1104 struct r5dev *tgt = &sh->dev[target];
1105 struct page *xor_dest = tgt->page;
1106 int count = 0;
1107 struct dma_async_tx_descriptor *tx;
1108 struct async_submit_ctl submit;
1109 int i;
1110
1111 pr_debug("%s: stripe %llu block: %d\n",
1112 __func__, (unsigned long long)sh->sector, target);
1113 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1114
1115 for (i = disks; i--; )
1116 if (i != target)
1117 xor_srcs[count++] = sh->dev[i].page;
1118
1119 atomic_inc(&sh->count);
1120
1121 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1122 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1123 if (unlikely(count == 1))
1124 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125 else
1126 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127
1128 return tx;
1129 }
1130
1131 /* set_syndrome_sources - populate source buffers for gen_syndrome
1132 * @srcs - (struct page *) array of size sh->disks
1133 * @sh - stripe_head to parse
1134 *
1135 * Populates srcs in proper layout order for the stripe and returns the
1136 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1137 * destination buffer is recorded in srcs[count] and the Q destination
1138 * is recorded in srcs[count+1]].
1139 */
1140 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1141 {
1142 int disks = sh->disks;
1143 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1144 int d0_idx = raid6_d0(sh);
1145 int count;
1146 int i;
1147
1148 for (i = 0; i < disks; i++)
1149 srcs[i] = NULL;
1150
1151 count = 0;
1152 i = d0_idx;
1153 do {
1154 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1155
1156 srcs[slot] = sh->dev[i].page;
1157 i = raid6_next_disk(i, disks);
1158 } while (i != d0_idx);
1159
1160 return syndrome_disks;
1161 }
1162
1163 static struct dma_async_tx_descriptor *
1164 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1165 {
1166 int disks = sh->disks;
1167 struct page **blocks = percpu->scribble;
1168 int target;
1169 int qd_idx = sh->qd_idx;
1170 struct dma_async_tx_descriptor *tx;
1171 struct async_submit_ctl submit;
1172 struct r5dev *tgt;
1173 struct page *dest;
1174 int i;
1175 int count;
1176
1177 if (sh->ops.target < 0)
1178 target = sh->ops.target2;
1179 else if (sh->ops.target2 < 0)
1180 target = sh->ops.target;
1181 else
1182 /* we should only have one valid target */
1183 BUG();
1184 BUG_ON(target < 0);
1185 pr_debug("%s: stripe %llu block: %d\n",
1186 __func__, (unsigned long long)sh->sector, target);
1187
1188 tgt = &sh->dev[target];
1189 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1190 dest = tgt->page;
1191
1192 atomic_inc(&sh->count);
1193
1194 if (target == qd_idx) {
1195 count = set_syndrome_sources(blocks, sh);
1196 blocks[count] = NULL; /* regenerating p is not necessary */
1197 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1198 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1199 ops_complete_compute, sh,
1200 to_addr_conv(sh, percpu));
1201 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1202 } else {
1203 /* Compute any data- or p-drive using XOR */
1204 count = 0;
1205 for (i = disks; i-- ; ) {
1206 if (i == target || i == qd_idx)
1207 continue;
1208 blocks[count++] = sh->dev[i].page;
1209 }
1210
1211 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1212 NULL, ops_complete_compute, sh,
1213 to_addr_conv(sh, percpu));
1214 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1215 }
1216
1217 return tx;
1218 }
1219
1220 static struct dma_async_tx_descriptor *
1221 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1222 {
1223 int i, count, disks = sh->disks;
1224 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1225 int d0_idx = raid6_d0(sh);
1226 int faila = -1, failb = -1;
1227 int target = sh->ops.target;
1228 int target2 = sh->ops.target2;
1229 struct r5dev *tgt = &sh->dev[target];
1230 struct r5dev *tgt2 = &sh->dev[target2];
1231 struct dma_async_tx_descriptor *tx;
1232 struct page **blocks = percpu->scribble;
1233 struct async_submit_ctl submit;
1234
1235 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1236 __func__, (unsigned long long)sh->sector, target, target2);
1237 BUG_ON(target < 0 || target2 < 0);
1238 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1239 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1240
1241 /* we need to open-code set_syndrome_sources to handle the
1242 * slot number conversion for 'faila' and 'failb'
1243 */
1244 for (i = 0; i < disks ; i++)
1245 blocks[i] = NULL;
1246 count = 0;
1247 i = d0_idx;
1248 do {
1249 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1250
1251 blocks[slot] = sh->dev[i].page;
1252
1253 if (i == target)
1254 faila = slot;
1255 if (i == target2)
1256 failb = slot;
1257 i = raid6_next_disk(i, disks);
1258 } while (i != d0_idx);
1259
1260 BUG_ON(faila == failb);
1261 if (failb < faila)
1262 swap(faila, failb);
1263 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1264 __func__, (unsigned long long)sh->sector, faila, failb);
1265
1266 atomic_inc(&sh->count);
1267
1268 if (failb == syndrome_disks+1) {
1269 /* Q disk is one of the missing disks */
1270 if (faila == syndrome_disks) {
1271 /* Missing P+Q, just recompute */
1272 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1273 ops_complete_compute, sh,
1274 to_addr_conv(sh, percpu));
1275 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1276 STRIPE_SIZE, &submit);
1277 } else {
1278 struct page *dest;
1279 int data_target;
1280 int qd_idx = sh->qd_idx;
1281
1282 /* Missing D+Q: recompute D from P, then recompute Q */
1283 if (target == qd_idx)
1284 data_target = target2;
1285 else
1286 data_target = target;
1287
1288 count = 0;
1289 for (i = disks; i-- ; ) {
1290 if (i == data_target || i == qd_idx)
1291 continue;
1292 blocks[count++] = sh->dev[i].page;
1293 }
1294 dest = sh->dev[data_target].page;
1295 init_async_submit(&submit,
1296 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1297 NULL, NULL, NULL,
1298 to_addr_conv(sh, percpu));
1299 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1300 &submit);
1301
1302 count = set_syndrome_sources(blocks, sh);
1303 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1304 ops_complete_compute, sh,
1305 to_addr_conv(sh, percpu));
1306 return async_gen_syndrome(blocks, 0, count+2,
1307 STRIPE_SIZE, &submit);
1308 }
1309 } else {
1310 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1311 ops_complete_compute, sh,
1312 to_addr_conv(sh, percpu));
1313 if (failb == syndrome_disks) {
1314 /* We're missing D+P. */
1315 return async_raid6_datap_recov(syndrome_disks+2,
1316 STRIPE_SIZE, faila,
1317 blocks, &submit);
1318 } else {
1319 /* We're missing D+D. */
1320 return async_raid6_2data_recov(syndrome_disks+2,
1321 STRIPE_SIZE, faila, failb,
1322 blocks, &submit);
1323 }
1324 }
1325 }
1326
1327
1328 static void ops_complete_prexor(void *stripe_head_ref)
1329 {
1330 struct stripe_head *sh = stripe_head_ref;
1331
1332 pr_debug("%s: stripe %llu\n", __func__,
1333 (unsigned long long)sh->sector);
1334 }
1335
1336 static struct dma_async_tx_descriptor *
1337 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1338 struct dma_async_tx_descriptor *tx)
1339 {
1340 int disks = sh->disks;
1341 struct page **xor_srcs = percpu->scribble;
1342 int count = 0, pd_idx = sh->pd_idx, i;
1343 struct async_submit_ctl submit;
1344
1345 /* existing parity data subtracted */
1346 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1347
1348 pr_debug("%s: stripe %llu\n", __func__,
1349 (unsigned long long)sh->sector);
1350
1351 for (i = disks; i--; ) {
1352 struct r5dev *dev = &sh->dev[i];
1353 /* Only process blocks that are known to be uptodate */
1354 if (test_bit(R5_Wantdrain, &dev->flags))
1355 xor_srcs[count++] = dev->page;
1356 }
1357
1358 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1359 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1360 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1361
1362 return tx;
1363 }
1364
1365 static struct dma_async_tx_descriptor *
1366 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1367 {
1368 int disks = sh->disks;
1369 int i;
1370
1371 pr_debug("%s: stripe %llu\n", __func__,
1372 (unsigned long long)sh->sector);
1373
1374 for (i = disks; i--; ) {
1375 struct r5dev *dev = &sh->dev[i];
1376 struct bio *chosen;
1377
1378 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1379 struct bio *wbi;
1380
1381 spin_lock_irq(&sh->stripe_lock);
1382 chosen = dev->towrite;
1383 dev->towrite = NULL;
1384 BUG_ON(dev->written);
1385 wbi = dev->written = chosen;
1386 spin_unlock_irq(&sh->stripe_lock);
1387
1388 while (wbi && wbi->bi_iter.bi_sector <
1389 dev->sector + STRIPE_SECTORS) {
1390 if (wbi->bi_rw & REQ_FUA)
1391 set_bit(R5_WantFUA, &dev->flags);
1392 if (wbi->bi_rw & REQ_SYNC)
1393 set_bit(R5_SyncIO, &dev->flags);
1394 if (wbi->bi_rw & REQ_DISCARD)
1395 set_bit(R5_Discard, &dev->flags);
1396 else
1397 tx = async_copy_data(1, wbi, dev->page,
1398 dev->sector, tx);
1399 wbi = r5_next_bio(wbi, dev->sector);
1400 }
1401 }
1402 }
1403
1404 return tx;
1405 }
1406
1407 static void ops_complete_reconstruct(void *stripe_head_ref)
1408 {
1409 struct stripe_head *sh = stripe_head_ref;
1410 int disks = sh->disks;
1411 int pd_idx = sh->pd_idx;
1412 int qd_idx = sh->qd_idx;
1413 int i;
1414 bool fua = false, sync = false, discard = false;
1415
1416 pr_debug("%s: stripe %llu\n", __func__,
1417 (unsigned long long)sh->sector);
1418
1419 for (i = disks; i--; ) {
1420 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1421 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1422 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1423 }
1424
1425 for (i = disks; i--; ) {
1426 struct r5dev *dev = &sh->dev[i];
1427
1428 if (dev->written || i == pd_idx || i == qd_idx) {
1429 if (!discard)
1430 set_bit(R5_UPTODATE, &dev->flags);
1431 if (fua)
1432 set_bit(R5_WantFUA, &dev->flags);
1433 if (sync)
1434 set_bit(R5_SyncIO, &dev->flags);
1435 }
1436 }
1437
1438 if (sh->reconstruct_state == reconstruct_state_drain_run)
1439 sh->reconstruct_state = reconstruct_state_drain_result;
1440 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1441 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1442 else {
1443 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1444 sh->reconstruct_state = reconstruct_state_result;
1445 }
1446
1447 set_bit(STRIPE_HANDLE, &sh->state);
1448 release_stripe(sh);
1449 }
1450
1451 static void
1452 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1453 struct dma_async_tx_descriptor *tx)
1454 {
1455 int disks = sh->disks;
1456 struct page **xor_srcs = percpu->scribble;
1457 struct async_submit_ctl submit;
1458 int count = 0, pd_idx = sh->pd_idx, i;
1459 struct page *xor_dest;
1460 int prexor = 0;
1461 unsigned long flags;
1462
1463 pr_debug("%s: stripe %llu\n", __func__,
1464 (unsigned long long)sh->sector);
1465
1466 for (i = 0; i < sh->disks; i++) {
1467 if (pd_idx == i)
1468 continue;
1469 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1470 break;
1471 }
1472 if (i >= sh->disks) {
1473 atomic_inc(&sh->count);
1474 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1475 ops_complete_reconstruct(sh);
1476 return;
1477 }
1478 /* check if prexor is active which means only process blocks
1479 * that are part of a read-modify-write (written)
1480 */
1481 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1482 prexor = 1;
1483 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1484 for (i = disks; i--; ) {
1485 struct r5dev *dev = &sh->dev[i];
1486 if (dev->written)
1487 xor_srcs[count++] = dev->page;
1488 }
1489 } else {
1490 xor_dest = sh->dev[pd_idx].page;
1491 for (i = disks; i--; ) {
1492 struct r5dev *dev = &sh->dev[i];
1493 if (i != pd_idx)
1494 xor_srcs[count++] = dev->page;
1495 }
1496 }
1497
1498 /* 1/ if we prexor'd then the dest is reused as a source
1499 * 2/ if we did not prexor then we are redoing the parity
1500 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1501 * for the synchronous xor case
1502 */
1503 flags = ASYNC_TX_ACK |
1504 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1505
1506 atomic_inc(&sh->count);
1507
1508 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1509 to_addr_conv(sh, percpu));
1510 if (unlikely(count == 1))
1511 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1512 else
1513 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1514 }
1515
1516 static void
1517 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1518 struct dma_async_tx_descriptor *tx)
1519 {
1520 struct async_submit_ctl submit;
1521 struct page **blocks = percpu->scribble;
1522 int count, i;
1523
1524 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1525
1526 for (i = 0; i < sh->disks; i++) {
1527 if (sh->pd_idx == i || sh->qd_idx == i)
1528 continue;
1529 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1530 break;
1531 }
1532 if (i >= sh->disks) {
1533 atomic_inc(&sh->count);
1534 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1535 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1536 ops_complete_reconstruct(sh);
1537 return;
1538 }
1539
1540 count = set_syndrome_sources(blocks, sh);
1541
1542 atomic_inc(&sh->count);
1543
1544 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1545 sh, to_addr_conv(sh, percpu));
1546 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1547 }
1548
1549 static void ops_complete_check(void *stripe_head_ref)
1550 {
1551 struct stripe_head *sh = stripe_head_ref;
1552
1553 pr_debug("%s: stripe %llu\n", __func__,
1554 (unsigned long long)sh->sector);
1555
1556 sh->check_state = check_state_check_result;
1557 set_bit(STRIPE_HANDLE, &sh->state);
1558 release_stripe(sh);
1559 }
1560
1561 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1562 {
1563 int disks = sh->disks;
1564 int pd_idx = sh->pd_idx;
1565 int qd_idx = sh->qd_idx;
1566 struct page *xor_dest;
1567 struct page **xor_srcs = percpu->scribble;
1568 struct dma_async_tx_descriptor *tx;
1569 struct async_submit_ctl submit;
1570 int count;
1571 int i;
1572
1573 pr_debug("%s: stripe %llu\n", __func__,
1574 (unsigned long long)sh->sector);
1575
1576 count = 0;
1577 xor_dest = sh->dev[pd_idx].page;
1578 xor_srcs[count++] = xor_dest;
1579 for (i = disks; i--; ) {
1580 if (i == pd_idx || i == qd_idx)
1581 continue;
1582 xor_srcs[count++] = sh->dev[i].page;
1583 }
1584
1585 init_async_submit(&submit, 0, NULL, NULL, NULL,
1586 to_addr_conv(sh, percpu));
1587 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1588 &sh->ops.zero_sum_result, &submit);
1589
1590 atomic_inc(&sh->count);
1591 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1592 tx = async_trigger_callback(&submit);
1593 }
1594
1595 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1596 {
1597 struct page **srcs = percpu->scribble;
1598 struct async_submit_ctl submit;
1599 int count;
1600
1601 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1602 (unsigned long long)sh->sector, checkp);
1603
1604 count = set_syndrome_sources(srcs, sh);
1605 if (!checkp)
1606 srcs[count] = NULL;
1607
1608 atomic_inc(&sh->count);
1609 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1610 sh, to_addr_conv(sh, percpu));
1611 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1612 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1613 }
1614
1615 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1616 {
1617 int overlap_clear = 0, i, disks = sh->disks;
1618 struct dma_async_tx_descriptor *tx = NULL;
1619 struct r5conf *conf = sh->raid_conf;
1620 int level = conf->level;
1621 struct raid5_percpu *percpu;
1622 unsigned long cpu;
1623
1624 cpu = get_cpu();
1625 percpu = per_cpu_ptr(conf->percpu, cpu);
1626 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1627 ops_run_biofill(sh);
1628 overlap_clear++;
1629 }
1630
1631 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1632 if (level < 6)
1633 tx = ops_run_compute5(sh, percpu);
1634 else {
1635 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1636 tx = ops_run_compute6_1(sh, percpu);
1637 else
1638 tx = ops_run_compute6_2(sh, percpu);
1639 }
1640 /* terminate the chain if reconstruct is not set to be run */
1641 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1642 async_tx_ack(tx);
1643 }
1644
1645 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1646 tx = ops_run_prexor(sh, percpu, tx);
1647
1648 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1649 tx = ops_run_biodrain(sh, tx);
1650 overlap_clear++;
1651 }
1652
1653 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1654 if (level < 6)
1655 ops_run_reconstruct5(sh, percpu, tx);
1656 else
1657 ops_run_reconstruct6(sh, percpu, tx);
1658 }
1659
1660 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1661 if (sh->check_state == check_state_run)
1662 ops_run_check_p(sh, percpu);
1663 else if (sh->check_state == check_state_run_q)
1664 ops_run_check_pq(sh, percpu, 0);
1665 else if (sh->check_state == check_state_run_pq)
1666 ops_run_check_pq(sh, percpu, 1);
1667 else
1668 BUG();
1669 }
1670
1671 if (overlap_clear)
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
1674 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1675 wake_up(&sh->raid_conf->wait_for_overlap);
1676 }
1677 put_cpu();
1678 }
1679
1680 static int grow_one_stripe(struct r5conf *conf, int hash)
1681 {
1682 struct stripe_head *sh;
1683 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1684 if (!sh)
1685 return 0;
1686
1687 sh->raid_conf = conf;
1688
1689 spin_lock_init(&sh->stripe_lock);
1690
1691 if (grow_buffers(sh)) {
1692 shrink_buffers(sh);
1693 kmem_cache_free(conf->slab_cache, sh);
1694 return 0;
1695 }
1696 sh->hash_lock_index = hash;
1697 /* we just created an active stripe so... */
1698 atomic_set(&sh->count, 1);
1699 atomic_inc(&conf->active_stripes);
1700 INIT_LIST_HEAD(&sh->lru);
1701 release_stripe(sh);
1702 return 1;
1703 }
1704
1705 static int grow_stripes(struct r5conf *conf, int num)
1706 {
1707 struct kmem_cache *sc;
1708 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1709 int hash;
1710
1711 if (conf->mddev->gendisk)
1712 sprintf(conf->cache_name[0],
1713 "raid%d-%s", conf->level, mdname(conf->mddev));
1714 else
1715 sprintf(conf->cache_name[0],
1716 "raid%d-%p", conf->level, conf->mddev);
1717 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1718
1719 conf->active_name = 0;
1720 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1721 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1722 0, 0, NULL);
1723 if (!sc)
1724 return 1;
1725 conf->slab_cache = sc;
1726 conf->pool_size = devs;
1727 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1728 while (num--) {
1729 if (!grow_one_stripe(conf, hash))
1730 return 1;
1731 conf->max_nr_stripes++;
1732 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1733 }
1734 return 0;
1735 }
1736
1737 /**
1738 * scribble_len - return the required size of the scribble region
1739 * @num - total number of disks in the array
1740 *
1741 * The size must be enough to contain:
1742 * 1/ a struct page pointer for each device in the array +2
1743 * 2/ room to convert each entry in (1) to its corresponding dma
1744 * (dma_map_page()) or page (page_address()) address.
1745 *
1746 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1747 * calculate over all devices (not just the data blocks), using zeros in place
1748 * of the P and Q blocks.
1749 */
1750 static size_t scribble_len(int num)
1751 {
1752 size_t len;
1753
1754 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1755
1756 return len;
1757 }
1758
1759 static int resize_stripes(struct r5conf *conf, int newsize)
1760 {
1761 /* Make all the stripes able to hold 'newsize' devices.
1762 * New slots in each stripe get 'page' set to a new page.
1763 *
1764 * This happens in stages:
1765 * 1/ create a new kmem_cache and allocate the required number of
1766 * stripe_heads.
1767 * 2/ gather all the old stripe_heads and transfer the pages across
1768 * to the new stripe_heads. This will have the side effect of
1769 * freezing the array as once all stripe_heads have been collected,
1770 * no IO will be possible. Old stripe heads are freed once their
1771 * pages have been transferred over, and the old kmem_cache is
1772 * freed when all stripes are done.
1773 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1774 * we simple return a failre status - no need to clean anything up.
1775 * 4/ allocate new pages for the new slots in the new stripe_heads.
1776 * If this fails, we don't bother trying the shrink the
1777 * stripe_heads down again, we just leave them as they are.
1778 * As each stripe_head is processed the new one is released into
1779 * active service.
1780 *
1781 * Once step2 is started, we cannot afford to wait for a write,
1782 * so we use GFP_NOIO allocations.
1783 */
1784 struct stripe_head *osh, *nsh;
1785 LIST_HEAD(newstripes);
1786 struct disk_info *ndisks;
1787 unsigned long cpu;
1788 int err;
1789 struct kmem_cache *sc;
1790 int i;
1791 int hash, cnt;
1792
1793 if (newsize <= conf->pool_size)
1794 return 0; /* never bother to shrink */
1795
1796 err = md_allow_write(conf->mddev);
1797 if (err)
1798 return err;
1799
1800 /* Step 1 */
1801 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1802 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1803 0, 0, NULL);
1804 if (!sc)
1805 return -ENOMEM;
1806
1807 for (i = conf->max_nr_stripes; i; i--) {
1808 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1809 if (!nsh)
1810 break;
1811
1812 nsh->raid_conf = conf;
1813 spin_lock_init(&nsh->stripe_lock);
1814
1815 list_add(&nsh->lru, &newstripes);
1816 }
1817 if (i) {
1818 /* didn't get enough, give up */
1819 while (!list_empty(&newstripes)) {
1820 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1821 list_del(&nsh->lru);
1822 kmem_cache_free(sc, nsh);
1823 }
1824 kmem_cache_destroy(sc);
1825 return -ENOMEM;
1826 }
1827 /* Step 2 - Must use GFP_NOIO now.
1828 * OK, we have enough stripes, start collecting inactive
1829 * stripes and copying them over
1830 */
1831 hash = 0;
1832 cnt = 0;
1833 list_for_each_entry(nsh, &newstripes, lru) {
1834 lock_device_hash_lock(conf, hash);
1835 wait_event_cmd(conf->wait_for_stripe,
1836 !list_empty(conf->inactive_list + hash),
1837 unlock_device_hash_lock(conf, hash),
1838 lock_device_hash_lock(conf, hash));
1839 osh = get_free_stripe(conf, hash);
1840 unlock_device_hash_lock(conf, hash);
1841 atomic_set(&nsh->count, 1);
1842 for(i=0; i<conf->pool_size; i++)
1843 nsh->dev[i].page = osh->dev[i].page;
1844 for( ; i<newsize; i++)
1845 nsh->dev[i].page = NULL;
1846 nsh->hash_lock_index = hash;
1847 kmem_cache_free(conf->slab_cache, osh);
1848 cnt++;
1849 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1850 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1851 hash++;
1852 cnt = 0;
1853 }
1854 }
1855 kmem_cache_destroy(conf->slab_cache);
1856
1857 /* Step 3.
1858 * At this point, we are holding all the stripes so the array
1859 * is completely stalled, so now is a good time to resize
1860 * conf->disks and the scribble region
1861 */
1862 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1863 if (ndisks) {
1864 for (i=0; i<conf->raid_disks; i++)
1865 ndisks[i] = conf->disks[i];
1866 kfree(conf->disks);
1867 conf->disks = ndisks;
1868 } else
1869 err = -ENOMEM;
1870
1871 get_online_cpus();
1872 conf->scribble_len = scribble_len(newsize);
1873 for_each_present_cpu(cpu) {
1874 struct raid5_percpu *percpu;
1875 void *scribble;
1876
1877 percpu = per_cpu_ptr(conf->percpu, cpu);
1878 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1879
1880 if (scribble) {
1881 kfree(percpu->scribble);
1882 percpu->scribble = scribble;
1883 } else {
1884 err = -ENOMEM;
1885 break;
1886 }
1887 }
1888 put_online_cpus();
1889
1890 /* Step 4, return new stripes to service */
1891 while(!list_empty(&newstripes)) {
1892 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1893 list_del_init(&nsh->lru);
1894
1895 for (i=conf->raid_disks; i < newsize; i++)
1896 if (nsh->dev[i].page == NULL) {
1897 struct page *p = alloc_page(GFP_NOIO);
1898 nsh->dev[i].page = p;
1899 if (!p)
1900 err = -ENOMEM;
1901 }
1902 release_stripe(nsh);
1903 }
1904 /* critical section pass, GFP_NOIO no longer needed */
1905
1906 conf->slab_cache = sc;
1907 conf->active_name = 1-conf->active_name;
1908 conf->pool_size = newsize;
1909 return err;
1910 }
1911
1912 static int drop_one_stripe(struct r5conf *conf, int hash)
1913 {
1914 struct stripe_head *sh;
1915
1916 spin_lock_irq(conf->hash_locks + hash);
1917 sh = get_free_stripe(conf, hash);
1918 spin_unlock_irq(conf->hash_locks + hash);
1919 if (!sh)
1920 return 0;
1921 BUG_ON(atomic_read(&sh->count));
1922 shrink_buffers(sh);
1923 kmem_cache_free(conf->slab_cache, sh);
1924 atomic_dec(&conf->active_stripes);
1925 return 1;
1926 }
1927
1928 static void shrink_stripes(struct r5conf *conf)
1929 {
1930 int hash;
1931 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1932 while (drop_one_stripe(conf, hash))
1933 ;
1934
1935 if (conf->slab_cache)
1936 kmem_cache_destroy(conf->slab_cache);
1937 conf->slab_cache = NULL;
1938 }
1939
1940 static void raid5_end_read_request(struct bio * bi, int error)
1941 {
1942 struct stripe_head *sh = bi->bi_private;
1943 struct r5conf *conf = sh->raid_conf;
1944 int disks = sh->disks, i;
1945 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1946 char b[BDEVNAME_SIZE];
1947 struct md_rdev *rdev = NULL;
1948 sector_t s;
1949
1950 for (i=0 ; i<disks; i++)
1951 if (bi == &sh->dev[i].req)
1952 break;
1953
1954 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1955 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1956 uptodate);
1957 if (i == disks) {
1958 BUG();
1959 return;
1960 }
1961 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1962 /* If replacement finished while this request was outstanding,
1963 * 'replacement' might be NULL already.
1964 * In that case it moved down to 'rdev'.
1965 * rdev is not removed until all requests are finished.
1966 */
1967 rdev = conf->disks[i].replacement;
1968 if (!rdev)
1969 rdev = conf->disks[i].rdev;
1970
1971 if (use_new_offset(conf, sh))
1972 s = sh->sector + rdev->new_data_offset;
1973 else
1974 s = sh->sector + rdev->data_offset;
1975 if (uptodate) {
1976 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1977 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1978 /* Note that this cannot happen on a
1979 * replacement device. We just fail those on
1980 * any error
1981 */
1982 printk_ratelimited(
1983 KERN_INFO
1984 "md/raid:%s: read error corrected"
1985 " (%lu sectors at %llu on %s)\n",
1986 mdname(conf->mddev), STRIPE_SECTORS,
1987 (unsigned long long)s,
1988 bdevname(rdev->bdev, b));
1989 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1990 clear_bit(R5_ReadError, &sh->dev[i].flags);
1991 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1992 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1993 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1994
1995 if (atomic_read(&rdev->read_errors))
1996 atomic_set(&rdev->read_errors, 0);
1997 } else {
1998 const char *bdn = bdevname(rdev->bdev, b);
1999 int retry = 0;
2000 int set_bad = 0;
2001
2002 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2003 atomic_inc(&rdev->read_errors);
2004 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2005 printk_ratelimited(
2006 KERN_WARNING
2007 "md/raid:%s: read error on replacement device "
2008 "(sector %llu on %s).\n",
2009 mdname(conf->mddev),
2010 (unsigned long long)s,
2011 bdn);
2012 else if (conf->mddev->degraded >= conf->max_degraded) {
2013 set_bad = 1;
2014 printk_ratelimited(
2015 KERN_WARNING
2016 "md/raid:%s: read error not correctable "
2017 "(sector %llu on %s).\n",
2018 mdname(conf->mddev),
2019 (unsigned long long)s,
2020 bdn);
2021 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2022 /* Oh, no!!! */
2023 set_bad = 1;
2024 printk_ratelimited(
2025 KERN_WARNING
2026 "md/raid:%s: read error NOT corrected!! "
2027 "(sector %llu on %s).\n",
2028 mdname(conf->mddev),
2029 (unsigned long long)s,
2030 bdn);
2031 } else if (atomic_read(&rdev->read_errors)
2032 > conf->max_nr_stripes)
2033 printk(KERN_WARNING
2034 "md/raid:%s: Too many read errors, failing device %s.\n",
2035 mdname(conf->mddev), bdn);
2036 else
2037 retry = 1;
2038 if (set_bad && test_bit(In_sync, &rdev->flags)
2039 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2040 retry = 1;
2041 if (retry)
2042 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2043 set_bit(R5_ReadError, &sh->dev[i].flags);
2044 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2045 } else
2046 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2047 else {
2048 clear_bit(R5_ReadError, &sh->dev[i].flags);
2049 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2050 if (!(set_bad
2051 && test_bit(In_sync, &rdev->flags)
2052 && rdev_set_badblocks(
2053 rdev, sh->sector, STRIPE_SECTORS, 0)))
2054 md_error(conf->mddev, rdev);
2055 }
2056 }
2057 rdev_dec_pending(rdev, conf->mddev);
2058 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2059 set_bit(STRIPE_HANDLE, &sh->state);
2060 release_stripe(sh);
2061 }
2062
2063 static void raid5_end_write_request(struct bio *bi, int error)
2064 {
2065 struct stripe_head *sh = bi->bi_private;
2066 struct r5conf *conf = sh->raid_conf;
2067 int disks = sh->disks, i;
2068 struct md_rdev *uninitialized_var(rdev);
2069 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2070 sector_t first_bad;
2071 int bad_sectors;
2072 int replacement = 0;
2073
2074 for (i = 0 ; i < disks; i++) {
2075 if (bi == &sh->dev[i].req) {
2076 rdev = conf->disks[i].rdev;
2077 break;
2078 }
2079 if (bi == &sh->dev[i].rreq) {
2080 rdev = conf->disks[i].replacement;
2081 if (rdev)
2082 replacement = 1;
2083 else
2084 /* rdev was removed and 'replacement'
2085 * replaced it. rdev is not removed
2086 * until all requests are finished.
2087 */
2088 rdev = conf->disks[i].rdev;
2089 break;
2090 }
2091 }
2092 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2093 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2094 uptodate);
2095 if (i == disks) {
2096 BUG();
2097 return;
2098 }
2099
2100 if (replacement) {
2101 if (!uptodate)
2102 md_error(conf->mddev, rdev);
2103 else if (is_badblock(rdev, sh->sector,
2104 STRIPE_SECTORS,
2105 &first_bad, &bad_sectors))
2106 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2107 } else {
2108 if (!uptodate) {
2109 set_bit(STRIPE_DEGRADED, &sh->state);
2110 set_bit(WriteErrorSeen, &rdev->flags);
2111 set_bit(R5_WriteError, &sh->dev[i].flags);
2112 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2113 set_bit(MD_RECOVERY_NEEDED,
2114 &rdev->mddev->recovery);
2115 } else if (is_badblock(rdev, sh->sector,
2116 STRIPE_SECTORS,
2117 &first_bad, &bad_sectors)) {
2118 set_bit(R5_MadeGood, &sh->dev[i].flags);
2119 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2120 /* That was a successful write so make
2121 * sure it looks like we already did
2122 * a re-write.
2123 */
2124 set_bit(R5_ReWrite, &sh->dev[i].flags);
2125 }
2126 }
2127 rdev_dec_pending(rdev, conf->mddev);
2128
2129 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2130 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2131 set_bit(STRIPE_HANDLE, &sh->state);
2132 release_stripe(sh);
2133 }
2134
2135 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2136
2137 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2138 {
2139 struct r5dev *dev = &sh->dev[i];
2140
2141 bio_init(&dev->req);
2142 dev->req.bi_io_vec = &dev->vec;
2143 dev->req.bi_vcnt++;
2144 dev->req.bi_max_vecs++;
2145 dev->req.bi_private = sh;
2146 dev->vec.bv_page = dev->page;
2147
2148 bio_init(&dev->rreq);
2149 dev->rreq.bi_io_vec = &dev->rvec;
2150 dev->rreq.bi_vcnt++;
2151 dev->rreq.bi_max_vecs++;
2152 dev->rreq.bi_private = sh;
2153 dev->rvec.bv_page = dev->page;
2154
2155 dev->flags = 0;
2156 dev->sector = compute_blocknr(sh, i, previous);
2157 }
2158
2159 static void error(struct mddev *mddev, struct md_rdev *rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162 struct r5conf *conf = mddev->private;
2163 unsigned long flags;
2164 pr_debug("raid456: error called\n");
2165
2166 spin_lock_irqsave(&conf->device_lock, flags);
2167 clear_bit(In_sync, &rdev->flags);
2168 mddev->degraded = calc_degraded(conf);
2169 spin_unlock_irqrestore(&conf->device_lock, flags);
2170 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2171
2172 set_bit(Blocked, &rdev->flags);
2173 set_bit(Faulty, &rdev->flags);
2174 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2175 printk(KERN_ALERT
2176 "md/raid:%s: Disk failure on %s, disabling device.\n"
2177 "md/raid:%s: Operation continuing on %d devices.\n",
2178 mdname(mddev),
2179 bdevname(rdev->bdev, b),
2180 mdname(mddev),
2181 conf->raid_disks - mddev->degraded);
2182 }
2183
2184 /*
2185 * Input: a 'big' sector number,
2186 * Output: index of the data and parity disk, and the sector # in them.
2187 */
2188 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2189 int previous, int *dd_idx,
2190 struct stripe_head *sh)
2191 {
2192 sector_t stripe, stripe2;
2193 sector_t chunk_number;
2194 unsigned int chunk_offset;
2195 int pd_idx, qd_idx;
2196 int ddf_layout = 0;
2197 sector_t new_sector;
2198 int algorithm = previous ? conf->prev_algo
2199 : conf->algorithm;
2200 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2201 : conf->chunk_sectors;
2202 int raid_disks = previous ? conf->previous_raid_disks
2203 : conf->raid_disks;
2204 int data_disks = raid_disks - conf->max_degraded;
2205
2206 /* First compute the information on this sector */
2207
2208 /*
2209 * Compute the chunk number and the sector offset inside the chunk
2210 */
2211 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2212 chunk_number = r_sector;
2213
2214 /*
2215 * Compute the stripe number
2216 */
2217 stripe = chunk_number;
2218 *dd_idx = sector_div(stripe, data_disks);
2219 stripe2 = stripe;
2220 /*
2221 * Select the parity disk based on the user selected algorithm.
2222 */
2223 pd_idx = qd_idx = -1;
2224 switch(conf->level) {
2225 case 4:
2226 pd_idx = data_disks;
2227 break;
2228 case 5:
2229 switch (algorithm) {
2230 case ALGORITHM_LEFT_ASYMMETRIC:
2231 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2232 if (*dd_idx >= pd_idx)
2233 (*dd_idx)++;
2234 break;
2235 case ALGORITHM_RIGHT_ASYMMETRIC:
2236 pd_idx = sector_div(stripe2, raid_disks);
2237 if (*dd_idx >= pd_idx)
2238 (*dd_idx)++;
2239 break;
2240 case ALGORITHM_LEFT_SYMMETRIC:
2241 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2242 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2243 break;
2244 case ALGORITHM_RIGHT_SYMMETRIC:
2245 pd_idx = sector_div(stripe2, raid_disks);
2246 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2247 break;
2248 case ALGORITHM_PARITY_0:
2249 pd_idx = 0;
2250 (*dd_idx)++;
2251 break;
2252 case ALGORITHM_PARITY_N:
2253 pd_idx = data_disks;
2254 break;
2255 default:
2256 BUG();
2257 }
2258 break;
2259 case 6:
2260
2261 switch (algorithm) {
2262 case ALGORITHM_LEFT_ASYMMETRIC:
2263 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2264 qd_idx = pd_idx + 1;
2265 if (pd_idx == raid_disks-1) {
2266 (*dd_idx)++; /* Q D D D P */
2267 qd_idx = 0;
2268 } else if (*dd_idx >= pd_idx)
2269 (*dd_idx) += 2; /* D D P Q D */
2270 break;
2271 case ALGORITHM_RIGHT_ASYMMETRIC:
2272 pd_idx = sector_div(stripe2, raid_disks);
2273 qd_idx = pd_idx + 1;
2274 if (pd_idx == raid_disks-1) {
2275 (*dd_idx)++; /* Q D D D P */
2276 qd_idx = 0;
2277 } else if (*dd_idx >= pd_idx)
2278 (*dd_idx) += 2; /* D D P Q D */
2279 break;
2280 case ALGORITHM_LEFT_SYMMETRIC:
2281 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2282 qd_idx = (pd_idx + 1) % raid_disks;
2283 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2284 break;
2285 case ALGORITHM_RIGHT_SYMMETRIC:
2286 pd_idx = sector_div(stripe2, raid_disks);
2287 qd_idx = (pd_idx + 1) % raid_disks;
2288 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289 break;
2290
2291 case ALGORITHM_PARITY_0:
2292 pd_idx = 0;
2293 qd_idx = 1;
2294 (*dd_idx) += 2;
2295 break;
2296 case ALGORITHM_PARITY_N:
2297 pd_idx = data_disks;
2298 qd_idx = data_disks + 1;
2299 break;
2300
2301 case ALGORITHM_ROTATING_ZERO_RESTART:
2302 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2303 * of blocks for computing Q is different.
2304 */
2305 pd_idx = sector_div(stripe2, raid_disks);
2306 qd_idx = pd_idx + 1;
2307 if (pd_idx == raid_disks-1) {
2308 (*dd_idx)++; /* Q D D D P */
2309 qd_idx = 0;
2310 } else if (*dd_idx >= pd_idx)
2311 (*dd_idx) += 2; /* D D P Q D */
2312 ddf_layout = 1;
2313 break;
2314
2315 case ALGORITHM_ROTATING_N_RESTART:
2316 /* Same a left_asymmetric, by first stripe is
2317 * D D D P Q rather than
2318 * Q D D D P
2319 */
2320 stripe2 += 1;
2321 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2322 qd_idx = pd_idx + 1;
2323 if (pd_idx == raid_disks-1) {
2324 (*dd_idx)++; /* Q D D D P */
2325 qd_idx = 0;
2326 } else if (*dd_idx >= pd_idx)
2327 (*dd_idx) += 2; /* D D P Q D */
2328 ddf_layout = 1;
2329 break;
2330
2331 case ALGORITHM_ROTATING_N_CONTINUE:
2332 /* Same as left_symmetric but Q is before P */
2333 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2334 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2335 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2336 ddf_layout = 1;
2337 break;
2338
2339 case ALGORITHM_LEFT_ASYMMETRIC_6:
2340 /* RAID5 left_asymmetric, with Q on last device */
2341 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2342 if (*dd_idx >= pd_idx)
2343 (*dd_idx)++;
2344 qd_idx = raid_disks - 1;
2345 break;
2346
2347 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2348 pd_idx = sector_div(stripe2, raid_disks-1);
2349 if (*dd_idx >= pd_idx)
2350 (*dd_idx)++;
2351 qd_idx = raid_disks - 1;
2352 break;
2353
2354 case ALGORITHM_LEFT_SYMMETRIC_6:
2355 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2356 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2357 qd_idx = raid_disks - 1;
2358 break;
2359
2360 case ALGORITHM_RIGHT_SYMMETRIC_6:
2361 pd_idx = sector_div(stripe2, raid_disks-1);
2362 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363 qd_idx = raid_disks - 1;
2364 break;
2365
2366 case ALGORITHM_PARITY_0_6:
2367 pd_idx = 0;
2368 (*dd_idx)++;
2369 qd_idx = raid_disks - 1;
2370 break;
2371
2372 default:
2373 BUG();
2374 }
2375 break;
2376 }
2377
2378 if (sh) {
2379 sh->pd_idx = pd_idx;
2380 sh->qd_idx = qd_idx;
2381 sh->ddf_layout = ddf_layout;
2382 }
2383 /*
2384 * Finally, compute the new sector number
2385 */
2386 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2387 return new_sector;
2388 }
2389
2390
2391 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2392 {
2393 struct r5conf *conf = sh->raid_conf;
2394 int raid_disks = sh->disks;
2395 int data_disks = raid_disks - conf->max_degraded;
2396 sector_t new_sector = sh->sector, check;
2397 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2398 : conf->chunk_sectors;
2399 int algorithm = previous ? conf->prev_algo
2400 : conf->algorithm;
2401 sector_t stripe;
2402 int chunk_offset;
2403 sector_t chunk_number;
2404 int dummy1, dd_idx = i;
2405 sector_t r_sector;
2406 struct stripe_head sh2;
2407
2408
2409 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2410 stripe = new_sector;
2411
2412 if (i == sh->pd_idx)
2413 return 0;
2414 switch(conf->level) {
2415 case 4: break;
2416 case 5:
2417 switch (algorithm) {
2418 case ALGORITHM_LEFT_ASYMMETRIC:
2419 case ALGORITHM_RIGHT_ASYMMETRIC:
2420 if (i > sh->pd_idx)
2421 i--;
2422 break;
2423 case ALGORITHM_LEFT_SYMMETRIC:
2424 case ALGORITHM_RIGHT_SYMMETRIC:
2425 if (i < sh->pd_idx)
2426 i += raid_disks;
2427 i -= (sh->pd_idx + 1);
2428 break;
2429 case ALGORITHM_PARITY_0:
2430 i -= 1;
2431 break;
2432 case ALGORITHM_PARITY_N:
2433 break;
2434 default:
2435 BUG();
2436 }
2437 break;
2438 case 6:
2439 if (i == sh->qd_idx)
2440 return 0; /* It is the Q disk */
2441 switch (algorithm) {
2442 case ALGORITHM_LEFT_ASYMMETRIC:
2443 case ALGORITHM_RIGHT_ASYMMETRIC:
2444 case ALGORITHM_ROTATING_ZERO_RESTART:
2445 case ALGORITHM_ROTATING_N_RESTART:
2446 if (sh->pd_idx == raid_disks-1)
2447 i--; /* Q D D D P */
2448 else if (i > sh->pd_idx)
2449 i -= 2; /* D D P Q D */
2450 break;
2451 case ALGORITHM_LEFT_SYMMETRIC:
2452 case ALGORITHM_RIGHT_SYMMETRIC:
2453 if (sh->pd_idx == raid_disks-1)
2454 i--; /* Q D D D P */
2455 else {
2456 /* D D P Q D */
2457 if (i < sh->pd_idx)
2458 i += raid_disks;
2459 i -= (sh->pd_idx + 2);
2460 }
2461 break;
2462 case ALGORITHM_PARITY_0:
2463 i -= 2;
2464 break;
2465 case ALGORITHM_PARITY_N:
2466 break;
2467 case ALGORITHM_ROTATING_N_CONTINUE:
2468 /* Like left_symmetric, but P is before Q */
2469 if (sh->pd_idx == 0)
2470 i--; /* P D D D Q */
2471 else {
2472 /* D D Q P D */
2473 if (i < sh->pd_idx)
2474 i += raid_disks;
2475 i -= (sh->pd_idx + 1);
2476 }
2477 break;
2478 case ALGORITHM_LEFT_ASYMMETRIC_6:
2479 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2480 if (i > sh->pd_idx)
2481 i--;
2482 break;
2483 case ALGORITHM_LEFT_SYMMETRIC_6:
2484 case ALGORITHM_RIGHT_SYMMETRIC_6:
2485 if (i < sh->pd_idx)
2486 i += data_disks + 1;
2487 i -= (sh->pd_idx + 1);
2488 break;
2489 case ALGORITHM_PARITY_0_6:
2490 i -= 1;
2491 break;
2492 default:
2493 BUG();
2494 }
2495 break;
2496 }
2497
2498 chunk_number = stripe * data_disks + i;
2499 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2500
2501 check = raid5_compute_sector(conf, r_sector,
2502 previous, &dummy1, &sh2);
2503 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2504 || sh2.qd_idx != sh->qd_idx) {
2505 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2506 mdname(conf->mddev));
2507 return 0;
2508 }
2509 return r_sector;
2510 }
2511
2512
2513 static void
2514 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2515 int rcw, int expand)
2516 {
2517 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2518 struct r5conf *conf = sh->raid_conf;
2519 int level = conf->level;
2520
2521 if (rcw) {
2522
2523 for (i = disks; i--; ) {
2524 struct r5dev *dev = &sh->dev[i];
2525
2526 if (dev->towrite) {
2527 set_bit(R5_LOCKED, &dev->flags);
2528 set_bit(R5_Wantdrain, &dev->flags);
2529 if (!expand)
2530 clear_bit(R5_UPTODATE, &dev->flags);
2531 s->locked++;
2532 }
2533 }
2534 /* if we are not expanding this is a proper write request, and
2535 * there will be bios with new data to be drained into the
2536 * stripe cache
2537 */
2538 if (!expand) {
2539 if (!s->locked)
2540 /* False alarm, nothing to do */
2541 return;
2542 sh->reconstruct_state = reconstruct_state_drain_run;
2543 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2544 } else
2545 sh->reconstruct_state = reconstruct_state_run;
2546
2547 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2548
2549 if (s->locked + conf->max_degraded == disks)
2550 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2551 atomic_inc(&conf->pending_full_writes);
2552 } else {
2553 BUG_ON(level == 6);
2554 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2555 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2556
2557 for (i = disks; i--; ) {
2558 struct r5dev *dev = &sh->dev[i];
2559 if (i == pd_idx)
2560 continue;
2561
2562 if (dev->towrite &&
2563 (test_bit(R5_UPTODATE, &dev->flags) ||
2564 test_bit(R5_Wantcompute, &dev->flags))) {
2565 set_bit(R5_Wantdrain, &dev->flags);
2566 set_bit(R5_LOCKED, &dev->flags);
2567 clear_bit(R5_UPTODATE, &dev->flags);
2568 s->locked++;
2569 }
2570 }
2571 if (!s->locked)
2572 /* False alarm - nothing to do */
2573 return;
2574 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2575 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2576 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2577 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2578 }
2579
2580 /* keep the parity disk(s) locked while asynchronous operations
2581 * are in flight
2582 */
2583 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2584 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2585 s->locked++;
2586
2587 if (level == 6) {
2588 int qd_idx = sh->qd_idx;
2589 struct r5dev *dev = &sh->dev[qd_idx];
2590
2591 set_bit(R5_LOCKED, &dev->flags);
2592 clear_bit(R5_UPTODATE, &dev->flags);
2593 s->locked++;
2594 }
2595
2596 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2597 __func__, (unsigned long long)sh->sector,
2598 s->locked, s->ops_request);
2599 }
2600
2601 /*
2602 * Each stripe/dev can have one or more bion attached.
2603 * toread/towrite point to the first in a chain.
2604 * The bi_next chain must be in order.
2605 */
2606 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2607 {
2608 struct bio **bip;
2609 struct r5conf *conf = sh->raid_conf;
2610 int firstwrite=0;
2611
2612 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2613 (unsigned long long)bi->bi_iter.bi_sector,
2614 (unsigned long long)sh->sector);
2615
2616 /*
2617 * If several bio share a stripe. The bio bi_phys_segments acts as a
2618 * reference count to avoid race. The reference count should already be
2619 * increased before this function is called (for example, in
2620 * make_request()), so other bio sharing this stripe will not free the
2621 * stripe. If a stripe is owned by one stripe, the stripe lock will
2622 * protect it.
2623 */
2624 spin_lock_irq(&sh->stripe_lock);
2625 if (forwrite) {
2626 bip = &sh->dev[dd_idx].towrite;
2627 if (*bip == NULL)
2628 firstwrite = 1;
2629 } else
2630 bip = &sh->dev[dd_idx].toread;
2631 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2632 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2633 goto overlap;
2634 bip = & (*bip)->bi_next;
2635 }
2636 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2637 goto overlap;
2638
2639 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2640 if (*bip)
2641 bi->bi_next = *bip;
2642 *bip = bi;
2643 raid5_inc_bi_active_stripes(bi);
2644
2645 if (forwrite) {
2646 /* check if page is covered */
2647 sector_t sector = sh->dev[dd_idx].sector;
2648 for (bi=sh->dev[dd_idx].towrite;
2649 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2650 bi && bi->bi_iter.bi_sector <= sector;
2651 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2652 if (bio_end_sector(bi) >= sector)
2653 sector = bio_end_sector(bi);
2654 }
2655 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2656 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2657 }
2658
2659 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2660 (unsigned long long)(*bip)->bi_iter.bi_sector,
2661 (unsigned long long)sh->sector, dd_idx);
2662 spin_unlock_irq(&sh->stripe_lock);
2663
2664 if (conf->mddev->bitmap && firstwrite) {
2665 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2666 STRIPE_SECTORS, 0);
2667 sh->bm_seq = conf->seq_flush+1;
2668 set_bit(STRIPE_BIT_DELAY, &sh->state);
2669 }
2670 return 1;
2671
2672 overlap:
2673 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2674 spin_unlock_irq(&sh->stripe_lock);
2675 return 0;
2676 }
2677
2678 static void end_reshape(struct r5conf *conf);
2679
2680 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2681 struct stripe_head *sh)
2682 {
2683 int sectors_per_chunk =
2684 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2685 int dd_idx;
2686 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2687 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2688
2689 raid5_compute_sector(conf,
2690 stripe * (disks - conf->max_degraded)
2691 *sectors_per_chunk + chunk_offset,
2692 previous,
2693 &dd_idx, sh);
2694 }
2695
2696 static void
2697 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2698 struct stripe_head_state *s, int disks,
2699 struct bio **return_bi)
2700 {
2701 int i;
2702 for (i = disks; i--; ) {
2703 struct bio *bi;
2704 int bitmap_end = 0;
2705
2706 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2707 struct md_rdev *rdev;
2708 rcu_read_lock();
2709 rdev = rcu_dereference(conf->disks[i].rdev);
2710 if (rdev && test_bit(In_sync, &rdev->flags))
2711 atomic_inc(&rdev->nr_pending);
2712 else
2713 rdev = NULL;
2714 rcu_read_unlock();
2715 if (rdev) {
2716 if (!rdev_set_badblocks(
2717 rdev,
2718 sh->sector,
2719 STRIPE_SECTORS, 0))
2720 md_error(conf->mddev, rdev);
2721 rdev_dec_pending(rdev, conf->mddev);
2722 }
2723 }
2724 spin_lock_irq(&sh->stripe_lock);
2725 /* fail all writes first */
2726 bi = sh->dev[i].towrite;
2727 sh->dev[i].towrite = NULL;
2728 spin_unlock_irq(&sh->stripe_lock);
2729 if (bi)
2730 bitmap_end = 1;
2731
2732 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2733 wake_up(&conf->wait_for_overlap);
2734
2735 while (bi && bi->bi_iter.bi_sector <
2736 sh->dev[i].sector + STRIPE_SECTORS) {
2737 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2738 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2739 if (!raid5_dec_bi_active_stripes(bi)) {
2740 md_write_end(conf->mddev);
2741 bi->bi_next = *return_bi;
2742 *return_bi = bi;
2743 }
2744 bi = nextbi;
2745 }
2746 if (bitmap_end)
2747 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2748 STRIPE_SECTORS, 0, 0);
2749 bitmap_end = 0;
2750 /* and fail all 'written' */
2751 bi = sh->dev[i].written;
2752 sh->dev[i].written = NULL;
2753 if (bi) bitmap_end = 1;
2754 while (bi && bi->bi_iter.bi_sector <
2755 sh->dev[i].sector + STRIPE_SECTORS) {
2756 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2757 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2758 if (!raid5_dec_bi_active_stripes(bi)) {
2759 md_write_end(conf->mddev);
2760 bi->bi_next = *return_bi;
2761 *return_bi = bi;
2762 }
2763 bi = bi2;
2764 }
2765
2766 /* fail any reads if this device is non-operational and
2767 * the data has not reached the cache yet.
2768 */
2769 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2770 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2771 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2772 spin_lock_irq(&sh->stripe_lock);
2773 bi = sh->dev[i].toread;
2774 sh->dev[i].toread = NULL;
2775 spin_unlock_irq(&sh->stripe_lock);
2776 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2777 wake_up(&conf->wait_for_overlap);
2778 while (bi && bi->bi_iter.bi_sector <
2779 sh->dev[i].sector + STRIPE_SECTORS) {
2780 struct bio *nextbi =
2781 r5_next_bio(bi, sh->dev[i].sector);
2782 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2783 if (!raid5_dec_bi_active_stripes(bi)) {
2784 bi->bi_next = *return_bi;
2785 *return_bi = bi;
2786 }
2787 bi = nextbi;
2788 }
2789 }
2790 if (bitmap_end)
2791 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2792 STRIPE_SECTORS, 0, 0);
2793 /* If we were in the middle of a write the parity block might
2794 * still be locked - so just clear all R5_LOCKED flags
2795 */
2796 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2797 }
2798
2799 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2800 if (atomic_dec_and_test(&conf->pending_full_writes))
2801 md_wakeup_thread(conf->mddev->thread);
2802 }
2803
2804 static void
2805 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2806 struct stripe_head_state *s)
2807 {
2808 int abort = 0;
2809 int i;
2810
2811 clear_bit(STRIPE_SYNCING, &sh->state);
2812 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2813 wake_up(&conf->wait_for_overlap);
2814 s->syncing = 0;
2815 s->replacing = 0;
2816 /* There is nothing more to do for sync/check/repair.
2817 * Don't even need to abort as that is handled elsewhere
2818 * if needed, and not always wanted e.g. if there is a known
2819 * bad block here.
2820 * For recover/replace we need to record a bad block on all
2821 * non-sync devices, or abort the recovery
2822 */
2823 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2824 /* During recovery devices cannot be removed, so
2825 * locking and refcounting of rdevs is not needed
2826 */
2827 for (i = 0; i < conf->raid_disks; i++) {
2828 struct md_rdev *rdev = conf->disks[i].rdev;
2829 if (rdev
2830 && !test_bit(Faulty, &rdev->flags)
2831 && !test_bit(In_sync, &rdev->flags)
2832 && !rdev_set_badblocks(rdev, sh->sector,
2833 STRIPE_SECTORS, 0))
2834 abort = 1;
2835 rdev = conf->disks[i].replacement;
2836 if (rdev
2837 && !test_bit(Faulty, &rdev->flags)
2838 && !test_bit(In_sync, &rdev->flags)
2839 && !rdev_set_badblocks(rdev, sh->sector,
2840 STRIPE_SECTORS, 0))
2841 abort = 1;
2842 }
2843 if (abort)
2844 conf->recovery_disabled =
2845 conf->mddev->recovery_disabled;
2846 }
2847 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2848 }
2849
2850 static int want_replace(struct stripe_head *sh, int disk_idx)
2851 {
2852 struct md_rdev *rdev;
2853 int rv = 0;
2854 /* Doing recovery so rcu locking not required */
2855 rdev = sh->raid_conf->disks[disk_idx].replacement;
2856 if (rdev
2857 && !test_bit(Faulty, &rdev->flags)
2858 && !test_bit(In_sync, &rdev->flags)
2859 && (rdev->recovery_offset <= sh->sector
2860 || rdev->mddev->recovery_cp <= sh->sector))
2861 rv = 1;
2862
2863 return rv;
2864 }
2865
2866 /* fetch_block - checks the given member device to see if its data needs
2867 * to be read or computed to satisfy a request.
2868 *
2869 * Returns 1 when no more member devices need to be checked, otherwise returns
2870 * 0 to tell the loop in handle_stripe_fill to continue
2871 */
2872 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2873 int disk_idx, int disks)
2874 {
2875 struct r5dev *dev = &sh->dev[disk_idx];
2876 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2877 &sh->dev[s->failed_num[1]] };
2878
2879 /* is the data in this block needed, and can we get it? */
2880 if (!test_bit(R5_LOCKED, &dev->flags) &&
2881 !test_bit(R5_UPTODATE, &dev->flags) &&
2882 (dev->toread ||
2883 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2884 s->syncing || s->expanding ||
2885 (s->replacing && want_replace(sh, disk_idx)) ||
2886 (s->failed >= 1 && fdev[0]->toread) ||
2887 (s->failed >= 2 && fdev[1]->toread) ||
2888 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2889 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2890 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2891 /* we would like to get this block, possibly by computing it,
2892 * otherwise read it if the backing disk is insync
2893 */
2894 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2895 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2896 if ((s->uptodate == disks - 1) &&
2897 (s->failed && (disk_idx == s->failed_num[0] ||
2898 disk_idx == s->failed_num[1]))) {
2899 /* have disk failed, and we're requested to fetch it;
2900 * do compute it
2901 */
2902 pr_debug("Computing stripe %llu block %d\n",
2903 (unsigned long long)sh->sector, disk_idx);
2904 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2905 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2906 set_bit(R5_Wantcompute, &dev->flags);
2907 sh->ops.target = disk_idx;
2908 sh->ops.target2 = -1; /* no 2nd target */
2909 s->req_compute = 1;
2910 /* Careful: from this point on 'uptodate' is in the eye
2911 * of raid_run_ops which services 'compute' operations
2912 * before writes. R5_Wantcompute flags a block that will
2913 * be R5_UPTODATE by the time it is needed for a
2914 * subsequent operation.
2915 */
2916 s->uptodate++;
2917 return 1;
2918 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2919 /* Computing 2-failure is *very* expensive; only
2920 * do it if failed >= 2
2921 */
2922 int other;
2923 for (other = disks; other--; ) {
2924 if (other == disk_idx)
2925 continue;
2926 if (!test_bit(R5_UPTODATE,
2927 &sh->dev[other].flags))
2928 break;
2929 }
2930 BUG_ON(other < 0);
2931 pr_debug("Computing stripe %llu blocks %d,%d\n",
2932 (unsigned long long)sh->sector,
2933 disk_idx, other);
2934 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2935 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2936 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2937 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2938 sh->ops.target = disk_idx;
2939 sh->ops.target2 = other;
2940 s->uptodate += 2;
2941 s->req_compute = 1;
2942 return 1;
2943 } else if (test_bit(R5_Insync, &dev->flags)) {
2944 set_bit(R5_LOCKED, &dev->flags);
2945 set_bit(R5_Wantread, &dev->flags);
2946 s->locked++;
2947 pr_debug("Reading block %d (sync=%d)\n",
2948 disk_idx, s->syncing);
2949 }
2950 }
2951
2952 return 0;
2953 }
2954
2955 /**
2956 * handle_stripe_fill - read or compute data to satisfy pending requests.
2957 */
2958 static void handle_stripe_fill(struct stripe_head *sh,
2959 struct stripe_head_state *s,
2960 int disks)
2961 {
2962 int i;
2963
2964 /* look for blocks to read/compute, skip this if a compute
2965 * is already in flight, or if the stripe contents are in the
2966 * midst of changing due to a write
2967 */
2968 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2969 !sh->reconstruct_state)
2970 for (i = disks; i--; )
2971 if (fetch_block(sh, s, i, disks))
2972 break;
2973 set_bit(STRIPE_HANDLE, &sh->state);
2974 }
2975
2976
2977 /* handle_stripe_clean_event
2978 * any written block on an uptodate or failed drive can be returned.
2979 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2980 * never LOCKED, so we don't need to test 'failed' directly.
2981 */
2982 static void handle_stripe_clean_event(struct r5conf *conf,
2983 struct stripe_head *sh, int disks, struct bio **return_bi)
2984 {
2985 int i;
2986 struct r5dev *dev;
2987 int discard_pending = 0;
2988
2989 for (i = disks; i--; )
2990 if (sh->dev[i].written) {
2991 dev = &sh->dev[i];
2992 if (!test_bit(R5_LOCKED, &dev->flags) &&
2993 (test_bit(R5_UPTODATE, &dev->flags) ||
2994 test_bit(R5_Discard, &dev->flags))) {
2995 /* We can return any write requests */
2996 struct bio *wbi, *wbi2;
2997 pr_debug("Return write for disc %d\n", i);
2998 if (test_and_clear_bit(R5_Discard, &dev->flags))
2999 clear_bit(R5_UPTODATE, &dev->flags);
3000 wbi = dev->written;
3001 dev->written = NULL;
3002 while (wbi && wbi->bi_iter.bi_sector <
3003 dev->sector + STRIPE_SECTORS) {
3004 wbi2 = r5_next_bio(wbi, dev->sector);
3005 if (!raid5_dec_bi_active_stripes(wbi)) {
3006 md_write_end(conf->mddev);
3007 wbi->bi_next = *return_bi;
3008 *return_bi = wbi;
3009 }
3010 wbi = wbi2;
3011 }
3012 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3013 STRIPE_SECTORS,
3014 !test_bit(STRIPE_DEGRADED, &sh->state),
3015 0);
3016 } else if (test_bit(R5_Discard, &dev->flags))
3017 discard_pending = 1;
3018 }
3019 if (!discard_pending &&
3020 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3021 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3022 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3023 if (sh->qd_idx >= 0) {
3024 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3025 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3026 }
3027 /* now that discard is done we can proceed with any sync */
3028 clear_bit(STRIPE_DISCARD, &sh->state);
3029 /*
3030 * SCSI discard will change some bio fields and the stripe has
3031 * no updated data, so remove it from hash list and the stripe
3032 * will be reinitialized
3033 */
3034 spin_lock_irq(&conf->device_lock);
3035 remove_hash(sh);
3036 spin_unlock_irq(&conf->device_lock);
3037 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3038 set_bit(STRIPE_HANDLE, &sh->state);
3039
3040 }
3041
3042 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3043 if (atomic_dec_and_test(&conf->pending_full_writes))
3044 md_wakeup_thread(conf->mddev->thread);
3045 }
3046
3047 static void handle_stripe_dirtying(struct r5conf *conf,
3048 struct stripe_head *sh,
3049 struct stripe_head_state *s,
3050 int disks)
3051 {
3052 int rmw = 0, rcw = 0, i;
3053 sector_t recovery_cp = conf->mddev->recovery_cp;
3054
3055 /* RAID6 requires 'rcw' in current implementation.
3056 * Otherwise, check whether resync is now happening or should start.
3057 * If yes, then the array is dirty (after unclean shutdown or
3058 * initial creation), so parity in some stripes might be inconsistent.
3059 * In this case, we need to always do reconstruct-write, to ensure
3060 * that in case of drive failure or read-error correction, we
3061 * generate correct data from the parity.
3062 */
3063 if (conf->max_degraded == 2 ||
3064 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3065 /* Calculate the real rcw later - for now make it
3066 * look like rcw is cheaper
3067 */
3068 rcw = 1; rmw = 2;
3069 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3070 conf->max_degraded, (unsigned long long)recovery_cp,
3071 (unsigned long long)sh->sector);
3072 } else for (i = disks; i--; ) {
3073 /* would I have to read this buffer for read_modify_write */
3074 struct r5dev *dev = &sh->dev[i];
3075 if ((dev->towrite || i == sh->pd_idx) &&
3076 !test_bit(R5_LOCKED, &dev->flags) &&
3077 !(test_bit(R5_UPTODATE, &dev->flags) ||
3078 test_bit(R5_Wantcompute, &dev->flags))) {
3079 if (test_bit(R5_Insync, &dev->flags))
3080 rmw++;
3081 else
3082 rmw += 2*disks; /* cannot read it */
3083 }
3084 /* Would I have to read this buffer for reconstruct_write */
3085 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3086 !test_bit(R5_LOCKED, &dev->flags) &&
3087 !(test_bit(R5_UPTODATE, &dev->flags) ||
3088 test_bit(R5_Wantcompute, &dev->flags))) {
3089 if (test_bit(R5_Insync, &dev->flags)) rcw++;
3090 else
3091 rcw += 2*disks;
3092 }
3093 }
3094 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3095 (unsigned long long)sh->sector, rmw, rcw);
3096 set_bit(STRIPE_HANDLE, &sh->state);
3097 if (rmw < rcw && rmw > 0) {
3098 /* prefer read-modify-write, but need to get some data */
3099 if (conf->mddev->queue)
3100 blk_add_trace_msg(conf->mddev->queue,
3101 "raid5 rmw %llu %d",
3102 (unsigned long long)sh->sector, rmw);
3103 for (i = disks; i--; ) {
3104 struct r5dev *dev = &sh->dev[i];
3105 if ((dev->towrite || i == sh->pd_idx) &&
3106 !test_bit(R5_LOCKED, &dev->flags) &&
3107 !(test_bit(R5_UPTODATE, &dev->flags) ||
3108 test_bit(R5_Wantcompute, &dev->flags)) &&
3109 test_bit(R5_Insync, &dev->flags)) {
3110 if (
3111 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3112 pr_debug("Read_old block "
3113 "%d for r-m-w\n", i);
3114 set_bit(R5_LOCKED, &dev->flags);
3115 set_bit(R5_Wantread, &dev->flags);
3116 s->locked++;
3117 } else {
3118 set_bit(STRIPE_DELAYED, &sh->state);
3119 set_bit(STRIPE_HANDLE, &sh->state);
3120 }
3121 }
3122 }
3123 }
3124 if (rcw <= rmw && rcw > 0) {
3125 /* want reconstruct write, but need to get some data */
3126 int qread =0;
3127 rcw = 0;
3128 for (i = disks; i--; ) {
3129 struct r5dev *dev = &sh->dev[i];
3130 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3131 i != sh->pd_idx && i != sh->qd_idx &&
3132 !test_bit(R5_LOCKED, &dev->flags) &&
3133 !(test_bit(R5_UPTODATE, &dev->flags) ||
3134 test_bit(R5_Wantcompute, &dev->flags))) {
3135 rcw++;
3136 if (!test_bit(R5_Insync, &dev->flags))
3137 continue; /* it's a failed drive */
3138 if (
3139 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3140 pr_debug("Read_old block "
3141 "%d for Reconstruct\n", i);
3142 set_bit(R5_LOCKED, &dev->flags);
3143 set_bit(R5_Wantread, &dev->flags);
3144 s->locked++;
3145 qread++;
3146 } else {
3147 set_bit(STRIPE_DELAYED, &sh->state);
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 }
3150 }
3151 }
3152 if (rcw && conf->mddev->queue)
3153 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3154 (unsigned long long)sh->sector,
3155 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3156 }
3157 /* now if nothing is locked, and if we have enough data,
3158 * we can start a write request
3159 */
3160 /* since handle_stripe can be called at any time we need to handle the
3161 * case where a compute block operation has been submitted and then a
3162 * subsequent call wants to start a write request. raid_run_ops only
3163 * handles the case where compute block and reconstruct are requested
3164 * simultaneously. If this is not the case then new writes need to be
3165 * held off until the compute completes.
3166 */
3167 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3168 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3169 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3170 schedule_reconstruction(sh, s, rcw == 0, 0);
3171 }
3172
3173 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3174 struct stripe_head_state *s, int disks)
3175 {
3176 struct r5dev *dev = NULL;
3177
3178 set_bit(STRIPE_HANDLE, &sh->state);
3179
3180 switch (sh->check_state) {
3181 case check_state_idle:
3182 /* start a new check operation if there are no failures */
3183 if (s->failed == 0) {
3184 BUG_ON(s->uptodate != disks);
3185 sh->check_state = check_state_run;
3186 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3187 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3188 s->uptodate--;
3189 break;
3190 }
3191 dev = &sh->dev[s->failed_num[0]];
3192 /* fall through */
3193 case check_state_compute_result:
3194 sh->check_state = check_state_idle;
3195 if (!dev)
3196 dev = &sh->dev[sh->pd_idx];
3197
3198 /* check that a write has not made the stripe insync */
3199 if (test_bit(STRIPE_INSYNC, &sh->state))
3200 break;
3201
3202 /* either failed parity check, or recovery is happening */
3203 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3204 BUG_ON(s->uptodate != disks);
3205
3206 set_bit(R5_LOCKED, &dev->flags);
3207 s->locked++;
3208 set_bit(R5_Wantwrite, &dev->flags);
3209
3210 clear_bit(STRIPE_DEGRADED, &sh->state);
3211 set_bit(STRIPE_INSYNC, &sh->state);
3212 break;
3213 case check_state_run:
3214 break; /* we will be called again upon completion */
3215 case check_state_check_result:
3216 sh->check_state = check_state_idle;
3217
3218 /* if a failure occurred during the check operation, leave
3219 * STRIPE_INSYNC not set and let the stripe be handled again
3220 */
3221 if (s->failed)
3222 break;
3223
3224 /* handle a successful check operation, if parity is correct
3225 * we are done. Otherwise update the mismatch count and repair
3226 * parity if !MD_RECOVERY_CHECK
3227 */
3228 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3229 /* parity is correct (on disc,
3230 * not in buffer any more)
3231 */
3232 set_bit(STRIPE_INSYNC, &sh->state);
3233 else {
3234 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3235 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3236 /* don't try to repair!! */
3237 set_bit(STRIPE_INSYNC, &sh->state);
3238 else {
3239 sh->check_state = check_state_compute_run;
3240 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3241 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3242 set_bit(R5_Wantcompute,
3243 &sh->dev[sh->pd_idx].flags);
3244 sh->ops.target = sh->pd_idx;
3245 sh->ops.target2 = -1;
3246 s->uptodate++;
3247 }
3248 }
3249 break;
3250 case check_state_compute_run:
3251 break;
3252 default:
3253 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3254 __func__, sh->check_state,
3255 (unsigned long long) sh->sector);
3256 BUG();
3257 }
3258 }
3259
3260
3261 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3262 struct stripe_head_state *s,
3263 int disks)
3264 {
3265 int pd_idx = sh->pd_idx;
3266 int qd_idx = sh->qd_idx;
3267 struct r5dev *dev;
3268
3269 set_bit(STRIPE_HANDLE, &sh->state);
3270
3271 BUG_ON(s->failed > 2);
3272
3273 /* Want to check and possibly repair P and Q.
3274 * However there could be one 'failed' device, in which
3275 * case we can only check one of them, possibly using the
3276 * other to generate missing data
3277 */
3278
3279 switch (sh->check_state) {
3280 case check_state_idle:
3281 /* start a new check operation if there are < 2 failures */
3282 if (s->failed == s->q_failed) {
3283 /* The only possible failed device holds Q, so it
3284 * makes sense to check P (If anything else were failed,
3285 * we would have used P to recreate it).
3286 */
3287 sh->check_state = check_state_run;
3288 }
3289 if (!s->q_failed && s->failed < 2) {
3290 /* Q is not failed, and we didn't use it to generate
3291 * anything, so it makes sense to check it
3292 */
3293 if (sh->check_state == check_state_run)
3294 sh->check_state = check_state_run_pq;
3295 else
3296 sh->check_state = check_state_run_q;
3297 }
3298
3299 /* discard potentially stale zero_sum_result */
3300 sh->ops.zero_sum_result = 0;
3301
3302 if (sh->check_state == check_state_run) {
3303 /* async_xor_zero_sum destroys the contents of P */
3304 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3305 s->uptodate--;
3306 }
3307 if (sh->check_state >= check_state_run &&
3308 sh->check_state <= check_state_run_pq) {
3309 /* async_syndrome_zero_sum preserves P and Q, so
3310 * no need to mark them !uptodate here
3311 */
3312 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3313 break;
3314 }
3315
3316 /* we have 2-disk failure */
3317 BUG_ON(s->failed != 2);
3318 /* fall through */
3319 case check_state_compute_result:
3320 sh->check_state = check_state_idle;
3321
3322 /* check that a write has not made the stripe insync */
3323 if (test_bit(STRIPE_INSYNC, &sh->state))
3324 break;
3325
3326 /* now write out any block on a failed drive,
3327 * or P or Q if they were recomputed
3328 */
3329 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3330 if (s->failed == 2) {
3331 dev = &sh->dev[s->failed_num[1]];
3332 s->locked++;
3333 set_bit(R5_LOCKED, &dev->flags);
3334 set_bit(R5_Wantwrite, &dev->flags);
3335 }
3336 if (s->failed >= 1) {
3337 dev = &sh->dev[s->failed_num[0]];
3338 s->locked++;
3339 set_bit(R5_LOCKED, &dev->flags);
3340 set_bit(R5_Wantwrite, &dev->flags);
3341 }
3342 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3343 dev = &sh->dev[pd_idx];
3344 s->locked++;
3345 set_bit(R5_LOCKED, &dev->flags);
3346 set_bit(R5_Wantwrite, &dev->flags);
3347 }
3348 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3349 dev = &sh->dev[qd_idx];
3350 s->locked++;
3351 set_bit(R5_LOCKED, &dev->flags);
3352 set_bit(R5_Wantwrite, &dev->flags);
3353 }
3354 clear_bit(STRIPE_DEGRADED, &sh->state);
3355
3356 set_bit(STRIPE_INSYNC, &sh->state);
3357 break;
3358 case check_state_run:
3359 case check_state_run_q:
3360 case check_state_run_pq:
3361 break; /* we will be called again upon completion */
3362 case check_state_check_result:
3363 sh->check_state = check_state_idle;
3364
3365 /* handle a successful check operation, if parity is correct
3366 * we are done. Otherwise update the mismatch count and repair
3367 * parity if !MD_RECOVERY_CHECK
3368 */
3369 if (sh->ops.zero_sum_result == 0) {
3370 /* both parities are correct */
3371 if (!s->failed)
3372 set_bit(STRIPE_INSYNC, &sh->state);
3373 else {
3374 /* in contrast to the raid5 case we can validate
3375 * parity, but still have a failure to write
3376 * back
3377 */
3378 sh->check_state = check_state_compute_result;
3379 /* Returning at this point means that we may go
3380 * off and bring p and/or q uptodate again so
3381 * we make sure to check zero_sum_result again
3382 * to verify if p or q need writeback
3383 */
3384 }
3385 } else {
3386 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3387 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3388 /* don't try to repair!! */
3389 set_bit(STRIPE_INSYNC, &sh->state);
3390 else {
3391 int *target = &sh->ops.target;
3392
3393 sh->ops.target = -1;
3394 sh->ops.target2 = -1;
3395 sh->check_state = check_state_compute_run;
3396 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3397 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3398 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3399 set_bit(R5_Wantcompute,
3400 &sh->dev[pd_idx].flags);
3401 *target = pd_idx;
3402 target = &sh->ops.target2;
3403 s->uptodate++;
3404 }
3405 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3406 set_bit(R5_Wantcompute,
3407 &sh->dev[qd_idx].flags);
3408 *target = qd_idx;
3409 s->uptodate++;
3410 }
3411 }
3412 }
3413 break;
3414 case check_state_compute_run:
3415 break;
3416 default:
3417 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3418 __func__, sh->check_state,
3419 (unsigned long long) sh->sector);
3420 BUG();
3421 }
3422 }
3423
3424 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3425 {
3426 int i;
3427
3428 /* We have read all the blocks in this stripe and now we need to
3429 * copy some of them into a target stripe for expand.
3430 */
3431 struct dma_async_tx_descriptor *tx = NULL;
3432 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3433 for (i = 0; i < sh->disks; i++)
3434 if (i != sh->pd_idx && i != sh->qd_idx) {
3435 int dd_idx, j;
3436 struct stripe_head *sh2;
3437 struct async_submit_ctl submit;
3438
3439 sector_t bn = compute_blocknr(sh, i, 1);
3440 sector_t s = raid5_compute_sector(conf, bn, 0,
3441 &dd_idx, NULL);
3442 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3443 if (sh2 == NULL)
3444 /* so far only the early blocks of this stripe
3445 * have been requested. When later blocks
3446 * get requested, we will try again
3447 */
3448 continue;
3449 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3450 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3451 /* must have already done this block */
3452 release_stripe(sh2);
3453 continue;
3454 }
3455
3456 /* place all the copies on one channel */
3457 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3458 tx = async_memcpy(sh2->dev[dd_idx].page,
3459 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3460 &submit);
3461
3462 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3463 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3464 for (j = 0; j < conf->raid_disks; j++)
3465 if (j != sh2->pd_idx &&
3466 j != sh2->qd_idx &&
3467 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3468 break;
3469 if (j == conf->raid_disks) {
3470 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3471 set_bit(STRIPE_HANDLE, &sh2->state);
3472 }
3473 release_stripe(sh2);
3474
3475 }
3476 /* done submitting copies, wait for them to complete */
3477 async_tx_quiesce(&tx);
3478 }
3479
3480 /*
3481 * handle_stripe - do things to a stripe.
3482 *
3483 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3484 * state of various bits to see what needs to be done.
3485 * Possible results:
3486 * return some read requests which now have data
3487 * return some write requests which are safely on storage
3488 * schedule a read on some buffers
3489 * schedule a write of some buffers
3490 * return confirmation of parity correctness
3491 *
3492 */
3493
3494 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3495 {
3496 struct r5conf *conf = sh->raid_conf;
3497 int disks = sh->disks;
3498 struct r5dev *dev;
3499 int i;
3500 int do_recovery = 0;
3501
3502 memset(s, 0, sizeof(*s));
3503
3504 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3505 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3506 s->failed_num[0] = -1;
3507 s->failed_num[1] = -1;
3508
3509 /* Now to look around and see what can be done */
3510 rcu_read_lock();
3511 for (i=disks; i--; ) {
3512 struct md_rdev *rdev;
3513 sector_t first_bad;
3514 int bad_sectors;
3515 int is_bad = 0;
3516
3517 dev = &sh->dev[i];
3518
3519 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3520 i, dev->flags,
3521 dev->toread, dev->towrite, dev->written);
3522 /* maybe we can reply to a read
3523 *
3524 * new wantfill requests are only permitted while
3525 * ops_complete_biofill is guaranteed to be inactive
3526 */
3527 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3528 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3529 set_bit(R5_Wantfill, &dev->flags);
3530
3531 /* now count some things */
3532 if (test_bit(R5_LOCKED, &dev->flags))
3533 s->locked++;
3534 if (test_bit(R5_UPTODATE, &dev->flags))
3535 s->uptodate++;
3536 if (test_bit(R5_Wantcompute, &dev->flags)) {
3537 s->compute++;
3538 BUG_ON(s->compute > 2);
3539 }
3540
3541 if (test_bit(R5_Wantfill, &dev->flags))
3542 s->to_fill++;
3543 else if (dev->toread)
3544 s->to_read++;
3545 if (dev->towrite) {
3546 s->to_write++;
3547 if (!test_bit(R5_OVERWRITE, &dev->flags))
3548 s->non_overwrite++;
3549 }
3550 if (dev->written)
3551 s->written++;
3552 /* Prefer to use the replacement for reads, but only
3553 * if it is recovered enough and has no bad blocks.
3554 */
3555 rdev = rcu_dereference(conf->disks[i].replacement);
3556 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3557 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3558 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3559 &first_bad, &bad_sectors))
3560 set_bit(R5_ReadRepl, &dev->flags);
3561 else {
3562 if (rdev)
3563 set_bit(R5_NeedReplace, &dev->flags);
3564 rdev = rcu_dereference(conf->disks[i].rdev);
3565 clear_bit(R5_ReadRepl, &dev->flags);
3566 }
3567 if (rdev && test_bit(Faulty, &rdev->flags))
3568 rdev = NULL;
3569 if (rdev) {
3570 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3571 &first_bad, &bad_sectors);
3572 if (s->blocked_rdev == NULL
3573 && (test_bit(Blocked, &rdev->flags)
3574 || is_bad < 0)) {
3575 if (is_bad < 0)
3576 set_bit(BlockedBadBlocks,
3577 &rdev->flags);
3578 s->blocked_rdev = rdev;
3579 atomic_inc(&rdev->nr_pending);
3580 }
3581 }
3582 clear_bit(R5_Insync, &dev->flags);
3583 if (!rdev)
3584 /* Not in-sync */;
3585 else if (is_bad) {
3586 /* also not in-sync */
3587 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3588 test_bit(R5_UPTODATE, &dev->flags)) {
3589 /* treat as in-sync, but with a read error
3590 * which we can now try to correct
3591 */
3592 set_bit(R5_Insync, &dev->flags);
3593 set_bit(R5_ReadError, &dev->flags);
3594 }
3595 } else if (test_bit(In_sync, &rdev->flags))
3596 set_bit(R5_Insync, &dev->flags);
3597 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3598 /* in sync if before recovery_offset */
3599 set_bit(R5_Insync, &dev->flags);
3600 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3601 test_bit(R5_Expanded, &dev->flags))
3602 /* If we've reshaped into here, we assume it is Insync.
3603 * We will shortly update recovery_offset to make
3604 * it official.
3605 */
3606 set_bit(R5_Insync, &dev->flags);
3607
3608 if (test_bit(R5_WriteError, &dev->flags)) {
3609 /* This flag does not apply to '.replacement'
3610 * only to .rdev, so make sure to check that*/
3611 struct md_rdev *rdev2 = rcu_dereference(
3612 conf->disks[i].rdev);
3613 if (rdev2 == rdev)
3614 clear_bit(R5_Insync, &dev->flags);
3615 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3616 s->handle_bad_blocks = 1;
3617 atomic_inc(&rdev2->nr_pending);
3618 } else
3619 clear_bit(R5_WriteError, &dev->flags);
3620 }
3621 if (test_bit(R5_MadeGood, &dev->flags)) {
3622 /* This flag does not apply to '.replacement'
3623 * only to .rdev, so make sure to check that*/
3624 struct md_rdev *rdev2 = rcu_dereference(
3625 conf->disks[i].rdev);
3626 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3627 s->handle_bad_blocks = 1;
3628 atomic_inc(&rdev2->nr_pending);
3629 } else
3630 clear_bit(R5_MadeGood, &dev->flags);
3631 }
3632 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3633 struct md_rdev *rdev2 = rcu_dereference(
3634 conf->disks[i].replacement);
3635 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3636 s->handle_bad_blocks = 1;
3637 atomic_inc(&rdev2->nr_pending);
3638 } else
3639 clear_bit(R5_MadeGoodRepl, &dev->flags);
3640 }
3641 if (!test_bit(R5_Insync, &dev->flags)) {
3642 /* The ReadError flag will just be confusing now */
3643 clear_bit(R5_ReadError, &dev->flags);
3644 clear_bit(R5_ReWrite, &dev->flags);
3645 }
3646 if (test_bit(R5_ReadError, &dev->flags))
3647 clear_bit(R5_Insync, &dev->flags);
3648 if (!test_bit(R5_Insync, &dev->flags)) {
3649 if (s->failed < 2)
3650 s->failed_num[s->failed] = i;
3651 s->failed++;
3652 if (rdev && !test_bit(Faulty, &rdev->flags))
3653 do_recovery = 1;
3654 }
3655 }
3656 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3657 /* If there is a failed device being replaced,
3658 * we must be recovering.
3659 * else if we are after recovery_cp, we must be syncing
3660 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3661 * else we can only be replacing
3662 * sync and recovery both need to read all devices, and so
3663 * use the same flag.
3664 */
3665 if (do_recovery ||
3666 sh->sector >= conf->mddev->recovery_cp ||
3667 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3668 s->syncing = 1;
3669 else
3670 s->replacing = 1;
3671 }
3672 rcu_read_unlock();
3673 }
3674
3675 static void handle_stripe(struct stripe_head *sh)
3676 {
3677 struct stripe_head_state s;
3678 struct r5conf *conf = sh->raid_conf;
3679 int i;
3680 int prexor;
3681 int disks = sh->disks;
3682 struct r5dev *pdev, *qdev;
3683
3684 clear_bit(STRIPE_HANDLE, &sh->state);
3685 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3686 /* already being handled, ensure it gets handled
3687 * again when current action finishes */
3688 set_bit(STRIPE_HANDLE, &sh->state);
3689 return;
3690 }
3691
3692 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3693 spin_lock(&sh->stripe_lock);
3694 /* Cannot process 'sync' concurrently with 'discard' */
3695 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3696 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3697 set_bit(STRIPE_SYNCING, &sh->state);
3698 clear_bit(STRIPE_INSYNC, &sh->state);
3699 clear_bit(STRIPE_REPLACED, &sh->state);
3700 }
3701 spin_unlock(&sh->stripe_lock);
3702 }
3703 clear_bit(STRIPE_DELAYED, &sh->state);
3704
3705 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3706 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3707 (unsigned long long)sh->sector, sh->state,
3708 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3709 sh->check_state, sh->reconstruct_state);
3710
3711 analyse_stripe(sh, &s);
3712
3713 if (s.handle_bad_blocks) {
3714 set_bit(STRIPE_HANDLE, &sh->state);
3715 goto finish;
3716 }
3717
3718 if (unlikely(s.blocked_rdev)) {
3719 if (s.syncing || s.expanding || s.expanded ||
3720 s.replacing || s.to_write || s.written) {
3721 set_bit(STRIPE_HANDLE, &sh->state);
3722 goto finish;
3723 }
3724 /* There is nothing for the blocked_rdev to block */
3725 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3726 s.blocked_rdev = NULL;
3727 }
3728
3729 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3730 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3731 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3732 }
3733
3734 pr_debug("locked=%d uptodate=%d to_read=%d"
3735 " to_write=%d failed=%d failed_num=%d,%d\n",
3736 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3737 s.failed_num[0], s.failed_num[1]);
3738 /* check if the array has lost more than max_degraded devices and,
3739 * if so, some requests might need to be failed.
3740 */
3741 if (s.failed > conf->max_degraded) {
3742 sh->check_state = 0;
3743 sh->reconstruct_state = 0;
3744 if (s.to_read+s.to_write+s.written)
3745 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3746 if (s.syncing + s.replacing)
3747 handle_failed_sync(conf, sh, &s);
3748 }
3749
3750 /* Now we check to see if any write operations have recently
3751 * completed
3752 */
3753 prexor = 0;
3754 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3755 prexor = 1;
3756 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3757 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3758 sh->reconstruct_state = reconstruct_state_idle;
3759
3760 /* All the 'written' buffers and the parity block are ready to
3761 * be written back to disk
3762 */
3763 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3764 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3765 BUG_ON(sh->qd_idx >= 0 &&
3766 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3767 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3768 for (i = disks; i--; ) {
3769 struct r5dev *dev = &sh->dev[i];
3770 if (test_bit(R5_LOCKED, &dev->flags) &&
3771 (i == sh->pd_idx || i == sh->qd_idx ||
3772 dev->written)) {
3773 pr_debug("Writing block %d\n", i);
3774 set_bit(R5_Wantwrite, &dev->flags);
3775 if (prexor)
3776 continue;
3777 if (!test_bit(R5_Insync, &dev->flags) ||
3778 ((i == sh->pd_idx || i == sh->qd_idx) &&
3779 s.failed == 0))
3780 set_bit(STRIPE_INSYNC, &sh->state);
3781 }
3782 }
3783 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3784 s.dec_preread_active = 1;
3785 }
3786
3787 /*
3788 * might be able to return some write requests if the parity blocks
3789 * are safe, or on a failed drive
3790 */
3791 pdev = &sh->dev[sh->pd_idx];
3792 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3793 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3794 qdev = &sh->dev[sh->qd_idx];
3795 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3796 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3797 || conf->level < 6;
3798
3799 if (s.written &&
3800 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3801 && !test_bit(R5_LOCKED, &pdev->flags)
3802 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3803 test_bit(R5_Discard, &pdev->flags))))) &&
3804 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3805 && !test_bit(R5_LOCKED, &qdev->flags)
3806 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3807 test_bit(R5_Discard, &qdev->flags))))))
3808 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3809
3810 /* Now we might consider reading some blocks, either to check/generate
3811 * parity, or to satisfy requests
3812 * or to load a block that is being partially written.
3813 */
3814 if (s.to_read || s.non_overwrite
3815 || (conf->level == 6 && s.to_write && s.failed)
3816 || (s.syncing && (s.uptodate + s.compute < disks))
3817 || s.replacing
3818 || s.expanding)
3819 handle_stripe_fill(sh, &s, disks);
3820
3821 /* Now to consider new write requests and what else, if anything
3822 * should be read. We do not handle new writes when:
3823 * 1/ A 'write' operation (copy+xor) is already in flight.
3824 * 2/ A 'check' operation is in flight, as it may clobber the parity
3825 * block.
3826 */
3827 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3828 handle_stripe_dirtying(conf, sh, &s, disks);
3829
3830 /* maybe we need to check and possibly fix the parity for this stripe
3831 * Any reads will already have been scheduled, so we just see if enough
3832 * data is available. The parity check is held off while parity
3833 * dependent operations are in flight.
3834 */
3835 if (sh->check_state ||
3836 (s.syncing && s.locked == 0 &&
3837 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3838 !test_bit(STRIPE_INSYNC, &sh->state))) {
3839 if (conf->level == 6)
3840 handle_parity_checks6(conf, sh, &s, disks);
3841 else
3842 handle_parity_checks5(conf, sh, &s, disks);
3843 }
3844
3845 if ((s.replacing || s.syncing) && s.locked == 0
3846 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3847 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3848 /* Write out to replacement devices where possible */
3849 for (i = 0; i < conf->raid_disks; i++)
3850 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3851 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3852 set_bit(R5_WantReplace, &sh->dev[i].flags);
3853 set_bit(R5_LOCKED, &sh->dev[i].flags);
3854 s.locked++;
3855 }
3856 if (s.replacing)
3857 set_bit(STRIPE_INSYNC, &sh->state);
3858 set_bit(STRIPE_REPLACED, &sh->state);
3859 }
3860 if ((s.syncing || s.replacing) && s.locked == 0 &&
3861 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3862 test_bit(STRIPE_INSYNC, &sh->state)) {
3863 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3864 clear_bit(STRIPE_SYNCING, &sh->state);
3865 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3866 wake_up(&conf->wait_for_overlap);
3867 }
3868
3869 /* If the failed drives are just a ReadError, then we might need
3870 * to progress the repair/check process
3871 */
3872 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3873 for (i = 0; i < s.failed; i++) {
3874 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3875 if (test_bit(R5_ReadError, &dev->flags)
3876 && !test_bit(R5_LOCKED, &dev->flags)
3877 && test_bit(R5_UPTODATE, &dev->flags)
3878 ) {
3879 if (!test_bit(R5_ReWrite, &dev->flags)) {
3880 set_bit(R5_Wantwrite, &dev->flags);
3881 set_bit(R5_ReWrite, &dev->flags);
3882 set_bit(R5_LOCKED, &dev->flags);
3883 s.locked++;
3884 } else {
3885 /* let's read it back */
3886 set_bit(R5_Wantread, &dev->flags);
3887 set_bit(R5_LOCKED, &dev->flags);
3888 s.locked++;
3889 }
3890 }
3891 }
3892
3893
3894 /* Finish reconstruct operations initiated by the expansion process */
3895 if (sh->reconstruct_state == reconstruct_state_result) {
3896 struct stripe_head *sh_src
3897 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3898 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3899 /* sh cannot be written until sh_src has been read.
3900 * so arrange for sh to be delayed a little
3901 */
3902 set_bit(STRIPE_DELAYED, &sh->state);
3903 set_bit(STRIPE_HANDLE, &sh->state);
3904 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3905 &sh_src->state))
3906 atomic_inc(&conf->preread_active_stripes);
3907 release_stripe(sh_src);
3908 goto finish;
3909 }
3910 if (sh_src)
3911 release_stripe(sh_src);
3912
3913 sh->reconstruct_state = reconstruct_state_idle;
3914 clear_bit(STRIPE_EXPANDING, &sh->state);
3915 for (i = conf->raid_disks; i--; ) {
3916 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3917 set_bit(R5_LOCKED, &sh->dev[i].flags);
3918 s.locked++;
3919 }
3920 }
3921
3922 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3923 !sh->reconstruct_state) {
3924 /* Need to write out all blocks after computing parity */
3925 sh->disks = conf->raid_disks;
3926 stripe_set_idx(sh->sector, conf, 0, sh);
3927 schedule_reconstruction(sh, &s, 1, 1);
3928 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3929 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3930 atomic_dec(&conf->reshape_stripes);
3931 wake_up(&conf->wait_for_overlap);
3932 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3933 }
3934
3935 if (s.expanding && s.locked == 0 &&
3936 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3937 handle_stripe_expansion(conf, sh);
3938
3939 finish:
3940 /* wait for this device to become unblocked */
3941 if (unlikely(s.blocked_rdev)) {
3942 if (conf->mddev->external)
3943 md_wait_for_blocked_rdev(s.blocked_rdev,
3944 conf->mddev);
3945 else
3946 /* Internal metadata will immediately
3947 * be written by raid5d, so we don't
3948 * need to wait here.
3949 */
3950 rdev_dec_pending(s.blocked_rdev,
3951 conf->mddev);
3952 }
3953
3954 if (s.handle_bad_blocks)
3955 for (i = disks; i--; ) {
3956 struct md_rdev *rdev;
3957 struct r5dev *dev = &sh->dev[i];
3958 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3959 /* We own a safe reference to the rdev */
3960 rdev = conf->disks[i].rdev;
3961 if (!rdev_set_badblocks(rdev, sh->sector,
3962 STRIPE_SECTORS, 0))
3963 md_error(conf->mddev, rdev);
3964 rdev_dec_pending(rdev, conf->mddev);
3965 }
3966 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3967 rdev = conf->disks[i].rdev;
3968 rdev_clear_badblocks(rdev, sh->sector,
3969 STRIPE_SECTORS, 0);
3970 rdev_dec_pending(rdev, conf->mddev);
3971 }
3972 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3973 rdev = conf->disks[i].replacement;
3974 if (!rdev)
3975 /* rdev have been moved down */
3976 rdev = conf->disks[i].rdev;
3977 rdev_clear_badblocks(rdev, sh->sector,
3978 STRIPE_SECTORS, 0);
3979 rdev_dec_pending(rdev, conf->mddev);
3980 }
3981 }
3982
3983 if (s.ops_request)
3984 raid_run_ops(sh, s.ops_request);
3985
3986 ops_run_io(sh, &s);
3987
3988 if (s.dec_preread_active) {
3989 /* We delay this until after ops_run_io so that if make_request
3990 * is waiting on a flush, it won't continue until the writes
3991 * have actually been submitted.
3992 */
3993 atomic_dec(&conf->preread_active_stripes);
3994 if (atomic_read(&conf->preread_active_stripes) <
3995 IO_THRESHOLD)
3996 md_wakeup_thread(conf->mddev->thread);
3997 }
3998
3999 return_io(s.return_bi);
4000
4001 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4002 }
4003
4004 static void raid5_activate_delayed(struct r5conf *conf)
4005 {
4006 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4007 while (!list_empty(&conf->delayed_list)) {
4008 struct list_head *l = conf->delayed_list.next;
4009 struct stripe_head *sh;
4010 sh = list_entry(l, struct stripe_head, lru);
4011 list_del_init(l);
4012 clear_bit(STRIPE_DELAYED, &sh->state);
4013 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4014 atomic_inc(&conf->preread_active_stripes);
4015 list_add_tail(&sh->lru, &conf->hold_list);
4016 raid5_wakeup_stripe_thread(sh);
4017 }
4018 }
4019 }
4020
4021 static void activate_bit_delay(struct r5conf *conf,
4022 struct list_head *temp_inactive_list)
4023 {
4024 /* device_lock is held */
4025 struct list_head head;
4026 list_add(&head, &conf->bitmap_list);
4027 list_del_init(&conf->bitmap_list);
4028 while (!list_empty(&head)) {
4029 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4030 int hash;
4031 list_del_init(&sh->lru);
4032 atomic_inc(&sh->count);
4033 hash = sh->hash_lock_index;
4034 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4035 }
4036 }
4037
4038 int md_raid5_congested(struct mddev *mddev, int bits)
4039 {
4040 struct r5conf *conf = mddev->private;
4041
4042 /* No difference between reads and writes. Just check
4043 * how busy the stripe_cache is
4044 */
4045
4046 if (conf->inactive_blocked)
4047 return 1;
4048 if (conf->quiesce)
4049 return 1;
4050 if (atomic_read(&conf->empty_inactive_list_nr))
4051 return 1;
4052
4053 return 0;
4054 }
4055 EXPORT_SYMBOL_GPL(md_raid5_congested);
4056
4057 static int raid5_congested(void *data, int bits)
4058 {
4059 struct mddev *mddev = data;
4060
4061 return mddev_congested(mddev, bits) ||
4062 md_raid5_congested(mddev, bits);
4063 }
4064
4065 /* We want read requests to align with chunks where possible,
4066 * but write requests don't need to.
4067 */
4068 static int raid5_mergeable_bvec(struct request_queue *q,
4069 struct bvec_merge_data *bvm,
4070 struct bio_vec *biovec)
4071 {
4072 struct mddev *mddev = q->queuedata;
4073 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4074 int max;
4075 unsigned int chunk_sectors = mddev->chunk_sectors;
4076 unsigned int bio_sectors = bvm->bi_size >> 9;
4077
4078 if ((bvm->bi_rw & 1) == WRITE)
4079 return biovec->bv_len; /* always allow writes to be mergeable */
4080
4081 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4082 chunk_sectors = mddev->new_chunk_sectors;
4083 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4084 if (max < 0) max = 0;
4085 if (max <= biovec->bv_len && bio_sectors == 0)
4086 return biovec->bv_len;
4087 else
4088 return max;
4089 }
4090
4091
4092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4093 {
4094 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4095 unsigned int chunk_sectors = mddev->chunk_sectors;
4096 unsigned int bio_sectors = bio_sectors(bio);
4097
4098 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4099 chunk_sectors = mddev->new_chunk_sectors;
4100 return chunk_sectors >=
4101 ((sector & (chunk_sectors - 1)) + bio_sectors);
4102 }
4103
4104 /*
4105 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4106 * later sampled by raid5d.
4107 */
4108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4109 {
4110 unsigned long flags;
4111
4112 spin_lock_irqsave(&conf->device_lock, flags);
4113
4114 bi->bi_next = conf->retry_read_aligned_list;
4115 conf->retry_read_aligned_list = bi;
4116
4117 spin_unlock_irqrestore(&conf->device_lock, flags);
4118 md_wakeup_thread(conf->mddev->thread);
4119 }
4120
4121
4122 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4123 {
4124 struct bio *bi;
4125
4126 bi = conf->retry_read_aligned;
4127 if (bi) {
4128 conf->retry_read_aligned = NULL;
4129 return bi;
4130 }
4131 bi = conf->retry_read_aligned_list;
4132 if(bi) {
4133 conf->retry_read_aligned_list = bi->bi_next;
4134 bi->bi_next = NULL;
4135 /*
4136 * this sets the active strip count to 1 and the processed
4137 * strip count to zero (upper 8 bits)
4138 */
4139 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4140 }
4141
4142 return bi;
4143 }
4144
4145
4146 /*
4147 * The "raid5_align_endio" should check if the read succeeded and if it
4148 * did, call bio_endio on the original bio (having bio_put the new bio
4149 * first).
4150 * If the read failed..
4151 */
4152 static void raid5_align_endio(struct bio *bi, int error)
4153 {
4154 struct bio* raid_bi = bi->bi_private;
4155 struct mddev *mddev;
4156 struct r5conf *conf;
4157 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4158 struct md_rdev *rdev;
4159
4160 bio_put(bi);
4161
4162 rdev = (void*)raid_bi->bi_next;
4163 raid_bi->bi_next = NULL;
4164 mddev = rdev->mddev;
4165 conf = mddev->private;
4166
4167 rdev_dec_pending(rdev, conf->mddev);
4168
4169 if (!error && uptodate) {
4170 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4171 raid_bi, 0);
4172 bio_endio(raid_bi, 0);
4173 if (atomic_dec_and_test(&conf->active_aligned_reads))
4174 wake_up(&conf->wait_for_stripe);
4175 return;
4176 }
4177
4178
4179 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4180
4181 add_bio_to_retry(raid_bi, conf);
4182 }
4183
4184 static int bio_fits_rdev(struct bio *bi)
4185 {
4186 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4187
4188 if (bio_sectors(bi) > queue_max_sectors(q))
4189 return 0;
4190 blk_recount_segments(q, bi);
4191 if (bi->bi_phys_segments > queue_max_segments(q))
4192 return 0;
4193
4194 if (q->merge_bvec_fn)
4195 /* it's too hard to apply the merge_bvec_fn at this stage,
4196 * just just give up
4197 */
4198 return 0;
4199
4200 return 1;
4201 }
4202
4203
4204 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4205 {
4206 struct r5conf *conf = mddev->private;
4207 int dd_idx;
4208 struct bio* align_bi;
4209 struct md_rdev *rdev;
4210 sector_t end_sector;
4211
4212 if (!in_chunk_boundary(mddev, raid_bio)) {
4213 pr_debug("chunk_aligned_read : non aligned\n");
4214 return 0;
4215 }
4216 /*
4217 * use bio_clone_mddev to make a copy of the bio
4218 */
4219 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4220 if (!align_bi)
4221 return 0;
4222 /*
4223 * set bi_end_io to a new function, and set bi_private to the
4224 * original bio.
4225 */
4226 align_bi->bi_end_io = raid5_align_endio;
4227 align_bi->bi_private = raid_bio;
4228 /*
4229 * compute position
4230 */
4231 align_bi->bi_iter.bi_sector =
4232 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4233 0, &dd_idx, NULL);
4234
4235 end_sector = bio_end_sector(align_bi);
4236 rcu_read_lock();
4237 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4238 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4239 rdev->recovery_offset < end_sector) {
4240 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4241 if (rdev &&
4242 (test_bit(Faulty, &rdev->flags) ||
4243 !(test_bit(In_sync, &rdev->flags) ||
4244 rdev->recovery_offset >= end_sector)))
4245 rdev = NULL;
4246 }
4247 if (rdev) {
4248 sector_t first_bad;
4249 int bad_sectors;
4250
4251 atomic_inc(&rdev->nr_pending);
4252 rcu_read_unlock();
4253 raid_bio->bi_next = (void*)rdev;
4254 align_bi->bi_bdev = rdev->bdev;
4255 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4256
4257 if (!bio_fits_rdev(align_bi) ||
4258 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4259 bio_sectors(align_bi),
4260 &first_bad, &bad_sectors)) {
4261 /* too big in some way, or has a known bad block */
4262 bio_put(align_bi);
4263 rdev_dec_pending(rdev, mddev);
4264 return 0;
4265 }
4266
4267 /* No reshape active, so we can trust rdev->data_offset */
4268 align_bi->bi_iter.bi_sector += rdev->data_offset;
4269
4270 spin_lock_irq(&conf->device_lock);
4271 wait_event_lock_irq(conf->wait_for_stripe,
4272 conf->quiesce == 0,
4273 conf->device_lock);
4274 atomic_inc(&conf->active_aligned_reads);
4275 spin_unlock_irq(&conf->device_lock);
4276
4277 if (mddev->gendisk)
4278 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4279 align_bi, disk_devt(mddev->gendisk),
4280 raid_bio->bi_iter.bi_sector);
4281 generic_make_request(align_bi);
4282 return 1;
4283 } else {
4284 rcu_read_unlock();
4285 bio_put(align_bi);
4286 return 0;
4287 }
4288 }
4289
4290 /* __get_priority_stripe - get the next stripe to process
4291 *
4292 * Full stripe writes are allowed to pass preread active stripes up until
4293 * the bypass_threshold is exceeded. In general the bypass_count
4294 * increments when the handle_list is handled before the hold_list; however, it
4295 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4296 * stripe with in flight i/o. The bypass_count will be reset when the
4297 * head of the hold_list has changed, i.e. the head was promoted to the
4298 * handle_list.
4299 */
4300 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4301 {
4302 struct stripe_head *sh = NULL, *tmp;
4303 struct list_head *handle_list = NULL;
4304 struct r5worker_group *wg = NULL;
4305
4306 if (conf->worker_cnt_per_group == 0) {
4307 handle_list = &conf->handle_list;
4308 } else if (group != ANY_GROUP) {
4309 handle_list = &conf->worker_groups[group].handle_list;
4310 wg = &conf->worker_groups[group];
4311 } else {
4312 int i;
4313 for (i = 0; i < conf->group_cnt; i++) {
4314 handle_list = &conf->worker_groups[i].handle_list;
4315 wg = &conf->worker_groups[i];
4316 if (!list_empty(handle_list))
4317 break;
4318 }
4319 }
4320
4321 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4322 __func__,
4323 list_empty(handle_list) ? "empty" : "busy",
4324 list_empty(&conf->hold_list) ? "empty" : "busy",
4325 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4326
4327 if (!list_empty(handle_list)) {
4328 sh = list_entry(handle_list->next, typeof(*sh), lru);
4329
4330 if (list_empty(&conf->hold_list))
4331 conf->bypass_count = 0;
4332 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4333 if (conf->hold_list.next == conf->last_hold)
4334 conf->bypass_count++;
4335 else {
4336 conf->last_hold = conf->hold_list.next;
4337 conf->bypass_count -= conf->bypass_threshold;
4338 if (conf->bypass_count < 0)
4339 conf->bypass_count = 0;
4340 }
4341 }
4342 } else if (!list_empty(&conf->hold_list) &&
4343 ((conf->bypass_threshold &&
4344 conf->bypass_count > conf->bypass_threshold) ||
4345 atomic_read(&conf->pending_full_writes) == 0)) {
4346
4347 list_for_each_entry(tmp, &conf->hold_list, lru) {
4348 if (conf->worker_cnt_per_group == 0 ||
4349 group == ANY_GROUP ||
4350 !cpu_online(tmp->cpu) ||
4351 cpu_to_group(tmp->cpu) == group) {
4352 sh = tmp;
4353 break;
4354 }
4355 }
4356
4357 if (sh) {
4358 conf->bypass_count -= conf->bypass_threshold;
4359 if (conf->bypass_count < 0)
4360 conf->bypass_count = 0;
4361 }
4362 wg = NULL;
4363 }
4364
4365 if (!sh)
4366 return NULL;
4367
4368 if (wg) {
4369 wg->stripes_cnt--;
4370 sh->group = NULL;
4371 }
4372 list_del_init(&sh->lru);
4373 atomic_inc(&sh->count);
4374 BUG_ON(atomic_read(&sh->count) != 1);
4375 return sh;
4376 }
4377
4378 struct raid5_plug_cb {
4379 struct blk_plug_cb cb;
4380 struct list_head list;
4381 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4382 };
4383
4384 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4385 {
4386 struct raid5_plug_cb *cb = container_of(
4387 blk_cb, struct raid5_plug_cb, cb);
4388 struct stripe_head *sh;
4389 struct mddev *mddev = cb->cb.data;
4390 struct r5conf *conf = mddev->private;
4391 int cnt = 0;
4392 int hash;
4393
4394 if (cb->list.next && !list_empty(&cb->list)) {
4395 spin_lock_irq(&conf->device_lock);
4396 while (!list_empty(&cb->list)) {
4397 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4398 list_del_init(&sh->lru);
4399 /*
4400 * avoid race release_stripe_plug() sees
4401 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4402 * is still in our list
4403 */
4404 smp_mb__before_clear_bit();
4405 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4406 /*
4407 * STRIPE_ON_RELEASE_LIST could be set here. In that
4408 * case, the count is always > 1 here
4409 */
4410 hash = sh->hash_lock_index;
4411 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4412 cnt++;
4413 }
4414 spin_unlock_irq(&conf->device_lock);
4415 }
4416 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4417 NR_STRIPE_HASH_LOCKS);
4418 if (mddev->queue)
4419 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4420 kfree(cb);
4421 }
4422
4423 static void release_stripe_plug(struct mddev *mddev,
4424 struct stripe_head *sh)
4425 {
4426 struct blk_plug_cb *blk_cb = blk_check_plugged(
4427 raid5_unplug, mddev,
4428 sizeof(struct raid5_plug_cb));
4429 struct raid5_plug_cb *cb;
4430
4431 if (!blk_cb) {
4432 release_stripe(sh);
4433 return;
4434 }
4435
4436 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4437
4438 if (cb->list.next == NULL) {
4439 int i;
4440 INIT_LIST_HEAD(&cb->list);
4441 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4442 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4443 }
4444
4445 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4446 list_add_tail(&sh->lru, &cb->list);
4447 else
4448 release_stripe(sh);
4449 }
4450
4451 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4452 {
4453 struct r5conf *conf = mddev->private;
4454 sector_t logical_sector, last_sector;
4455 struct stripe_head *sh;
4456 int remaining;
4457 int stripe_sectors;
4458
4459 if (mddev->reshape_position != MaxSector)
4460 /* Skip discard while reshape is happening */
4461 return;
4462
4463 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4464 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4465
4466 bi->bi_next = NULL;
4467 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4468
4469 stripe_sectors = conf->chunk_sectors *
4470 (conf->raid_disks - conf->max_degraded);
4471 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4472 stripe_sectors);
4473 sector_div(last_sector, stripe_sectors);
4474
4475 logical_sector *= conf->chunk_sectors;
4476 last_sector *= conf->chunk_sectors;
4477
4478 for (; logical_sector < last_sector;
4479 logical_sector += STRIPE_SECTORS) {
4480 DEFINE_WAIT(w);
4481 int d;
4482 again:
4483 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4484 prepare_to_wait(&conf->wait_for_overlap, &w,
4485 TASK_UNINTERRUPTIBLE);
4486 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4487 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4488 release_stripe(sh);
4489 schedule();
4490 goto again;
4491 }
4492 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4493 spin_lock_irq(&sh->stripe_lock);
4494 for (d = 0; d < conf->raid_disks; d++) {
4495 if (d == sh->pd_idx || d == sh->qd_idx)
4496 continue;
4497 if (sh->dev[d].towrite || sh->dev[d].toread) {
4498 set_bit(R5_Overlap, &sh->dev[d].flags);
4499 spin_unlock_irq(&sh->stripe_lock);
4500 release_stripe(sh);
4501 schedule();
4502 goto again;
4503 }
4504 }
4505 set_bit(STRIPE_DISCARD, &sh->state);
4506 finish_wait(&conf->wait_for_overlap, &w);
4507 for (d = 0; d < conf->raid_disks; d++) {
4508 if (d == sh->pd_idx || d == sh->qd_idx)
4509 continue;
4510 sh->dev[d].towrite = bi;
4511 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4512 raid5_inc_bi_active_stripes(bi);
4513 }
4514 spin_unlock_irq(&sh->stripe_lock);
4515 if (conf->mddev->bitmap) {
4516 for (d = 0;
4517 d < conf->raid_disks - conf->max_degraded;
4518 d++)
4519 bitmap_startwrite(mddev->bitmap,
4520 sh->sector,
4521 STRIPE_SECTORS,
4522 0);
4523 sh->bm_seq = conf->seq_flush + 1;
4524 set_bit(STRIPE_BIT_DELAY, &sh->state);
4525 }
4526
4527 set_bit(STRIPE_HANDLE, &sh->state);
4528 clear_bit(STRIPE_DELAYED, &sh->state);
4529 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4530 atomic_inc(&conf->preread_active_stripes);
4531 release_stripe_plug(mddev, sh);
4532 }
4533
4534 remaining = raid5_dec_bi_active_stripes(bi);
4535 if (remaining == 0) {
4536 md_write_end(mddev);
4537 bio_endio(bi, 0);
4538 }
4539 }
4540
4541 static void make_request(struct mddev *mddev, struct bio * bi)
4542 {
4543 struct r5conf *conf = mddev->private;
4544 int dd_idx;
4545 sector_t new_sector;
4546 sector_t logical_sector, last_sector;
4547 struct stripe_head *sh;
4548 const int rw = bio_data_dir(bi);
4549 int remaining;
4550 DEFINE_WAIT(w);
4551 bool do_prepare;
4552
4553 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4554 md_flush_request(mddev, bi);
4555 return;
4556 }
4557
4558 md_write_start(mddev, bi);
4559
4560 if (rw == READ &&
4561 mddev->reshape_position == MaxSector &&
4562 chunk_aligned_read(mddev,bi))
4563 return;
4564
4565 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4566 make_discard_request(mddev, bi);
4567 return;
4568 }
4569
4570 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4571 last_sector = bio_end_sector(bi);
4572 bi->bi_next = NULL;
4573 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4574
4575 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4576 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4577 int previous;
4578 int seq;
4579
4580 do_prepare = false;
4581 retry:
4582 seq = read_seqcount_begin(&conf->gen_lock);
4583 previous = 0;
4584 if (do_prepare)
4585 prepare_to_wait(&conf->wait_for_overlap, &w,
4586 TASK_UNINTERRUPTIBLE);
4587 if (unlikely(conf->reshape_progress != MaxSector)) {
4588 /* spinlock is needed as reshape_progress may be
4589 * 64bit on a 32bit platform, and so it might be
4590 * possible to see a half-updated value
4591 * Of course reshape_progress could change after
4592 * the lock is dropped, so once we get a reference
4593 * to the stripe that we think it is, we will have
4594 * to check again.
4595 */
4596 spin_lock_irq(&conf->device_lock);
4597 if (mddev->reshape_backwards
4598 ? logical_sector < conf->reshape_progress
4599 : logical_sector >= conf->reshape_progress) {
4600 previous = 1;
4601 } else {
4602 if (mddev->reshape_backwards
4603 ? logical_sector < conf->reshape_safe
4604 : logical_sector >= conf->reshape_safe) {
4605 spin_unlock_irq(&conf->device_lock);
4606 schedule();
4607 do_prepare = true;
4608 goto retry;
4609 }
4610 }
4611 spin_unlock_irq(&conf->device_lock);
4612 }
4613
4614 new_sector = raid5_compute_sector(conf, logical_sector,
4615 previous,
4616 &dd_idx, NULL);
4617 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4618 (unsigned long long)new_sector,
4619 (unsigned long long)logical_sector);
4620
4621 sh = get_active_stripe(conf, new_sector, previous,
4622 (bi->bi_rw&RWA_MASK), 0);
4623 if (sh) {
4624 if (unlikely(previous)) {
4625 /* expansion might have moved on while waiting for a
4626 * stripe, so we must do the range check again.
4627 * Expansion could still move past after this
4628 * test, but as we are holding a reference to
4629 * 'sh', we know that if that happens,
4630 * STRIPE_EXPANDING will get set and the expansion
4631 * won't proceed until we finish with the stripe.
4632 */
4633 int must_retry = 0;
4634 spin_lock_irq(&conf->device_lock);
4635 if (mddev->reshape_backwards
4636 ? logical_sector >= conf->reshape_progress
4637 : logical_sector < conf->reshape_progress)
4638 /* mismatch, need to try again */
4639 must_retry = 1;
4640 spin_unlock_irq(&conf->device_lock);
4641 if (must_retry) {
4642 release_stripe(sh);
4643 schedule();
4644 do_prepare = true;
4645 goto retry;
4646 }
4647 }
4648 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4649 /* Might have got the wrong stripe_head
4650 * by accident
4651 */
4652 release_stripe(sh);
4653 goto retry;
4654 }
4655
4656 if (rw == WRITE &&
4657 logical_sector >= mddev->suspend_lo &&
4658 logical_sector < mddev->suspend_hi) {
4659 release_stripe(sh);
4660 /* As the suspend_* range is controlled by
4661 * userspace, we want an interruptible
4662 * wait.
4663 */
4664 flush_signals(current);
4665 prepare_to_wait(&conf->wait_for_overlap,
4666 &w, TASK_INTERRUPTIBLE);
4667 if (logical_sector >= mddev->suspend_lo &&
4668 logical_sector < mddev->suspend_hi) {
4669 schedule();
4670 do_prepare = true;
4671 }
4672 goto retry;
4673 }
4674
4675 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4676 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4677 /* Stripe is busy expanding or
4678 * add failed due to overlap. Flush everything
4679 * and wait a while
4680 */
4681 md_wakeup_thread(mddev->thread);
4682 release_stripe(sh);
4683 schedule();
4684 do_prepare = true;
4685 goto retry;
4686 }
4687 set_bit(STRIPE_HANDLE, &sh->state);
4688 clear_bit(STRIPE_DELAYED, &sh->state);
4689 if ((bi->bi_rw & REQ_SYNC) &&
4690 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4691 atomic_inc(&conf->preread_active_stripes);
4692 release_stripe_plug(mddev, sh);
4693 } else {
4694 /* cannot get stripe for read-ahead, just give-up */
4695 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4696 break;
4697 }
4698 }
4699 finish_wait(&conf->wait_for_overlap, &w);
4700
4701 remaining = raid5_dec_bi_active_stripes(bi);
4702 if (remaining == 0) {
4703
4704 if ( rw == WRITE )
4705 md_write_end(mddev);
4706
4707 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4708 bi, 0);
4709 bio_endio(bi, 0);
4710 }
4711 }
4712
4713 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4714
4715 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4716 {
4717 /* reshaping is quite different to recovery/resync so it is
4718 * handled quite separately ... here.
4719 *
4720 * On each call to sync_request, we gather one chunk worth of
4721 * destination stripes and flag them as expanding.
4722 * Then we find all the source stripes and request reads.
4723 * As the reads complete, handle_stripe will copy the data
4724 * into the destination stripe and release that stripe.
4725 */
4726 struct r5conf *conf = mddev->private;
4727 struct stripe_head *sh;
4728 sector_t first_sector, last_sector;
4729 int raid_disks = conf->previous_raid_disks;
4730 int data_disks = raid_disks - conf->max_degraded;
4731 int new_data_disks = conf->raid_disks - conf->max_degraded;
4732 int i;
4733 int dd_idx;
4734 sector_t writepos, readpos, safepos;
4735 sector_t stripe_addr;
4736 int reshape_sectors;
4737 struct list_head stripes;
4738
4739 if (sector_nr == 0) {
4740 /* If restarting in the middle, skip the initial sectors */
4741 if (mddev->reshape_backwards &&
4742 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4743 sector_nr = raid5_size(mddev, 0, 0)
4744 - conf->reshape_progress;
4745 } else if (!mddev->reshape_backwards &&
4746 conf->reshape_progress > 0)
4747 sector_nr = conf->reshape_progress;
4748 sector_div(sector_nr, new_data_disks);
4749 if (sector_nr) {
4750 mddev->curr_resync_completed = sector_nr;
4751 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4752 *skipped = 1;
4753 return sector_nr;
4754 }
4755 }
4756
4757 /* We need to process a full chunk at a time.
4758 * If old and new chunk sizes differ, we need to process the
4759 * largest of these
4760 */
4761 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4762 reshape_sectors = mddev->new_chunk_sectors;
4763 else
4764 reshape_sectors = mddev->chunk_sectors;
4765
4766 /* We update the metadata at least every 10 seconds, or when
4767 * the data about to be copied would over-write the source of
4768 * the data at the front of the range. i.e. one new_stripe
4769 * along from reshape_progress new_maps to after where
4770 * reshape_safe old_maps to
4771 */
4772 writepos = conf->reshape_progress;
4773 sector_div(writepos, new_data_disks);
4774 readpos = conf->reshape_progress;
4775 sector_div(readpos, data_disks);
4776 safepos = conf->reshape_safe;
4777 sector_div(safepos, data_disks);
4778 if (mddev->reshape_backwards) {
4779 writepos -= min_t(sector_t, reshape_sectors, writepos);
4780 readpos += reshape_sectors;
4781 safepos += reshape_sectors;
4782 } else {
4783 writepos += reshape_sectors;
4784 readpos -= min_t(sector_t, reshape_sectors, readpos);
4785 safepos -= min_t(sector_t, reshape_sectors, safepos);
4786 }
4787
4788 /* Having calculated the 'writepos' possibly use it
4789 * to set 'stripe_addr' which is where we will write to.
4790 */
4791 if (mddev->reshape_backwards) {
4792 BUG_ON(conf->reshape_progress == 0);
4793 stripe_addr = writepos;
4794 BUG_ON((mddev->dev_sectors &
4795 ~((sector_t)reshape_sectors - 1))
4796 - reshape_sectors - stripe_addr
4797 != sector_nr);
4798 } else {
4799 BUG_ON(writepos != sector_nr + reshape_sectors);
4800 stripe_addr = sector_nr;
4801 }
4802
4803 /* 'writepos' is the most advanced device address we might write.
4804 * 'readpos' is the least advanced device address we might read.
4805 * 'safepos' is the least address recorded in the metadata as having
4806 * been reshaped.
4807 * If there is a min_offset_diff, these are adjusted either by
4808 * increasing the safepos/readpos if diff is negative, or
4809 * increasing writepos if diff is positive.
4810 * If 'readpos' is then behind 'writepos', there is no way that we can
4811 * ensure safety in the face of a crash - that must be done by userspace
4812 * making a backup of the data. So in that case there is no particular
4813 * rush to update metadata.
4814 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4815 * update the metadata to advance 'safepos' to match 'readpos' so that
4816 * we can be safe in the event of a crash.
4817 * So we insist on updating metadata if safepos is behind writepos and
4818 * readpos is beyond writepos.
4819 * In any case, update the metadata every 10 seconds.
4820 * Maybe that number should be configurable, but I'm not sure it is
4821 * worth it.... maybe it could be a multiple of safemode_delay???
4822 */
4823 if (conf->min_offset_diff < 0) {
4824 safepos += -conf->min_offset_diff;
4825 readpos += -conf->min_offset_diff;
4826 } else
4827 writepos += conf->min_offset_diff;
4828
4829 if ((mddev->reshape_backwards
4830 ? (safepos > writepos && readpos < writepos)
4831 : (safepos < writepos && readpos > writepos)) ||
4832 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4833 /* Cannot proceed until we've updated the superblock... */
4834 wait_event(conf->wait_for_overlap,
4835 atomic_read(&conf->reshape_stripes)==0
4836 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4837 if (atomic_read(&conf->reshape_stripes) != 0)
4838 return 0;
4839 mddev->reshape_position = conf->reshape_progress;
4840 mddev->curr_resync_completed = sector_nr;
4841 conf->reshape_checkpoint = jiffies;
4842 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4843 md_wakeup_thread(mddev->thread);
4844 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4845 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4846 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4847 return 0;
4848 spin_lock_irq(&conf->device_lock);
4849 conf->reshape_safe = mddev->reshape_position;
4850 spin_unlock_irq(&conf->device_lock);
4851 wake_up(&conf->wait_for_overlap);
4852 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4853 }
4854
4855 INIT_LIST_HEAD(&stripes);
4856 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4857 int j;
4858 int skipped_disk = 0;
4859 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4860 set_bit(STRIPE_EXPANDING, &sh->state);
4861 atomic_inc(&conf->reshape_stripes);
4862 /* If any of this stripe is beyond the end of the old
4863 * array, then we need to zero those blocks
4864 */
4865 for (j=sh->disks; j--;) {
4866 sector_t s;
4867 if (j == sh->pd_idx)
4868 continue;
4869 if (conf->level == 6 &&
4870 j == sh->qd_idx)
4871 continue;
4872 s = compute_blocknr(sh, j, 0);
4873 if (s < raid5_size(mddev, 0, 0)) {
4874 skipped_disk = 1;
4875 continue;
4876 }
4877 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4878 set_bit(R5_Expanded, &sh->dev[j].flags);
4879 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4880 }
4881 if (!skipped_disk) {
4882 set_bit(STRIPE_EXPAND_READY, &sh->state);
4883 set_bit(STRIPE_HANDLE, &sh->state);
4884 }
4885 list_add(&sh->lru, &stripes);
4886 }
4887 spin_lock_irq(&conf->device_lock);
4888 if (mddev->reshape_backwards)
4889 conf->reshape_progress -= reshape_sectors * new_data_disks;
4890 else
4891 conf->reshape_progress += reshape_sectors * new_data_disks;
4892 spin_unlock_irq(&conf->device_lock);
4893 /* Ok, those stripe are ready. We can start scheduling
4894 * reads on the source stripes.
4895 * The source stripes are determined by mapping the first and last
4896 * block on the destination stripes.
4897 */
4898 first_sector =
4899 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4900 1, &dd_idx, NULL);
4901 last_sector =
4902 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4903 * new_data_disks - 1),
4904 1, &dd_idx, NULL);
4905 if (last_sector >= mddev->dev_sectors)
4906 last_sector = mddev->dev_sectors - 1;
4907 while (first_sector <= last_sector) {
4908 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4909 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4910 set_bit(STRIPE_HANDLE, &sh->state);
4911 release_stripe(sh);
4912 first_sector += STRIPE_SECTORS;
4913 }
4914 /* Now that the sources are clearly marked, we can release
4915 * the destination stripes
4916 */
4917 while (!list_empty(&stripes)) {
4918 sh = list_entry(stripes.next, struct stripe_head, lru);
4919 list_del_init(&sh->lru);
4920 release_stripe(sh);
4921 }
4922 /* If this takes us to the resync_max point where we have to pause,
4923 * then we need to write out the superblock.
4924 */
4925 sector_nr += reshape_sectors;
4926 if ((sector_nr - mddev->curr_resync_completed) * 2
4927 >= mddev->resync_max - mddev->curr_resync_completed) {
4928 /* Cannot proceed until we've updated the superblock... */
4929 wait_event(conf->wait_for_overlap,
4930 atomic_read(&conf->reshape_stripes) == 0
4931 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4932 if (atomic_read(&conf->reshape_stripes) != 0)
4933 goto ret;
4934 mddev->reshape_position = conf->reshape_progress;
4935 mddev->curr_resync_completed = sector_nr;
4936 conf->reshape_checkpoint = jiffies;
4937 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4938 md_wakeup_thread(mddev->thread);
4939 wait_event(mddev->sb_wait,
4940 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4941 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4943 goto ret;
4944 spin_lock_irq(&conf->device_lock);
4945 conf->reshape_safe = mddev->reshape_position;
4946 spin_unlock_irq(&conf->device_lock);
4947 wake_up(&conf->wait_for_overlap);
4948 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4949 }
4950 ret:
4951 return reshape_sectors;
4952 }
4953
4954 /* FIXME go_faster isn't used */
4955 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4956 {
4957 struct r5conf *conf = mddev->private;
4958 struct stripe_head *sh;
4959 sector_t max_sector = mddev->dev_sectors;
4960 sector_t sync_blocks;
4961 int still_degraded = 0;
4962 int i;
4963
4964 if (sector_nr >= max_sector) {
4965 /* just being told to finish up .. nothing much to do */
4966
4967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4968 end_reshape(conf);
4969 return 0;
4970 }
4971
4972 if (mddev->curr_resync < max_sector) /* aborted */
4973 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4974 &sync_blocks, 1);
4975 else /* completed sync */
4976 conf->fullsync = 0;
4977 bitmap_close_sync(mddev->bitmap);
4978
4979 return 0;
4980 }
4981
4982 /* Allow raid5_quiesce to complete */
4983 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4984
4985 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4986 return reshape_request(mddev, sector_nr, skipped);
4987
4988 /* No need to check resync_max as we never do more than one
4989 * stripe, and as resync_max will always be on a chunk boundary,
4990 * if the check in md_do_sync didn't fire, there is no chance
4991 * of overstepping resync_max here
4992 */
4993
4994 /* if there is too many failed drives and we are trying
4995 * to resync, then assert that we are finished, because there is
4996 * nothing we can do.
4997 */
4998 if (mddev->degraded >= conf->max_degraded &&
4999 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5000 sector_t rv = mddev->dev_sectors - sector_nr;
5001 *skipped = 1;
5002 return rv;
5003 }
5004 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5005 !conf->fullsync &&
5006 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5007 sync_blocks >= STRIPE_SECTORS) {
5008 /* we can skip this block, and probably more */
5009 sync_blocks /= STRIPE_SECTORS;
5010 *skipped = 1;
5011 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5012 }
5013
5014 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5015
5016 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5017 if (sh == NULL) {
5018 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5019 /* make sure we don't swamp the stripe cache if someone else
5020 * is trying to get access
5021 */
5022 schedule_timeout_uninterruptible(1);
5023 }
5024 /* Need to check if array will still be degraded after recovery/resync
5025 * We don't need to check the 'failed' flag as when that gets set,
5026 * recovery aborts.
5027 */
5028 for (i = 0; i < conf->raid_disks; i++)
5029 if (conf->disks[i].rdev == NULL)
5030 still_degraded = 1;
5031
5032 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5033
5034 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5035
5036 handle_stripe(sh);
5037 release_stripe(sh);
5038
5039 return STRIPE_SECTORS;
5040 }
5041
5042 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5043 {
5044 /* We may not be able to submit a whole bio at once as there
5045 * may not be enough stripe_heads available.
5046 * We cannot pre-allocate enough stripe_heads as we may need
5047 * more than exist in the cache (if we allow ever large chunks).
5048 * So we do one stripe head at a time and record in
5049 * ->bi_hw_segments how many have been done.
5050 *
5051 * We *know* that this entire raid_bio is in one chunk, so
5052 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5053 */
5054 struct stripe_head *sh;
5055 int dd_idx;
5056 sector_t sector, logical_sector, last_sector;
5057 int scnt = 0;
5058 int remaining;
5059 int handled = 0;
5060
5061 logical_sector = raid_bio->bi_iter.bi_sector &
5062 ~((sector_t)STRIPE_SECTORS-1);
5063 sector = raid5_compute_sector(conf, logical_sector,
5064 0, &dd_idx, NULL);
5065 last_sector = bio_end_sector(raid_bio);
5066
5067 for (; logical_sector < last_sector;
5068 logical_sector += STRIPE_SECTORS,
5069 sector += STRIPE_SECTORS,
5070 scnt++) {
5071
5072 if (scnt < raid5_bi_processed_stripes(raid_bio))
5073 /* already done this stripe */
5074 continue;
5075
5076 sh = get_active_stripe(conf, sector, 0, 1, 0);
5077
5078 if (!sh) {
5079 /* failed to get a stripe - must wait */
5080 raid5_set_bi_processed_stripes(raid_bio, scnt);
5081 conf->retry_read_aligned = raid_bio;
5082 return handled;
5083 }
5084
5085 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5086 release_stripe(sh);
5087 raid5_set_bi_processed_stripes(raid_bio, scnt);
5088 conf->retry_read_aligned = raid_bio;
5089 return handled;
5090 }
5091
5092 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5093 handle_stripe(sh);
5094 release_stripe(sh);
5095 handled++;
5096 }
5097 remaining = raid5_dec_bi_active_stripes(raid_bio);
5098 if (remaining == 0) {
5099 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5100 raid_bio, 0);
5101 bio_endio(raid_bio, 0);
5102 }
5103 if (atomic_dec_and_test(&conf->active_aligned_reads))
5104 wake_up(&conf->wait_for_stripe);
5105 return handled;
5106 }
5107
5108 static int handle_active_stripes(struct r5conf *conf, int group,
5109 struct r5worker *worker,
5110 struct list_head *temp_inactive_list)
5111 {
5112 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5113 int i, batch_size = 0, hash;
5114 bool release_inactive = false;
5115
5116 while (batch_size < MAX_STRIPE_BATCH &&
5117 (sh = __get_priority_stripe(conf, group)) != NULL)
5118 batch[batch_size++] = sh;
5119
5120 if (batch_size == 0) {
5121 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5122 if (!list_empty(temp_inactive_list + i))
5123 break;
5124 if (i == NR_STRIPE_HASH_LOCKS)
5125 return batch_size;
5126 release_inactive = true;
5127 }
5128 spin_unlock_irq(&conf->device_lock);
5129
5130 release_inactive_stripe_list(conf, temp_inactive_list,
5131 NR_STRIPE_HASH_LOCKS);
5132
5133 if (release_inactive) {
5134 spin_lock_irq(&conf->device_lock);
5135 return 0;
5136 }
5137
5138 for (i = 0; i < batch_size; i++)
5139 handle_stripe(batch[i]);
5140
5141 cond_resched();
5142
5143 spin_lock_irq(&conf->device_lock);
5144 for (i = 0; i < batch_size; i++) {
5145 hash = batch[i]->hash_lock_index;
5146 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5147 }
5148 return batch_size;
5149 }
5150
5151 static void raid5_do_work(struct work_struct *work)
5152 {
5153 struct r5worker *worker = container_of(work, struct r5worker, work);
5154 struct r5worker_group *group = worker->group;
5155 struct r5conf *conf = group->conf;
5156 int group_id = group - conf->worker_groups;
5157 int handled;
5158 struct blk_plug plug;
5159
5160 pr_debug("+++ raid5worker active\n");
5161
5162 blk_start_plug(&plug);
5163 handled = 0;
5164 spin_lock_irq(&conf->device_lock);
5165 while (1) {
5166 int batch_size, released;
5167
5168 released = release_stripe_list(conf, worker->temp_inactive_list);
5169
5170 batch_size = handle_active_stripes(conf, group_id, worker,
5171 worker->temp_inactive_list);
5172 worker->working = false;
5173 if (!batch_size && !released)
5174 break;
5175 handled += batch_size;
5176 }
5177 pr_debug("%d stripes handled\n", handled);
5178
5179 spin_unlock_irq(&conf->device_lock);
5180 blk_finish_plug(&plug);
5181
5182 pr_debug("--- raid5worker inactive\n");
5183 }
5184
5185 /*
5186 * This is our raid5 kernel thread.
5187 *
5188 * We scan the hash table for stripes which can be handled now.
5189 * During the scan, completed stripes are saved for us by the interrupt
5190 * handler, so that they will not have to wait for our next wakeup.
5191 */
5192 static void raid5d(struct md_thread *thread)
5193 {
5194 struct mddev *mddev = thread->mddev;
5195 struct r5conf *conf = mddev->private;
5196 int handled;
5197 struct blk_plug plug;
5198
5199 pr_debug("+++ raid5d active\n");
5200
5201 md_check_recovery(mddev);
5202
5203 blk_start_plug(&plug);
5204 handled = 0;
5205 spin_lock_irq(&conf->device_lock);
5206 while (1) {
5207 struct bio *bio;
5208 int batch_size, released;
5209
5210 released = release_stripe_list(conf, conf->temp_inactive_list);
5211
5212 if (
5213 !list_empty(&conf->bitmap_list)) {
5214 /* Now is a good time to flush some bitmap updates */
5215 conf->seq_flush++;
5216 spin_unlock_irq(&conf->device_lock);
5217 bitmap_unplug(mddev->bitmap);
5218 spin_lock_irq(&conf->device_lock);
5219 conf->seq_write = conf->seq_flush;
5220 activate_bit_delay(conf, conf->temp_inactive_list);
5221 }
5222 raid5_activate_delayed(conf);
5223
5224 while ((bio = remove_bio_from_retry(conf))) {
5225 int ok;
5226 spin_unlock_irq(&conf->device_lock);
5227 ok = retry_aligned_read(conf, bio);
5228 spin_lock_irq(&conf->device_lock);
5229 if (!ok)
5230 break;
5231 handled++;
5232 }
5233
5234 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5235 conf->temp_inactive_list);
5236 if (!batch_size && !released)
5237 break;
5238 handled += batch_size;
5239
5240 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5241 spin_unlock_irq(&conf->device_lock);
5242 md_check_recovery(mddev);
5243 spin_lock_irq(&conf->device_lock);
5244 }
5245 }
5246 pr_debug("%d stripes handled\n", handled);
5247
5248 spin_unlock_irq(&conf->device_lock);
5249
5250 async_tx_issue_pending_all();
5251 blk_finish_plug(&plug);
5252
5253 pr_debug("--- raid5d inactive\n");
5254 }
5255
5256 static ssize_t
5257 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5258 {
5259 struct r5conf *conf = mddev->private;
5260 if (conf)
5261 return sprintf(page, "%d\n", conf->max_nr_stripes);
5262 else
5263 return 0;
5264 }
5265
5266 int
5267 raid5_set_cache_size(struct mddev *mddev, int size)
5268 {
5269 struct r5conf *conf = mddev->private;
5270 int err;
5271 int hash;
5272
5273 if (size <= 16 || size > 32768)
5274 return -EINVAL;
5275 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5276 while (size < conf->max_nr_stripes) {
5277 if (drop_one_stripe(conf, hash))
5278 conf->max_nr_stripes--;
5279 else
5280 break;
5281 hash--;
5282 if (hash < 0)
5283 hash = NR_STRIPE_HASH_LOCKS - 1;
5284 }
5285 err = md_allow_write(mddev);
5286 if (err)
5287 return err;
5288 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5289 while (size > conf->max_nr_stripes) {
5290 if (grow_one_stripe(conf, hash))
5291 conf->max_nr_stripes++;
5292 else break;
5293 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5294 }
5295 return 0;
5296 }
5297 EXPORT_SYMBOL(raid5_set_cache_size);
5298
5299 static ssize_t
5300 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5301 {
5302 struct r5conf *conf = mddev->private;
5303 unsigned long new;
5304 int err;
5305
5306 if (len >= PAGE_SIZE)
5307 return -EINVAL;
5308 if (!conf)
5309 return -ENODEV;
5310
5311 if (kstrtoul(page, 10, &new))
5312 return -EINVAL;
5313 err = raid5_set_cache_size(mddev, new);
5314 if (err)
5315 return err;
5316 return len;
5317 }
5318
5319 static struct md_sysfs_entry
5320 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5321 raid5_show_stripe_cache_size,
5322 raid5_store_stripe_cache_size);
5323
5324 static ssize_t
5325 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5326 {
5327 struct r5conf *conf = mddev->private;
5328 if (conf)
5329 return sprintf(page, "%d\n", conf->bypass_threshold);
5330 else
5331 return 0;
5332 }
5333
5334 static ssize_t
5335 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5336 {
5337 struct r5conf *conf = mddev->private;
5338 unsigned long new;
5339 if (len >= PAGE_SIZE)
5340 return -EINVAL;
5341 if (!conf)
5342 return -ENODEV;
5343
5344 if (kstrtoul(page, 10, &new))
5345 return -EINVAL;
5346 if (new > conf->max_nr_stripes)
5347 return -EINVAL;
5348 conf->bypass_threshold = new;
5349 return len;
5350 }
5351
5352 static struct md_sysfs_entry
5353 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5354 S_IRUGO | S_IWUSR,
5355 raid5_show_preread_threshold,
5356 raid5_store_preread_threshold);
5357
5358 static ssize_t
5359 stripe_cache_active_show(struct mddev *mddev, char *page)
5360 {
5361 struct r5conf *conf = mddev->private;
5362 if (conf)
5363 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5364 else
5365 return 0;
5366 }
5367
5368 static struct md_sysfs_entry
5369 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5370
5371 static ssize_t
5372 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5373 {
5374 struct r5conf *conf = mddev->private;
5375 if (conf)
5376 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5377 else
5378 return 0;
5379 }
5380
5381 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5382 int *group_cnt,
5383 int *worker_cnt_per_group,
5384 struct r5worker_group **worker_groups);
5385 static ssize_t
5386 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5387 {
5388 struct r5conf *conf = mddev->private;
5389 unsigned long new;
5390 int err;
5391 struct r5worker_group *new_groups, *old_groups;
5392 int group_cnt, worker_cnt_per_group;
5393
5394 if (len >= PAGE_SIZE)
5395 return -EINVAL;
5396 if (!conf)
5397 return -ENODEV;
5398
5399 if (kstrtoul(page, 10, &new))
5400 return -EINVAL;
5401
5402 if (new == conf->worker_cnt_per_group)
5403 return len;
5404
5405 mddev_suspend(mddev);
5406
5407 old_groups = conf->worker_groups;
5408 if (old_groups)
5409 flush_workqueue(raid5_wq);
5410
5411 err = alloc_thread_groups(conf, new,
5412 &group_cnt, &worker_cnt_per_group,
5413 &new_groups);
5414 if (!err) {
5415 spin_lock_irq(&conf->device_lock);
5416 conf->group_cnt = group_cnt;
5417 conf->worker_cnt_per_group = worker_cnt_per_group;
5418 conf->worker_groups = new_groups;
5419 spin_unlock_irq(&conf->device_lock);
5420
5421 if (old_groups)
5422 kfree(old_groups[0].workers);
5423 kfree(old_groups);
5424 }
5425
5426 mddev_resume(mddev);
5427
5428 if (err)
5429 return err;
5430 return len;
5431 }
5432
5433 static struct md_sysfs_entry
5434 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5435 raid5_show_group_thread_cnt,
5436 raid5_store_group_thread_cnt);
5437
5438 static struct attribute *raid5_attrs[] = {
5439 &raid5_stripecache_size.attr,
5440 &raid5_stripecache_active.attr,
5441 &raid5_preread_bypass_threshold.attr,
5442 &raid5_group_thread_cnt.attr,
5443 NULL,
5444 };
5445 static struct attribute_group raid5_attrs_group = {
5446 .name = NULL,
5447 .attrs = raid5_attrs,
5448 };
5449
5450 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5451 int *group_cnt,
5452 int *worker_cnt_per_group,
5453 struct r5worker_group **worker_groups)
5454 {
5455 int i, j, k;
5456 ssize_t size;
5457 struct r5worker *workers;
5458
5459 *worker_cnt_per_group = cnt;
5460 if (cnt == 0) {
5461 *group_cnt = 0;
5462 *worker_groups = NULL;
5463 return 0;
5464 }
5465 *group_cnt = num_possible_nodes();
5466 size = sizeof(struct r5worker) * cnt;
5467 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5468 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5469 *group_cnt, GFP_NOIO);
5470 if (!*worker_groups || !workers) {
5471 kfree(workers);
5472 kfree(*worker_groups);
5473 return -ENOMEM;
5474 }
5475
5476 for (i = 0; i < *group_cnt; i++) {
5477 struct r5worker_group *group;
5478
5479 group = &(*worker_groups)[i];
5480 INIT_LIST_HEAD(&group->handle_list);
5481 group->conf = conf;
5482 group->workers = workers + i * cnt;
5483
5484 for (j = 0; j < cnt; j++) {
5485 struct r5worker *worker = group->workers + j;
5486 worker->group = group;
5487 INIT_WORK(&worker->work, raid5_do_work);
5488
5489 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5490 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5491 }
5492 }
5493
5494 return 0;
5495 }
5496
5497 static void free_thread_groups(struct r5conf *conf)
5498 {
5499 if (conf->worker_groups)
5500 kfree(conf->worker_groups[0].workers);
5501 kfree(conf->worker_groups);
5502 conf->worker_groups = NULL;
5503 }
5504
5505 static sector_t
5506 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5507 {
5508 struct r5conf *conf = mddev->private;
5509
5510 if (!sectors)
5511 sectors = mddev->dev_sectors;
5512 if (!raid_disks)
5513 /* size is defined by the smallest of previous and new size */
5514 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5515
5516 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5517 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5518 return sectors * (raid_disks - conf->max_degraded);
5519 }
5520
5521 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5522 {
5523 safe_put_page(percpu->spare_page);
5524 kfree(percpu->scribble);
5525 percpu->spare_page = NULL;
5526 percpu->scribble = NULL;
5527 }
5528
5529 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5530 {
5531 if (conf->level == 6 && !percpu->spare_page)
5532 percpu->spare_page = alloc_page(GFP_KERNEL);
5533 if (!percpu->scribble)
5534 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5535
5536 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5537 free_scratch_buffer(conf, percpu);
5538 return -ENOMEM;
5539 }
5540
5541 return 0;
5542 }
5543
5544 static void raid5_free_percpu(struct r5conf *conf)
5545 {
5546 unsigned long cpu;
5547
5548 if (!conf->percpu)
5549 return;
5550
5551 #ifdef CONFIG_HOTPLUG_CPU
5552 unregister_cpu_notifier(&conf->cpu_notify);
5553 #endif
5554
5555 get_online_cpus();
5556 for_each_possible_cpu(cpu)
5557 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5558 put_online_cpus();
5559
5560 free_percpu(conf->percpu);
5561 }
5562
5563 static void free_conf(struct r5conf *conf)
5564 {
5565 free_thread_groups(conf);
5566 shrink_stripes(conf);
5567 raid5_free_percpu(conf);
5568 kfree(conf->disks);
5569 kfree(conf->stripe_hashtbl);
5570 kfree(conf);
5571 }
5572
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5575 void *hcpu)
5576 {
5577 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5578 long cpu = (long)hcpu;
5579 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5580
5581 switch (action) {
5582 case CPU_UP_PREPARE:
5583 case CPU_UP_PREPARE_FROZEN:
5584 if (alloc_scratch_buffer(conf, percpu)) {
5585 pr_err("%s: failed memory allocation for cpu%ld\n",
5586 __func__, cpu);
5587 return notifier_from_errno(-ENOMEM);
5588 }
5589 break;
5590 case CPU_DEAD:
5591 case CPU_DEAD_FROZEN:
5592 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5593 break;
5594 default:
5595 break;
5596 }
5597 return NOTIFY_OK;
5598 }
5599 #endif
5600
5601 static int raid5_alloc_percpu(struct r5conf *conf)
5602 {
5603 unsigned long cpu;
5604 int err = 0;
5605
5606 conf->percpu = alloc_percpu(struct raid5_percpu);
5607 if (!conf->percpu)
5608 return -ENOMEM;
5609
5610 #ifdef CONFIG_HOTPLUG_CPU
5611 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5612 conf->cpu_notify.priority = 0;
5613 err = register_cpu_notifier(&conf->cpu_notify);
5614 if (err)
5615 return err;
5616 #endif
5617
5618 get_online_cpus();
5619 for_each_present_cpu(cpu) {
5620 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5621 if (err) {
5622 pr_err("%s: failed memory allocation for cpu%ld\n",
5623 __func__, cpu);
5624 break;
5625 }
5626 }
5627 put_online_cpus();
5628
5629 return err;
5630 }
5631
5632 static struct r5conf *setup_conf(struct mddev *mddev)
5633 {
5634 struct r5conf *conf;
5635 int raid_disk, memory, max_disks;
5636 struct md_rdev *rdev;
5637 struct disk_info *disk;
5638 char pers_name[6];
5639 int i;
5640 int group_cnt, worker_cnt_per_group;
5641 struct r5worker_group *new_group;
5642
5643 if (mddev->new_level != 5
5644 && mddev->new_level != 4
5645 && mddev->new_level != 6) {
5646 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5647 mdname(mddev), mddev->new_level);
5648 return ERR_PTR(-EIO);
5649 }
5650 if ((mddev->new_level == 5
5651 && !algorithm_valid_raid5(mddev->new_layout)) ||
5652 (mddev->new_level == 6
5653 && !algorithm_valid_raid6(mddev->new_layout))) {
5654 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5655 mdname(mddev), mddev->new_layout);
5656 return ERR_PTR(-EIO);
5657 }
5658 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5659 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5660 mdname(mddev), mddev->raid_disks);
5661 return ERR_PTR(-EINVAL);
5662 }
5663
5664 if (!mddev->new_chunk_sectors ||
5665 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5666 !is_power_of_2(mddev->new_chunk_sectors)) {
5667 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5668 mdname(mddev), mddev->new_chunk_sectors << 9);
5669 return ERR_PTR(-EINVAL);
5670 }
5671
5672 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5673 if (conf == NULL)
5674 goto abort;
5675 /* Don't enable multi-threading by default*/
5676 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5677 &new_group)) {
5678 conf->group_cnt = group_cnt;
5679 conf->worker_cnt_per_group = worker_cnt_per_group;
5680 conf->worker_groups = new_group;
5681 } else
5682 goto abort;
5683 spin_lock_init(&conf->device_lock);
5684 seqcount_init(&conf->gen_lock);
5685 init_waitqueue_head(&conf->wait_for_stripe);
5686 init_waitqueue_head(&conf->wait_for_overlap);
5687 INIT_LIST_HEAD(&conf->handle_list);
5688 INIT_LIST_HEAD(&conf->hold_list);
5689 INIT_LIST_HEAD(&conf->delayed_list);
5690 INIT_LIST_HEAD(&conf->bitmap_list);
5691 init_llist_head(&conf->released_stripes);
5692 atomic_set(&conf->active_stripes, 0);
5693 atomic_set(&conf->preread_active_stripes, 0);
5694 atomic_set(&conf->active_aligned_reads, 0);
5695 conf->bypass_threshold = BYPASS_THRESHOLD;
5696 conf->recovery_disabled = mddev->recovery_disabled - 1;
5697
5698 conf->raid_disks = mddev->raid_disks;
5699 if (mddev->reshape_position == MaxSector)
5700 conf->previous_raid_disks = mddev->raid_disks;
5701 else
5702 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5703 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5704 conf->scribble_len = scribble_len(max_disks);
5705
5706 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5707 GFP_KERNEL);
5708 if (!conf->disks)
5709 goto abort;
5710
5711 conf->mddev = mddev;
5712
5713 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5714 goto abort;
5715
5716 /* We init hash_locks[0] separately to that it can be used
5717 * as the reference lock in the spin_lock_nest_lock() call
5718 * in lock_all_device_hash_locks_irq in order to convince
5719 * lockdep that we know what we are doing.
5720 */
5721 spin_lock_init(conf->hash_locks);
5722 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5723 spin_lock_init(conf->hash_locks + i);
5724
5725 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726 INIT_LIST_HEAD(conf->inactive_list + i);
5727
5728 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5729 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5730
5731 conf->level = mddev->new_level;
5732 if (raid5_alloc_percpu(conf) != 0)
5733 goto abort;
5734
5735 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5736
5737 rdev_for_each(rdev, mddev) {
5738 raid_disk = rdev->raid_disk;
5739 if (raid_disk >= max_disks
5740 || raid_disk < 0)
5741 continue;
5742 disk = conf->disks + raid_disk;
5743
5744 if (test_bit(Replacement, &rdev->flags)) {
5745 if (disk->replacement)
5746 goto abort;
5747 disk->replacement = rdev;
5748 } else {
5749 if (disk->rdev)
5750 goto abort;
5751 disk->rdev = rdev;
5752 }
5753
5754 if (test_bit(In_sync, &rdev->flags)) {
5755 char b[BDEVNAME_SIZE];
5756 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5757 " disk %d\n",
5758 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5759 } else if (rdev->saved_raid_disk != raid_disk)
5760 /* Cannot rely on bitmap to complete recovery */
5761 conf->fullsync = 1;
5762 }
5763
5764 conf->chunk_sectors = mddev->new_chunk_sectors;
5765 conf->level = mddev->new_level;
5766 if (conf->level == 6)
5767 conf->max_degraded = 2;
5768 else
5769 conf->max_degraded = 1;
5770 conf->algorithm = mddev->new_layout;
5771 conf->reshape_progress = mddev->reshape_position;
5772 if (conf->reshape_progress != MaxSector) {
5773 conf->prev_chunk_sectors = mddev->chunk_sectors;
5774 conf->prev_algo = mddev->layout;
5775 }
5776
5777 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5778 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5779 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5780 if (grow_stripes(conf, NR_STRIPES)) {
5781 printk(KERN_ERR
5782 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5783 mdname(mddev), memory);
5784 goto abort;
5785 } else
5786 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5787 mdname(mddev), memory);
5788
5789 sprintf(pers_name, "raid%d", mddev->new_level);
5790 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5791 if (!conf->thread) {
5792 printk(KERN_ERR
5793 "md/raid:%s: couldn't allocate thread.\n",
5794 mdname(mddev));
5795 goto abort;
5796 }
5797
5798 return conf;
5799
5800 abort:
5801 if (conf) {
5802 free_conf(conf);
5803 return ERR_PTR(-EIO);
5804 } else
5805 return ERR_PTR(-ENOMEM);
5806 }
5807
5808
5809 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5810 {
5811 switch (algo) {
5812 case ALGORITHM_PARITY_0:
5813 if (raid_disk < max_degraded)
5814 return 1;
5815 break;
5816 case ALGORITHM_PARITY_N:
5817 if (raid_disk >= raid_disks - max_degraded)
5818 return 1;
5819 break;
5820 case ALGORITHM_PARITY_0_6:
5821 if (raid_disk == 0 ||
5822 raid_disk == raid_disks - 1)
5823 return 1;
5824 break;
5825 case ALGORITHM_LEFT_ASYMMETRIC_6:
5826 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5827 case ALGORITHM_LEFT_SYMMETRIC_6:
5828 case ALGORITHM_RIGHT_SYMMETRIC_6:
5829 if (raid_disk == raid_disks - 1)
5830 return 1;
5831 }
5832 return 0;
5833 }
5834
5835 static int run(struct mddev *mddev)
5836 {
5837 struct r5conf *conf;
5838 int working_disks = 0;
5839 int dirty_parity_disks = 0;
5840 struct md_rdev *rdev;
5841 sector_t reshape_offset = 0;
5842 int i;
5843 long long min_offset_diff = 0;
5844 int first = 1;
5845
5846 if (mddev->recovery_cp != MaxSector)
5847 printk(KERN_NOTICE "md/raid:%s: not clean"
5848 " -- starting background reconstruction\n",
5849 mdname(mddev));
5850
5851 rdev_for_each(rdev, mddev) {
5852 long long diff;
5853 if (rdev->raid_disk < 0)
5854 continue;
5855 diff = (rdev->new_data_offset - rdev->data_offset);
5856 if (first) {
5857 min_offset_diff = diff;
5858 first = 0;
5859 } else if (mddev->reshape_backwards &&
5860 diff < min_offset_diff)
5861 min_offset_diff = diff;
5862 else if (!mddev->reshape_backwards &&
5863 diff > min_offset_diff)
5864 min_offset_diff = diff;
5865 }
5866
5867 if (mddev->reshape_position != MaxSector) {
5868 /* Check that we can continue the reshape.
5869 * Difficulties arise if the stripe we would write to
5870 * next is at or after the stripe we would read from next.
5871 * For a reshape that changes the number of devices, this
5872 * is only possible for a very short time, and mdadm makes
5873 * sure that time appears to have past before assembling
5874 * the array. So we fail if that time hasn't passed.
5875 * For a reshape that keeps the number of devices the same
5876 * mdadm must be monitoring the reshape can keeping the
5877 * critical areas read-only and backed up. It will start
5878 * the array in read-only mode, so we check for that.
5879 */
5880 sector_t here_new, here_old;
5881 int old_disks;
5882 int max_degraded = (mddev->level == 6 ? 2 : 1);
5883
5884 if (mddev->new_level != mddev->level) {
5885 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5886 "required - aborting.\n",
5887 mdname(mddev));
5888 return -EINVAL;
5889 }
5890 old_disks = mddev->raid_disks - mddev->delta_disks;
5891 /* reshape_position must be on a new-stripe boundary, and one
5892 * further up in new geometry must map after here in old
5893 * geometry.
5894 */
5895 here_new = mddev->reshape_position;
5896 if (sector_div(here_new, mddev->new_chunk_sectors *
5897 (mddev->raid_disks - max_degraded))) {
5898 printk(KERN_ERR "md/raid:%s: reshape_position not "
5899 "on a stripe boundary\n", mdname(mddev));
5900 return -EINVAL;
5901 }
5902 reshape_offset = here_new * mddev->new_chunk_sectors;
5903 /* here_new is the stripe we will write to */
5904 here_old = mddev->reshape_position;
5905 sector_div(here_old, mddev->chunk_sectors *
5906 (old_disks-max_degraded));
5907 /* here_old is the first stripe that we might need to read
5908 * from */
5909 if (mddev->delta_disks == 0) {
5910 if ((here_new * mddev->new_chunk_sectors !=
5911 here_old * mddev->chunk_sectors)) {
5912 printk(KERN_ERR "md/raid:%s: reshape position is"
5913 " confused - aborting\n", mdname(mddev));
5914 return -EINVAL;
5915 }
5916 /* We cannot be sure it is safe to start an in-place
5917 * reshape. It is only safe if user-space is monitoring
5918 * and taking constant backups.
5919 * mdadm always starts a situation like this in
5920 * readonly mode so it can take control before
5921 * allowing any writes. So just check for that.
5922 */
5923 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5924 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5925 /* not really in-place - so OK */;
5926 else if (mddev->ro == 0) {
5927 printk(KERN_ERR "md/raid:%s: in-place reshape "
5928 "must be started in read-only mode "
5929 "- aborting\n",
5930 mdname(mddev));
5931 return -EINVAL;
5932 }
5933 } else if (mddev->reshape_backwards
5934 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5935 here_old * mddev->chunk_sectors)
5936 : (here_new * mddev->new_chunk_sectors >=
5937 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5938 /* Reading from the same stripe as writing to - bad */
5939 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5940 "auto-recovery - aborting.\n",
5941 mdname(mddev));
5942 return -EINVAL;
5943 }
5944 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5945 mdname(mddev));
5946 /* OK, we should be able to continue; */
5947 } else {
5948 BUG_ON(mddev->level != mddev->new_level);
5949 BUG_ON(mddev->layout != mddev->new_layout);
5950 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5951 BUG_ON(mddev->delta_disks != 0);
5952 }
5953
5954 if (mddev->private == NULL)
5955 conf = setup_conf(mddev);
5956 else
5957 conf = mddev->private;
5958
5959 if (IS_ERR(conf))
5960 return PTR_ERR(conf);
5961
5962 conf->min_offset_diff = min_offset_diff;
5963 mddev->thread = conf->thread;
5964 conf->thread = NULL;
5965 mddev->private = conf;
5966
5967 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5968 i++) {
5969 rdev = conf->disks[i].rdev;
5970 if (!rdev && conf->disks[i].replacement) {
5971 /* The replacement is all we have yet */
5972 rdev = conf->disks[i].replacement;
5973 conf->disks[i].replacement = NULL;
5974 clear_bit(Replacement, &rdev->flags);
5975 conf->disks[i].rdev = rdev;
5976 }
5977 if (!rdev)
5978 continue;
5979 if (conf->disks[i].replacement &&
5980 conf->reshape_progress != MaxSector) {
5981 /* replacements and reshape simply do not mix. */
5982 printk(KERN_ERR "md: cannot handle concurrent "
5983 "replacement and reshape.\n");
5984 goto abort;
5985 }
5986 if (test_bit(In_sync, &rdev->flags)) {
5987 working_disks++;
5988 continue;
5989 }
5990 /* This disc is not fully in-sync. However if it
5991 * just stored parity (beyond the recovery_offset),
5992 * when we don't need to be concerned about the
5993 * array being dirty.
5994 * When reshape goes 'backwards', we never have
5995 * partially completed devices, so we only need
5996 * to worry about reshape going forwards.
5997 */
5998 /* Hack because v0.91 doesn't store recovery_offset properly. */
5999 if (mddev->major_version == 0 &&
6000 mddev->minor_version > 90)
6001 rdev->recovery_offset = reshape_offset;
6002
6003 if (rdev->recovery_offset < reshape_offset) {
6004 /* We need to check old and new layout */
6005 if (!only_parity(rdev->raid_disk,
6006 conf->algorithm,
6007 conf->raid_disks,
6008 conf->max_degraded))
6009 continue;
6010 }
6011 if (!only_parity(rdev->raid_disk,
6012 conf->prev_algo,
6013 conf->previous_raid_disks,
6014 conf->max_degraded))
6015 continue;
6016 dirty_parity_disks++;
6017 }
6018
6019 /*
6020 * 0 for a fully functional array, 1 or 2 for a degraded array.
6021 */
6022 mddev->degraded = calc_degraded(conf);
6023
6024 if (has_failed(conf)) {
6025 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6026 " (%d/%d failed)\n",
6027 mdname(mddev), mddev->degraded, conf->raid_disks);
6028 goto abort;
6029 }
6030
6031 /* device size must be a multiple of chunk size */
6032 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6033 mddev->resync_max_sectors = mddev->dev_sectors;
6034
6035 if (mddev->degraded > dirty_parity_disks &&
6036 mddev->recovery_cp != MaxSector) {
6037 if (mddev->ok_start_degraded)
6038 printk(KERN_WARNING
6039 "md/raid:%s: starting dirty degraded array"
6040 " - data corruption possible.\n",
6041 mdname(mddev));
6042 else {
6043 printk(KERN_ERR
6044 "md/raid:%s: cannot start dirty degraded array.\n",
6045 mdname(mddev));
6046 goto abort;
6047 }
6048 }
6049
6050 if (mddev->degraded == 0)
6051 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6052 " devices, algorithm %d\n", mdname(mddev), conf->level,
6053 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6054 mddev->new_layout);
6055 else
6056 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6057 " out of %d devices, algorithm %d\n",
6058 mdname(mddev), conf->level,
6059 mddev->raid_disks - mddev->degraded,
6060 mddev->raid_disks, mddev->new_layout);
6061
6062 print_raid5_conf(conf);
6063
6064 if (conf->reshape_progress != MaxSector) {
6065 conf->reshape_safe = conf->reshape_progress;
6066 atomic_set(&conf->reshape_stripes, 0);
6067 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6068 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6069 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6070 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6071 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6072 "reshape");
6073 }
6074
6075
6076 /* Ok, everything is just fine now */
6077 if (mddev->to_remove == &raid5_attrs_group)
6078 mddev->to_remove = NULL;
6079 else if (mddev->kobj.sd &&
6080 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6081 printk(KERN_WARNING
6082 "raid5: failed to create sysfs attributes for %s\n",
6083 mdname(mddev));
6084 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6085
6086 if (mddev->queue) {
6087 int chunk_size;
6088 bool discard_supported = true;
6089 /* read-ahead size must cover two whole stripes, which
6090 * is 2 * (datadisks) * chunksize where 'n' is the
6091 * number of raid devices
6092 */
6093 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6094 int stripe = data_disks *
6095 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6096 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6097 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6098
6099 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6100
6101 mddev->queue->backing_dev_info.congested_data = mddev;
6102 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6103
6104 chunk_size = mddev->chunk_sectors << 9;
6105 blk_queue_io_min(mddev->queue, chunk_size);
6106 blk_queue_io_opt(mddev->queue, chunk_size *
6107 (conf->raid_disks - conf->max_degraded));
6108 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6109 /*
6110 * We can only discard a whole stripe. It doesn't make sense to
6111 * discard data disk but write parity disk
6112 */
6113 stripe = stripe * PAGE_SIZE;
6114 /* Round up to power of 2, as discard handling
6115 * currently assumes that */
6116 while ((stripe-1) & stripe)
6117 stripe = (stripe | (stripe-1)) + 1;
6118 mddev->queue->limits.discard_alignment = stripe;
6119 mddev->queue->limits.discard_granularity = stripe;
6120 /*
6121 * unaligned part of discard request will be ignored, so can't
6122 * guarantee discard_zerors_data
6123 */
6124 mddev->queue->limits.discard_zeroes_data = 0;
6125
6126 blk_queue_max_write_same_sectors(mddev->queue, 0);
6127
6128 rdev_for_each(rdev, mddev) {
6129 disk_stack_limits(mddev->gendisk, rdev->bdev,
6130 rdev->data_offset << 9);
6131 disk_stack_limits(mddev->gendisk, rdev->bdev,
6132 rdev->new_data_offset << 9);
6133 /*
6134 * discard_zeroes_data is required, otherwise data
6135 * could be lost. Consider a scenario: discard a stripe
6136 * (the stripe could be inconsistent if
6137 * discard_zeroes_data is 0); write one disk of the
6138 * stripe (the stripe could be inconsistent again
6139 * depending on which disks are used to calculate
6140 * parity); the disk is broken; The stripe data of this
6141 * disk is lost.
6142 */
6143 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6144 !bdev_get_queue(rdev->bdev)->
6145 limits.discard_zeroes_data)
6146 discard_supported = false;
6147 }
6148
6149 if (discard_supported &&
6150 mddev->queue->limits.max_discard_sectors >= stripe &&
6151 mddev->queue->limits.discard_granularity >= stripe)
6152 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6153 mddev->queue);
6154 else
6155 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6156 mddev->queue);
6157 }
6158
6159 return 0;
6160 abort:
6161 md_unregister_thread(&mddev->thread);
6162 print_raid5_conf(conf);
6163 free_conf(conf);
6164 mddev->private = NULL;
6165 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6166 return -EIO;
6167 }
6168
6169 static int stop(struct mddev *mddev)
6170 {
6171 struct r5conf *conf = mddev->private;
6172
6173 md_unregister_thread(&mddev->thread);
6174 if (mddev->queue)
6175 mddev->queue->backing_dev_info.congested_fn = NULL;
6176 free_conf(conf);
6177 mddev->private = NULL;
6178 mddev->to_remove = &raid5_attrs_group;
6179 return 0;
6180 }
6181
6182 static void status(struct seq_file *seq, struct mddev *mddev)
6183 {
6184 struct r5conf *conf = mddev->private;
6185 int i;
6186
6187 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6188 mddev->chunk_sectors / 2, mddev->layout);
6189 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6190 for (i = 0; i < conf->raid_disks; i++)
6191 seq_printf (seq, "%s",
6192 conf->disks[i].rdev &&
6193 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6194 seq_printf (seq, "]");
6195 }
6196
6197 static void print_raid5_conf (struct r5conf *conf)
6198 {
6199 int i;
6200 struct disk_info *tmp;
6201
6202 printk(KERN_DEBUG "RAID conf printout:\n");
6203 if (!conf) {
6204 printk("(conf==NULL)\n");
6205 return;
6206 }
6207 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6208 conf->raid_disks,
6209 conf->raid_disks - conf->mddev->degraded);
6210
6211 for (i = 0; i < conf->raid_disks; i++) {
6212 char b[BDEVNAME_SIZE];
6213 tmp = conf->disks + i;
6214 if (tmp->rdev)
6215 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6216 i, !test_bit(Faulty, &tmp->rdev->flags),
6217 bdevname(tmp->rdev->bdev, b));
6218 }
6219 }
6220
6221 static int raid5_spare_active(struct mddev *mddev)
6222 {
6223 int i;
6224 struct r5conf *conf = mddev->private;
6225 struct disk_info *tmp;
6226 int count = 0;
6227 unsigned long flags;
6228
6229 for (i = 0; i < conf->raid_disks; i++) {
6230 tmp = conf->disks + i;
6231 if (tmp->replacement
6232 && tmp->replacement->recovery_offset == MaxSector
6233 && !test_bit(Faulty, &tmp->replacement->flags)
6234 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6235 /* Replacement has just become active. */
6236 if (!tmp->rdev
6237 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6238 count++;
6239 if (tmp->rdev) {
6240 /* Replaced device not technically faulty,
6241 * but we need to be sure it gets removed
6242 * and never re-added.
6243 */
6244 set_bit(Faulty, &tmp->rdev->flags);
6245 sysfs_notify_dirent_safe(
6246 tmp->rdev->sysfs_state);
6247 }
6248 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6249 } else if (tmp->rdev
6250 && tmp->rdev->recovery_offset == MaxSector
6251 && !test_bit(Faulty, &tmp->rdev->flags)
6252 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6253 count++;
6254 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6255 }
6256 }
6257 spin_lock_irqsave(&conf->device_lock, flags);
6258 mddev->degraded = calc_degraded(conf);
6259 spin_unlock_irqrestore(&conf->device_lock, flags);
6260 print_raid5_conf(conf);
6261 return count;
6262 }
6263
6264 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6265 {
6266 struct r5conf *conf = mddev->private;
6267 int err = 0;
6268 int number = rdev->raid_disk;
6269 struct md_rdev **rdevp;
6270 struct disk_info *p = conf->disks + number;
6271
6272 print_raid5_conf(conf);
6273 if (rdev == p->rdev)
6274 rdevp = &p->rdev;
6275 else if (rdev == p->replacement)
6276 rdevp = &p->replacement;
6277 else
6278 return 0;
6279
6280 if (number >= conf->raid_disks &&
6281 conf->reshape_progress == MaxSector)
6282 clear_bit(In_sync, &rdev->flags);
6283
6284 if (test_bit(In_sync, &rdev->flags) ||
6285 atomic_read(&rdev->nr_pending)) {
6286 err = -EBUSY;
6287 goto abort;
6288 }
6289 /* Only remove non-faulty devices if recovery
6290 * isn't possible.
6291 */
6292 if (!test_bit(Faulty, &rdev->flags) &&
6293 mddev->recovery_disabled != conf->recovery_disabled &&
6294 !has_failed(conf) &&
6295 (!p->replacement || p->replacement == rdev) &&
6296 number < conf->raid_disks) {
6297 err = -EBUSY;
6298 goto abort;
6299 }
6300 *rdevp = NULL;
6301 synchronize_rcu();
6302 if (atomic_read(&rdev->nr_pending)) {
6303 /* lost the race, try later */
6304 err = -EBUSY;
6305 *rdevp = rdev;
6306 } else if (p->replacement) {
6307 /* We must have just cleared 'rdev' */
6308 p->rdev = p->replacement;
6309 clear_bit(Replacement, &p->replacement->flags);
6310 smp_mb(); /* Make sure other CPUs may see both as identical
6311 * but will never see neither - if they are careful
6312 */
6313 p->replacement = NULL;
6314 clear_bit(WantReplacement, &rdev->flags);
6315 } else
6316 /* We might have just removed the Replacement as faulty-
6317 * clear the bit just in case
6318 */
6319 clear_bit(WantReplacement, &rdev->flags);
6320 abort:
6321
6322 print_raid5_conf(conf);
6323 return err;
6324 }
6325
6326 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6327 {
6328 struct r5conf *conf = mddev->private;
6329 int err = -EEXIST;
6330 int disk;
6331 struct disk_info *p;
6332 int first = 0;
6333 int last = conf->raid_disks - 1;
6334
6335 if (mddev->recovery_disabled == conf->recovery_disabled)
6336 return -EBUSY;
6337
6338 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6339 /* no point adding a device */
6340 return -EINVAL;
6341
6342 if (rdev->raid_disk >= 0)
6343 first = last = rdev->raid_disk;
6344
6345 /*
6346 * find the disk ... but prefer rdev->saved_raid_disk
6347 * if possible.
6348 */
6349 if (rdev->saved_raid_disk >= 0 &&
6350 rdev->saved_raid_disk >= first &&
6351 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6352 first = rdev->saved_raid_disk;
6353
6354 for (disk = first; disk <= last; disk++) {
6355 p = conf->disks + disk;
6356 if (p->rdev == NULL) {
6357 clear_bit(In_sync, &rdev->flags);
6358 rdev->raid_disk = disk;
6359 err = 0;
6360 if (rdev->saved_raid_disk != disk)
6361 conf->fullsync = 1;
6362 rcu_assign_pointer(p->rdev, rdev);
6363 goto out;
6364 }
6365 }
6366 for (disk = first; disk <= last; disk++) {
6367 p = conf->disks + disk;
6368 if (test_bit(WantReplacement, &p->rdev->flags) &&
6369 p->replacement == NULL) {
6370 clear_bit(In_sync, &rdev->flags);
6371 set_bit(Replacement, &rdev->flags);
6372 rdev->raid_disk = disk;
6373 err = 0;
6374 conf->fullsync = 1;
6375 rcu_assign_pointer(p->replacement, rdev);
6376 break;
6377 }
6378 }
6379 out:
6380 print_raid5_conf(conf);
6381 return err;
6382 }
6383
6384 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6385 {
6386 /* no resync is happening, and there is enough space
6387 * on all devices, so we can resize.
6388 * We need to make sure resync covers any new space.
6389 * If the array is shrinking we should possibly wait until
6390 * any io in the removed space completes, but it hardly seems
6391 * worth it.
6392 */
6393 sector_t newsize;
6394 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6395 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6396 if (mddev->external_size &&
6397 mddev->array_sectors > newsize)
6398 return -EINVAL;
6399 if (mddev->bitmap) {
6400 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6401 if (ret)
6402 return ret;
6403 }
6404 md_set_array_sectors(mddev, newsize);
6405 set_capacity(mddev->gendisk, mddev->array_sectors);
6406 revalidate_disk(mddev->gendisk);
6407 if (sectors > mddev->dev_sectors &&
6408 mddev->recovery_cp > mddev->dev_sectors) {
6409 mddev->recovery_cp = mddev->dev_sectors;
6410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6411 }
6412 mddev->dev_sectors = sectors;
6413 mddev->resync_max_sectors = sectors;
6414 return 0;
6415 }
6416
6417 static int check_stripe_cache(struct mddev *mddev)
6418 {
6419 /* Can only proceed if there are plenty of stripe_heads.
6420 * We need a minimum of one full stripe,, and for sensible progress
6421 * it is best to have about 4 times that.
6422 * If we require 4 times, then the default 256 4K stripe_heads will
6423 * allow for chunk sizes up to 256K, which is probably OK.
6424 * If the chunk size is greater, user-space should request more
6425 * stripe_heads first.
6426 */
6427 struct r5conf *conf = mddev->private;
6428 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6429 > conf->max_nr_stripes ||
6430 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6431 > conf->max_nr_stripes) {
6432 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6433 mdname(mddev),
6434 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6435 / STRIPE_SIZE)*4);
6436 return 0;
6437 }
6438 return 1;
6439 }
6440
6441 static int check_reshape(struct mddev *mddev)
6442 {
6443 struct r5conf *conf = mddev->private;
6444
6445 if (mddev->delta_disks == 0 &&
6446 mddev->new_layout == mddev->layout &&
6447 mddev->new_chunk_sectors == mddev->chunk_sectors)
6448 return 0; /* nothing to do */
6449 if (has_failed(conf))
6450 return -EINVAL;
6451 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6452 /* We might be able to shrink, but the devices must
6453 * be made bigger first.
6454 * For raid6, 4 is the minimum size.
6455 * Otherwise 2 is the minimum
6456 */
6457 int min = 2;
6458 if (mddev->level == 6)
6459 min = 4;
6460 if (mddev->raid_disks + mddev->delta_disks < min)
6461 return -EINVAL;
6462 }
6463
6464 if (!check_stripe_cache(mddev))
6465 return -ENOSPC;
6466
6467 return resize_stripes(conf, (conf->previous_raid_disks
6468 + mddev->delta_disks));
6469 }
6470
6471 static int raid5_start_reshape(struct mddev *mddev)
6472 {
6473 struct r5conf *conf = mddev->private;
6474 struct md_rdev *rdev;
6475 int spares = 0;
6476 unsigned long flags;
6477
6478 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6479 return -EBUSY;
6480
6481 if (!check_stripe_cache(mddev))
6482 return -ENOSPC;
6483
6484 if (has_failed(conf))
6485 return -EINVAL;
6486
6487 rdev_for_each(rdev, mddev) {
6488 if (!test_bit(In_sync, &rdev->flags)
6489 && !test_bit(Faulty, &rdev->flags))
6490 spares++;
6491 }
6492
6493 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6494 /* Not enough devices even to make a degraded array
6495 * of that size
6496 */
6497 return -EINVAL;
6498
6499 /* Refuse to reduce size of the array. Any reductions in
6500 * array size must be through explicit setting of array_size
6501 * attribute.
6502 */
6503 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6504 < mddev->array_sectors) {
6505 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6506 "before number of disks\n", mdname(mddev));
6507 return -EINVAL;
6508 }
6509
6510 atomic_set(&conf->reshape_stripes, 0);
6511 spin_lock_irq(&conf->device_lock);
6512 write_seqcount_begin(&conf->gen_lock);
6513 conf->previous_raid_disks = conf->raid_disks;
6514 conf->raid_disks += mddev->delta_disks;
6515 conf->prev_chunk_sectors = conf->chunk_sectors;
6516 conf->chunk_sectors = mddev->new_chunk_sectors;
6517 conf->prev_algo = conf->algorithm;
6518 conf->algorithm = mddev->new_layout;
6519 conf->generation++;
6520 /* Code that selects data_offset needs to see the generation update
6521 * if reshape_progress has been set - so a memory barrier needed.
6522 */
6523 smp_mb();
6524 if (mddev->reshape_backwards)
6525 conf->reshape_progress = raid5_size(mddev, 0, 0);
6526 else
6527 conf->reshape_progress = 0;
6528 conf->reshape_safe = conf->reshape_progress;
6529 write_seqcount_end(&conf->gen_lock);
6530 spin_unlock_irq(&conf->device_lock);
6531
6532 /* Now make sure any requests that proceeded on the assumption
6533 * the reshape wasn't running - like Discard or Read - have
6534 * completed.
6535 */
6536 mddev_suspend(mddev);
6537 mddev_resume(mddev);
6538
6539 /* Add some new drives, as many as will fit.
6540 * We know there are enough to make the newly sized array work.
6541 * Don't add devices if we are reducing the number of
6542 * devices in the array. This is because it is not possible
6543 * to correctly record the "partially reconstructed" state of
6544 * such devices during the reshape and confusion could result.
6545 */
6546 if (mddev->delta_disks >= 0) {
6547 rdev_for_each(rdev, mddev)
6548 if (rdev->raid_disk < 0 &&
6549 !test_bit(Faulty, &rdev->flags)) {
6550 if (raid5_add_disk(mddev, rdev) == 0) {
6551 if (rdev->raid_disk
6552 >= conf->previous_raid_disks)
6553 set_bit(In_sync, &rdev->flags);
6554 else
6555 rdev->recovery_offset = 0;
6556
6557 if (sysfs_link_rdev(mddev, rdev))
6558 /* Failure here is OK */;
6559 }
6560 } else if (rdev->raid_disk >= conf->previous_raid_disks
6561 && !test_bit(Faulty, &rdev->flags)) {
6562 /* This is a spare that was manually added */
6563 set_bit(In_sync, &rdev->flags);
6564 }
6565
6566 /* When a reshape changes the number of devices,
6567 * ->degraded is measured against the larger of the
6568 * pre and post number of devices.
6569 */
6570 spin_lock_irqsave(&conf->device_lock, flags);
6571 mddev->degraded = calc_degraded(conf);
6572 spin_unlock_irqrestore(&conf->device_lock, flags);
6573 }
6574 mddev->raid_disks = conf->raid_disks;
6575 mddev->reshape_position = conf->reshape_progress;
6576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6577
6578 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6579 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6580 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6581 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6582 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6583 "reshape");
6584 if (!mddev->sync_thread) {
6585 mddev->recovery = 0;
6586 spin_lock_irq(&conf->device_lock);
6587 write_seqcount_begin(&conf->gen_lock);
6588 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6589 mddev->new_chunk_sectors =
6590 conf->chunk_sectors = conf->prev_chunk_sectors;
6591 mddev->new_layout = conf->algorithm = conf->prev_algo;
6592 rdev_for_each(rdev, mddev)
6593 rdev->new_data_offset = rdev->data_offset;
6594 smp_wmb();
6595 conf->generation --;
6596 conf->reshape_progress = MaxSector;
6597 mddev->reshape_position = MaxSector;
6598 write_seqcount_end(&conf->gen_lock);
6599 spin_unlock_irq(&conf->device_lock);
6600 return -EAGAIN;
6601 }
6602 conf->reshape_checkpoint = jiffies;
6603 md_wakeup_thread(mddev->sync_thread);
6604 md_new_event(mddev);
6605 return 0;
6606 }
6607
6608 /* This is called from the reshape thread and should make any
6609 * changes needed in 'conf'
6610 */
6611 static void end_reshape(struct r5conf *conf)
6612 {
6613
6614 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6615 struct md_rdev *rdev;
6616
6617 spin_lock_irq(&conf->device_lock);
6618 conf->previous_raid_disks = conf->raid_disks;
6619 rdev_for_each(rdev, conf->mddev)
6620 rdev->data_offset = rdev->new_data_offset;
6621 smp_wmb();
6622 conf->reshape_progress = MaxSector;
6623 spin_unlock_irq(&conf->device_lock);
6624 wake_up(&conf->wait_for_overlap);
6625
6626 /* read-ahead size must cover two whole stripes, which is
6627 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6628 */
6629 if (conf->mddev->queue) {
6630 int data_disks = conf->raid_disks - conf->max_degraded;
6631 int stripe = data_disks * ((conf->chunk_sectors << 9)
6632 / PAGE_SIZE);
6633 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6634 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6635 }
6636 }
6637 }
6638
6639 /* This is called from the raid5d thread with mddev_lock held.
6640 * It makes config changes to the device.
6641 */
6642 static void raid5_finish_reshape(struct mddev *mddev)
6643 {
6644 struct r5conf *conf = mddev->private;
6645
6646 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6647
6648 if (mddev->delta_disks > 0) {
6649 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6650 set_capacity(mddev->gendisk, mddev->array_sectors);
6651 revalidate_disk(mddev->gendisk);
6652 } else {
6653 int d;
6654 spin_lock_irq(&conf->device_lock);
6655 mddev->degraded = calc_degraded(conf);
6656 spin_unlock_irq(&conf->device_lock);
6657 for (d = conf->raid_disks ;
6658 d < conf->raid_disks - mddev->delta_disks;
6659 d++) {
6660 struct md_rdev *rdev = conf->disks[d].rdev;
6661 if (rdev)
6662 clear_bit(In_sync, &rdev->flags);
6663 rdev = conf->disks[d].replacement;
6664 if (rdev)
6665 clear_bit(In_sync, &rdev->flags);
6666 }
6667 }
6668 mddev->layout = conf->algorithm;
6669 mddev->chunk_sectors = conf->chunk_sectors;
6670 mddev->reshape_position = MaxSector;
6671 mddev->delta_disks = 0;
6672 mddev->reshape_backwards = 0;
6673 }
6674 }
6675
6676 static void raid5_quiesce(struct mddev *mddev, int state)
6677 {
6678 struct r5conf *conf = mddev->private;
6679
6680 switch(state) {
6681 case 2: /* resume for a suspend */
6682 wake_up(&conf->wait_for_overlap);
6683 break;
6684
6685 case 1: /* stop all writes */
6686 lock_all_device_hash_locks_irq(conf);
6687 /* '2' tells resync/reshape to pause so that all
6688 * active stripes can drain
6689 */
6690 conf->quiesce = 2;
6691 wait_event_cmd(conf->wait_for_stripe,
6692 atomic_read(&conf->active_stripes) == 0 &&
6693 atomic_read(&conf->active_aligned_reads) == 0,
6694 unlock_all_device_hash_locks_irq(conf),
6695 lock_all_device_hash_locks_irq(conf));
6696 conf->quiesce = 1;
6697 unlock_all_device_hash_locks_irq(conf);
6698 /* allow reshape to continue */
6699 wake_up(&conf->wait_for_overlap);
6700 break;
6701
6702 case 0: /* re-enable writes */
6703 lock_all_device_hash_locks_irq(conf);
6704 conf->quiesce = 0;
6705 wake_up(&conf->wait_for_stripe);
6706 wake_up(&conf->wait_for_overlap);
6707 unlock_all_device_hash_locks_irq(conf);
6708 break;
6709 }
6710 }
6711
6712
6713 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6714 {
6715 struct r0conf *raid0_conf = mddev->private;
6716 sector_t sectors;
6717
6718 /* for raid0 takeover only one zone is supported */
6719 if (raid0_conf->nr_strip_zones > 1) {
6720 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6721 mdname(mddev));
6722 return ERR_PTR(-EINVAL);
6723 }
6724
6725 sectors = raid0_conf->strip_zone[0].zone_end;
6726 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6727 mddev->dev_sectors = sectors;
6728 mddev->new_level = level;
6729 mddev->new_layout = ALGORITHM_PARITY_N;
6730 mddev->new_chunk_sectors = mddev->chunk_sectors;
6731 mddev->raid_disks += 1;
6732 mddev->delta_disks = 1;
6733 /* make sure it will be not marked as dirty */
6734 mddev->recovery_cp = MaxSector;
6735
6736 return setup_conf(mddev);
6737 }
6738
6739
6740 static void *raid5_takeover_raid1(struct mddev *mddev)
6741 {
6742 int chunksect;
6743
6744 if (mddev->raid_disks != 2 ||
6745 mddev->degraded > 1)
6746 return ERR_PTR(-EINVAL);
6747
6748 /* Should check if there are write-behind devices? */
6749
6750 chunksect = 64*2; /* 64K by default */
6751
6752 /* The array must be an exact multiple of chunksize */
6753 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6754 chunksect >>= 1;
6755
6756 if ((chunksect<<9) < STRIPE_SIZE)
6757 /* array size does not allow a suitable chunk size */
6758 return ERR_PTR(-EINVAL);
6759
6760 mddev->new_level = 5;
6761 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6762 mddev->new_chunk_sectors = chunksect;
6763
6764 return setup_conf(mddev);
6765 }
6766
6767 static void *raid5_takeover_raid6(struct mddev *mddev)
6768 {
6769 int new_layout;
6770
6771 switch (mddev->layout) {
6772 case ALGORITHM_LEFT_ASYMMETRIC_6:
6773 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6774 break;
6775 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6776 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6777 break;
6778 case ALGORITHM_LEFT_SYMMETRIC_6:
6779 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6780 break;
6781 case ALGORITHM_RIGHT_SYMMETRIC_6:
6782 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6783 break;
6784 case ALGORITHM_PARITY_0_6:
6785 new_layout = ALGORITHM_PARITY_0;
6786 break;
6787 case ALGORITHM_PARITY_N:
6788 new_layout = ALGORITHM_PARITY_N;
6789 break;
6790 default:
6791 return ERR_PTR(-EINVAL);
6792 }
6793 mddev->new_level = 5;
6794 mddev->new_layout = new_layout;
6795 mddev->delta_disks = -1;
6796 mddev->raid_disks -= 1;
6797 return setup_conf(mddev);
6798 }
6799
6800
6801 static int raid5_check_reshape(struct mddev *mddev)
6802 {
6803 /* For a 2-drive array, the layout and chunk size can be changed
6804 * immediately as not restriping is needed.
6805 * For larger arrays we record the new value - after validation
6806 * to be used by a reshape pass.
6807 */
6808 struct r5conf *conf = mddev->private;
6809 int new_chunk = mddev->new_chunk_sectors;
6810
6811 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6812 return -EINVAL;
6813 if (new_chunk > 0) {
6814 if (!is_power_of_2(new_chunk))
6815 return -EINVAL;
6816 if (new_chunk < (PAGE_SIZE>>9))
6817 return -EINVAL;
6818 if (mddev->array_sectors & (new_chunk-1))
6819 /* not factor of array size */
6820 return -EINVAL;
6821 }
6822
6823 /* They look valid */
6824
6825 if (mddev->raid_disks == 2) {
6826 /* can make the change immediately */
6827 if (mddev->new_layout >= 0) {
6828 conf->algorithm = mddev->new_layout;
6829 mddev->layout = mddev->new_layout;
6830 }
6831 if (new_chunk > 0) {
6832 conf->chunk_sectors = new_chunk ;
6833 mddev->chunk_sectors = new_chunk;
6834 }
6835 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6836 md_wakeup_thread(mddev->thread);
6837 }
6838 return check_reshape(mddev);
6839 }
6840
6841 static int raid6_check_reshape(struct mddev *mddev)
6842 {
6843 int new_chunk = mddev->new_chunk_sectors;
6844
6845 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6846 return -EINVAL;
6847 if (new_chunk > 0) {
6848 if (!is_power_of_2(new_chunk))
6849 return -EINVAL;
6850 if (new_chunk < (PAGE_SIZE >> 9))
6851 return -EINVAL;
6852 if (mddev->array_sectors & (new_chunk-1))
6853 /* not factor of array size */
6854 return -EINVAL;
6855 }
6856
6857 /* They look valid */
6858 return check_reshape(mddev);
6859 }
6860
6861 static void *raid5_takeover(struct mddev *mddev)
6862 {
6863 /* raid5 can take over:
6864 * raid0 - if there is only one strip zone - make it a raid4 layout
6865 * raid1 - if there are two drives. We need to know the chunk size
6866 * raid4 - trivial - just use a raid4 layout.
6867 * raid6 - Providing it is a *_6 layout
6868 */
6869 if (mddev->level == 0)
6870 return raid45_takeover_raid0(mddev, 5);
6871 if (mddev->level == 1)
6872 return raid5_takeover_raid1(mddev);
6873 if (mddev->level == 4) {
6874 mddev->new_layout = ALGORITHM_PARITY_N;
6875 mddev->new_level = 5;
6876 return setup_conf(mddev);
6877 }
6878 if (mddev->level == 6)
6879 return raid5_takeover_raid6(mddev);
6880
6881 return ERR_PTR(-EINVAL);
6882 }
6883
6884 static void *raid4_takeover(struct mddev *mddev)
6885 {
6886 /* raid4 can take over:
6887 * raid0 - if there is only one strip zone
6888 * raid5 - if layout is right
6889 */
6890 if (mddev->level == 0)
6891 return raid45_takeover_raid0(mddev, 4);
6892 if (mddev->level == 5 &&
6893 mddev->layout == ALGORITHM_PARITY_N) {
6894 mddev->new_layout = 0;
6895 mddev->new_level = 4;
6896 return setup_conf(mddev);
6897 }
6898 return ERR_PTR(-EINVAL);
6899 }
6900
6901 static struct md_personality raid5_personality;
6902
6903 static void *raid6_takeover(struct mddev *mddev)
6904 {
6905 /* Currently can only take over a raid5. We map the
6906 * personality to an equivalent raid6 personality
6907 * with the Q block at the end.
6908 */
6909 int new_layout;
6910
6911 if (mddev->pers != &raid5_personality)
6912 return ERR_PTR(-EINVAL);
6913 if (mddev->degraded > 1)
6914 return ERR_PTR(-EINVAL);
6915 if (mddev->raid_disks > 253)
6916 return ERR_PTR(-EINVAL);
6917 if (mddev->raid_disks < 3)
6918 return ERR_PTR(-EINVAL);
6919
6920 switch (mddev->layout) {
6921 case ALGORITHM_LEFT_ASYMMETRIC:
6922 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6923 break;
6924 case ALGORITHM_RIGHT_ASYMMETRIC:
6925 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6926 break;
6927 case ALGORITHM_LEFT_SYMMETRIC:
6928 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6929 break;
6930 case ALGORITHM_RIGHT_SYMMETRIC:
6931 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6932 break;
6933 case ALGORITHM_PARITY_0:
6934 new_layout = ALGORITHM_PARITY_0_6;
6935 break;
6936 case ALGORITHM_PARITY_N:
6937 new_layout = ALGORITHM_PARITY_N;
6938 break;
6939 default:
6940 return ERR_PTR(-EINVAL);
6941 }
6942 mddev->new_level = 6;
6943 mddev->new_layout = new_layout;
6944 mddev->delta_disks = 1;
6945 mddev->raid_disks += 1;
6946 return setup_conf(mddev);
6947 }
6948
6949
6950 static struct md_personality raid6_personality =
6951 {
6952 .name = "raid6",
6953 .level = 6,
6954 .owner = THIS_MODULE,
6955 .make_request = make_request,
6956 .run = run,
6957 .stop = stop,
6958 .status = status,
6959 .error_handler = error,
6960 .hot_add_disk = raid5_add_disk,
6961 .hot_remove_disk= raid5_remove_disk,
6962 .spare_active = raid5_spare_active,
6963 .sync_request = sync_request,
6964 .resize = raid5_resize,
6965 .size = raid5_size,
6966 .check_reshape = raid6_check_reshape,
6967 .start_reshape = raid5_start_reshape,
6968 .finish_reshape = raid5_finish_reshape,
6969 .quiesce = raid5_quiesce,
6970 .takeover = raid6_takeover,
6971 };
6972 static struct md_personality raid5_personality =
6973 {
6974 .name = "raid5",
6975 .level = 5,
6976 .owner = THIS_MODULE,
6977 .make_request = make_request,
6978 .run = run,
6979 .stop = stop,
6980 .status = status,
6981 .error_handler = error,
6982 .hot_add_disk = raid5_add_disk,
6983 .hot_remove_disk= raid5_remove_disk,
6984 .spare_active = raid5_spare_active,
6985 .sync_request = sync_request,
6986 .resize = raid5_resize,
6987 .size = raid5_size,
6988 .check_reshape = raid5_check_reshape,
6989 .start_reshape = raid5_start_reshape,
6990 .finish_reshape = raid5_finish_reshape,
6991 .quiesce = raid5_quiesce,
6992 .takeover = raid5_takeover,
6993 };
6994
6995 static struct md_personality raid4_personality =
6996 {
6997 .name = "raid4",
6998 .level = 4,
6999 .owner = THIS_MODULE,
7000 .make_request = make_request,
7001 .run = run,
7002 .stop = stop,
7003 .status = status,
7004 .error_handler = error,
7005 .hot_add_disk = raid5_add_disk,
7006 .hot_remove_disk= raid5_remove_disk,
7007 .spare_active = raid5_spare_active,
7008 .sync_request = sync_request,
7009 .resize = raid5_resize,
7010 .size = raid5_size,
7011 .check_reshape = raid5_check_reshape,
7012 .start_reshape = raid5_start_reshape,
7013 .finish_reshape = raid5_finish_reshape,
7014 .quiesce = raid5_quiesce,
7015 .takeover = raid4_takeover,
7016 };
7017
7018 static int __init raid5_init(void)
7019 {
7020 raid5_wq = alloc_workqueue("raid5wq",
7021 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7022 if (!raid5_wq)
7023 return -ENOMEM;
7024 register_md_personality(&raid6_personality);
7025 register_md_personality(&raid5_personality);
7026 register_md_personality(&raid4_personality);
7027 return 0;
7028 }
7029
7030 static void raid5_exit(void)
7031 {
7032 unregister_md_personality(&raid6_personality);
7033 unregister_md_personality(&raid5_personality);
7034 unregister_md_personality(&raid4_personality);
7035 destroy_workqueue(raid5_wq);
7036 }
7037
7038 module_init(raid5_init);
7039 module_exit(raid5_exit);
7040 MODULE_LICENSE("GPL");
7041 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7042 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7043 MODULE_ALIAS("md-raid5");
7044 MODULE_ALIAS("md-raid4");
7045 MODULE_ALIAS("md-level-5");
7046 MODULE_ALIAS("md-level-4");
7047 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7048 MODULE_ALIAS("md-raid6");
7049 MODULE_ALIAS("md-level-6");
7050
7051 /* This used to be two separate modules, they were: */
7052 MODULE_ALIAS("raid5");
7053 MODULE_ALIAS("raid6");